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Ginzburg – Landau expansion and the upper critical field in disordered

attractive Hubbard model.

N. A. Kuleeva1), E. Z. Kuchinskii2), M. V. Sadovskii3)

Institute for Electrophysics, RAS, Ural Branch, Amundsen str. 106, Ekaterinburg, 620016, Russia

We present a short review of our studies of disorder influence upon Ginzburg – Landau expansion

coefficients in Anderson – Hubbard model with attraction in the framework of the generalized DMFT+Σ

approximation. A wide range of attractive potentials U is considered – from weak coupling limit, where

superconductivity is described by BCS model, to the limit of very strong coupling, where superconducting

transition is related to Bose – Einstein condensation (BEC) of compact Cooper pairs, which are formed at

temperatures significantly higher than the temperature of superconducting transition, as well as the wide range

of disorders – from weak to strong, when the system is in the vicinity of Anderson transition. For the same

range of parameters we study in detail the temperature behavior of orbital and paramagnetic upper critical

field Hc2(T ), which demonstrates the anomalies both due to the growth of attractive potential and the effects

of strong disordering.

PACS: 71.10.Fd, 74.20.-z, 74.20.Mn

1. INTRODUCTION

The studies of disorder influence upon

superconductivity have rather long history. In classic

papers by Abrikosov and Gor’kov [1, 2, 3, 4] the

weak disorder limit (pF l ≫ 1, where pF is Fermi

momentum and l is the mean free path) was considered

for the case of weak coupling superconductivity,

which is well described by BCS theory. The notorious

“Anderson theorem” on the critical temperature Tc of

superconductors with “normal” (nonmagnetic) disorder

[5, 6] is also related to this limit. The generalization

of the theory of “dirty” superconductors to the case

of strong enough disorder (pF l ∼ 1) (and further, up

to the vicinity of Anderson transition) was made in

Refs. [7, 8, 9, 10], where superconductivity was also

considered in the weak coupling limit.

The problem of BCS theory generalization to the

region of very strong coupling is also analyzed for a

long time. Significant progress in this direction was

achieved in a paper by Nozieres and Schmitt-Rink

[11], who proposed an effective method to study the

crossover from BCS behavior in the weak coupling limit

to Bose – Einstein condensation (BEC) in the region

of strong coupling. At the same time, the problem of

superconductivity in disordered systems in the limit

of strong coupling and in the region of BCS – BEC

crossover is pretty poorly studied.

One of the simplest models to study the BCS –

BEC crossover is the Hubbard model with attraction.
3)E-mail: strigina@iep.uran.ru
3)E-mail: kuchinsk@iep.uran.ru
3)E-mail: sadovski@iep.uran.ru

The most successful approach to study Hubbard model,

both to describe the strongly correlated systems for

the case of repulsive interactions and to study BCS

– BEC crossover, is the dynamical mean field theory

(DMFT) [12, 13, 14]. In recent years we have developed

the generalized DMFT+Σ approach to Hubbard model

[15, 16, 17, 18, 19, 20, 21], which is quite convenient for

the studies the role of different external (with respect

to those taken into account by DMFT) interactions.

In Ref. [22] we used this approach to analyze the

single – particle properties and optical conductivity of

the Hubbard model with attraction. Further on, the

DMFT+Σ method was used by us in Ref. [23, 24]

to study disorder influence on the temperature of

superconducting transition, which was calculated within

Nozieres – Schmitt-Rink approach.

Starting with the classic paper by Gor’kov [3] it

is well known that the Ginzburg – Landau expansion

is of fundamental importance in the theory of “dirty”

superconductors, allowing the effective studies of the

behavior of different physical properties dependencies

close to critical temperature on disorder [6]. The

generalization of this theory to the region of strong

disorder (up to Anderson metal – insulator transition)

was also based on microscopic derivation of the

coefficients of this expansion [7, 8, 9, 10]. However, this

analysis, as noted above, was always done in the weak

coupling limit of BCS theory.

In this paper we shall present a short review of the

results obtained in our papers [25, 26, 27], devoted to

microscopic derivation of the coefficients of Ginzburg

– Landau expansion, taking into account the role of
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disorder in the wide region of BCS – BEC crossover and

including the region of strong disorder in the vicinity of

Anderson transition. We shall also review the closely

related results of Refs. [28, 29] on the temperature

dependence of orbital and paramagnetic upper critical

magnetic fields in the region of this crossover and for

different levels of disordering.

2. TEMPERATURE OF SUPERCONDUCTING

TRANSITION

Consider disordered nonmagnetic Hubbard model

with attraction and the Hamiltonian:

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ − U
∑

i

ni↑ni↓, (1)

where t > 0 is the transfer amplitude between the

nearest neighbors, U is onsite attraction potential,

niσ = a†iσaiσ is onsite number of electrons operator,

aiσ(a†iσ) is annihilation (creation) operator of an

electron with spin σ. Local energies ǫi are assumed to

be independent random variables on different lattice

sites. We assume the Gaussian distribution of energy

levels ǫi:

P(ǫi) =
1√
2πW

exp

(

− ǫ2i
2W 2

)

. (2)

Parameter W here serves as the measure of disorder

strength and the Gaussian random field of energy levels

creates “impurity” scattering, which is considered within

the standard approach, based upon calculations of the

averaged Green’s functions [30, 31].

