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Reconstruction of the Fermi surface in the pseudogap state of cuprates
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Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state

is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctu-

ations of antiferromagnetic (AFM, spin density wave (SDW), or similar charge density wave (CDW)) order

parameter, competing with superconductivity. We explicitly demonstrate the evolution from “Fermi arcs”

(on the “large” Fermi surface) observed in ARPES experiments at relatively high temperatures (when both

the amplitude and phase of density waves fluctuate randomly) towards formation of typical “small” electron

and hole “pockets”, which are apparently observed in de Haas - van Alfen and Hall resistance oscillation

experiments at low temperatures (when only the phase of density waves fluctuate, and correlation length of

the short-range order is large enough). A qualitative criterion for quantum oscillations in high magnetic fields

to be observable in the pseudogap state is formulated in terms of cyclotron frequency, correlation length of

fluctuations and Fermi velocity.

PACS: 71.10.Hf, 74.72.-h

Pseudogap state of underdoped copper oxides [1, 2,

3, 4] is probably the main anomaly of the normal state of

high temperature superconductors. Especially striking

is the observation of “Fermi arcs” in ARPES experi-

ments, i.e. parts on the “large” Fermi surface around

the diagonal of the Brillouin zone (BZ) with more or less

well defined quasiparticles, while the parts of the Fermi

surface close to BZ boundaries are almost completely

“destroyed” [5, 6, 7].

However, the recent observation of quantum oscilla-

tion effects in Hall resistance [8], Shubnikov - de Haas

[9] and de Haas - van Alfen (dHvA) oscillations [9, 10]

in the underdoped YBCO cuprates, producing evidence

for rather “small” hole or electron [11] pockets of the

Fermi surface, seemed to contradict the well established

ARPES data on the Fermi surface of cuprates.

Qualitatvive explanation of this apparent contra-

diction was given in Ref. [12] within very simplified

model of hole-like Fermi surface evolution under the ef-

fect of short-range AFM fluctuations. Here we present

an exactly solvable model of such an evolution, which

is able to describe continuous transformation of “large”

ARPES Fermi surface with typical “Fermi arcs” at high-

enough temperatures into a collection of “small” hole-

like and electron-like “pockets”, which form due to elec-

tron interaction with fluctuations of SDW (CDW) short-

range order at low temperatures (in the absence of any

kind of AFM (or charge) long-range order). We also for-

mulate a qualitative criterion for observability of quan-

tum oscillation effects in high-magnetic field in this,

rather unusual, situation.
1)e-mail: sadovski@iep.uran.ru

We believe that the preferable “scenario” for pseudo-

gap formation can be most likely based on the picture of

strong scattering of the charge carriers by short–ranged

antiferromagnetic (AFM, SDW) spin fluctuations [2, 3],

i.e. fluctuations of the order parameter competing with

superconductivity. In momentum representation this

scattering transfers momenta of the order of Q = (π
a , π

a )

(a – lattice constant of two dimensional lattice). This

leads to the formation of structures in the one-particle

spectrum, which are precursors of the changes in the

spectra due to long–range AFM order (period doubling).

As a result we obtain non–Fermi liquid like behavior

of the spectral density in the vicinity of the so called

“hot spots” on the Fermi surface, appearing at intersec-

tions of the Fermi surface with antiferromagnetic Bril-

louin zone boundary [2, 3], which in the low temperarure

(large correlation length of the short-range order) can

lead to a significant Fermi surface reconstruction, sim-

ilar to that appearing in the case of AFM long-range

order.

Within this approach we have already demonstrated

[13, 14] the formation of “Fermi arcs” at high-enough

temperatures, when AFM fluctuations can be effectively

considered as static and Gaussian [15, 16]. Here we

present an exactly solvable model, quite similar to that

analyzed qualitatively in Ref. [12], which is capable to

describe a crossover from “Fermi arc” picture at high

temperatures (typical for most of ARPES experiments)

to that of small “pockets” at low temperatures (typical

for quantum oscillation experiments).
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We shall consider a two - dimensional generalization

of an exactly solvable model proposed in one - dimen-

sion in Ref. [17] (and also analyzed in a simplified two-

dimensional approach in Ref. [18]), which is physically

equivalent to the model of Ref. [12], but can produce

a complete picture of Fermi surface reconstruction and

formation of both hole and electron “pockets”.

