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The optical conductivity of the weakly doped two-dimensional repulsive Hubbard model on the square
lattice with the nearest and next-nearest hoppings is calculated within the generalized dynamical mean-field
�DMFT+�p� approach, which includes correlation length scale � into the standard DMFT equations via the
momentum dependent self-energy �p, with a full account of appropriate vertex corrections. This approach
takes into consideration the nonlocal dynamical correlations induced, e.g., by short-ranged collective spin-
density-wavelike antiferromagnetic spin fluctuations, which �at high enough temperatures� can be viewed as a
quenched Gaussian random field with finite correlation length �. The DMFT effective single-impurity problem
is solved by numerical renormalization group. We consider both the case of correlated metal with the band-
width W�U and that of doped Mott insulator with U�W �U—the value of local Hubbard interaction�. The
optical conductivity calculated within DMFT+�p demonstrates typical pseudogap behavior within the quasi-
particle band, in qualitative agreement with experiments in copper oxide superconductors. For large values of
U, pseudogap anomalies are effectively suppressed.
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I. INTRODUCTION

Pseudogap state is a major anomaly of the electronic
properties of underdoped copper oxides1,2. We believe that
the preferable “scenario” for its formation is most likely
based on the model of strong scattering of electrons by short-
ranged antiferromagnetic �AFM�, spin-density-wave �SDW�
spin fluctuations.2 This scattering mainly transfers momenta
of the order of Q= � �

a , �
a

� �a—the lattice constant of a two-
dimensional lattice�, leading to the formation of structures in
the one-particle spectrum, which are precursors of the
changes in the spectra due to long-range AFM order �period
doubling� with non-Fermi-liquid-like behavior of the spectral
density in the vicinity of the so-called hot spots on the Fermi
surface, appearing at the intersections of the Fermi surface
with antiferromagnetic Brillouin-zone boundary �umklapp
surface�.2

In recent years, a simplified model of the pseudogap state
was studied2–4 under the assumption that the scattering by
dynamic spin fluctuations can be reduced for high enough
temperatures to a static Gaussian random field �quenched
disorder� of pseudogap fluctuations. These fluctuations are
defined by characteristic scattering vectors of the order of Q,
with distribution width determined by the inverse correlation
length of short-range order �=�−1 and by appropriate energy
scale � �typically of the order of the crossover temperature
T* to the pseudogap state2�.

It is also well known that undoped cuprates are antiferro-
magnetic Mott insulators with U�W �U—the value of the
local Hubbard interaction, W—the bandwidth of noninteract-
ing band�, so that correlation effects are very important and
underdoped �and probably also optimally doped� cuprates are
actually typical strongly correlated metals.

The cornerstone of the modern theory of strongly corre-
lated systems is the dynamical mean-field theory �DMFT�.5–9

At the same time, standard DMFT is not appropriate for the
“antiferromagnetic” scenario of pseudogap formation in

strongly correlated metals due to the basic approximation of
the DMFT, which completely neglects nonlocal dynamical
correlation effects.

Different extensions of DMFT were proposed in recent
years to cure this deficiency, such as extended DMFT
�EDMFT�,10,11 which locally includes coupling to nonlocal
dynamical fluctuations, and, most importantly, different ver-
sions of the so-called cluster mean-field theories, such as the
dynamical cluster approximation12 and cellular DMFT.13

However, these approaches have certain drawbacks. First of
all, the effective quantum single impurity problem becomes
rather complex. Thus, majority of computational tools avail-
able for the DMFT can be used only for small enough
clusters,12 which include mostly nearest-neighbor fluctua-
tions. It is especially difficult to apply these methods to the
calculations of two-particle properties, e.g., optical conduc-
tivity.

Recently, we have proposed a generalized DMFT+�p
approach.14–16 This approach, on the one hand, retains the
single-impurity description of the DMFT, which properly ac-
counts for local correlations, and the possibility to use impu-
rity solvers such as numerical renormalization group
�NRG�.25,26 On the other hand, this approach includes non-
local correlations on a nonperturbative model basis, which
allows us to control the characteristic scales and also the
types of nonlocal fluctuations. This latter point allows us to
systematically study the influence of nonlocal fluctuations on
the electronic properties and, in particular, provides valuable
hints on the physical origin and possible interpretation of the
results. Within this approach, we have studied single-particle
properties, such as pseudogap formation in the density of
states of the quasiparticle band for both correlated metal and
doped Mott insulator, evolution of the non-Fermi-liquid-like
spectral density and angle-resolved photoemission spectra,15

“destruction” of Fermi surfaces and formation of Fermi
“arcs,”14 as well as impurity scattering effects.16 This formal-
ism was also combined with modern local-density approxi-
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mation �LDA�+DMFT calculations of the electronic struc-
ture of “realistic” correlated systems to formulate the LDA
+DMFT+�p approach, which was applied for the descrip-
tion of pseudogap behavior in Bi2Ca2SrCu2O8.17

In this paper, we develop our DMFT+�p approach for the
calculations of two-particle properties, such as �dynamic� op-
tical conductivity, which is conveniently calculated within
the standard DMFT.7,8 We show that inclusion of nonlocal
correlations �pseudogap fluctuations� with characteristic
length scale � allows us to describe the pseudogap effects in
longitudinal conductivity of the two-dimensional Hubbard
plane.

