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Abstract—We have studied disordering effects on the coefficients of Ginzburg–Landau expansion in powers
of superconducting order parameter in the attractive Anderson–Hubbard model within the generalized
DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling
region, where superconductivity is described by BCS model, to the strong coupling region, where the super-
conducting transition is related with Bose–Einstein condensation (ВЕС) of compact Cooper pairs formed at
temperatures essentially larger than the temperature of superconducting transition, and a wide range of dis-
order—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semiel-
liptic bare density of states, disorder’s influence upon the coefficients A and В of the square and the fourth
power of the order parameter is universal for any value of electron correlation and is related only to the general
disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gra-
dient term expansion coefficient C. In the usual theory of “dirty” superconductors, the С coefficient drops
with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient С is very sensitive to
the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of
the Anderson insulator. In the region of BCS–ВЕС crossover and in ВЕС limit, the coefficient С and all
related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disor-
der dependence of both penetration depth and coherence lengths, as well as of related slope of the upper crit-
ical magnetic field at superconducting transition, in the region of very strong coupling.

DOI: 10.1134/S1063776117060139

1. INTRODUCTION
The studies of disorder influence on superconduc-

tivity have a rather long history. The pioneer works by
Abrikosov and Gor’kov [1–4] considered the limit of
weak disorder (pFl @ 1, where pF is the Fermi momen-
tum and l is the mean free path) and weak coupling
superconductivity well described by BCS theory. The
notorious “Anderson theorem” on superconducting
critical temperature Tc of superconductors with “nor-
mal” (nonmagnetic) disorder [5, 6] is usually also
referred to these limits.

The generalization of the theory of “dirty” super-
conductors to the case of strong enough disorder
(pFl ~ 1) (and further up to the region of Anderson
transition) was made in [7–9], where superconductiv-
ity was also considered in the weak coupling limit.

The problem of BCS theory generalization to the
strong coupling region has also been studied for a long

time. Significant progress in this direction was
achieved by Nozieres and Schmitt-Rink [10], who
proposed an effective method to study the crossover
from BCS-type behavior in the weak coupling region
to Bose–Einstein condensation (ВЕС) in the strong
coupling region. At the same time, the problem of
superconductivity of disordered systems in the limit of
strong coupling and in the BCS–ВЕС crossover
region remains relatively undeveloped.

One of the simplest models to study the BCS–ВЕС
crossover is the attractive Hubbard model. The most
successful approach to the studies of Hubbard model,
both to describe strongly correlated systems in case of
repulsive interactions and to study BCS–ВЕС cross-
over in case of attraction, is the dynamical mean-field
theory (DMFT) [11–13].

In recent years, we have developed the generalized
DMFT+Σ approach to the Hubbard model [14–19],
which is very convenient to the description of different
additional “external” (as compared to DMFT) inter-1 The article is published in the original.
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actions. In particular, this approach is well suited to
describe also the two-particle properties, such as opti-
cal (dynamic) conductivity [18, 20].

In [21], we have used this approach to analyze sin-
gle-particle properties of the normal phase and optical
conductivity in the attractive Hubbard model. Further
on, we used the DMFT+Σ method in [22] to study
disorder effects on superconducting critical tempera-
ture, which was calculated within the Nozieres–
Schmitt-Rink approach. In particular, for the case of
the semielliptic model of the bare density of states,
which is adequate to describe three-dimensional sys-
tems, we have demonstrated numerically that disorder
influence upon the critical temperature (for the whole
range of interaction parameters) is related only to the
general widening of the bare band (density of states) by
disorder. In [23], we have presented an analytic deri-
vation of such disorder influence (in DMFT+Σ
approximation) on all single-particle properties and
the temperature of superconducting transition for the
case of the semielliptic band.

Starting with the classic paper by Gor’kov [3] it is
well known that Ginzburg–Landau expansion plays
the fundamental role in the theory of “dirty” super-
conductors, allowing the effective treatment of disor-
der dependence of different physical properties close
to superconducting critical temperature [6]. The gen-
eralization of this theory to the region of strong disor-
der (up to Anderson metal–insulator transition) was
also based upon microscopic derivation of the coeffi-
cients of this expansion [7–9]. However, as noted
above, all these derivations were performed in the
weak coupling limit of BCS theory.

