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Normal phase and superconducting instability in attractive Hubbard model: the
DMFT(NRG) study
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We study the normal (non-superconducting) phase of attractive Hubbard model within dynamical
mean field theory (DMFT) using numerical renormalization group (NRG) as impurity solver. Wide
range of attractive potentials U is considered, from the weak-coupling limit, where superconducting
instability is well described by BCS approximation, up to the strong-coupling region, where super-
conducting transition is described by Bose-condensation of compact Cooper pairs, which are formed
at temperatures much exceeding superconducting transition temperature. We calculate density of
states, spectral density and optical conductivity in the normal phase for this wide range of U , in-
cluding the disorder effects. Also we present the results on superconducting instability of the normal
state dependence on the attraction strength U and the degree of disorder. Disorder influence on the
critical temperature Tc is rather weak, suggesting in fact the validity of Anderson theorem, with the
account of the general widening of the conduction band due to disorder.

I. INTRODUCTION

The studies of superconductivity in the strong cou-
pling region attracts theorists for rather long time [1] and
most important advance here was made by Nozieres and
Schmitt-Rink [2], who proposed an effective approach
to describe crossover from weak coupling BCS limit to
the picture of Bose-Einstein condensation (BEC) of pre-
formed Cooper pairs in the strong coupling limit. The
recent progress of experimental studies of ultracold gases
in magnetic and optical traps, as well as in optical lat-
tices, allowed the controlled change of parameters, such
as density and interaction strength (see reviews [3, 4]),
increasing theoretical interests for studies of superfluid-
ity (superconductivity) for the case of very strong pair-
ing interaction, as well as in BCS-BEC crossover region.
Probably the simplest model allowing theoretical studies
of BCS-BEC crossover is the attractive Hubbard model.
It is widely used also for the studies of superconductor —
insulator transition (see review in [5]). The most effec-
tive modern approach to the solution of Hubbard model,
both for strongly correlated electronic systems (SCES)
with repulsive interaction and for the studies of BCS-
BEC crossover in the case of attraction is the dynami-
cal mean field theory (DMFT), giving an exact solution
in the limit of infinite dimensions [6–8]. The attractive
Hubbard model was studies within DMFT in a number
of recent papers [9–12]. However only few results were
obtained for the normal (non-superconducting) phase of
this model, e.g. there were practically no studies of two-
particle properties, such as optical conductivity.
To describe electronic properties of SCES we obviously

need to take into account different additional interac-
tions (electron-phonon interaction, scattering by fluctu-
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ations of different order-parameters, disorder scattering
etc), which are inevitably present in such systems. Re-
cently we have proposed the generalized DMFT+Σ ap-
proach [13–16], which is very convenient and effective for
the studies of such additional (external with respect to
Hubbard model itself) interactions (e.g. pseudogap fluc-
tuations [13–16], disorder [17, 18] and electron-phonon
interaction [19]). This approach was also successfully ex-
tended to the analysis of optical conductivity [17, 20]. In
this paper we apply the DMFT+Σ approach to the stud-
ies of the normal state properties of attractive Hubbard
model, including the effects of disorder.

II. THE BASICS OF DMFT+Σ APPROACH

In general case we shall consider non-magnetic Hub-
bard model with site disorder. The Hamiltonian of this
model can be written as:

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is the transfer integral between nearest sites
of the lattice, U is the onsite interaction (for the case of

attraction U < 0), niσ = a†iσaiσ is onsite electron number

operator, aiσ (a†iσ) is annihilation (creation) operator for
electron with spin σ on site i, local energy levels ǫi are
assumed to be independent random variables at different
lattice sites. To simplify diagram technique in the follow-
ing we assume the Gaussian distribution of these energy
levels:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

(2)

Parameter ∆ represents here the measure of disorder and
this Gaussian random field (with “white noise” correla-
tion on different lattice sites) generates “impurity” scat-
tering and lead to the standard diagram technique for
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calculation of the ensemble averaged Green’s functions
[21].

