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Antiadiabatic phonons, Coulomb pseudopotential and

superconductivity in Eliashberg – McMillan theory

M. V. Sadovskii1),

Institute for Electrophysics, RAS Ural Branch, Amundsen str. 106, Ekaterinburg 620016, Russia

The influence of antiadiabatic phonons on the temperature of superconducting transition is considered

within Eliashberg – McMillan approach in the model of discrete set of (optical) phonon frequencies. A general

expression for superconducting transition temperature Tc is proposed, which is valid in situation, when one

(or several) of such phonons becomes antiadiabatic. We study the contribution of such phonons into the

Coulomb pseudopotential µ⋆. It is shown, that antiadiabatic phonons do not contribute to Tolmachev’s loga-

rithm and its value is determined by partial contributions from adiabatic phonons only. The results obtained

are discussed in the context of the problem of unusually high superconducting transition temperature of FeSe

monolayer on STO.

PACS: 71.20.-b, 71.27.+a, 71.28.+d, 74.70.-b

1. INTRODUCTION

The most developed approach to description of su-

perconductivity in the system of electrons and phonons

is Eliashberg – McMillan theory [1, 2, 3, 4]. It is well

known, that this theory is completely based on the ap-

plicability of adiabatic approximation and Migdal the-

orem [5], which allows to neglect vertex corrections in

calculations of the effects of electron – phonon inter-

action in typical metals. The real small parameter of

perturbation theory is λ Ω0

EF

≪ 1, where λ is the dimen-

sionless coupling constant of electron – phonon interac-

tion, Ω0 is characteristic phonon frequency and EF is

Fermi energy of the electrons. In particular, this leads

to a conclusion, that vertex corrections in this theory

can be neglected even for λ > 1, because of the validity

of inequality Ω0

EF

≪ 1 characteristic for typical metals.

In a recent paper [6] we have shown, that under the

conditions of strong nonadiabaticity , when Ω0 ≫ EF ,

a new small parameter appears in the theory λD ∼

λEF

Ω0

∼ λ D

Ω0

≪ 1 (D is the halfwidth of electron band),

so that corrections to electronic spectrum become irrel-

evant and vertex correction can be similarly neglected

[7]. In general case, the renormalization of electronic

spectrum (effective mass of an electron) is determined

by the new dimensionless constant λ̃, which reduces to

the usual λ in adiabatic limit, while in the strong an-

tiadiabatic limit it tends to λD. At the same time, the

temperature of superconducting transition Tc in antia-

diabatic limit is determined by Eliashberg – McMillan

pairing coupling constant λ, while the preexponential

factor in the expression for Tc, which is of the typical

weak – coupling form, is determined by band halfwidth
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(Fermi energy). For the case of the interaction with a

single optical phonon in Ref. [6] we obtained the unified

expression for Tc, valid both in adiabatic and antiadia-

batic regimes, and producing a smooth interpolation in

the intermediate region.

In Ref. [6] we also noted, that the presence of high

phonon frequencies of the order of or even exceeding

the Fermi energy, leads to the obvious suppression of

Tolmachev’s logarithm in the expression for Coulomb

pseudopotential µ⋆, which creates additional difficulties

for the realization of superconducting state in the sys-

tem with antiadiabatic phonons.

The interest to this problem is stimulated by the dis-

covery of a number superconductors, where adiabatic

approximation is not valid, while characteristic phonon

frequencies are of the order of or even higher than Fermi

energy of electrons. Most typical in this sense are in-

tercalated systems with monolayers of FeSe, as well as

monolayers of FeSe on Sr(Ba)TiO3 (and similar) sub-

strates (FeSe/STO) [8]. For the first time, the nonadi-

abatic character of superconductivity in FeSe/STO was

noted by Gor’kov [9, 10], while discussing the idea of

possible mechanism of the enhancement of supercon-

ducting transition temperature Tc in FeSe/STO system

due to interaction with high energy optical phonons of

SrTiO3 [8].

