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Preface

This book is the revised English translation of the 2003 Russian edition of “Lectures on
Quantum Field Theory”, which was based on much extended lecture course taught by
the author since 1991 at the Ural State University, Ekaterinburg. It is addressed mainly
to graduate and PhD students, as well as to young researchers, who are working mainly
in condensed matter physics and seeking a compact and relatively simple introduction
to the major section of modern theoretical physics, devoted to particles and fields,
which remains relatively unknown to the condensed matter community, largely un-
aware of the major progress related to the formulation the so-called “standard model”
of elementary particles, which is at the moment the most fundamental theory of matter
confirmed by experiments. In fact, this book discusses the main concepts of this fun-
damental theory which are basic and necessary (in the author’s opinion) for everyone
starting professional research work in other areas of theoretical physics, not related to
high-energy physics and the theory of elementary particles, such as condensed matter
theory. This is actually even more important, as many of the theoretical approaches
developed in quantum field theory are now actively used in condensed matter theory,
and many of the concepts of condensed matter theory are now widely used in the con-
struction of the “standard model” of elementary particles. One of the main aims of the
book is to illustrate this unity of modern theoretical physics, widely using the analogies
between quantum field theory and modern condensed matter theory.

In contrast to many books on quantum field theory [2, 6, 8–10, 13, 25, 28, 53, 56, 59,
60], most of which usually follow rather deductive presentation of the material, here
we use a kind of inductive approach (similar to that used in [59, 60]), when one and
the same problem is discussed several times using different approaches. In the author’s
opinion such repetitions are useful for a more deep understanding of the various ideas
and methods used for solving real problems. Of course, among the books mentioned
above, the author was much influenced by [6, 56, 60], and this influence is obvious in
many parts of the text. However, the choice of material and the form of presentation is
essentially his own. For the present English edition some of the material was rewritten,
bringing the content more up to date and adding more discussion on some of the more
difficult cases.

The central idea of this book is the presentation of the basics of the gauge field the-
ory of interacting elementary particles. As to the methods, we present a rather detailed
derivation of the Feynman diagram technique, which long ago also became so impor-
tant for condensed matter theory. We also discuss in detail the method of functional
(path) integrals in quantum theory, which is now also widely used in many sections of
theoretical physics.



vi Preface

We limit ourselves to this relatively traditional material, dropping some of the more
modern (but more speculative) approaches, such as supersymmetry. Obviously, we
also drop the discussion of some new ideas which are in fact outside the domain of
the quantum field theory, such as strings and superstrings. Also we do not discuss in
any detail the experimental aspects of modern high-energy physics (particle physics),
using only a few illustrative examples.

Ekaterinburg, 2012 M.V. Sadovskii
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We have no better way of describing elementary particles
than quantum field theory. A quantum field in general is
an assembly of an infinite number of interacting harmonic
oscillators. Excitations of such oscillators are associated
with particles . . . All this has the flavor of the 19th cen-
tury, when people tried to construct mechanical models for
all phenomena. I see nothing wrong with it, because any
nontrivial idea is in a certain sense correct. The garbage
of the past often becomes the treasure of the present (and
vice versa). For this reason we shall boldly investigate all
possible analogies together with our main problem.

A. M. Polyakov, “Gauge Fields and Strings”, 1987 [51]





Chapter 1

Basics of elementary particles

1.1 Fundamental particles

Before we begin with the systematic presentation of the principles of quantum field
theory, it is useful to give a short review of the modern knowledge of the world of el-
ementary particles, as quantum field theory is the major instrument for describing the
properties and interactions of these particles. In fact, historically, quantum field the-
ory was developed as the principal theoretical approach in the physics of elementary
particles. Below we shall introduce the basic terminology of particle physics, shortly
describe the classification of elementary particles, and note some of the central ideas
used to describe particle interactions. Also we shall briefly discuss some of the prob-
lems which will not be discussed at all in the rest of this book. All of these problems
are discussed in more detail (on an elementary level) in a very well-written book [46]
and a review [47]. It is quite useful to read these references before reading this book!
Elementary presentation of the theoretical principles to be discussed below is given
in [26]. A discussion of the world of elementary particles similar in spirit can be found
in [23]. At the less elementary level, the basic results of the modern experimental
physics of elementary particles, as well as basic theoretical ideas used to describe their
classification and interactions, are presented in [24, 29, 50].

During many years (mainly in the 1950s and 1960s and much later in popular liter-
ature) it was a common theme to speak about a “crisis” in the physics of elementary
particles which was related to an enormous number (hundreds!) of experimentally
observed subnuclear (“elementary”) particles, as well as to the difficulties of the the-
oretical description of their interactions. A great achievement of modern physics is
the rather drastic simplification of this complicated picture, which is expressed by
the so-called “standard model” of elementary particles. Now it is a well-established
experimental fact, that the world of truly elementary particles1 is rather simple and
theoretically well described by the basic principles of modern quantum field theory.

According to most fundamental principles of relativistic quantum theory, all ele-
mentary particles are divided in two major classes, fermions and bosons. Experimen-
tally, there are only 12 elementary fermions (with spin s D 1=2) and 4 bosons (with
spin s D 1), plus corresponding antiparticles (for fermions). In this sense, our world
is really rather simple!

1 Naturally, we understand as “truly elementary” those particles which can not be shown to consist of
some more elementary entities at the present level of experimental knowledge.
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1.1.1 Fermions

All the known fundamental fermions (s D 1=2) are listed in Table 1.1. Of their prop-
erties in this table we show only the electric charge. These 12 fermions form three
“generations”2, with two leptons and two quarks3. To each charged fermion there is
corresponding antiparticle, with an opposite value of electric charge. Whether or not
there are corresponding antiparticles for neutrinos is at present undecided. It is possible
that neutrinos are the so-called truly neutral particles.

Table 1.1. Fundamental fermions.

Generations 1 2 3 Q

Quarks u c t C2=3
(“up” and “down”) d s b �1=3

Leptons �e �� �� 0
(neutrino and charged) e � � �1

All the remaining subnuclear particles are composite and are built of quarks. How this
is done is described in detail, e. g., in [24,50]4, and we shall not deal with this problem
in the following. We only remind the reader that baryons, i. e., fermions like protons,
neutrons, and various hyperons, are built of three quarks each, while quark–antiquark
pairs form mesons, i. e., Bosons like �-mesons, K-mesons, etc. Baryons and mesons
form a large class of particles, known as hadrons – these particles take part in all types
of interactions known in nature: strong, electromagnetic, and weak. Leptons partici-
pate only in electromagnetic and weak interactions. Similar particles originating from
different generations differ only by their masses, all other quantum numbers are just
the same. For example, the muon � is in all respects equivalent to an electron, but its
mass is approximately 200 times larger, and the nature of this difference is unknown.
In Table 1.2 we show experimental values for masses of all fundamental fermions (in
units of energy), as well as their lifetimes (or appropriate widths of resonances) for
unstable particles. We also give the year of discovery of the appropriate particle5. The
values of quark masses (as well as their lifetimes) are to be understood with some

2 In particle theory there exists a rather well-established terminology; in the following, we use the
standard terms without quotation marks. Here we wish to stress that almost all of these accepted
terms have absolutely no relation to any common meaning of the words used.

3 Leptons, such as electron and electron neutrino, have been well known for a long time. Until recently,
in popular and general physics texts quarks were called “hypothetical” particles. This is wrong –
quarks have been studied experimentally for a rather long time, while certain doubts have been ex-
pressed concerning their existence are related to their “theoretical” origin and impossibility of observ-
ing them in free states (confinement). It should be stressed that quarks are absolutely real particles
which have been clearly observed inside hadrons in many experiments at high energies.

4 Historical aspects of the origin of the quark model can be easily followed in older reviews [76, 77].
5 The year of discovery is in some cases not very well defined, so that we give the year of theoretical

prediction



Section 1.1 Fundamental particles 3

Table 1.2. Masses and lifetimes of fundamental fermions.

�e < 10 eV (1956) �� < 170 KeV (1962) �� < 24 MeV (1975)

e D 0.5 MeV (1897) � D 105.7 MeV, 2 � 10�6 s .1937/ � D 1777 MeV, 3 � 10�13 s .1975/

u D 2.5 MeV (1964) c D 1266 MeV, 10�12 s (1974) t D 173 GeV, � D 2 GeV (1994)

d D 5 MeV (1964) s D 105 MeV (1964) b D 4.2 GeV, 10�12 s (1977)

caution, as quarks are not observed as free particles, so that these values characterize
quarks deep inside hadrons at some energy scale of the order of several Gev6.

It is rather curious that in order to build the entire world around us, which consists of
atoms, molecules, etc., i. e., nuclei (consisting of protons and neutrons) and electrons
(with the addition of stable neutrinos), we need only fundamental fermions of the first
generation! Who “ordered” two more generations, and for what purpose? At the same
time, there are rather strong arguments supporting the claim, that there are only three
(not more!) generations of fundamental fermions7.

1.1.2 Vector bosons

Besides fundamental fermions, which are the basic building blocks of ordinary mat-
ter, experiments confirm the existence of four types of vector (s D 1) bosons, which
are responsible for the transfer of basic interactions; these are the well-known pho-
ton � , gluons g, neutral weak (“intermediate”) boson Z0, and charged weak bosons
W ˙ (which are antiparticles with respect to each other). The basic properties of these
particles are given in Table 1.3.

Table 1.3. Fundamental bosons (masses and widths).

Boson � (1900) g (1973) Z (1983) W (1983)

Mass 0 0 91.2 GeV 80.4 GeV

Width 0 0 2.5 GeV 2.1 GeV

The most studied of these bosons are obviously photons. These are represented by
radio waves, light, X-rays, and � -rays. The photon mass is zero, so that its energy

6 Precise values of these and other parameters of the Standard Model, determined during the hard ex-
perimental work of recent decades, can be found in [67]

7 In recent years it has become clear that the “ordinary” matter, consisting of atoms and molecules (built
of hadrons (quarks) and leptons), corresponds to a rather small fraction of the whole universe we
live in. Astrophysical and cosmological data convincingly show that most of the universe apparently
consists of some unknown classes of matter, usually referred to as “dark” matter and “dark” energy,
both having nothing to do with the “ordinary” particles discussed here [67]. In this book we shall
discuss only “ordinary” matter.
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spectrum (dispersion) is given by8 E D „cjkj. Photons with E ¤ „cjkj are called
virtual; for example the Coulomb field in the hydrogen atom creates virtual pho-
tons with „2c2k2 � E2. The source of photons is the electric charge. The corre-
sponding dimensionless coupling constant is the well-known fine structure constant
˛ D e2=„c � 1=137. All electromagnetic interactions are transferred by the ex-
change of photons. The theory which describes electromagnetic interactions is called
quantum electrodynamics (QED).

Massive vector bosons Z andW ˙ transfer the short-range weak weak interactions.
Together with photons they are responsible for the unified electroweak interaction.
The corresponding dimensionless coupling constants are ˛W D g2

W =„c � ˛Z D
g2
Z=„c � ˛, of the order of the electromagnetic coupling constant.
Gluons transfer strong interactions. The sources of gluons are specific “color”

charges. Each of the six types (or “flavors) of quarks u, d , c, s, t , b exists in three color
states: red r , green g, blue b. Antiquarks are characterized by corresponding the anti-
colors: Nr , Ng, Nb. The colors of quarks do not depend on their flavors. Hadrons are formed
by symmetric or opposite color combinations of quarks – they are “white”, and their
color is zero. Taking into account antiparticles, there are 12 quarks, or 36 if we con-
sider different colors. However, for each flavor, we are dealing simply with a different
color state of each quark. Color symmetry is exact.

Color states of gluons are more complicated. Gluons are characterized not by one,
but by two color indices. In total, there are eight colored gluons: 3 � N3 D 8 C 1,
one combination – r Nr C g Ng C b Nb – is white with no color charge (color neutral).
Unlike in electrodynamics, where photons are electrically neutral, gluons possess color
charges and interact both with quarks and among themselves, i. e., radiate and absorb
other gluons (“luminous light”). This is one of the reasons for confinement: as we try
to separate quarks, their interaction energy grows (in fact, linearly with interquark
distance) to infinity, leading to nonexistence of free quarks. The theory of interacting
quarks and gluons is called quantum chromodynamics (QCD).

1.2 Fundamental interactions

The physics of elementary particles deals with three types of interactions: strong,
electromagnetic, and weak. The theory of strong interactions is based on quantum
chromodynamics and describes the interactions of quarks inside hadrons. Electromag-
netic and weak interactions are unified within the so-called electroweak theory. All
these interactions are characterized by corresponding dimensionless coupling con-
stants: ˛ D e2=„c, ˛s D g2=„c, ˛W D g2

W =„c, ˛Z D g2
Z=„c. Actually, it was

8 Up to now we are writing „ and c explicitly, but in the following we shall mainly use the natural
system of units, extensively used in theoretical works of quantum field theory, where „ D c D 1. The
main recipes to use such system of units are described in detail in Ref. [46]. In most cases „ and c are
easily restored in all expressions, when necessary.
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already was recognized in the 1950s that ˛ D e2=„c � 1=137 is constant only at
zero (or a very small) square of the momentum q2, transferred during the interac-
tion (scattering process). In fact, due to the effect of vacuum polarization, the value
of ˛ increases with the growth of q2, and for large, though finite, values of q2 can
even become infinite (Landau–Pomeranchuk pole). At that time this result was con-
sidered to be a demonstration of the internal inconsistency of QED. Much later, after
the creation of QCD, it was discovered that ˛s.q2/, opposite to the case of ˛.q2/,
tends to zero as q2 ! 1, which is the essence of the so-called asymptotic freedom.
Asymptotic freedom leads to the possibility of describing gluon–quark interactions at
small distances (large q2!) by simple perturbation theory, similar to electromagnetic
interactions. Asymptotic freedom is reversed at large interquark distances, where the
quark–gluon interaction grows, so that perturbation theory cannot be applied: this is
the essence of confinement. The difficulty in giving a theoretical description of the
confinement of quarks is directly related to this inapplicability of perturbation theory
at large distances (of the order of hadron size and larger). Coupling constants of weak
interaction ˛W , ˛Z also change with transferred momentum – they grow approxi-
mately by 1% as q2 increases from zero to q2 � 100 GeV2 (this is an experimental
observation!). Thus, modern theory deals with the so-called “running” coupling con-
stants. In this sense, the old problem of the size of an electric charge as a fundamen-
tal constant of nature, in fact, lost its meaning – the charge is not a constant, but a
function of the characteristic distance at which particle interaction is analyzed. The
theoretical extrapolation of all coupling constants to large q2 demonstrates the ten-
dency for them to become approximately equal for q2 � 1015 � 1016 GeV2, where
˛ � ˛s � ˛W � 8

3
1

137 � 1
40 . This leads to the hopes for a unified description of

electroweak and strong interactions at large q2, the so-called grand unification theory
(GUT).

1.3 The Standard Model and perspectives

The Standard Model of elementary particles foundation is special relativity (equiva-
lence of inertial frames of reference). All processes are taking place in four-dimen-
sional Minkowski space-time .x, y, z, t / D .r, t /. The distance between two points
(events) A and B in this space is determined by a four-dimensional interval: s2

AB D
c2.tA � tB/

2 � .xA � xB/
2 � .yA � yB/

2 � .zA � zB/
2. Interval s2

AB � 0 for two
events, which can be casually connected (time-like interval), while the space-like in-
terval s2

AB < 0 separates two events which cannot be casually related.
At the heart of the theory lies the concept of a local quantum field – field com-

mutators in points separated by a space-like interval are always equal to zero:
Œ .xA/, .xB/� D 0 for s2

AB < 0, which corresponds to the independence of the
corresponding fields. Particles (antiparticles) are considered as quanta (excitations) of
the corresponding fields. Most general principles of relativistic invariance and stability
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of the ground state of the field system directly lead to the fundamental spin-statistics
theorem: particles with halfinteger spins are fermions, while particles with integer spin
are bosons. In principle, bosons can be assumed to be “built” of an even number of
fermions; in this sense Fermions are “more fundamental”.

Symmetries are of fundamental importance in quantum field theory. Besides the rel-
ativistic invariance mentioned above, modern theory considers a number of exact and
approximate symmetries (symmetry groups) which are derived from the vast exper-
imental material on the classification of particles and their interactions. Symmetries
are directly related with the appropriate conservation laws (Noether theorem), such as
energy-momentum conservation, angular momentum conservation, and conservation
of different “charges”. The principle of local gauge invariance is the key to the theory
of particles interactions. Last but not least, the phenomenon of spontaneous symmetry-
breaking (vacuum phase transitions) leads to the mechanism of mass generation for
initially massless particles (Higgs mechanism)9. The rest of this book is essentially
devoted to the explanation and deciphering of these and of some other statements to
follow.

The Standard Model is based on experimentally established local gauge SU.3/c ˝
SU.2/W ˝U.1/Y symmetry. Here SU.3/c is the symmetry of strong (color) interac-
tion of quarks and gluons, while SU.2/W ˝U.1/Y describes electroweak interactions.
If this last symmetry is not broken, all fermions and vector gauge bosons are mass-
less. As a result of spontaneous SU.2/W ˝ U.1/Y breaking, bosons responsible for
weak interaction become massive, while the photon remains massless. Leptons also
acquire mass (except for the neutrino?)10. The electrically neutral Higgs field acquires
a nonzero vacuum value (Bose-condensate). The quanta of this field (the notorious
Higgs bosons) are the scalar particles with spin s D 0, and up to now have not been
discovered in experiments. The search for Higgs bosons is among the main tasks of the
large hadron collider (LHC) at CERN. This task is complicated by rather indeterminate
theoretical estimates [67] of Higgs boson mass, which reduce to some inequalities such
as, e. g., mZ < mh < 2mZ11. There is an interesting theoretical possibility that the
Higgs boson could be a composite particle built of the fermions of the Standard Model
(the so-called technicolor models). However, these ideas meet with serious difficul-
ties of the selfconsistency of experimentally determined parameters of the Standard
Model. In any case, the problem of experimental confirmation of the existence of the

9 The Higgs mechanism in quantum field theory is the direct analogue of the Meissner effect in the
Ginzburg–Landau theory of superconductivity.

10 The problem of neutrino mass is somehow outside the Standard Model. There is direct evidence of
finite, but very small masses of different neutrinos, following from the experiments on neutrino os-
cillations [67]. The absolute values of neutrino masses are unknown, are definitely very small (in
comparison to electron mass): experiments on neutrino oscillations only measure differences of neu-
trino masses. The current (conservative) limitation is m�e < 2 eV [67]

11 On July 4, 2012, the ATLAS and CMS collaborations at LHC announced the discovery of a new
particle “consistent with the long-sought Higgs boson” with massmh � 125.3 ˙ 0.6 Gev. See details
in Physics Today, September 2012, pp. 12–15. See also a brief review of experimental situation in [55].
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Higgs boson remains the main problem of modern experimental particle physics. Its
discovery will complete the experimental confirmation of the Standard Model. The
nondiscovery of the Higgs boson within the known theoretical limits will necessar-
ily lead to a serious revision of the Standard Model. The present-day situation of the
experimental confirmation of the Standard Model is discussed in [67].

We already noted that the Standard Model (even taking into account only the first
generation of fundamental fermions) is sufficient for complete understanding of the
structure of matter in our world, consisting only of atoms and nuclei. All generaliza-
tions of the Standard Model up to now are rather speculative and are not supported
by the experiments. There are a number of grand unification (GUT) models where
multiplets of quarks and leptons are described within the single (gauge) symmetry
group. This symmetry is assumed to be exact at very high transferred momenta (small
distances) of the order of q2 � 1015 � 1016 GeV2, where all coupling constants be-
come (approximately) equal. Experimental confirmation of GUT is very difficult, as
the energies needed to make scattering experiments with such momentum transfers are
unlikely to be ever achievable by humans. The only verifiable, in principle, prediction
of GUT models is the decay of the proton. However, the intensive search for proton
instability during the last decades has produced no results, so that the simplest versions
of GUT are definitely wrong. More elaborate GUT models predict proton lifetime one
or two orders of magnitude larger, making this search much more problematic.

Another popular generalization is supersymmetry (SUSY), which unifies fermions
and bosons into the same multiplets. There are several reasons for theorists to believe
in SUSY:

� cancellation of certain divergences in the Standard Model;
� unification of all interactions, probably including gravitation (?);
� mathematical elegance.

In the simplest variant of SUSY, each known particle has the corresponding “super-
partner”, differing (in case of an exact SUSY) only by its spin: to a photon with s D 1
there corresponds a photino with s D 1=2, to an electron with s D 1=2 there corre-
sponds an electrino with s D 0, to quarks with s D 1=2 there corresponds squarks
with s D 0, etc. Supersymmetry is definitely strongly broken (by mass); the search
for superpartners is also one of the major tasks for LHC. Preliminary results from
LHC produced no evidence for SUSY, but the work continues. We shall not discuss
sypersymmetry in this book.

Finally, beyond any doubt there should be one more fundamental particle – the
graviton, i. e., the quantum of gravitational interactions with s D 2. However, gravita-
tion is definitely outside the scope of experimental particle physics. Gravitation is too
weak to be observed in particle interactions. It becomes important only for micropro-
cesses at extremely high, the so-called Planck energies of the order of E � mP c

2 D
.„c=G/1=2 c2 D 1.22 � 1019 GeV. Here G is the Newtonian gravitational constant,
and mP is the so-called Planck mass (� 10�5 Gramm!), which determines also the
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characteristic Planck length: ƒP � „=mP c � p„G=c3 � 10�33 cm. Experiments at
such energies are simply unimaginable for humans. However, the effects of quantum
gravitation were decisive during the Big Bang and determined the future evolution of
the universe. Thus, quantum gravitation is of primary importance for relativistic cos-
mology. Unfortunately, quantum gravitation is still undeveloped, and for many serious
reasons. Attempts to quantize Einstein’s theory of gravitation (general relativity) meet
with insurmountable difficulties, due to the strong nonlinearity of this theory. All vari-
ants of such quantization inevitably lead to a strongly nonrenormalizable theory, with
no possibility of applying the standard methods of modern quantum field theory. These
problems have been under active study for many years, with no significant progress.
There are some elegant modifications of the standard theory of gravitation, such as
e. g., supergravity. Especially beautiful is an idea of “induced” gravitation, suggested
by Sakharov, when Einstein’s theory is considered as the low-energy (phenomenolog-
ical) limit of the usual quantum field theory in the curved space-time. However, up to
now these ideas have not been developed enough to be of importance for experimental
particle physics.

There are even more fantastic ideas which have been actively discussed during
recent decades. Many people think that both quantum field theory and the Standard
Model are just effective phenomenological theories, appearing in the low energy limit
of the new microscopic superstring theory. This theory assumes that “real” micro-
scopic theory should not deal with point-like particles, but with strings with charac-
teristic sizes of the order ofƒP � 10�33 cm. These strings are moving (oscillating) in
the spaces of many dimensions and possess fermion-boson symmetry (superstrings!).
These ideas are now being developed for the “theory of everything”.

Our aim in this book is a much more modest one. There is a funny terminology [47],
according to which all theories devoted to particles which have been and will be dis-
covered in the near future are called “phenomenological”, while theories devoted to
particles or any entities, which will never be discovered experimentally, are called
“theoretical”. In this sense, we are not dealing here with “fundamental” theory at
all. However, we shall see that there are too many interesting problems even at this
“low” level.



Chapter 2

Lagrange formalism. Symmetries and gauge fields

2.1 Lagrange mechanics of a particle

Let us recall first of all some basic principles of classical mechanics. Consider a par-
ticle (material point) with mass m, moving in some potential V.x/. For simplicity we
consider one-dimensional motion. At the time moment t the particle is at point x.t/ of
its trajectory, which connects the initial point x.t1/with the finite point x.t2/, as shown
in Figure 2.1(a). This trajectory is determined by the solution of Newton’s equation of
motion:

m
d 2x

dt2
D F.x/ D �dV.x/

dx
(2.1)

with appropriate initial conditions. This equation can be “derived” from the principle
of least action. We introduce the Lagrange function as the difference between kinetic
and potential energy:

L D T � V D m

2

�
dx

dt

�2

� V.x/ (2.2)

and the action integral

S D
t2Z

t1

dt L.x, Px/ , (2.3)

(a) (b)

Figure 2.1. (a) Trajectory, corresponding to the least action. (b) The set of arbitrary trajectories
of the particle.
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where as usual Px denotes velocity Px D dx=dt . The true trajectory of the particle cor-
responds to the minimum (in general extremum) of the action on the whole set of arbi-
trary trajectories, connecting points x.t1/ and x.t2/, as shown in Figure 2.1(b). From
this principle we can immediately obtain the classical equations of motion. Consider
the arbitrary small variation a.t/ of the true trajectory x.t/:

x.t/ ! x0.t/ D x.t/C a.t/ . (2.4)

At the initial and final points this variation is naturally assumed to be zero:

a.t1/ D a.t2/ D 0 . (2.5)

Substituting (2.4) into action (2.3) we obtain its variation as

S ! S 0 D
t2Z

t1

dt

�
m

2
. Px C Pa/2 � V.x C a/

�
D

D
t2Z

t1

dt

�
1

2
m Px2 Cm Px Pa � V.x/ � aV 0.x/

�
CO.a2/ D

D S C
t2Z

t1

dtŒm Px Pa � aV 0.x/� 	 S C ıS , (2.6)

where V 0 D dV=dx, so that

ıS D
t2Z

t1

dtŒm Px Pa � aV 0.x/� . (2.7)

The action is extremal at x.t/ if ıS D 0. Integrating the first term in (2.7) by parts,
we get

t2Z

t1

dt Px Pa D Pxa
ˇ̌
ˇ̌
t2

t1

�
t2Z

t1

dt a Rx D �
t2Z

t1

dt a Rx , (2.8)

as variations at the ends of trajectory are fixed by equation (2.5). Then

ıS D �
t2Z

t1

dt aŒm Rx C V 0.x/� D 0 , (2.9)

Due to the arbitrariness of variation a we immediately obtain Newton’s law (2.1):

m Rx D �V 0.x/ ,

which determines the (single!) true trajectory of the classical particle.
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2.2 Real scalar field. Lagrange equations

The transition from the classical mechanics of a particle to classical field theory re-
duces to the transition from particle trajectories to the space-time variations of field
configurations, defined at each point in space-time. Analogue to the particle coordinate
as a function of time x.t/ is the field function '.x�/ D '.x, y, z, t /.

Notes on relativistic notations

We use the following standard notations. Two space-time points (events) .x,y, z, t / and x C
dx,y C dy, z C dz, t C dt are separated by the interval

ds2 D c2dt2 � .dx2 C dy2 C dz2/ .

The interval ds2 > 0 is called time-like and the corresponding points (events) can be casually
related. The interval ds2 < 0 is called space-like; corresponding points (events) can not be
casually related.

The set of coordinates

x� D .x0, x1, x2, x3/ 	 .ct , x,y, z/

determines the contravariant components of 4-vector, while

x� D .x0, x1, x2, x3/ 	 .ct , �x, �y, �z/
represents the corresponding covariant components. Then the interval can be written as

ds2 D
3X

�D0

dx�dx� 	 dx�dx� D c2dt2 � dx2 � dy2 � dz2 .

There is an obvious relation:

x� D g��x
� D g�0x

0 C g�1x
1 C g�2x

2 C g�3x
3 ,

where we have introduced the metric tensor in Minkowski space-time:

g�� D g�� D

0

B
B
@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

C
C
A ; g��g

�ı D ıı� .

For differential operators we shall use the following short notations:

@� 	 @

@x�
D .@0, @1, @2, @3/ D

�
1

c

@

@t
,
@

@x
,
@

@y
,
@

@z

�
D
�

1

c

@

@t
, r
�

,

@� D g��@� D
�

1

c

@

@t
, �r

�
,

� 	 @�@
� D 1

c2

@2

@t2
�
�
@2

@x2
C @2

@y2
C @2

@z2

�
D 1

c2

@2

@t2
� 4 .
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For the energy-momentum vector of a particle with mass m we have

p� D
�
E

c
, p
�

, p� D
�
E

c
, �p

�
,

p2 D p�p
� D E2

c2
� p2 D m2c2 .

For typical combination, usually standing in Fourier integrals, we write

px D p�x
� D Et � p � r .

In the following almost everywhere we use the natural system of units with „ D c D 1.
The advantages of this system, besides the obvious compactness of all expressions, and its
connection with traditional systems of units, are well described in [46].

Consider the simplest example of a free scalar field '.x�/ D '.x, y, z, t /, which is
attributed to particles with spin s D 0. This field satisfies the Klein–Gordon equation:

.� Cm2/' D 0 . (2.10)

Historically this equation was obtained as a direct relativistic generalization of the
Schroedinger equation. If we consider '.x�/ as a wave function of a particle and take
into account relativistic dispersion (spectrum)

E2 D p2 Cm2 , (2.11)

we can perform the standard Shroedinger replacement of dynamic variables by oper-
ators, acting on the wave function:

p ! „
i

@

@r
, E ! i„ @

@t
, (2.12)

which immediately gives (2.10). Naturally, this procedure is not a derivation, and a
more consistent procedure for obtaining relativistic field equations is based on the
principle of least action.

Let us introduce the action functional as

S D
Z
d 4xL.', @�'/ , (2.13)

where L is the Lagrangian (Lagrange function density) of the system of fields. The
Lagrange function is L D R

d 3rL. It is usually assumed that L depends on the field
' and its first derivatives. The Klein–Gordon equation is easily derived from the fol-
lowing Lagrangian:

L D 1

2
.@�'/.@�'/ � m2

2
'2 D 1

2

�
.@0'/

2 � .r'/2 �m2'2� . (2.14)

This directly follows from the general Lagrange formalism in field theory. However,
before discussing this formalism it is useful to read the following.
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Notes on dimensionalities

In our system of units with „ D c D 1 dimensionalities of energy, mass, and inverse length
are just the same: Œenergy� D Œmass� D l�1. To understand the last equality we remind that the
Compton length for a particle with mass m is determined as „=mc. The action S D R

d 4xL

has the dimensionality of „, so that in our system of units it is dimensionless! Then the di-
mensionality of Lagrangian is ŒL� D l�4. Accordingly, from equation (2.14) we obtain the
dimensionality of the scalar field as Œ'� D l�1. This type of dimensionality analysis will be
used many times in the following.

Now let us turn to the general Lagrange formalism of the field theory. Consider the
field ' filling some space-time region (volume) R in Minkowski space. As initial and
final hypersurfaces in this space we can take time slices at t D t1 and t D t2. Consider
now arbitrary (small) variations of coordinates and fields:

x� ! x0� D x� C ıx� , (2.15a)

'.x/ ! '0.x/ D '.x/C ı'.x/ . (2.15b)

Here we assume these variations ıx� and ı'.x/ to be fixed at zero at the boundaries
of our space-time region QR:

ı'.x/ D 0 , ıx� D 0 , x 2 QR . (2.16)

Let us analyze the sufficiently general case, when the Lagrangian L is explicitly
dependent of coordinates x�, which may correspond to the situation when our fields
interact with external sources. Total variation of the field can be written as

'0.x0/ D '.x/C	'.x/ , (2.17)

where

	' D '0.x0/ � '.x0/C '.x0/ � '.x/ D ı'.x/C ıx�.@�'/ . (2.18)

Then action variation is given by

ıS D
Z

R

d 4x0 L.'0, @�'0, x0
�/ �

Z

R

d 4xL.', @�', x�/ . (2.19)

Here d 4x0 D J.x=x0/d 4x, where J.x=x0/ is the Jacobian of transformation from x

to x0. From equation (2.15a) we can see that

@x0�

@x�
D ı

�

�
C @�ıx

� (2.20)

and for Jacobian we can write down the simple expression up to terms of the first order
in ıx�:

J.x=x0/ D Det

�
@x0�

@x�

�
D 1 C @�.ıx

�/ . (2.21)
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Then

ıS D
Z

R

d 4x
�
ıL C L@�ıx

�
�

, (2.22)

where

ıL D @L

@'
ı' C @L

@.@�'/
ı.@�'/C @L

@x�
ıx� . (2.23)

From equation (2.15a) it is clear that ı.@�'/ D @�ı', so that from equations (2.22)
and (2.23) it immediately follows that

ıS D
Z

R

d 4x

²
@L

@'
ı' C @L

@.@�'/
@�.ı'/C @�.Lıx

�/

³
. (2.24)

The third term in figure brackets reduces to full divergence, so that this contribution is
transformed (using the Gauss theorem) into the integral over the boundary surface R.
The second term in equation (2.24) can also be transformed to an expression containing
full divergence:

@L

@.@�'/
@�.ı'/ D @�

²
@L

@.@�'/
ı'

³
� @�

²
@L

@.@�'/

³
ı' . (2.25)

As a result we rewrite the action variation (2.24) as

ıS D
Z

R

d 4x

²
@L

@'
� @�

�
@L

@.@�'/

�³
ı' C

Z

QR
d
�

²
@L

@.@�'/
ı' C Lıx�

³
.(2.26)

Due limitations of equation (2.16), variations ' and x� on the boundary of integration
region R are equal to zero, so that the surface integral in equation (2.26) reduces to
zero. Then, demanding ıS D 0 for arbitrary field and coordinate variations, we get

@L

@'
� @

@x�

�
@L

@.@�'/

�
D 0 . (2.27)

This is the general form of Lagrange equations (equations of motion) for the field '1.
Let us write down the Lagrangian of a scalar field (2.14) as a simplest quadratic

form of the field and its first derivatives:

L D 1

2
g��.@�'/.@�'/ � 1

2
m2'2 .

Then we have

@L

@'
D �m2' ,

@L

@.@�'/
D g��.@�'/ D @�' (2.28)

and Lagrange equation reduces to the Klein–Gordon equation:

@�@
�' Cm2' 	 �' Cm2' D 0 . (2.29)

1 This derivation is actually valid for arbitrary fields, not necessarily scalar ones. In the case of vectors,
tensors, or spinor fields, this equation is satisfied by all components of the field, which are numbered
by the appropriate indices.
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This is a linear differential equation, and it describes the free (noninteracting) field. If
we add to the Lagrangian (2.28) higher order (higher power) invariants of field ', we
shall obtain a nonlinear equation for self-interacting scalar fields.

2.3 The Noether theorem

Let us return to equation (2.26) and rewrite the surface integral in a different form:

ıS D
Z

R

d 4x

²
@L

@'
� @�

�
@L

@.@�'/

�³
ı' C

C
Z

QR
d
�

²
@L

@.@�'/
Œı' C .@�'/ıx

� � �
�

@L

@.@�'/
.@�'/ � ı�� L

�
ıx�

³
,(2.30)

where we just added and subtracted the same term. The expression in the first square
brackets in the surface integral represents the full variation of the field, as defined in
equation (2.18). The second square bracket, as we shall demonstrate below, defines
the energy-momentum tensor:

��� D @L

@.@�'/
@�' � ı�� L . (2.31)

Then ıS is rewritten as

ıSD
Z

R

d 4x

²
@L

@'
� @

@x�

�
@L

@.@�'/

�³
ı' C

Z

QR
d
�

²
@L

@.@�'/
	' � ��� ıx�

³
.(2.32)

Note that the first integral here is equal to zero (for arbitrary variations ı') due to
the validity of the equations of motion (2.27). Consider now the second term in equa-
tion (2.32). Assume that the action S is invariant with respect to some continuous
group of transformations of x� and ' (Lie group). We can write the corresponding
infinitesimal transformations as

ıx� D X�� ı!
� . 	' D ˆ�ı!

� , (2.33)

where ı!� are infinitesimal parameters of group transformation (“rotation angles”),
X
�
� is some matrix, and ˆ� are some numbers. Note that in the general case indices

here may be double, triple, etc. In particular we may consider some multiplet of fields
'i , so that

	'i D ˆij ı!j , (2.34)

where ˆ is now also some matrix in some abstract (“isotopic”) space.
Demanding the invariance of the action ıS D 0 under transformations (2.33), from

(2.32) (taking into account (2.27)) we obtain
Z

QR
d
�

²
@L

@.@�'/
ˆ� � ��� X��

³
ı!� D 0 , (2.35)
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which, due to the arbitrariness of ı!� , leads to
Z

QR
d
�J

�
� D 0 , (2.36)

where

J�� D @L

@.@�'/
ˆ� � ��� X�� . (2.37)

Using the Gauss theorem, from equation (2.36) we obtain the continuity equation

@�J
�
� D 0 , (2.38)

so that J�� represents some conserving current. More precisely, conserving is the gen-
eralized charge:

Q� D
Z

�

d
�J
�
� , (2.39)

where the integral is taken over the arbitrary space-like hypersurface 
 . If we take 

as hyperplane t D const , we simply obtain the integral over the three-dimensional
volume V :

Q� D
Z

V

d 3r J 0
� . (2.40)

As usual [33], integrating (2.38) over the volume V , we have
Z

V

d 3r @0J
0
� C

Z

V

d 3r @iJ i� D 0 . (2.41)

The second integral here is transformed, using the three-dimensional Gauss theorem,
into the surface integral, which determines the flow of charge through this surface [33].
For the closed system (universe) this flow is zero and we obtain

d

dt

Z

V

d 3r J 0
� D dQ�

dt
D 0 . (2.42)

This is the main statement of the Noether theorem: invariance of the action with re-
spect to some continuous symmetry group leads to the corresponding conservation
law.

Consider the simple example. Let symmetry transformations (2.33) be the simple
space-time translations

ıx� D "� , 	' D 0 , (2.43)

so that
X�� D ı�� , ˆ� D 0 . (2.44)

Then from equation (2.37) we immediately obtain

J�� D ���� (2.45)
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and the corresponding conservation law is given by

d

dt

Z

V

d 3r �0
� D 0 , (2.46)

which represents the conservation of energy and momentum, and confirms the defini-
tion of the energy-momentum tensor given above. Here

P� D
Z

V

d 3r �0
� (2.47)

defines the 4-momentum of our field. This is also clear from the simple analogy with
classical mechanics. In particular, from definition (2.31) it follows that

Z

V

d 3r �0
0 D

Z

V

d 3r
²
@L

@ P' P' � L

³
, (2.48)

which is similar to the well-known expression relating Lagrange function with the
Hamiltonian of classical mechanics [34]:

H D
X

i

pi Pqi � L , pi D @L

@ Pqi , (2.49)

so that equation (2.48) gives the energy of the field. Similarly, the value of
R
d 3r �0

i

determines the momentum of the field.
Thus, energy-momentum conservation is valid for any system with the Lagrangian

(action) independent of x� (explicitly).
For the Klein–Gordon Lagrangian (2.28) from (2.31) we immediately obtain the

energy-momentum tensor as

��� D .@�'/.@�'/ � g��L . (2.50)

This expression is explicitly symmetric over indices ��� D ���. However, it is not
always so if are using the definition of equation (2.31) for an arbitrary Lagrangian. At
the same time, we can always add to (2.31) an additional term like @�f

��� , where
f ��� D �f ��� , so that @�@�f ��� 	 0 and conservation laws (2.38), (2.46) are not
broken. We can use this indeterminacy and introduce

T �� D ��� C @�f
��� , (2.51)

choosing some specific f ��� to guarantee the symmetry condition T �� D T ��. In
this case the energy-momentum tensor is called canonical. Naturally we have

@�T
�� D @��

�� D 0 . (2.52)

The total 4-momentum in this case is also unchanged, as
Z

V

d 3r @�f �0� D
Z

V

d 3r @if i0� D
Z
d
if

i0� D 0 . (2.53)
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The first equality in equation (2.53) follows from f 00� D 0, and the second one fol-
lows from the Gauss theorem. The zero in the right-hand side appears when the sur-
face 
 is moved to the infinity, where fields are assumed to be absent.

