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Abstract

We present theoretical study of electronic structure (spectral functions and Fermi surfaces) for

incommensurate pseudogap and charge density wave (CDW) and commensurate CDW phases of

quasi two dimensional diselenides 2H-TaSe2 and 2H-NbSe2. Incommensurate pseudogap regime is

described within the scenario based on short-range order CDW fluctuations, considered within the

static Gaussian random field model. In contrast e.g. to high-Tc cuprates layered dichalcogenides

have several different CDW scattering vectors and electronic spectrum with two bands at the Fermi

level. To this end we present theoretical background for the description of multiple scattering

processes within multiple bands electronic spectrum. Thus obtained theoretical spectral functions

and Fermi surfaces are compared with recent ARPES experimental data, demonstrating rather

good qualitative agreement.

PACS numbers: 71.10.Hf, 71.30.+h, 71.45.Lr
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INTRODUCTION

Quasi-two-dimensional dichalcogenides TX2 (T=Nb,Ta,Mo,Hf; X=S,Se) and their differ-

ent polymorhic modifications long time ago attracted the attention of scientific community

[1]. This was connected with: (i) early suggestions to look for high-Tc superconductivity in

layered compounds; (ii) the discovery of phase transitions with formation of charge density

waves (CDW) [1]. In particular, in 2H-TaSe2 (2H means – hexagonal structure with two Ta

layers in the unitcell) the second order transition into incommensurate CDW phase is ob-

served at temperature =122.3K. At 90K there is another transition to commensurate CDW

phase [1, 2]. In 2H-NbSe2 transition to incommensurate CDW phase happens at much lower

temperature of 33.5K [2] and no commensurate CDW phase is observed.

Above the temperature of incommensurate CDW transition in these systems there might

be the range of temperatures where short-range order CDW fluctuations with finite, but

pretty large, correlation length ξ may exist due to low-dimensional nature of these systems

(and in analogy with antiferromagnetic fluctuations in cuprates). This indeed is experimen-

tally observed in angular resolved X-ray photoemission (ARPES) experiments [3–5].

In this paper we present band structure calculation results for 2H-TaSe2 and 2H-NbSe2

with analysis of possible topologies of the Fermi surfaces upon doping, showing possibility

of formation of “bone”- like Fermi sheets. Further we describe the details of theoretical

description of multiband electronic multiple scattering on CDW in a multiple band systems,

as applied to pseudogap, incommensurate and commensurate CDW phases for both 2H-

TaSe2 and 2H-NbSe2. As an outcome, we obtain spectral functions and Fermi surface maps,

which are compared with a number of recent ARPES results [3, 4].

BAND STRUCTURE

The 2H-TX2 layered compounds have hexagonal crystal structure with the space group

of symmetry P63/mmc with lattice parameters for Ta system a=3.436 Å and c=12.7 Å.

Corresponding Wyckoff positions are for Ta 2b (0,0,0.25) and Se 4f (1
3
,2
3
,0.118) [2]. For-

mal electronic configuration of Ta is d1. To calculate electronic structure of the compound

the linearized muffin-tin orbitals method (LMTO) [6] with default settings was employed.

Obtained band structure and Fermi surfaces are in good agreement with similar LDA cal-
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culations by other authors [7]. We do not present any LDA results on 2H-NbSe2 since its

crystal structure [2] and corresponding band structure are very close to those of 2H-TaSe2.

In accord with the previous works [7] in our LDA calculations the Fermi level in 2H-TaSe2

is crossed by two Ta-5d bands with 3z2−r2 symmetry (see Fig. 1a), which are well separated

from other bands.

Fermi surface (FS) of 2H-TaSe2 has three (in some works two [7]) hole-like cylinders near

the Γ-point and two hole cylinders around K-point. Our results are presented in Fig. 1b.

Here we observe three hole-like cylinders around the Γ-point.

During the recent years several ARPES studies detected the experimental FS of 2H-TaSe2.

