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Attractive Hubbard model with disorder and the generalized Anderson theorem
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Using the generalized DMFT+Σ approach we have studied disorder influence on single–particle
properties of the normal phase and superconducting transition temperature in attractive Hubbard
model. The wide range of attractive potentials U was studied — from the weak coupling region,
where both the instability of the normal phase and superconductivity are well described by BCS
model, towards the strong coupling region, where superconducting transition is due to Bose – Ein-
stein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than
the temperature of superconducting transition. We have studied two typical models of conduc-
tion band with semi – elliptic and flat densities of states, appropriate for three-dimensional and
two-dimensional systems respectively. For semi – elliptic density of states disorder influence on
all single-particle properties (e.g. density of states) is universal for arbitrary strength of electronic
correlations and disorder and is due only to the general disorder widening of conduction band. In
the case of flat density of states universality is absent in general case, but still the disorder influ-
ence is due mainly to band widening and universal behavior is restored for large enough disorder.
Using the combination of DMFT+Σ and Nozieres – Schmitt-Rink approximations we have studied
disorder influence upon superconducting transition temperature Tc for the range of characteristic
values of U and disorder, including the BCS-BEC crossover region and the limit of strong coupling.
Disorder can either suppress Tc (in the weak coupling region) or significantly increase Tc (in strong
coupling region). However in all cases the generalized Anderson theorem is valid and all changes
of superconducting critical temperature are essentially due only to the general disorder widening of
the conduction band.

PACS numbers: 71.10.Fd, 74.20.-z, 74.20.Mn

I. INTRODUCTION

The problem of strong coupling superconductivity was
studied for a long time, starting with pioneering papers
by Eagles and Leggett [1,2]. Significant progress here
was achieved by Nozieres and Schmitt-Rink [3], who sug-
gested an effective method to study the transition tem-
perature crossover from weak coupling BCS-like behav-
ior towards Bose – Einstein condensation (BEC) sce-
nario in the strong coupling region. Recent progress
in experimental studies of quantum gases in magnetic
and optical dipole traps, as well as in optical lattices,
with controllable parameters, such as density and interac-
tion strength (cf. reviews [4,5]), has increased the inter-
est to superconductivity (superfluidity of Fermions) with
strong pairing interaction, including the region of BCS
– BEC crossover. One of the simplest models allowing
the study of BCS – BEC crossover is the Hubbard model
with attractive on site interaction. The most successive
approach to the solution of Hubbard model, both in the
case of repulsive interaction and for the studies of BCS
– BEC crossover in case of attraction, is the dynamical
mean field theory (DMFT) [6–8]. Attractive Hubbard
model was studied within DMFT in a number of recent
papers [9–13]. However, up to now there are only few
studies of disorder influence on the properties of normal
and superconducting phases in this model, especially in
the region of BCS – BEC crossover. Qualitatively disor-
der effects in this region were analyzed in Ref. [14], where
it was argued, that Anderson theorem remains valid in
BCS – BEC crossover region in the case of s-wave pairing.

Diagrammatic approach to (weak) disorder effects upon
superconducting transition temperature and properties
of the normal phase in crossover region was developed
recently in Ref. [15].

In recent years we have developed the generalized
DMFT+Σ approach to Hubbard model [16–19], which
is very convenient for the studies of different external
(with respect to those taken into account in DMFT) in-
teractions (such as pseudogap fluctuations [16–19], disor-
der [20,21], electron – phonon interaction [22]) etc. This
approach is also well suited to analyze two–particle prop-
erties, such as optical (dynamic) conductivity [20,23]. In
Ref. [13] we have used this approximation to calculate
single – particle properties of the normal phase and opti-
cal conductivity in attractive Hubbard model. In a recent
paper [24] DMFT+Σ approach was used by us to study
disorder influence upon superconducting transition tem-
perature, which was calculated in Nozieres – Schmitt-
Rink approximation. In this paper for the case of semi –
elliptic density of states of the “bare” conduction band,
which is adequate for three – dimensional systems, we
have numerically demonstrated the validity of the gener-
alized Anderson theorem, so that all the changes of crit-
ical temperature are controlled only by general widening
of the conduction band by disorder.