The generalized DMFT+Σ approach [15, 16, 17, 20]

extends the standard dynamical mean field theory

(DMFT) [12, 13, 14] by the addition of “external”

self – energy part (SEP) Σp(ε) (in general momentum

dependent), which is due to any interaction outside

DMFT and provides an effective calculation method

both for single – particle and two – particle properties

[18, 19].

For an “external” SEP entering DMFT+Σ loop, for

the case of scattering by disorder analyzed here, we

use the simplest self – consistent Born approximation,

neglecting the “crossing” diagrams for impurity

scattering:

Σimp(ε) = W 2
∑

p

G(ε,p), (3)

where G(ε,p) is the full single – electron Green’s

function in DMFT+Σ approximation.

To solve the effective single Anderson impurity

problem of DMFT we used the numerical

renormalization group (NRG) [32].

In the following we consider the “bare” band with

semielliptic density of states (per unit cell and per single

spin projection):

N0(ε) =
2

πD2

√

D2 − ε2 (4)

where D defines the halfwidth of conduction band,

which is a good approximation for for three –

dimensional case. In Ref. [24] we have shown that

in DMFT+Σ approach for the model with semielliptic

density of states all the influence of disorder upon single

– particle properties is reduced to the widening of band

by disorder, i.e. to the substitution D → Deff , where

Deff is the effective halfwidth of the “bare” band in the

absence of electronic correlations (U = 0), widened by

disorder:

Deff = D

√

1 + 4
W 2

D2
. (5)

The “bare” (in the absence of U) density of states,

“dressed” by disorder:

Ñ0(ξ) =
2

πD2
eff

√

D2
eff − ε2 (6)

remains semielliptic in the presence of disorder.

All calculations below were done for the case of

quarter – filled band (number of electrons per lattice

site n=0.5).

To consider superconductivity in a wide interval

of pairing interaction U , following Refs. [22, 24] we

use Nozieres – Schmitt-Rink approximation [11], which

allows qualitatively correct (though approximately)

describe the BCS – BEC crossover region. In this

approach the critical temperature Tc is determined [24]

by the usual BCS – like equation:

1 =
U

2

∫ ∞

−∞

dεÑ0(ε)
th ε−µ

2Tc

ε− µ
, (7)

where the chemical potential µ for different values of

U and W is obtained from the standard equation for

the number of electrons (band filling), determined from

the full Green’s function, calculated in в DMFT+Σ

approximation. This allows to find Tc for a wide interval

of the values of parameters of the theory, including the

BCS – BEC crossover region and the limit of strong

coupling, as well as for different levels of disorder. It

is the essence of interpolation scheme of Nozieres and

Schmitt-Rink — in the weak coupling region transition

temperature is controlled by the equation for Cooper
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Fig. 1. Universal dependence of the temperature of

superconducting transition on the strength of Hubbard

attraction for different levels of disorder.

instability (7), while in the strong coupling limit it

is determined as the temperature of BEC, which is

controlled by the chemical potential. In Ref. [24] we

have shown that disorder influence on the critical

temperature Tc in the model with semielliptic bare

density of states is universal and is reduced just to

the change of the effective bandwidth. In Fig. 1, as an

illustration of this, we show the universal dependence

of critical temperature Tc on Hubbard attraction for

different levels of disorder, which demonstrates the

validity of the generalized Anderson theorem [23,

24]. In the weak coupling region the temperature of

superconducting transition is well described by BCS

model (to compare in Fig.1 we show the dashed line

corresponding to BCS model, when Tc is determined by

Eq. (7) with chemical potential independent of U and

determined by quarter – filling of the “bare” band), while

in the strong coupling region the critical temperature is

mainly determined by BEC condition for Cooper pairs

and drops with the growth of U as t2/U , passing the

maximum at U/2Deff ∼ 1. The review of these and

some other results obtained for disordered Hubbard

model in DMFT+Σ approximation can be found in Ref.

[21].

3. GIBZBURG – LANDAU EXPANSION

Ginzburg – Landau expansion for the difference of

free energies in superconducting and normal states can

be written in a standard form [31]:

Fs − Fn = A|∆q|2 + q2C|∆q|2 +
B

2
|∆q|4, (8)

Fig. 2. Diagrammatic form of Ginzburg – Landau

expansion.

where ∆q is the amplitude of the Fourier component

of order parameter. Expansion (8) is determined by

diagrams of the loop expansion for free energy in the

field of fluctuations of order parameter (denoted by

dashed lines) with small wave vector q [31], shown in

Fig. 2 [31].

Within Nozieres – Schmitt-Rink approach [11] we

use weak coupling approximation to analyze Ginzburg

– Landau coefficients, so that the loops with two

and four Cooper vertexes shown in Fig. 2 do not

contain contributions from Hubbard attraction and are

“dressed” only by impurity scattering. However, as in

the case of calculation of Tc, the chemical potential,

which is essentially dependent on coupling strength and

in the strong coupling limit determines the condition of

Bose condensation of Cooper pairs, should be calculated

within full DMFT+Σ procedure. In Ref. [25] we have

shown that in this approach the coefficients A and B

are given by the following expressions:

A(T ) =
1

U
−
∫ ∞

−∞

dεÑ0(ε)
th ε−µ

2T

2(ε− µ)
, (9)

B =

∫ ∞

−∞

dε

2(ε− µ)3

(

th
ε− µ

2T
− (ε− µ)/2T

ch2 ε−µ
2T

)