Thus, both the energy and momentum of the field are determined unambiguously,
despite some indeterminacy of the energy-momentum tensor.

There are certain physical reasons to require the energy-momentum tensor to always be sym-
metric [33, 56]. An especially elegant argument follows from general relativity. Einstein’s
equations for gravitational field (space-time metric g��) has the form [33]

R�� � 1

2
g��R D �8�G

c2
T�� , (2.54)

where R�� is Riemann’s curvature tensor, simplified by two indices (Ricci tensor), R is the
scalar curvature of space, and G is the Newtonian gravitational constant. The left-hand side
of equation (2.54) is built of the metric tensor g�� and its derivatives, and by definition it is a
purely geometric object. It can be shown to be always symmetric over indices �, � [33]. Then,
the energy-momentum tensor in the right-hand side, which is the source of the gravitational
field, should also be symmetric.

2.4 Complex scalar and electromagnetic fields

Consider now the complex scalar field, which can be conveniently written as

' D 1p
2
.'1 C i'2/ , (2.55a)

'� D 1p
2
.'1 � i'2/ . (2.55b)

In fact we are considering here two independent scalar fields '1,'2, which can be
representing, e. g., two projections of some two-dimensional vector on axis 1 and 2
in some isotopic2 space, associated with our field. Requiring the action to be real, the
Lagrangian of our field, similar to (2.28), can be written as

L D .@�'/.@
�'�/ �m2'�' . (2.56)

Considering fields ' and '� to be independent variables, we obtain from the Lagrange
equations (2.27) two Klein–Gordon equations:

.� Cm2/' D 0 , (2.57a)

.� Cm2/'� D 0 . (2.57b)

2 The term “isotopic” as used by us is in most cases not related to the isotopic symmetry of hadrons
in nuclear and hadron physics [40]. In fact, we are speaking about some space of internal quantum
numbers of fields (particles), conserving due to appropriate symmetry in this associated space (not
related to space-time).
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The Lagrangian (2.56) is obviously invariant with respect to the so-called global3

gauge transformations:

' ! e�iƒ' , '� ! eiƒ'� , (2.58)

whereƒ is an arbitrary real constant. Equation (2.58) is the typical Lie group transfor-
mation (in this case it is the U.1/ group of two-dimensional rotations), accordingly;
for small ƒ we can always write

ı' D �iƒ' , ı'� D iƒ'� (2.59)

i. e., as the infinitesimal gauge transformation. Due to the independence ofƒ on space-
time coordinates, the infinitesimal transformation of field derivatives has the same
form:

ı.@�'/ D �iƒ@�' , ı.@�'
�/ D iƒ@�'

� . (2.60)

In the notations of equation (2.33) we have

ˆ D �i' , ˆ� D i' , X D 0 , (2.61)

so that conserving Noether current (2.37) in this case takes the following form:

J� D @L

@.@�'/
.�i'/C @L

@.@�'�/.i'
�/ . (2.62)

With the account of (2.56) we get

J� D i.'�@�' � '@�'�/ (2.63)

i. e., the explicit form of the current, satisfying the equation

@�J
� D 0 . (2.64)

This may be checked also directly, using equations of motion (2.57). Accordingly, in
this theory we get the conserving charge

Q D
Z
dVJ 0 D i

Z
dV

�
'� @'
@t

� ' @'
�

@t

�
. (2.65)

If the field is real, i. e., ' D '�, we obviously get Q D 0, so that the concept of
conserving the charge with dQ=dt D 0 can be defined only for a complex field.
This is the decisive role of U.1/ symmetry of Lagrangian (2.56), (2.58). Note that our
entire discussion up to now is purely classical; accordingly Q may acquire arbitrary
(noninteger) values.

3 The term “global” means that the arbitrary phase ƒ here is the same for fields, taken at different
space-time points.
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Let us rewrite (2.56), using (2.55), as the additive sum of Lagrangians for fields
'1,'2:

L D 1

2

�
.@�'1/.@

�'1/C .@�'2/.@
�'2/

� � 1

2
m2.'2

1 C '2
2/ . (2.66)

Then, writing the field ' as a vector E' in two-dimensional isotopic space,

E' D '1Ei C '2 Ej , (2.67)

where Ei , Ej are unit vectors along axes in this space, we can write (2.66) as

L D 1

2
.@� E'/.@� E'/ � 1

2
m2 E' � E' , (2.68)

which clearly demonstrates the geometric meaning of this symmetry of the Lagrangian.
The gauge transformations (2.58) can be written also as

'0
1 C i'0

2 D e�iƒ.'1 C i'2/ , '0
1 � i'0

2 D eiƒ.'1 � i'2/ ,

or

'0
1 D '1 cosƒC '2 sinƒ ,

'0
2 D �'1 sinƒC '2 cosƒ , (2.69)

which describes the rotation of the vector E' by angle ƒ in the 1, 2-plane. Our La-
grangian is obviously invariant with respect to these rotations, described by the two-
dimensional rotation groupO.2/, or the isomorphicU.1/ group. Transformation (2.58)
is unitary: eiƒ.eiƒ/� D 1. Group space is defined as the set of all possible angles ƒ,
determined up to 2�n (where n is an integer and the rotation by angleƒ is equivalent
to rotations by ƒC 2�n), which is topologically equivalent to a circle of unit radius.

Now we going to take a decisive step! We can ask rather the formal question of
whether or not we can make our theory invariant with respect to local gauge transfor-
mations, similar to (2.58), but with a phase (angle) which is an arbitrary function of
the space-time point, where our field is defined

'.x/ ! e�iƒ.x/'.x/ , '�.x/ ! eiƒ.x/'�.x/ . (2.70)

There are no obvious reasons for such a wish. In principle, we can only say that the
global transformation (2.58) does not look very beautiful from the point of view of rel-
ativistic “ideology”, as we are “rotating” our field by the same angle (in isotopic space)
in all space-time points, including those separated by space-like interval (which cannot
be casually related to each other). At the same time, isotopic space is in no way related
to Minkowski space-time. However, we shall see shortly that demanding the invari-
ance of the theory with respect to (2.70) will immediately lead to rather remarkable
results.
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Naively, the invariance of the theory with respect to (2.70) is just impossible. Con-
sider once again infinitesimal transformations withƒ.x/ 
 1. Then (2.70) reduces to

' ! ' � iƒ' , ı' D �iƒ' , (2.71)

which is identical to (2.59). However, for field derivatives the situation is more com-
plicated due to explicit dependence ƒ.x/ on the coordinate:

@�' ! @�' � i.@�ƒ/' � iƒ.@�'/ , ı.@�'/ D �iƒ.@�'/ � i.@�ƒ/' , (2.72)

which, naturally, does not coincide with (2.60). For a complex conjugate field every-
thing is similar:

'� ! '� C iƒ'� , ı'� D iƒ'� , (2.73)

@�'
� ! @�'

� C i.@�ƒ/'
� C iƒ.@�'

�/ , ı.@�'
�/ D iƒ.@�'

�/C i.@�ƒ/'
� .

(2.74)

This means that field derivatives of ' are transformed (in contrast to the field itself) in a
noncovariant way, i. e., not proportionally to itself. The problem is with the derivative
of ƒ! The Lagrangian (2.56) is obviously noninvariant to these transformations. Let
us look, however, whether we can somehow guarantee it.

The change of the Lagrangian under arbitrary variations of fields and field deriva-
tives is written as

ıL D @L

@'
ı' C @L

@.@�'/
ı.@�'/C .' ! '�/ . (2.75)

Rewriting the first term using the Lagrange equations (2.27) and substituting (2.71)
into (2.72), we obtain

ıL D @�

�
@L

@.@�'/

�
.�iƒ'/C @L

@.@�'/
.�iƒ@�' � i'@�ƒ/ � .' ! '�/

D �iƒ@�
�

@L

@.@�'/
'

�
� i @L

@.@�'/
.@�ƒ/' � .' ! '�/ . (2.76)

The first term here is proportional to the divergence of the conserving current (2.62)
and gives zero. The second term, using the explicit form of the Lagrangian, is rewrit-
ten as

ıL D i.'�@�' � '@�'�/@�ƒ D J�@�ƒ , (2.77)

where J� is again the same conserving current (2.63).
Thus, the action is noninvariant with respect to local gauge transformations. How-

ever, we can guarantee such invariance of the action by introducing the new vector
field A�, directly interacting with current J�, adding to the Lagrangian the following
interaction term:

L1 D �eJ�A� D �ie.'�@�' � '@�'�/A� , (2.78)
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where e is a dimensionless coupling constant. Let us require that local gauge transfor-
mations of the field ' (2.70) are accompanied by the gradient transformations of A�:

A� ! A� C 1

e
@�ƒ . (2.79)

Then we obtain

ıL1 D �e.ıJ�/A� � eJ�.ıA�/ D �e.ıJ�/A� � J�@�ƒ . (2.80)

Now we see that the second term in (2.80) precisely cancels (2.77). But we also need
to eliminate the first term in (2.80). With the help of (2.71) and (2.73) we can get

ıJ� D iı.'�@�' � '@�'�/ D 2'�'@�ƒ , (2.81)

so that
ıL C ıL1 D �2eA�.@

�ƒ/'�' . (2.82)

But let us add to L one more term:

L2 D e2A�A
�'�' . (2.83)

Then, under the influence of (2.79) we have

ıL2 D 2e2A�ıA
�'�' D 2eA�.@

�ƒ/'�' . (2.84)

Then, it is easily seen that

ıL C ıL1 C ıL2 D 0 , (2.85)

so that the invariance of the action with respect to local gauge transformations is guar-
anteed!

Let us now take into account that the new vector field A� should also produce the
appropriate “free” contribution to the Lagrangian. This term should be invariant to
gradient transformations (2.79). It is quite clear how we now proceed. Let us introduce
the 4-vector of the curl of the field A�:

F�� D @�A� � @�A� , (2.86)

which is obviously invariant with respect to (2.79). Then we can introduce

L3 D � 1

16�
F��F�� . (2.87)

Collecting all terms of the new Lagrangian, we get

Ltot D L C L1 C L2 C L3 D .@�'/.@
�'�/ �m2'�'

� ie.'�@�' � '@�'�/A� C e2A�A
�'�' � 1

16�
F��F

�� , (2.88)
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which is rewritten as

Ltot D � 1

16�
F��F

�� C .@� C ieA�/'.@
� � ieA�/'� �m2'�' . (2.89)

Thus, we obtained the Lagrangian of electrodynamics of the complex scalar field '!
It is easily obtained from the initial Klein–Gordon Lagrangian (2.56) by the standard
replacement [33] of the usual derivative @�' by the covariant derivative4:

D�' D .@� C ieA�/' (2.90)

and the addition of the term, corresponding to the free electromagnetic field (2.87).

The Lagrangian of an electromagnetic field (2.87) can be written as L D aF��F
�� [33],

where the constant a can be chosen to be different, depending on the choice of the system
of units. In the Gaussian system of units, used e. g., by Landau and Lifshitz, it is taken as
a D �1=16� . In the Heaviside system of units (see e. g., [56]) a D �1=4, In this system there
is no factor of 4� in field equations, but instead it appears in Coulomb’s law. In a Gaussian
system, on the opposite, 4� enters Maxwell equations, but is absent in Coulomb’s law. In the
literature on quantum electrodynamics, in most cases the Heaviside system is used. However,
below we shall mainly use the Gaussian system, with special remarks, when using Heaviside
system.

In contrast to @�' the value of (2.90) is transformed under gauge transformation
covariantly, i. e., as the field ' itself:

ı.D�'/ D ı.@�'/C ie.ıA�/' C ieA�ı' D �iƒ.@�' C ieA�'/ D �iƒ.D�'/ .
(2.91)

The field ' is now associated with an electric charge e, the conjugate field '� corre-
sponds to the charge .�e/:

�
D�'

	� D .@� � ieA�/'� . (2.92)

It is clear that F�� , introduced above, represents the usual tensor of electromagnetic
fields [33].

Maxwell equations follow from (2.89) as Lagrange equations for the A� field:

@L

@A�
� @�

�
@L

@.@�A�/

�
D 0 , (2.93)

which reduces to

1

4�
@�F

�� D �ie.'�@�' � '@�'�/C 2e2A�j'j2 D
D �ie�'�D�' � '.D�'�/

� 	 �eJ� , (2.94)

4 The constant e means the electric charge.
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where
J� D i

�
'�D�' � '.D�'�/

�
(2.95)

is the covariant form of the current. From the antisymmetry of F�� it immediately
follows that

@�J� D 0 , (2.96)

so that in the presence of electromagnetic field the conserved current is J�, not J�.

Note that electromagnetic field is massless and that this is absolutely necessary – if we at-
tribute to an electromagnetic field a finite massM , we have to add to the Lagrangian (2.87) an
additional term such as

LM D 1

8�
M 2A�A

� . (2.97)

It is obvious that such a contribution is noninvariant with respect to local gauge transformations
(2.70), (2.79).

This way of introducing an electromagnetic field was used apparently for the first
time by Weyl during his attempts to formulate the unified field theory in the 1920s.
Electrodynamics corresponds to the Abelian gauge group U.1/, and the electromag-
netic field is the simplest example of a gauge field.

2.5 Yang–Mills fields

Introducing the invariance to local gauge transformations of theU.1/ group, we obtain
from the Lagrangian of a free Klein–Gordon field the Lagrangian of scalar electrody-
namics, i. e., the field theory with quite nontrivial interaction. We can say that the
symmetry “dictated” to us the form of interaction and leads to the necessity of intro-
ducing the gauge fieldA�, which is responsible for this interaction. Gauge groupU.1/
is Abelian. The generalization of gauge field theory to non-Abelian gauge groups was
proposed at the beginning of the 1950s by Yang and Mills. This opened the way for
construction of the wide class of nontrivial theories of interacting quantum fields,
which were quite successfully applied to the foundations of the modern theory of dy-
namics of elementary particles.

The simplest version of a non-Abelian gauge group, analyzed in the first paper by
Yang and Mills, is the group of isotopic spin, SU.2/, which is isomorphic to the three-
dimensional rotation group O.3/. Previously we considered the complex scalar field
which is represented by the two-dimensional vector E' D .'1,'2/ in “isotopic” space.
Consider instead the scalar field, which is simultaneously a three-dimensional vector
in some “isotopic” space: E' D .'1,'2,'3/. The Lagrangian of this Klein–Gordon
field, which is invariant to three-dimensional rotations in this “associated” space, can
be written as

L D 1

2
.@� E'/.@� E'/ � 1

2
m2 E' � E' , (2.98)
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where the field E' enters only via its scalar products. Invariance with respect to rotations
here is global – the field E' is rotated by an arbitrary angle in isotopic space, which is
the same for fields in all space-time points. For example, we can consider rotation in
the1 � 2-plane by angle ƒ3 around the axis 3:

'0
1 D '1 cosƒ3 C '2 sinƒ3 ,

'0
2 D �'1 sinƒ3 C '2 cosƒ3 , (2.99a)

'0
3 D '3 .

For infinitesimal rotation ƒ3 
 1 and we can write

'0
1 D '1 Cƒ3'2 ,

'0
2 D '2 �ƒ3'1 , (2.99b)

'0
3 D '3 . (2.99c)

For infinitesimal rotation around an arbitrarily oriented axis we write

E' ! E'0 D E' � Eƒ � E' , ı E' D � Eƒ � E' , (2.99d)

where vector Eƒ is directed along the rotation axis and its value is equal to the rotation
angle.

Consider now the local transformation, assuming Eƒ D Eƒ.x�/. Then the field deriva-
tive E' is transformed in a noncovariant way:

@� E' ! @� E'0 D @� E' � @� Eƒ � E' � Eƒ � @� E' ,

ı.@� E'/ D � Eƒ � @� E' � @� Eƒ � E' . (2.100)

Let us again try to construct the covariant derivative, writing it as

D� E' D @� E' C g EW� � E' . (2.101)

where we have introduced the gauge field (Yang–Mills field) EW�, which is the vector
not only in Minkowski space, but also in an associated isotopic space, and g is the
coupling constant.

Covariance means that

ı.D� E'/ D � Eƒ � .D� E'/ . (2.102)

What transformation rules for field EW� are necessary to guarantee covariance? The
answer is

EW� ! EW 0
� D EW� � Eƒ � EW� C 1

g
@� Eƒ ,

ı EW� D � Eƒ � EW� C 1

g
@� Eƒ . (2.103)
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To check this, use (2.99d), (2.100), and (2.101) to obtain

ı.D� E'/D ı.@� E'/C g.ı EW�/ � E' C g EW� � .ı E'/
D � Eƒ � @� E' � @� Eƒ � E' � g. Eƒ � EW�/ � E' C @� Eƒ � E' � g EW� � . Eƒ � E'/
D � Eƒ � @� E' � gŒ. Eƒ � EW�/ � E' C EW� � . Eƒ � E'/� . (2.104)

Then use the Jacobi identity5:

. EA � EB/ � EC C . EB � EC/ � EAC . EC � EA/ � EB D 0 , (2.105)

Making here cyclic permutations we can obtain

. EA � EB/ � EC C EB � . EA � EC/ D EA � . EB � EC/ . (2.106)

Applying this identity to the expression in square brackets in (2.104), we get

ı.D� E'/ D � Eƒ � .@� E' C g EW� � E'/ D � Eƒ �D� E' , (2.107)

Q.E.D.
Let us now discuss how we should write the analogue of the F�� tensor of elec-

trodynamics. We shall denote it as EW�� . In contrast to F�� , which is a scalar with
respect to O.2/ .U.1// gauge group transformations, EW�� is the vector with respect
to O.3/ .SU.2//. Accordingly, transformation rules should be the same, as for the
field E':

ı EW�� D � Eƒ � EW�� . (2.108)

In fact, @� EW� � @� EW� is not transformed in this way:

ı.@� EW� � @� EW�/ D @�

�
� Eƒ � EW� C 1

g
@� Eƒ

�
� @�

�
� Eƒ � EW� C 1

g
@� Eƒ

�

D � Eƒ � .@� EW� � @� EW�/ � .@� Eƒ � EW� � @� Eƒ � EW�/ .
(2.109)

We have here an “extra” second term. Note now that

ı.g EW� � EW�/ D g

�
� Eƒ � EW� C 1

g
@� Eƒ

�
� EW� C g EW� �

�
� Eƒ � EW� C 1

g
@� Eƒ

�
,

(2.110)

The first and third terms here can be united with the use of (2.106), which gives

ı.g EW� � EW�/ D �g Eƒ � . EW� � EW�/C .@� Eƒ � EW� � @� Eƒ � EW�/ . (2.111)

5 This identity is easily proven using the well-known rule . EA � EB/ � EC D EB. EA � EC/ � EA. EB � EC/.
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We see that the second term here coincides with the “extra” term in (2.109). Thus, we
have to define the tensor of Yang–Mills fields as

EW�� D @� EW� � @� EW� C g EW� � EW� , (2.112)

which is transformed in a correct way, i. e., according to (2.108).
Now we can write the Lagrangian of Yang–Mills theory:

L D 1

2
.D� E'/.D� E'/ � 1

2
m2 E' � E' � 1

16�
EW�� � EW �� . (2.113)

Equations of motion are derived in the usual way from Lagrange equations:

@L

@.W i
�/

D @�

´
@L

@.@�W i
�/

μ

, (2.114)

where i is the vector index in isotopic space. Then we have

@� EW�� C g EW � � EW�� D 4�g
�
.@� E'/ � E' C g. EW� � E'/ � E'� (2.115)

or, taking into account (2.101),

D� EW�� D 4�g.D� E'/ � E' 	 4�g EJ� . (2.116)

These equations are similar to Maxwell equations (2.94), but are nonlinear in the field
EW�. The second equality in (2.116) in fact determines the current of the field E', which

plays the role of the “source” of the gauge (Yang–Mills) field EW�. In the absence of
“matter”, i. e., for E' D 0, from (2.115), (2.116) we have

D� EW�� D 0 or @� EW�� D �g EW � � EW�� , (2.117)

so that the Yang–Mills field (non-Abelian gauge field) is the source of itself6 (“lu-
minous light”)! This is radically different from the case of the Abelian gauge field
(electromagnetic field), where (Maxwell) field equations are linear [33]:

@�F�� D 0 or divE D 0 ,
@E
@t

� rotH D 0 . (2.118)

In standard electrodynamics we also have an additional homogeneous Maxwell equa-
tion [33]:

@�F�� C @�F�� C @�F�� D 0 , (2.119)

from which, in three-dimensional notations, we get the second pair of electromagnetic
field equations:

divH D 0 ,
@H
@t

C rotE D 0 . (2.120)

6 The situation here is similar to general relativity, where the gravitational field is also the source of
itself due to the nonlinearity of Einstein’s equations [33].
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The first of these equations, in particular, signifies the absence of magnetic charges
(monopoles). Similar equations also exist in Yang–Mills theory (its derivation will be
presented a little bit later):

D� EW�� CD� EW�� CD� EW�� D 0 . (2.121)

The tensor of Yang–Mills fields EW�� can be written via corresponding non-Abelian
“electric” and “magnetic” fields, in a similar way to electrodynamics [33]:

EW�� D

0

BBB
@

0 EEx EEy EEz
� EEx 0 � EHz EHy
� EEy EHz 0 � EHx
� EEz � EHy EHx 0

1

CCC
A

. (2.122)

Then, it follows from (2.121) that

div EH ¤ 0 , (2.123)

which directly leads to the existence of the so-called t’Hooft–Polyakov monopoles in
Yang–Mills theory [56]. Due to the lack of space, we shall not further analyze these
interesting solutions of field equations here.

The Yang–Mills field, similar to the electromagnetic field, should be massless. For
the massive case we have to add to the Lagrangian (2.113) an additional term such as

LM D 1

8�
M 2 EW� � EW � , (2.124)

which will lead to the replacement of equation (2.116) by

D� EW�� D 4�g EJ� CM 2 EW� , (2.125)

which is explicitly noninvariant with respect to local gauge transformations.

For a rather long time, the zero mass of Yang–Mills fields under conditions of strict gauge
invariance was considered to be a primary obstacle for physical applications of gauge field
theories. The initial idea of these theories was [75] that, using one or another (exact or approx-
imate and experimentally confirmed) internal symmetry of elementary particles (e. g., conser-
vation of baryon number or isotopic spin), one can introduce local invariance with respect
to appropriate group transformations and obtain quite nontrivial interaction Lagrangians with
corresponding (Abelian or non-Abelian) gauge fields.

The gauge principle was proposed as a foundation for the theory of interacting fields. But
it seems that difficulties appeared from the very beginning. The appearance of a massless
gauge field immediately leads to the existence of long range forces, associated with this field.
A typical case is electrodynamics and its long range Coulomb interaction. However, it is rather
easily demonstrated that an electromagnetic field is probably the only long range force in nature
(except, obviously, for gravitation!). We can see this using very simple estimates, due to Lee
and Yang [39].
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Consider the simplest case of an Abelian gauge field, which may be related to conservation
of a baryon charge. It will lead to an additional long-range B-force, acting upon baryons.
Let us compare the usual Newtonian gravitation potential with the potential energy of this
hypothetical field, due to its interaction with nucleons of the earth. Consider a test-particle p
with mass mp , which is placed above the earth’s surface at distance r from the earth’s center.
Then

Vgr D �GmpME

r
, (2.126)

where G is the Newtonian gravitational constant, and ME is the earth mass. Let the baryon
charge of our test particle beNp and the nucleon mass bemN . Assume the density of nucleons
on the earth to be constant (and there are no antinucleons at all) and equal to

� D ME

mN
4
3�R

3
E

, (2.127)

where RE is the earth’s radius. Then the potential VB , due to B-forces of nucleons, forming
the earth, can be calculated as

VB D g2
BMENp

4
3�R

3
EmN

Z
d 3r0

jr � r0j D g2
BMENp

mN r
, (2.128)

where the integration is made over the earth’s volume; gB is the coupling constant ofB-forces.
It is seen that equation (2.128) is similar to gravitation potential. Thus, the total potential, acting
upon our test particle, is equal to

V D �GmpME

r
C g2

B

MENp

mN r
D �GmpME

r

�
1 � g2

B

G

Np

mNmp

�
. (2.129)

Thus, the presence ofB-forces leads to V ¤ NV , where NV is the potential acting upon antiparti-
cle Np with the opposite baryon charge: N Np D �Np . In principle, this effect can be observable
in the case of

g2
B

m2
N

� G . (2.130)

However, it is unobservable experimentally: particles and antiparticles fall in the gravitational
field of the earth with the same acceleration (with rather high accuracy). This fact leads to an
estimate of g2

B < 10�38 as Gm2
N � 10�38. Even such a small value of gB can be excluded!

The equation of motion of a test particle in the gravitational field can be written as

mpg D �GmpME

r2
(2.131)

and massmp is canceled here, so that free-fall acceleration g does not depend on it (the equiva-
lence of inertional and gravitational masses!). If we neglect the mass of the electrons (compared
to nucleons), we have

mp D mNNp �  , (2.132)

where  is the coupling energy in the nuclei of the substance of our test particle. Then

Np D mp

mN
C 

mN
. (2.133)
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In the presence of B-forces, the Newtonian equation of motion takes the form

mpg D �mpME

r2
C C g2

B

r2

ME

m2
N

, (2.134)

where C D G � g2
B=m

2
N can be identified with the measured gravitational constant Gexp . In

other words, equation (2.134) can be rewritten as

mpg D �mpME

r2
Gexp

�
1 � g2

B

Gexpm
2
N



mp

�
. (2.135)

The second term here breaks the equivalence of inertional and gravitational masses, which is
experimentally established with an accuracy of the order of 10�8 in classical Eotvos experi-
ments for different substances. A typical modern estimate from similar experiments gives

g2
B

Gm2
N



mp
� 10�3 g2

B

Gm2
N

< 10�12 , (2.136)

where we have taken into account that the difference of =mp for different substances is of the
order of 10�3. Accordingly,

g2
B

Gm2
N

< 10�9 . (2.137)

Thus, the experimentally established equivalence of inertional and gravitational masses leads
to the following upper bound of B-forces coupling constant: g2

B < 10�47! Accordingly, B-
forces (if they exist at all) are much weaker even than gravitation! Thus, in every practical
sense, we can exclude the existence of any massless gauge fields except the electromagnetic
field. Experimentally observed, vector mesons are massive and break the local gauge invari-
ance. Thus, it seems that the beautiful idea of the introduction of new gauge fields becomes
rather doubtful. Later we shall see how this problem is solved in modern particle theory.

2.6 The geometry of gauge fields

Let us make some generalizations. We have seen above that the rotation of the vector
in isotopic space on some small angle Eƒ .j Eƒj 
 1/ can be written as (cf. (2.99d))

E' ! E'0 D E' � Eƒ � E' , (2.138)

which is an infinitesimal version of the general transformation

E' ! E'0 D exp.i EI � Eƒ/ E' , (2.139)

where EI are matrix generators:

I1 D
0

@
0 0 0
0 0 �i
0 i 0

1

A , I2 D
0

@
0 0 i

0 0 0
�i 0 0

1

A , I3 D
0

@
0 �i 0
i 0 0
0 0 0

1

A . (2.140)

Here the matrix elements can be written as

.Ii /mn D �i"imn , (2.141)
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where "imn is the antisymmetric Levi–Civita symbol. Accordingly, by components,
equation (2.138) can be written as

'0
m D .1 C iIiƒi /mn'n D .ımnC "imnƒi /'n D 'm� "minƒi'n D . E'� Eƒ� E'/m .

(2.142)
Local transformations have the form

E' ! E'0 D exp
�
i EI � Eƒ.x/	 E' D S.x/ E' , (2.143)

where S.x/ denotes the operator of local rotation. Matrices I are generators of the
vector representation of rotation group O.3/ (or SU.2/) and satisfy the well-known
(angular momentum) commutation relations:

ŒIi , Ij � D i"ijkIk D CijkIk . (2.144)

Here Cijk denote structural constants of the SU.2/ group, in this case Cijk D i"ijk .
Naturally, structural constants for other Lie groups are different, but commutation re-
lations for generators are always written as in equation (2.144).

For an arbitrary Lie group, generators satisfy the Jacobi identity

ŒŒIi , Ij �, Ik�C ŒŒIj , Ik�, Ii �C ŒŒIk , Ii �, Ij � D 0 , (2.145)

which reduces (for structural constants) to

CijlClkm C CjklClim C CkilCljm D 0 . (2.146)

So far we have analyzed the isovector field. A more fundamental approach requires
introduction of isospinors for the same SU.2/ group7. Rotation of fundamental two-

dimensional spinor  D � 1
 2

	
can be written as

 0 D exp

�
i

2
E� � Eƒ.x/

�
 .x/ D S.x/ .x/ , (2.147)

where S.x/ is 2 � 2 matrix and E� are Pauli matrices in isotopic space, �i=2 satisfy
commutation relations (2.144), and from the beginning we are writing the local trans-
formation. For the general n-dimensional case we have

 .x/ !  0.x/ D expŒiM aƒa.x/� .x/ D S.x/ .x/ , (2.148)

where a takes the values 1, 2, 3 (SU.2/ group!); here  is the n-component spinor,
and M a are n � n matrices, satisfying commutation relations like (2.144).

7 Below we shall return to the detailed analysis of spinors; here it is sufficient to remember some ele-
mentary information from the standard course on quantum mechanics.
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If we consider local transformations of fields, the field derivative @� , as we have
seen above, is transformed in a noncovariant way:

@� 
0 D S.@� /C .@�S/ . (2.149)

The reason for this is purely of a “geometrical” nature. The fields  .x/ and  .x C
dx/ D  .x/ C d in nearby (infinitesimally close) points of space-time are mea-
sured relative to different (rotated by local gauge transformations) axes in isotopic
space, shown in Figure 2.2(a). Thus, the value of d contains information not only on
field change with distance, as we move from point x to xCdx, but also on the appro-
priate change due to the rotation of the axes in isotopic fields. To construct covariant
derivative, we have to compare  .x C dx/ not with  .x/, but with the value which
the field  .x/ acquires due to translation from x to x C dx with fixed directions of
axes in isotopic space, which is denoted below as Cı and called the field obtained
as a result of “parallel” transfer, as shown in Figure 2.2(b). Let us assume that ı is
proportional to field  itself and also to translation dx�, so that it can be written as

ı D igM aAa�dx
� , (2.150)

(a)

(b)

Figure 2.2. (a) The value of d contains information both on the change of  and on the
transformation of coordinate axes in isotopic space during the transfer from point x to xCdx.
(b) The value of ı , determined by “parallel” transfer.
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where g is some constant and Aa� is the gauge field, which in some sense determines
how axes in isotopic space change during the transfer from one point to the other. The
“true” or covariant derivative of  is now determined by the difference

D D . C d / � . C ı / D d � ı D d � igM aAa�dx
� (2.151)

and equal to
D 

dx�
D D� D @� � igM aAa� . (2.152)

The situation here is similar to that in the theory of gravitation [33], where the covariant deriva-
tive of some vector V � is defined as

D�V
� D @�V

� C �
�

��
V � , (2.153)

where Christoffel coefficients ��
��

connect the components of the vector in a given point with
its components in a nearby point, from which this vector is transferred by parallel translation
in Riemann space.

Equation (2.152) gives the general definition of the covariant derivative in the Yang–
Mills theory for an arbitrary field  , which is transformed under some irreducible rep-
resentation of some gauge group with generators M a [56]. Consider the following
simple examples:

� U.1/ group:

' ! e�iƒ' , '� ! eiƒ'� , M D �1 ,

D� D @� C igA� g D e (2.154)

– electrodynamics.

� SU.2/ group:

vector representation:

.M a/mn D �i"amn , .a,m,n D 1, 2, 3/ ,

D�'m D @�'m � ig.M a/mnA
a
�'n D @�'m � g"amnAa�'n (2.155)

D .@� E' C g EA� � E'/m ,

where EA is the same gauge field, which was denoted as EW above.

spinor representation:

M a D 1

2
�a , .a D 1, 2, 3/ ,

D� D @� � i g
2

E� � EA� (2.156)

– Yang–Mills theory.
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Thus, under an arbitrary rotation in isotopic space the field is transformed as

 ! S.x�/ , (2.157)

and the covariant derivative is transformed as the field itself:

D� ! D0
� 

0 D S.x�/D� . (2.158)

It is convenient to introduce matrix notations

OA� D M aAa� , (2.159)

so that equation (2.152) takes the form

D� D .@� � ig OA�/ . (2.160)

Transformation to a new coordinate system in isotopic space, with the account of
(2.158), gives

.@� � ig OA0
�/ 

0 D S.@� � ig OA�/ . (2.161)

Assuming here  0 D S , we obtain

OA0
� D S OA�S�1 � i

g
.@�S/S

�1 , (2.162)

which gives the general form of the gauge transformations of Yang–Mills fields (gen-
eralized gradient transformation). Consider again the same examples:

� U.1/ group:

S D e�iƒ , @�S D �i.@�ƒ/e�iƒ ,

A0
� D A� C 1

e
@�ƒ .g D e, M D �1/ , D� D @� C igA� . (2.163)

� SU.2/ group:

spinor representation:

S D exp

�
i

2
E� � Eƒ

�
, @�S D i

2
E� � @� EƒS , (2.164)

EA0
� D EA� � Eƒ � EA� C 1

g
@� Eƒ , (2.165)

which follows from (2.162) for j Eƒj 
 1, with the account of commutation relations
Œ�a, �b� D i2"abc�c , and coincides with (2.103).

Consider now the succession of “parallel transfers” of our field around the closed path
ABCD, shown in Figure 2.3. Let us start from point A, where the field is assumed to
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Figure 2.3

be equal to  A,0. Then its change due to the transfer to point B is determined by the
covariant derivative (cf. (2.158), (2.152)), which gives

 B D  A,0CD� A,0	x
�C1

2
D�D� A,0	x

�	x�C� � � D .1C	x�D�C� � � / A,0 .

Next, performing transfer to point C , up to the terms of first order, we get

 C D  B C ıx�D� B D .1 C ıx�D�/ B D .1 C ıx�D�/.1 C	x�D�/ A,0 .

Next, the transfer to point D and the return to initial point A give

 D D .1 �	x�D�/ C , (2.166)

 A,1 D .1 � ıx�D� / D
D .1 � ıx�D� /.1 �	x�D�/.1 C ıx�D�/.1 C	x�D�/ A,0 (2.167)

D ®
1 C ıx�	x� ŒD�,D� �

¯
 A,0 , (2.168)

where the commutator of operators of covariant differentiation appeared:

ŒD�,D� � D Œ@� � ig OA�, @� � ig OA� � D �ig®@� OA� � @� OA� � igŒ OA�, OA� �
¯

.
(2.169)

Let us introduce the field tensor

G�� D @� OA� � @� OA� � igŒ OA�, OA�� , (2.170)

so that
ŒD�,D�� D �igG�,� . (2.171)

Equation (2.170), in fact, gives the general definition of the tensor of Yang–Mills fields
for an arbitrary gauge group. Accordingly, equation (2.168) can be written as

 A,1 D .1 � ig	S��G��/ A,0 , 	S�� D ıx�	x� (2.172)
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and we obtain
 A,1 �  A,0 D �ig	S��G�� A,0 . (2.173)

Thus, a nonzero gauge field tensor leads to a finite physical result as we go around
the closed path, which is proportional to the flux of the gauge field G�� through the
path (contour) area	S��: the field  is rotated in isotopic space. It is easy to see that
the field tensor G�� is invariant relative to gauge transformations:

G�� D SG��S
�1 (2.174)

so that it cannot be reduced to zero, using only such transformations. At the same time,
if G�� is zero for some gauge, it remains zero for all other gauges.

Consider again our examples:

� U.1/ group:
G�� 	 F�� D @�A� � @�A� (2.175)

– the usual field tensor of electrodynamics.

� SU.2/ group:

ŒM a,M b� D i"abcM
c , Ga�� D @�A

a
� � @�Aa� C g"abcA

b
�A

c
� , (2.176)

which in vector notations in isotopic space

EG�� D @� EA� � @� EA� C g EA� � EA� (2.177)

coincides with definition (2.112) given above.

Here we again can note an analogy to the theory of gravitation. The tensor of Yang–Mills fields
is, in some sense, analogous to the Riemann–Christoffel curvature tensor [33]:

R���� D @��
�
�� � @����� C �

�

��
���� � ��

��
���� . (2.178)

The parallel transfer of an arbitrary vector V � around the closed contour in Riemann space
leads to the following difference between the initial and final components of the vector:

	V � D 1

2
R
�

���
V �	S�� , (2.179)

where 	S�� again denotes the area of the contour. The value of 	V � is different from zero
only in the space of with finite curvature. In general relativity, this corresponds to the presence
of a nontrivial gravitational field.

Analyzing the transfer around the path forming the parallelepiped shown in Fig-
ure 2.4, Feynman has given a simple derivation of the following identity for the field
G��:

D�G�� CD�G�� CD�G�� D 0 , (2.180)
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Figure 2.4

which in fact determines the second pair of “Maxwell equations” for the Yang–Mills
field (2.121). In the case of U.1/ gauge symmetry, this reduces simply to (2.119):

@�F�� C @�F�� C @�F�� D 0 . (2.181)

Briefly, the derivation goes as follows. In Figure 2.4 we show the path (contour)
ABCDAPSRQPA. There are another two paths of the same type along the bor-
ders of two pairs of opposite facets of the parallelepiped, so that along the borders of
all six facets we can draw the path .ABCDAPSRQPA/ C .ADSPABQRCBA/ C
.APQBADCRSDA/. All parts of this contour are now passed twice in two opposite
directions. Accordingly, the field  is not changed as we go around our closed path,
which immediately gives the identity (2.180).

In the theory of gravitation there exists the similar Bianchi identity for the Riemann–Christoffel
tensor:

D�R
�
��� CD�R

�
��� CD�R

�
��� D 0 . (2.182)

The analogy of gauge field theories and the theory of gravitation can be expressed as in
Table 2.1.

Table 2.1. Analogies between gauge field theories and gravitation.

Gauge theories General relativity

Gauge transformations Coordinate transformations

Gauge group Group of all coordinate transformations

Potential of gauge field A� Christoffel coefficients ����
Field tensor G�� Tensor of curvature R�

���

All these analogies actually exist on a deeper level. Even during early stages of the develop-
ment of gauge field theories, it was shown by Utiyama [68] that the equations of Einstein’s
general relativity theory can be derived using the idea and general scheme of gauge field the-
ory, if we take the Lorentz group (coordinate transformations of the special theory of relativity)
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and demand the invariance of the theory with respect to corresponding local transformations
(when parameters of the Lorentz group are considered as arbitrary functions of coordinate in
Minkowski space).

2.7 A realistic example – chromodynamics

Let us briefly consider the structure of quantum chromodynamics (QCD) as an exam-
ple of realistic non-Abelian gauge theory. Quantum chromodynamics is based on the
fundamental experimental discovery: each quark of the given “flavor” u, d , s, c, t , b
possesses an additional quantum number, which is called “color”, and which can take
three possible values (1, 2, 3 orR,G,B)8. Then, each quark field is represented by the
fundamental spinor of the SU.3/ group9:

q D
0

@
q1

q2

q3

1

A . (2.183)

The color symmetry is exact, and QCD Lagrangian should be invariant to SU.3/ group
transformations:

q ! Uq , (2.184)

where the 3�3-matrices U are unitary and unimodular:

UCU D 1 , DetU D 1 ,

U D eiT , T D TC , SpT D 0 . (2.185)

These matrices (transformations) depend on eight parameters (“rotation angles”) "a,
and accordingly there are eight generators �i=2 .i D 1, : : : , 8/:

�1 D
0

@
0 1 0
1 0 0
0 0 0

1

A , �2 D
0

@
0 �i 0
i 0 0
0 0 0

1

A , �3 D
0

@
1 0 0
0 �1 0
0 0 0

1

A ,

�4 D
0

@
0 0 1
0 0 0
1 0 0

1

A , �5 D
0

@
0 0 �i
0 0 0
i 0 0

1

A , �6 D
0

@
0 0 0
0 0 1
0 1 0

1

A ,

�7 D
0

@
0 0 0
0 0 �i
0 i 0

1

A , �8 D 1p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A (2.186)

8 The necessity of this quantum number was clear from the very beginning of the quark model, as it
allowed to lift certain contradictions with the Pauli principle.