We consider electrons in two-dimensional square lat-

tice with nearest (t) and next nearest (t′) neighbour

hopping integrals, which leads to the usual “bare” dis-

persion:

ε(k) = −2t(cos kxa + cos kya)− 4t′ cos kxa cos kya− µ ,

(1)

where a is the lattice constant, µ — chemical potential,

and assume that these electrons are scattered by the fol-

lowing (static) random field, imitating AFM(SDW) (or

similar CDW) short-range order:

V (l) = D exp(iQl− iql) + D∗ exp(−iQl + iql) (2)

where l = (nxa, nya) numerates lattice sites and D =

|D|eiφ denotes the complex amplitude of fluctuating

SDW (or CDW) order parameter, while q = (qx, qy) is

a small deviation from the dominating scattering vector

Q = (Qx, Qy) = (π
a , π

a ).

Generalizing the approach of Refs. [17, 18] (compare

with Ref. [12]) we consider a specific model of disorder,

where both qx and qy are random and distributed ac-

cording to:

P(qx, qy) =
1

π2

κ

q2
x + κ2

κ

q2
y + κ2

(3)

where κ = ξ−1 is determined by the inverse correlation

length of short-range order. Phase φ is also considred

to be random and distributed uniformly on the interval

[0, 2π].

Factorized form of (3) is not very important physi-

cally, but allows for an analytic solution for the Green’

function which takes the form [18]:

GD(ε,k) =
ε − ε(k + Q) + ivκ

(ε − ε(k))(ε − ε(k + Q) + ivκ) − |D|2

(4)

where v = |vx(k+Q)|+|vy(k+Q)|, with vx,y(k) = ∂ε(k)
∂kx,y

.

Spectral density A(ε,k) = − 1
π ImGD(ε,k) at the

Fermi level (ε = 0), is shown in Fig. 1, and demonstrate

the formation of small “pockets” instead of large “bare”

Fermi surface. Here and in the following we have as-

sumed rather typical (for cuprates) values of t′/t = −0.4

and doping n = 0.9 (10% hole doping), corresponding

to µ = −1.08t.

Fig.1. Reconstruction of the Fermi surface in the low

temperature (large correlation length) regime of pseu-

dogap fluctuations (n = 0.9, t′/t = −0.4. Shown are

intensity plots of spectral density for ε = 0: (a) –

D = 0.2t, κa = 0.01; (b) – D = 0.7t, κa = 0.01; (c)

– D = 1.5t, κa = 0.01; (d) – D = 0.7t, κa = 0.1;

Dashed line denotes “bare” Fermi surface, dotted line

— shadow Fermi surface.

The poles of the Green’s function (4), determining

the quasiparticle dispersion and damping the limit of

large enough correlation length (vκ ≪ t, low tempera-

ture), are given by:

Ẽ(±) = E
(±)
k

− i
vκ

2

(

1 ∓
ε
(−)
k

Ek

)

(5)

with ε
(±)
k

= 1
2 [ε(k) ± ε(k + Q)], Ek =

√

ε
(−)2
k

+ |D|2,

and

E
(±)
k

= ε
(+)
k

±

√

ε
(−)2
k

+ |D|2 (6)

which is just the same as dispersion in the case of the

presence of long-range AFM order. Equation E
(−)
k

=

0 determines the hole “pocket” of the Fermi surface,

around the point ( π
2a , π

2a ) in the Brillouin zone, while

E
(+)
k

= 0 defines the electronic “pockets”, centered

around (π
a , 0) and (0, π

a ), as shown in Fig. 1 (a).

Quasiparticle damping as given by the imaginary

part of (5) is, in fact, changing rather drastically as par-

ticle moves around the “pocket” of the Fermi surface.

Being practically zero in the nearest to point Γ = (0, 0)

nodal (i.e. on the diagonal of the Brillouin zone) point

of this trajectory on the hole “pocket”, it becomes of the

order of ≈ vn
F κ in the far (from Γ) nodal point. Here

we have introduced vn
F = |vx(k|) + |vy(k)||ε(k)=0,kx=ky

— particle velocity at the nodal point of the “bare”
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Fermi surface. On the trajectory around the electronic

“pocket” quasiparticle damping changes from nearly

zero near the crossing points of the “bare” Fermi surface

with Brillouin zone boundary up to ≈ va
F κ at points

close to the similar crossing points of the “shadow”

Fermi surface. Here va
F = |vx(k|) + |vy(k)||ε(k)=0,kx= π

a

is the velocity in the antinodal point of “bare” Fermi

surface.