In the present paper we consider the generalized

model with discrete set of the frequencies of (optical)

phonons, part of which may be andiabatic. We obtain

the general expressions for Tc, valid both in adiabatic

and antiadiabatic limits. We also present the general

analysis of the problem of the Coulomb pseudopotential

in such model. The results obtained are used for simple

estimates of Tc in situation typical for FeSe/STO.
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2. TEMPERATURE OF SUPERCONDUCTING

TRANSITION

Linearized Eliashberg equations, determining super-

conducting transition temperature Tc, written in real

frequencies representation, have the following form [2]:

[1− Z(ε)]ε =

∫ D

0

dε′
∫

∞

0

dωα2(ω)F (ω)f(−ε′)×

×

(

1

ε′ + ε+ ω + iδ
−

1

ε′ − ε+ ω − iδ

)

(1)

Z(ε)∆(ε) =

∫ D

0

dε′

ε′
th

ε′

2Tc

Re∆(ε′)×

×

∫

∞

0

dωα2(ω)F (ω)×

×

(

1

ε′ + ε+ ω + iδ
+

1

ε′ − ε+ ω − iδ

)

(2)

Here ∆(ω) is the gap function of a superconductor, while

Z(ω) is electron mass renormalization function and f(ε)

is Fermi distribution. In difference with the standard

approach [2], we have introduced the finite integration

limits, determined by the (half)bandwidth D. In the

following we assume the half–filled band of degenerate

electrons in two dimensions, so thatD = EF ≫ Tc, with

constant density of states. For simplicity at first we ne-

glect the contribution of direct Coulomb repulsion. In

these (integral) equations α2(ω) represents Eliashberg

– McMillan function, determining the strength electron

– phonon interaction, and F (ω) is the phonon density

of states. Eliashberg – McMillan coupling constant is

defined as:

λ = 2

∫

∞

0

dω

ω
α2(ω)F (ω) (3)

The details concerning its calculation for systems with

nonadiabatic phonons were discussed in details in Ref.

[6].

Situation is considerably simplified [6], if we consider

these equations in the limit of ε → 0 and look for the

solutions Z(0) = Z and ∆(0) = ∆. Then from (1) we

obtain:

[1− Z]ε = −2ε

∫

∞

0

dωα2(ω)F (ω)
D

ω(ω +D)
(4)

or

Z = 1 + λ̃ (5)

where constant λ̃ is defined as:

λ̃ = 2

∫

∞

0

dω

ω
α2(ω)F (ω)

D

ω +D
(6)

which for D → ∞ reduces to the usual Eliasberg –

McMillan constant (3), while for D significantly smaller

than characteristic phonon frequencies it gives the “an-

tiadiabatic” coupling constant:

λD = 2D

∫

dω

ω2
α2(ω)F (ω) (7)

Eq. (6) describes smooth transition between the lim-

its of wide and narrow conduction bands. Mass renor-

malization is, in general case, determined exclusively by

constant λ̃:

m⋆ = m(1 + λ̃) (8)

In the limit of strong nonadiabaticity this renormaliza-

tion is quite small and determined by the limiting ex-

pression λD [6].

From Eq. (2) in the limit of ε → 0 and using (5), we

immediately obtain the following expression for Tc:

1 + λ̃ = 2

∫

∞

0

dωα2(ω)F (ω)

∫

D

0

dε′

ε′(ε′ + ω)
th

ε′

2Tc

(9)

Consider now the situation with discrete set of phonon

modes (dispesionless, Einstein phonons). In this case

the phonon density of states is written as:

F (ω) =
∑

i

δ(ω − ωi) (10)

where ωi are discrete frequencies modeling the optical

branches of the phonon spectrum. Then from Eqs. (3)

and (6) we have:

λ = 2
∑

i

α2(ωi)

ωi

≡
∑

i

λi (11)

λ̃ = 2
∑

i

α2(ωi)D

ωi(ωi +D)
= 2

∑

i

λi

D

ωi +D
≡
∑

i

λ̃i (12)

Correspondingly, in this case:

α2(ω)F (ω) =
∑

i

α2(ωi)δ(ω − ωi) =
∑

i

λi

2
ωiδ(ω − ωi)

(13)

The standard Eliashberg equation (in adiabatic limit)

for such model were consistently solved in Ref. [11].

For our purposes it is sufficient to analyze only the Eq.

(9), which takes now the following form:

1 + λ̃ = 2
∑

i

α2(ωi)

∫

D

0

dε′

ε′(ε′ + ωi)
th

ε′

2Tc

(14)

Solving Eq. (14) we obtain:

Tc ∼
∏

i

(

D

1 + D

ωi

)

λi

λ

exp

(

−
1 + λ̃

λ

)

(15)
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For the case of two optical phonons with frequencies ω1

and ω2 we have:

Tc ∼

(

D

1 + D

ω1

)

λ1

λ

(

D

1 + D

ω2

)

λ2

λ

exp

(

−
1 + λ̃

λ

)

(16)

where λ̃ = λ̃1 + λ̃2 and λ = λ1 + λ2. For the case of

ω1 ≪ D (adiabatic phonon), and ω2 ≫ D (antiadiabatic

phonon) Eq. (16) is immediately reduced to:

Tc ∼ (ω1)
λ1

λ (D)
λ2

λ exp

(

−
1 + λ̃

λ

)

(17)

Here we can see, that in the preexponential factor the

frequency of antiadiabatic phonon is replaced by band

halfwidth (Fermi energy), which plays a role of cutoff

for logarithmic divergence in Cooper channel in antia-

diabatic limit [6, 9, 10].

