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Within the generalized DMFT+Σ approach we study disorder effects in the temperature depen-
dence of paramagnetic critical magnetic field Hcp(T ) for Hubbard model with attractive interaction.
We consider the wide range of attraction potentials U – from the weak coupling limit, when supercon-
ductivity is described by BCS model, up to the limit of very strong coupling, when superconducting
transition is related to Bose – Einstein condensation (BEC) of compact Cooper pairs. The growth
of the coupling strength leads to the rapid growth of Hcp(T ) at all temperatures. However, at
low temperatures paramagnetic critical magnetic field Hcp grows with U much slower, than the
orbital critical field, and in BCS limit the main contribution to the upper critical magnetic filed is
of paramagnetic origin. The growth of the coupling strength also leads to the disappearance of the
low temperature region of instability towards type I phase transition and Fulde – Ferrell – Larkin
– Ovchinnikov (FFLO) phase, characteristic for BCS weak coupling limit. Disordering leads to the
rapid drop of Hcp(T ) in BCS weak coupling limit, while in BCS – BEC crossover region and BEC
limit Hcp(T → 0) dependence on disorder is rather weak. Within DMFT+Σ approach disorder influ-
ence on Hcp(T ) is of universal nature at any coupling strength and related only to disorder widening
of the conduction band. In particular, this leads to the drop of the effective coupling strength with
disorder, so that disordering restores the region of type I transition in the intermediate coupling
region.

PACS numbers: 71.10.Fd, 74.20.-z, 74.20.Mn

I. INTRODUCTION

In the weak coupling region and for the weak disorder
the upper critical magnetic field of a superconductor is
determined by orbital effects and usually is much lower
than the paramagnetic limit. However, the growth of
the coupling strength and disordering lead to the rapid
growth of the orbital Hc2 possibly overcoming the para-
magnetic limit.

In this paper we study the behavior of paramagnetic
critical field in the region of very strong coupling of elec-
trons of the Cooper pair and in the crossover region from
BCS – like behavior for the weak coupling to Bose – Ein-
stein condensation (BEC) in the strong coupling region
[1], taking disorder into account (including the strong
enough).

The simplest model to study the BCS – BEC crossover
is Hubbard model with attractive interaction. Most suc-
cessful approach to the studies of Hubbard model, both
to describe the strongly correlated systems in the case
of repulsive interactions and to study the BCS – BEC
crossover for the case of attraction, is the dynamical
mean – field theory (DMFT) [2–4].

In recent years we have developed the generalized
DMFT+Σ approach to Hubbard model [5–11], which is
quite effective for the studies of the influence of different
external (outside those taken into account by DMFT)
interactions. This DMFT+Σ method was used by us
in Refs. [12–14] to study the disorder influence on the
temperature of superconducting transition. In particu-
lar, for the case of semi – elliptic initial density of states,
adequate to describe three – dimensional systems, it was

demonstrated that disorder influence on the critical tem-
perature (in the whole region of interaction strengths) is
related only to the general widening of the initial conduc-
tion band (density of states) by disorder (the generalized
Anderson theorem). In Ref. [15], using the combina-
tion of the Nozieres – Schmitt-Rink approximation and
DMFT+Σ in attractive Hubbard model we have analyzed
the influence of disordering on the temperature depen-
dence of the orbital upper critical field Hc2(T ) both for
the wide region of coupling strengths U , including the
BCS – BEC crossover region, and in the wide region of
disorder up to the vicinity of Anderson transition. Both
the growth of the coupling strength and disorder lead to
the rapid growth of Hc2, leading in the BEC – limit to
unrealistically high values of Hc2(T → 0), significantly
overcoming the paramagnetic limit.

In this work we perform the detailed analysis of dis-
order influence on the temperature dependence of para-
magnetic critical magnetic field of a superconductor for
the wide range of coupling strengths U , including the
BCS – BEC crossover region and the limit of very strong
coupling.