Ñ0(ε),

(10)

For T → Tc coefficient A(T ) takes the following form:

A(T ) ≡ α(T − Tc). (11)

In BCS limit for coefficients α and B we obtain the

standard result [31]:

αBCS =
Ñ0(µ)

Tc
BBCS =

7ζ(3)

8π2T 2
c

Ñ0(µ). (12)

Thus the coefficients A and B are determined only

by the density of states Ñ0(ε) widened by disorder

and by the chemical potential. For semielliptic bare

density of states the dependence of these coefficients

on disorder is due only to substitution D → Deff , so

that in the presence of disorder we get the universal

dependencies of α and B (made dimensionless by the

effective bandwidth) on U/2Deff [25]. Actually the

coefficients α and B drop fast with the growth of
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Fig. 3. The universal dependence of specific heat

discontinuity on U/2Deff for different levels of disorder.

coupling strength U/2Deff . It should be noted that Eqs.

(9) and (10) for coefficients A and B were obtained in

Ref. [25] using exact Ward identities and remain valid

also in case of strong disorder (Anderson localization).

The universal dependence on disorder related to

widening of the band D → Deff appears also for specific

heat discontinuity at transition temperature [25], which

is determined by coefficients α and B:

∆C ≡ Cs(Tc)− Cn(Tc) = Tc
α2

B
. (13)

This universal dependence of specific heat discontinuity

on U/2Deff is shown in Fig. 3. In BCS limit specific

heat discontinuity grows with coupling strength, while

in BEC limit it drops, passing through a maximum

at U/2Deff ≈ 0.55. This behavior of specific heat

discontinuity is determined mainly by the behavior of

Tc (cf. Fig.1), while the ratio α2

B in Eq. (13) smoothly

depends on the coupling strength.

Now we shall follow Refs. [26, 27] to analyze the

coefficient C. From diagrammatic representation of

Ginzburg – Landau expansion, shown in Fig.2, it is clear

that C is determined as a coefficient before q2 in Cooper

– like two – particle loop (first term in Fig. 2). Thus we

obtain the following expression:

C = −T lim
q→0

∑

n,p,p′

Ψpp′(εn,q)−Ψpp′(εn, 0)

q2
, (14)

where Ψp,p′(εn,q) is two – particle Green’s function in

Cooper channel, “dressed” (in Nozieres – Schmitt-Rink

approximation) only by impurity scattering.

In BCS limit and in the absence of disorder the

coefficient C takes the following form [31]:

CBCS =
7ζ(3)

16π2T 2
c

N0(µ)
v2F
d
, (15)

where vF is velocity at the Fermi surface, d is space

dimensionality. Disorder influence on coefficient C is not

reduced only to the substitution N0 → Ñ0, so that in

the presence of disorder, in contrast to coefficients α and

B (cf. (12)), even in BCS limit we can not obtain any

compact expression for C similar to Eq. (15),

After rather cumbersome analysis [26, 27] we get the

following general expression for the coefficient C:

C = − 1

8π

∫ ∞

−∞

dε
th ε

2T

ε
Im

(

iD(2ε)
∑

p
∆Gp(ε)

ε+ iδ

)

=

= − 1

8π

∫ ∞

−∞

dε
th ε

2T

ε2
Re(D(2ε)

∑

p

∆Gp(ε))−

− 1

16T
Im(D(0)

∑

p

∆Gp(0)), (16)

where ∆Gp(ε) = GR(ε,p) − GA(−ε,p) and D(ω) is

the frequency dependent generalized diffusion coefficient

[31, 33, 34, 35, 36, 38, 37, 39], which is determined

within generalization of the self – consistent theory of

localization by the following self – consistency equation

[19]:

D(ω) = i
< v >2

d

(

ω −∆ΣRA
imp(ω) +

+W 4
∑

p

(∆Gp(ε))
2
∑

q

1

ω + iD(ω)q2

)−1

, (17)

where ω = 2ε, ∆ΣRA
imp(ω) = ΣR

imp(ε) − ΣA
imp(−ε), d –

space dimensionality, and velocity < v > is determined

by the following expression:

< v >=

∑

p
|vp|∆Gp(ε)

∑

p
∆Gp(ε)

;vp =
∂ε(p)

∂p
. (18)

Taking into account applicability limits of diffusion

approximation, summation over q in Eq. (17) should

be limited by [31, 38]:

q < k0 = Min{l−1, pF }, (19)

where l is the mean – free path due to elastic scattering

by disorder, pF is Fermi momentum.

Thus we obtain an interpolation scheme to

determine the coefficient C, which in the weak disorder

limit reproduces the results of “ladder” approximation,
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while in the strong disorder limit it takes into account

the effects of Anderson localization (in the framework

of self – consistent theory of localization).

It was shown [19, 20] that in DMFT+Σ

approximation for Anderson – Hubbard model the

critical disorder for Anderson metal – insulator

transition W/2D =0.37 (for the choice of cutoff as in

Eq. (19)), so that in this approximation it does not

depend on the value of Hubbard interaction U . The

approach developed above allows determination of

coefficient C including the region of Anderson insulator

with disorder W/2D >0.37.