The paper is organized as follows. In Sec. II we present a
short description of our DMFT+�p approach. In Sec. III we
derive the basic DMFT+�p expressions for dynamic �opti-
cal� conductivity, as well as formulate recurrence equations
to calculate the p-dependent self-energy and appropriate ver-
tex part, which take into account all the relevant Feynaman
digrams of perturnbation series over pseudogap fluctuations.
The computational details and basic results for optical con-
ductivity are given in Sec. IV. We also compare our results
with that of the standard DMFT. The paper ends with a sum-
mary, Sec. V, including a short overview of related experi-
mental results.

II. BASICS OF THE DMFT+�p APPROACH

As noted above, the basic shortcoming of the traditional
DMFT approach5–9 is the neglect of momentum dependence
of the electron self-energy. To include nonlocal effects while
remaining within the usual “single-impurity analogy,” we
have proposed14–16 the following �DMFT+�p� approach.
First of all, the Matsubara “time” Fourier-transformed single-
particle Green’s function of the Hubbard model is written in
obvious notations as

G�i�,p� =
1

i� + 	 − ��p� − 
�i�� − 
p�i��
,

� = �T�2n + 1� , �1�

where ��i�� is the local contribution to the self-energy of
DMFT type �surviving in the limit of spatial dimensionality
d→�� while �p�i�� is some momentum dependent part. This
last contribution can be due either to electron interactions
with some “additional” collective modes or to order param-
eter fluctuations or may be induced by similar nonlocal con-
tributions within the Hubbard model itself. No double-
counting problem arises in this approach, as discussed in
detail in Ref. 15. At the same time, our procedure does not
represent any systematic 1 /d expansion, as stressed in Refs.
14–16. The basic assumption here is the neglect of all inter-
ference processes of the local Hubbard interaction and non-
local contributions owing to these additional scatterings
�noncrossing approximation for appropriate diagrams�,15 as
illustrated by the diagrams in Fig. 1.

The self-consistency equations of the generalized DMFT
+�p approach are formulated as follows:14,15

�1� Start with some initial guess of local self-energy
��i��, e.g., ��i��=0.

�2� Construct �p�i�� within some �approximate� scheme,
taking into account the interactions with collective modes or
order parameter fluctuations, which, in general, can depend
on ��i�� and 	.

�3� Calculate the local Green’s function,

Gii�i�� =
1

N
�
p

1

i� + 	 − ��p� − 
�i�� − 
p�i��
. �2�

�4� Define the “Weiss field”

G0
−1�i�� = 
�i�� + Gii

−1�i�� . �3�

�5� Using some “impurity solver,” calculate the single-
particle Green’s function Gd�i�� for the effective Anderson
impurity problem, placed at lattice site i and defined by the
effective action which is written, in obvious notations, as

Seff = − �
0



d�1�
0



d�2 ci���1�G0
−1��1 − �2�ci�

+ ��2�

+ �
0



d� Uni↑���ni↓��� . �4�

�6� Define a new local self-energy,


�i�� = G0
−1�i�� − Gd

−1�i�� . �5�

�7� Using this self-energy as the “initial” one in step �1�,
continue the procedure until �and if� convergency is reached
to obtain

Gii�i�� = Gd�i�� . �6�

Eventually, we get the desired Green’s function in the form
of Eq. �1�, where ��i�� and �p�i�� are those appearing at the
end of our iteration procedure.

III. OPTICAL CONDUCTIVITY IN DMFT+�p

A. Basic expressions for optical conductivity

To calculate dynamic conductivity, we use the general ex-
pression relating it to the retarded density-density correlation
function �R�� ,q� as follows:18,19

FIG. 1. Typical “skeleton” diagrams for the self-energy in the
DMFT+
p approach. The first two terms are examples of the
DMFT self-energy diagrams, the middle two diagrams show some
contributions to the nonlocal part of the self-energy �e.g., from spin
fluctuations� represented as dashed lines, and the last diagram �b� is
an example of the neglected diagrams leading to interference be-
tween the local and nonlocal parts.
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���� = − lim
q→0

ie2�

q2 �R��,q� , �7�

where e is the electronic charge.
Consider the full polarization loop graph in the Matsubara

representation, as shown in Fig. 2�a�, which is conveniently
�with explicit frequency summation� written as