In [24], we have combined the Nozieres–Schmitt-
Rink and DMFT+Σ approximations within the
attractive Hubbard model to derive coefficients of
homogeneous Ginzburg–Landau expansion A and В
before the square and the fourth power of supercon-
ducting order parameter, demonstrating the universal
disorder influence on coefficients A and В and the
related discontinuity of specific heat at the transition
temperature. After that, in [25], we have studied the
behavior of coefficient С before the gradient term of
Ginzburg–Landau expansion, where such universal-
ity is absent. In this work, we have only considered this
coefficient in the region of weak disorder (pFl @ 1) in
the “ladder” approximation for impurity scattering, as
it is usually done in the standard theory of “dirty”
superconductors [3], though for the whole range of
pairing interactions including the BCS–ВЕС cross-
over region and the limit of very strong coupling.
In fact, here we have neglected the effects of Anderson
localization, which can significantly change the
behavior of the coefficient С in the limit of strong dis-
order (pFl ~ 1) [7–9].

In this work, we shall concentrate mainly on the
study of the coefficient С in the region of strong disor-

der, when Anderson localization effects become rele-
vant.

2. HUBBARD MODEL WITHIN DMFT+Σ 
APPROACH AND THE NOZIERES–SCHMITT-

RINK APPROXIMATION
We consider the disordered nonmagnetic attractive

Anderson–Hubbard model, described by the Hamil-
tonian:

(1)

where t > 0 is transfer amplitude between nearest
neighbors, U is the Hubbard-like onsite attraction,
niσ = aiσ is electron number operator at a given site,

aiσ ( ) is annihilation (creation) operator of an elec-
tron with spin σ, and local energies  are assumed to
be independent random variables at different lattice
sites. For the validity of the standard “impurity” dia-
gram technique [26, 27] we assume the Gaussian dis-
tribution for energy levels :

(2)

Distribution width W is the measure of disorder, while
the Gaussian field of energy levels (independent on
different sites—“white” noise correlation) induces the
“impurity” scattering, which is described by the stan-
dard approach, based upon the calculation of the aver-
aged Green’s functions [27].

The generalized DMFT+Σ approach [14–17]
extends the standard dynamical mean-field theory
(DMFT) [11–13] introducing the additional “external”
self-energy part (SEP) Σp(ε) (in general momentum
dependent), which originates from any interaction out-
side the DMFT, and provides an effective procedure to
calculate both single-particle and two-particle proper-
ties [18, 20]. The success of such a generalized approach
is connected with the choice of single-particle Green’s
function in the following form:

(3)

where ε(p) is the “bare” electronic dispersion, while
the total SEP is an additive sum of Hubbard-like local
SEP Σ(ε) and “external” Σp(ε), neglecting the interfer-
ence between Hubbard-like and “external” interac-
tions. This allows us to conserve the system of self-
consistent equations of the standard DMFT [11–13].
At the each step of DMFT iterations the “external”
SEP Σp(ε) is recalculated with the use of some approx-
imate scheme, corresponding to the form of additional
interaction, while the local Green’s function is also
“dressed” by Σp(ε) at each step of the standard DMFT
procedure.
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The “external” SEP, entering DMFT+Σ cycle, in
the problem of disorder scattering under consideration
here [18, 19], is taken in the simplest (self-consistent
Born) approximation, neglecting the “crossing” dia-
grams of impurity scattering, which gives:

(4)

To solve the effective single Anderson impurity
problem of DMFT we use here, as in our previous
papers, the quite efficient impurity solver using the
numerical renormalization group (NRG) [28].

In the following, we are using the “bare” band with
semielliptic density of states (per unit cell with lattice
parameter a and single spin projection), which is a
rather good approximation in the three-dimensional
case:

(5)

where D defines the half–width of the conduction
band.