4. PHYSICAL PROPERTIES CLOSE TO THE

TEMPERATURE OF SUPERCONDUCTING

TRANSITION

The coherence length at a given temperature ξ(T )

determines the characteristic scale of inhomogeneities

of superconducting order parameter:

ξ2(T ) = −C

A
. (20)

From Eq. (11) we have: A = α(T − Tc), то

ξ(T ) =
ξ

√

1− T/Tc

, (21)

where we have introduce the coherence length of a

superconductor as:

ξ =

√

C

αTc
, (22)

which in the weak coupling limit and in the absence of

disorder has the standard form [31]:

ξBCS =

√

CBCS

αBCSTc
=

√

7ζ(3)

16π2d

vF
Tc

. (23)

The penetration depth of magnetic field into

superconductor is defined as:

λ2(T ) = − c2

32πe2
B

AC
. (24)

Thus:

λ(T ) =
λ

√

1− T/Tc

, (25)

where we have introduced:

λ2 =
c2

32πe2
B

αCTc
, (26)

which in the absence of disorder and in the weak

coupling limit is:

λ2
BCS =

c2

32πe2
BBCS

αBCSCBCSTc
=

c2

16πe2
d

N0(µ)v2F
. (27)

Note that λBCS does not depend on Tc, i.e. on the

coupling strength, and it can be conveniently used to

normalize penetration depth λ (26) at arbitrary U and

W .

Close to Tc the upper critical magnetic field Hc2 is

defined via Ginzburg – Landau coefficients as:

Hc2 =
Φ0

2πξ2(T )
= −Φ0

2π

A

C
, (28)

where Φ0 = cπ/e is the magnetic flux quantum. Then

the slope of the upper critical field close to Tc is given

by:
dHc2

dT
=

Φ0

2π

α

C
. (29)

Coefficient C is essentially a two – particle entity,

thus it is not universally dependent on disorder in

contrast to coefficients A and B and disorder influence

upon it does not reduce only to effective band widening

by disorder. Let us now discuss the main results of

our calculations for this coefficient (for more details

cf. Refs. [26, 27]). Coefficient C rapidly decreases with

the growth of coupling strength. Especially strong drop

is observed in the weak coupling region. Localization

corrections become important in the limit of strong

enough disorder (W/2D > 0.25). For such disorder

level localization corrections significantly suppress the

coefficient C in the weak coupling region, while in

the strong coupling region for U/2D > 1 localization

corrections in fact do not change the value of the

coefficient, even in the limit of strong disorder with

W/2D > 0.37, when the system becomes Anderson

insulator. This is apparently due to the fact, that in

the region of strong coupling the (pseudo)gap is opened

in the density of states at the Fermi level [22], so that

there are no states to localize in the vicinity of the

Fermi level at all. In Fig. 4 we show the dependencies

of coefficient C on disorder strength for different values

of coupling U/2D. In this figure (and all that follow

in this Section) the filled symbols and continuous

lines correspond to calculations taking into account

localization corrections, while the empty symbols and

dashed lines correspond to “ladder” approximation.

In the weak coupling limit (U/2D = 0.1) we observe

fast enough drop of the coefficient C with disorder

growth in the region of weak impurity scattering. At

the same time in the region of strong enough disorder

in “ladder” approximation we can observe the increase

Письма в ЖЭТФ
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Fig. 4. Dependence of the coefficient C, normalized by

its value in the absence of disorder, on disorder for

different values of Hubbard attraction U . Dashed line

– “ladder” approximation, full lines – results obtained

with account of localization corrections.

of the coefficient C with the growth of disorder, which

is mainly due the noticeable widening of the band by

this disorder and corresponding drop of the effective

coupling strength U/2Deff . However, localization

corrections which become important for strong disorder

W/2D > 0.25, lead to suppression of C while disorder

grows, also in the limit of strong impurity scattering.

In the region of intermediate coupling (U/2D =0.4 –

0.6) coefficient C in “ladder” approximation is rather

insignificantly increasing with disorder growth. In BEC

limit (U/2D > 1) coefficient C in fact is independent of

impurity scattering both in the “ladder” approximation

and with the account of localization corrections.

Localization corrections in BEC limit in fact do not

change the value of coefficient C as compared to “ladder”

approximation. As Ginzburg – Landau coefficients α

and B are universally dependent on disorder, Anderson

localization has no influence upon them at all,

and coefficient C, which is strongly dependent on

localization correction in the weak coupling limit, in

BEC limit is in fact independent of these corrections.

Correspondingly, the physical properties depending

on coefficient C, are also significantly dependent on

localization corrections in the weak coupling limit, but

in fact do not feel Anderson localization in BEC limit.

In Fig. 5 we show the dependence of coherence

length ξ on the level of disorder for different values of

coupling strength. In the weak coupling limit coherence

length ξ drops fastly with the growth of U at any

disorder level, reaching the values of the order of

lattice parameter a in intermediate coupling region of
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0

3

6

9

12

15

18

0,0 0,1 0,2 0,3 0,4 0,5
0

100

200

300

400  U/2D=0.1
 0.2
 0.4

 0.6
 0.8
 1.0
 1.4
 1.6

ξ/
a

W/2D

  ξ
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Fig. 5. Dependence of coherence length on disorder

for different values of Hubbard attraction. Coherence

length is normalized by lattice parameter a. At the

insert: dependence of coherence length on disorder in

the weak coupling limit.