The general result (15) gives the unified expression

for Tc for the discrete set of optical phonons, valid both

in adiabatic and antiadiabatic regimes and interpolating

between these limit in intermediate region.

3. COULOMB PSEUDOPOTENTIAL

Above we had neglected the direct Coulomb repul-

sion of electrons, which in the standard approach [1, 2, 3]

is described by Coulomb pseudopotential µ⋆, which is

effectively suppressed by large Tolmachev’s logarithm.

As was noted in Ref. [6] antiadiabatic phonons suppress

Tolmachev’s logarithm, which apparently leads to a suf-

ficient suppression of the temperature of superconduct-

ing transition. To clarify this situation let us consider

the simplified version of integral equation for the gap

(2), writing it as:

Z(ε)∆(ε) =

∫

D

0

dε′K(ε, ε′)
1

ε′
th

ε′

2Tc

∆(ε′) (18)

where the integral kernel we write as a combination of

two step – functions:

K(ε, ε′) = λθ(D̃−|ε|)θ(D̃−|ε′|)−µθ(D−|ε|)θ(D−|ε′|)

(19)

where µ is the dimensionless (repulsive) Coulomb po-

tential, while the parameter D̃, determining the energy

width of attraction region due to phonons is determined

by preexponential factor of Eq. (15):

D̃ =
∏

i

(

D

1 + D

ωi

)

λi

λ

(20)

Note that we always have D̃ < D. Eq. (18) is now

rewritten as:

Z(ε)∆(ε) = (λ−µ)

∫ D̃

0

dε′

ε′
th

ε′

2Tc

∆(ε′)−µ

∫ D

D̃

dε′

ε′
∆(ε′)

(21)

Writing the mass renormalization due to phonons as:

Z(ε) =

{

1 + λ̃ for ε < D̃

1 for ε > D̃
(22)

we look for the solution of Eq. (18) for ∆(ε), as usual,

also in two – step form [1, 2, 3]:

∆(ε) =

{

∆1 for ε < D̃

∆2 for ε > D̃
(23)

Then Eq. (21) transforms into the system of two homo-

geneous linear equations for constants ∆1 and ∆2:

(1 + λ̃)∆1 = (λ− µ) ln
D̃

Tc

∆1 − µ ln
D

D̃
∆2

∆2 = −µ ln
D̃

Tc

∆1 − µ ln
D

D̃
∆2 (24)

with the condition for nontrivial solution taking the

form:

1 + λ̃ =

(

λ−
µ

1 + µ ln D

D̃

)

ln
D̃

Tc

(25)

Correspondingly, for the transition temperature we get:

Tc = D̃ exp

(

−
1 + λ̃

λ− µ⋆

)

(26)

where the Coulomb pseudopotential is determined by

the following expression:

µ⋆ =
µ

1 + µ ln D

D̃

=
µ

1 + µ ln
∏

i

(

1 + D

ωi

)

λi

λ

(27)

Thus, the phonon frequencies enter Tolmachev’s log-

arithm as the product of partial contributions, with

values determined also by corresponding coupling con-

stants. Similar structure of Tolmachev’s logarithm was

first obtained (in somehow different model) in Ref. [12],

where the case of frequencies going outside the limits

of adiabatic approximation was not considered. In this

sense, Eq. (27) has a wider region of applicability. In

particular, for the model of two optical phonons with

frequencies ω1 ≪ D (adiabatic phonon) and ω2 ≫ D,

from Eq. (27) we get:

µ⋆ =
µ

1 + µ ln
(

D

ω1

)

λ1

λ

=
µ

1 + µλ1

λ
ln D

ω1

(28)



4 M. V. Sadovskii

We can see, that the contribution of antiadiabatic

phonon drops out of Tolmachev’s logarithm, while the

logarithm itself remains, with its value determined by

the ratio of the band halfwidth (Fermi energy) to the

frequency of adiabatic (low frequency) phonon. The

general effect of suppression of Coulomb repulsion also

remains, though it becomes weaker proportionally to to

the partial interaction of electrons with corresponding

phonon. This situation is conserved also in the gen-

eral case — the value of Tolmachev’s logarithm and

corresponding Coulomb pseudopotential is determined

by contributions of adiabatic phonons, while antiadia-

batic phonons drops out. Thus, in general case, situa-

tion becomes more favorable for superconductivity, as

compared to the case of a single antiadiabatic phonon,

considered in Ref. [6].