In [23], we have shown that in the DMFT+Σ
approach for the model with semi-elliptic density of
states all effects of disorder upon single-particle proper-
ties reduce only to the band widening due to disorder,
i.e., to the replacement D → Deff, where Deff is the effec-
tive half-width of the “bare” band in the absence of
electronic correlations (U = 0), widened by disorder:

(6)

The “bare” density of states (in the absence of U)
“dressed” by disorder:
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remains semielliptic also in the presence of disorder.
It should be noted, that in other models of the “bare”
band disorder effect is not reduced only to the widen-
ing of the band, changing also the form of the density
of states, so that there is no complete universality of
disorder influence on single-particle properties,
reducing to a simple substitution D → Deff. However,
in the limit of strong enough disorder of interest to us,
the “bare” band becomes practically semielliptic,
restoring such universality [23].

All calculations below, as in our previous works,
were performed for the rather typical case of the quar-
ter–filled band (the number of electrons per lattice
site is n = 0.5).

To consider superconductivity for the wide range of
pairing interaction U, following [21, 23], we use the
Nozieres–Schmitt-Rink approximation [10], which
allows qualitatively correct (though approximate)
description of the BCS–ВЕС crossover region. In this
approach, we determine the critical temperature Tc
using the usual BCS-type equation [23]:

(8)

with chemical potential μ determined via DMFT+Σ
calculations for different values of U and W, i.e., from
the standard equation for the number of electrons
(band filling), determined by the Green’s function
given by Eq. (3), allowing us to find Tc for the wide
range of the model parameters including the regions of
BCS–ВЕС crossover and strong coupling, as well as
for different levels of disorder. This reflects the physi-
cal meaning of the Nozieres–Schmitt-Rink approxi-
mation—in the weak coupling region, transition tem-
perature is controlled by the equation for Cooper
instability (8), while, in the strong coupling region, it
is determined as ВЕС temperature controlled by
chemical potential.

In [23], it was shown that disorder’s influence on
the critical temperature Tc and single-particle charac-
teristics (e.g., density of states) in the model with
semielliptic “bare” density of states is universal and
reduces only to the change of the effective bandwidth.
In Fig. 1, just for illustrative purposes, we show the
universal dependence of the critical temperature Tc on
Hubbard attraction for different levels of disorder [23].
In the weak coupling region, the temperature of super-
conducting transition is described well by the BCS
model (for comparison, in Fig. 1, the dashed line rep-
resents the dependence obtained for Tc from Eq. (8)
with chemical potential independent of U and deter-
mined by quarter filling of the “bare” band), while for
the strong coupling region the critical temperature is
mainly determined by the condition of Bose conden-
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Fig. 1.  (Color online) Universal dependence of the tem-
perature of superconducting transition on the strength of
Hubbard attraction for different levels of disorder.
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sation of Cooper pairs and drops with the growth of U
as t2/U, going through the maximum at U/2Deff ~ 1.

The review of these and other results obtained for
disordered Hubbard model in DMFT+Σ approxima-
tion can be found in [19].

3. GINZBURG–LANDAU EXPANSION

Ginzburg–Landau expansion for the difference of
free-energy densities of superconducting and normal
states is written in the standard form [27]:

(9)

where Δq is the Fourier component of the order
parameter Δ.

This expansion (9) is determined by the loop–
expansion diagrams for free-energy of an electron in
the field of f luctuations of the order parameter
(denoted by dashed lines) with small wavevector q
[27], shown in Fig. 2 [27].

In the framework of the Nozieres–Schmitt-Rink
approach [10], we use the weak coupling approxima-
tion to analyze Ginzburg–Landau coefficients, so that
the “loops” with two and four Cooper vertices, shown
in Fig. 2, do not contain contributions from Hubbard
attraction and are “dressed” only by impurity scatter-
ing. However, like in the case of Tc calculation, the
chemical potential, which is essentially dependent on
the coupling strength and in the strong coupling limit
actually controls the condition of Bose condensation
of Cooper pairs, should be determined within full
DMFT+Σ procedure.

In [24] it was shown that in this approach the coef-
ficients A and В are determined by the following
expressions:
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For T → Tc the coefficient A(T) takes the usual
form:

(12)
In BCS limit, where T = Tc → 0, we obtain for

coefficients α and В the standard result [27]:

(13)

In the general case, the coefficients A and В are
determined only by the disorder widened density of
states (ε) and chemical potential. Thus, in the case
of semielliptic density of states the dependence of
these coefficients on disorder is due only to the simple
replacement D → Deff, leading to universal (indepen-
dent of the level of disorder) curves for properly nor-
malized dimensionless coefficients (α(2Deff)2 and
B(2Deff)3) on U/2Deff) [24]. In fact, the coefficients α
and В are rapidly suppressed with the growth of
dimensionless coupling U/2Deff.