��i�,q� = �
���

�i�i���i�,q� � �
�

�i��i�,q� , �8�

and contains all possible interactions of our model, described
by the full vertex part of Fig. 2�b�. Note that we use a
slightly unusual definition of the vertex part to include the
loop contribution without vertex corrections, which shortens
further diagrammatic expressions. Retarded density-density
correlation function is determined by appropriate analytic
continuation of this loop and can be written as

�R��,q� = �
−�

� d�

2�i
��f��+� − f��−����

RA�q,��

+ f��−���
RR�q,�� − f��+���

AA�q,��	 , �9�

where f��� is the Fermi distribution, �±=�± �
2 , and the two-

particle loops ��
RA�q ,��, ��

RR�q ,��, ��
AA�q ,�� are deter-

mined by appropriate analytic continuations �i�+ i�→�+�
+ i�, i�→�± i�, and �→ +0� in Eq. �8�. Then we can con-
veniently write the dynamic conductivity as

���� = lim
q→0


−
e2�

2�q2��
−�

�

d���f��+� − f��−�����
RA�q,��

− ��
RA�0,��� + f��−����

RR�q,�� − ��
RR�0,��� − f��+�

����
AA�q,�� − ��

AA�0,���	 , �10�

where the total contribution of the additional terms with zero
q can be shown �with the use of the general Ward
identities20� to be zero.

To calculate �i�i���i� ,q� entering the sum over the Mat-
subara frequencies in Eq. �8� in the DMFT+
p approxima-
tion, which neglects the interference between local Hubbard

interaction and nonlocal contributions due to additional scat-
terings, e.g., by SDW pseudogap fluctuations,15 we can write
down the Bethe-Salpeter equation, as shown diagrammati-
cally in Fig. 3, where we have introduced the irreducible
�local� vertex Ui�i���i�� of DMFT and “rectangular” vertex,
defined as in Fig. 2�b� and containing all interactions with
fluctuations. Analytically, this equation can be written as

�i�i���i�,q� = �i�
0 �i�,q�����

+ �i�
0 �i�,q��

��

Ui�i���i���i��i���i�,q� ,

�11�

where �i�
0 �i� ,q� is the desired function calculated neglect-

ing vertex corrections due to the Hubbard interaction �but
taking into account all nonlocal interactions with fluctuations
considered here to be static�. Note that all q dependence here
is determined by �i�

0 �i� ,q�, as the vertex Ui�i���i�� is local
and q independent.

As clearly seen from Eq. �10�, to calculate the conductiv-
ity, we need only to find the q2 contribution to ��i� ,q�
defined in Eq. �8�. This can be done in the following way.
First of all, note that all the loops in Eq. �11� contain the q
dependence starting from terms of the order of q2. Then, we
can take an arbitrary loop �cross section� in the expansion of
Eq. �11� �see Fig. 3�, calculating it up to terms of the order of
q2, and make a resummation of all the contributions to the
right and to the left of this cross section �using the obvious
left-right symmetry of diagram summation in the Bethe-
Salpeter equation�, putting q=0 in all these graphs. This is
equivalent to the simple q2 differentiation of the expanded
version of Eq. �11�. This procedure immediately leads to the
following relation for q2 contribution to Eq. �8�:

��i�� � lim
q→0

��i�,q� − ��i�,0�
q2 = �

�

�i�
2 �i�,q = 0��i�

0 �i�� ,

�12�

where

FIG. 2. Full polarization loop �a� with vertex part, which in-
cludes free-electron contribution in addition to the standard vertex,
containing all interactions �b�. Here, p±=p± q

2 and �±=�± �

2 .

FIG. 3. Bethe-Salpeter equation for the polarization loop in the
DMFT+�p approach. The circles represent irreducible vertex part
of DMFT, which contains only local interactions, surviving in the
limit of d→�. The unshaded rectangular vertex represents nonlocal
interactions, e.g., with SDW �pseudogap� fluctuations, which is
similarly defined to Fig. 2�b�.
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�i�
0 �i�� � lim

q→0

�i�
0 �i�,q� − �i�

0 �i�,0�
q2 , �13�

with �i�
0 �i� ,q� containing the vertex corrections only due to

nonlocal �pseudogap� fluctuations, while the one-particle
Green’s functions in it are taken with self-energies due to
both these fluctuations and local DMFT-like interaction, as in
Eq. �1�. The vertex �i��i� ,q=0� is determined diagrammati-
cally as shown in Fig. 4, or analytically,

�i��i�,q = 0� = 1 + �
����

Ui�i���i���i��i���i�,q = 0� .