In particular, in Ref. [8] the electronic structure of the valence band was studied in 1T-TaS2

and 2H-TaSe2. For 2H-TaSe2 it was shown that along Γ-K direction there are four crossings

with the FS. Similar picture is also seen in LDA results (Fig. 1a,b). In later ARPES works

[3, 4, 9] it was observed that FS of 2H-TaSe2 has more complex topology. Namely, along Γ-K

direction there appear the “bone”-like FS sheets. Within the LDA picture one can obtain

such “bones” by the shift of the Fermi level down by about 0.1 eV (Fig. 1a,c).

To improve over simple LDA, in Fig. 2 we show the “experimental” bands with disper-

sions:

ǫ(k) = t0 + t1

[

2 cos
kx
2
cos

√
3 ky
2

+ cos kx

]

+ t2

[

2 cos
3kx
2

cos

√
3 ky
2

+ cos
√
3 ky

]

+ t3

[

2 cos kx cos
√
3 ky + cos 2kx

]

+ t4

[

2 cos 3kx cos
√
3 ky + cos 2

√
3 ky

]

,

(1)

with hopping integrals ti obtained from the fit to experimental Fermi surfaces [10]. Cor-

responding values of ti (in eV) for Ta system are: for the band forming barrels around

Γ and K points t0=-0.027, t1=0.199, t2=0.221, t3=0.028, t4=0.013, for the band forming

“bones” t0=0.407, t1=0.114, t2=0.444, t3=-0.033, t4=0.011. For Nb system: for the band

forming smaller cylinders t0=0.0003, t1=0.0824, t2=0.1667, t3=0.0438, t4=0.0158, while for

the band forming larger cylinders t0=0.1731, t1=0.1014, t2=0.2268, t3=0.037, t4=-0.0048.

These bands are used in further calculations below.
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ELECTRONIC SCATTERING ON CDW

Commensurate CDW phase

Consider the schematic picture of the first Brillouin zone for two-dimensional hexagonal

lattice, shown in Fig. 3. In hexagonal structures under study, the commensurate CDW

vector is Q = 2
3
ΓM that corresponds to tripling the lattice period. Scattering an electron

by this commensurate CDW vector returns electron back to equivalent point after triple

scattering: ǫ(k + 3Q) = ǫ(k). Moreover for hexagonal structures there are in fact six

equivalent scattering vectors: Q1 = (2
3
, 2
3
√

3
)π, Q2 = (2

3
, 2
3
√

3
)π, Q3 = (−2

3
, 2
3
√

3
)π, and Q̄l =

−Ql (l = 1, 2, 3). Maxima of Lindhardt function, calculated in Refs. [3, 10], are observed on

these vectorsQ. In addition Lindhardt function shows pronounced maxima [3, 10] for vectors

X = 1
2
ΓK (X1 = (2

3
, 0)π, X2 = (1

3
, 1
√

3
)π, X3 = (−1

3
, 1
√

3
)π and X̄l = −Xl (l = 1, 2, 3)), which

appear as sums of scattering vectors Q (see Table I of momenta summation).

Thus an electron with momentum k is scattered by any of thirteen different momenta

(see Table I): 0 – preserving its initial momentum k; Q (Ql and Q̄l); X (Xl and X̄l).

Thus for one band case to find the diagonal Green’s function of an electron G(k,k) and

twelve off-diagonal (G(k ± Ql,k) and (G(k ± Xl,k)) single-electron Green’s functions we

have to solve the system of thirteen linear equations (17) (see Appendix). Such an approach

can be generalized for a multiple band case with simplifying assumption [11] that intra-

and interband CDW scattering amplitudes are just the same (see Appendix) Solving these

equations we can finally find the diagonal Green function Gij(k,k) (i, j = 1, 2 – band indices)

and corresponding spectral function:

A(E,k) = −1

π
Im

∑

i

Gii(k,k) (2)

determining the effective electron dispersion.