It should be noted that Eqs. (10) and (11) for coef-
ficients A and В were obtained in [24] using the exact
Ward identities and remain valid also in the limit of
arbitrarily large disorder (including the region of
Anderson localization).

Universal dependence on disorder, related to wid-
ening of the band D → Deff, is observed, in particular,
for specific heat discontinuity at the transition point,
which is determined by coefficients α and В [24]:

(14)

From diagrammatic representation of Ginzburg–
Landau expansion, shown in Fig. 2, it is clear that the
coefficient С is determined by the coefficient before q2

in a Cooper two-particle loop (first term in Fig. 2).
Then we obtain the following expression:
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where Ψp, p'(εn, q) is a two-particle Green’s function in
a Cooper channel (see Fig. 3), “dressed” in the
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ance (in the absence of magnetic field and magnetic
impurities) and because of the static nature of impu-
rity scattering “dressing” two-particle Green’s func-
tion Ψp, p'(εn, q), we can reverse here the direction of all
lower electron lines with simultaneous change of the
sign of all momenta (see Fig. 3). As a result, we obtain:

(16)

where εn are Fermionic Matsubara frequencies, p± = p ±

, Φp, p'(ωm = 2εn, q) is the two-particle Green’s func-

tion in the diffusion channel, dressed by impurities.
Then we obtain Cooper susceptibility as:

(17)

Performing the standard summation over Fermi-
onic Matsubara frequencies [26, 27], we obtain:
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where ΦRA(ω, q) = (ω, q). To find the loop
ΦRA(ω, q) in strongly disordered case (e.g., in the
region of Anderson localization) we can use the
approximate self-consistent theory of localization [27,
29–33]. Then this loop contains the diffusion pole of
the following form [19]:
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The generalized diffusion coefficient of the self-
consistent theory of localization [27, 29–33] for our
model can be found as the solution of the following
self–consistency equation [18]:

(21)

where ω  = 2ε, Δ (ω) = (ε) – (–ε), d is
space dimension, and velocity 〈v〉 is defined by the fol-
lowing expression:
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Due to the limits of diffusion approximation sum-
mation over q in Eq. (21) should be limited by the fol-
lowing cut-off [27, 32]:
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frequency dependent generalized diffusion coefficient
in “ladder” approximation as:

(24)

Then  entering the self-consistency Eq. (21) can

be rewritten via this diffusion coefficient D0 in “lad-
der” approximation, so that Eq. (21) takes the follow-
ing form:

(25)

Using the approach of [25], the diffusion coefficient
D0(ω = 2ε) in the “ladder” approximation can be
derived analytically. In fact, in the “ladder” approxi-
mation the two-particle Green’s function (19) takes
the following form:
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Then we obtain:
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Then the diffusion coefficient D0 can be written as:
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4. MAIN RESULTS
The coherence length at given temperature ξ(T)

gives a characteristic scale of inhomogeneities of the
order parameter Δ:

(31)

Coefficient A changes its sign and becomes zero at a
critical temperature: A = α(T – Tc), so that

(32)

where we have introduced the coherence length of a
superconductor:

(33)

which reduces to a standard expression in the weak
coupling region and in the absence of disorder [27]:

(34)

Penetration depth of magnetic field into supercon-
ductor is defined by:

(35)

Then:

(36)

where we have introduced:
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(37)

which in the absence of disorder has the form:

(38)

As λBCS is independent of Tc, i.e., of coupling strength,
it is convenient to use for normalization of penetration
depth λ (37) at arbitrary U and W.