Generalized DMFT+Σ approach [13–16] extends the
standard DMFT [6–8] introducing an additional “exter-
nal” self-energy Σp(ε) (in general case momentum de-
pendent), which is due to some interaction mechanism
outside the DMFT. It gives an effective procedure to cal-
culate both single- and two-particle properties [17, 20].
The success of this approach is connected with the choice
of the single-particle Green’s function in the following
form:

G(ε,p) =
1

ε+ µ− ε(p)− Σ(ε)− Σp(ε)
, (3)

where ε(p) is the “bare” electronic dispersion, while the
total self-energy neglects the interference between the
Hubbard and “external” interaction and is given by the
additive sum of the local self-energy Σ(ε) of DMFT and
“external” self-energy Σp(ε). This conserves the stan-
dard structure of DMFT equations [6–8]. However, there
are two important differences with standard DMFT. At
each iteration of DMFT cycle we recalculate the “exter-
nal” self-energy Σp(ε) using some approximate scheme
for the description of “external” interaction and the lo-
cal Green’s function is “dressed” by Σp(ε) at each step
of the standard DMFT procedure.
For “external” self-energy due to disorder scattering

entering DMFT+Σ cycle below we use the simplest ap-
proximation neglecting the diagrams with “intersecting”
interaction lines, i.e. the self-consistent Born approxima-
tion, For the Gaussian distribution of site energies it is
momentum independent and is given by:

Σp(ε) → Σ̃ = ∆2
∑

p

G(ε,p), (4)

where G(ε,p) is the single-particle Green’s function (3),
while ∆ is the strength of site energy disorder.
To solve the single Anderson impurity problem of

DMFT we have employed the reliable algorithm of
the numerical renormalization group [22], i.e. the
DMFT(NRG) approach..
Within DMFT+Σ approach we can also investigate the

two-particle properties. In particular, the real part of
dynamical (optical)conductivity in DMFT+Σ we have
the following general expression [17, 20]:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−)− f(ε+)]×

×Re

{

φ0RA
ε (ω)

[

1− ΣR(ε+)− ΣA(ε−)

ω

]2

−

−φ0RR
ε (ω)

[

1− ΣR(ε+)− ΣR(ε−)

ω

]2
}

, (5)

where e is electronic charge, f(ε±) — Fermi distribution

for ε± = ε± ω
2 , and

φ0RR(RA)
ε (ω) = lim

q→0

Φ
0RR(RA)
ε (ω,q)− Φ

0RR(RA)
ε (ω, 0)

q2
,

(6)

where the two-particle Green’s function Φ
0RR(RA)
ε (ω,q)

contain all vertex corrections from “external” interaction,
but do not include vertex corrections from Hubbard inter-
action. This considerably simplifies calculations of opti-
cal conductivity within DMFT+Σ approximation, as we
have only to solve the single-particle problem determin-
ing the local self-energy Σ(ε±) via the DMFT+Σ pro-
cedure. Non-trivial contribution from non-local correla-
tions enters only via Φ

0RR(RA)
ε (ω,q), which can be calcu-

lated in appropriate approximation, taking into account
only “external” interaction. To obtain the loop contri-

butions Φ
0RR(RA)
ε (ω,q), determined by disorder scatter-

ing, we can either use the “ladder” approximation for
the case of weak disorder, or following Ref. [17], we can
use the generalization of the self-consistent theory of lo-
calization [23, 24], which allows us to treat the case of
strong enough disorder. In this approach conductivity
is determined mainly by the generalized diffusion coeffi-
cient obtained from the generalization of self-consistency
equation [23, 24] of this theory, which is to be solved in
combination with DMFT+Σ procedure.
In the following we shall consider the three-dimensional

system with “bare” semi-elliptic density of states (per
elementary cell and one spin projection), which is given
by:

N0(ε) =
2

πD2

√

D2 − ε2 (7)

with the bandwidth W = 2D. All calculations below
are done for quarter-filled band (n=0.5). The value of
conductivity on all figures will be given in universal units

of σ0 = e2

ha
(where a is the lattice spacing).

III. MAIN RESULTS

In Fig.1 we show densities of states obtained for
T/2D = 0.05 and quarter filling of the band (n = 0.5)
for different values of attractive (U < 0) Fig.1(a) and
repulsive (U > 0) Fig.1(b) interaction. It is well known
that at half-filling (n = 1) density of states of attractive
and repulsive Hubbard models just coincide (due to ex-
act mapping of these models onto each other). This is
not so when we deviate from half-filling. From Fig.1 we
can see that the density of states close to the Fermi level
drops with the growth of U , both for attraction (Fig.1(a))
and repulsion (Fig.1(b)), but significant growth of |U |
in repulsive case leads only to vanishing quasiparticle
peak and density of states at the Fermi level becomes
practically independent of U , while in attractive case
the growth of |U | leads to superconducting pseudogap
opening at the Fermi level (curve 3 in Fig.1(a)) and for
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FIG. 1: Densities of states for different values of Hubbard
attraction (a) and repulsion (b). Temperature T/2D = 0.05.

|U |/2D > 1.2 we observe the full gap opening at the
Fermi level (curves 4, 5 in Fig.1(a)). This gap is not re-
lated to the appearance of superconducting state, but is
due to the appearance of preformed Cooper pairs, as the
temperature for which the results shown in Fig.1 were
obtained is larger than superconducting transition tem-
perature (cf. Fig.7 below). Thus we observe the impor-
tant difference from repulsive case, where the deviation
from half-filling leads to metallic state for arbitrary val-
ues of U , while insulating gap at large U opens not at
the Fermi level.