�14�

Now, using the Bethe-Salpeter equation �11�, we can explic-
itly write

�i��i�,q = 0� = 1 + �
��

�i�i���i�,q = 0� − �i�
0 �i�,q = 0�

�i�
0 �i�,q = 0�

=

�
��

�i�i���i�,q = 0�

�i�
0 �i�,q = 0�

. �15�

For q=0, we have the following Ward identity, which can be
obtained by a direct generalization of the proof given in
Refs. 18 and 20 �see the Appendix�:

�− i���i��i�,q = 0� = �− i���
��

�i�i���i�,q = 0�

= �
p

G�i� + i�,p� − �
p

G�i�,p� .

�16�

The denominator of Eq. �15� contains vertex corrections only
from nonlocal correlations �e.g., pseudogap fluctuations�,
while Green’s functions here are “dressed” both by these
correlations and the local �DMFT� Hubbard interaction.
Thus, we may consider the loop entering the denominator as
dressed by �pseudogap� fluctuations only, but with “bare”
Green’s functions:

G̃0�i�,p� =
1

i� + 	 − ��p� − 
�i��
, �17�

where ��i�� is the local contribution to the self-energy from
DMFT. For this problem, we have the following Ward iden-
tity, similar to Eq. �16� �see the Appendix�:

�
p

G�i� + i�,p� − �
p

G�i�,p�

= �i�
0 �i�,q = 0��
�i� + i�� − 
�i�� − i��

� �i�
0 �i�,q = 0���
�i�� − i�� , �18�

where we have introduced

�
�i�� = 
�i� + i�� − 
�i�� . �19�

Thus, using Eqs. �16� and �18� in Eq. �15�, we get the final
expression for �i��i� ,q=0� as follows:

�i��i�,q = 0� = 1 −
�
�i��

i�
. �20�

Then, Eq. �12� reduces to

��i�� = 

�

�i�
0 �i���1 −

�
�i��
i�

2

. �21�

The analytic continuation to real frequencies is obvious, and
using Eqs. �12� and �21� in Eq. �10�, we can write the final
expression for the real part of dynamic conductivity as

Re ���� =
e2�

2�
�

−�

�

d��f��−� − f��+��Re

����
0RA����1 −


R��+� − 
A��−�
�

2

− ��
0RR����1 −


R��+� − 
R��−�
�

2� . �22�

Thus we have achieved a great simplification of our problem.
To calculate the optical conductivity in DMFT+�p, we only
have to solve the single-particle problem as described by the
DMFT+�p procedure above to determine the self-consistent
values of the local self-energies ���±�, while the nontrivial
contribution of nonlocal correlations is to be included via Eq.
�13�, which is to be calculated in some approximation, taking
into account only the interaction with nonlocal �e.g.,
pseudogap� fluctuations, but using the bare Green’s functions
of the form Eq. �17�, which include local self-energies al-
ready determined in the general DMFT+�p procedure. Ac-
tually, Eq. �22� also provides an effective algorithm to cal-
culate the dynamic conductivity in standard DMFT
�neglecting any nonlocal correlations�, as Eq. �13� is then
easily calculated from a simple loop diagram, determined by
two Green’s functions and free scalar vertices. As usual,
there is no need to calculate the vertex corrections within the
DMFT itself, as was proven first by considering the loop
with vector vertices.7,8

FIG. 4. Effective vertex �i��i� ,q=0� used in the calculations of
conductivity.
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B. Recurrence relations for self-energy and vertex parts

As we are mainly interested in the pseudogap state of
copper oxides, we shall further concentrate on the effects of
scattering of electrons from collective short-range SDW-like
antiferromagnetic spin fluctuations. In a kind of simplified
approach, valid only for high enough temperatures,3,4 we
shall calculate �p�i�� for an electron moving in the
quenched random field of �static� Gaussian spin fluctuations,
with dominant scattering momentum transfers from the
vicinity of some characteristic vector Q �hot-spot model2�,
using �as we have done in Refs. 14–16� a slightly general-
ized version of the recurrence procedure proposed in Refs. 3,
4, and 21 �see also Ref. 19�, which takes into account all
Feynman diagrams describing the scattering of electrons by
this random field. In general, the neglect of fluctuation dy-
namics overestimates pseudogap effects. Referring the reader
to earlier papers for details,3,4,14–16 here we just start with
the main recurrence relation determining the self-energy as
follows:


k�i�,p� = �2 s�k�
i� + 	 − 
�i�� − �k�p� + invk� − 
k+1�i�,p�

.