Close to Tc the upper critical magnetic field Hc2 is
determined by the Ginzburg–Landau coefficients as:

(39)

where Φ0 = cπ/e is a magnetic f lux quantum. Then the
slope of the upper critical filed close to Tc is given by:

(40)

In Fig. 4 we show the dependence of coefficient С
on the strength of Hubbard attraction for different dis-
order levels. In this figure and in the following we use
filled symbols and continuous lines corresponding to
the results of calculations taking into account localiza-
tion corrections, while unfilled symbols and dashed
lines correspond to calculations in the “ladder”
approximation. Coefficient С is essentially a two-par-
ticle characteristic and it does not follow universal
behavior on disorder, as in case of coefficients A and B,
and disorder dependence here is not reduced only to
widening of effective bandwidth by disorder. Corre-
spondingly, in the dependence of С on coupling
strength, where all energies are normalized by effective
bandwidth 2Deff, we do not observe a universal curve
for different levels of disorder [25], in contrast to sim-
ilar dependencies for coefficients α and B. In fact,
coefficient С is rapidly suppressed with the growth of
coupling strength. Especially strong suppression is
observed in the weak coupling region (cf. insert in Fig. 4).
Localization corrections become relevant in the limit
of strong enough disorder (W/2D > 0.25). Under such
strong disordering localization corrections signifi-
cantly suppress coefficient С in weak coupling region
(cf. dashed lines (“ladder” approximation) and con-
tinuous curves (with localization corrections) for
W/2D = 0.37 and 0.5). In strong coupling region for
U/2D > 1 localization corrections, in fact, do not
change the value of coefficient C, as compared to the
results of “ladder” approximation, even in the limit of
strong disorder for W/2D > 0.37, where the system
becomes an Anderson insulator.

In Fig. 5, we show the dependencies of coefficient С
on disorder level for different values of coupling strength
U/2D. In the limit of weak coupling (U/2D = 0.1), we
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Fig. 4. (Color online) Dependence of С coefficient on the
strength of Hubbard attraction for different levels of disor-
der (a is lattice parameter). Filled symbols and continuous
lines correspond to calculations taking into account local-
ization corrections. Unfilled symbols and dashed lines
correspond to the “ladder” approximation.
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observe rather rapid suppression of coefficient С with
the growth of disorder in case of weak enough impurity
scattering. In the region of strong enough disorder in
the “ladder” approximation, we can observe some
growth of coefficient С with the increase of disorder,
which is related mainly with significant widening of
the band by such strong disorder and corresponding
drop of the effective coupling U/2Deff. However, local-
ization corrections, which are significant at large dis-
order W/2D > 0.25, actually lead to suppression of
coefficient С with the growth of disorder in the limit of
strong impurity scattering. In the intermediate cou-
pling region (U/2D = 0.4–0.6) coefficient С in the
“ladder” approximation is only growing slightly with
increasing disorder. In the ВЕС limit (U/2D > 1) coef-
ficient С is practically independent of impurity scat-
tering both in the “ladder” approximation and with
the account of localization corrections. In the ВЕС
limit the account of localization corrections in fact do
not change the value of С in comparison with the “lad-
der” approximation.

As the Ginzburg–Landau expansion coefficient α
and В demonstrate the universal dependence on disor-
der, Anderson localization in fact does not influence
them at all, while coefficient С in the weak coupling
region is strongly affected by localization corrections,
being almost independent of them in the ВЕС limit,
the physical properties depending on С will be also sig-
nificantly changed by localization corrections in the
weak coupling region, becoming practically indepen-
dent of localization in the ВЕС limit.

Let us now discuss the behavior of physical proper-
ties. Dependence of coherence length on Hubbard
attraction strength is shown in Fig. 6. We can see that
in the weak coupling region (cf. insert at Fig. 6) coher-

ence length rapidly drops with the growth of U for any
disorder, reaching the value of the order of lattice
parameter a in the intermediate coupling region of
U/2D ≈ 0.4–0.6. Further growth of coupling strength
changes the coherence length only slightly. The account
of localization corrections for coherence length is sig-
nificant only at large disorder (W/2D > 0.25). We see
that localization corrections lead to significant sup-
pression of coherence length in the BCS limit of weak
coupling and practically do not change the coherence
length in the ВЕС limit.