In this paper we present the analytic proof of such uni-
versal influence of disorder (in DMFT+Σ approximation)
upon single – particle characteristics and temperature of
superconducting transition for the case of semi – elliptic
density of states, and also investigate disorder effects in
the case of the “bare” band with flat density of states,
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qualitatively appropriate for two – dimensional systems.
It will be shown, that for the flat band model the uni-
versal dependence of single – particle properties and su-
perconducting transition temperature is also realized for
the case of strong enough disorder.

II. DISORDERED HUBBARD MODEL WITHIN

DMFT+Σ APPROACH

We consider the disordered nonmagnetic Hubbard
model with attractive interaction with Hamiltonian:

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ − U
∑

i

ni↑ni↓, (1)

where t > 0 is transfer integral between nearest neigh-
bors on the lattice, U represents Hubbard – like on site

attraction, aiσ(a
†
iσ) is annihilation (creation) operator of

an electron with spin σ, niσ = a†iσaiσ particle number op-
erator on lattice site i, while local on site energies ǫi are
assumed to be random variables (independent on differ-
ent lattice sites). For the standard “impurity” diagram
technique to be valid we take the Gaussian distribution
of energy levels ǫi:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

(2)

Parameter ∆ is the measure of disorder strength, while
the Gaussian random field of random on site energy lev-
els (independent on different sites – “white noise” corre-
lation) induces “impurity” scattering, which is analyzed
using the standard formalism of averaged Green’s func-
tions [25].
The generalized DMFT+Σ approach [16–19] extends

the standard dynamical mean field theory (DMFT) [6–
8] taking into account an additional “external” self-
energy part Σp(ε) (in general case momentum depen-
dent), which is due to some additional interaction outside
DMFT, and gives an effective method to calculate both
single – particle and two – particle properties [20,23].
The success of this generalized approach is based upon
the choice of the single – particle Green’s function in the
following form:

G(ε,p) =
1

ε+ µ− ε(p)− Σ(ε)− Σp(ε)
, (3)

where ε(p) is the “bare” electronic dispersion, while the
complete self – energy is assumed to an additive sum of
the local self – energy of DMFT and some “external” self
– energy Σp(ε), due to neglect of the interference of Hub-
bard and “external” interactions. This allows the conser-
vation of the standard form of self – consistent equations
of the standard DMFT [6–8]. At the same time, at each
step of DMFT iterations we consistently recalculate an
“external” self – energy Σp(ε) using the appropriate ap-
proximate scheme, corresponding to the form of an addi-
tional interaction, while the local Green’s function is also

“dressed” by Σp(ε) at each step of the standard DMFT
procedure.
For “external” self – energy entering DMFT+Σ cycle

for the problem of random scattering by disorder we use
the simplest self – consistent Born approximation, ne-
glecting diagrams with crossing “impurity” lines, which
gives:

Σp(ε) → Σ̃(ε) = ∆2
∑

p

G(ε,p), (4)

where G(ε,p) is the single – electron Green’s function (3)
and ∆ is the amplitude of site disorder.
To solve the effective single Anderson impurity prob-

lem of DMFT we used the numerical renormalization
group approach (NRG) [26].
In the following we consider two models of “bare” con-

duction band. The first one is the band with semi –
elliptic density of states (per unit cell and single spin
projection):

N0(ε) =
2

πD2

√

D2 − ε2 (5)

where D defined the band half-width. This model is ap-
propriate for three – dimensional system. The second one
is the model with the flat density of states, appropriate
for two – dimensional case:

N0(ε) =

{

1

2D
|ε| ≤ D

0 |ε| > D
. (6)