�23�

Usually, one takes the value of �k+1 for large enough k equal
to zero, and doing the recurrence backwards to k=1, we get
the desired physical self-energy ��i� ,p�=�1�i� ,p�.4,19,21

In Eq. �23�, � characterizes the energy scale and �=�−1 is
the inverse correlation length of short-range SDW fluctua-
tions; �k�p�=��p+Q� and vk= �vp+Q

x �+ �vp+Q
y � for odd k while

�k�p�=��p� and vk= �vp
x �+ �vp

y � for even k. The velocity pro-
jections vp

x and vp
y are determined by the usual momentum

derivatives of the bare electronic energy dispersion ��p�. Fi-
nally, s�k� represents a combinatorial factor, which is always
assumed here to be that corresponding to the case of Heisen-
berg spin fluctuations in the “nearly antiferromagnetic Fermi
liquid” �spin-fermion model of Ref. 3, SDW-type fluctua-
tions�:

s�k� = �
k + 2

3
for odd k ,

k

3
for even k .� �24�

As was stressed in Refs. 15 and 16 this procedure introduces
an important length scale � not present in standard DMFT,
which mimics the effect of short-range �SDW� correlations
within fermionic “bath” surrounding the DMFT effective
single Anderson impurity.

An important aspect of the theory is that both parameters
� and � can, in principle, be calculated from the microscopic
model at hand,15 but here we consider these as phenomeno-
logical parameters of the theory �i.e., to be determined from
experiments�.

Now, to calculate the optical conductivity, we need the
knowledge of the basic block �i�

0 �i� ,q� entering Eq. �13�,
or, more precisely, appropriate functions analytically contin-

ued to real frequencies, ��
0RA�� ,q� and ��

0RR�� ,q�, which in
turn define ��

0RA��� and ��
0RR��� entering Eq. �22� and are

defined by obvious relations similar to Eq. �13�:

��
0RA��� = lim

q→0

��
0RA��,q� − ��

0RA��,0�
q2 , �25�

��
0RR��� = lim

q→0

��
0RR��,q� − ��

0RR��,0�
q2 . �26�

By definition, we have

��
0RA��,q� = �

p
GR��+,p+�GA��−,p−��RA��−,p−;�+,p+� ,

��
0RR��,q� = �

p
GR��+,p+�GR��−,p−��RR��−,p−;�+,p+� ,

�27�

which are shown diagrammatically in Fig. 5. Here, Green’s
functions GR��+ ,p+� and GA��− ,p−� are defined by an
analytic continuation �i�→�± i�� of the Matsubara
Green’s functions �1� determined by the recurrence proce-
dure �Eq. �23��, while vertices �RA��− ,p− ;�+ ,p+� and
�RR��− ,p− ;�+ ,p+� containing all vertex corrections due to
pseudogap fluctuations are given by the recurrence proce-
dure, derived first �for one-dimensional case� in Ref. 22 �see
also Ref. 19� and generalized for the two-dimensional prob-
lem in Ref. 23 �see also Ref. 3�. The basic idea used here is
that an arbitrary diagram for the vertex part can be obtained
by an insertion of an “external field” line into the appropriate
diagram for the self-energy.22–24 In our model, we can limit
ourselves only to diagrams with nonintersecting interaction
lines with additional combinatorial factors s�k� in initial in-
teraction vertices.3,4,21 Thus, all diagrams for the vertex part
are, in fact, generated by simple ladder diagrams with addi-

FIG. 5. Diagrammatic representation of ��
0RA�� ,q�.
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tional s�k� factors associated with interaction lines22,23 �see
also Ref. 19�. Then we obtain the system of recurrence rela-
tions for the vertex part �RA��− ,p− ;�+ ,p+�, as shown by the

diagrams of Fig. 6. Analytically, it has the following form,23

where we now also included the contributions due to local
�DMFT� self-energies, originating from the DMFT+�p loop:

�k−1
RA ��−,p−;�+,p+� = 1 + �2s�k�Gk

A��−,p−�Gk
R��+,p+�

� �1 +
2ivk�k

� − �k�p+� + �k�p−� − 
R��+� + 
A��−� − 
k+1
R ��+,p+� + 
k+1

A ��−,p−���k
RA��−,p−;�+,p+� ,

�28�

and

Gk
R,A��±,p±� =

1

�± − �k�p±� ± ikvk� − 
R,A��±� − 
k+1
R,A��±,p±�

.

�29�

The “physical” vertex �RA��− ,p− ;�+ ,p+� is determined as
�k=0

RA ��− ,p− ;�+ ,p+�. The recurrence procedure �Eq. �28��
takes into account all perturbation theory diagrams for the
vertex part. For �→0 ��→��, Eq. �28� reduces to the series
studied in Ref. 24 �cf. also Ref. 3�; which can be summed
exactly in an analytic form. The standard “ladder” approxi-
mation in our scheme corresponds to the case of combinato-
rial factors s�k� in Eq. �28� being equal to 1.22

The recurrence procedure for �RR��− ,p+ ;�+ ,p+� differs
from Eq. �28� only by obvious replacements A→R and the
whole expression in figure brackets in the right-hand side of
Eq. �28� just replaced by 1:

�k−1
RR ��−,p−;�+,p+�

= 1 + �2s�k�Gk
R��−,p−�Gk

R��+,p+��k
RR��−,p;�+,p+� .