Incommensurate CDW phase

As was pointed above at temperature T = 90 K 2H-TaSe2 (and 2H-NbSe2 at 33.5K)

undergoes phase transition into incommensurate CDW phase with scattering vector Q ∼
0.58 − 0.6ΓM . Similar to the commensurate case discussed above, this vector corresponds

to six independent scattering vectors Ql, Q̄l l = 1, 2, 3. Let us consider single scattering
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TABLE I: Table of scattering vectors summation

Q1 Q2 Q3 Q̄1 Q̄2 Q̄3

Q1 Q̄1 X2 Q2 0 Q̄3 X̄1

Q2 X2 Q̄2 X3 Q3 0 Q1

Q3 Q2 X3 Q̄3 X̄3 Q̄1 0

Q̄1 0 Q3 X̄1 Q1 X̄2 Q̄2

Q̄2 Q̄3 0 Q̄1 X̄2 Q2 X̄3

Q̄3 X1 Q1 0 Q̄2 X̄3 Q3

Q1 Q2 Q3 Q̄1 Q̄2 Q̄3

X1 Q̄2 Q̄1 Q1 Q̄3 Q3 Q2

X2 Q3 Q̄3 Q̄2 Q2 Q1 Q̄1

X3 Q̄2 Q̄1 Q1 Q̄3 Q3 Q2

X̄1 Q3 Q̄3 Q̄2 Q2 Q1 Q̄1

X̄2 Q̄2 Q̄1 Q1 Q̄3 Q3 Q2

X̄3 Q3 Q̄3 Q̄2 Q2 Q1 Q̄1

of an electron with momenta k near the FS by vector Q(Ql, Q̄l). For general values of k,

such scattering act moves an electron quite far away from the FS, the only exception is an

electron in the vicinity of the “hot-spots” where ǫ(k+Q) = ǫ(k)). Among multiple scattering

processes most probable will be successive scattering processes by vectors Ql and Q̄l since

in this case the scattered electron is back again to initial point with momenta k close to the

Fermi surface. To this end further we will work in the so called two-wave approximation,

when scattering act consists of two successive scattering processes by vectors Ql and Q̄l.

Assuming that scattering amplitude is the same for intra- and interband transitions, for

diagonal Green function’s we obtain (corresponding diagrammatic representation see in Fig.

4):

Gij(k,k) = gi(k)δij + gi(k)Σ
∑

m

Gmj(k,k), (3)

where Σ = ∆2
∑

jl(g
j(k+Ql) + gj(k−Ql)) and gj(k) = 1

E−ǫj(k)+iδ
is bare retarded Green’s

function for the n-th band. Summing Eq. (3) over i, one can get:

∑

i

Gij(k,k) =
gj(k)

1− Σ
∑

i g
i(k)

. (4)

Then using Eq. (3) again we obtain:

Gij(k,k) = gi(k)δij +
gi(k)Σgj(k)

1− Σ
∑

i g
i(k)

, (5)

which can provide us with the spectral function (2) for the case of incommensurate CDW

scattering.
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CDW pseudogap fluctuations

Above the temperature of incommensurate CDW transition there is no long-range charge

ordering, but due to low-dimensionality of the system there are rather well developed short-

range order CDW fluctuations, with finite correlation length ξ and characteristic wave-

vector Q which becomes rather quick commensurate with Q = 2
3
ΓM [4] as temperature

lowers. In analogy to incommensurate electronic CDW scattering we will employ two-wave

approximation with pair of vectors (Ql, Q̄l). Diagrammatically such scattering processes

are show in Fig. 5, where three types of interaction lines correspond to three characteristic

transfer momenta l = 1, 2, 3.

Let us assume fluctuations Gaussian. Then averaging over such fluctuations corresponds

to all possible interconnections of incoming and outgoing interaction lines of the same type

[12–14], producing appropriate effective interactions, assumed to be of the form discussed

in these works. For the case of high enough temperatures one can neglect dynamics of

fluctuations and average over static random field of Gaussian pseudogap fluctuations [12–

14].

