
ISSN 0021-3640, JETP Letters, 2022, Vol. 115, No. 7, pp. 402–405. © Pleiades Publishing, Inc., 2022.
ISSN 0021-3640, JETP Letters, 2022. © Pleiades Publishing, Inc., 2022.
Russian Text © The Author(s), 2022, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 115, No. 7, pp. 444–447.

CONDENSED
MATTER
Hall Effect in a Doped Mott Insulator: DMFT Approximation
E. Z. Kuchinskiia, N. A. Kuleevaa, D. I. Khomskiib, and M. V. Sadovskiia, *

a Institute for Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016 Russia
b II Physikalisches Institut, Universität zu Köln, Köln, 50937 Germany

*e-mail: sadovski@iep.uran.ru
Received March 1, 2022; revised March 1, 2022; accepted March 1, 2022

In the framework of dynamical mean-field theory, we analyze the Hall effect in a doped Mott insulator as a
parent cuprate superconductor. We consider the partial filling (hole doping) of the lower Hubbard band and
calculate the dependence of the Hall coefficient and Hall number on hole doping, determining the critical
concentration for sign change of the Hall coefficient. Significant temperature dependence of the Hall effect
is noted. Good agreement is demonstrated with the concentration dependence of the Hall number obtained
in experiments in the normal state of YBCO.

DOI: 10.1134/S002136402220036X

1. INTRODUCTION
In recent years much interest was attracted to

experimental studies of Hall effect at low temperatures
in the normal state of high-temperature superconduc-
tors (cuprates), which is achieved in very strong exter-
nal magnetic fields [1–3]. The observed anomalies of
Hall effect in these experiments are usually attributed
to Fermi surface reconstruction due to formation of
(antiferromagnetic) pseudogap and corresponding
quantum critical point [4].

At the same time, rather commonly accepted view
is that cuprates are strongly correlated systems and
their metallic (superconducting) state is realized as a
result of doping of a parent Mott insulator, which can
be described most simply within the Hubbard model.
However, there are almost no works devoted to sys-
tematic studies of doping dependence of Hall effect in
this model. A common question here is what is deter-
mining the sign of the Hall coefficient? At small hole
doping of a parent insulator like La2CuO4 or oxygen-
depleted YBCO, it is obviously determined by hole
concentration δ. Then at what doping level shall we
observe the sign change of Hall coefficient, when is
there a transition from a small Fermi surface to a large
electron one? Solution of this problem is quite import-
ant also for the general transport theory in strongly
correlated systems.

Rather general approach to study the Hubbard
model is the dynamical mean-field theory (DMFT)
[5–7]. The aim of the present paper is a systematic
study of concentration and temperature dependence
of Hall effect for different doping levels in the lower
Hubbard band within DMFT approach, as well as
comparison of theoretical results with experiments on

YBCO [2]. We shall see that surprisingly good agree-
ment with experiment at quantitative level can be
achieved even for this elementary model.

2. BASIC RELATIONS
In DMFT [5–7] the electron self-energy in single-

particle Green’s function  is local and indepen-
dent of momentum. Due to this locality both the usual
and Hall conductivities are completely determined by
the spectral density:

(1)

In particular the static conductivity is given by the
expression

(2)

while Hall conductivity has the form [5]

(3)

Here, a is the lattice parameter,  is the electronic
dispersion,  is the Fermi distribution, and H is the
magnetic field along the z axis. Thus, the Hall coeffi-
cient
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Fig. 1. (Color online) Density of states in the doped Mott
insulator for different temperatures obtained with the
Hubbard model parameters shown in the figure,  is the
initial bandwidth from Eq. (5). The inset shows the density
of states in a wider energy interval including the upper
Hubbard band.
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Fig. 2. (Color online) Hall coefficient versus band filling at
(empty symbols) low and (filled symbols) high tempera-
tures for the model of the two-dimensional electron spec-
trum (5) with transfers only between nearest neighbors
( ).
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is also completely determined by the spectral density
, which will be calculated within DMFT [5–7].

To solve an effective single-impurity Anderson model
in DMFT, we used numerical renormalization group
[8].

We performed rather extensive calculations of Hall
effect for different models of electronic spectrum.
Below, keeping in mind comparison with the experi-
mental data on YBCO, we limit ourselves to the results
obtained for two-dimensional tight-binding model of
electronic spectrum:

(5)

In this model we shall consider here two cases:

(i) the model with electron transfers only between
nearest neighbors ( ) and with complete elec-
tron–hole symmetry;

(ii) the case of , which qualitatively cor-
responds to YBCO.

For other cuprates we should use different values of
 ratio.

Further on, for two-dimensional models used, the
static and Hall conductivities will be measured in the
units of universal two-dimensional conductivity

 and , respectively. Correspond-
ingly, the Hall coefficient (4) is measured in units of
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3. RESULTS OF CALCULATIONS 
AND COMPARISON WITH EXPERIMENT

For strongly correlated systems Hall coefficient is
essentially dependent on temperature. At low tem-
peratures in these systems, when treated in DMFT
approximation, besides the upper and lower Hubbard
bands also a narrow band appears close to a narrow
band forms close to Fermi level forming the so-called
quasiparticle peak in the density of states. In the hole
doped Mott insulator (in the following we consider
only the hole doping) this peak lies close to the upper
edge of the lower Hubbard band (cf. Fig. 1). Thus, at
low temperatures the Hall coefficient is mainly depen-
dent on the filling of this quasiparticle band. At higher
temperatures (of the order or higher than the width of
quasiparticle peak) the quasiparticle peak broadens
and the Hall coefficient is determined by the filling of
the lower Hubbard band. Thus, it is necessary to con-
sider two rather different temperature regimes for Hall
effect.