This picture of density of states evolution with the
growth of |U | is supported by the behavior of dynamic
(optical) conductivity shown in Fig.2. We see that with
the growth of |U | Drude peak at zero frequency (curves
1, 2 in Fig.2) is replaced by pseudogap dip (curve 3 in
Fig.2) and wide maximum of conductivity at finite fre-
quency, connected with scattering across the pseudogap.
The further growth of |U | leads to the appearance of
the full gap in optical conductivity due to formation of
Cooper pairs (curves 4, 5 in Fig.2).

Similar evolution with growth of |U | is also observed
in spectral density. In Fig.3 we show spectral density
A(ε,p) = − 1

π
ImGR(ε,p) at the Fermi surface (p = pF )

for different values of attractive interaction U . With the
growth of |U | a narrow peak in spectral density at the
Fermi level (curves 1, 2 in Fig.3) is smeared and with
the further growth of |U | the pseudogap dip appears at
the Fermi level (curve 3 in Fig.3). At still larger |U |
this dip is transformed into the real gap (curves 4, 5
in Fig.3). This behavior of spectral density correlates
well with qualitative change (with the growth of |U |) of
distribution function n(ξk) (Fig.4), defined as:

n(ξk) =

∫ ∞

−∞

dεA(ε, ξk)f(ε), (8)
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FIG. 2: Optical conductivity for different values of Hubbard
attraction. Temperature T/2D = 0.05.
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FIG. 3: Spectral density at the Fermi surface for different
values of Hubbard attraction. Temperature T/2D = 0.05.

where ξk represents kinetic energy of electrons. It is seen,
that this distribution changes from more or less defined
Fermi step-function at small |U | (curves 1, 2 in Fig.4)
to effective constant at large values of |U | (curves 4, 5
in Fig.4), due to formation of Cooper pairs with binding
energy of the order of |U |.

-0,2 0,0 0,2 0,4 0,6
0,0

0,5

1,0
1  U/2D=0.2
2  0.6
3  1.0
4  1.4
5  1.8

n(
k)

( k- F)/2D

1

2

3

4

5

FIG. 4: Distribution function for different values of Hubbard
attraction. Temperature T/2D = 0.05. ξF – kinetic energy
of electrons at the Fermi surface.
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FIG. 5: Spectral density maps for different values of Hubbard
attraction. Color represent the intensity of spectral density.
Temperature T/2D = 0.05.

The formation of superconducting pseudogap and
Cooper pairing gap with the growth of |U | is also well
demonstrated by the maps of spectral density, shown in
Fig.5 for different values of U . Colors represent the in-
tensity of spectral density. We observe that the growth
of |U | leads to transformation of initially well defined
dispersion of Fig.5(a) to dispersions with pseudogap re-
gion, shown in Fig.5(b,c), which transforms into the real
Cooper gap, shown in Fig.5(d,e) with the further growth
of |U |.

A. Disorder effects

In Fig.6 we show evolution of the density of states and
optical conductivity with changing disorder. At weak
enough attraction (|U |/2D = 0.8, Fig.6(a),(b)), we see
that the growth of disorder smears density of states,
leading to some widening of the band. This smearing
masks peculiarities of the density of states due to cor-
relation effects. In particular, quasiparticle peak and
“wings” due to upper and lower Hubbard bands observed
in the density of states in Fig.6(a) in the absence of disor-
der completely vanish at strong enough disorder. There
are no singularities in the density of states due to An-
derson metal-insulator transition, which takes place at
∆/2D = 0.37 [17], as density of states does not feel
Anderson localization. Evolution of optical conductiv-
ity with the growth of disorder ∆, shown in Fig.6(b),
corresponds in general to evolution of density of states.
The growth of disorder, while it remains weak enough,
(curves 1, 2 in Fig.6(b)), leads to some growth of static
conductivity, which is connected with suppression of cor-
relation effects at the Fermi level, noted above (curves
1, 2 in Fig.6(a). The further growth of disorder leads
to significant widening of the band and the drop of den-