9 A rather clear and compact presentation of irreducible representations of this group, though in relation
to the other problem of particle physics (approximate symmetry of hadrons and their quark structure),
can be found in [40].
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which are a kind of “generalization” of Pauli matrices to three dimensions. These gen-
erators satisfy the following commutation relations:

�
�a

2
,
�b

2

�
D ifabc

�c

2
, (2.187)

where the nonzero structural constants fabc are given by

f123 D 1 , f147 D �f156 D f246 D f257 D f345 D �f367 D 1

2
,

f458 D f678 D
p

3

2
. (2.188)

The basic approach of QCD is to make color symmetry the local gauge symmetry!
As a result, using the recipes of gauge field theory, we introduce eight gauge fields

(gluons), which transfer interactions between quarks. These can be conveniently writ-
ten in the following matrix form (as in (2.159)):

OA� D Aa�
�a

2
D 1

2

0

BBBBBB
@

A3
� C 1p

3
A8
� A1

� � iA2
� A4

� � iA5
�

A1
� C iA2

� �A3
� C 1p

3
A8
� A6

� � iA7
�

A4
� C iA5

� A6
� C iA7

� � 2p
3
A8
�

1

CCCCCC
A

. (2.189)

The explicit form of the gluon field tensor can be obtained from (2.170) or from
(2.176), substituting into the last expression instead of "abc the structural constants
fabc of the SU.3/ group. In accordance with the general ideology of gauge theories,
gluons are massless. The absence of long-range forces due to gluons is explained by
the phenomenon of confinement, which will be discussed in the final part of this book.
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Canonical quantization, symmetries in quantum
field theory

3.1 Photons

3.1.1 Quantization of the electromagnetic field

Now we have to move from classical to quantum field theory. The procedure of canoni-
cal field quantization is done in complete analogy to similar procedures for mechanical
systems. First of all, we shall consider the quantum field theory of free (noninteracting)
fields, and we shall start with the case of the electromagnetic field – not the simplest
case, but nonetheless physically quite important. We have already seen above that the
electromagnetic field is an example of an (Abelian) gauge field. This leads to some
additional complications related to the correct account of gauge invariance. For the
electromagnetic field these problems are solved in a relatively simple way, within the
canonical quantization procedure, while for non-Abelian Yang–Mills fields we need
a much a more complicated scheme of quantization, based on functional integration,
which will be discussed much later. The presentation in this chapter is essentially based
on [6].

From a mechanical point of view, the field is represented as the system with an
infinite (continuous) number of degrees of freedom. However, it is convenient to start
from the classical description of the field, which deals with an infinite, but discrete,
set of variables. We shall consider the electromagnetic field in the so-called Coulomb
gauge, when its vector potential A.r, t / satisfies the condition of transversality:

divA D 0 . (3.1)

The scalar potential is taken as ' D 0, while the electric E and magnetic H field are
defined as1

E D � PA , H D rotA . (3.2)

Maxwell equations reduce, in this case, to the wave equation for the vector potentialA

r2A � @2A
@t2

D 0 . (3.3)

It is well known that the six components of the electromagnetic field are written in the form of
an antisymmetric tensor:

F �� D @�A� � @�A� , (3.4)

1 Let us recall that we are using the system of units with the speed of light c D 1.
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which immediately leads to homogeneous Maxwell equations:

@�F �� C @�F �� C @�F �� D 0 . (3.5)

In a vacuum (in the absence of sources) inhomogeneous Maxwell equations are written as

@�F
�� D 0 (3.6)

or
�A� � @�.@�A�/ D 0 . (3.7)

We know that these equations follow from the variational principle with a Lagrangian

L D � 1

16�
F��F

�� , (3.8)

where A� is considered as a dynamic variable. However, for the given values of field strength
F�� , the 4-vector potential A� is not single valued, but is determined only up to the gradient
transformation

A� ! A0
� D A� C @�ƒ.x/ . (3.9)

If we require forƒ.x/ the validity of an additional condition �ƒ D �@�A�, we easily obtain
for the field, transformed by (3.9), @�A�

0 D 0. Now we can just drop the prime over A� and
write the so-called Lorentz condition:

@�A
� D 0 . (3.10)

Then (3.7) is transformed to
�A� D 0 (3.11)

i. e., the wave function for the 4-vector potential. The Lorentz gauge (3.10) gives one equation
for four components of the potential, reducing the number of independent components of the
field to three. However, this condition still does not make A� singly defined. For A� satis-
fying Lorentz condition, we may introduce A0

� D A� C @�ƒ, which also satisfies it due to

�ƒ.x/ D 0. Let us now choose ƒ.x/ to satisfy @ƒ
@t

D �', then obviously '0 D 0, so that
equation (3.10) gives r �A D divA D 0. Thus, we come to the Coulomb gauge, with only two
independent components of the electromagnetic field (transversality condition), in agreement
with reality.

Transformation to a discrete set of field variables is achieved by considering the
field system in a finite spatial volume V (below, for shortness of notation, we just put
V D 1) [33]. The vector potential is represented by a Fourier expansion over plane
waves:

A D
X

k

.ake
ikr C a�

ke
�ikr/ , (3.12)

where expansion coefficients ak depend on time according to

ak � e�i!kt , !k D jkj . (3.13)
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Due to transversality condition (3.1), we have

ak � k D 0 . (3.14)

In (3.12) summation is done over the infinite discrete set of kx , ky , kz . As usual, we can
make transformation from summation to integration over kx , ky , kz , introducing d 3k

.2	/3 ,
as the number of possible values of k, in the infinitesimal volume of k-space d 3k D
dkxdkydkz . Finally, the state of the field is completely determined by amplitudes ak,
which are considered as the set of classical field variables.

Let us introduce canonical field variables as

Qk D 1p
4�
.ak C a�

k/ , (3.15)

Pk D � i!kp
4�
.ak � a�

k/ D PQk . (3.16)

Obviously, these variables are real. Then the series (3.12) can be rewritten as

A D p
4�
X

k

�
Qk cos kr � 1

!k
Pk sin kr

�
. (3.17)

To determine the field Hamiltonian H , we calculate the total energy:

E D 1

8�

Z
d 3r.E2 CH2/ (3.18)

and express it via the variables Qk and Pk. To do this, we find E andH from (3.2) and
(3.17), substitute the appropriate expressions into (3.18) and obtain, after the integra-
tion over coordinates,

H D 1

2

X

k



P2
k C !2

kQ
2
k

�
. (3.19)

From the condition of transversality, bothPk andQk are orthogonal to vector k, so that
they, in fact, possess only two independent components. The directions of these vectors
are defined by the polarization directions of the appropriate wave. Let us denote two
components of Pk andQk in the plane orthogonal to k as Pk˛ andQk˛ , with ˛ D 1, 2.
Then (3.19) can be rewritten as

H D 1

2

X

k˛



P 2
k˛ C !2

kQ
2
k˛

�
. (3.20)

Thus, the HamiltonianH is represented by the sum of independent terms, each having
the form of the Hamiltonian of the harmonic oscillator.

Now we can perform quantization. The way to quantize an oscillator is well known
from quantum mechanics [35]. Quantization reduces to the change of the generalized
coordinates Qk˛ and generalized momenta Pk˛ by corresponding operators, satisfy-
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ing the standard commutation relations2:

Qk˛Pk˛ � Pk˛Qk˛ 	 ŒQk˛ ,Pk˛� D i . (3.21)

For different values of k˛, the corresponding operators just commute. Accordingly,
the fields A,E,H also become operators.

The Eigenvalues of the Hamiltonian (3.20) obviously are

E D
X

k˛



Nk˛ C 1

2

�
!k , (3.22)

whereNk˛ are integer numbers, representing the number of photons in quantum states,
characterized by k˛. The matrix elements of operator Qk˛ are also well known from
quantum mechanics [35]:

hNk˛jQk˛jNk˛ � 1i D hNk˛ � 1jQk˛jNk˛i D
s
Nk˛

2!k
. (3.23)

The matrix elements Pk˛ D PQk˛ differ from (3.23) by a factor ˙i!k.
Let us introduce new operators:

ck˛ D 1p
2!k

.!kQk˛ C iPk˛/ , cC
k˛ D 1p

2!k
.!kQk˛ � iPk˛/ . (3.24)

Then, from (3.23) and (3.24) we obtain

hNk˛ � 1jck˛jNk˛i D hNk˛jcC
k˛jNk˛ � 1i D

p
Nk˛ . (3.25)

From (3.24) and (3.21) we immediately get commutation relations for operators ck˛
and cC

k˛:
ck˛c

C
k˛ � cC

k˛ck˛ 	 Œck˛ , cC
k˛� D 1 . (3.26)

For different k and ˛ these operators simply commute. The operators ck˛ and cC
k˛ are

called operators of annihilation and creation of photons in the state with wave vector
(momentum) k and polarization ˛. The origin of these terms is obvious from (3.25).
For historical reasons, the formalism, based on the use of such operators is called
second quantization.

The operator of the vector potential (with the use of (3.12), (3.15), (3.16), and
(3.24)) can now be written as

A D
X

k˛



ck˛Ak˛ C cC

k˛A
�
k˛

�
, (3.27)

where

Ak˛ D p
4�

e.˛/p
2!k

eikr , (3.28)

2 Note that here we use „ D 1.



44 Chapter 3 Canonical quantization, symmetries in quantum field theory

where e.˛/ is the unit vector of polarization for the given field oscillator. Obviously,
we have e.˛/ � k D 0, so that this vector is orthogonal to the photon momentum k. To
each value of k we have two independent directions of polarization ˛ D 1, 2.

Similarly we can write down expansions for electric E and magnetic H field opera-
tors:

E D
X

k˛

.ck˛Ek˛ C cC
k˛E

�
k˛/ , (3.29)

H D
X

k˛

.ck˛Hk˛ C cC
k˛H

�
k˛/ , (3.30)

where
Ek˛ D i!kAk˛ , Hk˛ D Œn � Ek˛� , (3.31)

where n D k=!k is the unit vector directed along photon propagation. The vectors
Ak˛, introduced in (3.28), satisfy the following orthonormality condition:

Z
d 3rAk˛A

�
k0˛0 D 2�

!k
ı˛˛0ıkk0 , (3.32)

where we have taken into account that two independent polarization vectors are or-
thogonal: e.˛/ � e.˛0/� D 0. In fact, the values of Ak˛ (plane waves) can be treated as
wave functions of a photon with momentum k and polarization e.˛/3.

From (3.32) and (3.31) it is easy to obtain

1

4�

Z
d 3r.Ek˛E

�
k0˛0 CHk˛H

�
k0˛0/ D !kıkk0ı˛˛0 . (3.33)

Substituting (3.29) and (3.30) into (3.18) and using (3.33), we find

H D
X

k˛

1

2
.ck˛c

C
k˛ C cC

k˛ck˛/
1

4�

Z
d 3r.Ek˛E�

k0˛0 CHk˛H�
k0˛0/

D
X

k˛

1

2
.ck˛c

C
k˛ C cC

k˛ck˛/!k (3.34)

or, using commutation relations (3.26),

H D
X

k˛



cC
k˛ck˛ C 1

2

�
!k (3.35)

which gives the secondary quantized Hamiltonian of the system of photons. After com-
parison with (3.22) it becomes clear that

ONk˛ D cC
k˛ck˛ (3.36)

3 Let us stress that these wave functions cannot be understood as probability amplitudes of spatial
localization of photon, as there is no sense in defining the coordinate of a particle moving with the
velocity of light.
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represents the operator of the number of photons in k˛ state, which is diagonal in occu-
pation number representation, with integer eigenvalues. Note that (3.33) corresponds
to the wave function normalization to a “single photon per volume V D 1”.

In classical theory of electromagnetic field its momentum is defined as [33]

P D 1

4�

Z
d 3r ŒE �H� . (3.37)

Replacing E and B by operators (3.29) and (3.30), we obtain

P D
X

k˛



cC
k˛ck˛ C 1

2

�
k , (3.38)

which corresponds to each photon carrying the momentum k.
The presence in (3.35) and (3.38) of the terms, independent of occupation numbers

(1=2 contribution in parenthesis), corresponds to an infinite contribution of vacuum
fluctuations (“zero-level” oscillations) of the electromagnetic field. This is the first
example we meet of a typical “field theory divergence”. In most cases, in this situation
we can simply shift the origin of an energy scale (or the origin of momentum scale)
and write

H D
X

k˛

cC
k˛ck˛!k , P D

X

k˛

cC
k˛ck˛k . (3.39)

The origin of energy or momentum scale is “renormalized” here by infinite (“vacuum”)
constants, which are independent of excitations of the field system. However, we must
stress that the presence of an infinite energy (momentum) of the vacuum (zero-level
oscillations) is absolutely real physically and reflects the quantum nature of the field,
leading to some finite experimental effects. One of the best examples is the so-called
Casimir effect, which we shall discuss below.

3.1.2 Remarks on gauge invariance and Bose statistics

The choice of potentials in electrodynamics, as is well known, is not unique. Above
we have used the Coulomb gauge (3.1). In the general case, components of vector
potential A� can undergo the gradient transformation like

A� ! A� C @�ƒ . (3.40)

For plane waves, limiting ourselves to transformations, which do not change this form
of potential (i. e., its proportionality to exp.�ik�x�/), this nonuniqueness reduces
to the possibility of adding to the wave amplitude an arbitrary 4-vector proportional
to k�.

In the case of an arbitrary gauge, the 4-potential of the field can be written in the
form, generalizing (3.27),

A� D
X

k˛

.ck˛A
�

k˛
C cC

k˛
A
��
k˛
/ , (3.41)
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where wave functions of photon are

A
�

k
D p

4�
e�p
2!
e�ik�x

�

, (3.42)

where e� is a space-like 4-vector of polarization, which satisfies the condition
e�e

�� D �1. The space-like nature of the 4-vector of polarization is obvious from
the condition of four-dimensional transversality, as the wave vector (momentum) of a
real photon always belongs to the light cone. In these notations our gradient (gauge)
transformation reduces to

e� ! e� Cƒk� , (3.43)

whereƒ D ƒ.k�/ is an arbitrary scalar function of k�. Transversality of polarization
means that we always can choose the gauge, guaranteeing three-dimensional transver-
sality, when we choose

e� D .0, e/ , e � k D 0 . (3.44)

Four-dimensional transversality, equivalent to the Lorentz condition (3.10), can be
written in an invariant form as

e�k
� D 0 . (3.45)

This condition, as well as e�e�� D �1, is not violated by transformation (3.43), as
for a real photon we always have k2 D 0 (massless photon on the light-cone!). The
measurable physical characteristics should obviously be invariant to gauge transfor-
mations.

Photons are described by Bose statistics. This is obvious from the fact that the num-
ber of photons Nk˛ in k˛ state may be an arbitrary integer, as well as from the form
of commutation relations (3.26). A Bose field can acquire the classical limit. It is well
known that the properties of the quantum system approach that of the classical, when
quantum numbers, determining the system state, become large. For an electromagnetic
field this means that the number of photons Nk˛ is to be large enough. In this case we
can neglect unity in the right-hand side of commutation relations (3.26) (obviously,
this corresponds to the limit of „ ! 0 for the usual system of units) and write

cC
k˛ck˛ � ck˛c

C
k˛ , (3.46)

so that operators ck˛ , cC
k˛ can be considered as classical filed amplitudes. However,

some care is needed, as in the case of all Nk˛ � 1 we shall get the infinity after the
summation over k˛ for the field energy (3.22).

In fact, from a physical point of view it is sensible to consider the values of the fields,
averaged over some finite time intervals 	t . In Fourier expansion of a such averaged
field E the main contribution comes from the frequency region !	t < 1. Now, to
derive the conditions of quasiclassicality we have to consider only field oscillators
with ! < 1=	t . The number of oscillators with frequencies from zero to ! � 1=	t ,
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by the order of magnitude, is equal to (V D 1):

!
c

�3 � 1

.c	t/3
. (3.47)

The energy of the field in the unit volume is of the order of E2. Dividing this energy by
the number of oscillators and by the average photon energy � „!, we get the following
estimate for the number of photons:

N � E2c3

„!4
. (3.48)

Then from the condition N � 1 and (3.47) we obtain

jEj �
p„c
.c	t/2

, (3.49)

which determines the criterion of quasiclassicality4. We see that the field is be strong
enough, and stronger for smaller time intervals	t . For the time-dependent field	t �
!�1, so that a sufficiently weak alternating field cannot be described quasiclassically.
Only static fields, for which 	t ! 1, can always be treated as classical.

On the measurability of fields in quantum electrodynamics

The existence of a finite limit for velocity of propagation of interactions (speed of light) in
relativistic theory leads to a number of additional limitations for the measurability of physi-
cal characteristics (variables). At the early stages of the development of quantum field theory
these limitations were discussed by Landau and Peierls. The qualitative discussion of these
limitations can be found in the Introduction to [6]. During this analysis, Landau and Peierls
formulated the fundamental question of the possibility of measuring an electromagnetic field
itself. They claimed that the measurement of any component of (say) an electric field requires
the determination of the momentum of a charged test particle, so that the imminent action of
the field, radiated during this operation, will always lead to unavoidable limitations of field
measurements. They concluded that the precise measurement of field strength becomes im-
possible, in contradiction with the basic points of quantum electrodynamics discussed above.
This fact, as well as a number of similar difficulties to be discussed later, were the reason for
a long period of Landau’s rather skeptical opinion on quantum field theory in general.

The problem of fields measurability was analyzed in more detail by Bohr and Rosenfeld
(cf. an interesting review of this problem by Rosenfeld in [49]). It was demonstrated, that all
the difficulties are essentially solved (in the spirit of the Copenhagen interpretation of quan-
tum mechanics) if we use the finite (not point-like) test particles. For example, consider the
measurement of the Ex component of an electric field, averaged over some volume and time
intervals. Let us use the test particle with volume V and homogeneous charge density � and
measure its momenta p0

x and p00
x at the beginning and end of time interval T . Making this test

particle heavy enough, we can achieve its arbitrarily small displacement during this interval,
and obtain for the average value of the field NEx

NEx�V T D p00
x � p0

x . (3.50)

4 For better understanding here we explicitly write down both c and „.
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However, the measurement of the momentum of the test particle inevitably leads to some
error 	x in the determination of its position, according to the usual indeterminacy relation:
	px � „=	x. This leads to indeterminacy	 NEx for the field value NEx , which is of the order of

	 NEx � „
�V T	x

. (3.51)

However, it is obvious that this error can be made arbitrarily small by just increasing the charge
density of a test particle.

In a similar way, we can analyze the measurability of charges and currents [49]. In the
opinion of Bohr and Rosenfeld, such arguments demonstrate the absence of any contradic-
tions in the basic principle of quantum electrodynamics. However, we should note that the
Copenhagen interpretation of quantum theory, using the classical concepts as its inevitable
part, at present is not commonly accepted (nor is it considered to be absolutely satisfactory by
many researchers). The modern situation with the quantum limitations of field measurements
is discussed in [44].

3.1.3 Vacuum fluctuations and Casimir effect

The reality of vacuum (“zero-level”) fluctuations of an electromagnetic field is beautifully
illustrated by the so-called Casimir effect [28]. Consider two big ideally conducting metallic
planes, placed in a vacuum, at the distance a from each other, as it is shown in Figure 3.1.
Let these metallic plates be just squares with sides L and L � a. Consider the modes of
an oscillating electromagnetic field in the volume L2a. Boundary conditions require that the

Figure 3.1
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vector of electric fieldE be perpendicular, while the vector of magnetic fieldB is parallel to the
internal surface of the plate. Only transversal modes contribute to energy. If the wave vector
component kz , orthogonal to the surface of plates, is nonzero, it can acquire only discrete
values kz D n�=a .n D 1, 2, : : :/, so that the nodes of the field are at the plates. We also
have to take into account two polarization states. If kz D 0, we remain with only one mode (the
electric field component of this mode is just zero, as a tangential electric field is absent on the
surface of an ideal conductor). Then, the energy of zero-level oscillations of electromagnetic
field in the volume between plates is given by

E D
X

k˛

1

2
„!k˛ D

X

k˛

1

2
„cjk˛j D „c

2
L2
Z

d 2kk
.2�/2

"

jkkj C 2
1X

nD1

r

k2
k C n2�2

a2

#

. (3.52)

This expression is obviously infinite. However, let us subtract from (3.52) the similar expres-
sion for the energy of vacuum fluctuations in the same volume, but in the absence of metallic
plates:

E0 D „c
2
L2
Z

d 2kk
.2�/2

a

Z 1

�1
dkz

2�
2
q
k2

k C k2
z D „c

2
L2
Z

d 2kk
.2�/2

2
Z 1

0
dn
q
k2

k C n2�2=a2 .

(3.53)
Then, the change of the vacuum energy due to introduction of metallic plates (per unit surface
of the plates) is given by

E D E �E0

L2
D „c

2�

Z 1

0
dk k

�
k

2
C

1X

nD1

p
k2 C n2�2=a2 �

Z 1

0
dn
p
k2 C n2�2=a2

�
.

(3.54)
This expression is still infinite, due to ultraviolet (large k!) divergences. However, we can
take into account that for wavelengths smaller than atomic size, the approximation of an ideal
conductors (considered as continuous medium) becomes inapplicable, Thus we have to intro-
duce in the integrand of (3.54) some smooth cutoff function f .k/, which is equal to unity for
k < km and tends to zero for k � km, where km is of the order of the inverse atomic size.
Then we can write

E D „c �
2

4a3

Z 1

0
du

�p
u

2
f

�
a

p
u
�

C
1X

nD1

p
uC n2f


�
a

p
uC n2

�

�
Z 1

0
dn

p
uC n2f


�
a

p
uC n2

� �
, (3.55)

where we have introduced the dimensionless integration variable u D a2k2=�2. The last ex-
pression can be rewritten as

E D „c �
2

4a3

�
1

2
F.0/C F.1/C F.2/C � � � �

Z 1

0
dnF.n/

�
, (3.56)

where we have defined the function

F.n/ D
Z 1

0
du

p
uC n2f


�
a

p
uC n2

�
. (3.57)

For n ! 1 we have F.n/ ! 0 due to the properties of the cutoff function. To calculate the
difference between the sum and the integral in square brackets in equation (3.56), we may use
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the Eiler–Maclaurin summation formula, writing it as

1

2
F.0/C F.1/C F.2/C : : :�

Z 1

0
dnF.n/ D � 1

2Š
B2F

0.0/� 1

4Š
B4F

000.0/C � � � , (3.58)

where B� are Bernoulli numbers, defined by the series

y

ey � 1
D

1X

�D0

B�
y�

�Š
. (3.59)

In particular, B2 D 1=6, B4 D �1=30, . . . . We have

F.n/ D
Z 1

n2
du

p
uf

�
�

p
u

a

�
, F 0.n/ D �2n2f

�
�n

a

�
. (3.60)

Assuming that f .0/ D 1 and all its derivatives are zero at the same value of its argument, we
have F 0.0/ D 0, F 000.0/ D �4, while all higher order derivatives of F are zero. Thus, the
value of the cutoff does not enter into the final results and we get

E D „c�2

a3

B4

4Š
D � �2

720

„c
a3

. (3.61)

Then, the force (per unit square) acting upon the plates are

F D � �2

240

„c
a4

. (3.62)

The negative sign here corresponds to attraction. It is remarkable that the existence of this
(quite weak!) attractive force, due to vacuum fluctuations of the electromagnetic field, was
experimentally confirmed, and the theoretical expression (3.62) was directly checked. It is
even more surprising that the existence of the Casimir force has to be taken into account [32]
during construction and work of modern micromachines! This proves, beyond any doubt, that
“zero-level” oscillations of an electromagnetic field are quite real.

3.2 Bosons

3.2.1 Scalar particles

Consider particles with spin 0. The state of a free spinless particle is completely de-
termined by its momentum p. Its energy "p is defined by

"2
p D p2 Cm2 or p2 D m2 (3.63)

or, as usually expressed, the particle is on its “mass surface”. Energy-momentum con-
servation follows from the homogeneity of space-time. In quantum mechanics, the
requirement of the symmetry towards an arbitrary translation of a coordinate system
means that the wave function of a particle with 4-momentum p is multiplied (as a
result of translation) by a phase factor (with modulus 1). This requirement is obeyed
only by the plane wave:

const � e�ipx , px D "pt � pr . (3.64)
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The wave equation for our particles should have (3.64) as a partial solution for any
p, satisfying equation (3.63). This equation should also be linear, expressing the su-
perposition principle: any linear combination of solutions also describes the possible
state of a free particle. And finally, this equation should be of a sufficiently low order
in derivatives.

The spin of a particle is its angular momentum in a coordinate system at rest, and the
state of a particle in a system at rest is described by nonrelativistic quantum mechanics.
Then, if a particle spin in a resting system is equal to s, its wave function in this
coordinate system should have 2s C 1 components (i. e., be represented by a three-
dimensional spinor of rank 2s) [35]. The particle with spin s D 0 in a resting system
is described by a three-dimensional scalar. However, this three-dimensional scalar can
have a double four-dimensional “origin” [6]: it can be a four-dimensional scalar ', but
it also can be a time component 0 of some time-like 4-vector �, such that in a system
at rest only a  0 component is different from zero. Tensors of higher ranks are not to
be taken into account, as they will lead to differential equations of higher orders.

For a free particle, the only differential operator which can enter the wave equation
is the operator of 4-momentum p:

p� D i@� D
�
i
@

@t
, �ir

�
. (3.65)

A wave equation can be written as a differential relation between ' and  �, con-
structed with the help of operator p�, and satisfying the condition of relativistic in-
variance. Obviously, the simplest variant of such relation has the following form:

p�' D m � , p� � D m' , (3.66)

wherem is a scalar, characterizing the particle5. Substituting � from the first equation
in (3.66) to the second one, we get

.p2 �m2/' D 0 , (3.67)

which coincides with the Klein–Gordon equation (2.10), (2.29) for the scalar field '.
Substituting ' � e�ipx into (3.67), we obtain p2 D m2, so that (3.63) is satisfied,
and the scalarm is just the rest mass of our particle. As (3.63) is valid for a relativistic
particle with arbitrary spin, the Klein–Gordon equation is obeyed, in fact, by wave
function components of particles with any spin.

The properties of a scalar field, satisfying the Klein–Gordon equation, were already
discussed in detail above. For generality we shall consider here, from the very begin-
ning, the case of a complex field. Its energy-momentum tensor, similar to (2.50), is
given by

T �� D .@�'�/.@�'/C .@�'/.@�'�/ � g��L , (3.68)

5 There is no sense in introducing two scalars m1,m2, as they can always be made equal by the appro-
priate redefinition of ', �
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where the Lagrangian L is defined in (2.56). In particular,

T00 D @'�
@t

@'

@t
C r'� � r' Cm2'�' , (3.69)

Ti0 D @'�
@t

@'

@xi
C @'�
@xi

@'

@t
. (3.70)

Then the 4-momentum of the field is determined by the integral

P� D
Z
d 3rT�0 . (3.71)

From (3.69) we can see that T00 > 0, so that energy is positively defined, which, in
fact, determines the choice of signs in the Lagrangian.

Equation (3.69) can be used to normalize the field. The plane wave, normalized to
“single particle in volume V D 1” can be written as

 p D 1p
2"p

e�ipx . (3.72)

Calculating (3.69) with (3.72), we obtain T00 D "p, so that the total energy in the
volume V D 1 is equal to the energy of a single particle.

Let us now proceed to quantization. Let us consider an expansion of an arbitrary
wave function (field) over the complete set of eigenfunctions of a free particle, e. g.,
the plane waves  p from (3.72):

' D
X

p

ap p , '� D
X

p

a�
p 

�
p . (3.73)

Quantization reduces to the replacement of the coefficients ap, a�
p by the corresponding

operators of annihilation and creation of particles Oap , OaC
p .

The principal aspect of relativistic theory is the existence of two solutions for equa-
tion (3.63), which gives for the energy of a particle

"p D ˙pp2 Cm2 . (3.74)

Physically sensible are only "p > 0, as the negative particle energies correspond to
the instability of the system (absence of the ground state). We cannot just drop the
solutions with "p < 0, as the general solution of the wave equation is given by the
superposition of all independent partial solutions, and the expansion of the field should
be performed over the complete set of eigenfunctions. Let us write

' D
X

p

1p
2"p

a.C/p ei.pr�"pt/ C
X

p

1p
2"p

a.�/p ei.prC"pt/ , (3.75)

where in the first sum the plane waves correspond to positive, while in the second they
correspond to negative frequencies. Here and below we take "p D p

p2 Cm2, i. e.,
the positive definite energy of the physical particle.
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The recipe for the correct transition to the second quantization can now be formu-
lated in the following way:

� a
.C/
p ! Oap is the annihilation operator of a particle with momentum p;

� a
.�/
p ! ObC�p is the creation operator of an antiparticle with momentum �p.

The last change to be made is due to the time dependence in the second sum in (3.75)
being ei"pt D .e�i"pt /�, which corresponds to the appearance of one “extra” particle
with energy "p in the final state (during the calculation of any matrix element, which
includes '). Now, replacing in the second sum p ! �p, we write

O' D
X

p

1p
2"p



Oape�ipx C ObC

p e
ipx
�

,

O'C D
X

p

1p
2"p



OaC
p e

ipx C Obpe�ipx� . (3.76)

Now operators Oap and Obp in expansion (3.76) are multiplied by “correct” factors like

e�i"pt , while operators OaC
p and ObC

p are multiplied by complex conjugate factors like
ei"pt . Both types of particles (particles and antiparticles), represented by the creation
and annihilation operators entering the field operatorb' have the same masses.

Substituting operator expansion (3.76) into (3.69) and integral
R
d 3rT00, determin-

ing the energy of the field, we obtain the Hamiltonian of the field as

H D
X

p

"p
� OaC
p Oap C Obp ObC

p
	

. (3.77)

A physically reasonable result for the eigenvalues of this operator (positive definite
energy) is obtained only if the creation and annihilation operators satisfy Bose com-
mutation relations:

Œ Oap, OaC
p � D Œ Obp, ObC

p � D 1 , Œ Oap, Obp� D Œ Oap, ObC
p � D � � � D 0 . (3.78)

In fact, using these commutation relations, we can write the Hamiltonian (3.77) in the
following form:

H D
X

p

"p.a
C
p ap C bC

p bp C 1/ . (3.79)

We have already seen above that in occupation number representation the eigenvalues
of Bose operators aC

p ap and bC
p bp are given by nonnegative integers, which we shall

denote as Np and NNp, respectively (the numbers of particles and antiparticles in the
state with a given momentum). Then both energy and momentum of the field can be
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written (dropping the infinite energy of the vacuum) as

E D
X

p

"p.Np C NNp/ , (3.80)

P D
X

p

p.Np C NNp/ . (3.81)

Formal derivation of the last expression can be performed with the help of (3.70) and
(3.71). Assuming anticommutation (Fermi-like) relations for creation and annihila-
tion operators, we obtain, instead of (3.79), an expression like H D P

p "p.a
C
p ap �

bC
p bp C 1/, which is not positively defined (leading to the absence of the ground state

of the system). Thus, the particles with spin 0 (scalar particles) are Bosons. This is
actually a proof of the spin-statistics theorem for this simplest case of the scalar field.

We have seen above, that for complex scalar field we have charge conservation
(2.65). Replacing in the expression (2.63) for current density classical fields ','� by
operators O', O'C from (3.76), and making elementary calculations, we obtain from
(2.65)

Q D
X

p

.aC
p ap � bpbC

p / D
X

p

.aC
p ap � bC

p bp � 1/ , (3.82)

where, while transforming to the last equality, we have again used the commutation
relations (3.78). The eigenvalues of this operator, without the vacuum contribution,
are written as

Q D
X

p

.Np � NNp/ , (3.83)

so that the charges of particles and antiparticles are opposite in sign. Note that now
(after quantization!) the charge can change only in a discrete way.

3.2.2 Truly neutral particles

Above we have considered operators Oap and Obp as referring to different particles. This
is not always so – we may consider a specific case, when operators entering the ex-
pansion of O' refer to the same particles (we have already met this situation in case of
photons). Then

O' D
X

p

1p
2"p



Ocpe�ipx C OcC

p e
ipx
�

, (3.84)

so that the particle just coincides with its antiparticle, and we are dealing with the so-
called truly neutral particles. Now the field operator is Hermitian: O' D O'C, which is an
analogue of the real field in classical field theory. Naturally, this field possesses twice
less degrees of freedom in comparison with complex field, and its Lagrangian takes
the form as in (2.28). Accordingly, we can calculate the energy-momentum tensor and
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obtain for the energy density the following expression:

T00 D 1

2

²�
@'

@t

�2

C .r'/2 Cm2'2
³

. (3.85)

Then, substituting expansion (3.84) into
R
d 3rT00 we get the Hamiltonian as

H D 1

2

X

p

"p
� OcC
p Ocp C Ocp OcC

p
	

. (3.86)

Again we see the necessity to quantize using Bose rules, so that commutation relations
for creation and annihilation operators are written as

Œ Ocp, OcC
p � D 1 , Œ Ocp, Ocp� D Œ OcC

p , OcC
p � D 0 . (3.87)

The Hamiltonian is

H D
X

p

"p

�
cC
p cp C 1

2

�
, (3.88)

so that, after dropping the vacuum contribution, its eigenvalues are given by

E D
X

p

"pNp . (3.89)

It is obvious that for a Hermitian (real in classical limit) field both current density and
charge are zero.

Note that from previously discussed physical particles an example of a truly neu-
tral particle was the photon, and the Hermiticity of corresponding quantum field was
relevant to the measurability of quantum electric and magnetic fields.

Remarks on the Lorentz group

According to the special theory of relativity, all inertial reference systems are equivalent. If
two coordinate systems move relative to each other along direction x1 with velocity v, the
connection between corresponding coordinates is expressed by Lorentz transformation [33]:

x00 D �.x0 � ˇx1/ D x0chu � x1shu ,

x01 D �.x1 � ˇx0/ D x1chu � x0shu , (3.90)

x02 D x2 , x03 D x3 ,

where

� D 1
p

1 � ˇ2
, ˇ D v

c
, thu D ˇ . (3.91)

In the general case, we postulate the invariance of physical laws with respect to linear coordi-
nate transformations (inhomogeneous Lorentz transformations):

x� ! x0� D ƒ�� x
� C a� , (3.92)
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which conserve the square of the interval

.x � y/2 D .x� � y�/.x� � y�/ D g��.x
� � y�/.x� � y�/ . (3.93)

In (3.92) translation is performed after the homogeneous transformation. Inhomogeneous Lo-
rentz transformations are also called Poincaré transformations.

Among possible coordinate transformations, we may consider not only translations and ro-
tations in pseudo-Euclidean space-time, but also space and time inversions, which we shall
denote by P , T , and PT :

Pxk D �xk , Px0 D x0 ,

T xk D xk , T x0 D �x0 ,

PT x� D �x� . (3.94)

The interval (3.93) does not change under transformations (3.92) if

ƒ��ƒ
�
� D ı�� , ƒ�� D g��ƒ

�

ˇ
gˇ� . (3.95)

In matrix form the last relation is written as

Qƒgƒ D g , (3.96)

where the tilde denotes matrix transposition. Then, it is clear that

Detƒ D ˙1 . (3.97)

From (3.95) it also follows that

.ƒ00/2 �
X

k

.ƒ0k/2 D 1 , (3.98)

so that .ƒ00/2 � 1. Correspondingly, there are two possibilities:

ƒ00 � 1 , ƒ00 � �1 . (3.99)

Thus, the general transformations (3.92) can be divided into four classes:

1. P
"
C: Detƒ D 1, ƒ00 � 1

No time and space inversions. Only rotations and translations in pseudo-Euclidean space,
which form a proper orthochronous Poincare group.

2. P
#
C: Detƒ D 1, ƒ00 � �1

Here the T -operation is included. Due to the unimodular nature of transformations, the P -
operation is also included. Any transformation from P

#
C can be represented by the product

P
"
C èPT . In particular, 4-inversion PT 2 P

#
C, whileP and T do not enter P

#
C separately,

due to Detƒ D 1. P
"
C and P

#
C transformations together form the proper Poincare group

PC.

3. P "� : Detƒ D �1, ƒ00 � 1

Corresponding transformations have the form PP
"
C. Together with P

"
C they form an or-

thochronous Poincaré group.
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4. P #� : Detƒ D �1, ƒ00 � �1

Time direction changes. Any transformation from this class can be written as TP
"
C.

The general Poincaré group can now be represented by the sum

P D P
"
C C PTP

"
C C PP

"
C C TP

"
C . (3.100)

Of all these components of the Poincaré group, only P
"
C contains the unit transformation. Thus,

transformations from different classes cannot be connected by the continuous transformation
belonging to P

"
C. Transformations from the same class can be obtained from each other by

transformations from P
"
C.

3.2.3 CPT -transformations

Space inversion

Discrete symmetries, like space or time inversions and charge conjugation (replace-
ment particles by antiparticles), are of major importance in quantum field theory. For
example, space inversion is defined as

P r D �r . (3.101)

Under this transformation the scalar field can be transformed as

P'.t , r/ D ˙'.t , �r/ , (3.102)

where signs correspond to the usual scalar or pseudoscalar. In nonrelativistic quantum
mechanics, the behavior of the wave function of the system under space inversion
is related simply to its coordinate dependence, which leads to the concept of orbital
parity [35]:

 .t , �r/ D ˙ .t , r/ . (3.103)

In quantum field theory we are speaking about behavior of the field at a given point
in space, and equation (3.102) defines the internal parity of corresponding particles.
Total parity of the particle system is equal to the product of their internal parities and
orbital parity of their relative motion. “Internal” symmetry properties of different par-
ticles become manifest only in the processes of particle transmutations during reaction
between particles.

For the second quantized fields, internal parity is expressed via appropriate behavior
ofb'-operators. For scalar or pseudoscalar fields we have

Pb'.t , r/ D ˙b'.t , �r/ . (3.104)

The action of the P -operation on theb'-operator can be formulated as transformation
rules for creation and annihilation operators of particles, which correspond to (3.104).
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Using (3.76) it is easy to find that these rules take the form

P :
ap ! ˙a�p , bp ! ˙b�p ,

aC
p ! ˙aC�p , bC

p ! ˙bC�p .
(3.105)

In fact, we can write

'.t , r/ D
X

p

1p
2"p

�
ape

�i"ptCipr C bC
p e

i"pt�ipr	 , (3.106)

and after the operation (3.105) and the change of the summation variable p ! �p we
immediately obtain ˙'.t , �r/6. Note that transformation (3.105) is pretty obvious –
inversion simply changes the sign of polar vector p.