Of course, the complete theory of quantum (Shub-

nikov - de Haas or de Haas - van Alfen) oscillations for

such peculiar situation can be rather complicated. How-

ever, a rough qualitative criterion for the observability

of quantum oscillations in our model can be easily for-

mulated as follows. Effective width of spectral densities

in our model, which determines smearing of the Fermi

surfaces, can be roughly compared to impurity scatter-

ing contribution to Dingle temperature and estimated

as τ−1 ∼ <vF >
ξ , where < vF > is the velocity aver-

aged over the Fermi surface. In fact it gives a kind of

the upper boundary to pseudogap scattering rate in our

model. Then our criterion takes the obvious form:

ωH
ξ

< vF >
∼

ωH

t

ξ

a
≫ 1 (7)

where ωH is the usual cyclotron frequency.

As the most unfavourable estimate (overestimating

the effective damping) we take:

< vF >=

{

vn
F for hole “pocket”

va
F for electronic “pocket”

(8)

Experimentally oscillations become observable in mag-

netic fields larger than 50 T [8, 9, 10, 11]. Taking

the large correlation length ξ = 100 a and magnetic

field H =50T we get ωHτ ≈ 0.8 for hole “pocket”

and ωHτ ≈ 1.3 for electronic “pockets” in our model.

Thus we need rather large values of correlation length

ξ ∼ 50 − 100 a for oscillations to be observable. How-

ever, this value may be smaller in the case of cyclotron

mass larger than the mass of the free electron used in

the above estimates.

From Luttinger theorem it follows that the number

of electrons per cell is given by n = 2a2 Sfs

π2 , where Sfs

is the area of the “bare” Fermi surface (ε(k) = 0) in the

quarter of the Brillouin zone. Similarly, we can deter-

mine this concentration as n = 2a2 Ssh

π2 calculating the

area Ssh of the “shadow” Fermi surface (ε(k + Q) = 0)

around the point M(π
a , π

a ). Obviously Ssh = Sfs. Then,

in the limit of |D| → 0, for hole doping we get [19, 20]:

p = 1 − n = a2 Sh − S′
e

π2
= a2 Sh − Se/2

π2
(9)

where Sh is the area of hole “pocket” and S′
e is the area

of the parts of electronic pocket inside the quarter of
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Fig.2. The area of hole (a2 Sh

π2
) and electronic (a2 S

′

e

π2
)

“pockets” in the quarter of Brillouin zone and “doping”

p = a2 (Sh−S
′

e)

π2 as fuctions of the pseudogap amplitude

D/t (n = 0.9 (µ = −1.08t), t′/t = −0.4).

the Brillouin zone (which is a half of the total area of

electronic “pocket” Se).

However, these expressions are valid only for |D| →

0. With the growth of the pseudogap amplitude |D|

the area of both hole and electronic “pockets” diminish

(as can be seen from Fig.1 and Fig.2). In the presence

of electronic “pocket” this suppression of the area of

both “pockets” compensate each other, leaving the dop-

ing given by Eq. (9) almost unchanged (Fig.2). After

the disappearance of electronic “pocket”, taking place

at |D| = µ − 4t′ = 0.52t (i.e. when E
(+)
k=(π/a,0) = 0),

there is no way to compensate the suppression of the

area the hole “pockets” with the growth of |D| and the

number of carriers, determined by (9), will also be sup-

pressed, going to zero with the disappearance of the

hole “pocket”, taking place at |D| = −µ = 1.08t (which

is defined by E
(−)
k=(π/2a,π/2a) = 0) and dielectric (AFM)

gap “closes” the whole Fermi surface (Fig.1(c)). Thus,

the doping calculated according to Eq. (9) in the case

of large enough pseudogap amplitude (in the absence

of electronic “pocket”) will be significantly underesti-

mated.

Experimentally, only one frequency of quantum os-

cillations F ≈ 540T was observed in YBCO [9]. As-

suming it corresponds to the presence of only the

hole “pocket”, we obtain for the area of this “pocket”

a2Sh/π2 = 0.078, which, according to Fig.2 corresponds

to |D| ≈ 0.7t.