sity of states (curve 3 in Fig.6(a),(b)), which leads to
drop of static conductivity. Finally, with the further
growth of disorder Anderson localization effects become
important. At T = 0 Anderson transition takes place at
∆/2D = 0.37 [17]. However, here we consider the case
of high enough temperature T/2D = 0.05, so that static
conductivity (see curves 4, 5 in Fig.6(b)) remains finite,
though at finite frequencies we clearly observe localiza-
tion behavior with σ(ω) ∼ ω2. At larger value of attrac-
tive interaction |U |/2D = 1, the evolution of the density
of states and optical conductivity is more or less similar
(Fig. 6(c,d) ). However, in the absence of disorder we
observe here superconducting pseudogap in the density
of states and disorder growth suppresses it, leading both
to the growth of the density of states at the Fermi level
and appropriate growth of static conductivity. Finally,
at still larger attraction |U |/2D = 1.6 (Fig.6(e),(f)) in
the absence of disorder there is the real Cooper gap in
the density of states. This gap is also clearly observed
in optical conductivity. With the growth of disorder
Cooper gap both in the density of states and conduc-
tivity becomes narrower (curves 1-3). Further growth
of disorder leads to complete suppression of Cooper gap
and restoration of metallic state with finite density of
states at the Fermi level and finite static conductivity.
This closure of Cooper gap is related to the widening of
effective bandwidth Weff due to disorder, which leads
to the diminishing ratio |U |/Weff , which controls the
formation of Cooper gap. Situation here is similar to
the closure of Mott gap by disorder in repulsive Hub-
bard model [17]. However, at larger disorder (curve 5 in
Fig.6(f)) we clearly observe localization behavior, so that
the growth of disorder at T = 0 will first lead to metal-
lic state (the closure of Cooper gap), while the further
growth of disorder will induce Anderson metal-insulator
transition. Similar picture is observed for large positive
U at half-filling (n = 1) [17], where the growth of disor-
der leads to Mott insulator - correlated metal - Anderson
insulator transition.

B. Superconducting transition temperature

Superconducting transition temperature Tc in attrac-
tive Hubbard model was studied in a number of papers
[9, 10, 12], both from the criterion of instability of nor-
mal phase (divergence of Cooper susceptibility) [9] and
from the condition of vanishing superconducting order
parameter [10, 12]. In Fig. 7 black squares, white circles
and white squares show the results of Refs. [9],[10],[12]
correspondingly, for the case of quarter-filling n = 0.5
(1).

1 In Ref. [10] it was claimed that n = 0.75 was considered, but
results are obtained practically coincide with those of Ref. [9]
obtained for n = 0.5
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FIG. 6: Evolution of the density of states (left panels) and
optical conductivity (right panels) with disorder for different
values of U (|U |/2D = 0.8 - a,b; |U |/2D = 1 - c,d; |U |/2D =
1.6 - e,f).

Actually, the overall picture of Tc dependence on U is
well approximated by filled circles curve shown in Fig.
7 and obtained from Nozieres — Schmitt-Rink [2] ap-
proach, which gives the correct (approximate) descrip-
tion of BCS-BEC crossover. Then for critical tempera-
ture Tc we have the usual BCS-like equation:

1 =
|U |
2

∫ D

−D

dεN0(ε)
th ε−µ

2Tc

ε− µ
, (9)

while the chemical potential for different values of U is to
be determined from DMFT calculations (for fixed band-
filling). From Fig. 7 we can see, that in the weak cou-
pling region of |U |/2D ≪ 1 the critical temperature in
this approach is close to the usual result of BCS the-
ory (see appropriate curve in Fig.7). For |U |/2D ∼ 1
the critical temperature Tc has the maximal value, while
for |U |/2D ≫ 1 it drops as Tc ∼ 1/|U | [2], because for

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
0,00

0,01

0,02

0,03

0,04

0,05

T c
/2
D

U/2D

BC
S

FIG. 7: Dependence of superconducting critical temperature
on attractive interaction strength. Black squares, white cir-
cles and white squares show the results of Refs. [9],[10],[12]
respectively for quarter-filled band with n = 0.5. Stars rep-
resent the results obtained from the criterion of instability of
the normal phase. Filled circles show Tc obtained Nozieres —
Schmitt-Rink approximation. Continuous black curve repre-
sents the result of BCS theory.

such strong values of attractive interaction the critical
temperature is determined by the condition of Bose con-
densation of preformed Cooper pairs and transfer am-
plitude of these pairs appears only in the second order
of perturbation theory and is proportional to t2/|U | [2].
Stars in Fig.7 show the critical temperature, obtained
from the criterion of normal phase instability. For large
enough U lowering temperature leads to instability of
DMFT(NRG) iteration procedure — at high enough tem-
peratures DMFT(NRG) procedure converges to a single
solution, while for temperatures below some critical tem-
perature we observe two different stable solutions for odd
or even iterations. We suggest, that this instability of it-
eration procedure corresponds to the physical instability
of the normal phase. Unfortunately, for |U |/2D < 1,
the observed instability is rather weak (the difference be-
tween the odd and even iterations is too small), thus the
accuracy of our calculations is insufficient to determine
Tc in this way. Surprisingly enough, the results for Tc

obtained from the approximate approach of Ref. [2] and
from instability of DMFT(NRG) cycle are rather close to
each other. This is especially surprising for large values
of U/2D ratio, where pseodigap (or even the real gap)
develops in the density of states.