Charge conjugation

Replacement of particles by antiparticles can be made in the field operator (3.76) by
an obvious operation:

C : ap ! bp , bp ! ap . (3.107)

Then ' ! 'C , where
'C .t , r/ D 'C.t , r/ . (3.108)

The meaning of this transformation does not change if we introduce an arbitrary phase
factor:

ap ! ei˛bp , bp ! e�i˛ap , (3.109)

so that
' ! ei˛'C , 'C ! e�i˛' . (3.110)

If we perform the charge conjugation twice, we obtain the identical transformation
' ! '. Symmetry towards the replacement of particles by antiparticles, in the general
case, does not lead to any new particle characteristics, and operator C does not have
eigenstates and eigenvalues. The only exception is the system containing the equal
number of particles and antiparticles. Operator C transforms such a system into itself,
and in this case it has eigenvalues C D ˙1 (as C 2 D 1, which is obvious). The same
is valid for truly neutral particles, when 'C D ˙', and we can speak of charge parity.

Four-dimensional inversion and the inversion of time

Four-dimensional inversion is defined as

x ! �x , where x D .r, t / . (3.111)

6 Note that below, in most cases, we shall not use the cap-sign of operator for creation and annihilation
operators, as well as for other filed operators, hoping that this will not lead to any misunderstandings.
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This operation can be considered as some four-dimensional rotation or, in other words,
as some Lorentz transformation, because the determinant of the transformation ma-
trix in both cases is equal to unity. The situation here is different from the case of
three-dimensional (spatial) inversion, where the determinant is equal to �1. Thus, any
expression invariant with respect to Lorentz transformations is also invariant to four-
dimensional inversion. With respect to the operator of the scalar field (scalar with
respect to four-dimensional rotations) this means that

'.t , r/ ! '.�t , �r/ . (3.112)

In terms of the creation and annihilation operators, transformation (3.112) is achieved
by interchanging the coefficients before e�ipx and eipx in equation (3.76), which gives

CPT : ap ! bC
p , bp ! aC

p . (3.113)

Thus, this transformation includes the replacement of particles by antiparticles, so that
in relativistic field theory we automatically obtain the invariance with respect to trans-
formation when we simultaneously perform P and T , and also the charge conjugation
C . This is the content of the so-called CPT-theorem, which is one of the most general
statements of quantum field theory: nothing in nature will change if we simultaneously
with 4-inversion (inversion of both space coordinates and time) replace all particles
by antiparticles! Transformation (3.113) can be written also in the form

'CPT .t , r/ D '.�t , �r/ . (3.114)

Then it is easy to formulate the recipe for T -inversion (inversion of time). This oper-
ation should be defined so that, together with CP , it reduces to CPT -transformation
(3.113). Taking into account (3.105) and (3.107), we find

T : ap ! ˙aC�p , bp ! ˙bC�p , (3.115)

where the signs correspond to the signs in equation (3.105). Thus, time inversion not
only transforms the motion with momentum p to the motion with momentum �p,
but also interchanges the initial and final states in all matrix elements, which leads to
the replacement of the annihilation operators of particles with momentum p by the
creation operators of particles with momentum �p (and vice versa). From (3.115) and
(3.106), with replacement p ! �p, we get

'T .t , r/ D ˙'C.�t , r/ . (3.116)

In fact, here we have the full correspondence with time inversion in quantum mechan-
ics [35]: if some state is described by the wave function .t , r/, the time-inverted state
is described by  �.�t , r/.

Transformations T andCPT -interchange initial and final states, and for these trans-
formations there are no notions like eigenstates and eigenvalues. They do not lead
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to any new characteristics of particles. Due to relativistic invariance, the operator of
CPT -transformation should commute with the arbitrary Hamiltonian (Lagrangian)
of relativistic field theory. As to C and P (i. e., also T ) separately, this is not so in
general. In particular, weak interactions of elementary particles are not invariant with
respect to spatial inversion P , and even with respect to combined CP transformation.
This last (very small!) breaking of symmetry, according to the CPT -theorem, leads
to a weak nonequivalence of time directions in nature, which leads to some signifi-
cant consequences for cosmology. For example, Sakharov proposed an idea that this
symmetry-breaking can explain the overwhelming domination of matter over antimat-
ter in the modern state of the universe.

Discrete transformations of current

Consider the operator of conserving current of the scalar field, which, with the help of (2.63),
can be written as

j� D i.'C@�' � '@�'C/ . (3.117)

Transformation (3.104), with the obvious replacement .@0, @/ ! .@0, �@/, gives

P : .j 0, j/t ,r ! .j 0, �j/t ,�r , (3.118)

as it should be for a true 4-vector.
Similarly, charge conjugation (3.108) gives

C : .j 0, j/t ,r ! .�j 0, �j/t ,r , (3.119)

if operators ' and 'C commute. Strictly speaking, they do not commute, but this is irrele-
vant – this noncommutativity appears only due to the noncommutativity of the creation and
annihilation operators with the same p, which leads to the appearance of terms, independent of
occupation numbers, i. e., independent of the state of the field. Dropping these terms we still
obtain (3.119). From (3.119) it is seen that the change of particles by antiparticles leads to the
change of the sign of all the components of the current.

The operation of time inversion is accompanied by the interchange of the initial and final
states, so that being applied to the product of operators it changes the order of the operators in
this product, for example

.'C@�'/T D .@�'/
T .'C/T . (3.120)

According to the remark after equation (3.119), this is irrelevant, and the return to the initial or-
der does not change the results. Taking into account that underT -inversion .@0, @/ ! .�@0, @/,
with the help of (3.116), we obtain

T : .j 0, j/t ,r ! .j 0, �j/�t ,r , (3.121)

so that the three-dimensional current j changes its sign, in accordance with the classical mean-
ing of the current, while the charge density j 0 does not change.

Finally, under 4-inversion (3.112) we easily obtain

CPT : .j 0, j/t ,r ! .�j 0, �j/�t ,�r (3.122)

in accordance with the CPT -nature of this transformation.
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The operator of electromagnetic interaction is proportional to j�A� and is invariant to
CPT , as any other relativistic interaction. Accordingly, using (3.118), (3.119), and (3.121)
it is not difficult to obtain transformation rules for electromagnetic potential A� D .A0,A/:

C : .A0,A/t ,r ! .�A0, �A/t ,r
P : .A0,A/t ,r ! .A0, �A/t ,�r
T : .A0,A/t ,r ! .A0, �A/�t ,r

CPT : .A0,A/t ,r ! .�A0, �A/�t ,�r . (3.123)

Similar transformation rules are also valid for Yang–Mills gauge fields.

3.2.4 Vector bosons

The particle with spin 1 in its rest system is described by the three-component wave
function – a three-dimensional vector (vector Boson). By its four-dimensional “origin”
these may be three spatial components of 4-vector  � (space-like!) or three compo-
nents of the antisymmetric second rank tensor  �� , for which in a rest system the
corresponding time-components  0 , 00 and spatial  ik components become zero.

The wave equation can again be written as a differential relation between  � and
 �� in the form

i �� D p� � � p� � , (3.124)

p� �� D im2 � , (3.125)

where p� D i@� is the momentum operator. These are Proca equations for a vector
field. Applyingp� to both sides of (3.125), we obtain (due to the antisymmetry of ��)

p� � D 0 . (3.126)

Then, excluding  �� from (3.124), (3.125) (substituting the first equation into the
second) and taking into account (3.126), we obtain

.p2 �m2/ � D 0 , (3.127)

so thatm, as usual, represents the particle mass. Thus, the free particle with spin 1 is de-
scribed by a single 4-vector �, the components of which satisfy the “Klein–Gordon”-
like equation (3.127) and an additional condition, similar to the Lorentz condition (of
four-dimensional transversality) (3.126), which excludes from  � a “part, belonging
to spin 0”.

In the rest system,  � does not depend on spatial coordinates (p D 0), and we
simply have p0 0 D 0, at the same time taking into account that in the rest system
p0 D m we have p0 0 D m 0. Then it is clear that in the rest system  0 D 0, as it
should be for a particle with spin 1. Together with  0 in the rest system both  ik and
 00 also become zero.
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The particle with spin 1 may have a different internal parity, depending on � being
a true vector or pseudovector:

P � D . 0, � / or P � D .� 0, / . (3.128)

The plane wave, normalized to a single particle in volume V D 1, is written as

 � D 1p
2"p

u�e
�ipx , u�u

�� D �1 , (3.129)

whereu� is a unit 4-vector of polarization, normalized by the requirement of the space-
like nature of  �, also satisfying the condition of four-dimensional transversality:

u�p
� D 0 . (3.130)

Note that, in contrast to the case of photons, vector Bosons with spin 1 have three
independent polarizations.

The Lagrangian of vector field can be written as

L D �.@� �
� /.@

� �/Cm2 �
� 

� . (3.131)

The structure of this Lagrangian is similar to the case of a scalar field, but note the dif-
ferent overall sign! The thing is that  � is the space-like vector, so that  �

� 
� < 0,

while for scalar field '�' > 0, so that the sign is chosen to guarantee the positive
definiteness of energy in the classical limit. In fact, the practical use of the Lagrangian
(3.131) reduces not only to the derivation of equations of motion, but also to the in-
troduction of the energy-momentum tensor and current. It is easy to find that

T�� D �@� ��@� � � @� ��@� � � Lg�� , (3.132)

j� D �i Œ �
�@� 

� � .@� �
�/ 

�� . (3.133)

These expressions are similar to those obtained for scalar field and do not require
further commenting.

Quantization can be performed similarly to the case of the scalar field. Again, to
guarantee the physically obvious requirement of T00 > 0 and the arbitrariness of the
sign of charge density j 0, we have to use Bose-like rules of quantization (commutation
relations)!

Let us stress that, due to m ¤ 0, gradient (gauge) invariance is absent. Because
of this the massive vector field possesses three independent components. The absence
of gauge invariance of this theory is most clearly seen from the second of the Proca
equations (3.125): the value of  �� is invariant with respect to gradient transforma-
tions, so that the left-hand side of this equation is invariant, while the right-hand side
is obviously noninvariant and changes under these transformations.
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Particles with arbitrary integer spin

the wave function of a particle with integer spin s is represented by an irreducible 4-tensor of
the rank s, i. e., tensor symmetric over all of its indices which becomes zero under contraction
over any pair of its indices:

 :::�:::�::: D  :::�:::�::: ,  �::::::�::: D 0 . (3.134)

This tensor should satisfy any extra condition of four-dimensional transversality:

p� :::�::: D 0 , (3.135)

and any of its components should satisfy the equation

.p2 �m2/ :::�::: D 0 . (3.136)

In the rest system, equation (3.135) leads to the zeroes of all the components of the 4-tensor,
with any of the indices equal to 0. Thus, in the rest system our field is reduced to irreducible
three-dimensional tensor of rank s, with the number of independent components equal to 2sC1.

The Lagrangian, energy-momentum tensor, and current density for the field with integer
spin s differ from those just written above for the case of s D 1 only by the replacement  �
with  :::�:::�:::. The normalized plane wave is written as

 ��::: D 1p
2"p

u��:::e�ipx , u�
��:::u

�� D �1 , (3.137)

with
u:::�:::p� D 0 . (3.138)

There are in total 2s C 1 independent polarizations.
Quantization is performed as an obvious generalization of the cases of s D 0 and s D 1.
The scheme presented above is sufficient for the description of free particles with integer

spins. For the interacting case the situation becomes more complicated. For all integer spins
with s > 1 it is actually impossible to formulate a variational principle, using only one (tensor)
field function, with the rank, corresponding to this spin. It becomes necessary to introduce
additional tensor (or spinor) entities of lower rank. Then the Lagrangian is chosen in such a
way that these additional fields reduce to zero due to the equations of motion (following from
variational principle) for free particles.

Note that the problem of particles with spin s > 1 is of rather “academic” interest, as there
are no such elementary particles within the Standard Model (and forgetting about gravitons!).

3.3 Fermions

3.3.1 Three-dimensional spinors

Let us recall the description of particles with half-integer spin (Fermions) in nonrela-
tivistic quantum mechanics [35]. A particle with spin s D 1=2 is described by a two-
component wave function – the spinor, which is conveniently written as the following
column:

 D
�
 1

 2

�
D
�
 .1=2/
 .�1=2/

�
, (3.139)
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where components  1 and  2 correspond to spin projections sz D ˙1=2. Under
an arbitrary rotation of the coordinate system, spinor components are transformed by
linear transformation:

 01 D a 1 C b 2 ,  02 D c 1 C d 2 . (3.140)

In other words,

 0 D U , U D
�
a b

c d

�
. (3.141)

Transformation coefficients (matrix elements of U ) are, in general, complex and are
functions of the angles of rotation.

Consider a bilinear form
 1'2 �  2'1 , (3.142)

where  and ' are two spinors. Simple calculation gives

 01'02 �  02'01 D .ad � bc/. 1'2 �  2'1/ , (3.143)

so that (3.142) under coordinate system rotations (3.140) is transformed into itself.
Consider now the bilinear form (3.142) as some wave function of the composite sys-
tem. However, if we have a single component wave function, which is transformed
under rotations into itself, it obviously corresponds to spin zero, i. e., it is a scalar and
can not change under rotation at all. Thus, the coefficients of our transformation should
satisfy the condition

ad � bc D 1 , DetU D 1 . (3.144)

Then (3.142) is simply a wave function of a particle with spin s D 0, composed of
two particles with spin s D 1=2. At the same time, we can introduce one more scalar,
composed of spinor components (3.139):

 1 1� C  2 2� (3.145)

which is just the probability density needed to find a particle in a given point of space.
Transformation, which conserves the sum of squares of modules of transformed vari-
ables, is unitary, so that

UC D
�
a� c�
b� d�

�
D U�1 . (3.146)

Taking (3.144) into account, the inverse transformation matrix takes the form

U�1 D
�
d �b
�c a

�
, (3.147)

so that from unitarity we obtain

a D d� , b D �c� . (3.148)
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Due to conditions (3.144) and (3.148), of the four complex coefficients a, b, c, d (i. e.,
of eight real numbers), in fact, only three (real) are independent, which corresponds
to the three rotation angles of three-dimensional coordinate system.

Comparing scalars (3.142) and (3.145) we see that  1� and  2� should transform
correspondingly as  2 and � 1.

Besides the contravariant spinor components  1, 2, introduced above, we may
define the covariant components:

 1 D  2 ,  2 D � 1 . (3.149)

The invariant (3.142) can be written now as the scalar product:

 �'� D  1'1 C  2'2 D  1'2 �  2'1 . (3.150)

Now, take into account that

 �'� D  1'1 C  2'2 D � 2'
2 �  1'

1 , (3.151)

so that the following antisymmetry condition is always valid:

 �'� D � �'� . (3.152)

Then it is obvious that
 � � D 0 . (3.153)

We can also define spinors of a higher rank. For example, we can introduce spinors of
the second rank as

 �� �  �'� ,  �� �  �'� ,  
�

�
�  �'

� . (3.154)

Higher rank spinors are defined in a similar way.
Transformation from contravariant to covariant spinors can be made with the help

of a “metric tensor”:

g�� D g�� D
�

0 1
�1 0

�
, (3.155)

as it is easily seen that we can write

 � D g�� 
� ,  � D g�� � . (3.156)

Consider now the multiplication and contraction of spinors. Multiplication of two
spinors of the second and third ranks  �� ��� produces a spinor of the fifth rank.
Construction of  ���

��
over the pair of indices � and � gives the spinor of third rank

 
���

��
. In particular, contraction of  �

�
produces the scalar  �

�
. Here we have to take

into account (3.152) and (3.153), so that  �
�

D � �
�

. Then it follows that the con-
traction over two indices of any symmetric (to permutation of indices) spinor produces
zero! In particular, for the symmetric spinor of the second rank  �� D  �� we have
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 �
�

D 0. A spinor symmetric over all indices of any rank can always be constructed
by the appropriate symmetrization (i. e., by taking the sum of the spinors with all the
permutations of the indices). We have shown that the contraction over a pair of indices
of a symmetric spinor can not produce spinors of a lower rank. From a mathematical
point of view these spinors realize irreducible representations of the three-dimensional
rotation group SU.2/.

By definition of the angular momentum (spin) s operator 1 C iı'.n � s/ describes
the rotation by infinitesimal angle ı' around an axis, oriented along the unit vector
n [35]. For spin s D 1=2 we have s D 1

2
 , where 
 is the set of three Pauli matrices:


x D
�

0 1
1 0

�
, 
y D

�
0 �i
i 0

�
, 
z D

�
1 0
0 �1

�
. (3.157)

The corresponding operator for a finite angle rotation is given by

Un D exp

�
i

2
.n � 
/'

�
, (3.158)

or, in another form:
Un D cos

'

2
C i.n � � / sin

'

2
. (3.159)

Then, for rotation around z-axis we have

Uz.'/ D cos
'

2
C i
z sin

'

2
D
�
ei'=2 0

0 e�i'=2

�
, (3.160)

so that
 01 D  1ei'=2 ,  02 D  2e�i'=2 . (3.161)

Now we can observe an unusual property of a spinor of the first rank – under the
rotation by angle 2� its components change sign (nonclassical behavior). A similar
property is characteristic for all spinors of odd rank.

For rotations around the x-axis and y-axis in a similar way we obtain

Ux.'/ D cos
'

2
C i
x sin

'

2
D
 

cos '2 i sin '2
i sin '2 cos '2

!

, (3.162)

Uy.'/ D cos
'

2
C i
y sin

'

2
D
 

cos '2 sin '2
� sin '2 cos '2

!

. (3.163)

Spin properties of wave functions for a particle with spin s and the system of n D 2s
particles with spin s D 1=2, oriented to obtain the total spin 2s, are identical. The
number of independent components of symmetric spinor of rank 2s is equal to 2sC 1,
as only those of its components are different which contain 2s indices equal to 1 and 0
indices 2, 2s � 1 indices equal to 1 and one index equal to 2, : : : , 0 indices equal to 1
and 2s indices equal to 2. As we noted above, symmetric spinors are transformed via
irreducible representations of the rotation group.
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In particular, spinors of even rank are transformed as tensors of the rank which is
half of that of spinors. Components of these tensors can be explicitly expressed via
corresponding components of these spinors. As an important example we present in
explicit form the relation between the components of a second rank spinor and corre-
sponding vector [35]:

 12 D ip
2
az ,  11 D � ip

2
.ax C iay/ ,  22 D ip

2
.ax � iay/ , (3.164)

 12 D � ip
2
az ,  11 D ip

2
.ax � iay/ ,  22 D � ip

2
.ax C iay/ (3.165)

and

az D i
p

2 12 D ip
2
. 12 C  21/ , ax D ip

2
. 22 �  11/ ,

ay D � 1p
2
. 11 C  22/ . (3.166)

Using Pauli matrices, these relations can be rewritten in a more transparent and com-
pact form:

 
�

�
D � ip

2
a � 
�

�
, (3.167)

a D ip
2

�� 

�

�
. (3.168)

The scalar product of two vectors can be directly expressed via the scalar product
of corresponding spinors as

a � b D  ��'
�� . (3.169)

3.3.2 Spinors of the Lorentz group

Thus, in nonrelativistic theory, a particle with spin s is described by a .2s C 1/-
component symmetric spinor of rank 2s, i. e., by a mathematical object which is trans-
formed according to the corresponding irreducible representation of rotation group
SU.2/. The rotation group is a subgroup of the Lorentz group (rotation group in four-
dimensional space-time). Let us limit ourselves to a proper Lorentz group (without
spatial inversions). The theory of four-dimensional spinors is constructed similarly to
the theory of spinors in three dimensions.

Spinor �˛ is a two-component object, and ˛ D 1, 2, in correspondence with two
spin projections s D ˙1=2. Under the action of an arbitrary Lorentz transformation,
spinor components are transformed via each other as (binary transformations):

� 01 D ˛�1 C ˇ�2 , � 02 D ��1 C ı�2 , (3.170)
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where complex coefficients ˛,ˇ, � , ı are determined by the rotation angles of four-
dimensional coordinate system and satisfy the condition

˛ı � ˇ� D 1 , (3.171)

so that the determinant of transformation (3.170) is equal to 1. Thus, there is a limita-
tion, determined by two equations for four complex coefficients, so that there remain
8 � 2 D 6 independent real transformation parameters, corresponding to the number
of rotation angles of a coordinate system in four-dimensional space-time (rotations in
six coordinate planes).

Due to (3.171) transformations (3.170) leave invariant the following bilinear form:

�1„2 � �2„1 , (3.172)

which is constructed from the components of two spinors �˛ and „˛ , which corre-
sponds to a scalar particle with spin s D 0, composed of two particles with spin
s D 1=2.

Besides contravariant spinors �˛ , we can also introduce covariant spinors �˛ as

�˛ D g˛ˇ �
ˇ , (3.173)

where the “metric tensor” g˛ˇ has the same form as (3.155):

g˛ˇ D g�� D
�

0 1
�1 0

�
(3.174)

so that

�1 D �2 , �2 D ��1 , (3.175)

�1„2 � �2„1 D �˛„˛ D ��˛„˛ . (3.176)

Up to now all the expressions are the same as in nonrelativistic theory. The difference
appears when we consider complex conjugate spinors. In nonrelativistic theory the
sum  1 1� C  2 2�, determining the probability density of particle localization in
space, is scalar. Thus, the components  ˛� are to be transformed as covariant compo-
nents of a spinor. The corresponding transformation (3.141), as we have seen, is uni-
tary. In relativistic theory particle density is not a scalar, but the time-component of a 4-
vector, so that there are no limitations on coefficients of transformation (3.170), except
(3.171). Thus, in relativistic theory, complex conjugate transformations of spinors are
essentially different. Correspondingly, here we are dealing with two types of spinors.
The indices of the spinors, transformed by complex conjugate expressions (3.170),
will be supplied by additional dots (dotted indices).

By definition we have � P̨ � �˛� (here � means “transformed as”) and the rule of
transformation for spinors with dotted indices is written as

�0 P1 D ˛��P1 C ˇ��P2 , �0 P2 D ���P1 C ı��P2 . (3.177)



Section 3.3 Fermions 69

Operations of the lowering and lifting of indices are written as usual:

�P1 D �P2 , �P2 D ��P1 . (3.178)

With respect to three-dimensional rotations, 4-spinors behave as three-dimensional
spinors; as we already noted, that rotation group is a subgroup of the Lorentz group.
However, for three-dimensional spinors  �̨ �  ˛ . Thus, � P̨ under rotations behaves
as a contravariant 3-spinor  ˛ .

Spinors of higher rank are defined as objects which are transformed as products of
the components of several spinors of rank 1. For example, we can introduce three types
of second-rank spinors:

�˛ˇ � �˛„ˇ , �˛
P̌ � �˛�

P̌
, � P̨ P̌ � � P̨H P̌

. (3.179)

Accordingly, the rank of a spinor in relativistic theory is denoted by the pair of numbers
.k, l/, i. e., the number of nondotted and dotted indices.

Contraction of spinors can be performed only over pairs of indices of a similar type
(two dotted or two nondotted), as summation over the pair of indices of different types
is not an invariant operation. Thus, taking the spinor

�˛1˛2:::˛k
P̌
1

P̌
2::: P̌

l , (3.180)

symmetric over all k-dotted and l-nondotted indices, we can not obtain the spinor of
the lower rank (contraction over the pair of indices, with respect to which the spinor is
symmetric, gives zero, with the account of (3.176)). Thus, symmetric spinors realize
irreducible representations of the Lorentz group, and each of these representations is
characterized by the pair of numbers .k, l/. As each of the spinor indices takes two
values, we have k C 1 essentially7 different sets of numbers ˛1,˛2, : : : ,˛k in (3.180)
(containing 0, 1, 2, : : : k values equal to 1 and k, k � 1, : : : , 0 values equal to 2) and
lC 1 sets of numbers P̌

1, P̌
2, : : : , P̌

l . Accordingly, the symmetric spinor of rank .k, l/
has .k C 1/.l C 1/ independent components, which defines the dimensionality of the
corresponding irreducible representation.

The relationship between spinors and 4-vectors

Spinor �˛
P̌

has 2�2 D 4 components, the same number as the 4-vector a�. Both real-
ize the same irreducible representation of the proper Lorentz group, and we have the
following linear relations between their components:

a1 D 1

2
.�1P2 C �2P1/ , a2 D i

2
.�1P2 � �2P1/ ,

a3 D 1

2
.�1P1 � �2P2/ , a0 D 1

2
.�1P1 C �2P2/ . (3.181)

7 �˛
P̌

and �
P̌˛ are just the same, as transformations (3.170) and (3.177) are independent.
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For spatial components these relations are the same as in the case of the three-dimen-
sional rotation group, taking into account the substitution  ˛

ˇ
! �˛

P̌
. The expression

for a0 is obvious from the previous discussion on the probability density of particle
localization as a time-component of a 4-vector. The inverse relation has the form

�1P1 D �2P2 D a3 C a0 , �2P2 D �1P1 D a0 � a3 ,

�1P2 D ��2P1 D a1 � ia2 , �2P1 D ��1P2 D a1 C ia2 . (3.182)

The coefficients in these expressions are specially chosen for the scalar product to be
written as

a2 D 1

2
�
˛ P̌�˛

P̌
, ab D 1

2
�
˛ P̌�˛

P̌
. (3.183)

The correspondence between �˛
P̌

and the 4-vector a� is the special case of the gen-
eral rule that any symmetric spinor of the rank .k, k/ is equivalent to the symmetric
irreducible (i. e., becoming zero after contraction over any pair of indices) 4-tensor of
the rank k.

Relations between a spinor of rank .1, 1/ and the 4-vector (3.181), (3.182) can be
written in compact form using Pauli matrices:

a D 1

2
Sp. O�
/ a0 D 1

2
Sp O� , (3.184)

O� D a � 
 C a0 O1 , (3.185)

where O� is the �˛
P̌

matrix, O1 is the unit matrix.
Let us write the spinor �˛ transformation as

� 0˛ D .B�/˛ , where B D
�
˛ ˇ

� ı

�
. (3.186)

Then8

�0 P̌ D .B��/ P̌ D .�BC/ P̌
. (3.187)

Then, transformation of the spinor of the rank .1, 1/ is written as

�0 D B�BC . (3.188)

For infinitesimal transformation we can write B D 1 C �, where � is an infinitesimal
matrix. Then, from (3.188) we have

�0 D � C .�� C ��C/ . (3.189)

Consider now a Lorentz transformation to the coordinate system, moving with in-
finitesimal velocity ıv (with no change of direction in the spatial axes). Under this

8 For covariant components we have � 0̨ D . QB�1�/˛ D .�B�1/˛ , �0
P̨ D .�B��1/˛ , so that the scalar

product of spinors remains invariant.
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transformation 4-vector a� D .a0, a/ is transformed as

a0 D a � a0ıv , a00 D a0 � a � ıv . (3.190)

Let us now use equation (3.184). First of all,

a00 D a0 � aıv D a0 � 1

2
Sp.�
ıv/ , (3.191)

On the other hand,

a00 D 1

2
Sp�0 D a0 C 1

2
Sp.�� C ��C/ D a0 C 1

2
Sp�.�C �C/ . (3.192)

Comparing (3.191) and (3.192) we get

�C �C D �
ıv . (3.193)

Similarly, considering the transformation of a, we obtain


�C �C
 D �ıv . (3.194)

Now, equations (3.193), (3.194) give

� D �C D �1

2

 � ıv , (3.195)

so that the infinitesimal Lorentz transformation of spinor �˛ is done by the matrix:

B D 1 � 1

2
.
 � n/ıv (3.196)

where n D ıv=ıv. Now we can consider finite transformations. Lorentz transforma-
tion (to the coordinate system, moving with velocity v) has the geometrical meaning
of a rotation of a four-dimensional coordinate system by angle ' in the .t , n/-plane,
where ' is determined by velocity v: v D th' [33]. Infinitesimal transformation cor-
responds to the angle ı' D ıv, and rotation by the finite angle can be achieved by
making the ı'-rotation '=ı' times. Raising (3.196) to the power '=ı' and going to
the limit ı' ! 0, we obtain

B D exp


�'

2
n � 


�
. (3.197)

Taking into account that even powers of n � 
 are equal to 1, while odd powers reduce
to n � 
 , we get

B D ch
'

2
� n � 
sh'

2
, th' D v . (3.198)

Note that the transformation matrix B D BC is Hermitian. Equation (3.198) finally
determines the Lorentz transformation of a 4-spinor of first rank.

Consider now an infinitesimal rotation of some vector in three-dimensional space:

a0 D a � Œı� � a� . (3.199)
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In this case we obtain

B D 1 C i

2

 � ı� , (3.200)

while for the finite angle rotation

B D exp

�
i
�

2
n � 


�
D cos

�

2
C in � 
 sin

�

2
, (3.201)

where n determines the direction of the rotation axis. This matrix is unitary BC D
B�1, as it should be for spatial rotation.

Inversion of spinors (P-reflection)

In nonrelativistic quantum mechanics, spatial inversion does not change the sign of an
axial vector such as spin. Thus, its sz-projection also does not change. It follows then
that under inversion each component of the three-dimensional spinor  ˛ transforms
only via itself:

 ˛ ! P ˛ (3.202)

Making inversion twice, we return to the initial coordinate system. In the case of
spinors, the return to the initial coordinates can be understood as a rotation by an-
gle 0, or like a rotation by angle 2� . However, we have seen that for spinors these two
operations are not the same, since according to (3.161) spinor components  ˛ change
sign under rotation by 2� . Thus, we obtain two alternatives:

P 2 D 1 , i. e., P D ˙1 , (3.203)

P 2 D �1 , i. e., P D ˙i . (3.204)

Consider now 4-spinors. Inversion commutes with spatial rotations, as it only changes
the signs of x, y, z in x, y, z, t , but does not commute with transformations dealing
with the t -axis. Consider the Lorentz transformation L to a system, moving with ve-
locity v, then PL D L0P , where L0 is the transformation to system, moving with
velocity �v. Thus, under the inversion components of a 4-spinor �˛ can not transform
via each other, and inversion transforms �˛ via some other objects, which may be
only � P̨ . As inversion does not change the sign of sz , the components �1 and �2 can be
transformed only into �P1 and �P2, corresponding to the same values of sz D C1=2 and
sz D �1=2. Understanding inversion as an operation giving 1 being applied twice, we
define it by

�˛ ! � P̨ , � P̨ ! �˛ ,

�˛ ! �� P̨ , � P̨ ! ��˛ (3.205)
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for the case of P 2 D 1. For the alternative variant of P 2 D �1 we can write:

�˛ ! i� P̨ � P̨ ! i�˛

�˛ ! �i� P̨ � P̨ ! �i�˛ (3.206)

The different sign in the second row of these expressions is connected with the fact that
the lowering or raising of the same index, according to (3.175), (3.178), is performed
with different signs. Below, for definiteness, we shall use the definition (3.206).

With respect to the subgroup of rotations, as we have seen above, �˛ and � P̨ are
transformed in the same way. Let us construct the following combinations:

�˛ ˙ � P̨ . (3.207)

It is easily seen that these combinations are transformed under inversion via each other,
as (3.202) with P D ˙i . However, these combinations do not behave as spinors with
respect to all transformations of the Lorentz group.

Thus, the inclusion of inversion into our group of symmetry requires the simultane-
ous consideration of the pair of spinors .�˛ , � P̨ / – the so-called bispinor. Four com-
ponents of the bispinor realize one of the irreducible representations of the extended
Lorentz group. The scalar product of two bispinors can be constructed in two different
ways. The value of

�˛„˛ C � P̨H P̨ (3.208)

does not change under inversion and defines the true scalar. The value of

�˛„˛ � � P̨H P̨ (3.209)

is also invariant with respect to rotations of the four-dimensional coordinate system,
but it changes its sign under inversion, defining the pseudoscalar.

Also in two ways, from the components of two bispinors we can define the corre-
sponding spinor of the second rank �˛

P̌
. Defining it as

�˛
P̌ � �˛H

P̌ C„˛�
P̌

, (3.210)

we obtain the object, transforming under inversion as �˛
P̌ ! � P̨ˇ , so that the 4-vector

equivalent to this spinor is transformed as .a0, a/ ! .a0, �a/ and represents the true

4-vector (here a is the polar vector). But we can also define �˛
P̌

in another form:

�˛
P̌ � �˛H

P̌ �„˛� P̌
. (3.211)

Then, under inversion �˛
P̌ ! �� P̨ˇ , and this spinor corresponds to the 4-vector,

transformed under inversion as .a0, a/ ! .�a0, a/, i. e., 4-pseudovector (here a is the
axial vector).
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3.3.3 The Dirac equation

A particle with spin 1/2 in the rest system is described by a two-component wave func-
tion, a three-dimensional spinor. By it four-dimensional “origin” this may be both non-
dotted or nondotted 4-spinor: �˛ or � P̨ . The only operator entering the wave equation
is p� D i@�, which in spinor representation is expressed via p

˛ P̌ :

p1P1 D p2P2 D pz C p0 , p2P2 D p1P1 D p0 � pz ,

p1P2 D �p2P1 D px � ipy , p2P1 D �p1P2 D px C ipy . (3.212)

From the requirement of relativistic invariance we can immediately write the following
system of first order differential equations:

p˛
P̌
� P̌ D m�˛ ,

p P̌˛�
˛ D m� P̌ , (3.213)

which is the system of Dirac equations in spinor representation.
Substituting � P̌ from the second equation of (3.213) into the first, we get

p˛
P̌
� P̌ D 1

m
p˛

P̌
p

 P̌�
 D m�˛ . (3.214)

Taking into account p˛
P̌
p

 P̌ D p2ı˛
 , we obtain from (3.214)

.p2 �m2/�
 D 0 (3.215)

i. e., a Klein–Gordon equation for each of the spinor components. It is clear now that
parameterm is just the particle mass. Note that only the presence of mass requires the
simultaneous introduction of two spinors �˛ and � P̌ , i. e., the bispinor, or we would
not be able to construct relativistically invariant equations containing the dimensional
parameterm. As a result, our wave equation is automatically invariant with respect to
spatial inversion, if we define it by (cf. (3.206))

P : �˛ ! i� P̨ , � P̨ ! i�˛ . (3.216)

Simultaneously, p P̨ˇ ! p
˛ P̌ in equations (3.213).

With the help of (3.185) and (3.182), equations (3.213) can be written as

.p0 C p � /� D m� ,

.p0 � p � /� D m� , (3.217)

where we have introduced the following columns:

� D
�
�1

�2

�
, � D

�
�P1
�P2

�
. (3.218)
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For complex conjugate equations it is convenient to introduce rows:

�� D .�1�, �2�/ , �� D .��
P1 , ��

P2 / (3.219)

and write (taking into account p�
� D �p�)

��.p0 C p � / D �m�� ,

��.p0 � p � / D �m�� . (3.220)

The inversion for complex conjugate spinors can be written as:

P : �˛� ! �i��
P̨ , ��

P̨ ! �i�˛� . (3.221)

In the literature, it is more common to use (instead of (3.213) or (3.217)) the so-
called symmetric form of the Dirac equation. To obtain it, we introduce the four-
component Dirac bispinor, which is constructed from the columns of (3.218):

 D
�
�

�

�
. (3.222)

Then, the system of equations (3.217) can be written as

p��
�

ik
 k D m i (3.223)

or, lowering bispinor indices, as

.��p� �m/ D 0 , i. e., .i��@� �m/ D 0 , (3.224)

where ��p� D p0�
0 �p �� D i�0@0 C i� �r, and we have introduced matrices 4�4

(Dirac matrices):

�0 D
�

0 O1
O1 0

�
, � D

�
0 �O

O
 0

�
. (3.225)

In fact, equation (3.217) can be written as
�

0 p0 C p �
p0 � p � 0

��
�

�

�
D m

�
�

�

�
, (3.226)

which coincides with (3.224) if we take � -matrices as in (3.225).
In the general case � -matrices should satisfy conditions guaranteeing the identity

p2 D m2. To derive these conditions we multiply (3.224) on the left side by ��p� .
Then,

.��p�/.�
�p�/ D m.��p�/ D m2 . (3.227)

As p�p� is a symmetric tensor (momentum components commute!), equation (3.227)
can be rewritten as

1

2
p�p�.�

��� C ����/ D m2 , (3.228)
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so that the necessary condition is satisfied if

���� C ���� D 2g�� . (3.229)

Thus, the pairs of different matrices �� anticommute, while their squares are

.�1/2 D .�2/2 D .�3/2 D �1 , .�0/2 D 1 . (3.230)

Under an arbitrary unitary transformation of bispinor  0 D U (where U is the uni-
tary matrix 4 � 4) � -matrices transform as

� 0 D U�U�1 D U�UC , (3.231)

so that .��p� � m/ D 0 is transformed into .� 0�p� � m/ 0 D 0. Under this
transformation, as it is obvious from (3.225), the following properties are conserved:

�C D �� , �0C D �0 . (3.232)

The complex conjugate of equation (3.224) can be written as

.�p0 Q�0 � p Q� �m/ � D 0 . (3.233)

Using Q�� � D  ��� and multiplying this equation from the right side by �0 (and
taking into account ��0 D ��0�), we obtain a conjugate Dirac’s equation as

N .��p� Cm/ D 0 , (3.234)

where we have introduced

N D  ��0,  � D N �0 (3.235)

– Dirac’s conjugate of bispinor  .
It is easy to see that the Dirac’s equation (3.224)

.i��@� �m/ D 0 (3.236)

can be obtained from the Euler–Lagrange equation

@L

@ N � @�
�

@L

@.@� N /
�

D 0 (3.237)

using the following Lagrangian of Dirac’s field:

L D i

2
Œ N ��.@� / � .@� N /�� � �m N  	 i N �� $

@ �  �m N  , (3.238)

where
$
@� denotes differentiation “to the right” and “to the left”, defined by the given

identity. In Euler–Lagrange equations, N and  are considered as independent fields.
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The conjugate Dirac equation (3.234) is obtained from equation (3.237) after the re-
placement N !  . Then we immediately find the canonical momentum �.x/ of
Dirac’s field as

�.x/ D @L

@ P .x/ D i C.x/ . (3.239)

Then the Hamiltonian density of Dirac’s field is written as

H D � P � L D  C�0.�i� i@i Cm/ D  C�0.i�0@0 / D  Ci @ 
@t

, (3.240)

where in the second equality we used the Dirac equation (3.224).

Remark on dimensionalities

Using the explicit form of Dirac’s field Lagrangian (3.238) and the standard dimensionalities
ŒL� D l�4, Œm� D l�1, Œ@� D l�1, we immediately determine the dimensionality of Dirac’s
field as

Œ � D Œ N � D l�3=2 (3.241)

This result will be used below.

The inversion (3.216) for  can be written as

P :  ! i�0 , N ! �i N �0 . (3.242)

The invariance of the Dirac equation with respect to (3.242) is obvious. Replacing
p ! �p and  ! i�0 , we get .p0�

0 C p� �m/�0 D 0, so that multiplying this
equation on the left side by �0 and taking into account anticommutativity of �0 and �
we return to initial equation.

