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Two–dimensional Anderson–Hubbard model in DMFT+Σ approximation.

E.Z. Kuchinskii, N.A. Kuleeva, I.A. Nekrasov, M.V. Sadovskii
Institute for Electrophysics, Russian Academy of Sciences, Ekaterinburg, 620016, Russia

Density of states, dynamic (optical) conductivity and phase diagram of paramagnetic two – di-
mensional Anderson – Hubbard model with strong correlations and disorder are analyzed within
the generalized dynamical mean field theory (DMFT+Σ approximation). Strong correlations are
accounted by DMFT, while disorder is taken into account via the appropriate generalization of the
self – consistent theory of localization. We consider the two – dimensional system with the rect-
angular “bare” density of states (DOS). The DMFT effective single impurity problem is solved by
numerical renormalization group (NRG). Phases of “correlated metal”, Mott insulator and corre-
lated Anderson insulator are identified from the evolution of density of states, optical conductivity
and localization length, demonstrating both Mott – Hubbard and Anderson metal – insulator tran-
sitions in two – dimensional systems of the finite size, allowing us to construct the complete zero
– temperature phase diagram of paramagnetic Anderson – Hubbard model. Localization length in
our approximation is practically independent of the strength of Hubbard correlations. However, the
divergence of localization length in finite size two – dimensional system at small disorder signifies
the existence of an effective Anderson transition.

PACS numbers: 71.10.Fd, 71.27.+a, 71.30.+h

I. INTRODUCTION

The study of disordered electronic systems with the
account of interaction effects belongs to the central prob-
lems of the modern condensed matter theory1. According
to the scaling theory of localization2 there is no metal-
lic state in two – dimensional (2D) systems, all electronic
states are localized at the smallest possible disorder. This
prediction was made first for noninteracting 2D systems,
soon after it was shown that the weak electron – electron
interaction in most cases enhance localization3. Experi-
ments performed in early 80’s on different 2D systems4

essentially confirmed these predictions. However, some
theoretical works produced an evidence of rather differ-
ent possibility5 for 2D systems to evolve to the state
with even infinite metallic – like conductivity at zero
temperature (T = 0) in case of weak disorder and suffi-
ciently strong correlations. Experimental observation of
metal – insulator transition (MIT) in 2D systems with
weak enough disorder but strong correlations (low elec-
tronic densities)6, which apparently contradicted the pre-
dictions of the scaling theory of localization, stimulated
extensive theoretical studies with no widely accepted so-
lution up to now (see the review in Ref. 7).

One of the basic models allowing for the simultane-
ous account of both strong enough electronic correla-
tions, leading to Mott MIT transition8, and effects of
strong disorder, leading to Anderson MIT9, is the An-
derson – Hubbard model, intensively studied in recent
years10,11,12,13,14,15,16.

In Refs.10,11,12 three – dimensional (3D) Anderson –
Hubbard model was analyzed with dynamical mean field
theory (DMFT), which is extensively used in the theory
of strongly correlated electrons17,18,19,20. However, disor-
der effects were mostly taken into account via the average
density of states and the coherent potential approxima-
tion (CPA)21,22, which misses the effects of Anderson lo-

calization. To overcome this problem Dobrosavljević and
Kotliar10 have proposed the DMFT approach, where the
solution of self – consistent stochastic DMFT equations
were used to calculate geometrically averaged local den-
sity of states. This approach was further developed in
Refs.11,12 with DMFT account for Hubbard correlations,
which leads to highly nontrivial phase diagram of 3D
paramagnetic Anderson – Hubbard model12, containing
the phases of correlated metal, Mott insulator and corre-
lated Anderson insulator. However, the major problem
of the approach of Refs.10,11,12 is its practical inability of
direct calculations of conductivity, which actually deter-
mines MIT itself.

In the previous work13 we have studied the 3D param-
agnetic Anderson – Hubbard model using our recently de-
veloped DMFT+Σ approximation23,24,25,26, which con-
serves the standard single impurity DMFT approach,
taking into account the local Hubbard correlations, allow-
ing the use the usual “ impurity solvers” like NRG27,28,29,
at the same time allowing to include additional (local or
nonlocal) interactions. Strong disorder was accounted
via some generalization of the self – consistent theory of
localization30,31,32,33,34,35. In the framework of this ap-
proach we have been able not only to reproduce the phase
diagram qualitatively similar to that obtained in Ref. 12,
but also calculate the dynamic (optical) conductivity for
the wide frequency range.

In Ref. 15 the Hubbard – Anderson model was stud-
ied both for 3D and 2D systems. As the main mecha-
nism leading to delocalization a kind of “screening” of
the random (disorder) potential by local Hubbard in-
teraction was introduced14. Then the Anderson – Hub-
bard model was reduced to an effective single – particle
Anderson model with renormalized distribution of local
site energies, which was calculated in the atomic limit.
All the other effects of electronic correlations were ne-
glected. Strong disorder effects were accounted within
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self – consistent theory of localization. In this approach
the authors obtained the significant growth of localiza-
tion length with growing Hubbard interaction in 2D.
However, localization length itself remained finite, the
system being localized at smallest possible disorder, so
that Anderson in 2D is still absent. Similar result was
obtained also in numerical simulations of 2D Anderson –
Hubbard model in Ref. 16.