It is well known, that in BCS weak coupling limit para-
magnetic effects (spin splitting) lead to the existence of a
low temperature region at the phase diagram of a super-
conductor in magnetic field, where paramagnetic critical
field Hcp decreases with further lowering of the temper-
ature. This behavior signifies the instability leading to
the region of type I phase transition, where also the so
called Fulde – Ferrell – Larkin – Ovchinnikov (FFLO)
phase may appear [16–18] with Cooper pairs with finite
momentum q and spatially periodic superconducting or-
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der parameter. In the following we limit ourselves to the
analysis of type II transition and homogeneous supercon-
ducting order parameter, allowing us to determine the
border of instability towards type I transition in BCS –
BEC crossover and strong coupling regions at different
disorder levels. The problem of stability of FFLO phase
under these conditions is not analyzed here.

II. HUBBARD MODEL WITHIN DMFT+Σ
APPROACH IN NOZIERES – SCHMITT-RINK

APPROXIMATION

We are considering the disordered Hubbard model with
attractive interaction, taking into account spin – split-
ting by external magnetic field H , and described by the
Hamiltonian:

H = −t
∑

〈ij〉σ

a†iσajσ+
∑

iσ

ǫiniσ−U
∑

i

ni↑ni↓−µBH
∑

iσ

σniσ ,

(1)
where t > 0 – is transfer amplitude between near-
est neighbors, U – is the onsite Hubbard attraction,

niσ = a†iσaiσ – is electron number operator on a given

site, aiσ (a†iσ) – electron annihilation (creation) operator,

σ = ±1, µB = eh̄
2mc

– Bohr magneton, and local energies
ǫi are assumed to be independent and random on differ-
ent lattice sites. We assume Gaussian distribution for
energy levels ǫi at a given site:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

(2)

Distribution width ∆ represents the measure of disorder,
and Gaussian random field of energy levels (independent
on different lattice sites) produces “impurity” scattering,
which is analyzed within the standard approach, based
on calculations of the averaged Green’s functions.
The generalized DMFT+Σ approach [5–9] extends the

standard dynamical mean field theory (DMFT [2–4] by
addition of an “external” self – energy Σp(ε) (in general
case momentum dependent) due to any kind of interac-
tion outside the DMFT, which gives an effective calcula-
tion method both for single – particle and two – parti-
cle properties [8, 10]. This approach conserves the stan-
dard system of self – consistent DMFT equations [2–4],
with “external” self – energy Σp(ε) being recalculated at
each iteration step using some approximate scheme, cor-
responding to the type of additional interaction, while the
local Green’s function of DMFT is “dressed” by Σp(ε) at
each step of the standard DMFT procedure.
In the problem of disorder scattering under discussion

here [10, 11] for “external” self – energy we are using
the simplest (self – consistent Born) approximation, ne-
glecting diagrams with “crossing” interaction lines due
to impurity scattering. Such an “external” self – energy
remains momentum independent (local).
To solve the single – impurity Anderson problem of

DMFT in this paper, as in our previous works, we use

quite efficient method of numerical renormalization group
(NRG) [19].
In the following we assume the “bare” conduction band

with semi – elliptic density of states (per unit cell with
lattice parameter a and single spin projection), which
gives a good approximation for three – dimensional case:

N0(ε) =
2

πD2

√

D2 − ε2, (3)

whereD defines the half – width of the conduction band..
In Ref. [14] we have shown, that in DMFT+Σ ap-

proach in the model with semi – elliptic density of states
all the effects of disorder on single – particle properties
reduce only to widening of conduction band by disorder,
i.e. to the replacement D → Deff , where Deff – is the
effective “bare” band half – width in the absence of cor-
relations (U = 0), widened by disorder:

Deff = D

√

1 + 4
∆2

D2
. (4)

The “bare” (in the absence of U) density of states,
“dressed” by disorder

Ñ0(ξ) =
2

πD2

eff

√

D2

eff − ε2, (5)

remains semi – elliptic also in the presence of disorder.
It is necessary to note, that in other models of the