U/2D ∼ 0.4− 0.6. Further growth of coupling strength

only slightly changes the coherence length. In BCS

limit, i.e. for the weak coupling and weak enough

impurity scattering we observe (cf. insert at Fig. 5)

the standard dependence for “dirty” superconductors

ξ ∼ l1/2, i.e. the coherence length rapidly drops with the

growth of disorder. However, at strong enough disorder

in ladder approximation (dashed lines) coherence

length grows with disorder, which is mainly due to

noticeable widening of the bare band and corresponding

suppression of U/2Deff . Localization corrections are

important only for large disorder (W/2D > 0.25)

and lead to significant drop of coherence length in

BCS limit of weak coupling and practically does not

change coherence length in BEC limit. Taking into

account localization corrections leads to noticeable

drop of coherence length as compared to “ladder”

approximation in the limit of strong disorder restoring

the suppression of ξ with the growth of disorder in this

limit. In standard BCS model with the bare band of

infinite width in the limit weak disorder the coherence

length drops with disorder ξ ∼ l1/2, and close to

Anderson transition ξ drops even faster as ξ ∼ l2/3

[7, 8, 9], in contrast to our model, where close to

Anderson transition the coherence length rather weakly

depends on disorder, which is related to a significant

widening of the band by disorder. With the growth of

the coupling strength U/2D ≥ 0.4–0.6 the coherence

length ξ becomes of the order of lattice parameter and

becomes almost disorder independent. In particular,

in BEC limit of very strong coupling U/2D =1.4,
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Fig. 6. Dependence of penetration depth normalized by

its BCS value in the weak coupling limit on the strength

of Hubbard attraction U for different levels of disorder.

1.6, the growth of disorder up to very strong values

(W/2D = 0.5) leads to a factor two drop of coherence

length, so that in the limit of strong coupling the

account of localization corrections becomes irrelevant.

In Fig. 6 we show the dependence of penetration

depth, normalized by its BCS value in the absence of

disorder (27) on Hubbard attraction strength U for

different levels of disorder. In the absence of impurity

scattering penetration depth grows with coupling

strength. In the weak coupling limit, in accordance with

the usual theory of “dirty” superconductors, disorder

leads to a fast growth of penetration depth (λ ∼ l−1/2,

where l is the mean free path). With increase of the

coupling strength the growth of penetration depth

with disorder slows down and in the limit of very

strong coupling fro U/2D =1.4, 1.6 penetration depth

even slightly decreases with the growth of disorder.

Thus, in presence of disorder we observe the drop

of penetration depth with the growth of Hubbard

attraction in the region of relatively weak coupling

and the growth of λ with U in BEC strong coupling

limit. The account of localization corrections is relevant

only in the limit of strong disorder (W/2D > 0.25)

and leads significant growth of penetration depth as

compared with results of the “ladder” approximation

in weak coupling limit. However, qualitatively the

dependence of penetration depth on disorder does

not change. In BEC limit localization influence on

penetration depth is insignificant. Similar dependence

on disorder is observed also for dimensionless Ginzburg

– Landau parameter κ = λ/ξ. In weak coupling limit

Ginzburg – Landau parameter rapidly grows with
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Fig. 7. Dependence of the slope of the upper critical

field, normalized by it value in the absence of disorder

for different values of Hubbard attraction. At the insert:

the growth of the slope with disorder in the weak

coupling limit.

disorder in accordance with the theory of “dirty”

superconductors, where κ ∼ l−1. With the increase of

the coupling strength the growth of Ginzburg – Landau

parameter with disorder slows down and in the strong

coupling limit of U/2D > 1 parameter κ is practically

disorder independent. The account of localization

corrections leads quantitatively to a noticeable increase

of Ginzburg – Landau parameter in Anderson insulator

phase (W/2D ≥ 0.37) for the weak coupling. In the

limit of strong coupling the account of localization is

again irrelevant.

НIn Fig. 7 we show the dependence of the slope

of the upper critical magnetic field on disorder. In the

weak coupling limit we again observe the behavior

typical for “dirty” superconductors – the slope of the

upper critical field grows with disorder (cf. insert at

Fig. 7). Taking into account localization corrections in

the weak coupling limit greatly increases the slope of

the upper critical field as compares with the “ladder”

approximation in Anderson insulator (W/2D ≥ 0.37).

As a result in Anderson insulator the slope of the

upper critical field grows with impurity scattering

much faster, than in “ladder” approximation. At

intermediate couplings (U/2D =0.4 – 0.8) the slope

of the upper critical field is practically independent of

impurity scattering at weak disorder. In the “ladder”

approximation this behavior is conserved also in the

region of strong disorder. However, the account of

localization corrections leads to significant growth of

the slope with disorder in Anderson insulator phase. In

the limit of very strong coupling the slope of the upper
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critical field can even slightly decreases with disorder,

but for strong disorder the slope grows with the growth

of impurity scattering. In BEC limit the account of

localization corrections becomes irrelevant and only

slightly changes the slope of the upper critical field as

compared with the “ladder” approximation.

5. TEMPERATURE DEPENDENCE OF THE

ORBITAL UPPER CRITICAL FIELD

Most vividly the influence of disordering is

manifested in the behavior of the upper critical

field in the theory of “dirty” superconductors. As

disorder grows both the slope of the temperature

dependence of the upper critical field at Tc [6] and

Hc2(T ) at all temperatures increase [40, 41]. Effects of

Anderson localization in the limit of strong disorder also

are most explicit in the temperature dependence of the

upper critical field. Precisely at the point of Anderson

metal – insulator transition localization effects lead to

lead to sharp increase of Hc2 at low temperatures and

the temperature dependence of Hc2(T ) is qualitatively

different from Werthamer, Helfand, Hohenberg (WHH)

dependence [40, 41], which is characteristic for the

theory of “dirty” superconductors – Hc2(T ) dependence

becomes concave [7, 8, 9].