4. CONCLUSIONS

In the present paper we have considered the elec-

tron – phonon coupling in Eliashberg – McMillan the-

ory in situation, when antiadiabatic phonons with high

enough frequency (comparable or exceeding the Fermi

energy EF ) are present in the system. The value of mass

renormalization, in general case, is determined by the

coupling constant λ̃, while the value of the pairing in-

teraction is always determined by the standard coupling

constant λ of Eliashberg – McMillan theory, appropri-

ately generalized by taking into account the finite value

of phonon frequency [6]. Mass renormalization due to

antiadiabatic phonons is small and determined by the

coupling constant λD ≪ λ. In this sense, in the limit

of strong antiadiabaticity, the coupling of such phonons

with electrons becomes weak and corresponding vertex

correction are irrelevant [7], similarly to the case of adi-

abatic phonons [5]. Precisely this this fact allows us

to use Eliashberg – McMillan approach in the limit of

strong antiadiabaticity. In the intermediate region all

expressions proposed above are of interpolating nature

and for more deep understanding of this region we have

to use other approaches (see e.g. Refs. [13, 14]).

The cutoff of pairing interaction in Cooper channel

in antiadiabatic limit takes place at energies ∼ EF , as

was previously noted in Refs. [6, 9, 10]), so that cor-

responding phonons do not contribute to Tolmachev’s

logarithm in Coulomb pseudopotential, though large

enough values of this logarithm (and corresponding

smallness of µ⋆) can be guaranteed due to contributions

from adiabatic phonons.

Note that above we have used rather simplified anal-

ysis of Eliashberg equations. However, in our opinion,

more elaborate approach, e.g. along the lines of Ref.

[11], will not lead to qualitative change of our results.

In conclusion let us discuss the current results in

the context of possible explanation of high – tem-

perature superconductivity in a monolayer of FeSe

on Sr(Ba)TiO3 (FeSe/STO) [8]. The presence in

Sr(Ba)TiO3 of high – energy optical phonons indicates

the possibility of significant enhancement of Tc in this

system due to interactions of FeSe electrons with these

phonons on FeSe/STO interface [8, 15]. ARPES exper-

iments [15] and LDA+DMFT calculations [16, 17] have

shown, that Fermi energy EF in this system is signif-

icantly (practically two times) lower than the energy

of the optical phonon, which unambigously indicates

the realization, in this case, of antiadiabatic situation

[9, 10]. Let us look if we can explain the observed high

values of Tc in this system using the expressions derived

in this work. Assuming for FeSe on STO the charac-

teristic value of phonon frequency ω1 = 350K, Fermi

energy EF = D = 650K, and the energy of the optical

phonon in SrTiO3 ω2 = 1000K [8, 15], we calculate Tc

using Eqs. (16), (26) (the case two phonon frequencies),

considering µ⋆ as a free model parameter. Let us choose

the value of λ1 to obtain, in the absence of interactions

with high – energy phonon of STO, the value of Tc =

9K, typical for the bulk FeSe, which gives λ1 > 0.4.

Results of our calculations are shown in Fig. 1. We

can see that the experimentally observed [8] high values

of Tc ∼ 60–80K can be obtained only for large enough

values of the coupling constant of FeSe electrons with

high – energy optical phonon of STO λ2 > 0.5, so that

the total pairing coupling constant λ = λ1 + λ2 > 0.9.

Strictly speaking, such values of the coupling constants

can not be considered something unusual. However, the

appearance of these large values in FeSe/STO system

seems rather improbable in the light of qualitative esti-

mates of λ for nonadiabatic case in Ref. [6], as well as

the results of ab initio calculations of λ for this system

[18]. Note also, that the values of the parameters used

here for FeSe/STO belong to the intermediate region

between adiabatic or nonadiabatic regions, where our

expressions, as was stressed above, are of interpolating

nature. Variation of the values of these parameters in

relatively wide range does not lead to the qualitative

change of our results. Traditionally low values of µ⋆

used here, can not be obtained for the assumed values

of D = EF , ω1 and coupling constants from expressions

like (28) with usual values of µ, due to rather small

values of corresponding Tolmachev’s logarithm.

The author is grateful to E.Z. Kuchinskii for discus-

sions and help with numerical calculations. This work

was partially supported by RFBR grant No. 17-02-
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Fig. 1. Dependence of superconducting transition

temperature on the coupling constant with high – en-

ergy phonon for the typical values of parameters of

FeSe/STO system.
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