“bare” band disorder not only widens the band, but also
changes the form of the density of states. In general,
there is no complete universality of disorder influence on
single – particle properties, which reduces to the replace-
ment D → Deff . However, in the limit of strong enough
disorder the “bare” band becomes almost semi – elliptic
and this universality is restored [14].
All calculations in the present paper, as in our previous

works, were performed for rather typical case of quarter
– filled band (electron number per lattice site n=0.5).
To analyze superconductivity for the wide range of

pairing interactions U , following Ref. [14], we use
Nozieres – Schmitt-Rink approximation [1], which allows
qualitatively correct (though approximate) description of
BCS – BEC crossover. In this approach, to determine the
critical temperature Tc (in the absence of H) we use [14]
the conventional BCS weak coupling equation, but the
chemical potential of the system µ for different values
of U and ∆ is determined from DMFT+Σ calculations,
i.e. from the standard equation for the number of elec-
trons in conduction band, which allows us to find Tc for
the wide range of model parameters, including the BCS
– BEC crossover region, as well as for different levels of
disorder. This reflects the physical meaning of Nozieres
– Schmitt-Rink approximation: in the weak coupling re-
gion transition temperature is controlled by the equation
for Cooper instability, while in the strong coupling limit
it is determined as BEC temperature, which is controlled
by chemical potential. It was demonstrated, that such an
approach guarantees the correct interpolation between
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the limits of weak and strong couplings, including also
the effects of disorder [1, 12, 14]. In particular, in Refs.
[12, 14] it was shown, that disorder influence on critical
temperature Tc and single – particle characteristics (e.g.
density of states) in the model with semi – elliptic “bare”
density of states is universal and is reduced only to the
changes of the effective bandwidth.

III. MAIN RESULTS

In the framework of Nozieres – Schmitt-Rink approach
the critical temperature in the presence of spin – splitting
of electron level in external magnetic field (and neglect-
ing the orbital effects) or paramagnetic critical magnetic
field Hcp at temperatures T < Tc is determined by the
following BCS – like equation:

1 =
U

4

∫ ∞

−∞

dε
Ñ0(ε)

ε− µ

(

th
ε− µ− µBHcp

2T
+ th

ε− µ+ µBHcp

2T

)

,

(6)
where the chemical potential µ for different values of U
and ∆ is determined from DMFT+Σ – calculations, i.e.
from the standard equation for the number of electrons
in conduction band. The general derivation of Eq. (6) in
the presence of disorder is given in the Appendix. Note
that Eq. (6) is derived from the exact Ward identity
and remains valid even in the case of strong disorder,
including the vicinity of Anderson transition. Eq. 6)
explicitly demonstrates, that all disorder effects on Hcp

are reduced to the renormalization of the initial density
of states by disorder, so that for the case of initial band
with semi – elliptic density of states disorder influence on
Hcp is universal and is only due to the band widening by
disorder, i.e. to the replacement D → Deff .
In Fig.1 we show the temperature dependence of para-

magnetic critical magnetic field for different values of cou-
pling strength. Chemical potential entering Eq. (6) is,
in general, dependent not only on the coupling strength,
but also on the values of magnetic filed and temperature.
In Figs.1 (a-e), for the sake of comparison, dashed lines
show the results of calculations with chemical potential
taken at H = 0 and T = Tc for the given value of U/2D,
while continuous curves with symbols represent the re-
sults of full calculations with µ = µ(H,T ).
In the weak coupling limit (U/2D = 0.2) we obtain the

standard behavior of temperature dependence of param-
agnetic critical field of BCS theory [18]. At low temper-
atures we observe the region of decreasing Hcp as tem-
perature diminishes, with maximum Hcp at finite tem-
perature. It is well known, that in this region the sys-
tem is unstable with respect to type I phase transition
[18], where is also a possibility of transition to FFLO
phase [16, 17] with Cooper pairs with finite momentum
(q 6= 0) and inhomogeneous superconducting order pa-
rameter. Critical field in BCS limit is relatively weakly
dependent on the value of chemical potential, so that we
can neglect weak field and temperature dependence of
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FIG. 1: Dependence of paramagnetic critical magnetic field on
temperature for different values of coupling strength. Dashed
lines were obtained neglecting the dependence of chemical po-
tential on temperature and magnetic field at given U .