Let us multiply .��p� �m/ D 0 on the left side by N , and N .��p� Cm/ D 0
on the right by  , then make the sum of both and obtain

N ��.p� /C .p� N /�� D p�. N �� / D 0 (3.243)

which is the continuity equation for 4-current of Dirac’s particles:

@�j
� D 0 , j� D N �� D . � , ��0� / , (3.244)

describing the charge conservation, with the charge density given by j 0 D  � > 0.
The Dirac equation can be written in the form of a Schroedinger equation:

i
@ 

@t
D H , (3.245)

where the Hamiltonian H has the form

H D ˛pC ˇm , (3.246)
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with Dirac’s matrices ˛ and ˇ:

˛ D �0� , ˇ D �0 , (3.247)

so that (3.246) coincides with (3.240) introduced above. The matrices (3.247) satisfy
the commutation relations

˛i˛k C ˛k˛i D 2ıik , ˇ˛C ˛ˇ D 0 , ˇ2 D 1 , (3.248)

and in explicit form

˛ D
�

 0
0 �


�
, ˇ D

�
0 1
1 0

�
. (3.249)

Consider the nonrelativistic limit. Performing in equation (3.217) the limit of p !
0, " ! m, we get � D �, so that both spinors of the bispinor coincide, and all four
components of the bispinor are nonzero. At the same time, it is clear that only two
components are independent. It is convenient to transform to the so-called standard
representation, when in the nonrelativistic limit two components of the bispinor will
be zero. Let us introduce

 D
�
'

�

�
, ' D 1p

2
.� C �/ , � D 1p

2
.� � �/ . (3.250)

For the particle at rest we obviously have � D 0. Adding and subtracting equa-
tions (3.217) we obtain

p0' � p
� D m' ,

�p0�C p
' D m� , (3.251)

which allows to find the explicit form of � -matrices in the standard representation [6].
Note that in equation (3.250) we separately sum the first and the second components of
spinors � and �. Accordingly, in standard representation, as in the spinor representation
considered above,  1, 3 corresponds to spin projection sz D C1=2, while  2, 4 to
projection sz D �1=2. Matrix

1

2
† D 1

2

�

 0
0 


�
(3.252)

gives the three-dimensional operator of the spin in standard representation.

Helicity

In relativistic theory, the orbital moment l and spin s of a moving particle are not conserved
separately. Only the total angular moment j D lC s is conserved. Accordingly, the projection
of the spin on some direction (z-axis) is also not conserved and cannot be used to classify polar-
ization (spin) states of a moving particles. However, we may introduce the helicity of a particle,
i. e., the projection of its spin on the direction of motion (momentum). In fact, l D Œr � p� and
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the product s �n, where n D p
jpj , coincides with the conserving product j �n. The eigenvalues of

these spin projections are obviously given by � D �s, : : : , Cs. Accordingly, the wave func-
tions of a free particle with momentum p are characterized by helicity:  p�. In the rest system
the state of a particle is characterized, as usual, by its spin (projection on z-axis).

For a particle with zero mass there is no rest system of coordinates; this particle moves with
the speed of light in any coordinate system. However, for such a particle there is always the
special direction in space – the direction of momentum p. In this case there is no symmetry
with respect to arbitrary three-dimensional rotations, but only the axial symmetry to rotations
around this preferred direction. Accordingly, we have only helicity conservation. If we require
symmetry with respect to reflections in planes, passing through the p-axis, the states differing
by the sign of � will be degenerate, and for � ¤ 0 we have double degeneracy. Thus, in
the limit of m ! 0 the system of equations for a particle with spin s splits into independent
equations for particles with different helicities ˙s, ˙.s � 1/, : : :: for example, in the case of
photon � D ˙1, which corresponds to right and left polarizations of light.

3.3.4 The algebra of Dirac’s matrices

For practical calculations it is important to understand algebraic properties of � -matri-
ces. Here we present a short summary of the main formulas and definitions which will
be extensively used in the rest of the book. All the algebraic properties of Dirac’s
matrices are derived from two basic relations:

���� C ���� D 2g�� , (3.253)

g���
��� D ���

� D 4 or �2
0 � �2

1 � �2
2 � �2

3 D 4 , (3.254)

i. e., from the main anticommutation relation and the scalar product.
If �� and �� in the matrix product are separated by several other � -matrices, ��

and �� can be placed in neighboring positions with the help of (3.253), after which we
can perform the summation over � using (3.254). In this way we can get the following
relations:

���
��� D �2�� ,

���
����� D 4g�� ,

���
������� D �2������ ,

���
��������� D 2.�������� C �������� / . (3.255)

Rather often �� appears in combination with 4-vectors. Let us introduce the standard
notation:

Oa 	 ��a� . (3.256)

Then, from (3.253) we obtain

Oa Ob C Ob Oa D 2a�b
� , Oa Oa D a2 , (3.257)
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and from (3.255) we get

�� Oa�� D �2 Oa ,

�� Oa Ob�� D 4a�b
� ,

�� Oa Ob Oc�� D �2Oc Ob Oa ,

�� Oa Ob Oc Od�� D 2
� Od Oa Ob Oc C Oc Ob Oa Od	 . (3.258)

Traces of � -matrices are widely used. In particular,

Sp�� D 0 . (3.259)

Introducing
T �� D 1

4
Sp.����/ (3.260)

and calculating the trace of (3.253), we find

T �� D g�� (3.261)

and, respectively, 1

4
Sp. Oa Ob/ D a�b� . (3.262)

The special case is the matrix �5 defined as

�5 D �i�0�1�2�3 (3.263)

It is easy to see that
�5�� C ���5 D 0 , .�5/2 D 1 , (3.264)

so that �5 anticommutes with all other � -matrices. As to ˛ and ˇ matrices we have

˛�5 � �5˛ D 0 , ˇ�5 C �5ˇ D 0 . (3.265)

The �5-matrix is Hermitian:

�5C D i�3C�2C�1C�0C D �i�3�2�1�0 D �5 , (3.266)

as we can transform the index order 3210 to 0123 by even permutation of � -matrices.
In spinor representation the explicit form of �5 is given by

�5 D
� �O1 0

0 O1
�

, (3.267)

while in standard representation:

�5 D
�

0 �O1
�O1 0

�
, (3.268)

and we see that
Sp�5 D 0 , (3.269)
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which is obviously independent of the choice of representation.
The set of 16 matrices

®
�A
¯ D ®

b1, �5, ��, i���5, i
��
¯

, (3.270)

where

�� D 1

2
.���� � ����/ (3.271)

represents the “complete set”, over which we can “expand” any 4�4-matrix. In fact,
these matrices have the property:

Sp�A D 0 .A ¤ 1/ ,

�A�A D 1 ,
1

4
Sp�A�B D ıAB . (3.272)

Accordingly, all �A-matrices are linearly independent, and any 4�4-matrix can be
represented in the form

� D
X

A

cA�
A , cA D 1

4
Sp�A� . (3.273)

3.3.5 Plane waves

The state of a free particle with fixed momentum is described by the plane wave, which
can be written as

 p D 1p
2"p

upe
�ipx , (3.274)

where up is a normalized bispinor. For the wave function with “negative frequency”
(also changing the sign of p) we have

 p D 1p
2"p

u�peipx . (3.275)

In both cases we write "p D Cp
p2 Cm2. The bispinor components up and u�p sat-

isfy the following equations, which are derived by substitution of (3.274) and (3.275)
into the Dirac equation:

. Op �m/up D 0 , . Op Cm/u�p D 0 . (3.276)

For conjugated bispinors Nup D u�
p�

0 we have

Nup. Op �m/ D 0 , Nu�p. Op Cm/ D 0 . (3.277)

Let us assume the invariant normalization

Nupup D 2m , Nu�pu�p D �2m . (3.278)
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Multiplying (3.276) from the left by Nu˙p we obtain . Nu˙p��u˙p/p� D 2m2 D 2p2,
i. e.,

Nup��up D Nu�p��u�p D 2p� , (3.279)

so that the 4-vector of the current density for plane waves (3.274), (3.275) is equal to

j� D N ˙p�� ˙p D 1

2"p
Nu˙p��u˙p D p�

"p
, (3.280)

i. e., j� D .1, v/, where v D p
"p

is the particle velocity. We see that our choice of
normalization corresponds to “one particle in volume V D 1”.

In standard representation, from (3.251) we get the following system of homoge-
neous linear equations:

."p �m/' � p
� D 0 ,

."p Cm/� � p
' D 0 . (3.281)

Then,
' D p


"p �m� , � D p

"p Cm

' . (3.282)

The common multiplier before ' and � (which is arbitrary until we are simply dealing
with solutions of homogeneous equations) should be chosen from the normalization
condition (3.278). Accordingly, in standard representation, spinors up and u�p take
the form

up D
� p

"p Cmwp
"p �m.n
/w

�
, u�p D

� p
"p �m.n
/w0
p
"p Cmw0

�
, (3.283)

where n D p
jpj , and w is an arbitrary two-component spinor, satisfying the normaliza-

tion condition
w�w D 1 . (3.284)

The second expression in (3.283) is obtained from the first one by changing the sign
before m and replacing w ! .n
/w0. Similarly, we can obtain [6]

Nup D

p

"p Cmw�, �p
"p �mw�.n
/

�
,

Nu�p D

p

"p �mw0�.n
/, �p"p Cmw0�� . (3.285)

Direct multiplication gives
Nu˙pu˙p D ˙2m .

In the rest frame, i. e., for "p D m, we have

up D p
2m

�
w

0

�
, u�p D p

2m

�
0
w0

�
, (3.286)
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so that w is the three-dimensional spinor to which our plane waves reduce in the non-
relativistic limit:

w�D1=2 D
�

1
0

�
, w�D�1=2 D

�
0
1

�
. (3.287)

For fixed momentum there exist two independent states, corresponding to the two pos-
sible values of spin projection. In accordance with the general statements made above,
we are speaking of particle helicity �, i. e., spin projection on the direction of p. The
helicity states correspond to the plane waves with spinor w D w.�/.n/, which is an
eigenfunction of operator n
 :

1

2
.n
/w.�/ D �w.�/ . (3.288)

3.3.6 Spin and statistics

A second quantization of the Dirac field (of particles with spin s D 1=2) can be done
as follows. Let us introduce an expansion of an arbitrary Dirac field over plane waves:

 D
X

p�

1p
2"p



ap�up�e

�ipx C bC
p�u�p��eipx

�
,

N 	  C�0 D
X

p�

1p
2"p



aC
p� Nup�eipx C bp� Nu�p��e�ipx� . (3.289)

We know Dirac’s Hamiltonian, so we do not need an energy-momentum tensor. Using
(3.240), (3.245), we find the average energy of the Dirac particle in the state with wave
function  :

E D
Z
d 3r �H D i

Z
d 3r � @ 

@t
D i

Z
d 3r N �0 @ 

@t
. (3.290)

Substituting here (3.289), taking into account the orthogonality of of the functions with
different p, 
 and Nu˙p��0u˙p,� D 2"p (ñð. (3.280)), we obtain

H D
X

p�

"p
�
aC
p�ap� � bp�bC

p�
	

. (3.291)

This expression is obviously the direct consequence of the transformation properties
of the Dirac field and the requirement of relativistic invariance. Now it is clear that we
must quantize our field using Fermion rules, i. e., introducing anticommutators:

®
ap� , aC

p�
¯ D 1 ,

®
bp� , bC

p�
¯ D 1 . (3.292)

For different indices, as well as for the pairs of “noncrossed” and “crossed” operators,
the corresponding anticommutators are equal to zero. As a result, (3.291) is rewritten
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in the form
H D

X

p�

"p.a
C
p�ap� C bC

p�bp� � 1/ , (3.293)

so that the eigenvalues of energy (minus the infinite energy of a vacuum) are equal to

E D
X

p�

"p.Np� C NNp� / (3.294)

and are positive definite. If we had instead used Boson quantization, we would have
obtained E D P

p "p� .Np� � NNp� /, i. e., a nonpositive definite expression9.
For the momentum operator, in a similar way, from

R
d 3r � Op we get

P D
X

p�

p.Np� C NNp� / . (3.295)

The 4-current density operator j� D N �� in a second quantized form defines the
charge operator as

Q D
Z
d 3r N �0 D

X

p�

�
aC
p�ap� C bp�b

C
p�
	 D

X

p�

.aC
p�ap� � bC

p�bp� C 1
	

.

(3.296)
This gives the eigenvalues of charge:

Q D
X

p�

.Np� � NNp� / , (3.297)

leading to the opposite charges of particles and antiparticles.
Fermion anticommutation rules for creation and annihilation operators immediately

lead [35] to the validity of the Pauli principle, so that the eigenvalues of the particle
number operator in a given state Np� can only be 0 or 1: now we see that for particles
with spin 1=2 this directly follows from the general requirements of relativistic invari-
ance and positive definiteness of energy. Then, we are coming to the general theorem
on spin and statistics: all particles with a half-integer spin are fermions, while parti-
cles with integer spin are bosons. This becomes obvious if we take into account that
any particle with spin s can be assumed to be “composed” of 2s particles with spin
1=2. For the half-integer s the number 2s is odd, while for the integer s this number is
even. “Composite” particles, consisting of an even number of fermions, is a boson, and
those consisting of an odd number of fermions are a fermion. To understand this it is
sufficient to consider permutations of such “composite” particles. It is understood, that
all particles with the same spin obey the same statistics. If we could have had fermions
with spin s D 0, then such fermions as well as fermions with spin 1=2 could be used
to “compose” a particle with spin 1=2, which would be a boson, in contradiction with

9 Here we are using the standard notations, assuming that the general properties of the creation and
annihilation operators are known to the reader [35]
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the general results for s D 1=2 obtained above. This remarkable theorem is among
the most general statements of relativistic quantum field theory and was first proved
by Pauli10.

3.3.7 C ,P ,T transformations for fermions

Factors of  p� D up� exp.�ipx/, entering (3.289) accompanying operators ap� , represent

wave functions of free particles (e. g., electrons) with momentum p and polarization 
 : .e/ D
 p� . Factors of N �p�� accompanying operators bp� are to be considered as wave functions
of the corresponding antiparticles (e. g., positrons) with the same p and 
 . However,  p� and
N �p�� differ by their transformation properties, and their components satisfy different systems

of equations. To overcome this deficiency we have to perform a certain unitary transformation
of N �p�� , such that the new wave function satisfies the same equation as  p� . We shall call
this new wave function the wave function of antiparticles (positron) with momentum p and
polarization 
 . Thus, we can write

 .p/p� D UC N �p�� . (3.298)

This operation is called charge conjugation C . It is not limited to plane waves only; in the
general case we can write

C .t , r/ D UC N .t , r/ . (3.299)

Dropping the details of derivation, which can be found in [6], we quote only the final result:

UC D �2�0 . (3.300)

From N D  ��0 D Q�0 � D �0 � we obtain

C D �2�0 N D �2 � . (3.301)

For plane wave solutions we can easily see that

C �p�� D  p� , (3.302)

so that both electrons and positrons are described by identical wave functions  .e/ D  .p/ D
 p� , as it should be, because these functions carry information only on momentum and polar-
ization of particles.

In a similar way, we may introduce the operation of time inversion. Changing the sign of
time should be accompanied by the complex conjugation of the wave function [35]. To obtain
the fermion wave function “reversed in time” T in the same representation as initial  , we
again have to perform some unitary transformation of  � (or N ):

T .r, t / D UT N .r, �t / . (3.303)

10 We would like to stress that in quantum field theory this theorem is really proved, starting from most
general requirements of relativistic invariance (transformation properties of fields) and positive defi-
niteness of energy, i. e., the stability of the ground state of a particle system, and not postulated, as it
is done in nonrelativistic quantum mechanics.
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It can be shown [6] that
UT D i�3�1�0 , (3.304)

so that
T .t , r/ D i�3�1�0 N .�t , r/ D i�3�1 �.�t , r/ . (3.305)

Spatial inversion of (bi)spinors P was defined above in (3.242):

P D i�0 , P N D �i N �0 . (3.306)

Let us make T ,P ,C transformations of Dirac field  one after another:

T .t , r/ D �i�1�3 �.�t , r/ ,

PT .t , r/ D i�0.T  / D �0�1�3 �.�t , �r/ ,

CPT .t , r/ D �2.�0�1�3 �/� D �2�0�1�3 .�t , �r/ (3.307)

or
CPT .t , r/ D i�5 .�t , �r/ . (3.308)

Applying these operations to (3.289), we can find the following transformation rules for cre-
ation and annihilation operators [6]:

aCp� D bp� , bCp� D ap� ,

aP�p� D iap� , bP�p� D ibp� ,

aT�p�� D 2
 iaC
p� , bT�p�� D 2
 ibC

p� . (3.309)

3.3.8 Bilinear forms

As bispinors and � have 4 components each, their multiplication produces 4�4 D
16 independent bilinear combinations. In symmetric form these combinations can be
written as (cf. (3.270), (3.271)

S D N  , V � D N �� ,

P D i N �5 , A� D N ���5 ,

T �� D i N 
�� , (3.310)

where

�� D 1

2
.���� � ����/ . (3.311)

These bilinear forms reduce to one scalar S , one pseudoscalar P , the 4-vector V �, the
4-pseudovector A�, and the antisymmetric tensor T �� .

The scalar nature of S and the pseudoscalar of P are obvious from their spinor
representations (cf. (3.208) and (3.209)):

S D ���C ��� , P D i.��� � ���/ . (3.312)
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The vector nature of V � is now clear from the Dirac equation p��� D m , which
gives . N p��� / D m N  , where scalars are standing in both sides.

The rule of construction of bilinear forms (3.310) is obvious: they are composed in
such a way that �� represents a 4-vector, �5 is a pseudovector, while N and , standing
on both sides produce a scalar. The absence of bilinear forms reducing to a symmetric
4-tensor is clear from the fact that the symmetric combination ����C���� D 2g�� ,
so that the corresponding bilinear form reduces to g�� N  . In practice, bilinear forms
(3.310) are widely used during construction of different interaction Lagrangians of
spinor fields. The transformation rules of the bilinear forms under discrete transfor-
mations C ,P ,T can be found in [6].

3.3.9 The neutrino

We have seen above that the necessity to describe a particle with spin s D 1=2 by
two spinors � and � is directly related to the finite mass of a particle. There is no such
demand if the particle mass is zero11. A wave equation describing such a particle can
be constructed using only one spinor, e. g., �:

p˛
P̌
� P̌ D 0 (3.313)

or, which is the same,
.p0 C p
/� D 0 . (3.314)

This is the so-called Weyl equation.
We have noted before, that the wave equation with massm is automatically invariant

with respect to spatial inversion (transformation � $ � (3.216)). However, if we
describe our particle by one spinor, this symmetry is lost.

The energy and momentum of a particle with m D 0 are related by " D jpj. Thus,
for a plane wave �p � e�ipx equation (3.314) gives

.n � 
/�p D ��p , (3.315)

where n D p
jpj . The same equation holds for the wave with “negative frequency”

��p � eipx:
.n � 
/��p D ���p . (3.316)

11 Among all the known fermions only the neutrino possesses mass, which is zero or very small: the
experimental limitation is that its mass m� < 2 eV [67]. However, experimentally observed neutrino
oscillations definitely show, that neutrino mass is definitely finite [67]. Still, zero mass is a very good
approximation to describe most of neutrino physics.
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The second quantized operators of the field � are represented by

� D
X

p

.�pap C ��pbC
p / ,

�C D
X

p

.��
pa

C
p C ���pbp/ . (3.317)

From here, as usual, we see that ���p is the wave function of an antiparticle. A neutrino
is electrically neutral, but in this formalism it is not a truly neutral particle!

From the definition of operators p˛
P̌

(3.212) it can be seen that p˛
P̌� D �p P̨ˇ .

Then, the complex conjugate spinor �� satisfies the equation p P̨ˇ��
P̌ D 0, or, which

is the same,
p P̨ˇ�

P̌� D 0 . (3.318)

Let us denote �
P̌� D �ˇ , as complex conjugation transforms dotted spinors into non-

dotted ones. Thus, the wave functions of antiparticles satisfy the equation

p P̨ˇ �ˇ D 0 (3.319)

or
.p0 � p � /� D 0 . (3.320)

For the plane wave we have
.n � 
/�p D �p . (3.321)

Note that 1
2.n � 
/ represents the operator of spin projection on the particle momen-

tum (helicity). Thus, equations (3.315) and (3.321) automatically describe the particles
with fixed helicities – spin projection is always oriented parallel to the momentum.
The spin of the particle is opposite to the momentum (helicity is equal to �1=2, “left
screw”), while the spin of an antiparticle is oriented along the momentum (helicity
C1=2, “right screw”). Accordingly, for neutrinos and antineutrinos there is no symme-
try towards reflections in the plane, orthogonal to momentum, as shown in Figure 3.2.
This corresponds to the experimentally observed breaking of spatial parity in weak
interactions. However, symmetry towards CP operation persists, which corresponds
to the conservations of the so-called combined parity12. This scheme represents the
two-component theory of neutrinos first proposed by Landau.

With one spinor � (or �) we can construct only four bilinear combinations, which
together form a 4-vector:

j� D .���, ��
�/ . (3.322)

12 In fact, weak interactions weakly break also the CP -invariance, which is mainly observed in decays
ofK-mesons. This obviously corresponds to the weak breaking of T -invariance. The physical nature
of the breaking of CP -invariance has not been well established up to now, and our description of
neutrinos simply neglect this small effect.
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(a)                                                      (b)

Figure 3.2. Under mirror reflection (spatial inversion) the left-hand neutrino is transformed
into a nonexistent right-hand neutrino (a). A real physical state is obtained with simultaneous
transformation from particles to antiparticles (charge conjugation), when the left-hand neutrino
is transformed into the right-hand antineutrino (b).

Using .p0 Cp � /� D 0 and ��.p0 �pº � / D 0 we get the continuity equation @�j� D
0, so that j� represents the 4-vector of the neutrino current density.

Neutrino plane waves are conveniently written as

�p D 1p
2"
upe

�ipx , ��p D 1p
2"
u�peipx , (3.323)

and spinor amplitudes are normalized by the invariant condition:

u�̇
p.1, 
/u˙p D 2.", p/ . (3.324)

Then particle density and current density are equal to j 0 D 1, j D p
"

D n.
To describe neutrino interactions with other particles, it is convenient to use com-

mon notations and introduce the neutrino “bispinor”, with two components just equal
to zero:  D .

0
�
/. However, such a form of  , in general, changes after the transfor-

mation to another (nonspinor) representation. We can overcome this difficulty, noting
that in spinor representation

1

2
.1 C �5/ D 1

2

²� O1 0
0 O1

�
C
� �O1 0

0 O1
�³

D
�

0 0
0 O1

�
,

1

2
.1 � �5/ D

� O1 0
0 0

�
, (3.325)

so that we can write the following identities:

1

2
.1 C �5/

�
�

�

�
D
�

0
�

�
, .��, ��/1

2
.1 � �5/ D .��, 0/ , (3.326)



90 Chapter 3 Canonical quantization, symmetries in quantum field theory

where � is an arbitrary “dummy” spinor. Then the condition of the true two-component
nature of a neutrino will also be satisfied in its description by the 4-component bispinor
 in arbitrary representation, if  is understood to be the solution of Dirac’s equation
with m D 0:

bp D 0 (3.327)

with an additional condition (�5-invariance)

1

2
.1 C �5/ D  or �5 D  . (3.328)

This condition can be taken into account automatically, if in all expressions we replace
neutrino bispinors with the following rule:

 ! 1

2
.1 C �5/ , N ! N 1

2
.1 � �5/ . (3.329)

For example, the 4-vector of the current density is written as

j� D 1

4
N .1 � �5/��.1 C �5/ D 1

2
N ��.1 C �5/ . (3.330)

From the previous discussion of the helicity of massless fermions, it is clear that in
the general case we can introduce “right-hand” and “left-hand” fields as

 R D 1

2
.1 C �5/ ,  L D 1

2
.1 � �5/ ,  D  R C  L . (3.331)

These notations are often used not only for neutrinos, but also for any other fermions
with spin s D 1=2, while discussing problems where we can neglect fermion masses.

In recent years, because of the indirect experimental indications of neutrino mass finiteness
(such as neutrino oscillations [67]), there was a revival of interest in a truly neutral model,
the so-called Majorana neutrino, which is transformed to itself under charge conjugation and
possesses a finite mass which is in some sense different from the usual Dirac’s mass. We have
seen that mass term of the Dirac type in the Lagrangian mixes L and R components of the
same field:

LD D D. N L R C N R L/ D D N  , (3.332)

where D denotes Dirac’s mass. The mass term of the Majorana type mixes L and R compo-
nents of charge conjugate fields, so that the corresponding contributions to the Lagrangian can
be written as [13]

LMA D A. N CL  L C N L CL / D A N�� ,

LMB D B. N CR R C N R CR / D B N!! , (3.333)

where the index C denotes the charge conjugation and the Hermitian (truly neutral or Majo-
rana) fields we introduced:

� D  L C  CL , �C D � ,

! D  R C  CR , !C D ! . (3.334)



Section 3.3 Fermions 91

The inverse relations have the form

 L D 1

2
.1 � �5/� ,  CL D 1

2
.1 C �5/� ,

 R D 1

2
.1 C �5/! ,  CR D 1

2
.1 � �5/! . (3.335)

When both Dirac and Majorana terms are present in the Lagrangian, we have

LDM D D N L R C A N CL  L C B N CR R C h.c

D 1

2
D. N�! C N!�/C A N��C B N!! D . N�, N!/

�
A 1

2D
1
2D B

��
�

!

�
. (3.336)

The mass matrix appearing here is easily diagonalized, and its eigenvalues give

m1,2 D 1

2
.AC B/˙ 1

2

p
.A � B/2 CD2 . (3.337)

Thus, the most general mass term (3.336) with 4-component fermion fields in fact describes
two Majorana particles with different masses. The corresponding fields are represented by the
following (diagonalizing (3.336)) linear combinations of initial fields:

�1 D � cos � � ! sin � , �2 D � sin � C ! cos � , (3.338)

where

tg2� D D

B � A . (3.339)

It is easy to see that in the case of A D B D 0 (i. e., for zero Majorana masses) we obtain
the usual formalism of a 4-component Dirac’s field, so that the Dirac’s fermion corresponds
to the “degenerate” limit A D B D 0 of two Majorana particles. Majorana mass terms in the
Lagrangian (3.333) obviously lead to nonconservation of additive quantum numbers carried by
the field  , e. g., electric charge, so that all the known elementary fermions, except neutrinos,
being charged should have A D B D 0 and should be Dirac’s particles. For the neutrino there
is no such limitation, and it can be described within the more general Majorana formalism. If
the neutrino mass is precisely zero, Majorana neutrinos become equivalent to two-component
Weyl neutrinos, considered above. In case of finite neutrino masses, the Majorana theory leads
to a number of specific predictions which we shall not discuss here.

Particles with spin s D 3=2

Particles with spin s D 3=2 in their rest system are described by a symmetric three-dimensional
spinor of the third rank, possessing 2s C 1 D 4 independent components. Accordingly, in
the arbitrary Lorentz system of coordinates, the description of such particles should be done
using spinors �˛ P̌ P
 , � P̨ˇ
 , �˛ˇ
 , and � P̨ P̌ P
 , each of which is symmetric over all indices of
identical nature (i. e., dotted or nondotted). Note that the last pair of spinors do not add anything
new to the equations obtained with the help of the first pair. There exist several equivalent
formulations of wave equations for this problem, but we shall limit ourselves to a short review
of only one [6].

We have seen above that to a pair of spinor indices ˛ P̌ we can associate a single 4-vector

index �. Thus, we can associate �˛ P̌ P
 !  
P

� and � P̌˛
 !  



�, i. e., introduce the “mixed”

spinor-tensors. Then we can introduce the “vector” bispinor  � (where we have dropped the
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bispinor indices). The wave equation is written as a “Dirac equation” for each of vector com-
ponents  �:

.bp �m/ � D 0 (3.340)

with an additional condition
�� � D 0 . (3.341)

Multiplying (3.340) by ��, taking into account (3.341), we obtain ����p� � D 0, or, due to
commutation rules for ��: 2g��p� � � ���� � D 0, where the second term gives zero due
to (3.341). Then we have

p� � D 0 , (3.342)

which guarantees that four-dimensional spinors are transformed to the “right” three-dimen-
sional spinors in the rest system.

The problem of the correct account of additional conditions for wave equations creates
significant difficulties during the quantization procedure. Note, however, that, as in the case
of particles with higher integer spins, there are no fundamental fermions with s � 3=2 in the
Standard Model.



Chapter 4

The Feynman theory of positron and elementary
quantum electrodynamics

4.1 Nonrelativistic theory. Green’s functions

In this chapter we shall present an elementary introduction in quantum electrodynam-
ics (QED), which is understood as the theory of the electromagnetic interactions of
elementary leptons, i. e., mostly of electrons and positrons. Here we mainly follow the
original papers of Feynman; similar presentations can be found in [18, 60]. However,
we will begin with nonrelativistic quantum mechanics, so as to introduce some basic
notions which are usually not included in traditional courses like [35].

Consider the time-dependent Schroedinger equation

i„@ 
@t

D H . (4.1)

The standard approach to solve this differential equation starts with the wave function
at some initial moment of time  .t1/, the calculation of its change during a small time
interval	t , to find .t1 C	t/, with further continuation of this process of integration.
Feynman proposed writing the solution of equation (4.1) in integral form, so that at
time t2 > t1 the wave function at space-time point .t2, x2/ is expressed via the wave
function at space-time point .t1, x1/ as follows:

 .x2, t2/ D
Z
d 3x1K.x2t2; x1t1/ .x1t1/ , t2 � t1 . (4.2)

Here the integral kernel K.x2t2; x1t1/ represents the propagator (Green’s function),
corresponding to the linear differential equation (4.1). The physical meaning of prop-
agator is clear from the form of equation (4.2) – this is the quantum mechanical prob-
ability amplitude of particle transition from point x1 at time t1 to point x2 at time t2.

For simplicity, we consider the case of time-independent Hamiltonian H . In accor-
dance with the superposition principle of quantum mechanics, we can expand  .x1t1/

in a series over the full set of orthonormalized eigenfunctions un.x/ of operator H
with eigenvalues En:

Hun D Enun ,
Z
d 3xu�

n.x/um.x/ 	 .un,um/ D ınm , (4.3)
X

n

un.x/u�
n.x

0/ D ı.x � x0/ .
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Then,
 .x1t1/ D

X

n

cnun.x1/e
�iEnt1=„ . (4.4)

The coefficients cn can be obtained by multiplying (4.4) by u�
n.x1/ and performing

integration over the whole three-dimensional space:

cn D
Z
d 3x1u

�
n.x1/ .x1t1/e

iEnt1=„ . (4.5)

The wave function at time t2 can be written as

 .x2t2/ D
X

n

cnun.x2/e
�iEnt2=„ . (4.6)

Substituting (4.5) into (4.6), changing the order of summation and integration, and
comparing with (4.2), we get

K.x2t2; x1t1/ D
X

n

un.x2/u
�
n.x1/e

�iEn.t2�t1/=„ , (4.7)

and introducing the notation

�n.x, t / D un.x/e�iEnt=„ , (4.8)

we obtain a shorter expression:

K.x2t2; x1t1/ D
X

n

�n.x2t2/ .��
n.x1t1/ (4.9)

At coinciding times t1 D t2 D t from (4.7) we obtain

K.x2t ; x1t / D
X

n

un.x2/u
�
n.x1/ D ı.x2 � x1/ . (4.10)

This obviously transforms (4.2) for t1 D t2 into the identity. We are certainly interested
in times t2 > t1; thus it is convenient to put K.x2t2; x1t1/ D 0 for t2 < t1, which
guarantees causality, and we define

K.x2t2; x1t1/ D �.t2 � t1/
X

n

�n.x2t2/�
�.x1t1/ , (4.11)

where we have introduced the step-function

�.t/ D
²

1 for t � 0
0 for t < 0

. (4.12)

The derivative of the � -function is given by

d�.t/

dt
D ı.t/ . (4.13)
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Now we can write the differential equation for Green’s function (propagator)
K.r2t2; r1t1/. As �n represent the solutions of the Schroedinger equation (4.1), (4.3),
using (4.10), (4.11), and (4.13), we have

�
i„ @

@t2
�H.x2/

�
K.x2t2; x1t1/ D i„

X

n

�n.x2t2/�
�.x1t1/

@

@t2
�.t2 � t1/

D i„
X

n

un.x2/u
�
n.x1/e

�iEn.t2�t1/=„ı.t2 � t1/

D i„ı.t2 � t1/
X

n

un.x2/u
�
n.x1/ D i„ı.t2 � t1/ı.x2 � x1/ . (4.14)

Thus, in the general case (even for time-dependent H ) Green’s function (propagator)
K.x2t2; x1t1/ is defined as the solution of the inhomogeneous (with ı-source in the
right-hand side) differential equation1

�
i„ @

@t2
�H.x2t2/

�
K.x2t2; x1t1/ D i„ı.t2 � t1/ı.x2 � x1/ , (4.15)

with the boundary condition

K.x2t2; x1t1/ D 0 for t2 < t1 . (4.16)

For t2 ¤ t1, equation (4.15) reduces to
�
i„ @

@t2
�H.x2t2/

�
K.x2t2; x1t1/ D 0 . (4.17)

If we integrate equation (4.15) over small time interval from t2 D t1 �" to t2 D t1 C",
we get

K.x2t1 C "; x1t1/ �K.x2t1 � "; x1t1/ D ı.x2 � x1/ . (4.18)

The contribution of the second term in the left-hand side of equation (4.15) drops out
as " ! 0 for finite H . Now take into account that K.x2t1 � ", x1t1/ D 0 due to (4.16)
and t1 � " < t1. Then,

lim
"!0

K.x2t1 C "; x1t1/ D K.x2t1; x1t1/ D ı.x2 � x1/ , (4.19)

which coincides with (4.10).
Thus, the use of equation (4.2) is equivalent to the standard quantum mechanical

description. Consider the problem of when we can write H D H0 C V and if for
H D H0 there is an exact solution. Then we can try to construct the perturbation theory
over potential V . Let us denote K0.x2t2; x1t1/ as the Green’s function of a “free”
particle, moving in the absence of perturbation V. We can easily convince ourselves

1 Actually, our definition of Green’s function of the Schroedinger equation coincides with its definition
in mathematical physics [70].
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that differential equation (4.15) and boundary condition (4.16) can be unified in a
single integral equation:

K.2, 1/ D K0.2, 1/ � i

„
Z
d 4x3K0.2, 3/V .3/K.3, 1/ , (4.20)

where the numbers denote space-time points, e. g., .2/ D .x1, t2/ etc., and we have
introduced the four-dimensional integration variable x3 D .x3, t3/, where integration
over time t3 is formally done within infinite limits (the presence of � -function in the
definition of propagator automatically guarantees the correct finite limits of integra-
tion). To check the validity of equation (4.20) let us act on both of its sides by the
operator Œi„ @

@t2
� H0.2/�, so that using equation (4.15) for K0 (i. e., for V D 0), we

obtain the differential equation
�
i„ @

@t2
�H0.2/

�
K.2, 1/ D i„ı.2, 1/C V.2/K.2, 1/ ,

which, after moving the second term in the right-hand side to the left-hand side, just
coincides with equation (4.15). AsK0.2, 1/ D 0 for t2 < t1, we also haveK.2, 1/ D 0
for t2 < t1.

The advantage of integral equation (4.20) is that it is conveniently solved by itera-
tions, so that we obtain the following perturbation series for the propagator:

K.2, 1/ D K0.2, 1/ � i

„
Z
d 4x3K0.2, 3/V .3/K0.3, 1/

C
��i

„
�2 Z

d 4x3d
4x4K0.2, 3/V .3/K0.3, 4/V .4/K0.4, 1/C � � � .

(4.21)

The terms of this expansion have an obvious and graphic interpretation: the first term
describes the propagation of a free particle from point 1 to point 2, and the second
describes the propagation of a free particle from point 1 to point 3, where it is scattered
by potential V and the propagates as a free particle from 3 to 2. Obviously, point 3 is
arbitrary, so that we have to integrate over its coordinates. This process continues in
higher orders, so that the series describes all the multiple scattering processes up to an
infinite order in V. Such a perturbation theory can be effectively used for the solution
of concrete problems, and we shall return to it later.

4.2 Relativistic theory

Now we are going to construct a similar formalism in relativistic theory. Dirac’s equa-
tion for a free particle is written as

.ibr �m/ D 0 , br D ��@� D �0@0 C � � r , (4.22)
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where, in contrast to the previous section, we returned to a “natural” system of units
with „ D c D 1. A 4-component wave function (Dirac’s bispinor)  .x2t2/ can be ob-
tained from the “initial” one .x1t1/with the help of the propagator (Green’s function)
K0.x2t2; x1t1/, which is a 4�4-matrix. This matrix should satisfy the Dirac’s equation
with the right-hand side, similar to equation (4.15):

.ibr2 �m/K0.2, 1/ D iı.2, 1/ , (4.23)

where, as before, we use the obvious number notations for space-time points. In anal-
ogy with (4.4), (4.6), the wave function  can be expanded over the complete set
of eigenfunctions un, corresponding both to positive and negative energies. Instead
of u�

n, it is convenient to use conjugate spinors Nun D u��0 D u�ˇ (where we use
Dirac’s matrices �0 D ˇ, ˇ2 D 1). Repeating the steps used to derive (4.7), we find
the desirable propagator as

K.x2t2; x1t1/ D
X

En>0

un.x2/ Nun.x1/e
�iEn.t2�t1/ C

X

En<0

un.x2/ Nun.x1/e
�iEn.t2�t1/ for t2 > t1 ,

K.x2t2; x1t1/ D 0 for t2 < t1 . (4.24)

It is necessary to do the expansion of over the complete set of eigenfunctions, includ-
ing those corresponding to negative energies. This may seem bad for physics, as the
introduction of some external perturbation (potential) can induce quantum transition
of a particle (e. g., an electron) from positive energy states to the states with nega-
tive energies, which leads to instability of the system (absence of the ground state).
It is well-known that Dirac solved this problem in the following way. Let us assume
that all states with negative energies in the physical ground state (vacuum) are already
filled by electrons, so that the Pauli principle prevents an electron, moving above this
vacuum, from making a transition to the filled states with negative energies. In our
formalism this reduces to the requirement that for t2 > t1 propagator K.x2t2; x1t1/

should be the sum over the eigenfunctions, corresponding to positive energies only.
Mathematically we should write

K.x2t2; x1t1/ D
X

En>0

un.x2/ Nun.x1/e
�iEn.t2�t1/ for t2 > t1 , (4.25)

so that from (4.24) we should subtract the sum of terms like

un.x2/ Nun.x1/e
�iEn.t2�t1/ (4.26)

over the states with negative energies for all moments of time. This can be done, as
such a sum represents the solution of homogeneous (i. e., without the right-hand side
of) equation (4.23). As a result, this sum is cancelled by the second half of the solution
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(4.24), and we obtain the following Green’s function for a free particle:

KC.x2t2; x1t1/ D
X

En>0

un.x2/ Nun.x1/e
�iEn.t2�t1/ for t2 > t1 . (4.27)

However, for this function

KC.x2t2; x1t1/ D �
X

En<0

un.x2/ Nun.x1/e
�iEn.t2�t1/ for t2 < t1 . (4.28)

is obviously nonzero for t2 < t1. Not the minus sign appearing here! This last expres-
sion is conveniently written as

KC.x2t2; x1t1/ D �
X

En<0

un.x2/ Nun.x1/e
�i jEnjjt2�t1j for t2 < t1 , (4.29)

so that in the exponent we have only positive energies, and negative energies seem to
disappear.

In the presence of an external potential we can again write an integral equation
similar to equation (4.20) and its perturbation expansion of equation (4.21), but with
K0 replaced everywhere by KC, and the potential V should be considered as a 4�4-
matrix. The terms of this series can be graphically understood by drawing space-time
Feynman diagrams. The first term of the series (4.21)KC.2, 1/ describes free particle
propagation from point 1 to point 2 (Figure 4.1). The second term (Figure 4.2) has the
form

.�i/
Z
d 4x3KC.2, 3/V .3/KC.3, 1/ (4.30)

Figure 4.1
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Figure 4.2

(a)                                                                  (b)

Figure 4.3

and describes single scattering. In the figure the closed curve denotes the region, where
the potential V is different from zero. The third term (Figure 4.3)

.�i/2
Z
d 4x3d

4x4KC.2, 3/V .3/KC.3, 4/V .4/KC.4, 1/ (4.31)

describes two scattering processes. Diagrams in Figure 4.3(a) and Figure 4.3(b) illus-
trate two variants of such a scattering:

� Case (a). From point 1 to point 2 the electron propagates in such a way that time
grows along its world line, expression for KC contains only sums like (4.27), i. e.,
only states with positive particle energies are accounted for. These re the usual sec-
ond order scatterings of an electron with positive energy, as in nonrelativistic theory.