In this work we present a direct generalization of the
method used in Ref. 13 to the case of 2D systems. We
use the DMFT+Σ approach to calculate DOS, optical
conductivity, localization length and construct the phase
diagram of 2D paramagnetic Anderson – Hubbard model
with strong electronic correlations and strong disorder.
Strong correlations are taken into account via DMFT,
while disorder effects are treated by the appropriate gen-
eralization of the self – consistent theory localization.

The paper is organized as follows: in section II we
present a brief description of our DMFT+Σ approxima-
tion as applied to disordered Hubbard model. In section
III we formulate the basic DMFT+Σ expressions for op-
tical conductivity and self – consistency equation for the
generalizes diffusion coefficient. Our results for DOS, op-
tical conductivity and localization length are given in sec-
tion IV, where we also analyze the phase diagram of 2D
disordered Hubbard model and briefly discuss the optical
sum rule within our approach. Finally we present a short
conclusion, which includes the discussion of problems yet
to be solved.

II. BASICS OF DMFT+Σ APPROACH.

In the following we consider paramagnetic disordered
Anderson – Hubbard model at half – filling for arbitrary
correlations and disorder. This model treats both Mott
– Hubbard and Anderson MIT on the same footing. The
Hamiltonian of the model can be written as:

H = −t
∑

〈ij〉σ

a†
iσajσ +

∑

iσ

ǫiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is nearest neighbor transfer integral, U is the

local Hubbard repulsion, niσ = a†
iσaiσ is electron num-

ber operator at a given site i, aiσ (a†
iσ) is annihilation

(creation) operator for an electron with spin σ, local en-
ergies ǫi are assumed to be randomly and independently
distributed on different lattice sites. To simplify diagram
technique in the following we assume ǫi distribution to
be Gaussian:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

(2)

Here ∆ serves as disorder parameter and Gaussian ran-
dom field (“white” noise) of energy levels ǫi at different
lattice sites induces “impurity” – like scattering, leading
to the standard diagram technique for calculations of the
averaged Green’s functions35.

DMDF+Σ approach, initially proposed in
Refs.23,24,25,26 as a simple method to include non-
local interactions (fluctuations) into the standard (local)
DMFT scheme, is also very convenient for the account in
DMFT of any additional interaction (local or nonlocal)
of arbitrary nature.

In DMFT+Σ approximation we choose the single –
particle Green’s function in the following form:

Gp(ε) =
1

ε + µ − ε(p) − Σ(ε) − Σp(ε)
, (3)

where ε(p) is the “bare” electron spectrum, Σ(ε) is the
local (DMFT) self – energy due to Hubbard interactions,
while Σp(ε) is an “external” (in general case momentum
dependent) self – energy due to some other interaction.
The main assumption of our approach (both its advan-
tage and deficiency) is precisely in this additive form (ne-
glect of interference effects) for the total self – energy in
(3)23,24,25,26, which allows us to conserve the standard
form of self – consistent DMFT equations20 with two
major generalizations. First of all, at each iteration of
DMFT – loop we recalculate an “external” self – energy
Σp(µ, ε, [Gp(ε)]) within some (approximate) scheme, tak-
ing into account the “external” interaction (in the present
case that due to disorder scattering). Secondly, the lo-
cal Green’s function for an effective DMFT – impurity
problem is defined as:

Gii(ε) =
1

N

∑

p

1

ε + µ − ε(p) − Σ(ε) − Σp(ε)
, (4)

at each step of the standard DMFT procedure. Finally
we obtain the desired Green’s function in the form of Eq.
(3), where Σ(ε) and Σp(ε) are self – energies obtained at
the end of our iteration procedure.

For Σp(ε) appearing due to disorder scattering we shall
use the simple one – loop contribution, neglecting dia-
grams with “crossing” interaction lines, i.e. self – consis-
tent Born approximation35, which in the case of Gaussian
disorder (2) leads to the usual expression:

Σp(ε) = ∆2
∑

p

G(ε,p) ≡ Σimp(ε) (5)

and “external” self – energy in this case is p-independent
(local).

III. OPTICAL CONDUCTIVITY IN DMFT+Σ
APPROACH.

It is obvious that calculations of optical (dynamic) con-
ductivity provide the direct way to study MIT as fre-
quency dependence of conductivity, as well as its static
value at zero frequency of an external field, allows the
clear distinction between metallic and insulating phases
(at temperature T = 0 ).
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FIG. 1: Diagrammatic representation of Φ0RA
ε (ω,q)

Φ0RR
ε (ω,q).