In the low temperature regime both the amplitude
and width of quasiparticle peak depend on band filling
and temperature. Temperature growth leads to the
broadening of the quasiparticle peak and to some dis-
placement of the Fermi level below the maximum of
this peak (cf. Fig. 1). This may lead to a noticeable
drop of Hall coefficient, though further increase in the
temperature broadens the quasiparticle peak and leads
to the growth of this coefficient. Significant depen-
dence of quasiparticle peak on band filling in low tem-
perature regime leads to the regions of nonmonotonic
doping dependence of the Hall coefficient (cf. Fig. 2).

In high temperature regime the quasiparticle peak
is strongly broadened and is practically absent due to
temperature. In this case, deeply in the hole doped
Mott insulator the Hall coefficient is in fact deter-
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Fig. 3. (Color online) Hall coefficient versus band filling at
(empty symbols) low and (filled symbols) high tempera-
tures for the model of the two-dimensional electron spec-
trum (5) with transfers between nearest and next-nearest
neighbors ( ).
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Fig. 4. (Color online) (Stars) Hall number  calculated in
this work versus doping in comparison with (blue circles)
experiment [2] on YBCO,  is the hole concen-
tration.

'

Hn

δ −= 1 2n
mined by filling of the lower Hubbard band (the upper
Hubbard band is significantly higher in energy and is
practically empty). In this situation, in the model with
electron–hole symmetry ( ) we can qualitatively
estimate the band filling corresponding to sign change
of Hall coefficient as follows. Consider paramagnetic
phase with , so that in the following n
denotes electron density per single spin projection,
while the total electron density is . It is natural to
assume that the sign change of the Hall coefficient
takes place close to half-filling of the lower Hubbard
band . Consider the states with “upper” spin
projection, then the total number of states in the lower
Hubbard band is . Then the band filling
is obtained as . Thus,
for the band filling corresponding to a sign change of
the Hall coefficient we get .

The same result is easily obtained also in the Hub-
bard I approximation, where the Green’s function for
spin up electrons is written as [9]

(6)

where  is the quasiparticle spectrum in upper and
lower Hubbard bands. We can see that in this approx-
imation the number of states with spin-up projection
in the lower Hubbard band (first term in (6)) is really

. During hole doping of Mott insulator, the main
band filling goes into the lower Hubbard band, so that

(7)
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Then for half-filled lower Hubbard band 
and the sign of Hall effect (effective mass of quasipar-
ticles) changes, so that we get  again.

From Fig. 2 it is easily seen that the high-tempera-
ture behavior of Hall coefficient in doped Mott insu-
lator ( ) in case of the complete electron–
hole symmetry ( ) fully supports this estimate. In
case of noticeable breaking of this symmetry the sim-
ple estimate does not work, as even in the absence of
correlations the sign change of Hall coefficient is
observed not at half-filling (cf. Fig. 3).

It should be noted that the quasiparticle peak in the
density of states is widened and suppressed not only by
temperature but also by disorder [10, 12], as well as by
pseudogap fluctuations, which are completely ignored
in local DMFT approach [11, 12]. Thus, the range of
applicability of the simple estimates made above for
electron–hole symmetric case in reality may be sig-
nificantly wider.

In Fig. 4 we show the comparison of our calcula-
tions for the Hall number (Hall concentration)

 for typical model parameters with experi-

mental data for YBCO from [2]. We can see that even
for this, rather arbitrary, choice of parameters we
obtain almost quantitative agreement with experi-
ment, with no assumptions on Hall effect connection
with the Fermi surface reconstruction by pseudogap
and closeness to corresponding quantum critical
point, which were used in [2–4]. It is more or less
obvious that similar data of [3] for NLSCO can be
interpreted within our model with appropriate change
of parameters  and U. Thus, it is quite possible that
our interpretation of Hall effect in cuprates based on
the doping of lower Hubbard band of Mott insulator
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can be a viable alternative to the picture of quantum
critical point.

It may be of great interest to make the detailed
studies of the Hall effect in the vicinity of critical con-
centration corresponding to the sign change of Hall
coefficient (divergence of Hall number). This can be
done in the systems (cuprates), where such sign
change takes place under doping.

4. CONCLUSIONS
We have studied the behavior of the Hall coeffi-

cient in metallic phase appearing due to hole doping of
the lower Hubbard band of Mott insulator. The change
of sign of Hall effect in simplest (symmetric) case
takes place close to doping  per single spin
projection or total electron density 2/3 in the lower
Hubbard band, corresponding to hole doping

, though in general case it depends
rather strongly on the choice of model parameters.
This concentration follows from simple qualitative
estimates and is not related to more sophisticated fac-
tors, such as change of topology of Fermi surface or
quantum critical points.

More than satisfactory agreement of theoretical
concentrations dependencies obtained in the experi-
ments on YBCO [2] shows, that our model may be a
reasonable alternative to the picture of Hall effect in
the vicinity of quantum critical point, related to clos-
ing pseudogap [4].
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