Let us mention that the number of different diagrams is defined by product of number

of ways to interconnect vertices of type 1, 2 and 3. Since only outgoing and incoming

lines of each type can be connected, combinatorics corresponds to incommensurate case

[12]. Following Refs. [12–14] we use the basic property of the diagrams of this model:

any diagram with crossing interaction lines is equal to some noncrossing diagram of the

same order. Thus only noncrossing diagrams can be considered, while contributions of all

diagrams can be accounted by combinatorial prefactors. And for each type of interaction

lines (1,2,3) we will have its own incommensurate combinatorial prefactors, same as in Refs.

[12, 13].

Recurrent procedure for Green’s function: single band case

Within some straightforward generalization of the approach of Refs. [12, 13], for single

band case one-electron Green’s function can be obtained via recurrent procedure, which is

shown diagrammatically in Fig. 6. Here nl is the number of interaction lines of type l
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surrounding the “bare” electron line. Analytically this procedure can be written as:

G−1
n1,n2,n3

(k) = g−1
n1,n2,n3

(k)− Σn1+1,n2,n3
− Σn1,n2+1,n3

− Σn1,n2,n3+1, (6)

where n1, n2, n3 – are even and

Σn1+1,n2,n3
= ∆2s(n1 + 1)[Gn1+1,n2,n3

(k +Q1) +Gn1+1,n2,n3
(k−Q1)]. (7)

The other self-energies Σ in (6) can be found similarly to (7), but n2 or n3 should be increased

by one and vectors Q2 or Q3 should be added (subtracted) to (from) k, while

G−1
n1+1,n2,n3

(k±Q1) = g−1
n1+1,n2,n3

(k±Q1)− Σn1+2,n2,n3
, (8)

and

Σn1+2,n2,n3
= ∆2s(n1 + 2)Gn1+2,n2,n3

(k). (9)

Here

gn1,n2,n3
(k) =

1

E − ǫ(k) + inv(k)κ
, (10)

and κ = 1/ξ is the inverse correlation length of pseudogap fluctuations, n = n1 + n2 + n3,

v(k) = |vx(k) + vy(k)|, vx,y(k) = ∂ǫ(k)
∂kx,y

are projections of quasiparticle velocities.

For the case of incommensurate fluctuations, combinatorial prefactors are:

s(n) =







n+1
2

for odd k

n
2

for even k
(11)

This recurrent procedure is applied in analogy with refs. [12, 13]. As a first step, one

takes large enough n = n1+n2+n3, for example even, and assume that all Green functions

Gn1,n2,n3
with even n1, n2, n3, such that n = n1 + n2 + n3 are equal to zero. Then from

(9) one can find that all Σn1,n2,n3
for the same indices are equal to zero too. Then using

recurrent procedure, one can get all new values for Gn1,n2,n3
with even n1, n2, n3, such that

n1 + n2 + n3 = n− 2, and repeat the recurrent procedure until one obtains physical Green

function:

G(k) = G0,0,0(k). (12)

Multiple bands pseudogap model for quasi two dimensional hexagonal structures.

In hexagonal diselenides TaSe2 and NbSe2, as we have seen, the Fermi level is crossed

by two bands. Thus, our recurrent procedure should be generalized for multiple bands. We
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will follow Ref. [11], devoted to description of possible pseudogap behavior in iron based

superconductors, and assume that intra and interband pseudogap scattering amplitudes are

identical. This simplifies further analysis and the recurrent procedure for diagonal elements

of the general matrix (over band indices) Green’s function Gij can be drawn diagrammati-

cally as in Fig. 7. For our two band model each of the band indices run over two possible

values, and there is summation over all possible values of indices p, m, l in the vertices (Fig.

7). Thus, the self-energy in these diagrams has no dependence on band indices at all and we

can obtain the recurrent procedure for Gn1,n2,n3
=

∑

i,j G
ij
n1,n2,n3

, which is identical to Eqs.