Local nature of irreducible self – energy in DMFT al-
lows to reduce the problem of calculation of optical con-
ductivity to calculation of the usual particle – hole loop
without DMFT vertex corrections due to local Hubbard
interaction13,26. The final expression for the real part of
optical conductivity obtained in this way in Refs.13,26,
takes the following form:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−) − f(ε+)] ×

×Re

{

φ0RA
ε (ω)

[

1 − ΣR(ε+) − ΣA(ε−)

ω

]2

−

−φ0RR
ε (ω)

[

1 − ΣR(ε+) − ΣR(ε−)

ω

]2
}

, (6)

Here f(ε) is Fermi distribution, ε± = ε ± ω
2 and

φ0RR(RA)
ε (ω) = lim

q→0

Φ
0RR(RA)
ε (ω,q) − Φ

0RR(RA)
ε (ω, 0)

q2
,

(7)
where we have introduced two – particle loops:

Φ0RR(RA)
ε (ω,q) =

∑

p

GR(ε+,p+)GR(A)(ε−,p−)

ΓRR(RA)(ε−,p−; ε+,p+), (8)

represented diagrammatically in Fig. 1 with p± =
p ± q

2 and R and A indices corresponding to re-
tarded and advanced Green’s functions. The vertices
ΓRR(RA)(ε−,p−; ε+,p+) contain all vertex corrections
due to disorder scattering, but do not include vertex cor-
rections due to Hubbard interaction.

Thus, the problem is much simplified. To calculate op-
tical conductivity in DMFT+Σ approximation we have
only to solve single – particle problem to determine the
local self – energy Σ(ε±) with the help of DMFT+Σ pro-
cedure, described above, while the nontrivial contribu-
tion of disorder scattering enters via φ0RR(RA) of Eq. (7),
which may be calculated in some appropriate approxima-
tion. In fact, φ0RR(RA) contain only disorder scattering,

though using as the “bare” the Green’s functions includ-
ing the DMFT self – energies, already determined with
the help of DMFT+Σ procedure. Eq. (6) guarantees the
effective interpolation between the case of strong corre-
lations in the absence of disorder and the case of pure
disorder in the absence of Hubbard correlations.

The most important Φ0RA
ε (ω,q) loop may be calcu-

lated using the basic approach of the self – consistent
theory of localization30,31,32,33,34,35 with some general-
izations accounting for Hubbard interaction within the
DMFT+Σ approach13.

The rest is the direct generalization of the scheme pro-
posed in Ref. 13 for the two – dimensional case. Here we
present only some basic points of the approach of Ref. 13,
stressing important differences due to two – dimension-
ality of the model.

In RA-channel the two – particle loop Φ0RA
ε (q, ω̃) pos-

sesses a diffusion – like contribution:

Φ0RA
ε (q, ω̃) =

−
∑

p
∆Gp

ω̃ + iD(ω)q2
, (9)

where ∆Gp = GR(ε+,p) − GA(ε−,p). The important
difference with noninteracting case is contained in

ω̃ = ε+ − ε− − ΣR(ε+) + ΣA(ε−) =

ω − ΣR(ε+) + ΣA(ε−) ≡ ω − ∆ΣRA(ω) (10)

which replaces the usual ω-term in the denominator of
the standard expression for Φ0RA

ε (ω,q)35.
Then (6) can be rewritten as:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−) − f(ε+)] ×

×Re

{

i
∑

p
∆GpD(ω)

ω2
− φ0RR

ε (ω)

[

1 − ∆ΣRR(ω)

ω

]2
}

(11)

The second term in (11), which is actually irrelevant at
small ω, can be obtained from (7) calculating Φ0RR

ε (ω,q)
in the usual “ladder” approximation.

Repeating the derivation scheme of the self – consis-
tent theory of localization presented in Ref. 13, we obtain
the following equation for the generalized diffusion coef-
ficient:

D(ω) = i
< v >2

d

{

ω̃ − ∆ΣRA
imp(ω) +

+∆4
∑

p

(∆Gp)2
∑

q

1

ω̃ + iD(ω)q2

}−1

, (12)

where d = 2 is spatial dimension and ∆ΣRA
imp(ω) =

ΣR
imp(ε+) − ΣA

imp(ε−) is determined by disorder scatter-
ing. The average velocity < v >, well approximated by
Fermi velocity, is defined as:

< v >=

∑

p
|vp|∆Gp

∑

p
∆Gp

; vp =
∂ǫ(p)

∂p
, (13)
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Due to the limits of diffusion approximation summation
over q in (12) should be limited by33,35:

q < k0 = Min{l−1, pF } (14)

where l =< v > /2γ is the mean – free path due to elastic
scattering (γ is the scattering rate due to disorder), pF is
Fermi momentum. In our two – dimensional model An-
derson localization takes place at infinetisimal disorder.
However, for small disorder localization length is expo-
nentially large, so that the size of the sample becomes
important. The sample size L may be introduced into
the self – consistent theory of localization as a cutoff of
diffusion pole contribution at small q30,31, i.e. for:

q ∼ kL = 1/L. (15)