�30�

Note that the DMFT �Hubbard� interaction enters these equa-
tions only via local self-energies �R,A��±� calculated self-
consistently according to our DMFT+�p procedure.

Equations �1�, �23�, �28�, and �30�, together with Eqs.
�22�, �25�, and �26�, provide us with the complete self-
consistent procedure to calculate the optical conductivity of
our model using the DMFT+�p approach.

IV. RESULTS AND DISCUSSION

A. Generalities

In the following, we shall discuss our results for a stan-
dard one-band Hubbard model on a square lattice. The bare
electronic dispersion in tight-binding approximation, with
the account of the nearest- �t� and next-nearest- �t�� neighbor
hoppings, is given by

��p� = − 2t�cos pxa + cos pya� − 4t� cos pxa cos pya ,

�31�

where a is the lattice constant. To be concrete, below we
present the results for t=0.25 eV �more or less typical for
cuprates� and t� / t=−0.4 �which gives Fermi surface similar
to those observed in many cuprates�.

For the square lattice, the bare bandwidth is W=8t. To
study strongly correlated metallic state obtained as doped
Mott insulator, we have used the value for the Hubbard in-
teraction U=40t and filling factors n=1.0 �half-filling� and
n=0.8 �hole doping�. For correlated metal with W�U, we
have taken typical values such as U=4t, U=6t, and U=10t
for U�W. Calculations were performed for different fillings:
half-filling �n=1.0� and for hole doping �n=0.8,0.9�. For the
typical values for �, we have chosen �= t and �=2t and for
correlation length �=2a and �=10a �motivated mainly by
the experimental data for cuprates2,3�.

To solve an effective Anderson impurity problem of
DMFT, we applied a reliable numerically exact method of
numerical renormalization group �NRG�,25,26 which, actually,

FIG. 6. Recurrence relations for the vertex part. Dashed lines
denote �2.
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allowed us to work with real frequencies from the very be-
ginning, overcoming possible difficulties of performing ana-
lytical continuation numerically. Calculations were per-
formed for two different temperatures: T=0.088t and T
=0.356t.

All necessary integrations were done directly, e.g., over
the whole Brillouin zone �with the account of obvious sym-
metries� or wide enough frequency range. Integration mo-
menta are made dimensionless in a natural way with the help
of the lattice constant a. The conductivity is measured in
units of the universal conductivity in two dimensions: �0

= e2

� =2.5�10−4 �−1.

B. Optical conductivity in standard DMFT

The optical conductivity was calculated for different com-
binations of the parameters of the model. Below, we present
only a fraction of our results, which are, probably, most rel-
evant for copper oxides. We shall start with presenting some
typical results, obtained within our formalism in conven-
tional DMFT approximation, neglecting pseudogap fluctua-
tions, just to introduce the basic physical picture and demon-
strate the effectiveness of our approach.

The characteristic feature of the strongly correlated metal-
lic state is the coexistence of lower and upper Hubbard bands
splitt by the value of �U with a quasiparticle peak at the
Fermi level.7,8 For the case of a strongly correlated metal
with W�U, we observe almost no contribution from excita-
tions to the upper Hubbard model in the optical conductivity,
as can be seen in Fig. 7 �where we show the real part of
conductivity Re �����. This contribution is almost com-
pletely masked by a typical Drude-like frequency behavior,
with only slightly nonmonotonous behavior for ��U, which
completely disappears as we increase the temperature.

The situation is different in doped Mott insulator with U
�W. In Fig. 8, we clearly observe an additional maximum of
optical absorption for ��U; however, at smaller frequen-
cies, we again observe a typical Drude-like behavior, slightly
nonmonotonous for small frequencies due to quasiparticle
band formation �see the inset in Fig. 8�.

These and similar results are more or less well known
from the previous studies7,8 and are quoted here only to dem-
onstrate the consistency of our formalism and to prepare the
reader for other results, showing pseudogap behavior.

C. Optical conductivity in DMFT+�p

1. Correlated metal

Let us start the discussion of the results obtained within
our generalized DMFT+�p approach for the case of W�U.

In Fig. 9, we show our DMFT+�p results for the real part
of the optical conductivity for correlated metal �U=4t� for
two values of temperature, compared with similar data with-
out pseudogap fluctuations �pure DMFT�. We clearly observe
the formation of typical pseudogap �absorption� anomaly on
the “shoulder” of the Drude-like peak, which is partially
“filled” with the growth of temperature. This behavior is
quite similar to “midinfrared feature” that is observed in the

FIG. 7. Real part of the optical conductivity for correlated metal
�U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT approximation for
two values of filling factor: n=1 and n=0.8. Temperature T
=0.088t.