In Fig. 7, we show the dependence of penetration
depth, normalized by its BCS value in the absence of
disorder (38), on the strength of Hubbard attraction U
for different levels of disorder. In the absence of impu-
rity scattering, penetration depth grows with the
increase of the coupling strength. In BCS weak cou-
pling limit disorder leads to a fast growth of penetra-
tion depth (for “dirty” BCS superconductors λ ~ l–1/2,
where l is the mean free path). In ВЕС strong coupling
limit disorder only slightly diminish the penetration
depth (cf. Fig. 10a). This leads to suppression of penetra-
tion depth with disorder with the growth of Hubbard
attraction strength in the region of weak enough cou-
pling and to the growth of λ with U in ВЕС strong cou-
pling region. The account of localization corrections is
significant only in the limit of strong disorder (W/2D >
0.25) and leads to noticeable growth of penetration
depth as compared to the “ladder” approximation in the
weak coupling region. In the ВЕС limit the influence of
localization on penetration depth is just insignificant.

Dependence of the slope of the upper critical mag-
netic field on the strength of Hubbard attraction for
different disorder levels is shown in Fig. 8. In the limit
of weak enough impurity scattering, until Anderson

Fig. 5. (Color online) Dependence of coefficient С nor-
malized by its value in the absence of disorder for different
values of Hubbard attraction U. Dashed lines—“ladder”
approximation, continuous curves—calculations with the
account of localization corrections.
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localization corrections remain unimportant, the
slope of the upper critical field grows with the growth
of the coupling strength. The fast growth of the slope
is observed with the growth of U in the region of weak
enough coupling, while in the limit of strong coupling
the slope is rather weakly dependent on U/2D. In the
region of strong enough disorder (W/2D > 0.25) the
account of localization corrections becomes quite
important—it qualitatively changes the behavior of the
upper critical held. While the “ladder” approximation
(dashed curves) conserves the behavior of the slope of
the upper critical held typical for the region of weak dis-
order, where the slope grows with the growth of the cou-
pling strength, the account of Anderson localization
(W/2D ≥ 0.37) leads to a strong increase of the slope of
the upper critical held in the weak coupling limit. As a
result, in Anderson insulator the slope of the upper criti-
cal hied rapidly drops with the growth of U in the weak
coupling limit and just insignificantly grows with the
growth of U in ВЕС limit. Note that the account of local-
ization corrections is also unimportant for for the slope
of the upper critical held in the strong coupling limit.

Let us consider now dependencies of physical
properties on disorder. In Fig. 9 we show dependence
of coherence length ξ on disorder for different values
of coupling. In the BCS limit for weak coupling and
for weak enough impurity scattering we observe the
standard “dirty” superconductor dependence ξ ∝ l1/2,
i.e., the coherence length rapidly drops with the
growth of disorder (cf. insert in Fig. 9a). However, at
strong enough disorder in “ladder” approximation
(dashed lines) coherence length starts to grow with
disorder (cf. Fig. 9b and insert in Fig. 9a), which is
mainly related to the widening of the band by disorder
and corresponding suppression of U/2Deff. Taking into
account localization corrections leads to noticeable
suppression of coherence length in comparison with

the “ladder” approximation in the limit of strong dis-
order, which leads to restoration of general suppres-
sion of ξ with the growth of disorder in this limit.
In the standard BCS model with a bare band of
infinite width coherence length drops with the growth
of disorder ξ ∝ l1/2 and close to Anderson transition
this suppression of ξ even accelerates, so that ξ ∝ l2/3

[7–9], which differs from the present model here,
where close to Anderson coherence length is rather
weakly dependent on disorder, which is related to sig-
nificant widening of the band by disorder. With growth
of coupling, for U/2D > 0.4–0.6 coherence length ξ
becomes of the order of lattice parameter and is almost
disorder independent, while in ВЕС limit of very
strong coupling U/2D = 1.4, 1.6 the growth of disorder
up to very strong values (W/2D = 0.5) leads to sup-
pression of coherence length approximately by the fac-
tor of two (cf. Fig. 9b). Again we see, that in the limit
of strong coupling the account of localization correc-
tions is rather insignificant.

Dependence of penetration depth on disorder for dif-
ferent values of Hubbard attraction is shown in Fig. 10a.
In weak coupling limit disorder in accordance with the
theory of “dirty” superconductors leads to the growth
of penetration depth (λ ∝ l–1/2). With increase of the
coupling strength the growth of penetration depth
slow down and in the limit of very strong coupling, for
U/2D = 1.4, 1.6, penetration depth is even slightly sup-
pressed by disorder. The account of localization cor-
rections leads to some quantitative growth of penetra-
tion depth in comparison with the results of the “lad-
der” approximation in the weak coupling region.
Qualitatively the dependence of penetration depth on
disorder does not change. In ВЕС limit of strong cou-
pling the account of localization corrections is rather
irrelevant. In Fig. 10b we show the disorder depen-
dence of dimensionless Ginzburg–Landau κ = λ/ξ.