Eq. (12) for the generalized diffusion coefficient re-
duces to a transcendental equation, which is easily solved
by iterations for each value of ω̃, taking into account that
for d = 2 and cutoffs defined by Eqs. (14), (15) the sum
over q in (12) reduces to:

∑

q

1

ω̃ + iD(ω)q2
=

1

i2πD(ω)

∫ 1

kL
k0

ydy

y2 + ω̃
iD(ω)k2

0

= (16)

=
1

i4πD(ω)
ln

(

1 − iω̃
D(ω)k2

0

(kL

k0

)2 − iω̃
D(ω)k2

0

)

Solving Eq. (12) for different values of our model pa-
rameters and using Eq. (11) we can directly calculate
the optical (dynamic) conductivity in different phases of
the Anderson – Hubbard model.

For ω → 0 (and at the Fermi level (ε = 0) obvi-
ously also ω̃ → 0), in Anderson insulator phase we ob-
tain the localization behavior of the generalized diffusion
coefficient30,31,35:

D(ω) = −iω̃Rloc
2. (17)

After the substitution of (17) into (12) we get an equa-
tion, determining the localization length Rloc:

Rloc
2 = −< v >2

d∆4

{

∑

p

(∆Gp)2
∑

q

1

1 + Rloc
2q2

}−1

.

(18)
where the sum over q is defined by (16). As we shall see
in the following, for an infinite two – dimensional system
(L → ∞) localization length, determined by Eq. (18)
remains finite (though exponentially large) for the small-
est possible disorder, signifying the absence of Anderson
transition. However, for the finite size systems localiza-
tion length diverges at some critical disorder, determined
for each value of the system size L. Qualitatively, this
critical disorder is determined from the condition of local-
ization length (in infinite system) becoming of the order
of characteristic sample size RL→∞

loc ∼ L. Thus, in finite
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FIG. 2: Density of states of the half – filled Anderson – Hub-
bard model for different values of U and ∆ = 0 (no disorder).

two – dimensional systems the Anderson transition and
metallic phase do exist for disorder strength lower, than
this critical disorder. In the following, this kind of metal-
lic phase will be referred to as a phase of the “correlated
metal” in finite 2D systems.

IV. MAIN RESULTS

Below we present the results of extensive numerical
calculations for 2D Anderson – Hubbard model on the
square lattice with rectangular “bare” DOS, correspond-
ing to the bandwidth W = 2D:

N0(ε) =

{

1
2D

|ε| ≤ D
0 |ε| > D

. (19)

The choice of this model DOS is dictated by its 2D na-
ture.

Everywhere below we give the values of DOS in units
of the number of states per energy interval, per lattice
cell of the volume a2 (a – lattice parameter), per one
spin projection.

As we concentrate on half – filled case, Fermi level is
always assumed to be at zero energy.

As “impurity solver” for DMFT effective impurity
problem we have used the reliable numerical renormal-
ization group (NRG) approach27,28,29. Calculations were
made for low enough temperature T ∼ 0.001D, so that
temperature effects in DOS and conductivity are just
negligible.

Now we present only most typical results.
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FIG. 3: Density of states of the half – filled Anderson – Hub-
bard model for different values of disorder ∆ and U/2D =
1.25, typical for correlated metal (in the absence of disorder).

A. Evolution of the density of states

In Fig. 2 we show evolution of the DOS with the
growth of Hubbard interaction U in the absence of dis-
order. At small U (curve 1 in Fig.2) we observe practi-
cally rectangular DOS almost coinciding with the “bare”
one. As U grows a typical three peak structure of DOS
appears19,20,29 (curves 3,4,5 in Fig.2): a narrow quasi-
particle peak at the Fermi level with upper and lower
Hubbard bands at ε ∼ ±U/2. Quasiparticle peak nar-
rows as U grows in metallic phase, disappearing at Mott
MIT for U = Uc2 ≈ 1.83W . With further growth of U
(curves 6,7 in Fig.2) dielectric gap opens at the Fermi
level.

In Fig. 3 we show the results for DOS obtained at rel-
atively weak correlation strength U = 1.25W (W = 2D),
so that the system is rather far fron the Mott transi-
tion, but for the wide range of disorder strength ∆. We
observe typical widening of the band with appropriate
suppression of DOS as disorder grows.

In Fig. 4 DOS evolution is shown as disorder ∆ grows
at U = 2W , typical for Mott insulator in the absence of
disorder. It can be seen that the growth of disorder leads
to restoration of the quasiparticle peak in DOS. Similar
unusual behavior of DOS (closing of dielectric gap by
disorder) was first noted in 3D systems13. However, in
the present 2D case it does not, in general, signify the
transition to the correlated metal phase, at least for the
infinite systems we are, in fact, dealing with correlated
Anderson insulator (cf. below).