(6)-(9) as in single band case, with only replacement:

gn1,n2,n3
(k) =

∑

i

gjn1,n2,n3
(k) =

∑

j

1

E − ǫj(k) + invj(k)κ
n = n1 + n2 + n3. (13)

and at the end of the procedure we define the physical matrix Green function as:

Gij(k) = gi0,0,0(k)δij +
gi0,0,0(k)Σg

j
0,0,0(k)

1− Σg0,0,0(k)
, (14)

where Σ = Σ1,0,0+Σ0,1,0+Σ0,0,1. This Green’s function allows us to find the spectral function

(2) in the presence of CDW pseudogap fluctuations.

RESULTS AND DISCUSSION

In our calculations we used rather typical estimate of CDW potential ∆ =0.05 eV, and

for correlations length of pseudogap fluctuations we assumed the value of ξ=10a (where a

is the lattice spacing). To mimic for the experimental ARPES resolution we broadened our

spectral functions with Lorentzian of width γ = 0.03eV , practically it means that we made

substitution E → E + iγ during all calculations.

In Fig. 8 we show spectral function maps along high symmetry directions with kz=0

for 2H-TaSe2. Upper panel shows spectral function map for incommensurate pseudogap

phase obtained within our pseudogap model. In general it reminds bare “experimental”

dispersions plotted on Fig. 2. However, here we see some additional broadening of initial

spectra. These broadened regions of spectral functions with lower intensity represent regions

pseudogap formation. Why do we speak about regions? In contrast to cuprates [15] where

we have finite and rather small number of “hot-spots” here we have almost infinite number
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of “hot-spots” and it is the interplay between all of them, which leads to the formation of

such regions. But still dispersions here does not have any obvious discontinuities.

Middle panel of Fig. 8 displays the case of incommensurate CDW phase. Now we see

that regions previously covered with pseudogap have clear discontinuities – gaps and also

many shadow bands. When we transfer further to commensurate CDW phase (lower panel

of Fig.8) those gaps become even stronger and we can see much more pronounced shadow

bands.

Figures 9–11 show spectral functions maps in the vicinity of the Fermi level along cuts

shown on Fig. 1c. In all figures upper row represents experimental data of Ref. [4], while

lower shows our theoretical results. Generally speaking for all phases: incommensurate

pseudogap Fig. 9, incommensurate CDW Fig. 10 and commensurate CDW Fig. 11, we

obtain quite good qualitative agreement of theory and experiment for the number of bands

crossing the Fermi level, their position and relative intensity.

In Fig. 12 we present comparison of experimental and theoretical Fermi surfaces for

2H-TaSe2. In the middle part of Fig. 12 we show experimental ARPES data from Ref. [4].

Data at 180K corresponds to the pseudogap phase, while those at 30K are for commensurate

CDW phase.

Upper panel of Fig. 12 shows our theoretical Fermi surface in the incommensurate pseu-

dogap regime for 2H-TaSe2. In general it more or less reminds LDA Fermi surface from Fig.

1c. However there are obvious signatures of partial destruction of the Fermi surface sheets.

Namely, cylinder around K-point and “bones” along K-M direction are partially smeared

out. It is seen that this picture agrees well with the experimental ARPES data of Ref. [3, 4].

For the commensurate CDW phase (lower panel of Fig. 12) Fermi surface stays close to

that obtained in LDA and shown in of Fig. 1c. In contrast to incommensurate pseudogap

phase Fermi surface sheets here are more sharp both in experiment and in theory. The

cylinder around K-point is now continuous. In the middle of the “bones” we observe the

start of formation of small triangles as shown in the center of middle panel. Thus, here

in commensurate CDW phase of 2H-TaSe2 we again obtain an overall agreement between

theory and experiment.

In Fig. 13 we show comparison between experimental (middle panel) and theoretical

Fermi surfaces (lower and upper panel) for 2H-NbSe2. Experimental data on the Fermi

surface are available only for commensurate CDW phase [5]. Thus we can compare these
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with theoretical picture shown on lower panel of Fig. 13. In general, both Fermi surfaces

remind those from Fig. 1b. Account of electron scattering on commensurate CDW leads

to a small regions of Fermi surface destruction, namely, along Γ-K and K-M directions. If

there exists incommensurate pseudogap phase for 2H-NbSe2 at high enough temperatures,

its Fermi surface will not be changed much by pseudogap fluctuations, as seen in the upper

panel of Fig. 13).