Fig. 8. (Color online) Dependence of the slope of the
upper critical field on the strength of Hubbard attraction U
for different level of disorder.
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We can see, that in the weak coupling limit Ginzburg–
Landau parameter is rapidly growing with disorder (cf.
insert in Fig. 10b) in accordance with the theory of
“dirty” superconductors, where κ ∝ l–1. With the
increase of coupling strength the growth of the Ginz-
burg–Landau parameter with disorder slows down
and in the limit of strong coupling U/2D > 1 parameter
κ is practically disorder independent. The account of
localization corrections quantitatively increases Ginz-
burg–Landau parameter in Anderson insulator phase
(W/2D ≥ 0.37) in the strong coupling region. In the
strong coupling region localization corrections are
again irrelevant.

In Fig. 11 we show the disorder dependence of the
slope of the upper critical field. In the weak coupling
limit we again observe the behavior typical for “dirty”
superconductors—the slope of the upper critical field
grows with the growth of disorder (cf. Fig. 11a and the

insert in Fig. 11b). The account of localization correc-
tions in weak coupling limit sharply increases the slope
of the upper critical field in comparison with the result
of the “ladder” approximation in the region of Ander-
son insulator (W/2D ≥ 0.37). As a result, in an Ander-
son insulator the slope of the upper critical field grows
with the increase of impurity scattering much faster
than in the “ladder” approximation. In intermediate
coupling region (U/2D = 0.4–0.8) the slope of the
upper critical field is practically independent of impu-
rity scattering in the region of weak disorder. In the
“ladder” approximation such behavior is conserved
also in the region of strong disorder. However, the
account of localization corrections leads to significant
growth of the slope with disorder in Anderson insula-
tor phase. In the limit of very strong coupling and
weak disorder the slope of the upper critical field can
even slightly diminish with disorder, but in the limit of

Fig. 10. (Color online) Dependence of penetration depth (a) and Ginzburg–Landau parameter (b) on disorder level for different
values of Hubbard attraction. Inset shows the growth of the Ginzburg–Landau parameter with disorder in weak coupling limit.
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strong disorder the slope grows with the growth of
impurity scattering. In the ВЕС limit the account of
localization corrections is irrelevant and only slightly
changes the slope of the upper critical field as com-
pared with the results of the “ladder” approximation.

5. CONCLUSIONS
In this paper in the framework of the Nozieres–

Schmitt-Rink approximation and DMFT+Σ general-
ization of dynamical mean field theory we have stud-
ied the effects of disorder (including the strong disor-
der region of Anderson localization) on the Ginz-
burg–Landau coefficients and related physical
properties close to Tc in disordered Anderson–Hub-
bard model with attraction. Calculations were done
for the wide range of attractive potentials U, from weak
coupling region U/2Deff ≪ 1, where instability of nor-
mal phase and superconductivity is well described by
the BCS model, up to the strong coupling limit
U/2Deff ≫ 1, where the transition into the supercon-
ducting state is due to Bose condensation of compact
Cooper pairs, forming at a temperature much higher
than the temperature of superconducting transition.

The growth of the coupling strength U leads to
rapid suppression of all Ginzburg–Landau coeffi-
cients. The coherence length ξ rapidly drops with the
growth of coupling and for U/2D ≈ 0.4 becomes on the
order of lattice spacing and only slightly changes with
further increase of coupling. Penetration depth in
“clean” superconductors grows with U, while in “dirty”
superconductors it drops in the weak coupling and
grows in ВЕС limit, passing through the minimum in
the intermediate coupling region U/2D ≈ 0.4–0.8.
In the region of weak enough disorder (W/2D < 0.37),
when Anderson localization effect are not very
important, the slope of the upper critical field grows
with the growth of U. However, in the limit of weak
coupling in Anderson insulator phase localization

effects sharply increase the slope of the upper critical
field, while in ВЕС limit of strong coupling localiza-
tion effects become unimportant. As a result, the slope
of the upper critical field drops with the growth of U in
BCS limit, passing through the minimum at U/2D ≈
0.4–0.8. The specific heat discontinuity grows with
Hubbard attraction U in the weak coupling region and
drops in the strong coupling limit, passing through the
maximum at U/2Deff ≈ 0.55 [24].