The physical reason for this unusual restoration of the
quasiparticle peak in DOS is clear. Controlling parame-
ter for appearance or disappearance of quasiparticle peak
in DMFT in the absence of disorder is the ratio of Hub-
bard interaction U and the “bare” bandwidth W = 2D.
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FIG. 4: Density of states of the half – filled Anderson – Hub-
bard model for different values of disorder ∆ and U/2D = 2,
typical for Mott insulator (in the absence of disorder). At
the insert – restoration of quasiparticle band by disorder in
coexistence (hysteresis) region for U = 1.5D, obtained from
Mott insulator with decreasing U .

Disordering leads to the growth of the effective band-
width Weff (in the absence of Hubbard interaction) and
appropriate suppression of U/Weff ratio, which obvi-
ously leads to the restoration of quasiparticle band in
our model. In more details this qualitative picture will
be discussed in Section IVC, where our results for DOS
will be used in construction of the phase diagram of 2D
Anderson – Hubbard model.

It is well known, that hysteresis behavior of DOS
is obtained for Mott–Hubbard transition if we perform
DMFT calculations with U decreasing from insulating
phase20,29. Mott insulator phase survives for the val-
ues of U well inside the correlated metal phase, ob-
tained with the increase of U . Metallic phase is re-
stored at Uc1 ≈ 1.42W . The values of U from the in-
terval Uc1 < U < Uc2 are usually considered as belong-
ing to coexistence region of metallic and (Mott) insulat-
ing phases, with metallic phase being thermodynamically
more stable20,29. In the coexistence region disorder in-
crease also leads to the restoration of quasiparticle peak
in the DOS (see insert of Fig.4).

B. Optical conductivity: Mott – Hubbard and

Anderson transitions.

The real part of optical conductivity was calculated
for different combinations of parameters of the model,
directly from Eqs. (11) and (12), using the results of
DMFT+Σ procedure for single – particle characteristics.
The values of conductivity below are given in natural
units of e2/~.

In the absence of disorder we just reproduce the results
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FIG. 5: Real part of dynamic conductivity of the half – filled
Anderson – Hubbard model for different values of disorder ∆
and U/2D = 1.25, typical for correlated metal (in the ab-
sence of disorder). At the insert – the same, but in wider
frequency range. Thin dashed lines represent the results of
ladder approximation.

of the standard DMFT with optical conductivity charac-
terized by the usual Drude peak at zero frequency and a
wide maximum at ω ∼ U , corresponding to transitions
to the upper Hubbard band. As U grows Drude peak is
suppressed and disappear at Mott MIT, when only re-
maining contribution is due to transitions through the
Mott – Hubbard gap.

Introduction of disorder leads to qualitative change of
frequency behavior of conductivity. Below we mainly
present results obtained for the same values of U and
∆, which were used above to illustrate evolution of DOS.

In Fig. 5 we show the real part of optical conductivity
in 2D half – filled Anderson – Hubbard model for different
disorder strengths ∆ and U = 1.25W , when the system
is far from Mott MIT. Thin dashed lines in Fig. 5 (as
well as in the following figures) we show the results of the
“ladder” approximation. In 2D model under considera-
tion conductivity at zero frequency is always zero, and
in contrast to 3D case13, even for the weakest possible
disorder the peak in optical conductivity is at finite fre-
quency. In the “ladder” approximation, which does not
contain localization corrections, conductivity at ω = 0 is
finite. Optical transitions to the upper Hubbard band at
ω ∼ U are practically unobservable in these data, only at
the insert in Fig. 5, where we show the data for the wide
frequency range, we can observe some weak maximum on
curves 1 and 2, corresponding to transitions to the upper
Hubbard band.

In Fig. 6 we present the real part of optical conduc-
tivity for different disorder strengths ∆ and U = 2W ,
typical for Mott insulator. It can be seen from Fig. 6
that for small disorder we are in Mott insulator phase

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.02

0.04

6

5

 

 

R
e

/2D

6

5

1  /2D=0,0
2  0.11
3  0.19
4  0.25
5  0.37
6  0.5  

 

R
e

/2D

U/2D=2

12
3

4

FIG. 6: Real part of dynamic conductivity of the half – filled
Anderson – Hubbard model for different values of disorder
∆ and U/2D = 2, typical for Mott insulator (in the absence
of disorder). Curves 1,2 correspond to Mott insulator, while
curves 3-6 correspond to correlated Anderson insulator. At
the insert – localization behavior of conductivity. Thin dashed
lines – ladder approximation.