In Fig.8 we show the dependence of critical tempera-
ture, obtained from the criterion of normal state insta-
bility, on disorder strength ∆ for |U |/2D = 1.6. At small
∆ we observe weak suppression of Tc by disorder, which
is apparetnly due the general smearing of the density of
stated and bandwidth widening by disorder scattering At
large enough.disorder we observe the significant growth
of Tc with the growth of ∆. This is related to the growth
of effective bandwith Weff due to disorder, leading to ef-
fective drop of the ration |U |/Weff , controlling the value
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FIG. 8: Dependence of superconducting critical temperature
on disorder for |U |/2D = 1.6. At the insert — Tc suppression
by weak disorder for different values of band-filling: n = 0.5,
n = 0.6, n = 0.8.

of critical temperature in this model. The growth of dis-
order leads to to the drop of |U |/Weff from the value of
1.6 at ∆ = 0 to |U |/Weff ∼ 1 for ∆/2D ∼ 0.4, which
leads to the appropriate growth of the critical tempera-
ture (cf. Fig.7). This behavior is similar to the growth
of the critical value of repulsion in Hubbard model for
Mott metal-insulator transition with the growth of dis-
order (cf. Ref. [17, 18]). The drop of the ratio |U |/Weff

with the growth of disorder does not allow us to guaran-
tee the sufficient accuracy of the values of Tc in the case of
|U |/2D ∼ 1 for disorder values larger than ∆/2D = 0.11.
For such small values of disorder and for |U |/2D ∼ 1
the critical temperature is weakly suppressed by disor-
der, similarly to the behavior shown in Fig.8 for the case
of |U |/2D = 1.6. At the insert in Fig.8 we show the sup-
pression of the critical temperature by weak disorder for
different values of band-filling: n = 0.5, n = 0.6, n = 0.8.

IV. CONCLUSIONS

Within the generalized DMFT+Σ generalization of dy-
namical mean field theory we have studied the proper-
ties of the normal (non-superconducting) state of attrac-
tive Hubbard model for the wide region of values of on-
site attractive interaction U . The results for the density
of states, spectral density, distribution function and dy-
namic (optical) conductivity demonstrate the formation
of superconducting pseudogap at the Fermi level for in-
termediate values of coupling strength |U |/2D ∼ 1 and
formation of the real Cooper gap in the strong coupling
region |U |/2D > 1. The appearance of Cooper gap is
related to the formation of compact Cooper pairs at tem-
peratures, which are significantly higher. than the criti-
cal temperature of superconducting transition Tc, which
is determined as Bose-condensation temperature of such
(preformed) pairs. Within our DMFT+Σ approach we
have also studied the influence of disorder on the proper-
ties of the normal phase. It was shown, that the growth of

disorder in the strong coupling region leads to the closure
of the Cooper gap and restoration of the metallic state,
while in the intermediate coupling region disorder smears
superconducting pseudogap and increases the density of
states at the Fermi level. In both cases this is related to
the general widening of the band (in the absence of U)
by disorder.
We have determined the critical temperature of super-

conducting transition Tc from the condition of instability
of the normal phase. Two methods to find such instabil-
ity were used, demonstrating quantitatively similar re-
sults. In the weak coupling region Tc is well described
by BCS theory, while in the strong coupling region it
is related to Bose-condensation of (preformed) Cooper
pairs and drops as 1/|U | with the growth of |U |, passing
through the maximum at |U |/2D ∼ 1. We have also stud-
ied the effects of disorder on Tc. It was shown, that disor-
der influence of Tc is rather weak. In the strong coupling
region, e.g for U/2D = 1.6 we observe both weak sup-
pression of critical temperature, as well as some growth
of Tc with the growth of ∆ for strong enough disorder. In
fact, this behavior suggests the validity of Anderson the-
orem (as was conjectured for BCS-BEC crossover region
in Ref. [25]), with changes of Tc related to the widening
of conduction band by disorder. These results are also
consistent with recent lowest order perturbation theory
analysis of the effects of disorder throughout BCS-BEC
crossover region [26].
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