µ(H,T ) (dashed line in Fig. 1 (a) in fact coincides with
the result of an exact calculation). With the growth of
the coupling strength the region of instability towards
type I transition shrinks (cf. Fig.1 (b),(c)) and it com-
pletely disappears with further increase of coupling (Fig.
1 (d),(e)). With the increase of coupling strength the crit-
ical magnetic field becomes more and more dependent on
the value of the chemical potential, so that the account of
its temperature and magnetic field dependence µ(H,T )
becomes very important (cf. Fig. 1 (c-e)).
At intermediate coupling (U/2D = 0.6) the account

of temperature and magnetic field dependence of µ leads
to small changes of the critical field, however we observe
significant qualitative changes for T ∼ Tc. The small
growth of chemical potential with increase of H at weak
fields leads to noticeable growth of Tc, which overcomes
the decrease of Tc with the growth of magnetic field due
to explicit H – dependence in Eq. (6), leading to some
increase of Tc(H) at small H .
In Fig. 1(f) we show temperature dependencies of

the critical magnetic field for different values of U . It
is known that the critical temperature Tc0 grows with
coupling strength in BCS limit and decreases in BEC
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FIG. 2: Temperature dependence of paramagnetic critical
magnetic field for different levels of disorder: (a) — BCS weak
coupling limit (U/2D = 0.2); (b) — BCS – BEC crossover re-
gion (intermediate coupling: U/2D = 0.8); (c) — BEC strong
coupling region (U/2D = 1.6).

strong coupling limit, passing through a maximum at
U/2D = 1 [12–14]. The critical magnetic field at low
temperatures grows with coupling strength both in BCS
and BEC limits, though in BCS – BEC crossover region
(U/2D = (0.6 − 1)) we observe rather weak dependence
of the critical magnetic field on coupling strength.

The physical reason of the growth of paramagnetic crit-
ical field with coupling strength is pretty obvious — it
is more difficult for magnetic field to break the pairs of
strongly coupled electrons.

In Fig. 2 we present our results on disorder influence on
temperature dependence of paramagnetic critical mag-
netic field. In BCS weak coupling limit (Fig. 2()) the
increase of disorder leads both to decrease of the criti-
cal temperature in the absence of magnetic field Tc0 (cf.
[13, 14]) and to decrease of the critical magnetic field
at all temperatures. The region of instability to type I
transition is conserved also in the presence of disorder.
In fact, as was noted above, disorder influence on Hcp(T )
is actually universal and related only to the replacement
D → Deff . As a result, disorder growth leads to decrease
of the effective coupling, which is defined by dimension-
less parameter U/2Deff . This leads to the increase of
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FIG. 3: Universality of temperature dependence of paramag-
netic critical magnetic field on disorder. (a) — weak coupling
U/2Deff = 0.2, ∆ = 0 ∆ = 0.11 (b) — strong coupling
U/2Deff = 1.6, ∆ = 0 ∆ = 0.11

the relative width T/Tc(H) of the temperature region of
type I transition.

At intermediate coupling (U/2D = 0.8) in BCS – BEC
transition region (Fig. 2(b)) disorder growth relatively
weakly changes the critical temperature Tc0 (cf. [13, 14]),
leading to some increase of Hcp(T ). As all the effects of
disordering are due to the replacement D → Deff , the
increase of disorder again leads to the decrease of the
effective coupling strength U/2Deff and restoration of
the region of instability towards type I transition.

In BEC – limit of strong coupling the growth of dis-
order leads to significant increase of the critical temper-
ature Tc0 (cf. [13, 14]). At the same time, the critical
magnetic field at low temperatures only weakly increases
with increasing disorder. In BEC – limit instability to
type I transition does not appear even in the presence of
very strong disorder (∆/2D = 0.5). In fact, in BEC –
limit disorder influence is again universal and related only
to the replacement D → Deff . As a result, if we make
the spin splitting and temperature dimensionless divid-
ing both by the effective bandwidth 2Deff and keep the
effective coupling strength U/2Deff fixed, we obtain the
universal temperature dependence of paramagnetic crit-
ical magnetic field. In Fig. 3 we show examples of such
universal behavior for typical cases of weak and strong
coupling an the absence and in the presence of disorder.