(curves 1,2), and with the growth of disorder in the ab-
sence of Anderson localization (cf. thin lines correspond-
ing to “ladder” approximation) we would be entering the
metallic phase. However, in our model localization takes
place at infinetesimal disorder and we are actually en-
tering Anderson insulator phase, with conductivity go-
ing to zero at zero frequency. Data in the frequency
range corresponding to localization behavior of conduc-
tivity σ(ω) ∼ ω2 are shown at the insert in Fig. 6 for
curve 5 and 6, corresponding to large enough disorder.
At small disorders the frequency region with localization
behavior of conductivity is exponentially small1 (which
is due to the exponential growth of localization length at
small disorder, cf. Fig.9) and is practically unobservable.

Dependence of optical conductivity on U is illustrated
in Fig. 7. The growth of U shifts localization peak in con-
ductivity to lower frequencies and leads to its narrowing.
Apparently this is related to the appropriate suppression
of quasiparticle peak width in DOS. The value of conduc-
tivity at the maximum is U independent. It is interest-
ing to note that for frequencies larger than the maximum
position the growth of U suppresses conductivity, while
for the frequencies lower than the maximum position the
growth of U enhances conductivity (playing in a sense
against localization).

To confirm self – consistency of our approach to con-

1 This region corresponds to frequencies30,31 ω ≪ ωc ∼

D3

∆2
/(Rloc

a
)2.
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FIG. 7: Real part of dynamic conductivity of the half – filled
Anderson – Hubbard model for different values of U and
∆/2D = 0.19. Thin dashed lines – ladder approximation.

TABLE I: Check of the single band optical sum rule in An-
derson – Hubbard model. Optical integral is given in units of
2e2

~
D.

∆/2D πe2

2

P

p

∂2εp

∂p2
x

np Wopt =
R

∞

0
Reσ(ω)dω

0.19 0.099 0.098

0.25 0.099 0.098

0.37 0.092 0.091

0.5 0.081 0.082

ductivity calculations we conclude this section with dis-
cussion of the optical sum rule, which relates single –
particle and two – particle characteristics36.

The single – band Kubo sum rule37 for dynamic con-
ductivity can be written as:

Wopt =

∫ ∞

0

Reσ(ω)dω =
πe2

2

∑

p

∂2εp

∂p2
x

np, (20)

where np is single – particle momentum distribution func-
tion, determined by interacting retarded electron Green’s
function GR(ε,p):

np = − 1

π

∫ ∞

−∞

dεf(ε)ImGR(ε,p) (21)

where f(ε) is Fermi distribution.
In Table I we show calculated values of the r.h.s. and of

the l.h.s of Eq. (20) for U = 1.5W . It is clearly seen that
the optical (20) sum rule is fulfilled within our numerical
accuracy.

Very often the optical sum rule is understood as the
equality of the optical integral Wopt to the “universal”

value of
ω2

pl

8 , where ωpl is plasma frequency, which is
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W
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FIG. 8: Dependence of the normalized optical integral of An-
derson – Hubbard model on U for different values of disorder
∆. At the insert – similar dependence on ∆ for different val-
ues of U . Curves 1,2 – “correlated metal”, transforming into
Anderson insulator. Curves 3,4 – Mott insulator, obtained
with the growth of U from “correlated metal” or Anderson
insulator.

strictly speaking is not correct in single band case and in
this sense we may speak of optical sum rule “violation”.
In fact the optical integral depends on parameters of the
model, e.g. on Hubbard interaction and disorder (Fig.
8). The growth of U significantly suppresses the value of
optical integral. Dependence on disorder strength ∆ is
also important, in particular disorder induced transition
from Mott to Anderson insulator we observe a kind of
discontinuity of optical integral (curves 3,4 at the insert
in Fig. 8).

C. Localization length and phase diagram of 2D

Anderson – Hubbard model.

To proceed further on the left axis of Fig. 9 we present
our data for the real part of conductivity at fixed and
sufficiently small frequency ω = 0.00005D plotted as a
function of disorder strength ∆. Circles show results of
“ladder” approximation, triangles — results of self – con-
sistent theory of localization (we take U = 0 here). Curve
3, which practically coincides with results of the “ladder”
approximation, is obtained from the usual Drude expres-
sion:

σ(ω) = σ(0)
γ2

γ2 + ω2
, (22)



8

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1

2

3

4

5

6

7

8

9
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1  conductivity in ladder approximation 
2  conductivity from self-consistent theory of localization
3  Drude conductivity
=0.00005ev

4  static conductivity for L=108a
5  static conductivity for L=105a

5 4

321

2 3

lg(R
loc)

D

1

1  localization length for L   
2  localization length for L=108a
3  localization length for L=105a

 

FIG. 9: Left scale — dependence of conductivity on disorder
∆ at fixed frequency ω = 0.00005D and U/2D = 1. Circles
– ladder approximation, triangles – self-consistent theory of
localization. Curve 3, practically coinciding with the results
of ladder approximation, is obtained from Drude expression
(22). Static conductivity for finite samples of sizes L = 108a
(curve 4) and L = 105a (curve 5). Right scale — dependence
of the logarithm of localization length on disorder ∆: for infi-
nite sample (curve 1) and for finite samples of sizes L = 108a
(curve 2) and L = 105a (curve 3).