Green’s function (4) describes the “low tempera-

ture” regime of pseudogap fluctuations, when the am-

plitude fluctuations of the random field (2) are “frozen

out”. In the “high temperature” regime both the phase

and the amplitude |D| of (2) are fluctuating. Assum-

ing these fluctuations Gaussian we take the probability



Fig.3. Formation of the Fermi “arcs” in the high-

temperature regime of pseudogap fluctuations (n = 0.9,

t′/t = −0.4, κa = 0.01). Shown are intensity plots

of spectral density for ε = 0. (a) – ∆ = 0.2t; (b) –

∆ = 0.4t; (c) – ∆ = 0.7t; (d) – ∆ = 1.5t; Dashed line

denotes “bare” Fermi surface.

distribution of amplitude fluctuations given by Rayleigh

distribution [18]:

PD(|D|) =
2|D|

∆2
exp

(

−
|D|2

∆2

)

(10)

Then the averaged Green’s function takes the form:

G∆(ε,k) =

∫ ∞

0

d|D|PD(|D|)GD(ε,k) (11)

Profiles of the spectral density at the Fermi level (ε = 0),

corresponding to (11) and different values of the pseu-

dogap width ∆ are shown in Fig. 3. The growth of

the pseudogap width leads to the “destruction” of the

Fermi surface close to Brillouin zone boundaries and for-

mation of typical Fermi “arcs”, qualitatively (and quan-

titatively) similar to that obtained in our previous work

[13, 14] and in accordance with the results of ARPES

experiments, which are typically done at much higher

temperatures, than experiments on quantum fluctua-

tions.

This work is supported by RFBR grant 08-02-

00021 and RAS programs “Quantum macrophysics” and

“Strongly correlated electrons in semiconductors, met-

als, superconductors and magnetic materials”. MVS is

gratefully acknowledges a discussion with L. Taillefer at

GRC’07 Conference on Superconductivity, which stim-

ulated his interest in this problem.

1. T. Timusk, B. Statt, Rep. Progr. Phys, 62, 61 (1999).

2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001)

[Physics – Uspekhi 44, 515 (2001)].

3. M. V. Sadovskii. Models of the pseudogap state in

high-temperature superconductors. In “Strings, branes,

lattices, networks, pseudogaps and dust”, Scientific

World, Moscow 2007, p.p. 357-441 (in Russian); arXiv:

cond-mat/0408489.

4. M. R. Norman, D. Pines, C. Kallin. Adv. Phys. 54, 715

(2007)

5. M. R. Norman, H. Ding, J. C. Campuzano, T. Yokoya,

T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki,

P. Guptasarma, D. G. Hinks. Nature 392, 157 (1998)

6. A. Damascelli, Z. Hussain, Z.-X. Shen. Rev. Mod. Phys.

75, 473 (2003)

7. J. C. Campuzano, M. R. Norman, M. Randeria. In

“Physics of Superconductors”, Vol. II, Ed. by K. H. Ben-

nemann and J. B. Ketterson, Springer, Berlin 2004, p.p.

167-273

8. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois,

J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy,

L. Taillefer. Nature 447, 565 (2007)

9. A. F. Bangura, J. D. Fletcher, A. Carrington, J. Leval-

lois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-

Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust,

N. E. Hussey. Phys. Rev. Lett. 100, 047004 (2008)

10. C. Jaudet, D. Vignolles, A. Audouard, J. Levallois,

D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nar-

done, A. Zitouni, R. Liang, D. A. Bonn, W. N. Hardy,

L. Taillefer, C. Proust. Phys. Rev. Lett. 100, 187005

(2008)

11. D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou,

J.-B. Bonnemaison, N. E. Hussey, L. Balicas, B. J.

Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S.

Adachi, C. Proust, L. Taillefer. Nature 450, 533 (2007)

12. N. Harrison, R. D. McDonald, J. Singleton. Phys. Rev.

Lett. 99, 206406 (2007)

13. E. Z. Kuchinskii, I. A. Nekrasov, M. V. Sadovskii. Pisma

Zh. Eksp. Teor. Fiz. 82, 217 (2005) [JETP Lett. 82, 198

(2005)]

14. E. Z. Kuchinskii, M. V. Sadovskii. Zh. Eksp. Teor. Fiz.

130, 477 (2006) [JETP 103, 415 (2006)]

15. E. Z. Kuchinskii, M. V. Sadovskii, Zh. Eksp. Teor. Fiz.

115, 1765 (1999) [JETP 88, 347 (1999)].

16. J. Schmalian, D. Pines, B. Stojkovic. Phys. Rev. B 60,

667 (1999)

17. L. Bartosch, P. Kopietz. Eur. J. Phys. B 17, 555 (2000)

18. E. Z. Kuchinskii, M. V. Sadovskii. Zh. Eksp. Teor. Fiz.

121, 758 (2002) [JETP 94, 654 (2002)]

19. S. Chakravarty, H.-Y. Kee. arXiv: 0710.0608

20. T. Morinari. arXiv: 0805.1977

http://arXiv.org/abs/cond-mat/0408489