Disorder influence (including the strong disorder
in the region of Anderson localization) upon the criti-
cal temperature Tc and Ginzburg–Landau coefficients
A and В and the related discontinuity of specific heat
is universal and is completely determined only by dis-
order widening of the bare band, i.e., by the replace-
ment D → Deff. Thus, even in the strong coupling
region, the critical temperature and Ginzburg–Lan-
dau coefficients A and В satisfy the generalized Ander-
son theorem—all influence of disorder is related only
to the change of the density of states. Disorder influ-
ence on coefficient С is not universal and is related not
only to the bare band widening.

Coefficient С is sensitive to the effects of Anderson
localization. We have studied this effect for a wide
range of disorder, including the region of Anderson
insulator. To compare and extract explicitly effects of
Anderson localization we also studied coefficient С in
the “ladder” approximation for disorder scattering.
In the weak coupling limit U/2Deff ≪ 1 and weak dis-
order W/2D < 0.37 the behavior of coefficient С and
related physical properties is well described by the the-
ory of “dirty” superconductors—coefficient С and
coherence length rapidly drop with the growth of dis-
order, while penetration depth and the slope of the
upper critical field grow. In the region of strong disor-
der (in an Anderson insulator) in BCS limit the behav-
ior of coefficient С is strongly affected by localization
effects. In the “ladder” approximation the band wid-
ening effect leads to the growth of coefficient С with

Fig. 11. (Color online) Dependence of the slope of the upper critical field (a) and this slope, normalized by its value in the absence
of disorder (b), on disorder for different values of Hubbard attraction strength. In the inset we show the growth of the slope with
disorder in weak coupling region.

(a) (b)
U/2D = 0.1 U/2D = 0.1
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8

1.0 1.0
1.4 1.4
1.6 1.6

0

0.5

1.0

2.0

1.5

50

100

150

200

250

300

0.1

0.1 0.2 0.3 0.4 0.50

0

400

200

600

800

0.2 0.3 0.4 0.5
W/2D

0 0.1 0.2 0.3 0.4 0.5
W/2D

W/2D

(d
H

c2
/d

T
) T

c·2
D

·2
πa

2 /Φ
0

(d
H

c2
/d

T
) T

c(W
)/

(d
H

c2
/d

T
) T

c(0
)

(d
H

c2
/d

T
) T

c(W
)

( d
H

c2
/d

T
) T

c(0
)



122

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 125  No. 1  2017

KUCHINSKII et al.

the growth of W [25], however localization effects
restore suppression of coefficient С by disorder and in
Anderson insulator phase. Correspondingly, localiza-
tion effects significantly change physical properties,
related to coefficient C, so that for these properties
qualitatively follow the dependencies characteristic for
“dirty” superconductors—the coherence length is sup-
pressed by disorder, while the penetration depth and the
slope of the upper critical field grow with the growth of
disorder. In the BCS–ВЕС crossover region and in the
ВЕС limit coefficient С and all related physical proper-
ties are rather weakly dependent on disorder. In partic-
ular, in ВЕС limit both coherence length and penetra-
tion depth are slightly suppressed by disorder, so that
their ratio (Ginzburg–Landau parameter) is practically
disorder independent. In the ВЕС limit the effects of
Anderson localization rather weakly affect the coeffi-
cient С and the related physical characteristics.

It should be noted that all results were derived here
under implicit assumption of the self-averaging nature
of superconducting order parameter entering the
Ginzburg–Landau expansion, which is connected
with our use of the standard “impurity” diagram tech-
nique [26, 27]. It is well known [9], that this assump-
tion becomes, in the general case, inapplicable close to
Anderson metal–insulator transition, due to strong
fluctuations of the local density of states developing
here [34] and inhomogeneous picture of supercon-
ducting transition [35]. This problem is very interest-
ing in the context of the superconductivity in the
BCS–ВЕС crossover region and in the region of
strong coupling and deserves further studies.
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