where the static conductivity is given by σ(0) =

e2N(0)D0 ≈ e2

~

εF

2πγ
, with N(0) being the density of states

at the Fermi level, D0 is the classical diffusion coefficient,
εF ≈ D is Fermi energy. Impurity scattering rate was
taken as γ = πN(0)∆2 ≈ π

2D
∆2. It can be seen that

the noticeable contribution of localization corrections to
conductivity (clear difference between curve 2 curves 1
and 3) appears only after conductivity drops below the
values of the order of “minimal” metallic conductivity

σ0 = e2

~
(our data for conductivity are actually normal-

ized by this value in all figures). We shall see below that
precisely in this region a kind of Anderson MIT (diver-
gence of localization length) takes place in 2D systems of
reasonable finite sizes.

On the right axis in Fig. 9 we show our data for the
logarithm of localization length calculated from Eq. (18)
as a function of disorder for infinite sample (curve 1)
and for finite samples with L = 108a and L = 105a
(curves 2 and 3). It is clearly seen that localization length
grows exponentially as disorder drops but remains finite
in infinite 2D sample, signifying the absence of Ander-
son transition. In finite samples localization length di-

verges at some critical disorder (depending on the system
size) demonstrating the existence of an effective Ander-
son transition. From Fig. 9 it is seen that this critical
disorder is achieved when localization length of an infi-
nite system becomes comparable with characteristic size
of the sample: RL→∞

loc ∼ L. It should be noted that in
our approach, opposite to the results of Ref. 15, localiza-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

"Correlated Metal"
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Mott Insulator
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 /2
D

U/2D

FIG. 10: Phase diagram of two – dimensional paramagnetic
Anderson – Hubbard model at zero temperature. The bor-
der of Mott insulator region Uc2(∆) and the border of co-
existence (hysteresis) region Uc1(∆) are obtained from the
evolution of the density of states, U∗

c2(∆) is calculated from
(24). Dashed stripe corresponds to the narrow region, where
Anderson metal – insulator transition takes place in finite
systems.

tion length is practically independent of U , which leads
to independence of critical disorder in 2D of correlation
strength U . Similar result 2 was obtained in our approach
for 3D systems13.

On the left axis of Fig. 9 disorder dependence of static
conductivity for finite samples of the sizes L = 108a and
L = 105a (curves 4 and 5) is shown. For finite sys-
tems with small disorder static conductivity is not zero
(metal). It gradualy goes down while disorder grows and
becomes zero at the same critical value where localization
radius diverges on the approach from insulating phase in
a finite sample. Static conductivity of finite samples in
our calculations practicaly does not depend on correla-
tion strength U . Rather significant difference between
the values of static conductivity and that of conductivity
at small but non zero frquencies seen in Fig. 9 comes from
exponential smallness of frequency range of localization
behavior mentioned above.

Let us now discuss our results for the phase diagram
of 2D half – filled Anderson – Hubbard model, obtained
from extensive DMFT+Σ calculations of DOS and anal-
ysis of localization length behavior in finite 2D systems.
The general form of this phase diagram in disorder – cor-
relation (∆, U) plane is shown in Fig.10.

Dashed stripe in Fig. 10 corresponds to the region of

2 Calculations of localization length for 3D system performed by us
after the publication of Ref. 13 have demonstrated its practical
independence on the value of U
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an effective transition from Anderson insulator to “metal-
lic” phase. It boundaries were determined by divergence
of localization length in finite samples with characteristic
sizes L = 105a (upper boundary) and L = 108a (lower
boundary) (cf. Fig.9). It should be stressed that further
increase of system size, e.g. 10 times up to L = 109a,
leads only to practically negligible downshift of the lower
boundary (decrease of critical disorder) of dashed stripe
in Fig. 10.

The dependence of Uc2(∆), obtained from DOS behav-
ior, determines the boundary for Mott transition and is
defined by the disappearance of the quasiparticle peak in
DOS and correlation gap opening at the Fermi level (cf.
Fig.2,4).