In the absence of disorder in BEC strong coupling
limit with U/2D = 1.6 for T → 0 we have (cf. Fig.1)
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2µBHcp/2D ≈ 0.125, so that for characteristic value of
the bandwidth 2D ∼ 1 eV we get Hcp ∼ 107 Gauss.
For orbital critical magnetic field (cf. [15]) in the same
model and for the same coupling strength, for T → 0 and
typical value of lattice parameter a = 3.3 ∗ 10−8 cm, we
obtain Hcp ≈ 1.6 ∗ 108 Gauss. Thus, the orbital critical
magnetic field at low temperatures grows with increase
of the coupling strength much faster, than paramagnetic
critical field, and in BEC strong coupling limit the main
contribution to the upper critical field at low temper-
atures is actually due to the paramagnetic effect. The
growth of disorder leads to significant growth of the or-
bital critical magnetic field [15], while Hcp(T → 0) in
the region of BCS – BEC crossover and in BEC limit is
relatively weakly dependent on disorder. Thus, also in
the presence of disorder in BEC limit the main contribu-
tion to the upper critical field at low temperatures comes
from paramagnetic effect.

IV. CONCLUSION

In this paper, within the combination of Nozieres –
Schmitt-Rink and DMFT+Σ approximations, we have
studied disorder influence on temperature behavior of
paramagnetic critical magnetic field. Calculations were
done for a wide range of the values of attractive poten-
tial U , from the weak coupling region U/2D ≪ 1, where
superconductivity is well described by BCS model, up to
the limit of strong coupling U/2D ≫ 1, where supercon-
ducting transition is due to Bose condensation of compact
Cooper pairs, which are formed at temperatures much ex-
ceeding the temperature of superconducting transition.
The growth of coupling strength U leads to a fast in-

crease of Hcp(T ) and disappearance, both in the region
of BCS – BEC crossover and in BEC limit, of the region
of instability, leading to type I transition, which appears
at low temperatures in BCS weak coupling region. Phys-
ically this is due to the fact, that it becomes more and
more difficult for magnetic field to break pairs of strongly
coupled electrons.
The growth of disorder in BCS weal coupling limit

leads both to decrease of critical temperature and de-
crease of Hcp(T ). The region of instability to type I
transition at low temperatures remains also in the pres-
ence of disorder. In the intermediate coupling region
(U/2D = 0.8) disorder only weakly affects both the crit-
ical temperature and Hcp(T ). However, the growth of
disorder leads to restoration of the low temperature re-
gion of instability to type I transition, which is not ob-
served in the absence of disorder. This, rather unex-
pected, conclusion is related to specifics of the attractive
Hubbard model, which in disordered case is controlled
by dimensionless coupling parameter U/2Deff . As was
shown in our previous works, in BEC strong coupling
limit the growth of disorder leads to noticeable growth
of the critical temperature in the absence of magnetic
field. However, the value of Hcp(T → 0) in this model

is relatively weakly dependent on disorder. In BEC limit
at low temperatures and for reasonable values of model
parameters paramagnetic critical magnetic field is much
smaller, than the orbital critical field, so that the upper
critical field in this region is mainly determined by para-
magnetic critical filed. In the presence of disorder this
conclusion is even more valid, as the orbital critical field
rapidly grows with increasing disorder, while paramag-
netic critical field is weakly disorder dependent in this
limit.
This work was performed under the State Contract No.

0389-2014-0001 with partial support of RFBR Grant No.
17-02-00015 and the Program of Fundamental Research
of the RAS Presidium No. 12 “Fundamental problems of
high – temperature superconductivity”.