In principle, for two – dimensional systems we should
take into account the presence of the weak (logarithmic)
Van Hove singularity in the density of states. However,
this singularity is effectively suppressed even by rather
small disorder, so that the simple model of Eq. 6 is quite
sufficient for our aims.
All calculations in this work has been done for the

case of quarter – filled band (the number of electrons per
lattice site n=0.5).
The temperature of superconducting transition in at-

tractive model was analyzed in a number of papers
[9,10,12], both from the condition of instability of the
normal phase [9] (divergence of Cooper susceptibility)
and from the condition of superconducting order param-
eter going to zero [10,12]. In a recent paper [13] we have
determined the critical temperature from the condition of
instability of the normal phase, reflected in the instabil-
ity of DMFT iteration procedure. The results obtained in
this way in fact coincided with those of Refs. [9,10,12].
Also in Ref. [13] to calculate Tc we have used the ap-
proach due to Nozieres and Schmitt-Rink [3], which al-
lows the correct (though approximate) description of Tc

in BCS – BEC crossover region. In a later work [24] we
have used the combination of Nozieres and Schmitt-Rink
and DMFT+Σ approximations for the detailed numeri-
cal studies of disorder dependence of Tc and the number
of local pairs in the model with semi – elliptic density of
states.



3

III. DISORDER INFLUENCE ON SINGLE –

PARTICLE PROPERTIES FOR THE CASE OF

SEMI–ELLIPTIC DENSITY OF STATES

In this section we shall analytically demonstrate, that
in DMFT+Σ approximation disorder influence upon sin-
gle – particle properties of disordered Hubbard model
(both attractive or repulsive) with semi – elliptic “bare”
conduction band is completely described by effects of gen-
eral band widening by disorder scattering.
In the system of self – consistent equations DMFT+Σ

equations [17,19,20] both information on the “bare” band
and disorder scattering enter only on the stage of calcu-
lations of the local Green’s function:

Gii =
∑

p

G(ε,p), (7)

where the full Green’s function G(ε,p) is determined by
Eq. (3), while the self – energy due to disorder, in self
– consistent Born approximation, is defined by Eq. (4).
Thus, the local Green’s function takes the form:

Gii =

∫ D

−D

dε′
N0(ε

′)

ε+ µ− ε′ − Σ(ε)−∆2Gii

=

=

∫ D

−D

dε′
N0(ε

′)

Et − ε′
, (8)

where we have introduced the notationEt = ε+µ−Σ(ε)−
∆2Gii. In the case of semi – elliptic density of states (5)
this integral is easily calculated in analytic form, so that
the local Green’s function is written as:

Gii = 2
Et −

√

E2
t −D2

D2
. (9)

It is easily seen that Eq. (9) represents one of the roots
of quadratic equation:

G−1
ii = Et −

D2

4
Gii, (10)

corresponding to the correct limit of Gii → E−1
t for in-

finitely narrow (D → 0) band. Then

G−1
ii = ε+ µ− Σ(ε)−∆2Gii −

D2

4
Gii =

= ε+ µ− Σ(ε)−
D2

eff

4
Gii, (11)

where we have introduced Deff – an effective half-width
of the band (in the absence of electronic correlations, i.e.
for U = 0) widened by disorder scattering:

Deff = D

√

1 + 4
∆2

D2
. (12)

Eq. (10) was obtained from (8), thus comparing (11) and
(10), we obtain:

Gii =

∫ Deff

−Deff

dε′
Ñ0(ε

′)

ε+ µ− ε′ − Σ(ε)
, (13)

Here

Ñ0(ε) =
2

πD2
eff

√

D2
eff − ε2 (14)

represents the density of states in the absence of inter-
action U “dressed” by disorder. This density of states
remains semi – elliptic in the presence of disorder, so
that all effects of disorder scattering on single – parti-
cle properties of disordered Hubbard model in DMFT+Σ
approximation are reduced only to disorder widening of
conduction band, i.e. to the replacement D → Deff .

IV. DISORDER INFLUENCE ON

SUPERCONDUCTING TRANSITION

TEMPERATURE

Temperature of superconducting transition Tc is not
a single – particle characteristic of the system. Cooper
instability, determining Tc is related to divergence of two
– particle loop in Cooper channel. In the weak coupling
limit, when superconductivity is due to the appearance
of Cooper pairs at Tc, disorder only slightly influences
superconductivity with s-wave pairing [27,28]. The so
called Anderson theorem is valid and changes of Tc are
connected only with the relatively small changes of the
density of states by disorder. Th standard derivation
of Anderson theorem [27,28] uses the formalism of exact
eigenstates of an electron in the random field of impu-
rities. Here we present another derivation of Anderson
theorem, using the exact Ward identity, which allows us
to derive the equation for Tc, which will be used to cal-
culate Tc in Nozieres – Schmitt-Rink approximation in
disordered system.
In general, Nozieres – Schmitt-Rink approach [3] as-

sumes, that corrections due to strong pairing attraction
significantly change the chemical potential of the sys-
tem, while possible correction due to this interaction to
Cooper instability condition can be neglected, so that we
can always use here the weak coupling (ladder) approxi-
mation. In such approximation the condition of Cooper
instability in disordered Hubbard model takes the form:

1 = Uχ0(q = 0, ωm = 0) (15)

where

χ0(q = 0, ωm = 0) = T
∑

n

∑

pp′

Φpp′(εn) (16)

represents the two – particle loop (susceptibility) in
Cooper channel “dressed” only by disorder scattering,
and Φpp′(εn) is the averaged two – particle Green’s
function in Cooper channel (ωm = 2πmT and εn =
πT (2n + 1) are the usual Boson and Fermion Matsub-
ara frequencies).
To obtain

∑

pp′ Φpp′(εn) we use the exact Ward iden-

tity, derived by us in Ref. [23]:

G(εn,p)−G(−εn,−p) =
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= −
∑

p′

Φpp′(εn)(G
−1
0 (εn,p

′)−G−1
0 (−εn,−p

′)), (17)

Here G(εn,p) is the impurity averaged (but not con-
taining Hubbard interaction corrections!) single – par-
ticle Green’s function. Using the obvious symmetry
ε(p) = ε(−p) and G(εn,−p) = G(εn,p), we obtain from
the Ward identity (17):

∑

pp′

Φpp′(εn) = −
∑

p
G(εn,p)−

∑

p
G(−εn,p)

2iεn
, (18)

so that for Cooper susceptibility (16) we have:

χ0(q = 0, ωm = 0) =

= −T
∑

n

∑

p
G(εn,p)−

∑

p
G(−εn,p)

2iεn
=

= −T
∑

n

∑

p
G(εn,p)

iεn
. (19)

Performing now the standard summation over Matsubara
frequencies [25], we obtain:

χ0(q = 0, ωm = 0) =

= − 1

4πi

∫ ∞

−∞

dε

∑

p
GR(ε,p)−∑

p
GA(ε,p)

ε
th

ε

2T
=

=

∫ ∞

−∞

dε
Ñ(ε)

2ε
th

ε

2T
,

(20)

where Ñ(ε) is the density of states (U = 0) “dressed” by
disorder scattering. In Eq. (20) the energy ε is reckoned
from the chemical potential and if we reckon it from the
center of conduction band we have to replace ε → ε− µ,
so that the condition of Cooper instability (15) leads to
the following equation for Tc:

1 =
U

2

∫ ∞

−∞

dεÑ0(ε)
th ε−µ

2Tc

ε− µ
, (21)

where Ñ0(ε) is again the density of states (calculated
for U = 0) “dressed” by disorder scattering. At the same
time, the chemical potential of the system at different val-
ues of U and ∆ should be determined from DMFT+Σ cal-
culations, i.e. from the standard equation for the number
of electrons (band-filling), determined by Green’s func-
tion given by Eq. (3), which allows us to find Tc for
the wide range of model parameters, including the BCS-
BEC crossover and strong coupling regions, as well as
for different levels of disorder. This reflects the physical
meaning of Nozieres – Schmitt-Rink approximation — in
the weak coupling region transition temperature is con-
trolled by the equation for Cooper instability (21), while
in the limit of strong coupling it is determined as the
the temperature of BEC, controlled by chemical poten-
tial. Thus, the joint solution of Eq. (21) and equation

for the chemical potential guarantees the correct interpo-
lation for Tc through the region of BCS-BEC crossover.
This approach gives the results for the critical tempera-
ture, which are quantitatively close to exact results, ob-
tained by direct numerical DMFT calculations [13], but
demands much less numerical efforts.
It should be stressed, that we have used the exact Ward