� Case (b). From point 4 to point 3 the electron propagates backwards in time, then
expression forKC contains only sums over negative energy states like (4.29). In the
Feynman interpretation this corresponds to a positron (i. e., antiparticle) propagation
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from point 3 to point 4. If time always grows, we can interpret this sequence of
events in the following way: An electron–positron pair is created at point 3, with
the electron propagating in the direction of point 2, while the positron propagates to
point 4, where it annihilates with the initial electron, coming there from 1.

Thus, according to Feynman, a positron is an electron propagating backwards in time.

This interpretation can also be illustrated from the classical point of view: in equations of
motion of a classical particle in electromagnetic field [33]

m
d 2x�

ds2
D e

dx�

ds
F �� . (4.32)

the change of proper time direction s is equivalent to the change of the charge e sign.

Note that for the process shown in Figure 4.3 we certainly have to integrate over all
the possible values of times t3 and t4, so that both cases are described by the single term
of the series (4.31), which can be represented by the single diagram of Figure 4.3(a),
while the diagram of Figure 4.3(b) is just identical. The scattering process shown in
Figure 4.3(b) is in fact in accordance with Dirac’s theory: an electron with negative
energy goes to the state 2 with positive energy (final state), i. e., an electron–positron
pair is created, while the hole is filled by the electron coming from 1, which annihi-
lates. As a result, the electron is scattered from state 1 to state 2, and the electron with
positive energy is replaced by one of the electrons from the negative “background”
(vacuum). Thus, we have an exchange of identical particles, and the corresponding
matrix element acquires a negative sign, as it should be for fermions. However, we
never used the Pauli principle! The appearance of a negative sign in (4.28) was due
to a method of construction of propagator KC, thus guaranteeing the correct statis-
tics! The generalization of these arguments to all higher orders of perturbation theory
produces an alternative proof of the spin-statistics theorem [18].

4.3 Momentum representation

In practice, all calculations are most conveniently done in the momentum representa-
tion. Propagator KC is determined by the equation

.ibr �m/KC.2, 1/ D iı.2, 1/ . (4.33)

Let us introduce the Fourier transform ofKC, which we shall denote as SC.p/, so that

KC.2, 1/ D
Z
d 4pe�ip.x2�x1/SC.p/ , (4.34)
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where d 4p D dp0d
3p. The operator .ibr � m/ can be moved under the integral as

. Op �m/, while for the ı-function we can write

ı.x2 � x1/ D
Z

d 4p

.2�/4
e�ip.x2�x1/ . (4.35)

Then it is easy to find the following equation for SC.p/:

SC.p/ D i

.2�/4
1

Op �m . (4.36)

This expression can be rewritten as

SC.p/ D i

.2�/4
Op Cm

Op Cm

1

Op �m D i

.2�/4
Op Cm

p2 �m2
, (4.37)

where we have taken into account that Op2 D p�p
� D p2

0 � p2 D p2, so that the
denominator in (4.37) contains no matrices. Then,

KC.2, 1/ D i

.2�/4

Z
d 4pe�ip.x2�x1/

Op Cm

p2 �m2
. (4.38)

Let us introduce, by definition, the following integral:

IC.2, 1/ D 1

.2�/4

Z
d 4p

e�ip.x2�x1/

p2 �m2
. (4.39)

Then (4.38) can be written as

KC.2, 1/ D i.ibr2 Cm/IC.2, 1/ . (4.40)

Substituting (4.40) into (4.33) we find that IC satisfies the following equation:

.� Cm2/IC.2, 1/ D �ı.2, 1/ (4.41)

i. e., it represents, in fact, Green’s function of the Klein–Gordon equation. Separating
the spatial coordinates and time, we rewrite IC as

IC.x2 � x1/ D 1

.2�/4

1Z

�1
dp0

Z
d 3p

e�ip0.t2�t1/eip.r2�r1/

p2
0 � p2 �m2

. (4.42)

Here we have a problem: the integrand contains poles at p2
0 � p2 �m2 D 0, i. e., for

p0 D ˙
q
p2 Cm2 	 ˙Ep. Thus, we have to introduce a certain integration path

going around these poles (the rule to encircle poles). Feynman’s rule is to replace

m ! m � iı , ı > 0 , ı ! C0 . (4.43)
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Figure 4.4

Then our integral is written as

IC.x2 � x1/ D
Z

d 3p
.2�/3

eip.r2�r1/

1Z

�1

dp0

2�

e�ip0.t2�t1/
.p0 �Ep C i"/.p0 CEp � i"/ , (4.44)

because the replacement (4.43) adds to Ep an infinitesimal imaginary part, which we
denoted i". Consider now the integrand as a function of a complex variable p0. The
pole p0 D �Ep is now slightly above the real axis of p0 (which is the integration path
in (4.44)), while the pole p0 D CEp is slightly below it, as shown in Figure 4.4. Let us
integrate (4.44), assuming that t2 � t1 > 0. In this case, integration is easily done using
the Cauchy theorem and closing the integration contour (path) in the lower half-plane
of p0. The integral over the semicircle at infinity gives zero, due to fast damping of
the exponential factor in the integrand, and what remains is just the integral along the
real axis we need. But the integral over the closed contour is simply determined by
the residue at the pole CEp, which is inside the contour (and is encircled clockwise).
Finally we get

� 2�i

2Ep
e�iEp.t2�t1/ . (4.45)

In the case of t2 � t1 < 0, to make zero the contribution of a semicircle at infinity we
have to close the integration contour in the upper half-plane. Then inside the integra-
tion contour we have only the pole at �Ep, which is encircled counterclockwise, so
that our integral is equal to

� 2�i

2Ep
eCiEp.t2�t1/ . (4.46)

Note that Ep is assumed to be positive by definition, so that the arguments of expo-
nential factors in both (4.45) and (4.46) are positive (up to a factor of �i ). Thus, both
the integral IC and the propagator KC behave in way similar to (4.27) and (4.28);
for t2 � t1 > 0, only positive energies contribute, while for t2 � t1 < 0 – only nega-
tive ones! In fact, the replacement (4.43) guarantees the equivalence to our previous
definition of propagator KC.
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We could define integration (4.42) in another way and instead of (4.43) just add an infinitesimal
imaginary part to p0:

p0 ! p0 C iı , ı ! C0 . (4.47)

Then, in the integrand of (4.42) two poles appear, both in the lower half-plane of p0. Then
for t2 � t1 > 0, when the integration contour is naturally closed in the lower half-plane, both
positive and negative energies contribute. At the same time, for t2 � t1 we close the contour
in the upper half-plane, where there are no poles at all, so that the integral is just zero. This
definition of propagator K gives, in fact, equation (4.24) (“retarded” Green’s function), i. e.,
Dirac’s theory for electrons only. Feynman’s rule also has an obvious advantage of the imag-
inary part being introduced into the relativistic invariant m, so that all expressions remain
covariant, while in the theory of “electrons only” the imaginary part in p0 makes it different
from other components of 4-momentum.

We shall return to the discussion of these rather fine details of the definition of an-
alytical properties of Green’s functions several times later on, while here we just note
the most general property: poles of the propagators (Green’s functions) in momen-
tum representation determine, in fact, the energy spectrum of the corresponding par-

ticles. In our discussion above, Ep D
q
p2 Cm2 represents the relativistic spectrum

of an electron (positron). This property of Green’s functions is also widely used in the
modern condensed matter theory. In particular, it is the basis of the whole concept of
quasiparticles – the elementary excitations in many particle systems [1].

4.4 The electron in an external electromagnetic field

Consider an electron interacting with an external electromagnetic field. This inter-
action is described by the expression ej�A� D e N �� A�, so that the interaction
“potential” is conveniently denoted as e��A� 	 ebA (e is the electron charge). Dirac’s
equation, taking into account interaction with the electromagnetic field, has an obvious
form:

.ibr � ebA �m/ D 0 , (4.48)

where we introduced the appropriate covariant derivative of electrodynamics.
Accordingly, the particle propagator in the external fieldKAC is defined by the equa-

tion
.ibr2 � ebA2 �m/KAC.2, 1/ D iı.2, 1/ . (4.49)

Dirac’s equation (4.48) can also be rewritten in the form of a Schroedinger equation with the
appropriate Hamiltonian:

i
@ 

@t
D H D Œ˛ � .p � eA/C e' Cmˇ� , (4.50)
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where we have taken into account that A� D .', �A/. Then the propagator is defined as the
solution of the following equation:

�
i
@

@t2
� e'.2/ � ˛ � .�ir2 � eA2/ �mˇ

�
KAC.2, 1/ D iˇı.2, 1/ , (4.51)

where the appearance of the ˇ D �0 matrix in the is related to the use of the Dirac’s conju-
gated spinors in equation (4.24) and guarantees the relativistic invariance. Multiplying equa-
tion (4.51) by the matrix ˇ, we write it as

.i Or2 � e OA2 �m/KAC.2, 1/ D iı.2, 1/ (4.52)

which coincides with (4.49).

The solution of equation (4.49) satisfies the integral equation, similar to equa-
tion (4.20):

KAC.2, 1/ D KC.2, 1/ � ie
Z
d 4x3KC.2, 3/bA.3/KAC.3, 1/ , (4.53)

which produces perturbation expansion (by iteration) similar to equation (4.21):

KAC.2, 1/ D KC.2, 1/ � ie
Z
d 4x3KC.2, 3/bA.3/KC.3, 1/

C .�ie/2
Z
d 4x3d

4x4KC.2, 3/bA.3/KC.3, 4/bA.4/KC.4, 1/C � � � .

(4.54)

It seems that in the relativistic case, the relation between wave functions  .2/ at point
x2 and  .1/ at point x1 can be written in analogy with (4.2) as

 .2/ D
Z
d 3x1K

AC.2, 1/ˇ .1/ , (4.55)

where d 3x1 is the volume element of three-dimensional space at fixed time moment t1,
which is illustrated in Figure 4.5(a). Waves radiated from the point of the hyperplane
t1 D const form the wave function at point x2 at a later moment t2. However. this is all
wrong! The thing is that we defined Green’s function (propagator) in relativistic theory
in such a way that it describes the propagation of particles with positive energies ahead
of time and particles with negative energies backwards in time. Thus, the analogue of
equation (4.2) should be written as

 .x2t2/ D
Z
d 3x1K

AC.x2t2, x1, t1/ˇ .x1t1/ �
Z
d 3x1K

AC.x2t2, x1t
0
1/ˇ .x1t

0
1/ ,

(4.56)

where t1 < t2 < t 01! Here, in accordance with Figure 4.5(b), the first term represents
the contribution of states with positive energy and depends on the previous moments
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(a)                                                                    (b)

Figure 4.5

of time, while the second term gives the contribution of states with negative energies
and depends on future moments of time. The probability amplitude for the particle
transition to the point x2, t2 is not defined if we only know the probability amplitude
to find an electron (or positron) at the earlier moment of time. Even if there was no
positron present at an earlier time, an external field could have created an electron–
positron pair during the system evolution, which leads to the finite probability ampli-
tude to find a positron in the future. In the Feynman approach, contributions to the
propagator corresponding to particles with positive energies are considered as proba-
bility amplitudes for an electron with a negative electric charge, while contributions
corresponding to particles with negative energies are considered as the probability am-
plitudes for a positron with energy �E > 0. Thus, to determine the wave function of
a Dirac’s field at some moment of time, we need to know its electronic component at a
previous moment of time and the positron component at some future moment of time!

Equation (4.56) can be generalized if we note that to define the wave function
 .x2t2/ we need the knowledge of  .x1t1/ on some four-dimensional hypersurface
surrounding the point x2, t2, as shown in Figure 4.6:

 .x2t2/ D
Z
d
.x1/K

AC.2, 1/bN.1/ .1/ , (4.57)

where bN D N��
�, withN� being the vector normal to the hypersurface, surrounding

x2, t2. Integration into equation (4.57) goes over this hypersurface. Then we can say
that the form of equation (4.55) assumes precisely this. Thus, in the future, for brevity
we shall use this simplest formulation. We only need to remember, that spatial inte-
gration in equation (4.55) should be done over the correctly chosen hypersurface in
four-dimensional space-time.
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Figure 4.6

The formal derivation of equation (4.57) can be done as follows. Let us use the four-dimen-
sional Gauss theorem:

Z



d 4x0 @F�.x0/
@x0
�

D
Z

S

d
.x0/F�.x0/n�.x0/ , (4.58)

where F�.x0/ is some 4-vector function, defined in space-time volume � limited by hyper-
surface S , n�.x0/ is an external normal to surface element d
.x0/ at point x0. Let  .x/ be the
solution of the Dirac’s equation i�� @ .x/

@x� � m .x/ D 0. Let us choose F.x0/ D iKC.x �
x0/�� .x0/, where x, x0 2 �. Then we have

@F�.x
0/

@x0
�

D i
@

@x0
�

ŒKC.x � x0/�� .x0/�

D
"

i
@KC.x � x0/

@x0
�

�� CmKC.x � x0/
#

 .x0/

CKC.x � x0/
"

i��
@ .x0/
@x0
�

�m .x0/
#

. (4.59)

The second term here is equal to zero in accordance with Dirac’s equation. Let us substitute
this expression into the left-hand side of equation (4.58) and take into account that

i
@KC.x � x0/

@x0
�

�� CmKC.x � x0/ D �iı.x � x0/ . (4.60)

Then we have

 .x/ D �
Z

S

d
.x0/KC.x � x0/�� .x0/n�.x0/ , (4.61)

where n� is an external normal. If we introduce internal normal N�, we get

 .x/ D
Z

S

d
.x0/KC.x � x0/�� .x0/N�.x0/ , (4.62)

which completes the proof. Equation (4.56) now follows if we choose hypersurface S consist-
ing of two space-like hyperplanes t1 and t2, and neglect the “side” contributions, taking into
account that these parts of S are moved to infinity. Note that in this case N 0�0 D ˇ.
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The probability amplitude for an electron transition from some state with wave func-
tion  0.x1t1/ of a particle with positive energy at the moment t1 to the state with wave
function '0.x2t2/, also corresponding to states with positive energies, at the moment
t2 > t1 is given by the following expression:

M D
Z
d 3x1d

3x2'
�
0 .x2t2/KC.x2t2; x1t1/ˇ 0.x1t1/

D
Z
d 3x1d

3x2 N'0.2/ˇKC.2, 1/ˇ 0.1/ . (4.63)

If between moments t1 and t2 the potential ebA acts, the function KC is replaced by
KAC. In the first order, the transition amplitude, according to (4.54), is equal to

M1 D �ie
Z
d 3x1d

3x2d
4x3 N'0.2/ˇKC.2, 3/bA.3/KC.3, 1/ˇ 0.1/ . (4.64)

With the help of (4.55) we can perform integration over x1 and x2, introducing

 0.3/ D
Z
d 3x1KC.3, 1/ˇ 0.1/ , (4.65a)

N'0.3/ D
Z
d 3x2 N'0.2/ˇKC.2, 3/ , (4.65b)

so that (4.64) becomes

M1 D �ie
Z
d 4x N'0.x/bA.x/ 0.x/ . (4.66)

Let the initial wave function correspond to an electron with 4-momentum p1, while
the final one corresponds to an electron with 4-momentum p2:

 0.x/ D u.p1/e
�ip1x , N'0.x/ D Nu.p2/e

ip2x , (4.67)

where u are spinors, corresponding to free particles with positive energy. Introducing
the Fourier transform of A�.x/,

A�.x/ D
Z
d 4ke�ikxa�.k/ (4.68)

and substituting (4.67) and (4.68) into (4.66), we perform integration over x3 and get

M1 D �ie.2�/4
Z
d 4k ı.p2 � k � p1/ Nu.p2/ Oa.k/u.p1/

D �ie.2�/4 Nu.p2/ Oa.p2 � p1/u.p1/ , (4.69)

which is depicted by the diagram shown in Figure 4.7. Similarly, we can write the
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Figure 4.7 Figure 4.8

second-order matrix element for transition from the state with p1 into the state with
p2 as

M2 D .�ie/2
Z
d 4x

Z
d 4y N'0.x/bA.x/KC.x, y/bA.y/ 0.y/ . (4.70)

Then, after the substitution of the Fourier transforms ofbA andKC from (4.68), (4.38),
and (4.67) we obtain

M2 D �ie2.2�/4
Z
d 4p

Z
d 4k1

Z
d 4k2ı.p2 � k1 � p/

� ı.p1 C k2 � p/ Nu.p2/ Oa.k1/
1

Op �m Oa.k2/u.p1/ (4.71)

or

M2 D �ie2.2�/4
Z
d 4k Nu.p2/ Oa.p2 � p1 � k/ 1

Op1 C Ok �m Oa.k/u.p1/ , (4.72)

which can be associated with the diagram in Figure 4.8. It is clear that in a similar way
we can write all terms of the higher orders of perturbation theory: as a result we obtain
the following diagrammatic rules to describe electron scattering by the potential of an
external electromagnetic field:

1. the atrix element of transition has the form M D Nu2Nu1;

2. to each virtual electron state (internal electron line) with momentum p corresponds
in N by a factor i

Op�m ;

3. to each photon (wavy line) with momentum q corresponds in N by a factor of
�ie Oa.q/;

4. over all momenta qi , which are not fixed by conservation laws, and which are
obeyed in interaction vertices, we should perform integration d 4qi

.2	/4 ;

While calculating integrals, the integration contour for the time component of the mo-
mentum should br chosen according to the Feynman rule of pole encirclement: mass
m in the integrand is replaced by m ! m � iı .ı ! C0/.
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As a simple example of concrete calculating we shall briefly consider the scattering of an
electron by the Coulomb field of an atomic nuclei (Rutherford scattering) with electric charge
Ze. The potential of nuclei is given by

A0 D V.r/ D Ze

r
. (4.73)

Then,

Oa.q/ D 1

.2�/4

Z
d 4x eiqx��A� D 1

.2�/3
ı.q0/�

0
Z
d 3x e�iqrV.r/ D Ze

2�2q2
ı.q0/�

0 .

(4.74)
The first-order transition amplitude (4.69) has the form

M1 D �2�iı.E1 �E2/

�
Nu.p2/

4�Ze2

jp2 � p1j2 �
0u.p1/

�
, (4.75)

where E1 and E2 are the initial and final energies of an electron. From (4.75) we can see that
E1 D E2 D E, i. e., we are dealing with elastic scattering (static potential!). The probability
of scattering is determined by

jM1j2 D .2�/2
ˇ
ˇ̌
ˇ Nu.p2/

4�Ze2

jp2 � p1j2 �
0u.p1/

ˇ
ˇ̌
ˇ

2

ı.E1 �E2/ı.0/ . (4.76)

Here we have written Œı.E1 � E2/�
2 D ı.E1 � E2/ı.0/, which creates obvious problems.

However, ı.0/ should be interpreted, according to the well-known Fermi recipe, as

ı.0/ D lim
T!1 lim

x!0

1

2�

T=2Z

�T=2

dt eixt D lim
T!1

T

2�
, (4.77)

where T is the interaction time. Then we can define the transition probability per unit of time
w1!2 as:

w1!2 D 2�

ˇ̌
ˇ
ˇ Nu.p2/

4�Ze2

jp2 � p1j2 �
0u.p1/

ˇ̌
ˇ
ˇ

2

ı.E1 �E2/ . (4.78)

Further calculations (assuming the nonpolarized nature of the beam of initial electrons) require
the averaging over both initial spin polarizations of electrons and the summation over the final
polarizations. To perform this averaging and summation there exists a certain well-developed
mathematical apparatus which uses the explicit form of spinors u.p/ and the properties of
Dirac’s matrices. We pass over these details, which have been well-described in [60] and [6].
Finally, from (4.78) it is possible to obtain a relativistic version of the Rutherford formula
(Mott formula) for a differential scattering crossection to the element of solid angle d� [60]:

d


d�
D Z2e4

4p2v2 sin4 �
2

�
1 � v2 sin2 �

2

�
, (4.79)

taking into account that jp1 � p2j D 2jpj sin �=2, where � is the scattering angle, and we
introduced the velocity v D jpj=E.
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4.5 The two-particle problem

As we have seen above, in the Lorentz gauge the Maxwell equation for potentials
acquires the form

�A� D 4�j� . (4.80)

This equation is easily solved with the help of Green’s function DC, which is defined
by the following equation:

�2DC.2, 1/ D 4�ı.2, 1/ . (4.81)

Making some obvious Fourier transformations, we have

DC.2, 1/ D � 4�

.2�/4

Z
d 4k e�ik.x2�x1/

1

k2 C iı
, ı ! C0 . (4.82)

In fact, up to a constant and sign, this expression coincides with the integral IC from
(4.39) if we putm D 0 and use the rule (4.43). Now we can write the solution of (4.80)
in the almost obvious form

A�.2/ D
Z
d 4x1D.2, 1/j�.1/ . (4.83)

Here the possibly inhomogeneous term is absent, which corresponds to the boundary
condition of the absence of free electromagnetic radiation at t D ˙1 (i. e., there are
no solutions A.0/� equation �A� D 0, which can always be added to the right-hand
side of equation (4.83)).

Consider now the case of two charged (interacting!) fermions. Each of the particles
is the source of an electromagnetic field which acts upon the motion of the other par-
ticle. As a result of this interaction, each particle is scattered by the other. Let us write
an expression for the current, corresponding to the transition of electron “a” from the
state ua.p1/e

�ip1x to the state ua.p2/e
�ip2x:

j�.x/ D e Nua.p2/�
�
a ua.p1/e

i.p2�p1/x . (4.84)

In accordance with equation (4.83) this current creates electromagnetic potential at the
space-time point x:

A�.x/ D e

Z
d 4x0DC.x � x0/ei.p2�p1/x

0 Nua.p2/�
�
a ua.p1/

D �4�e
Z
d 4k

1

k2 C iı
e�ikxı.k C p2 � p1/ Nua.p2/�

�
a ua.p1/ . (4.85)

This potential acts upon the motion of the second electron “b”. According to equa-
tion (4.66), the first-order matrix element, corresponding to the transition of electron
“b” from the state with 4-momentum q1 into the state with 4-momentum q2, induced
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by potential (4.85), has the following form:

M D �ie
Z
d 4x Nub.q2/e

iq2x�
�

b
A�.x/ub.q1/e

�iq1x

D 4�ie2.2�/4
Nub.q2/�

�

b
ub.q1/ Nua.p2/�a�ua.p1/

jp1 � p2j2 ı.p1 C q1 � p2 � q2/ .

(4.86)

Consider now the propagator for a system of two particles (two-particle Green’s func-
tion). In a nonrelativistic approximation the system of two particles is described by
the Schroedinger wave function  .xa, xb , t /, and, as in the previous case of a sin-
gle particle, we can define the propagator K.xa, xb , t ; x0

a, x0
b , t 0/, which determines

the probability amplitude of particle the “a” transition from point x0
a at the time mo-

ment t 0 to point xa at the moment t , while particle “b” propagates from point x0
b at the

moment t 0 to point xb at the moment t . If the particles do not interact, we obviously
have

K.xa, xb , t ; x0
a, x0

b , t 0/ D K0a.xat ; x0
at

0/K0b.xbt ; x
0
bt

0/ , (4.87)

whereK0a andK0b are the propagators of the free particles “a” and “b”. In the absence
of any interaction we can also define a more general two-particle Green’s function with
different time moments for particles in initial and final states:

K0.3, 4; 1, 2/ D K0a.3, 1/K0b.4, 2/ . (4.88)

Equation (4.86) can now be considered as the matrix element, appearing due to the
first-order correction K.1/ to the propagator of two free particles, which is written as

KC.3, 4; 1, 2/ D
� ie2

Z
d 4x5

Z
d 4x6KCa.3, 5/��a KCa.5, 1/DC.5, 6/KCb.4, 6/�b�KCb.6, 2/

(4.89)
and can be represented by the Feynman diagram shown in Figure 4.9. In this expres-
sion,DC can be considered as the propagator of the virtual photon. In fact, our deriva-
tion is not completely satisfactory, because we did not quantize the electromagnetic
field itself. However, we shall see later that the same result is reproduced in the rigor-
ous theory.

In momentum representation we can rewrite the previous expressions in a more

transparent way. Assuming the validity of the Lorentz condition @A�

@x� D 0, and differ-
entiating (4.85) over x�, we get

Nua.p2/�
�
a k�ua.p1/ D Nua.p2/.�

0
ak

0 � � � k/ua.p1/ D 0 . (4.90)

This relation is satisfied, because, due to the presence of ı-function in (4.85), we have
Ok D Op1 � Op2, while u.p2/ and u.p1/ are free-particle spinors, so that

Nu1.p2/. Op1 � Op2/u.p1/ D Nu.p2/Œ. Op1 �m/ � . Op2 �m/�u.p1/ D 0 . (4.91)
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Figure 4.9

Thus, everywhere in (4.86) where the �0
a matrix is present we can use the relation

�0
a � k0 � �a � k D 0 (4.92)

and express �0
a as

�0
a D �al

� jkj
k0

�
, (4.93)

where �l is the � -matrix “projected on the direction of the propagation” k (let us stress
this the for virtual photon k0 ¤ jkj). Thus, denoting the “transverse” components of

� as � it , we can rewrite



�
a 


�

b

k2 in (4.86) as

�
�
a �

�

b

k2
D �0

a�
0
b

� � la� lb �P2
iD1 �

i
at�

i
bt

k2
0 � k2

D
�0
a�

0
b



1 � k2

0jkj2
�

�P2
iD1 �

i
at�

i
bt

k2
0 � k2

D ��
0
a�

0
b

k2
�
P2
iD1 �

i
at�

i
bt

k2
0 � k2

. (4.94)

The first term in this expression describes in (4.86) and (4.89) the instantaneous Cou-
lomb interaction of two electrons, while the second one takes into account the transver-
sal quanta responsible for the retarded magnetic interaction of particles. The appear-
ance of instantaneous interaction is connected to the noncovariant separation of ini-
tially the covariant interaction (4.94) into two terms: in fact the first term gives the main
contribution in the limit of small velocities, while the second produces corrections to
the instantaneous Coulomb interaction.

Up to now we have not taken into account that electrons are identical particles com-
plying to the Pauli principle. This can be taken into account requiring antisymmetry
of the wave function of the particle system, which can be achieved by introducing the
two-particle propagator K.3, 4; 1, 2/ �K.4, 3; 1, 2/, which describes the transition of
two particles from points 1 and 2 to points 3 and 4, including the exchange process.
Thus, instead of (4.86), we obtain the matrix element for the scattering of two identical
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Figure 4.10

particles, in the first order over interaction, in the following form:

M D 4�ie2.2�/4
´

Nub.q2/�
�

b
ub.q1/ Nua.p2/�a�ua.p1/

jp1 � p2j2

� Nub.p2/�
�

b
ub.q1/ Nua.q2/�a�ua.p1/

jq1 � p2j2
μ

ı.p1 C q1 � p2 � q2/ ,

which determines e. g., the cross-section of the so-called Möller scattering.
In higher orders of perturbation theory over interaction, an infinite number of cor-

rections appear which correspond to the exchange of a larger and larger numbers of
virtual photons between interacting particles and particle self-interactions. All such
processes are described by Feynman diagrams, which correspond to the appropriate
mathematical expressions. Examples of diagrams of the order of e4 are shown in Fig-
ure 4.10. Additional Feynman diagram rules for two-particle scattering are formulated
as follows:

1. the probability amplitude for the radiation of a virtual photon is given by e��,
which is attributed to an interaction point (vertex) on the diagram;

2. the probability amplitude for a photon transition (propagator, wavy line) from point
1 to point 2 is given by DC.2, 1/ or, in momentum representation, � 4	

k2Ciı .

Let us limit ourselves to the so-called “ladder” diagrams (with no intersections of in-
teraction lines) shown in Figure 4.11. Introducing the probability amplitude '.x1, x2/

to find two particles at points x1 and x2 after the exchange of n virtual photons, we can
write the same probability amplitude after the exchange of the next .nC 1/-th photon
as

'nC1.1, 2/ D �ie2
Z
d 4x3

Z
d 4x4KCa.1, 3/��a KCb.2, 4/�b�DC.3, 4/'n.3, 4/ .

(4.95)
Then the total probability amplitude in the ladder approximation can be written as

 .x1, x2/ D
1X

nD0

'n.x1, x2/ (4.96)
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Figure 4.11

and, accordingly,

 .2, 1/ D '0.2, 1/� ie2
Z
d 4x3

Z
d 4x4KCa.1, 3/��a KCb.2, 4/�b�DC.3, 4/ .3, 4/ ,

(4.97)
where '0.2, 1/ is the wave function, satisfying Dirac’s equation for the free particle (by
both variables). Applying Dirac’s differential operators for the “a” and “b” particles
to both sides of equation (4.97), we obtain the differential equation for  .2, 1/

.i Ora �m/.i Orb �m/ .2, 1/ D ie2��a �b�DC.2, 1/ .2, 1/ . (4.98)

This is the so-called Bethe–Salpeter equation (in a ladder approximation), which is the
relativistic wave equation for a two-particle system. In principle, it allows the complete
analysis of the bound state problem in such a system, e. g., the study of the formation
and of the energy spectrum of positronium.



Chapter 5

Scattering matrix

5.1 Scattering amplitude

Most experiments in high-energy physics (physics of elementary particles) are essen-
tially scattering experiments: studies of reactions between particles and their decays.
Particles usually interact at very small distances and during very short time intervals
(inside a target or at crossings of accelerator beams), while practically free reaction
products are registered in detector systems which are placed rather far from the space
region where particles interact with each other, producing these reaction products.
Thus, we are usually dealing with a rather general scattering problem: knowing the
initial state of a system of free particles, we have to find the probability of different
final states, which are also the sets of free particles, produced as a result of interactions.

Let jii be some initial state. The result of an interaction can be represented by a
superposition X

f

jf ihf jS jii , (5.1)

where the summation is performed over all possible final states jf i. The coefficients
Sf i D hf jS jii form the so-called scattering matrix or S-matrix1. Now jSf i j2 gives
the probability of transition i ! f . In the absence of interactions, the S -matrix is
obviously a unit matrix. Then it is convenient to separate this unit part and write

Sf i D ıf i C i.2�/4ı.Pf � Pi /Tf i , (5.2)

where the ı-functions simply express the conservation of the 4-momentum. For non-
diagonal elements we simply have

Sf i D i.2�/4ı.Pi � Pf /Tf i . (5.3)

Here Tf i is called the scattering amplitude.
While calculating the square of (5.2) we encounter the badly defined square of the

ı-function, which expresses the 4-momentum conservation law. The correct way to
proceed is to introduce the Fourier transform:

ı.Pf � Pi / D 1

.2�/4

Z
d 4xei.Pf �Pi /x . (5.4)

1 The notion of scattering matrix was first introduced by Heisenberg, who suggested considering it as
the most fundamental characteristic of elementary particle interactions.
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and dealing with the second such integral perform calculations for Pf D Pi , but with
integration extended to some large, but finite, volume V and time interval T , which
gives V T=.2�/4. Thus, we write

jSf i j2 D .2�/4ı.Pf � Pi /jTf i j2V T . (5.5)

Now we can introduce the well-defined probability of transition in unit time (and in
finite volume)2:

wf i D .2�/4ı.Pf � Pi /jTf i j2V . (5.6)

Free particles are described by appropriate plane waves with amplitudes u, represent-
ing bispinors for Dirac fermions, 4-vectors for photons, etc. Then we have

Tf i D u�
1u

�
2 � � �Qu1u2 � � � , (5.7)

where Q is some matrix over indices of the wave function amplitudes of all particles.
Let us consider the most important cases, where there are only one or two particles

in the initial state, i. e., decays of single particles or collisions of two particles. Let
us start from decays. The single particle can decay into several other particles with
momenta p0

a, belonging to an element of phase space
Q
a d

3p0
a (a numerates here

the particles in the final state). The number of states in this elementary phase space
volume is

Q
a
Vd 3p0

a

.2	/3 , and we have to multiply (5.6) by this number to obtain the
probability of transition into the final states:

dw D .2�/4ı.Pf � Pi /jTf i j2V
Y

a

Vd 3p0
a

.2�/3
. (5.8)

Everywhere we use normalization by a “single particle in volume V ”, so that the wave
functions of all particles contain the factor of 1p

2"pV
, where "p is the particle energy.

It is convenient to move these factors into the scattering amplitude and write the wave
functions in the following as

 D ue�ipx , Nuu D 2m (electrons) , (5.9)

A� D p
4�e�e

�ikx , e�e
�� D �1 , e�k

� D 0 (photons) (5.10)

etc., rewriting the scattering amplitude via the new amplitude Mf i , defined as

Tf i D Mf i

.2"1V : : : 2"0
1V : : :/

1=2
, (5.11)

where the denominator contains one factor of .2"iV / per each initial and final particle.
Then, the decay probability is written as

dw D .2�/4ı.Pf � Pi /jMf i j2 1

2"

Y

a

d 3p0
a

.2�/32"0
a

, (5.12)

2 As we already noted above, this recipe was first proposed by Fermi.
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where " is an energy of the decaying particle. As should be expected, all normalization
volumes in (5.12) has cancelled. If among final particles we have N identical ones,
the phase volume of the final states should be divided by NŠ, to account for their
permutations, producing the same state.

Consider in more detail the case of the decay into two particles with momenta p0
1, p0

2 and
energies "0

1, "0
2. In the rest frame of the decaying particle, p0

1 D �p0
2 	 p0, "0

1 C"0
2 D m. Then

dw D 1

.2�/2
jMf i j2 1

2m

1

4"0
1"

0
2

ı.p0
1 C p0

2/ı."
0
1 C "0

2 �m/d 3p0
1d

3p0
2 . (5.13)

First, the ı-function here disappears after integration over d 3p0
2. Then we rewrite d 3p0

1 as

d 3p0 D jp0j2d jp0jd� D jp0jd�0 "0
1"

0
2d."

0
1 C "0

2/

"0
1 C "0

2

, (5.14)

where we have taken into account "0
1

2 � m2
1 D "0

2
2 � m2

2 D jp0j2. Then, integrating over
d."0

1 C"0
2/, we get rid of the second ı-function in (5.13). Accordingly, for the decay probability

into an element of the solid angle d�0 we get

dw D 1

32�2m2
jMf i j2jp0jd�0 . (5.15)

Let us now consider the collision of two particles with momenta p1, p2 and energies
"1, "2, producing in the final state some set of particles with momenta p0

a and energies
"0
a. Then,

dw D .2�/4ı.Pf � Pi /jMf i j2 1

4"1"2V

Y

a

d 3p0
a

.2�/32"0
a

. (5.16)

The invariant (with respect to Lorentz transformations) scattering cross-section is ob-
tained from (5.16) dividing by [33]

j D I

V"1"2
, where I D p

.p1p2/2 �m2
1m

2
2 . (5.17)

In the center of the mass frame we have p1 D �p2 	 p, so that I D jpj."1 C "2/ and

j D jpj
V

�
1

"1
C 1

"2

�
D v1 C v2

V
, (5.18)

which gives the current density of the colliding particles (v1, v2 are the particle veloc-
ities). Then finally

d
 D .2�/4ı.Pf � Pi /jMf i j2 1

4I

Y

a

d 3p0
a

.2�/32"0
a

. (5.19)

Let us drop the ı-functions for the case where there are two particles in the final state. Consider
again scattering in the center of the mass frame. Let " D "1 C "2 D "0

1 C "0
2 be the total energy
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of the colliding particles, while p1 D �p2 	 p and p0
1 D �p0

2 	 p0 are the initial and final
momenta. Performing calculations similarly to the case of a decaying particle, we obtain

d
 D 1

64�2
jMf i j2 jp0j

jpj"2
d�0 (5.20)

For the case of elastic scattering we have jp0j D jpj. Let us introduce the kinematic invariant:

t 	 .p1 � p0
1/

2 D m1
2 Cm0

1
2 � 2.p1p

0
1/ D m1

2 Cm0
1

2 � 2"1"
0
1 C 2jp1jjp0

1j cos � , (5.21)

where � is the scattering angle. In the center of the mass reference frame, jp1j 	 jpj and
jp0

1j 	 jp0j are determined only by the total energy ", so that for its given value we have

dt D 2jpjjp0jd cos � . (5.22)

Correspondingly, in equation (5.20) we can write

d�0 D �d'd cos � D d'd.�t /
2jpjjp0j , (5.23)

where ' is the asimuthal angle of the vector p0
1 with respect to p1. Further, for brevity, we

write d.�t / as dt and obtain

d
 D 1

64�
jMf i j2 dt

I 2

d'

2�
. (5.24)

If the cross section does not depend on the asimuthal angle ', we get

d
 D 1

64�
jMf i j2 dt

I 2
. (5.25)

5.2 Kinematic invariants

Consider now the details of the kinematics of two particles scattering into two particles
in the final state. The conservation law for a 4-momentum can be written in the form
(where we do not predetermine which particles are in initial and which are in final
state)

p1 C p2 C p3 C p4 D 0 . (5.26)

The scattering amplitude for this process can be represented by a graph (diagram),
as shown in Figure 5.1, where directions of the arrows correspond to the momenta
“entering” the amplitude (cf. equation (5.26)). Two of the momenta correspond to
initial particles, while two others to particles in the final state (with moments �pa).
In these notations, two of pa possess the time component p0

a > 0, while two others
possess the time component p0

a < 0. For given types of particles participating in
the scattering process, the squares the 4-momenta p2

a are determined by their masses:
p2
a D m2

a (free particles always belong to their “mass surface”). Depending on the
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Figure 5.1

values, which acquire time components p0
a, and also on the values of particles charges,

the scattering amplitude in Figure 5.1 can describe three different reactions:

.1/ 1 C 2 ! 3 C 4 .s-channel/ ,

.2/ 1 C N3 ! N2 C 4 .t -channel/ , (5.27)

.3/ 1 C N4 ! N2 C 3 .u-channel/ ,

where the bars denote the appropriate antiparticles. These scattering processes are
called cross-reactions, whcih can be represented graphically as in the diagrams in Fig-
ure 5.2. We can also speak of three cross-channels of the same reaction, shown in
Figure 5.1. We go from one reaction to another by changing the sign of the appropri-
ate time component of momentum p0

a in (5.26):

p0
1 > 0 , p0

2 > 0 , p0
3 < 0 , p0

4 < 0 .s-channel) ,

p0
1 > 0 , p0

2 < 0 , p0
3 > 0 , p0

4 < 0 .t -channel/ , (5.28)

p0
1 > 0 , p0

2 < 0 , p0
3 < 0 , p0

4 > 0 .u-channel/ ,

and also the signs of the charges. All initial and final states in (5.29) obviously possess
positive energy. Transformation to the cross-channel reaction particle momentum in

Figure 5.2
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the initial state pa is replaced by the antiparticle momentum �pa in the final state,
with a corresponding change of charge. Due to the CPT -invariance of the theory we
can also consider three CPT -conjugate reactions, which are obtained from (5.28) by
replacement of all particles by antiparticles and the interchange of the initial and final
states. If the theory is invariant with respect to charge conjugation C , we can add to
these six reactions six moreC -conjugate reactions, where all the particles are replaced
by the corresponding antiparticles.