FIG. 8. Real part of the optical conductivity for doped Mott
insulator �U=40t, t�=−0.4t, and t=0.25 eV� in the DMFT approxi-
mation. Filling factors are n=0.8 and n=0.9, and temperature T
=0.088t. Small frequency behavior is shown in more detail in the
inset.

FIG. 9. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation for two different temperatures: T=0.088t and
T=0.356t. Pseudogap amplitude �= t, correlation length �=10a,
and filling factor n=0.8 electrons per atom.
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optical conductivity of cuprate superconductors.27,28 In Fig.
10, we show the behavior of Re ���� for different values of
the pseudogap amplitude �. We see that the pseudogap
anomaly naturally grows with the growth of �. Figure 11
illustrates the dependence of Re ���� on the correlation
length of pseudogap �AFM, SDW� fluctuations. Again, we
observe the natural behavior—pseudogap anomaly is filled
for shorter correlation lengths, i.e., as fluctuations become
more short ranged. At last, in Fig. 12, we demonstrate the
dependence of the pseudogap anomaly in the optical conduc-
tivity on the correlation strength, i.e., on the Hubbard inter-
action U. It is seen that the frequency range, where
pseudogap anomaly is observed, becomes narrower as the
correlation strength grows. This correlates with the general
narrowing of the pseudogap anomaly and spectral densities
with the growth of correlations, as observed in our previous
work.15,16 For large values of U, the pseudogap anomaly is
practically suppressed. This is the main qualitative difference

of the results of the present approach compared to our earlier
work23 on the optical conductivity in the pseudogap state.
Comparing the data of the present work for U=0 with simi-
lar data of Ref. 23, it should be noted that in this earlier
work, we have performed calculations of dynamic conduc-
tivity only for T=0 and used simplified expressions, neglect-
ing RR- and AA-loop contributions to conductivity, as well as
small frequency expansion,18 just to speed up the calcula-
tions. These simplifications lead to some quantitative differ-
ences with the results of the present work, where all calcu-
lations are done exactly using the general expression �22�,
though qualitatively the frequency behavior of conductivity
is the same.

2. Doped Mott insulator

Now, we shall discuss our results for the case of doped
Mott insulator with U�W. This case has no direct relevance
to copper oxides, but is interesting from the general point of
view and we present some of our results.

The real part of the optical conductivity for the case of
U=40t is shown in Figs. 13 and 14.

In Fig. 13, we show Re ���� several values of the
pseudogap amplitude � for the doped Mott insulator in the
DMFT+�p approach. Obviously enough, pseudogap fluctua-
tions lead to significant changes of the optical conductivity
only for relatively small frequencies of the order of �, while
for high frequencies �e.g., of the order of U, where the upper
Hubbard band contributes�, we do not observe pseudogap
effects �see the inset in Fig. 13�. For small frequencies, we
observe pseudogap suppression of the Drude-like peak, with
only a shallow anomaly for ���, which just disappears for
smaller values of � or shorter correlation lengths.

In Fig. 14, we show similar data for the special case of
t�=0 and n=1, i.e., at half-filling �Mott insulator� for differ-
ent values of the inverse correlation length �=�−1. The con-
ductivity at small frequencies is determined only by thermal
excitations, and pseudogap fluctuations suppress it signifi-
cantly. Shorter correlation lengths obviously lead to larger
values of conductivity at small frequencies. Transitions to the

FIG. 10. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation—� dependence. Parameters are the same as in
Fig. 9, but the data are for different values of �=0, �= t, and �
=2t, and temperature T=0.088t.

FIG. 11. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation—dependence on the correlation length. Param-
eters are the same as in Fig. 9, but in the data are for different
values of the inverse correlation length �=�−1: �a=0.1 and �a
=0.5, and temperature T=0.088t.

FIG. 12. �Color online� Real part of the optical conductivity for
correlated metal in the DMFT+�p approximation—U dependence.
Parameters are the same as in Fig. 9, but the data are for different
values of U: U=0, U=4t, U=6t, U=10t, and U=40t. Temperature
T=0.088t.

KUCHINSKII, NEKRASOV, AND SADOVSKII PHYSICAL REVIEW B 75, 115102 �2007�

115102-8



upper Hubbard band are not affected by these fluctuations at
all.

V. CONCLUSION

The present work is the direct continuation of our previ-
ous work,14–16 where we have proposed a generalized
DMFT+�p approach, which is meant to take into account
the important effects of nonlocal correlations �in principle, of
any type� in addition to the �essentially exact� treatment of
local dynamical correlations by DMFT. Here, we used a gen-
eralized DMFT+�p approach to calculate the dynamic �op-
tical� conductivity of the two-dimensional Hubbard model
with pseudogap fluctuations. Our results demonstrate that
pseudogap anomalies observed in optical conductivity of
copper oxides can, in principle, be explained by this model.
The main advantage in comparison to the previous work23 is
our ability now to study the role of strong electronic corre-

lations, which are decisive in the formation of electronic
structure of systems such as copper oxides. In fact, we have
demonstrated an important suppression of pseudogap
anomaly in optical conductivity with the growth of correla-
tion strength.