identity, which allows the use of Eq. (21) also in the re-
gion of strong disorder, when the effects of Anderson lo-
calization may become relevant. Eq. (21) demonstrates,
that the critical temperature depends on disorder only
through the disorder dependence of the density of states
Ñ(ε), which is the main statement of Anderson theo-
rem. In the framework of Nozieres – Schmitt-Rink ap-
proach Eq. (21) is conserved also in the region of strong
coupling, when the critical temperature is determined by
BEC condition for compact Cooper pairs. In this case the
chemical potential µ, entering Eq. (21), may significantly
depend on disorder. However, in DMFT+Σ approxima-
tion this dependence of chemical potential (as well as any
other single – particle characteristic) in the model with
semi – elliptic density of states is only due to disorder
widening of conduction band. Thus, both in BCS – BEC
crossover and strong coupling regions the generalized An-
derson theorem actually remains valid. Correspondingly,
in the model of semi – elliptic band Eq. (21) leads to uni-
versal dependence of Tc on disorder, due to the change
of D → Deff . Such universality is fully confirmed by
numerical calculations of Tc in this model, performed in
Ref. [24] (cf. also the results presented below).

V. MAIN RESULTS

Let us now discuss the main results of our numerical
calculations, explicitly demonstrating the universal be-
havior of single – particle properties and superconducting
transition temperature with disorder. We shall see, that
all disorder effects are effectively controlled, in fact, only
by the growth of half-width of conduction band, which
for the case of semi – elliptic density of states are given
by Eq. (12). In case of the band with flat density of
states, the growth of disorder changes the shape of the
density of states, making it semi – elliptic in the limit of
strong enough disorder, while the effective half-width of
the band is given by (cf. Appendix A):

Deff

D
=

√

1 +
∆2

D2
+

1

2

∆2

D2
ln





√

1 + ∆2

D2 + 1
√

1 + ∆2

D2 − 1



 . (22)

As an example of the most important single – particle
property we take the density of states. In Fig. 1 we
show the evolution of the density of states with disorder
in the model of semi – elliptic band [13]. We can see,
that the growth of disorder smears the density of states
and widens the band. This smearing somehow masks the
peculiarities of the density of states due to correlation
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effects. In particular, both quasiparticle peak and lower
and upper Hubbard bands, observed in Fig. 1 in the ab-
sence of disorder are completely destroyed in the limit of
strong enough disorder. However, we can easily convince
ourselves, that this evolution is only due to the general
widening of the band due to disorder (cf. (12), (22)), as
all the data for the density of states belong to the same
universal curve replotted in appropriate new variables,
with all energies (and temperature) normalized by the
effective bandwidth by replacing D → Deff , as shown
in Fig. 2(a), in complete accordance with the general
results, obtained above. In the case of conduction band
with flat density of states, there is no complete univer-
sality, as is seen from Fig. 2(b) for low enough values of
disorder. However, for large enough disorders the dashed
curve shown in Fig. 2(b) practically coincides with uni-
versal curve for the density of states¡ shown in Fig. 2(a).
This reflects the simple fact, that at large disorders the
flat density of states effectively transforms into semi –
elliptic (cf. Appendix A).

Going now to the analysis of superconducting transi-
tion temperature, in Fig. 3 we present the dependence of
Tc (normalized by the critical temperature in the absence
of disorder Tc0 = Tc(∆ = 0)) on disorder for different
values of pairing interaction U for both models of ini-
tial “bare” density of states (semi – elliptic — Fig.3(a)
and flat — Fig. 3(b)). Qualitatively the evolution of
Tc with disorder is the same for both models. We can
see, that in the weak coupling limit (U/2D ≪ 1) dis-
order slightly suppresses Tc (curves 1). At intermedi-
ate couplings (U/2D ∼ 1) weak disorder increases Tc,
while the further growth of disorder suppresses the criti-
cal temperature (curves 3). In the strong coupling region
(U/2D ≫ 1) the growth of disorder leads to significant
increase of the critical temperature (curves 5). However,
we can easily see, that such complicated dependence of Tc