From the four 4-momenta entering the reaction we can construct two independent
invariants. Due to (5.26) there are only three independent 4-vectors pa; let these be
p1,p2,p3. From these we can construct six invariants: p2

1,p2
2,p2

3,p1p2,p1p3,p2p3.
The first three reduce to the corresponding squares of masses: m2

1,m2
2,m2

3. The other
three are connected by one relation, following from .p1 C p2 C p3/

2 D p2
4 D m2

4.
Usually the following symmetric notations are used, introducing three kinematic in-
variants:

s D .p1 C p2/
2 D .p3 C p4/

2 ,

t D .p1 C p3/
2 D .p2 C p4/

2 , (5.29)

u D .p1 C p4/
2 D .p2 C p3/

2 ,

which are called Mandelstam variables. It is easily checked that

s C t C u D h 	 m2
1 Cm2

2 Cm2
3 Cm2

4 . (5.30)

In channel (1), the invariant s represents the square of the total energy of colliding
particles 1 and 2 in their center of the mass reference frame. In fact, for p1 C p2 D 0
we immediately obtain s D ."1 C "2/

2. In channel (2), a similar role is played by
invariant t , while in channel (3) it is played by invariant u. Correspondingly, we are
speaking about the s, t , and u reaction channels.

Let us consider in more detail the s-channel. Let

p1 D ."1, ps/ , p2 D ."2, �ps/ ,

p3 D .�"3, �p0
s/ , p4 D .�"4, p0

s/ . (5.31)

Then it is easy to get

s D "2
s , where "s D "1 C "2 D "3 C "4 , (5.32)

4sp2
s D Œs � .m1 Cm2/

2�Œs � .m1 �m2/
2� ,

4sp02
s D Œs � .m3 Cm4/

2�Œs � .m3 �m4/
2� , (5.33)

2t D h � s C 4psp0
s � 1

s
.m2

1 �m2
2/.m

2
3 �m2

4/ ,

2u D h � s � 4psp0
s C 1

s
.m2

1 �m2
2/.m

2
3 �m2

4/ . (5.34)
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In the case of elastic scattering (m1 D m3, m2 D m4) we have jpsj D jp0
sj, so that

"1 D "3 and "2 D "4. Then equations (5.33) simplify to

t D �.ps � p0
s/

2 D �2p2
s.1 � cos �s/

u D �2p2
s.1 C cos �s/C ."1 � "2/

2 (5.35)

where �s is an angle between ps and p0
s , i. e., the scattering angle. Thus, in this case,

invariant �t represents the square of the transferred 3-momentum.
Similar expressions for other channels are obtained by the obvious changes of no-

tation. The transformation to the t -channel is achieved by the replacements s $ t ,
2 $ 3, while the transformation to the u-channel is made by s $ u, 2 $ 4.

If colliding particles are spinless, the scattering amplitude depends only on the kine-
matic invariants s, t ,u, and in fact reduces to the single function

Mf i D f .s, t / . (5.36)

For particles with spin, besides s, t ,u there exist invariants which can be constructed
from the amplitudes of the wave functions (bispinors, 4-vectors, 4-tensors etc.). Then
the scattering amplitude has the form

Mf i D
X

n

fn.s, t /Fn , (5.37)

where Fn are invariants, linearly dependent on wave function amplitudes of all the
colliding particles, as well as on their 4-momenta. The coefficients fn.s, t / are called
invariant amplitudes.

5.3 Unitarity

The scattering matrix should be unitary: SSC D 1, or

.SSC/f i D
X

n

Sf nS
�
in D ıf i , (5.38)

where n enumerates all the possible intermediate states. The unitarity condition (5.38)
expresses the conservation of normalization and orthogonality of quantum states in
scattering processes. In particular, the diagonal elements of (5.38) represent the sum
of all transition probabilities from the fixed initial state to all the possible final states:

X

n

jSni j2 D 1 . (5.39)

Using (5.2) we obtain from (5.38)

Tf i � T �
if D i.2�/4

X

n

ı.Pf � Pn/Tf nT �
in . (5.40)
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The left-hand side is linear, while the right-hand side is quadratic over T . If the in-
teraction contains a small parameter, the left-hand side is “larger” than the right-hand
side, and in the first approximation, neglecting the right-hand side, we can write

Tf i D T �
if , (5.41)

so that the T -matrix in this approximation is Hermitian.
Consider the collision of two particles. Only in the case of elastic scatterings are

all the intermediate states in (5.40) also two-particle states. The summation over these
states reduces to the integration over the intermediate momenta p00

1, p00
2 and the sum-

mation over spins (helicities) of both particles, which we denote �00:
X

n

D V 2
Z
d 3p00

1d
3p00

2

.2�/6
X

�00

(5.42)

After dropping the ı-function, in a way similar to that used above, we may obtain the
“two-particle” unitarity condition as

Tf i � T �
if D i

V 2

.2�/2
X

�00

jpj
"

Z
Tf nT

�
in"

00
1"

00
2d�

00 , (5.43)

where p is the momentum and " is the total energy in the center of the mass reference
frame. The normalization volume disappears after transition to amplitudes Mf i :

Mf i �M �
if D i

.4�/2
X

�00

jpj
"

Z
Mf nM

�
ind�

00 . (5.44)

The diagonal element Ti i is called the zero-angle scattering amplitude. For this am-
plitude the unitarity condition takes the form

2 ImTi i D .2�/4
X

n

jTinj2ı.Pi � Pn/ . (5.45)

The right-hand side here is proportional to the total cross section of all the scattering
processes from the fixed initial state i , which we shall denote as 
tot . In fact, summing
(5.6) over f and dividing by the particle current density j , we obtain


tot D .2�/4V

j

X

n

jTinj2ı.Pi � Pn/ , (5.46)

so that
2V

j
ImTi i D 
tot . (5.47)

The normalization volume is cancelled after the transformation to Ti i D
Mi i=.2"1V 2"2V / (where "1, "2 are particle energies in the center of the mass refer-
ence frame) and substitution of j from (5.18) we get

ImMi i D 2jpj"
tot , (5.48)

which is called the optical theorem.
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Due to the CPT -theorem we have

Tf i D TNi Nf , (5.49)

where Ni and Nf are states obtained from i and f by changing all the particles with their
antiparticles. For diagonal elements,

Ti i D TNi Ni . (5.50)

Then it follows from (5.45) and (5.48) that the total cross section of all possible scatter-
ing processes (with a fixed initial state) is the same for the reactions between particles
and antiparticles. In particular, this means that the total lifetime (decay probability) of
a particle and an antiparticle are equal.

During the period of the late 1950s and early 1960 where there was a certain dis-
satisfaction in quantum field theory, it was proposed to limit the theory of elementary
particles to the analysis of the general properties of the S -matrix, such as unitarity and
some general analyticity properties related to causality. This was the basis of the so-
called analytical theory of the S -matrix [14]. Despite some successes and important
theorems which are proved within this approach, it was insufficient for the construc-
tion of a complete dynamical theory of elementary particles. At the same time, as we
shall see below, modern quantum field theory gives the well-developed formalism for
the calculation of S -matrix via the standard perturbation theory approach.
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Invariant perturbation theory

6.1 Schroedinger and Heisenberg representations

Let us proceed to a systematic presentation of mathematical apparatus of perturbation
theory over interactions in quantum field theory. It is well known that there exist two
main formulations for equations of motion in quantum theory. In Schroedinger rep-
resentation the quantum state at a given moment of time t is represented by the state
vector ‰S .t/, containing the complete set of all possible results of measurements,
applied to the system at this moment of time. The further evolution of the system is
described by the time dependence of this state vector (wave function), described by
the Schroedinger equation

i„@‰S
@t

D HS‰S .t/ . (6.1)

In this representation, the operators of physical variables FS do not depend on time;
for all t they are the same: dFS=dt D 0. At the same time, the average value of an
operator

hFS i D h‰S .t/jFS j‰S .t/i (6.2)

in the general case will depend on time as

i„ d
dt

hFS i D h‰S .t/jŒFS ,H�j‰S .t/i . (6.3)

Let us make the following time-dependent unitary transformation of vector ‰S .t/:

ˆ.t/ D V.t/‰S .t/ , (6.4)

where
V.t/V C.t/ D V C.t/V .t/ D 1 , V C.t/ D V �1.t/ . (6.5)

Then the new state vector ˆ.t/ satisfies the equation1

i„@ˆ.t/
@t

D
�
i„@V
@t
V �1 C VHSV

�1
�
ˆ.t/ . (6.6)

Let us choose V.t/ satisfying the equation

�i„@V
@t

D .VHSV
�1/V D VHS . (6.7)

1 We have i„ @ˆ.t/
@t

D i„ @V
@t
‰S .t/ C i„V @‰S

@t
D i„ @V

@t
V �1ˆ.t/ C VHS‰S D i„ @V

@t
V �1ˆ.t/ C

VHSV
�1ˆ.t/, which coincides with (6.6).
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Then the transformed state vector will not depend on time, which is directly seen from
(6.6). Due to the unitarity of V.t/, the average value of an operator FS is expressed as

hF i D h‰S .t/jFS j‰S .t/i D hV.t/‰S .t/jV.t/FS‰S .t/i
D hˆH jV.t/FSV �1.t/jˆH i , (6.8)

where we have defined ˆH as

ˆH D V.t/‰S .t/ , (6.9)

and V.t/ satisfies equation (6.7). Let us define FH .t/ as

FH .t/ D V.t/FSV
�1.t/ . (6.10)

Then the time-dependent operator FH .t/ has the same average value in the state de-
fined by vector ˆH , which the operator FS has in the state defined by vector ‰S .
Differentiating (6.5) over time, we have

dV.t/

dt
V C.t/C V.t/

dV C.t/
dt

D 0 . (6.11)

Then from (6.7) and (6.10) we obtain for the time dependence of FH .t/2

@FH .t/

@t
D @V

@t
V CFH .t/CFH .t/V @V

C
@t

D i

„ ŒVHSV
C,FH .t/� D i

„ ŒHH ,FH .t/� ,
(6.12)

which represents the equation of motion for the operator of the physical variable in a
Heisenberg representation. The Heisenberg-state vectorˆH does not depend on time:

@ˆH

@t
D 0 . (6.13)

We can assume that ˆH just coincides with ‰S .0/ at t D 0.

6.2 Interaction representation

Consider once again the usual Schroedinger equation

i„@ˆ.t/
@t

D .H0 CHI /ˆ.t/ , (6.14)

where H0 is the Hamiltonian of noninteracting fields (particles), while HI is some
interaction Hamiltonian. The state vector ˆ in the absence of interactions, i. e., for
HI D 0, describes the motion of the given number of free particles with fixed momenta
and spins. The operator HI describes interactions of these particles.

2 To obtain (6.12) we take into account that @FH

@t
D @V

@t
FSV

�1 C VFS
@V�1

@t
D @V

@t
V �1FH C

FHV
@V�1

@t
.
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Let us introduce the state vector

‰.t/ D exp

�
iH0t

„
�
ˆ.t/ . (6.15)

It is easy to see that ‰.t/ satisfies the equation

i„@‰.t/
@t

D exp

�
iH0t

„
�
HI exp

�
� iH0t

„
�
‰.t/ (6.16)

or

i„@‰.t/
@t

D H IR
I .t/‰.t/ , (6.17)

where

H IR
I .t/ D exp

�
iH0t

„
�
HI exp

�
� iH0t

„
�

, (6.18)

the operator of the interaction energy in this new representation. This operator ex-
plicitly depends on time, in contrast to the Schroedinger operator HI . In general, an
arbitrary operatorQIR.t/ in this, the so-called interaction representation, is related to
the Schroedinger operator QS as

QIR.t/ D exp

�
iH0t

„
�
QS exp

�
� iH0t

„
�

. (6.19)

Now it immediately follows that in interaction representation the dependence of oper-
ators on time is determined by the Hamiltonian of free particles; differentiating (6.19)
by t we obtain

i„@QIR.t/
@t

D ŒQIR.t/,H0� . (6.20)

Note thatH IR
0 D HS

0 . Thus, in interaction representation, field operators satisfy equa-
tions of motion of free fields3, while the time-dependence of the state vector ‰.t/ is
determined, according to (6.17), only by the interaction energy. Interaction represen-
tation is quite convenient for the construction of perturbation theory.

Consider as an example the theory of Dirac fermions interacting with a scalar field. In Schroe-
dinger representation the Hamiltonian of free fields has the form

H0 D
Z
d 3r

�
N .x/ .�i� � r Cm/ .x/C 1

2

�
@'.x/

@t

�2

C 1

2
.r'.x//2 C 1

2
m2'2.x/

�
,

(6.21)

and the interaction Hamiltonian (based on simplest principles of relativistic invariance) is writ-
ten as

HI D g

Z
d 3r N .x/ .x/'.x/ , (6.22)

3 In particular, this means that commutation relations for these operators are the same for arbitrary
moments of time.
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where g is the dimensionless coupling constant. After transformation to interaction represen-
tation, field operators '.x/ and  .x/ satisfy the equations

.ibr �m/ IR.x/ D 0 , .� Cm2/'IR.x/ D 0 , (6.23)

and equation (6.17) reduces to

i„@‰.t/
@t

D g

Z

ctDx0

d 3r N IR.x/ IR.x/'IR.x/‰.t/ . (6.24)

Equation (6.17) can be generalized to covariant form. This is achieved by introduc-
tion of an arbitrary hypersurface in space-time instead of the hyperplane t D const.
The only condition for this hypersurface to satisfy is that any vector normal to it n�.x/
at an arbitrary point r should be time-like, i. e., n�.r/n�.r/ > 0. This means that no
points on this hypersurface can be connected by a light signal, or that any two points
on it should br separated by a space-like interval. Let us denote such surfaces as 
 . At
an arbitrary point r on this surface we can introduce time t .r/, which is called the local
time. In the limit when this surface becomes just a plane, all points on it possess the
same time t D const. Now we can generalize ‰.t/ by introducing ‰Œt.r/�. The basic
equation (6.17)

i„@‰.t/
@t

D HI .t/‰.t/ (6.25)

can now be considered to be the result of the summation of an infinite number of
equations obtained after the introduction of local time at each point of the space-like
hypersurface. If the interaction Hamiltonian is expressed as the sum over small three-
dimensional cells 	V on the space-like hypersurface 
 , i. e.,

HI D
X

�

HI .x/	V , (6.26)

the equation in a small cell surrounding the space-time point r, t .r/ can be written as

i„@‰Œt.r/�
@t.r/

D HI .x/	V ‰Œt.r/� , (6.27)

which directly generalizes equation (6.17). The variation of ‰.t/, corresponding to a
rigid infinitesimal translation of hypersurface t D const as a whole, is determined by
the integral

R
t HId

3r, so that it becomes clear that the variation of ‰Œt.r/� relative
to point x is determined by the interaction energy in HI .x/	V with an infinitesimal
volume surrounding x. As the product 	V	t is a relativistic invariant, we may in-
troduce the following invariant differentiation procedure. Consider a function defined
on the space-like hypersurface ‰Œt.r/� D ‰.
/. Let us compare the values of this
function on two space-like hypersurfaces 
 and 
 0, which are infinitesimally different
from each other in the vicinity of point x, as shown in Figure 6.1. Now we define the
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Figure 6.1

invariant operation ı=ı
.x/ in the following way:

ı‰.
/

ı
.x/
D lim
�t�V!0

‰Œt.r/C	t.r/� �‰Œt.r/�
c
R
�V d

3r	t.r/

D lim
�t�V!0

‰.
 0/ �‰.
/
c	t.r/	V

D lim
.x/!0

‰.
 0/ �‰.
/
�.x/

, (6.28)

where �.x/ is the 4-volume between 
 and 
 0. Then, in the limit of �.x/ ! 0 equa-
tion (6.27) can be rewritten in the form of the so-called Tomonaga–Schwinger equa-
tion:

i„c ı‰.
/
ı
.x/

D HI .x/‰.
/ . (6.29)

This equation is covariant, as HI .x/ is relativistic invariant (scalar), and we do not
need any specific Lorentz reference frame to define the space-like surface 
 . Thus, the
Tomonaga–Schwinger equation is written with no reference to any system of coordi-
nates. However, in the following we shall mainly deal with equation (6.17), written in
the fixed reference frame.

6.3 S -matrix expansion

The solution of equation of motion in interaction representation (6.17) can be written
in integral form as

‰.t/ D ‰.t0/ � i

„
Z t

t0

dt 0HI .t 0/‰.t 0/ . (6.30)

Here we take into account the initial condition: for t D t0 the function ‰ reduces to
‰.t0/.

Let us write the relation between ‰.t/ and ‰.t0/ as4

‰.t/ D U.t , t0/‰.t0/ ,

‰.t0/ D U�1.t , t0/‰.t/ , (6.31)

U.t0, t0/ D 1 ,

4 The formalism presented below was developed by Dyson.
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where U.t , t0/ is a unitary (conserving normalization!) operator of evolution. Then

S D U.C1, �1/ (6.32)

defines the S-matrix (scattering matrix), which determines all the possible changes of
the system states due to interaction:

‰.C1/ D S‰.�1/ , (6.33)

where ‰.�1/ and ‰.C1/ are asymptotic state vectors of the system, in particular,
the asymptotic forms of incoming and scattered waves in a typical scattering process.

The operator U.t , t0/ satisfies the following differential equation, which is obvious
from (6.17):

i„@U.t , t0/
@t

D HI .t/U.t , t0/ . (6.34)

Similarly,

�i„@U
C.t , t0/
@t

D UC.t , t0/HI .t/ , (6.35)

as HI .t/ is Hermitian. From these equations it immediately follows that

@

@t
.UC.t , t0/U.t , t0// D 0 , (6.36)

which is equivalent to
UC.t , t0/U.t , t0/ D 1 . (6.37)

To prove unitarity we still have to show that

U.t , t0/U
C.t , t0/ D 1 . (6.38)

The evolution operator satisfies the group property

U.t , t1/U.t1, t0/ D U.t , t0/ . (6.39)

In fact, from
‰.t/ D U.t , t1/‰.t1/ , ‰.t1/ D U.t1, t0/‰.t0/ (6.40)

it follows that

‰.t/ D U.t , t0/‰.t0/ D U.t , t1/U.t1, t0/‰.t0/ , (6.41)

which is necessary to satisfy (6.39). If in (6.39) we set t D t0, we get

U.t0, t1/ D U�1.t1, t0/ . (6.42)

From U.t0, t1/U.t1, t0/ D 1, multiplying it from the left side by UC.t0, t1/ and using
(6.37), we obtain

U.t1, t0/ D UC.t0, t1/ D U�1.t0, t1/ , (6.43)

which proves the unitarity of the evolution operator.
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It follows directly from group property (6.39) that any transition of the system dur-
ing the finite time interval can be represented by the multiplication of evolution oper-
ators, corresponding to infinitesimal transitions:

U.t , t 0/ D U.t , t1/U.t1, t2/ � � �U.tn�1, tn/U.tn, t 0/ , (6.44)

where U.tj , tjC1/ corresponds to an infinitesimal transformation from time moment
tj to tjC1.

The solution of equation (6.34) can obviously be written also in integral form:

U.t , t 0/ D 1 � i

„
Z t

t 0
d�HI .�/U.� , t 0/ . (6.45)

Thus, for the infinitesimal time difference tj � tjC1 we have:

U.tj , tjC1/ D 1 � i

„
Z tj

tj C1

d�HI .�/U.� , tjC1/

� 1 � i

„
Z tj

tj C1

dt 0HI .t 0/U.tjC1, tjC1/ D 1 � i

„
Z tj

tj C1

dt 0HI .t 0/ .

(6.46)

Increasing the number of time intervals (to infinity!) and regrouping the terms in (6.44)
we obtain

U.t , t0/ D 1 C
��i

„
�Z t

t0

dt1HI .t1/C
��i

„
�2 Z t

t0

dt1

Z t1

t0

dt2HI .t1/HI .t2/

C
��i

„
�3 Z t

t0

dt1

Z t1

t0

dt2

Z t2

t0

dt3HI .t1/HI .t2/HI .t3/C � � � . (6.47)

Consider the integral, determining the n-th order of perturbation theory:
Z t

t0

dt1

Z t1

t0

dt2 � � �
Z tn�1

t0

dtnHI .t1/HI .t2/ � � �HI .tn/ . (6.48)

Here integration is performed essentially over the whole time interval from t0 to t ,
but with a limitation: the time moment tj is earlier than tj�1.j � n/. Of course,
in equation (6.48) we can arbitrarily rename the integration variables t1, : : : , tn !
tp1 , tp2 : : : tpn

, and the value of integral will not change. Making all permutations of
variables t1, : : : , tn, summing all the expressions obtained, and dividing by the number
of permutations nŠ, we extend the integration over each of the variables to the whole
time interval from t0 to t . However, it is necessary to guarantee that operators HI .tj /
under the integral are placed from left to right in the order of the growth of the time
arguments. This can be achieved defining the operator T -ordering, which acts on the
operators, depending on time, and places them in chronological order, i. e., an operator
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with a larger value of time in the product stands to the left of those with smaller times:

T
�
HI .t1/ � � �HI .tk/

	 D HI .ti /HI .tj / � � �HI .tk/ for ti > tj > � � � > tk , (6.49)

which gives the definition of the chronological or T-product of the operators. Then,
using the symmetry of the integrand (6.48) mentioned above, we get:

Z t

t0

dt1

Z t1

t0

dt2 � � �
Z tn�1

t0

dtnHI .t1/HI .t2/ � � �HI .tn/ D
1

nŠ

Z t

t0

dt1

Z t

t0

dt2 � � �
Z t

t0

dtnT
�
HI .t1/HI .t2/ � � �HI .tn/

	
. (6.50)

Let us consider in more detail the equivalence of these two forms of integral for the
case n D 2. From the definition of the T -product we have

Z t

t0

dt1

Z t

t0

dt2T
�
HI .t1/HI .t2/

	 D
Z t

t0

dt1

Z t1

t0

dt2HI .t1/HI .t2/C
Z t

t0

dt1

Z t

t1

dt2HI .t2/HI .t1/ . (6.51)

The integration region of the left-hand side is shown in Figure 6.2 as a square. On the
other hand, in the first term in the right-hand side of (6.51), integration is extended over
the region I (nondashed triangle), while in the second term integration is performed
over the dashed region II . Changing the order of integration in the second integral,

Figure 6.2
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we shall first integrate over t1; then the limits of integration change, and we get
Z t

t0

dt2

Z t2

t0

dt1HI .t2/HI .t1/ . (6.52)

Now, if we make the change of variables t1 ! t2 and t2 ! t1, equation (6.52) takes
the form Z t

t0

dt1

Z t1

t0

dt2HI .t1/HI .t2/ , (6.53)

so that (6.51) reduces to
Z t

t0

dt1

Z t

t0

dt2T
�
HI .t1/HI .t2/

	 D 2Š
Z t

t0

dt1

Z t1

t0

dt2HI .t1/HI .t2/ , (6.54)

which proves the validity of (6.50) for the case of n D 2.
Thus, expansion (6.47) can be written as

U.t , t0/ D 1 C
��i

„
�Z t

t0

dt1T
�
HI .t1/

	
(6.55)

C 1

2Š

��i
„
�2 Z t

t0

dt1

Z t

t0

dt2T
�
HI .t1/HI .t2/

	

C 1

3Š

��i
„
�3 Z t

t0

dt1

Z t

t0

dt2

Z t

t0

dt3T
�
HI .t1/HI .t2/HI .t3/

	C � � �

D
1X

nD0

1

nŠ

�
� i„

�n Z t

t0

dt1

Z t

t0

dt2 � � �
Z t

t0

dtnT
�
HI .t1/HI .t2/ � � �HI .tn/

	
,

(6.56)

which can be rewritten as

U.t , t0/ D T

²
exp

�
� i„

Z t

t0

HI .t
0/dt 0

�³
, (6.57)

where we have performed the symbolic summation of the series (6.56), which reduces
it to the so-called T-exponent.

It can be directly checked that the series (6.56) gives the solution of equation (6.34). Let us
differentiate (6.56) by time t :

@U.t , t0/

@t
D

1X

nD1

1

nŠ

�
� i„

�nZ t

t0

dt1

Z t

t0

dt2 � � �
Z t

t0

dtn�1nHI .t/T
�
HI .t1/HI .t2/ � � �HI .tn�1/

	
.

(6.58)
While writing the right-hand side of (6.58) we used the symmetry of the integrand and the fact
that operator HI .t/ always depends on the time moment t , which is later, than t1, : : : , tn�1.
This allows us to move operator HI .t/ outside the sign of the T -product, putting it to the left
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of all the other factors. Then (6.58) can be rewritten as

i„@U.t , t0/
@t

D HI .t/

1X

nD1

1

.n � 1/Š

�
� i„

�n�1 Z t

t0

dt1

Z t

t0

dt2

� � �
Z t

t0

dtn�1T
�
HI .t1/HI .t2/ � � �HI .tn�1/

	

D HI .t/

1X

nD0

1

nŠ

�
� i„

�n Z t

t0

dt1

Z t

t0

dt2 � � �
Z t

t0

dtnT
�
HI .t1/HI .t2/ � � �HI .tn/

	

D HI .t/U.t , t0/ , (6.59)

which proves the desired result!

Recalling that

HI .t/ D
Z
d 3rHI .x/ , (6.60)

we can rewrite (6.56) in the form, explicitly demonstrating its covariance,

U.t , t0/ D
1X

nD0

1

nŠ

�
� i„

�n Z t

t0

d 4x1

Z t

t0

d 4xc

� � �
Z t

t0

d 4xnT
�
HI .x1/HI .x2/ � � � HI .xn/

	
, (6.61)

where we have used
R
dt
R
d 3r D R

d 4x=c. We can generalize (6.61), introducing
integration limits at space-like surfaces 
 and 
 0, then U.
 , 
 0/ will be explicitly in-
variant, as both HI and the volume element d 4x are 4-scalars.

The important point in the justification of the above formalism is the so-called adia-
batic hypothesis. Following the definition of the S -matrix we have to tend the initial
moment of time t0 to �1 and the final moment t to C1. However, we have to be
cautious: for the n-th order term in expansion (6.56), this can be done in nŠ ways
for each of the limits. Dyson proposed to overcome this difficulty by introducing the
convergence factor e��jt j, multiplying the interaction Hamiltonian, with � ! 0 at
the end of the calculations. This procedure is equivalent to an averaging procedure
over all possible nŠ ways to perform the limit of t ! ˙1. Assuming the validity of
this adiabatic hypothesis, we can consider the initial- and final-state wave functions as
eigenstates of the “free” Hamiltonian H0; these are usually called the wave functions
of “bare” particles. Then, any scattering process is considered as consisting of the
following stages.

1. At time t D �1 the system is in a state described by the wave functionˆ, which is
an eigenstate of the operator H0. In this state, there is a given number of particles
with fixed spins and momenta, and these particles are separated from each other
and noninteracting. Vector ˆ is constant and independent of the time .HI D 0/
vector in interaction representation.
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2. The interaction is switched on adiabatically, so that the state with wave function ˆ
transforms into a state ‰.t0/ D U.t0, �1/ˆ, which is assumed to correspond to
the real state of physical particles with the same momenta and spins. At this stage it
is still assumed, that particles are well separated and do not interact with each other.
However, switching onHI induces self-interaction, so that the “bare” particles are
“dressed” by virtual quanta and the particles become real physical particles which
satisfy the condition p2 D m2, where m is the observable physical mass.

3. Further on, the particles interact with each other, i. e., are scattered, transform into
other type of particles, etc. After a long enough time T D t � t0, particles separate
again, but their states are now described by the wave function‰.t/ D U.t , t0/‰.t0/,
this state corresponding to the “dressed” (i. e., real physical) particles after scatter-
ing.

4. Then interaction is adiabatically switched of,f and the state with wave function
‰.t/ transforms into a state with the wave functionˆ0, which corresponds to “bare”
particles after scattering, and ˆ0 D U.1, t /‰.t/.

Thus, the real scattering problem ‰.t0/ ! ‰.t/ is replaced by an “equivalent” prob-
lem which introduces the “bare” particles at t D ˙1. Consider the relation

‰.t/ D U.t , t0/‰.t0/ (6.62)

which can be rewritten as

U�1.1, t /‰0 D U.t , t0/U.t0, �1/ˆ . (6.63)

Now we have

ˆ0 D U.1, t /U.t , t0/U.t0, �1/ˆ D U.1, �1/ˆ D Sˆ . (6.64)

This means that ˆ0 at t D C1 is the wave function of “bare” particles which appear
as a result of scattering from the state described by wave function ˆ at t D �1.

The adiabatic hypothesis leads to results which are in excellent agreement with ex-
periments. This may seem strange, as it is clear that interaction between real particles
can not be “switched off” (adiabatically or in any other way). In this respect, quantum
field theory is rather different from quantum mechanics, where we usually deal with
potentials with finite radius (except the Coulomb case, but there we know the exact
wave functions), so that in the scattering problem the wave functions of the initial and
final states are really corresponding to free particles.
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6.4 Feynman diagrams for electron scattering in quantum
electrodynamics

In quantum electrodynamics (QED), interaction Hamiltonian density has the form

HI .x/ D j�.x/A
�.x/ , (6.65)

where j� is the current density of Dirac electrons, while A� is the vector-potential of
the electromagnetic field. Then the scattering matrix is written as5

S D T exp

²
�ie

Z
d 4xj�.x/A

�.x/

³
, (6.66)

where we returned to the system of units with „ D c D 1.
Let us consider some specific examples of the calculation of matrix elements of a

scattering matrix. The current density operator j contains the product of two electronic
 -operators. Thus, in the first order of perturbation theory only the processes involving
three particles – two electrons and one photon – can appear, as shown by the diagram
in Figure 6.3, similar to that of Figure 4.7. However, such processes with free particles
are impossible because of energy and momentum conservation. In fact, ifp1 andp2 are
the 4-momenta of electrons, and k is the 4-momentum of a photon, conservation law
is written as k D p2 �p1 or k D p1 Cp2. However, these equalities are impossible, as
for the real photon we always have k2 D 0, while the square .p2˙p1/

2 is easily shown
to be nonzero. Let us calculate .p2˙p1/

2 in the rest frame of one of the electrons, e. g.,
electron 1. Then .p2 ˙p1/

2 D 2.m2 ˙p1p2/ D 2.m2 ˙"1"2 �p1p2/ D 2m.m˙"2/,
and because of "2 > m we have .p2 C p1/

2 > 0 or .p2 � p1/
2 < 0.

Thus, the first nonzero matrix elements of the S -matrix can appear only in the sec-
ond order of perturbation theory:

S .2/ D �e
2

2Š

Z
d 4x

Z
d 4x0T

�
j�.x/A�.x/j

�.x0/A�.x0/
	

. (6.67)

As electron and photon operators in interaction representation commute with each
other, (6.67) can be rewritten as

S .2/ D �e
2

2Š

Z
d 4x

Z
d 4x0T

�
j�.x/j �.x0/

	
T
�
A�.x/A�.x

0/
	

. (6.68)

Figure 6.3

5 In the following, here and in the next chapter, we mainly follow [6].
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As a first example we consider the elastic scattering of two electrons. In the ini-
tial state we have two electrons with momenta p1 and p2, while in the final state we
have two electrons with momenta p3 and p4. It is assumed that electrons are in some
concrete spin states, but the spin indices in the following are dropped for brevity. We
have to calculate the matrix element between the initial and final states with appro-
priate particles. As in both states photons are just absent, the required matrix element
of the T -product of the photon operators is simply h0j � � � j0i, where j0i is a photon
vacuum. Accordingly, from (6.68) we obtain a tensor:

D��.x � x0/ D ih0jTA�.x/A�.x0/j0i , (6.69)

which is called the photon propagator or the photon Green’s function.
From the T -product of electron operators in (6.68) the following matrix element

appears:
h34jTj�.x/j �.x0/j12i , (6.70)

where j12i and j34i denote states with two electrons with the appropriate momenta.
This matrix element can also be written in the form of a vacuum average, if we use the
relation

h2jF j1i D h0ja2Fa
C
1 j0i , (6.71)

where F is an arbitrary operator, while aC
1 and a2 are operators of the creation of the

1-st and annihilation of 2-nd electrons. It is clear that instead of (6.70) we have to
calculate

h0ja3a4T .j
�.x/j �.x0//aC

2 a
C
1 j0i . (6.72)

Each of the current operators is written as j D N � , and the  -operators are repre-
sented by

 D
X

p

.ap p C bC
p  �p/ , N D

X

p

.aC
p

N p C bp
N �p/ , (6.73)

where  p denotes the appropriate spinors (plane waves). The second terms here con-
tain positron operators, which are irrelevant for the problem under consideration. Tak-
ing (6.73) into account, the product j�.x/j �.x0/ is represented by the sum of the
terms, each containing the product of two operators ap and two aC

p , which are respon-
sible for the annihilation of electrons 1 and 2 and the creation of electrons 3 and 4.
It is clear that these should be operators a1, a2, aC

3 , aC
4 , which are “paired” (or “con-

tracted”) with the “external” operators aC
1 , aC

2 , a3, a4 according to an obvious equality:

h0japaC
p j0i D 1 . (6.74)

The operators just disappear, and only the c-numbers remain. Depending on which of
 -operators provide a1, a2, aC

3 , aC
4 for pairing (contraction) with external aC

1 , aC
2 , a3,
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a4, equation (6.72) produces four terms like

a���
3 a

�
4.

N ��� ��/. N 0����� 0����/aC��
2 aC����

1 C a�
3a

���
4 .

N ��� ��/. N 0����� 0����/aC����
2 aC��

1

C a�
3a

���
4 .

N ��� ��/. N 0����� 0����/aC��
2 aC����

1 C a���
3 a

�
4.

N ��� ��/. N 0����� 0����/aC����
2 aC��

1 ,

(6.75)

where  D  .x/ and  0 D  .x0/, and the same number of dots denote paired (con-
tracted) fermion operators. Now, in each of these terms it is necessary to make per-
mutations of the “paired” operators a1, a2, : : : from  , written as (6.73), to put them
alongside their external partners aC

1 , aC
2 , : : : , so that we can use (6.74) and obtain the

vacuum average as a simple product of averages, corresponding to these pairings (con-
tractions). Taking into account the anticommutativity of these operators (1,2,3,4 are
different states!), we find, that the matrix element (6.70) is equal to 6

h34jTj�.x/j �.x0/j12i D . N 4�
� 2/. N 0

3�
� 0

1/C . N 3�
� 1/. N 0

4�
� 0

2/

� . N 3�
� 2/. N 0

4�
� 0

1/ � . N 4�
� 1/. N 0

3�
� 0

2/ , (6.76)

where the  are not operators, but are the corresponding spinors (plane waves with
momenta 1,2,3,4)! The total sign here is the subject of agreement; it depends on the
order of placement of the “external” electron operators. The sign of a matrix element
for the scattering of identical particles is, in general, arbitrary. The first and second
terms in (6.76) (as well as the third and fourth) differ from each other only by the
permutation of indices � and � and arguments x and x0. But such permutations do not
change the matrix element (6.70), where the order of all factors is determined by the
symbol of T -ordering. Thus, after multiplying (6.76) and (6.69), and integration over
d 4xd 4x0, four terms from (6.76) give

Sf i D ie2
Z
d 4xd 4x0D��.x � x0/Œ. N 4�

� 2/. N 0
3�
� 0

1/ � . N 4�
� 1/. N 0

3�
� 0

2/�

(6.77)
Note that the factor of 2Š cancelled! Taking into account that the electronic wave func-
tion here are plane waves, we can write the expression in square brackets in (6.77) as

. Nu4�
�u2/. Nu3�

�u1/e
�i.p2�p4/x�i.p1�p3/x

0

� . Nu4�
�u1/. Nu3�

�u2/e
�i.p1�p4/x�i.p2�p3/x

0 D
°
. Nu4�

�u2/. Nu3�
�u1/e

�iŒ.p2�p4/C.p3�p1/��=2

� . Nu4�
�u1/. Nu3�

�u2/e
�iŒ.p1�p4/C.p3�p2/��=2

±
e�i.p1Cp2�p3�p4/X , (6.78)

where we have introduced � D x � x0 and X D 1
2.x C x0/. The integration in

(6.77) over d 4xd 4x0 is now replaced by d 4�d 4X . The integral over d 4X produces

6 Due to the anticommutativity of fermion operators, the current operators j.x/ and j.x0/, composed
of pairs of these operators, commute, and we can drop the symbol T -product.
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Figure 6.4

Figure 6.5

ı.p1 C p2 � p3 � p4/, corresponding to the conservation of the 4-momentum. Trans-
forming from Sf i toMf i according to (5.2), (5.3), (5.11), we obtain scattering ampli-
tude Mf i as

Mf i D e2Œ. Nu4�
�u2/D��.p4 � p2/. Nu3�

�u1/ � . Nu4�
�u1/D��.p4 � p1/. Nu3�

�u2/� ,
(6.79)

where

D��.k/ D
Z
d 4�eik�D��.�/ (6.80)

is the photon propagator in momentum representation.
Each of the contributions to the scattering amplitude in (6.79) can be represented

by an appropriate Feynman diagram. For example, the first term corresponds to the
diagram in Figure 6.4, where k D p1 � p3 D p4 � p2. Similarly, the second term is
represented by the diagram int Figure 6.5, where k0 D p1 � p4 D p3 � p2. The rules
of diagram construction are similar to those discussed in Chapter 4:

1. The full lines “entering” the diagram (incoming lines) and directed towards the
interaction vertex correspond to the initial electrons and are associated with
bispinors u. The full lines “leaving” the diagram (outgoing lines) and directed
outside the vertices correspond to the final electrons and are associated with
bispinors Nu. These factors are written from left to right in the order correspond-
ing to the movement along the full lines against the direction of arrows.

2. To each vertex we associate the factor .�ie��/. The vertices are connected by the
photon line, to which we associate the factor �iD�� . The 4-momenta of all particles
(lines) in the vertices are conserved. the direction of the photon line is irrelevant;
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it only changes the sign of the photon momentum k, but the photon propagator
D��.k/ is an even function of k.

These two diagrams differ from each other because of the exchange of two electrons
with momenta p3 and p4, which corresponds to the exchange of identical particles in
the final state, leading to a sign change of the scattering amplitude (Pauli principle!).

Consider now electron–positron scattering. We now denote the initial momenta as
p� and pC, while the final momenta are denoted as p0� and p0C. The operators of the
creation and annihilation of positrons enter the field operators (6.73) together with the
corresponding creation and annihilation operators of electrons. In the previous case
of electron–electron scattering, the annihilation of initial particles was done by the
operator  , while the creation of the final particle was achieved by the operator N .
Now the roles of these operators change: the conjugate function N .�pC/ describes the
initial positron, while the final positron is described by  .�pC/. With this difference
in mind we can easily write the scattering matrix as

Mf i D �e2. Nu.p0�/��u.p�//D��.p� � p0�/. Nu.�pC/��u.�p0C//
C e2. Nu.�pC/��u.p�//D��.p� C pC/. Nu.p0�/��u.�p0C// , (6.81)

which is represented by the diagrams in Figure 6.6. The rules for constructing these
diagrams remain the same as before. the incoming full lines are associated with the
bispinor u, and the outgoing lines with Nu. However, now the incoming lines correspond
to the final positrons, while the outgoing lines correspond to the initial positrons, and
their momenta are taken with the opposite sign. This is in agreement with the Feynman
interpretation of a positron (discussed in Chapter 4) being an electron propagating
backwards in time. In the first diagram of Figure 6.6, in one the vertex cross the lines
of the initial and final electrons, while in the other they cross the positron lines, so
that this diagram describes electron scattering by positron. In the second diagram in
each of the vertices the electron and positron lines meet. In the upper vertex the pair is
annihilated and a virtual photon is emitted, while in the lower vertex the pair is created
by this photon. This difference is also reflected in the properties of the virtual photons.
In the first diagram (scattering channel) the 4-momentum of the virtual photon is equal
to the difference of the 4-momenta of two electrons (or positrons), so that k2 < 0

Figure 6.6
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(cf. the footnote at the beginning of this section). In the second diagram (annihilation
channel), k0 D p� C pC, so that k02 > 0. Note that for a virtual photon we always
have k2 ¤ 0, in contrast to a real photon, for which we always have k2 D 0.