As we already noted in Ref. 15, qualitatively similar re-
sults on pseudogap formation in single-particle characteris-
tics for the two-dimensional Hubbard model were also ob-
tained within cluster extensions of DMFT.12,13 However,
these methods have generic restrictions concerning the size
of the cluster and up to now have not been not widely ap-
plied to calculations of two-particle properties, such as gen-
eral response functions, and, in particular, to calculations of
the dynamic �optical� conductivity.

Our approach is free of these limitations, though at the
price of introduction of additional �semi�phenomenological
parameters �correlation length � and pseudogap amplitude
��. It is much less time consuming; thus its advantage for the
calculations of two-particle response functions is obvious. It
also opens the possibility of systematic comparison of differ-
ent types of nonlocal fluctuations and their effects on elec-
tronic properties, providing a more intuitive way to analyze
experiments or theoretical data obtained within more ad-
vanced schemes. Again, note that, in principle, both � and �
can be calculated from the original model.15 Our scheme
works for any Coulomb interaction strength U, pseudogap
strength �, correlation length �, filling n, and bare electron
dispersion ��k�.

The present formalism can be easily generalized in the
framework of our recently proposed LDA+DMFT+�p ap-
proach, which will allow us to perform calculations of
pseudogap anomalies of the optical conductivity for realistic
models. It can also be easily generalized to orbital degrees of
freedom, phonons, impurities, etc.
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VI. APPENDIX: WARD IDENTITIES

In this appendix, we present the derivation of Ward iden-
tities used in the main text. Let us start with the general
expression for the variation of the electron self-energy due to
an arbitrary variation of the complete Green’s function,
which is valid for any interacting Fermi system:29

FIG. 13. �Color online� Real part of the optical conductivity for
doped Mott insulator �U=40t, t�=−0.4t, and t=0.25 eV� in the
DMFT+�p approximation for different values of �=0, �= t, and
�=2t, and temperature T=0.088t. Correlation length �=10a, and
filling factor n=0.8. Inset: conductivity in a wide frequency inter-
val, including transitions to the upper Hubbard band.

FIG. 14. �Color online� Real part of the optical conductivity for
doped Mott insulator �U=40t, t=0.25 eV, and t�=0� in the
DMFT+�p approximation for different values of the inverse corre-
lation length �=�−1: �a=0.1 and �a=0.5, temperature T=0.356t,
and filling n=1.
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�
p = �
p�

Upp��q��Gp�, �A1�

where Upp��q� is an irreducible vertex in particle-hole chan-
nel, and we use four-dimensional notations p= �i� ,p�, q
= �i� ,q�, etc. In the following, we take

�
p = 
+ − 
− � 
�i�+,p+� − 
�i�−,p−� , �A2�

and �in the same notations�

�Gp = G+ − G− = �G+G−�p��
p − ��G0
−1�p� , �A3�

where ��G0
−1�p=G0+

−1−G0−
−1, and the last expression was ob-

tained using the standard Dyson equation.
Note the similarity of Eq. �A1� to the Ward identity for

noninteracting electrons in the impure system derived in Ref.
18.

Now, substituting the last expression in Eq. �A3�, we get

�
p = �
p�

Upp��q��G+G−�p���
p� − ��G0
−1�p�� . �A4�

Iterating this equation, we obtain

�
p = �
p�

Upp��G+G−�p��− ��G0
−1�p��

+ �
p�p�

Upp��G+G−�p�Up�p��G+G−�p��− ��G0
−1�p�� + ¯ .

�A5�

Multiplying both sides of Eq. �A5� by �G+G−�p and adding

�
p�

�G+G−�p�pp��− ��G0
−1�p�� = �G+G−�p�− ��G0

−1�p� ,

we have

�G+G−�p��
p − ��G0
−1�p�

= �
p�
��G+G−�p�pp� + �G+G−�pUpp��G+G−�p� + �G+G−�p

��
p�

Upp��G+G−�p�Up�p��G+G−�p� + ¯ �− ��G0
−1��

= �
p

�pp��q��− ��G0
−1�p�� , �A6�

where �pp��q� is the complete two-particle Green’s function
determined by the following Bethe-Salpeter equation:29

�pp��q� = �G+G−�p�pp� + �G+G−�p�
p�

Upp��pp��q� .

�A7�

Finally, we obtain

�Gp = �
p�

�pp��q��− ��G0
−1�p�� , �A8�

which is the general form of our Ward identity.
Summing both sides of Eq. �A8� over p and taking q=0,

we obtain the identity �16� used above. Similarly, taking the
bare Green’s function �17�, we obtain Eq. �18�.
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