on disorder is completely determined by disorder widen-
ing of the “bare” (U = 0) conduction band, demonstrat-
ing the validity of the generalized Anderson theorem for
all values of U . In Fig. 4 curve with octagons show the
dependence of the critical temperature Tc/2D on cou-
pling strength U/2D in the absence of disorder (∆ = 0)
for both model of “bare” conduction bands (semi – el-
liptic — Fig. 4(a) and flat — Fig. 4(b)). We can see,
that in both models in the weak coupling region super-
conducting transition temperature is well described by
BCS model (in Fig. 4(a) the dashed curve represents the
result of BCS model, with Tc defined by Eq. (21), with
chemical potential independent of U and determined by
quarter – filling of the “bare” band), while in the strong
coupling region the critical temperature is determined
by BEC condition for Cooper pairs and drops as t2/U
with the growth of U (inversely proportional to the effec-
tive mass of the pair), passing through the maximum at
U/2Deff ∼ 1. The other symbols in Fig. 4(a) show the
results for Tc obtained by combination of DMFT+Σ and
Nozieres – Schmitt-Rink approximations for the case of
semi – elliptic “bare” band. We can see, that all data (ex-

pressed in normalized units of U/2Deff and Tc/2Deff)
ideally fit the universal curve, obtained in the absence
of disorder. For the case of flat “bare” band, results of
our calculations are shown in Fig. 4(b) and we do not
observe the complete universality — data points, corre-
sponding to different degrees of disorder somehow deviate
from the curve, obtained in the absence of disorder. How-
ever, with the growth of disorder the form of the band
becomes close to semi – elliptic and our data points move
towards the universal curve, obtained for semi – elliptic
case and shown by the dashed curve in Fig. 4(b), thus
confirming the validity of the generalized Anderson the-
orem.

VI. CONCLUSION

In this paper, in the framework of DMFT+Σ gener-
alization of dynamical mean field theory, we have stud-
ied disorder influence on single – particle properties (e.g.
density of states) and temperature of superconducting
transition in attractive Hubbard model. Calculations
were made for a wide range of attractive interactions U ,
from the weak coupling region of U/2Deff ≪ 1, where
both instability of the normal phase and superconduc-
tivity is well described by BCS model, up to the strong
coupling limit of U/2Deff ≫ 1, where superconducting
transition is determined by Bose – Einstein condensation
of compact Cooper pairs, forming at temperatures much
higher than the temperature of superconducting transi-
tion. We have shown analytically, that in the case of
conduction band with semi – elliptic density of states,
which is a good approximation for three – dimensional
case, disorder influences all single – particle properties
in a universal way — all changes of these properties are
due only to disorder widening of the band. In the model
of conduction band with flat density of states, which is
appropriate for two – dimensional systems, there is no
universality in the region of weak disorder. However,
the main effects are again due to general widening of
the band and complete universality is restored for high
enough disorders, when the density of states effectively
becomes semi – elliptic.
To study the superconducting transition temperature

we have used the combination of DMFT+Σ approach
and Nozieres — Schmitt-Rink approximation. For both
models of conduction band density of states disordering
may either suppress the critical temperature Tc (in the
region of weak coupling) or significantly increase it (in
the strong coupling region). However, in all these cases
we have actually proven the validity of the generalized
Anderson theorem. so that all the changes of transition
temperature are, in fact, controlled only by the effects
of general disorder widening of the conduction band. In
case of initial semi – elliptic band disorder influence on
Tc is completely universal, while in the case of initial flat
band such universality is absent at weak disorder, but is
completely restored for high enough disorder levels.
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Finally we should like to present some additional
comments on the methods and approximations used.
Both DMFT+Σ and Nozieres – Schmitt-Rink approaches
represent cetrain approximate interpolation schemes,
strictly valid only in corresponding limiting cases (e.g.
small disorder or small (large) U). However, both
schemes demonstrate their effectiveness also in the case
of intermediate values of U and intermediate (or even
strong) disorder. Actually, the effectiveness of Nozieres –
Schmitt-Rink (neglecting U corrections in Cooper chan-
nel) approximation was verified by comparison with di-
rect DMFT calculations [13]. The use of DMFT+Σ to
analyze the disorder effects in repulsive Hubbard model
was shown to produce reasonable results for the phase
diagram, as compared to exact numerical simulations of
disorder in DMFT, including the region of large disorder
(Anderson localized phase) [19–21]. However, the role of
approximations made in DMFT+Σ, such as the neglect
of the intrference of disorder scattering and correlation
effects, deserves further studies.
This work is supported by RSF grant No. 14-12-00502.