CONCLUSION

To conclude, here we presented theoretical results on electronic structure of two-

dimensional diselenides 2H-TaSe2 and 2H-NbSe2 within different CDW phases.

First of all we formulated a theoretical approach to account for multiple scattering of

electrons on different types of CDW, also for the multiple bands case. Further we investi-

gated spectral functions and Fermi surfaces for the pseudogap, incommensurate CDW and

commensurate CDW phases. Calculated theoretical spectral functions within the pseudo-

gap phase demonstrate “hot regions”, where spectral function is additionally broadened. In

incommensurate CDW and commensurate CDW phases in a place of these “hot regions” we

obtained opening of the number of gaps at the intersections with rather pronounced “shadow

bands”. Comparing experimental and theoretical Fermi surfaces in the pseudogap phase we

observe rather clear signs of partial Fermi surface destruction with formation of a number of

typical “Fermi arcs”, separated by pseudogap regions. In commensurate CDW phase Fermi

surfaces are rather similar to initial LDA picture, with pretty small features due to CDW.

The overall agreement between theory and ARPES experiments is rather satisfactory.
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Appendix: Scattering on commensurate CDW

One band scattering

First let us consider single band case with electronic “bare” spectrum ǫ(k). These “bare”

electrons are scattered on CDW potential, written as:

V (r) = 2∆
3

∑

l=1

cosQlr. (15)

“Bare” retarded Green’s function is:

g(k) =
1

E − ǫ(k) + iδ
. (16)

Let us introduce short notations: g(k) = g; g(k+Ql) = fl; g(k−Ql) = fl̄; g(k+Xl) = φl;

g(k − Xl) = φl̄. Then for diagonal Green’s function G = G(k,k) and twelve off-diagonal

(Fl = G(k+Ql,k); Fl̄ = G(k−Ql,k); Φl = G(k+Xl,k); Φl̄ = G(k−Xl,k)) one can get the

following system of thirteen linear equations (see Table I of scattering vectors summation):

G = g + g∆F

F1 = f1∆(F1̄ + Φ2 + F2 +G+ F3̄ + Φ1)

F2 = f2∆(Φ2 + F2̄ + Φ3 + F3 +G+ F1)

F3 = f3∆(F2 + Φ3 + F3̄ + Φ1̄ + F1̄ +G)

F1̄ = f1̄∆(G+ F3 + Φ1̄ + F1 + Φ2̄ + F2̄)

F2̄ = f2̄∆(F3̄ +G+ F1̄ + Φ2̄ + F2 + Φ3̄)

F3̄ = f3̄∆(Φ1 + F1 +G+ F2̄ + Φ3̄ + F3)

Φl = φl∆F ; Φl̄ = φl̄∆F,

(17)

where F =
∑3

l=1(Fl + Fl̄).

Solving Eqs. (17), one can the get diagonal Green’s function G = G(k,k):

G = gK; K =
1− αβ − a(β + 1)− b(α + 1)

1− αβ − a(β + 1)− b(α + 1)− g∆[α(β + 1) + β(α+ 1)]
, (18)

where α = ∆(f2+f1̄+f3̄), β = ∆(f1+f3+f2̄), a = ∆2[f1̄(φ1̄+φ2̄)+f2(φ2+φ3)+f3̄(φ3̄+φ1)],

b = ∆2[f1(φ1 + φ2) + f3(φ3 + φ1̄) + f2̄(φ2̄ + φ3̄)].

