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It is demonstrated that the slope of the upper critical field |d H.2/dT |z, in superconductors with d-wave pairing
drops rather fast with concentration of normal impurities, while in superconductors with anisotropic s-wave
pairing |dHc2/dT|r. grows, and in the limit of strong disorder is described by the known dependences of the
theory of “dirty” superconductors. This allows to use the measurements of H.z in disordered superconductors to
discriminate between these different types of pairing in high-temperature superconductors.

The main problem of the present day physics
of high-temperature superconductors is the de-
termination the nature and type of the Cooper
pairing. A number of experiments and theoreti-
cal models [1] suggest the realization in these sys-
tems of anisotropic pairing with d,2_,>-symmetry
with appropriate zeroes of the gap function at the
Fermi surface. At the same time most of these ex-
periments also agree with the so called anisotropic
s-wave pairing, which follows from some theoret-
ical models [2].

Recently it was shown [3, 4] that controlled dis-
ordering (introduction of normal impurities) can
be an effective method of experimental discrimi-
nation between different types of anisotropic pair-
ing. Disordering leads to different behavior of the
density of states in superconducting state: d-wave
pairing superconductor remains gapless, while in
an anisotropic s-wave superconductor with zeroes
of the gap function, small disordering leads to the
opening of the finite gap on the Fermi surface.

Gap measurements, especially for the differ-
ent directions in the Brillouin zone, are difficult
enough to perform. The aim of the present paper
is to demonstrate that much simpler, in princi-
ple, measurements of the upper critical field H.o
at different degrees of disorder can also provide an
effective method to discern d-wave pairing from
anisotropic s-wave.
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Following Refs.[3, 4], we shall analyze two-
dimensional electronic system with isotropic
Fermi surface and separable pairing potential of
the form:

V(6,9") = =Vn(¢)n(¢) (1)
where ¢-is a polar angle, determining the elec-
tronic momentum direction in the plane, and n(¢)
is given by the following model dependence:

n(6) = { cos (2¢) (d— wave ) )

|cos (2¢)| ( anisotropic s— wave )

In this case the superconducting gap (order pa-
rameter) takes the form: A(¢) = An(¢), and po-
sitions of 1ts zeroes for s and d cases just coincide.
BCS equations for the impure superconductor
are derived in a standard way. After the tradi-
tional analysis T.-equation reduces to [3, 4]:

() =alo (34 52r) 2(3)] @

where 7 - is the usual electron damping due to

impurity scattering. o = 1 for d-wave case and
a = (1—8/7?) for anisotropic s-wave pairing, T,o-
is the transition temperature in the absence of
impurities, ¥(z)- is the usual digamma function.
In case of d-pairing 7. is completely suppressed
for v = v. &~ 0.887,. In anisotropic s-case the
dependence of T, on 7 is much weaker, for v >
Teo we obtain T, ~ Teo[l — aln(y/7Te)].

Ginzburg-Landau expansion for the free-energy
density of a superconducting state up to terms
quadratic over A, can be written as:

Fy— F, :A|Aq|2‘|‘qZC|Aq|2 (4)



and 1s determined by the usual loop-expansion
for the free-energy of an electron in the field of
random fluctuations of the order-parameter with
some small wave vector q. The only unusual thing
is the complete disappearance of the contribu-
tion of “diffusion ladder” in d-wave case due to
symmetry factors of Eq.(2) appearing in the ver-
tices of the loops [5] . Finally, the coefficients
of Ginzburg-Landau expansion can be written in
the following form:

A= AO[(A; C = CQ[(C (5)
where Ag and Cy are the usual expressions for the
case of isotropic s-wave pairing [6]:

-1, _ 7¢(3) v
T, Co = N(0) 4872 T2 (6)

where N(0) - is normal density of states at the
Fermi level, vp-is electron velocity at the Fermi
surface, and all peculiarities of models under con-
sideration are actually contained in dimensionless
coefficients K4 and K. For the impure system
we get rather complicated expression for these co-
efficients, but the appropriate disorder depende-
cies can be analyzed in some detail [5].

Close to T, the upper critical field H.o is de-
termined by:

Ao = N(0)

g0 A
Ho=——— 7
: 27 C ™
where ¢g = c¢m/e — is magnetic flux quantum.

Then the slope of the upper critical field close to
T, is:

‘ dch _ 247T¢)02 TCATA (8)
dT |p.  7CB)vy Ke

Dependence of |dH.»/dT |y, on v/T.o for both
models is shown in Fig.1. We can see that for
the case of d-wave pairing the slope of H.y drops
to zero on the scale of ¥ ~ T,y. For the case of
anisotropic s-wave pairing, on the contrary, the
slope grows with disorder and after some tran-
sition region of ¥ ~ T,y it crosses over to the
usual linear dependence |dH.o/dT|r, ~ 7, which
is characteristic of the theory of “dirty” supercon-
ductors with isotropic s-wave pairing [6]. In our
opinion this sharp difference can be used a sim-
ple enough criterion of experimental discrimina-
tion of d-wave superconductors from anisotropic
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Figure 1. Dependence of normalized slope of the

" _ | dHe dHop
upper critical field h = | 7=\ /|55 1., on

disorder parameter v/T.o. Dashed line - the case
of d-wave pairing, full line - the case of anisotropic
s-wave pairing.

s-wave case. Unfortunately, in case of high-T,
oxides the situation is complicated by the known
nonlinearity of temperature dependence of H.s,
which is observed in rather wide region close to
T..
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