Appendix A

For the band with flat density of states (at U = 0 and
∆ = 0) disorder leads both to widening of the band and
to the change of the form of the density of states. Taking
the density of states in the form given by Eq. (6) we
calculate the local Green’s function as:

Gii =
1

2D

∫ D

−D

dε′
1

ε− ε′ −∆2Gii

=

1

2D
ln

(

ε−∆2Gii +D

ε−∆2Gii −D

)

, (A1)

where energy ε is reckoned from the middle of the “bare”
band. Let us introduce auxiliary notations, writingGii =
R− iI. At the band edges I → 0, so that expanding the
r.h.s. of Eq. (A1) up to linear terms in I, we get:

R− iI ≈ 1

2D
ln

(

ε−∆2R+D

ε−∆2R−D

)

− iI
∆2

(ε−∆2R)2 −D2

(A2)
Equating the real parts in (A2) we obtain R =
1

2D
ln
(

ε−∆
2R+D

ε−∆2R−D

)

. Similarly, equating the imaginary

parts at the band edges we get ε−∆2R = ±
√
D2 +∆2,

and substituting this expression into logarithm in the pre-
vious expression, we find R and band edges positions at:

ε = ±
(

√

D2 +∆2 +
∆2

2D
ln

(√
D2 +∆2 +D√
D2 +∆2 −D

))

(A3)
Thus, the half-width of the band Deff widened by disor-
der in this model is determined by Eq. (22) used above.

We should note, that the Born approximation for dis-
order scattering used by us, though formally valid only
for small disorder ∆ ≪ D, the effects of Anderson lo-
calization at large disorders ∆ ∼ D do not qualitatively
change the density of states [27], so that Born approxima-
tion gives qualitatively correct results also in the region
of large disorder. Actually, this approximation neglects
only the appearance exponentially small “tails” in the
density of states, outside the “mean field” band edges
[27] and gives more or less correct results inside such a
band.

At large enough disorders almost any “bare” band
width bandwidth 2D and arbitrary density of states
N0(ε) acquires semi – elliptic density of states. In the
limit of very large disorder ∆ ≫ D almost in the whole
band, widened by disorder, we have |ε−∆2R| ≫ D and
in the expression for the local Green’s function we can ne-
glect ε′-dependence in the denominator of the integrand:

R−iI = Gii =

∫ ∞

−∞

dε′
N0(ε

′)

ε− ε′ −∆2Gii

≈ 1

ε−∆2R+ i∆2I
(A4)

Then we immediately get:

ε−∆2R =
ε

2
; I =

1

2∆2

√

4∆2 − ε2 (A5)

so that the density of states “dressed” by disorder

N(ε) = − 1

π
ImGii =

I

π
=

2

π(2∆)2

√

(2∆)2 − ε2 (A6)

becomes semi – elliptic (5) with half-width Deff = 2∆.
Thus, at strong enough disorder any “bare” band be-
comes semi – elliptic, restoring universal dependence of
single – particle properties on disorder discussed above.
In this sense, the model of the “bare” band with semi
– elliptic density of states is most appropriate for the
studies of the effects of strong disorder.
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FIG. 1: Dependence of the density of states on disorder in the model with semi – elliptic band.
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FIG. 2: Universal dependence of the density of states on disorder: (a) — the model of semi – elliptic “bare” density of states;
(b) — the model of flat “bare” density of states.
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FIG. 3: Dependence of superconducting transition temperature on disorder for different values of Hubbard attraction U : (a)
— semi – elliptic band; (b) — flat band.
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FIG. 4: Universal dependence of superconducting critical temperature on Hubbard attraction U for different disorder levels:
(a) — semi – elliptic band. Dashed curve represent BCS dependence in the absence of disorder. (b) — flat band. Dashed line
represents similar dependence for semi – elliptic band for ∆ = 0.