Let us consider disorder influence on the

temperature dependence of the upper critical field

Hc2(T ) in a wide region of attraction strength U ,

including the BCS – BEC crossover region, as well as

for the wide interval of disorders, up to the vicinity

of Anderson transition [28]. In Nozieres – Schmitt-

Rink approach used here the critical temperature

of superconducting transition is determined by a

joint solution of equation for Cooper instability in

Cooper particle – particle channel in weak coupling

approximation and equation for the chemical potential

of the system, which is defined for the whole interval of

the values of Hubbard interaction from the condition

of quarter – filling of the band within DMFT+Σ

approximation. The usual condition for Cooper

instability has the form:

1 = −Uχ(q), (30)

where χ(q) is Cooper susceptibility, determined by

the loop in Cooper channel. In the presence of an

external magnetic field the total momentum q in Cooper

channel acquires the additional contribution from vector

potential A [6, 40]

q → q− 2e

c
A. (31)

As our model assumes an isotropic spectrum, Cooper

instability χ(q) depends on q only through q2. The

minimal eigenvalue of an operator (q− 2e
c A)

2
, defining

the upper critical magnetic field H = Hc2 is [42]

q0
2 = 2π

H

Φ0
, (32)

where Φ0 = ch
2e = π~

e is magnetic flux quantum. Then

the equation for Tc(H) or Hc2(T ) remains as usual:

1 = −Uχ(q2 = q0
2). (33)

In further analysis we shall neglect the relatively

weak influence of magnetic field on diffusion

(noninvariance with respect to time reversal), which

is reflected in nonequality of the loops in Cooper and

diffusion channels. This influence of magnetic field was

analyzed in Refs. работах [9, 10, 43, 44], where it was

demonstrated, that the account of this, even close to

Anderson metal – insulator transition, only slightly

decreases the value of Hc2(T ) in low temperature

region. Under the condition of invariance to time

reversal and equivalence of the loops in Cooper and

diffusion channels, Cooper instability is determined by

the loop in diffusion channel. As a result Eq. (33) for

the orbital critical field Hc2(T ) takes the form [28]:

1 = − U

2π

∫ ∞

−∞

dεIm

(

∑

p
∆Gp(ε)

2ε+ iD(2ε)2πHc2

Φ0

)

th
ε

2T
.

(34)

The generalized diffusion coefficient is again determined

in the framework of self – consistent theory of

localization as described above.

In Fig. 8 we show temperature dependencies of the

upper critical field for different degrees of disorder in

three regions of coupling strength of interest to us: in

BCS weak coulping limit (U/2D = 0.2), in BCS – BEC

crossover region (intermediate coupling U/2D = 1.0)

and in BEC limit of strong coupling (U/2D = 1.6).

In strong coupling region (Fig.8(a)) the growth of

disorder leads to increase of the upper critical field at

all temperatures in weak disorder limit (W/2D < 0.19),

in this case the temperature dependencies have negative

curvature and are close in form to the standard WHH

dependence [40, 41]. With further growth of disorder

and without account of localization corrections the

upper critical field at all temperatures starts to decrease.

However, the account of localization corrections in

weak coupling limit at strong disorder (W/2D ≥
0.37) significantly increases the upper critical field

and qualitatively changes its temperature behavior, so

that the dependencies. of Hc2(T ) acquire the positive
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Fig. 8. Temperature dependence of the upper critical

field for different values of disorder: (a) – BCS weak

coupling limit (U/2D = 0.2); (b) – BCS – BEC

crossover region, intermediate coupling (U/2D = 1.0);

(c) – BEC limit of strong coupling (U/2D = 1.6).

Filled symbols and lines correspond to calculations with

account of localization corrections. Empty symbols and

dashed lines correspond to “ladder” approximation for

impurity scattering.

curvature. The upper critical field fastly increases with

disorder at all temperatures.

For intermediate coupling (Fig. 8(b)) in the limit

of weak disorder the temperature dependence of the

upper critical field becomes practically linear. The

upper critical field at all temperatures increases with

the growth of disorder. In the limit of strong disorder

(W/2D ≥ 0.37) localization corrections. as in the

weak coupling limit, increase the upper critical field

at all temperatures. The dependencies of Hc2(T )

acquire positive curvature. However, in the region

of intermediate coupling the influence of localization

effects is significantly weaker, than in the limit of weak

coupling being relevant only in the low temperature

region.

In BEC limit of strong coupling (Fig. 8(c)) in weak

disorder region Hc2(T ) dependencies are in fact linear.

The upper critical filed grows with increasing disorder

at all temperatures. In the limit of strong disorder at

the point of Anderson transition itself (W/2D = 0.37)

the dependence Hc2(T ) remains linear and taking into

account localization corrections in fact does not change

the temperature dependence of the upper critical field.