Appendix A: Appendix: Equation for paramagnetic

critical magnetic field

In general case the Noziers – Schmitt-Rink approach
[1] assumes, that corrections from strong pairing inter-
action significantly change the chemical potential of the
system, but possible vertex corrections from this interac-
tion in Cooper channel are irrelevant, so that to analyze
Cooper instability we can use the weak coupling approx-
imation (ladder approximation). In this approximation
the condition of Cooper instability in disordered attrac-
tive Hubbard model is written as:

1 = Uχ0(q = 0, ωm = 0) (A1)

where

χ0(q = 0, ωm = 0) = T
∑

n

∑

pp′

Φpp′(εn) (A2)

is two – particle loop in Cooper channel “dressed” only
by impurity scattering, while Φpp′(εn) is the averaged
over impurities two – particle Green’s function in Cooper
channel at Matsubara frequencies εn = πT (2n+ 1).
To obtain

∑

pp′ Φpp′(εn) we use an exact Ward iden-

tity, derived by us in Ref. [8]:

G↑(εn,p)−G↓(−εn,−p) =

−
∑

p′

Φpp′(εn)(G
−1

0↑ (εn,p
′)−G−1

0↓ (−εn,−p)), (A3)

Here G0↑,↓(εn,p) = (iεn + µ − ε(p) ± µBH)−1 is the
“bare” Green’s function and G↑,↓(εn,p) is averaged over
impurities (but not “dressed” by Hubbard interaction!)
single – particle Green’s function. Using the symmetry
ε(p) = ε(−p) we obtain from Ward identity (A3):

∑

pp′

Φpp′(εn) = −
∑

p
G↑(εn,p)−

∑

p
G↓(−εn,p)

2iεn + 2µBH
,

(A4)
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so that for Cooper susceptibility (A2) we get:

χ0(q = 0, ωm = 0) =

−T

2

∑

n

∑

p
G↑(εn,p)−

∑

p
G↓(−εn,p)

iεn + µBH
=

= −T

2

∑

n

(

∑

p
G↑(εn,p)

iεn + µBH
+

∑

p
G↓(εn,p)

iεn − µBH

)

. (A5)

Performing the standard summation over Fermion Mat-
subara frequencies, we obtain:

χ0 = − 1

8πi

∫ ∞

−∞

dε

(

∑

p
GR

↑ (ε,p)−
∑

p
GA

↑ (ε,p)

ε+ µBH
+

+

∑

p
GR

↓ (ε,p)−
∑

p
GA

↓ (ε,p)

ε− µBH

)

th
ε

2T
=

=
1

4

∫ ∞

−∞

dε

(

Ñ0↑(ε)

ε+ µBH
+

Ñ0↓(ε)

ε− µBH

)

th
ε

2T
,

(A6)

where Ñ0↑,↓(ε) is the “bare” (U = 0) density of states for
different spin projections, “dressed” by impurity scatter-
ing. Spin splitting can be considered as an addition to
chemical potential, so that introducing the “bare” den-
sity of states “dressed” by disorder in the absence of ex-
ternal magnetic field Ñ0(ε), we obtain the final result for

Cooper susceptibility:

χ0 =
1

4

∫ ∞

−∞

dε
Ñ0(ε)

ε

(

th
ε+ µBH

2T
+ th

ε− µBH

2T

)

(A7)
In Eq. (A7) energy ε is counted from the chemical poten-
tial level. If we count it from the middle of the conduc-
tion band we have to replace ε → ε−µ and the condition
of Cooper instability (A1) leads to the equation defining
critical temperature depending on the external magnetic
field, which gives the equation for paramagnetic critical
magnetic filed (6). The chemical potential for different
values of U and ∆ should be determined from DMFT+Σ
calculations, i.e. from the standard equation for electron
number (band filling), which allows us to find Hcp for the
wide range of model parameters, including the region of
BCS – BEC crossover and the limit of strong coupling
at different levels of disorder. This reflects the physi-
cal meaning of Nozieres – Scmitt-Rink approximation —
in the weak coupling region the temperature of super-
conducting transition is controlled by the equation for
Cooper instability (6), while in the strong coupling limit
it is defined as the temperature of BEC, which is con-
trolled by chemical potential. The joint solution of Eq.
(6) and the equation for the chemical potential guaran-
tees the correct interpolation forHcp in the region of BCS
– BEC crossover.
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