11



Multiband scattering

Following the approach of Ref. [11] we assume that CDW scattering amplitude ∆ is

identical for intra and interband transitions. One can define short notations: gi = gi(k) =

1
E−ǫi(k)+iδ

; f i
l(l̄)

= gi(k ± Ql); φ
i
l(l̄)

= gi(k ± Xl), where i – band index. Diagonal and off-

diagonal Green’s functions will have additional band indices The rest of notations are the

same as for single band case. For diagonal Green’s function, in analogy with first equation

of the system (17), one can obtain:

Gij = giδij + gi∆
∑

m

3
∑

l=1

(Fmj
l + Fmj

l̄
). (19)

Introducing Gj =
∑

i G
ij; F j

l(l̄)
=

∑

i F
ij

l(l̄)
; Φj

l(l̄)
=

∑

i Φ
ij

l(l̄)
; g =

∑

i g
i; fl(l̄) =

∑

i f
i
l(l̄)

;

φl(l̄) =
∑

i φ
i
l(l̄)

and summing Eq. (19) over i we get:

Gj = gj + g∆
3

∑

l=1

(F j
l + F j

l̄
). (20)

The rest of other twelve equations for F j

l(l̄)
and Φj

l(l̄)
are completely equivalent to correspond-

ing equations of one band case (17). Thus, we immediately obtain:

Gj = gjK, (21)

where K is defined in Eq. (18). However, now the quantities g, fl(l̄), φl(l̄) are summed up

over all band indices. From Eq. (19) and (20), using Eq. (21) we finally obtain:

Gij = giδij + gi
Gj − gj

g
= giδij +

gigj

g
(K − 1), (22)

which allows us to calculate the spectral function (2) with the account of scattering on

commensurate CDW.
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FIG. 1: LDA bands and Fermi surfaces for 2H-TaSe2. Panel (a) – LDA electronic dispersions.

Fermi level corresponds to zero. Panel (b) – LDA Fermi surface. Panel (c) – Fermi surface for

shifted down Fermi level shown on panel (a) with a short line to obtain bone-like Fermi sheets.
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FIG. 2: “Experimental” bands for 2H-TaSe2 (solid line) and 2H-NbSe2 (dashed line). Fermi level

corresponds to zero.
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FIG. 3: Schematic picture of the first Brillouin zone for hexagonal lattice with characteristic CDW

vectors: Q = 2
3ΓM (Q1, Q2, Q3) – commensurate CDW vectors. X = 1

2ΓK (X1, X2, X3)) –

vectors after two scattering on Q, which also have significant Lindhardt function maxima.[3]

FIG. 4: Diagrammatic representation of diagonal Green function within two-wave approximation

for electron scattering on CDW.

FIG. 5: Example of a diagram with multiple scattering on CDW, where dashed, wavy and zig-zag

lines incoming lines corresponds to scattering on Q1, Q2, Q3, and corresponding outgoing lines –

Q̄1, Q̄2, Q̄3.
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FIG. 6: Diagrammatic representation of Green function within single band pseudogap model for two

dimensional hexagonal systems. (1→2) denotes the two last terms, where substitutions Q1 → Q2

and n1 + 1 → n2 + 1 should be done.
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FIG. 7: Diagrammatic representation of Green function within multiband pseudogap model for

two dimensional hexagonal systems.

18



FIG. 8: Spectral functions of 2H-TaSe2. Upper panel – incommensurate pseudogap phase, middle

panel – incommensurate CDW phase, lower panel – commensurate CDW phase.

FIG. 9: Spectral functions for incommensurate pseudogap phase along cuts shown on Fig. 1c
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FIG. 10: The same as Fig. 9 but for incommensurate CDW phase.

FIG. 11: The same as Fig. 9 but for commensurate CDW phase.
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FIG. 12: Comparison of experimental and theoretical fermi surfaces for 2H-TaSe2. Upper panel –

theoretical Fermi surface for pseudogap CDW phase; middle panel – joint picture of experimental

data pseudogap phase (upper part) and commensurate CDW phase (lower part). Lower panel –

theoretical Fermi surface for commensurate CDW phase.
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FIG. 13: Comparison of experimental and theoretical Fermi surfaces for 2H-NbSe2. Upper panel –

theoretical Fermi surface for pseudogap CDW phase; middle panel – joint picture of experimental

data LDA Fermi surface (upper part) and commensurate CDW phase (lower part). Lower panel –

theoretical Fermi surface for commensurate CDW phase.
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