Further increase of disorder leads to the growth of

Hc2(T ). Deep in Anderson insulator phase (W/2D =

0.5) Hc2(T ) dependence acquires positive curvature

and the account of Anderson localization increases

Hc2(T ) in low temperature region, while close to Tc

localization corrections become irrelevant even at such a

strong disorder. Thus, the strong coupling significantly

decreases the influence of localization effects on the

temperature dependence of the upper critical field.

Thus, the increase of coupling strength U leads to a

rapid growth of Hc2(T ), especially in low temperature

region. In BEC limit and in BEC – BCS crossover

region Hc2(T ) dependence becomes practically linear.

Disordering at any coupling strength also leads to

the growth of Hc2(T ). In BCS limit of weak coupling

increasing disorder leads to the growth of both the slope

of the upper critical field close to T = Tc and Hc2(T ) in

low temperature region. In the limit of strong disorder,

in the vicinity of Anderson transition localization

corrections lead to the additional sharp increase of the

upper critical field in low temperature region, so that

the Hc2(T ) dependence becomes concave, acquiring the

positive curvature. In BCS – BEC crossover region

and in BEC limit weak disorder influence on the slope

of the upper critical field at Tc is negligible, though

strong disorder in the vicinity of Anderson transition

leads to noticeable increase of the slope of the upper

critical field with disorder. In low temperature region

Hc2(T ) significantly grows with increasing disorder,
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especially in the vicinity of Anderson transition, where

localization corrections noticeably increase Hc2(T = 0)

and Hc2(T ) dependence becomes concave, instead of

linear, characteristic for the strong coupling at weak

disorder.

In the model under discussion the values of the upper

critical field at low temperatures can reach extreme

values, up to (or even formally exceeding) Φ0

2πa2 . This

requires further analysis of the model, both taking into

account inevitable quantization of electronic spectrum

in magnetic field and paramagnetic effect.

6. TEMPERATURE DEPENDENCE OF

PARAMAGNETIC CRITICAL FIELD

In weal coupling region and for weak disorder the

upper critical magnetic field of a superconductor is

determined by orbital effects and is usually much lower

than paramagnetic limit. However, the growth of the

coupling strength and disorder, as was shown above,

lead to a rapid increase of the orbital Hc2 possibly

exceeding the paramagnetic limit. In this Section we

shall consider the behavior of paramagnetic critical field

for a wide region of coupling strength U , including the

region of BCS – BEC crossover and the limit of very

strong coupling, with the account of disorder (including

rather strong one).

It is well known that in BCS weak coupling limit

paramagnetic effects (spin splitting effects) lead to the

existence at low temperatures a region on the phase

diagram of a superconductor in magnetic field, where

paramagnetic critical magnetic field Hcp decreases with

lowering temperature. This behavior is an evidence of

instability, leading to a first order phase transition to

Fulde – Ferrell – Larkin – Ovchinnikov (FFLO) phase

[45, 46, 47] with Cooper pairs with finite momentum

q and periodic in space order parameter. Further on,

our analysis will be limited only to a second order

phase transition and superconducting order parameter

will be assumed spatially homogeneous, allowing us to

determine the border of instability towards first order

transition in the regions of BCS – BEC crossover and

strong coupling, also for different levels of disorder.

The problem of stability of FFLO state under these

conditions will not be considered.

Within Nozieres – Schmitt-Rink approach the

critical temperature in the presence of spin splitting in

external magnetic field (neglecting orbital effects) or

paramagnetic critical magnetic field Hcp at temperature

T < Tc is determined by the following BCS – like

equation [29]:

1 =
U

4

∫ ∞

−∞

dε
Ñ0(ε)

ε− µ

(

th
ε− µ− µBHcp

2T
+

+th
ε− µ+ µBHcp

2T

)

, (35)

where the chemical potential µ for different values of U

and W is determined from DMFT+Σ calculations, i.e.

from the standard equation for the number of electrons

in the band. It should be noted that Eq. (35) is obtained

from an exact Ward identity [29] and remains valid in

the presence of strong disorder, including the vicinity

of Anderson transition. Eq. (35) demonstrates, that all

of disorder influence on Hcp reduces to renormalization

of the bare semielliptic density of states by disorder,

that is for bare band with semielliptic density of

states the influence of disorder on Hcp is universal and

reduces only to band widening by disorder, i.e. to the

substitution D → Deff . It is clear that paramagnetic

critical field will be in general rising with the growth

of coupling strength U as it becomes more and more

difficult fro magnetic field to break pairs of strongly

coupled electrons [29].

In Fig. 9 we show the results on disorder influence

of temperature dependence of paramagnetic critical

magnetic field. In BCS weak coupling limit (Fig.

9(a)) disorder growth leads both to the decrease of

critical temperature in the absence of magnetic field

Tc0 (cf. [23, 24]) and to the decrease of the critical

magnetic field at all temperatures. Instability region

corresponding to first order transition is conserved also

in the presence of disorder. In fact, as was noted

before, disorder influence upon Hcp(T ) is universal and

related only to the substitution D → Deff . As a

result, the growth of disorder leads to the decrease

of effective coupling strength, which is determined by

dimensionless parameter U/2Deff . This leads to a

substantial widening of a relative temperature T/Tc(H)

region of the first order transition.

For intermediate coupling (U/2D = 0.8) in the

region of BCS – BEC crossover (Fig. 9(b)) the growth

of disorder only weakly changes the critical temperature

Tc0 (cf. [23, 24]), leading to some increase of Hcp(T ).