In our previous work13 on 3D Anderson – Hub-
bard model we have proposed a simple explanation of
Uc1,c2(∆) dependence. Assuming that the controlling pa-
rameter of Mott – Hubbard transition given by the ratio
of Hubbard interaction and effective bandwidth (depend-

ing on disorder)
Uc1,c2(∆)
Weff (∆) is universal constant (indepen-

dent of disorder), we get:

Uc1,c2(∆)

Weff (∆)
=

Uc1,c2(0)

W
, (23)

where Weff (∆) is an effective bandwidth in the presence
of disorder, calculated at U = 0 in self – consistent Born
approximation (5). In 3D model13 the dependence of crit-
ical correlation strength on disorder Uc1,c2(∆), obtained
directly from the evolution of DOS, has shown quite satis-
factory agreement with qualitative dependence obtained
from Eq. (23)3

In 2D model under consideration here, solution of Eq.
(23) gives:

U∗
c1,c2(∆) = Uc1,c2(0)

Weff (∆)

W
=

= Uc1,c2(0)

(

2∆2

W 2
ln

(

c + 1

c − 1

)

+ c

)

, (24)

where c =

√

4
(

∆
W

)2
+ 1. However, unlike in 3D case13,

Uc2(∆) dependence, obtained from DOS evolution is
clearly different from the qualitative one U∗

c2(∆) (dotted
line in Fig. 10), determined by Eq. (24). Probably, this
is due to a significant change in the rectangular form of
“bare”DOS with the growth of disorder ∆, which is ab-
sent for semi – elliptic “bare” DOS used in 3D case in
Ref. 13.

As we already noted, with decrease of U from insu-
lating phase Mott transition occurs at U = Uc1(∆) <

3 Further extensive calculations performed after the completion of
Ref. 13 have confirmed practically ideal agreement between these
dependencies.

Uc2(∆) and the coexistence (hysteresis) region is ob-
served between Uc1(∆) and Uc2(∆) curves on phase dia-
gramm Fig.10.

V. CONCLUSION

We have used the generalized DMFT+Σ approach to
study basic properties of disordered and correlated An-
derson – Hubbard model. Our method produces rela-
tively simple interpolation scheme between two well stud-
ied limits — that of strongly correlated Hubbard model
in the absence of disorder (DMFT and Mott – Hubbard
MIT) and the case of 2D Anderson insulator in the infi-
nite system without electron – electron interactions. It
seems that the proposed interpolation scheme reflects all
the qualitative features of Anderson – Hubbard model,
such as behavior of the density of states and dynamic
conductivity. The general structure of the phase dia-
gram obtained in DMFT+Σ approximation is also in rea-
sonable agreement with the results of direct numerical
simulations16. At the same time, DMFT+Σ approach is
rather competitive in a sense of the amount of numer-
ical work and allows direct calculations of all the basic
observable characteristics of Anderson – Hubbard model.

It should be stressed that an effective Anderson transi-
tion obtained here in the case of finite size 2D systems is
in no sense attributed to electronic correlations and fol-
lows directly from self – consistent theory of localization
also in the absence of correlations.

The main shortcoming of the method used is the ne-
glect of the interference between disorder scattering and
Hubbard interaction, which leads to the independence
of localization length and critical disorder ∆c (in finite
2D systems) of correlation strength U . The importance
of this kind of interference effects is known long ago1,5,
though these can be taken into account only in the case
of weak correlations and disorder. At the same time,
the neglect of interference effects is the key point of our
DMFT+Σ approach, allowing to obtain rather simple
and physically clear interpolation scheme, allowing to an-
alyze the limits of strong correlations and disorder.

Another drastic simplification is our assumption of non
magnetic (paramagnetic) nature of the ground state of
Anderson – Hubbard model. The importance of mag-
netic (spin) effects in strongly correlated and disordered
systems is obvious, as well as the importance of competi-
tion between different kinds of magnetic ground states20.

Despite these shortcomings, our results seems rather
attractive and reliable, e.g. with respect to strong disor-
der effects on Mott – Hubbard transition and the general
form of the phase diagram at T = 0. Our predictions for
the general behavior of dynamic (optical) conductivity
and disorder induced Mott insulator to effective “metal”
transition can be directly compared with existing and
future experiments.
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21 M. Ulmke, V. Janǐs, and D. Vollhardt. Phys. Rev. B 51,

10411 (1995).

22 R. Vlaming and D. Vollhardt. Phys. Rev. B 45, 4637
(1992).

23 E.Z.Kuchinskii, I.A.Nekrasov, M.V.Sadovskii. Pis’ma Zh.
Eksp. Teor. Fiz. 82, 217 (2005) [JETP Lett. 82, 198
(2005)].

24 M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, Th.
Prushke, V.I. Anisimov. Phys. Rev. B 72, 155105 (2005).

25 E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii. Fizika
Nizkikh Temperatur 32, 528 (2006) [Low Temp. Phys. 32,
398 (2006)].

26 E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii. Phys. Rev.
B 75, 115102 (2007).

27 K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975);
H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson,
Phys. Rev. B 21, 1003 (1980); ibid. 21, 1044 (1980); A.C.
Hewson, The Kondo Problem to Heavy Fermions. Cam-
bridge University Press, 1993.

28 R. Bulla, A.C. Hewson and Th. Pruschke, J. Phys. – Con-
dens. Matter 10, 8365(1998).

29 R. Bulla, Phys. Rev. Lett. 83, 136 (1999); R. Bulla,
T.A. Costi and D. Vollhardt. Phys. Rev. B 64, 045103
(2001).
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