As all influence of disorder is related only to the

substitution D → Deff , the increase of disorder here

again leads to the decrease of effective coupling strength

U/2Deff and restoration of instability region of the first

order transition.

In BEC limit of strong coupling the growth

of disorder leads to significant growth the critical

temperature Tc0 (cf. [23, 24]). At the same time the

critical magnetic field in low temperature region is

rather weakly increasing with disorder. In BEC limit
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Fig. 9. Temperature dependence of paramagnetic

critical magnetic field for different levels of disorder:

(a) — BCS weak coupling limit (U/2D = 0.2); (b) —

BCS – BEC crossover region (intermediate coupling:

U/2D = 0.8); (c) — BEC limit of strong coupling

(U/2D = 1.6).
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Fig. 10. Universal temperature dependence of

paramagnetic critical magnetic field on disorder. (a) —

weak coupling U/2Deff = 0.2, W = 0 and W = 0.11

(b) — strong coupling U/2Deff = 1.6, W = 0 and

W = 0.11

the instability region of first order transition does not

appear even in the presence of very strong disorder

(W/2D = 0.5). In fact in BEC limit the influence

of disorder is also universal and related only to the

substitution D → Deff . As a result, if we normalize

spin splitting and temperature by effective bandwidth

2Deff and fix the effective coupling strength U/2Deff ,

we shall obtain the universal temperature dependence

of paramagnetic critical magnetic field. In Fig. 10 we

show examples of such universal behavior for typical

cases of weak and strong coupling both in presence and

in the absence of disorder.

In the absence of disorder in BEC limit of strong

coupling U/2D = 1.6 for T → 0 we have 2µBHcp/2D ≈
0.125, which for a characteristic bandwith 2D ∼ 1 eV

gives Hcp ∼ 107 Gauss. For orbital critical magnetic

field (cf. [28]) in the same model, for the same coupling
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strength and T → 0, for a characteristic value of lattice

parameter a = 3.3 ∗ 10−8 cm, we obtain Hc2 ≈ 1.6 ∗ 108
Gauss. Thus, the orbital critical magnetic field at low

temperatures increases with coupling strength much

faster than paramagnetic field and in BEC limit the

main contribution to the upper critical magnetic field

at low temperatures will be due to paramagnetic effect.

The growth of disorder leads to a large increase of

orbital critical magnetic field [28], while Hcp(T → 0)

in BCS – BEC crossover region and in BEC – limit

is relatively weakly dependent on disorder. Then, also

in the presence of disorder in BEC limit the main

contribution to the upper critical magnetic field at low

temperatures will come essentially from paramagnetic

effect.

Thus, the growth of the coupling strength U leads

to rapid increase of Hcp(T ) and disappearance of

the instability region of first order transition at low

temperatures in BCS – BEC crossover region and in

BEC limit, which appears at low temperatures in BCS

limit of weak coupling. Physically this is related to

the fact, that it is more difficult for magnetic field to

break strongly coupled pairs. The growth of disorder

on BCS limit of weak coupling leads both to the

decrease of critical temperature and to the decrease of

Hcp(T ). Instability region of first order transition at low

temperatures in the presence of disorder is conserved.

In the region of intermediate coupling (U/2D = 0.8)

disorder influence on both critical temperature and

Hcp(T ) is rather weak. However, the growth of disorder

leads to restoration of low temperature region of

instability of the first order transition, which is not

observed in the absence of disorder. This rather

unexpected conclusion is due to specifics of attractive

Hubbard model, where the effective dimensionless

parameter U/2Deff controls the coupling strength in

disordered case.

In BEC limit at low temperatures, for reasonable

parameters of the model, paramagnetic critical

magnetic field is noticeably lower than the orbital

one, so that the upper critical field in this region is

determined essentially by paramagnetic critical field.

In the presence of disorder this conclusion is also even

more valid, as the orbital critical field rapidly grows

with disorder, while paramagnetic critical field in this

limit only weakly dependent on disorder.

7. CONCLUSION

In this paper, within Nozieres – Schmitt-Rink

approximation and DMFT+Σ generalization of

dynamic mean field we have studied the influence

of disordering, including the strong one (Anderson

localization region), on Ginzburg – Landau expansion

and the behavior of related physical properties close

to Tc, and also the upper critical magnetic field (both

orbital and paramagnetic) in disordered Anderson –

Hubbard model with attraction, for a wide range of the

values of attraction potential U , from the region of weak

coupling, where instability of the normal phase and

superconductivity are well described by BCS model, up

to the limit of strong coupling, where superconducting

transition is related to Bose condensation of compact

Cooper pairs, which are formed at temperatures much

higher than superconducting transition temperature.

Due to size limitations of this review above we have

presented only a part of our results. Further details, as

well as more detailed derivations of the main equations

can be found in original papers [25, 26, 27, 28, 29].

Note that all results obtained in this work implicitly

used an assumption of self – averaging superconducting

order parameter entering Ginzburg – Landau expansion.

It is well known [9] that this assumption becomes, in

general case, invalid close to Anderson metal – insulator

transition, which is due to development in this region of

strong fluctuations of the local density of states, leading

to strong spatial fluctuations of the order parameter

[48] and inhomogeneous picture of superconducting

transition [49]. This problem is of great interest in the

context of superconductivity in BCS – BEC crossover

and in the region of strong coupling, and deserves

further studies.

This work was supported in part by RFBR grant
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