6.5 Feynman diagrams for photon scattering

Consider now another effect which appears in the second order of perturbation the-
ory – the photon scattering by electrons (the Compton effect). In the initial state we
have a photon and electron with 4-momenta k1 and p1 respectively, while in the final
state they have momenta k2 and p2 (for brevity, we drop the polarization indices).
During the calculation of the matrix element S .2/ between the initial and final states,
the following photon matrix element appears:

h2jTA�.x/A�.x/j1i D h0jc2TA�.x/A�.x
0/cC

1 j0i , (6.82)

where (cf. (3.41))
A� D

X

k

.ckAk� C cC
k A

�
k�/ . (6.83)

In (6.82) we are performing all pairings (contractions) of “external” and “internal”
photon operators and obtain

c�
2A

�
�A

0��
�c

C��
1 C c�

2A
��
�A

0�
�c

C��
1 D A�

2�A
0
1� C A1�A

0�
2� . (6.84)

Here we have taken into account the commutativity of c1 and cC
2 , allowing the symbol

of T -ordering to be dropped.
Similarly, we can analyze the electronic part of the matrix element:

h2jTj�.x/j �.x0/j1i D h0ja2T .
N �� /. N 0�� 0/aC

1 j0i . (6.85)

Here again we are dealing with four  -operators. Only two of them annihilate elec-
tron 1 and create electron 2, i. e., paired with operators aC

1 and a2. These may be
operators N 0, or  0, N , but not  , N or  0, N 0, as the creation or annihilation at the
same point x or x0 of a pair of real electrons (together with one real photon) obviously
produces zero. Making all the contractions, we obtain in the matrix element (6.85) two
terms, which we first write for the case of t > t 0:

a�
2.

N ��� /. N 0�� 0��/aC��
1 C a�

2.
N �� ��/. N 0��� 0/aC��

1 . (6.86)

Contractions in the first term give

a2
N ! a2a

C
2

N 2 ,  0aC
1 ! a1a

C
1  

0
1 . (6.87)

Products a2a
C
2 and a1a

C
1 are diagonal and can be replaced with their vacuum aver-

ages, which, according to (6.74), reduce to unity. For the similar transformation of the
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second term in (6.87) we first have to move operator aC
2 to the left and a1 to the right,

which can be done using the commutation rules, which gives
®
ap , 

¯
C D ®

aC
p , N ¯C D 0 ,

®
ap, N ¯C D N p ,

®
aC
p , 

¯
C D  p , (6.88)

where in the right-hand side of the last two expressions spinors appeared, correspond-
ing to plane waves with 4-momentum p (cf. (6.73)). As a results (6.86) is transformed
to the form

h0j. N 2�
� /. N 0�� 0

1/ � . N �� 1/. N 0
2�
� 0/j0i for t > t 0 , (6.89)

where without index are operators, while 1, 2 are again just spinors (plane waves)
with the appropriate momenta. Similarly, for t < t 0 we obtain an expression which
differs by permutation of the primes and the indices � and �:

h0j � . N 0�� 0
1/.

N 2�
� /C . N 0

2�
� 0/. N �� 1/j0i for t < t 0 . (6.90)

Both expressions (6.89) and (6.90) can be written in a unified way, introducing the
following definition of chronological (T -ordered) product of Fermion operators:

T .x/ N .x0/ D
´

 .x/ N .x0/ , t 0 < t ,

� N .x0/ .x/ , t 0 > t .
(6.91)

Then the first and second terms in (6.89) and (6.90) are written as

N 2�
�h0jT N 0j0i�� 0

1 C N 0
2�
�h0jT 0 N j0i�� 1 . (6.92)

Note that in accordance with definition of (6.91) the products of the operators for t < t 0
and t > t 0 are taken with different signs. This is the main difference of the definition
of the T -product for fermion operators from those given previously, which is related
to the anticommutation of these operators, in contrast to commuting bilinear forms,
entering the interaction Hamiltonian.

Let us define the electron propagator (Green’s function) as a second rank bispinor
of the form

G.x � x0/ D �ih0jT .x/ N .x0/j0i . (6.93)

Then the matrix element of interest to us is written as

h2jTj�.x/j �.x0/j1i D i N 2�
�G.x � x0/�� 0

1 C Ci N 0
2�
�G.x0 � x/�� 1 . (6.94)

After multiplication by the photon matrix element (6.82), (6.84), and integration over
d 4xd 4x0, both terms in (6.94) give the same result, so that

Sf i D �ie2
Z
d 4x

Z
d 4x0 N 2.x/�

�G.x � x0/�� 1.x
0/

� �A�
2�.x/A1�.x

0/C A�
2�.x

0/A1�.x/
�

. (6.95)
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Figure 6.7

Substituting plane waves for the electron and photon wave functions and separating, as
in previous examples, the ı-function, corresponding to the 4-momentum conservation
law, we obtain the scattering amplitude as

Mf i D �4�e2 Nu2Œ.�e
�
2 /G.p1 C k1/.�e1/C .�e1/G.p1 � k2/.�e

�
2 /�u1 , (6.96)

where e1 and e2 are 4-vectors of photon polarization and G.p/ is the electron propa-
gator in momentum representation. Two terms of this expression are represented by
the Feynman diagrams shown in Figure 6.7.

To the incoming line (initial photon) we associated the factor
p

4�e, to the outgoing
line (final photon) the factor

p
4�e�. The full internal line corresponds to the virtual

electron with 4-momentum determined by the 4-momentum conservation law in the
vertices. This line is associated with the electron propagator iG.f /. In contrast to the
4-momentum of a real particle, the square of the virtual electron 4-momentum does
not belong to its mass surface, i. e., it is not equal to m2. Writing the invariant f 2 in
electron rest frame, it is easy to show that

f 2 D .p1 C k1/
2 > m2 , f 02 D .p1 � k2/

2 < m2 . (6.97)

6.6 Electron propagator

Let us calculate explicitly the propagators (Green’s functions) of free particles. By
definition (6.93) the electron propagator is given by

G.x � x0/ D �ih0jT .x/ N .x0/j0i .

Let us act upon it from the right side by the operator ��p��m, where p� D i@�. As
the free field  .x/ satisfies the Dirac’s equation .��p� �m/ .x/ D 0, we shall get
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zero in all points x except those where t D t 0. Note that G.x � x0/ tends to different
limits as t ! t 0 C 0 and t ! t 0 � 0, and according to definition (6.93) these limits are
given by

�ih0j .rt / N .r0t /j0i and C ih0j N .r0t / .rt /j0i , (6.98)

so that for t D t 0 the Green’s function demonstrates finite discontinuity. This leads to
the appearance of an additional term with the ı-function in the derivative @G=@t :

@G

@t
D �ih0jT @ 

@t
 .x0/j0i C ı.t � t 0/ŒGjt!t 0C0 �Gjt!t 0�0� . (6.99)

Note that in ��p� �m the derivative over t enters as i�0@=@t , so that

.��p� �m/G.x � x0/ D ı.t � t 0/�0h0j ® .rt /, N .r0t /¯C j0i . (6.100)

Now calculate the anticommutator. Multiplying the field operators, which we take in
the form of .6.73/, and using commutation relations for ap and bp, we obtain

®
 .r, t /, N .r0t /¯C D

X

p

Œ p.r/ N p.r0/C  �p.r/ N �p.r0/� , (6.101)

where  ˙p.r/ are plane waves (bispinors) without a time dependent factor. These
functions form the full set, so that

X

p

Œ p.r/ 
�
p .r

0/C  �p.r/ ��p.r0/� D ı.r � r0/ıik (6.102)

where ıik is the Kronecker symbol over the spinor indices. The sum in the right-hand
side of (6.101) differs from (6.102) by the replacement of  � by  ��0, so that

®
 .rt /, N .r0t /¯C D �0ı.r � r0/ . (6.103)

Substituting (6.103) into (6.100) we finally get

.��p� �m/G.x � x0/ D ı.x � x0/ . (6.104)

Thus, the electron propagator satisfies the Dirac’s equation with a ı-function in the
right-hand side, so that it is really the Green’s function for this equation7.

Consider now the Fourier transform of Green’s function

G.p/ D
Z
d 4�e�ip�G.�/ . (6.105)

Calculating the Fourier transforms of both sides of equation (6.104), we get

.��p� �m/G.p/ D 1 . (6.106)

7 It is easy to see that iG.x1 � x2/ just coincides with Feynman’s function KC.2, 1/ introduced in
Chapter 4.
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Solving this equation, we obtain the result, which we already know from Chapter 4,

G.p/ D ��p� Cm

p2 �m2
. (6.107)

The components of the 4-vector p in G.p/ are independent variables and are not re-
stricted by any relations like p2 	 p2

0 � p2 D m2. If we write the denominator of
(6.107) as p2

0 � .p2 C m2/, we can see, that G.p/ as the function of p0 for a given
value of p has two poles at p0 D ˙", where " D p

p2 Cm2. Then again, during the
integration over dp0 in

G.�/ D
Z

d 4p

.2�/4
e�ip�G.p/ D 1

.2�/4

Z
d 3peipr

Z
dp0e

�ip0�G.p/ , .� D t�t 0/
(6.108)

we meet the problem of encircling these poles which we first discussed in Chapter 4.
Again we shall use Feynman’s approach. Let us return definition (6.93). Substitute
into it  -operators in the form given by (6.73). Note that nonzero vacuum averages
appear only from the following products of creation and annihilation operators:

h0japaC
p j0i D 1 , h0jbpbC

p j0i D 1 . (6.109)

Then,

G.x � x0/ D �i
X

p

 p.rt / N p.r0t 0/ D �i
X

p

e�i".t�t 0/ p.r/ N p.r0/ (6.110)

for t � t 0 > 0. Accordingly,

G.x � x0/ D i
X

p

N �p.r0t 0/ �p.rt / D i
X

p

ei".t�t 0/ �p.r/ N �p.r0/ (6.111)

for t � t 0 < 0. We see that, as in Chapter 4, for t � t 0 > 0 only electrons contribute to
G, while for t � t 0 < 0 – only positrons. Comparing (6.110) and (6.111) with (6.108)
we see that integral Z

dp0e
�ip0�G.p/ (6.112)

in equation (6.108) must produce a factor e�i"� for � > 0 and ei"� for � < 0. This
can be achieved if during the calculation of (6.112) we encircle poles p0 D " and
p0 D �" in the upper and lower half-planes of complex variable p0 correspondingly,
as shown in Figure 6.8. In fact, for � > 0 we have (to guarantee convergence!) closed
the integration contour to a semicircle at infinity in the lower half-plane of p0, then the

Figure 6.8
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Figure 6.9

value of integral (6.112) will be determined by the residue at the pole p0 D C". For
� < 0 we close the contour in the upper half-plane, and integral is determined by the
residue at the pole p0 D �". Thus we achieve the desired result. The Feynman rule to
deal with the poles, as we have seen in Chapter 4, can be formulated in another form:
integration over p0 is performed along the real axis, but we an add infinitesimally
small negative imaginary part to particle mass m:

m ! m � i0 . (6.113)

Then
" !

p
p2 C .m � i0/2 D p

p2 Cm2 � i0 D " � i0 . (6.114)

Correspondingly, the poles p0 D ˙" are moved up and down from the real axis, as
shown in Figure 6.9, so that integration becomes equivalent to integration along the
contour shown in Figure 6.88.

This rule for dealing with poles is equivalent to the well-known relation

1

x ˙ i0
D P

1

x
� i�ı.x/ , (6.115)

which is understood in the sense that integration with some regular function f .x/ is done as
follows: Z 1

�1
dx

f .x/

x ˙ i0
D P

Z 1

�1
dx
f .x/

x
� i�f .0/ , (6.116)

where P denotes the principal value of the integral.

Using Feynman’s rule we write the electron propagator in momentum representa-
tion as

G.p/ D ��p� Cm

p2 �m2 C i0
. (6.117)

This Green’s function is the product of the bispinor ��p� Cm and the scalar

G.0/.p/ D 1

p2 �m2 C i0
. (6.118)

8 It is useful to note that this rule of pole encirclement corresponds toG.x�x0/ acquiring an infinitesimal
damping over j� j. If we write the value of p0 in displaced poles as �." � iı/ and C." � iı/, where
ı ! C0, the time-dependent exponent in integral (6.112) will be equal to exp.�i"j� j � ıj� j/.
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In coordinate representation G.0/.�/ satisfies the equation

.� �m2/G.0/.x � x0/ D ı.x � x0/, (6.119)

being the Green’s function of the Klein-Gordon equation. It is obvious, that it deter-
mines the propagator of scalar particles and can be defined via scalar filed as

G.0/.x � x0/ D �ih0jT '.x/'C.x0/j0i , (6.120)

where

T '.x/'C.x0/ D
²
'.x/'C.x0/ , t 0 < t ,
'C.x0/'.x/ , t 0 > t (6.121)

is the definition of the T -product for the Bose field.

6.7 The photon propagator

While analyzing the free electromagnetic field, we used the expansion of the vector-
potential over transversal plane waves. This description does not apply in the case of
an arbitrary electromagnetic field. This is obvious, as for example in case of electron
scattering we have to take into account Coulomb interaction, which is described by
the scalar potential and is not reduced to the exchange of transversal virtual photons.
Thus, it seems that we still do not have the full definition of operators A� and cannot
calculate the photon propagator directly using the expression

D��.x � x0/ D ih0jTA�.x/A�.x0/j0i . (6.122)

Besides that, the gauge invariance makes the field operators somehow unphysical.
However, below we shall present some general analysis which solves all of these prob-
lems [6].

The most general form of the symmetric 4-tensor of the second rank, depending
only on the 4-vector � D x � x0, is given by

D��.�/ D g��D.�
2/ � @�@�Dl .�2/ , (6.123)

where D andDl are scalar functions of invariant �2. Then, in momentum representa-
tion we have

D��.k/ D g��D.k
2/C k�k�D

l.k2/ , (6.124)

where D.k2/ and Dl .k2/ are Fourier components of D.�2/ and Dl.�2/.
The photon Green’s function always enters scattering amplitudes multiplied by the

matrix elements of the transition currents of a pair of electrons, i. e., in combinations
like j�21D��j

�
43, which is seen, e. g., from equation (6.79). Current conservation gives

@�j
� D 0, so that the matrix elements of the current satisfy the condition of four-

dimensional transversality:
k�j

�
21 D 0 , (6.125)
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where k D p2 � p1. Thus, the physical results do not change after the replacement

D�� ! D�� C ��k� C ��k� , (6.126)

where �� are arbitrary functions of k. This arbitrariness corresponds, in fact, to differ-
ent choices of the gauge for field operators. Thus, the choice of the functionDl .k2/ in
(6.124) is in fact arbitrary9 and can be done to make calculations more convenient.
Thus, the full definition of the Green’s function reduces to the choice of a single
gauge invariant function D.k2/. Taking the fixed value of k2 and choosing the z-
axis along the direction of k, we can see that transformations (6.126) will not affect
Dxx D Dyy D �D.k2/. Thus, it is sufficient to calculate only one component Dxx ,
using an arbitrary choice of the gauge for potentials.

It is convenient to use, as before, the Coulomb gauge divA D 0, when the operator
A is given by

A D
X

k˛

r
2�

!



ck˛e

.˛/e�ikx C cC
k˛e

.˛/�eikx
�

, (6.127)

where ! D jkj and ˛ D 1, 2 enumerates polarizations. The only nonzero vacuum
average of the product of operators c, cC is

h0jck˛cC
k˛j0i D 1 . (6.128)

Then, using the definition (6.122), we obtain

Dik.�/ D
Z

d 3k
.2�/3

2�i

!

�X

˛

e
.˛/
i e

.˛/�
k

�
e�i!j� jCik� , (6.129)

where i , k are three-dimensional vector indices. The presence in the exponent of the
modulus of � D t � t 0 reflects the T -ordering of the field operators in (6.122). From
(6.129) it is clear that the integrand without the factor of eik� represents the Fourier
component of Dik.rt /. For Dxx D �D it is equal to

2�i

!
e�i!j� jX

˛

je.˛/x j2 D 2�i

!
e�i!j� j . (6.130)

To find Dxx.k2/ we have to Fourier expand this function in time. This gives

2�i

!
e�i!j� j D �

Z 1

�1
dk0

2�

4�

k2
0 � k2 C i0

e�ik0� . (6.131)

As shown above, integration here assumes encirclement of poles k0 D ˙jkj D ˙!
from below and above, correspondingly, so that for � > 0 the integral is determined

9 Consider ıDl .k2/: an arbitrary change of Dl .k2/. Then we get ıD�� D k�k�ıD
l 	 k��� , where

�� D k�ıD
l .k2/.



148 Chapter 6 Invariant perturbation theory

by the residue at the pole k0 D C!, for � < 0 by the residue at the pole k0 D �!.
Thus, we finally find

D.k2/ D 4�

k2 C i0
. (6.132)

Now it is obvious that the corresponding function in coordinate representation satisfies
the equation

�D.x � x0/ D �4�ı.x � x0/ , (6.133)

so that it is the Green’s function of the wave equation.
In most cases it is convenient to choose Dl D 0, so that the photon propagator has

the form
D�� D g��D.k

2/ D 4�

k2 C i0
g�� , (6.134)

which coincides with the result obtained in Chapter 4 and corresponds to the so-called
Feynman gauge.

Sometimes it is convenient to choose Dl D �D.k2/=k2, so that

D�� D 4�

k2

�
g�� � k�k�

k2

�
, (6.135)

corresponding to the so-called Landau gauge. Then D��k� D 0, and this choice is
similar to the Lorentz gauge, where k�A� D 0.

The choice of the gauge divA D 0 leads to a similar gauge for the propagator:

Di ik
l D 0 , D0lk

l D 0 , (6.136)

which, together with Dxx D �D D �4�=k2, gives

Dil D � 4�

!2 � k2

�
ıil � kikl

k2

�
, D00 D �4�

k2
, D0i D 0 , (6.137)

so that D00 simply equals to the Fourier transform of the Coulomb potential.

For massive particles with spin s D 1 there is no gauge invariance, and the choice of propagator
is unique. Substituting the appropriate operators  � into the definition

G��.x � x0/ D �ih0jT �.x/ C
� .x

0/j0i , (6.138)

we obtain an expression which differs from (6.129) only in the form of the sum over polar-
izations, which takes into account three independent polarizations of the massive vector field.
Dropping the technical details [6], we only mention that in momentum representation the prop-
agator of the vector field is equal to

G�� D � 1

p2 �m2 C i0



g�� � p�p�

m2

�
. (6.139)
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6.8 The Wick theorem and general diagram rules

From simple examples of calculations of matrix elements of scattering matrix, con-
sidered above, we already can see the advantages of diagrammatic approach. Let us
consider now the general case. Matrix element of S for a transition between arbitrary
initial and final states coincides with vacuum average of operator, which is obtained
by multiplication of S from the right by creation operators of all initial particles and
from the left by annihilation operators of all final particles. Then, in n-th order of
perturbation theory this matrix element is written as:

hf jS .n/jii D 1

nŠ
.�ie/n

Z
d 4x1 � � �d 4xn

D
0j : : : b2f b1f � � � a1f � � � c1f T

� . N 1�A1 1/ � � � . N n�An n/cC
1i � � � aC

1i � � � bC
1i � � � j0

E
. (6.140)

The indices 1i , 2i , : : : enumerate the initial particles (electrons, positrons, and pho-
tons separately), while 1f , 2f , : : : enumerate the final ones. The indices 1, 2, : : : of
operators  and A correspond to  1 D  .x1/ etc. Operators  and A are represented
by linear combinations of the creation and annihilation operators of the appropriate
particles in different states. Thus, in matrix element vacuum averages of products of
creation and annihilation operators as well as their linear combinations appear. All
these operators are taken in interaction representation, so that they satisfy the equa-
tions of motion and the commutation relations for free particles. Calculation of such
averages is done using the Wick theorem, which is proved below.

The Wick theorem

Let us define the normal product of operators

N.ABCD � � �XYZ/ , (6.141)

so that all the creation operators are to the left of the annihilation operators, with their
sign corresponding to the parity of the permutation of the Fermion operators, which
transforms the product to the necessary form. Obviously, the vacuum average of the
normal product of operators equals zero, except in the case where under the sign of
the normal product we have simply some c-number. Let us call the “pairing” (“con-
traction”) of two operators the following difference:

A.B . D T .AB/ �N.AB/ . (6.142)

It is easy to see that this expression is a c-number, as its right-hand side is either zero or
coincides (up to a sign) with the commutator (anticommutator) of operators A and B .
The main statement of the Wick theorem is that the T -product of an arbitrary number of
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operators can be expressed through all possible N -products with all possible pairings
(contractions):

T .ABCD � � �XYZ/ D N.ABCD � � �XYZ/CN.A�B �CD � � �XYZ/
CN.A�BC �D � � �XYZ/C � � � CN.A�B ��C ���D � � �X �Y ��Z���/ , (6.143)

i. e., the chronological product of the operators is equal to the normal product plus
the sum of the normal products with one pairing (the pair can be chosen in all possi-
ble ways), plus the sum of the normal products with two pairings, etc. Pairing within
the normal product is the c-number, which is (up to a sign ˙1) determined by equa-
tion (6.142). The minus sign is chosen when the permutation needed to bring paired
operators out of the normal product is odd with respect to the Fermion operators.

To prove the theorem, we first note that the simultaneous permutation of the op-
erators in both sides of (6.143) does not change this equality. Then, with no loss of
generality we may assume that the time ordering of operators corresponds to that in
(6.143). To obtain the N -product from the T -product we have to take all the creation
operators and interchange their positions with all the annihilation operators on the left
one by one, using the definition (6.142). In this way we get the sum of theN -products
of the type written in (6.143). However, this will contain only the contractions of those
operators, for which the order in the T -product is different from that in theN -product.
But pairings of operators for which both orders are equivalent equal to zero, and we
can say that the right-hand side of (6.143) contain normal products with all possible
pairings (contractions). This proves the Wick theorem.

The Wick theorem helps to calculate the averages of the products of the operators
over the vacuum state j0i. The average of the normal products is obviously zero, so that
a nonzero contribution comes only from those terms in the right-hand side of (6.143),
where all the operators are paired:

h0jT .ABCD � � �XYZ/j0i D h0jT .AB/j0ih0jT .CD/j0i � � � h0jT .YZ/j0i
˙ h0jT .AC/j0ih0jT .BD/j0i � � � h0jT .YZ/j0i ˙ � � � , (6.144)

where we have taken into account that

h0jA�B �j0i D h0jT .AB/j0i . (6.145)

Thus, the average is represented by the sum of all the possible products of the aver-
ages (over the ground state) of the T -products of the pairs of operators. The sign of
each term corresponds to the parity of permutation of the Fermion operators. From
(6.144) it follows, in particular, that among the operators A,B ,C ,D, : : : there should
necessarily be an even number of operators of each field. Recalling the definition of
the Green’s function, we conclude that the vacuum average of the T -product of an
arbitrary (even) number of field operators is expressed via the sum of the products of
the free Green’s functions.
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Applying Wick’s theorem to the matrix element (6.140), we can represent it as the
sum of terms, each being the product of some pairwise averages. Among these we shall
meet pairings of operators  , N , andAwith the “external” operators of the creation of
the initial particles or the annihilation of the final ones. These pairings can be expressed
through the wave functions of the initial and final particles as

h0jAcC
p j0i D Ap , h0jcpAj0i D A�

p ,

h0j aC
p j0i D  p , h0jap N j0i D  �

p , (6.146)

h0jbp j0i D  �p , h0j N bC
p j0i D N �p ,

where Ap, p are photon and electron wave functions with momentum p. The polar-
ization indices are dropped here for brevity. There will also be pairings of “internal”
operators, standing under the sign of the T -product. These pairings are replaced by
the appropriate propagators.

Each of the terms in the sum for the matrix element of the S -matrix appearing as a
result of the application of Wick theorem can be represented by the appropriate Feyn-
man diagram. In the diagram of the n-th order there are n vertices, each associated
with the corresponding integration variable x1, x2, : : : . Each vertex is connected with
three lines – two full ones (electrons) and one wavy one (photon), corresponding to
the electron ( and N ) and photon (A) operators, as functions of the same variable x.
The operator  corresponds to the incoming line and N – to the outgoing line.

To illustrate this we show several examples of the correspondence between the
terms of the matrix element of third order and the diagrams. Dropping the signs of
the integral and T -ordering, as well as the factors �ie� and the arguments of the op-
erators, we write these terms in symbolic form, as shown in Figure 6.10, where pairings
(contractions) are shown, as often done, by lines connecting the appropriate field op-
erators. Note that for the internal photon pairings the direction of photon lines is of
no importance, because of the even nature of the photon propagator as a function of
x � x0.

Among the terms obtained in this way there are some that are equivalent and which
differ only by the permutation of the numbers of vertices, reflecting the correspon-
dence between the vertices and the number of variables x1, x2, : : : , i. e., by a simple
redefinition of the integration variables. The number of such permutations is nŠ. It can-
cels the factor of 1=nŠ in (6.140), so that we, in fact, do not need to take into account
diagrams with all the permutations of the vertices. For example, two diagrams of the
second order, shown in Figure 6.11, are just equivalent. In Figure 6.10 and Figure 6.11
we show only internal pairings, corresponding to internal lines in the diagrams (virtual
electrons and photons). The remaining free operators are paired with external opera-
tors, which establishes the correspondence between the external “legs” of diagrams
and the initial or final particles. For example, pairing N with operators af or bC

i gives
the line of the final electron or initial positron, while  pairing with aC

i or bf pro-
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duces the line of the initial electron or final positron. Free operator A pairing with cC
i

or with cf may correspond to both the initial or final photon. In this way we obtain
several “topologically equivalent” (i. e., consisting of the same number of lines with
identical configurations of the graphs) diagrams, differing only by the permutations of
the initial and the final incoming and outgoing external legs. Any such permutation is
equivalent to some permutation of external operators a, b, : : : . If among the initial or
final particles there are identical fermions, the relative sign of the diagrams, differing
by the odd permutation of the corresponding free legs, should be opposite.

The nonoverlapping sequence of the full lines in the diagrams forms the electron
line with an arrow along it, conserving the continuous direction. It may have two free
external legs, or it can form a loop, as shown in Figure 6.12. The conservation of
direction along the electronic line is a graphical expression of the charge conservation
law: the “incoming” charge to every vertex is equal to the “outgoing’ one. Placement
of the bispinor indices along the continuous electron line corresponds to writing the
matrices from left to right, moving against the arrows. Bispinor indices of different
electron lines never intermix. Along the nonclosed line, the sequence of indices ends
at the free external legs on the electron (or positron) wave functions. On the closed
loop the sequence of indices also closes, so that the loop corresponds to the trace of
the product of the matrices along it. It is easy to see that this trace should always be
taken with a minus sign, In fact, the loop with k vertices corresponds to the set of k
pairings:

. N �A ��/. N ��A ���/ : : : . N ���A �/ (6.147)

(a)

(b)

(c)

(d)

Figure 6.10
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Figure 6.11

or the other similar, differing by permutation of vertices. In the .k � 1/-th pairing the
operators  and N are already in the correct order ( N to the right of  ) in which they
should stand in an electron propagator. Those operators at the edges can be moved
to become neighbors with the help of an even number of permutations with other  -
operators, to get at the end the correct order N  . As h0jT N 0 j0i D �h0jT N 0j0i,
the replacement of this pairing by the corresponding propagator is related to the change
of the total sign of the whole expression.

Transformation to momentum representation leads to the general 4-momentum con-
servation law and also to the similar conservation law at every vertex. However, these
laws may be insufficient for fixing momenta of all internal lines in a given diagram.
In these cases we should perform the integration of all momenta of internal lines
d 4p=.2�/4 which remain indeterminate.

In a similar way we may analyze the case with an external electromagnetic field (cf. Chapter 4),
i. e., the field, created by “passive” particles, whose states are not changed during the scattering
process (these may be heavy “classical” charges). LetA.e/.x/ be the 4-potential of an external
field. It enters the Lagrangian together with the photon operator A as a sum ACA.e/. Because
of the classical nature of A.e/ it is actually a c-number field containing no operators, and it
cannot pair with other operators. Thus, in Feynman diagrams external fields may correspond
only to external lines. Let us introduce Fourier expansion for A.e/:

A.e/.x/ D
Z

d 4q

.2�/4
e�iqxA.e/.q/ , A.e/.q/ D

Z
d 4xeiqxA.e/.x/ . (6.148)

In expressions for matrix elements in the momentum representation 4-vector q will be present
along the 4-momenta of other external lines, corresponding to real particles. To each line of
an external field we associate the factor A.e/.q/, with the corresponding line considered as
“incoming” in accordance with the sign in the exponent e�iqx in Fourier expansion forA.e/.q/
(the “outgoing” line should be associated withA.e/�.q/). If the 4-momentum conservation law,

Figure 6.12
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with given values of the 4-momenta of all real particles, does not fix the 4-momenta for the
lines of external field, we have to integrate over “free” d 4q=.2�/4, as well as over all other
nonfixed 4-momenta in the diagram.

If external field does not depend on time,

A.e/.q/ D 2�ı.q0/A.e/.q/ , (6.149)

where A.e/.q/ is the three-dimensional Fourier component,

A.e/.q/ D
Z
d 3rA.e/.r/e�iqr . (6.150)

The xternal line is now associated with the factor A.e/.q/ and the 4-momentum q� D .0, q/.
Energies of electron lines entering (along with the line of the external field) the vertex are the
same due to the conservation law. Over the remaining nonfixed three-dimensional momenta p
of the internal lines we perform the integration d 3p=.2�/3.

Let us now present the final summary of the diagrammatic rules for scattering am-
plitude (more precisely for iMf i ) of QED in momentum representation.

1. Contributions of the n-th order of perturbation theory are represented by diagrams
with n vertices, each with one incoming and one outgoing electron (full) line and
one photon (wavy) line. The scattering amplitude is described by all diagrams with
free external legs (external lines), corresponding to the initial and final particles.

2. To each external incoming full line (leg) we associate the amplitude of initial elec-
tron u.p/ or final positron u.�p/. To each outgoing full line we associate the am-
plitude of final electron Nu.p/ or initial positron Nu.�p/.

3. To each vertex we associate the 4-vector �ie��.

4. To each external incoming wavy line we associate the amplitude of initial photonp
4�e�, and to the outgoing wavy line the amplitude

p
4�e�

� of the final photon.
The vector index � coincides with index of the �� matrix in the corresponding
vertex, so that we have the scalar product.

5. To each internal full line we associate the factor iG.p/, and to the internal wavy
line we associate the factor of �iD��.p/. Tensor indices �� coincide with indices
of matrices ��, �� in vertices, connected by a wavy line.

6. Along the continuous sequence of electron lines the arrows have the same direction,
while the positions of bispinor indices correspond to writing matrices from left to
right against the arrows. A closed loop is associated with the trace of the product
of the corresponding bispinor matrices.

7. In each vertex, the 4-momenta of the lines entering or leaving it satisfy the conser-
vation law, i. e., the sum of the momenta of incoming lines equals the sum of the
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momenta of the outgoing lines. The momenta of the external lines (legs) are fixed
(and obey the total conservation law for the scattering process under discussion),
with the positron line associated with the momentum �p. Integration d 4p=.2�/4 is
performed over all momenta of the internal lines, remaining nonfixed, after taking
into account the conservation laws in all vertices.

8. An incoming external line (leg), corresponding to the external field, is associated
with factor A.e/.q/, where the 4-vector q is related to the 4-momenta of other lines
in the vertex by the conservation law. If the external field does not depend on time,
this external leg corresponds to the factor of A.e/.q/, and integration d 3p=.2�/3 is
performed over nonfixed three-dimensional momenta of internal lines.

9. To each closed fermion loop we associate an extra factor of .�1/. If among the
initial or final particles there are several electrons or positrons, the relative sign
of the diagrams, differing by odd permutations of the identical particles (i. e., the
corresponding external legs), should be opposite.

Finally, let us recall that in the presence of identical fermions the total sign of the
scattering amplitude is irrelevant.



Chapter 7

Exact propagators and vertices

7.1 Field operators in the Heisenberg representation and
interaction representation

Above we have expressed the terms of a perturbation series via field operators in the
interaction representation, with time-dependence determined by the Hamiltonian H0

of free particles. Exact scattering amplitudes are more conveniently expressed via field
operators in the Heisenberg representation, where the time-dependence is determined
by the total Hamiltonian of interacting particles H D H0 C HI . According to the
general rule for Heisenberg operators we have

 .x/ 	  .rt / D exp.iHt/ .r/ exp.�iHt/ (7.1)

and similar expressions for N .x/ andA�.x/. Here .r/ are time-independent (Schroe-
dinger) operators. Heisenberg operators, taken at the same moments of time, satisfy
the same commutation rules as Schroedinger operators and operators in the interaction
representation. In fact, we have
®
 .rt /, N .r0t /¯C D exp.iHt/

®
 .r/, N .r0/¯C exp.�iHt/ D �0ı.r � r0/ . (7.2)

In a similar way,  .rt / and A�.rt / commute:

Œ .rt /,A�.r0t /� D 0 . (7.3)

This is not so for operators taken at different moments of time!
The equation of motion for the Heisenberg  -operator is written as

�i @ 
@t

D H .x/ �  .x/H 	 ŒH , .x/� . (7.4)

For the Hamiltonian itself the Schroedinger and Heisenberg representations coincide.

During the calculation of the right-hand side of (7.4), in the Hamiltonian we can drop the part
depending only on the operator A�.x/ (the Hamiltonian of a free electromagnetic field), as it
commutes with  . Then

H D
Z
d 3r �.rt /.˛p C ˇm/ .rt /C e

Z
d 3r N .rt /��A�.rt / .rt /

D
Z
d 3r N .rt /Œ� � pCmC e��A�.rt /� .rt / . (7.5)
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Calculating the commutator ŒH , .x/� using (7.2) and excluding the ı-function by d 3r inte-
gration, we obtain the equation of motion for the operator  in the explicit form

.��p� � e��A� �m/ .rt / D 0 , (7.6)

which naturally coincides with Dirac’s equation in an electromagnetic field.
Equations of motion for electromagnetic potential A�.rt / are obvious in advance from the

correspondence with the classical limit (large occupation numbers), when operator equations
of motion should reduce to the usual Maxwell equations for potentials, so that in an arbitrary
gauge we have

@�@
�A�.x/ � @�@�A�.x/ D 4�ej �.x/ , (7.7)

where j �.x/ D N .x/�� .x/ is the current operator, satisfying the continuity equation

@�j
� D 0 . (7.8)

The system of equations (7.6) , (7.7) is the gauge invariant

A� ! A�.x/ � @��.x/ ,  .x/ !  .x/eie�.x/ , N .x/ ! e�ie�.x/ N .x/ , (7.9)

where �.x/ is an arbitrary Hermitian operator, commuting (at the same moment of time)
with  . Here we are dealing with operators in the Heisenberg representation. In interaction
representation the gauge transformation of electromagnetic potential does not act on  oper-
ators at all!

Let us now establish the relation between operators in the Heisenberg and inter-
action representations. In accordance with the adiabatic hypothesis we assume that
interaction HI .t/ is slowly “switched on” from the time moment t D �1 to finite
times. Then for t ! �1 both representations (Heisenberg and interaction) simply
coincide. The corresponding wave functions (state vectors) ˆ è ˆint also coincide:

ˆint .t D �1/ D ˆ . (7.10)

On the other hand, the wave function in the Heisenberg representation does not depend
on time at all (all time dependence is moved to the operators!), while in the interaction
representation the time-dependence of the wave function has the form

ˆint .t/ D S.t , �1/ˆint .�1/ , (7.11)

where1

S.t2, t1/ D T exp

²
�i
Z t2

t1

dt HI .t/

³
(7.12)

with the obvious properties

S.t , t1/S.t1, t0/ D S.t , t0/ , S�1.t , t1/ D S.t1, t / . (7.13)

1 Note, that similar operator in the previous Chapter was denoted as U.t2, t1/.
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Comparing (7.11) and (7.10) we find

ˆint .t/ D S.t , �1/ˆ , (7.14)

which establishes the relation between the wave functions in both representations. The
corresponding expression for the transformation of operators has the form

 .rt / D S�1.t , �1/ int .rt /S.t , �1/ D S.�1, t / int .rt /S.t , �1/ (7.15)

and a similar expression also holds for N and A�.

7.2 The exact propagator of photons

The exact photon propagator is defined as

D��.x � x0/ D ih0jTA�.x/A�.x0/j0i , (7.16)

where A�.x/ are the Heisenberg field operators, while previously we considered

D��.x � x0/ D ih0jTAint� .x/Aint� .x0/j0i , (7.17)

built upon the operators in the interaction representation. Green’s function (7.17) is
usually referred to as the propagator of free photons.

Let us now express the exact propagator D�� via the operators in the interaction
representation. Consider t > t 0; then from the relation between A� and Aint� of the
type of (7.15), we obtain

D��.x � x0/ D ih0jTA�.x/A�.x0/j0i (7.18)

D ih0jS.�1, t /Aint� .x/S.t , �1/S.�1, t 0/Aint� .x0/S.t 0, �1/j0i .

Using (7.13) we have

S.t , �1/S.�1, t 0/ D S.t , t 0/ , S.�1, t / D S.�1, C1/S.1, t / . (7.19)

Then (7.18) is written as

D��.x � x0/ D ih0jS�1ŒS.1, t /Aint� .x/S.t , t 0/Aint� .x0/S.t 0, �1/�j0i , (7.20)

where, for brevity, we introduced

S D S.C1, �1/ (7.21)

and have taken into account that S�1.1, �1/S.1, t / D S.�1, t /. As S.t2, t1/ con-
tains only operators taken at the time moments between t1 and t2, placed in chrono-
logical order, it becomes obvious that all operator factors in square brackets in (7.20)
are placed from left to right in the order of decreasing time. Placing the T -ordering
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symbol before the bracket, in the following we can make any permutations of factors
here, because the T -ordering will, in any case, place everything in the correct order.
Then we can rewrite the bracket as:

T
�
Aint� .x/Aint� .x0/S.1, t /S.t , t 0/S.t 0, �1/

� D T
�
Aint� .x/Aint� .x0/S

�
. (7.22)

Thus, we obtain

D��.x � x0/ D ih0jS�1TAint� .x/Aint� .x0/S j0i . (7.23)

Repeating all the previous arguments, we can show that this expression is also valid
for the case of t < t 0.

It can be shown that S�1 can be moved out of the averaging procedure in the form
of a phase factor. In fact, a Heisenberg wave function of the vacuum ˆ0 (as any other
Heisenberg function) coincides, according to (7.10), with the value of the vacuum
wave function ˆ0

int .�1/ in the interaction representation. On the other hand, we
have

Sˆ0
int .�1/ 	 S.C1, �1/ˆ0

int .�1/ D ˆ0
int .C1/ . (7.24)

But a vacuum (ground state) in a stable system is strictly a stationary state in which
there is no possibility of any spontaneous processes of creation or annihilation of par-
ticles. In other words, as time goes by, the vacuum remains a vacuum. This means that
ˆ0
int .C1/ can differ from ˆ0

int .�1/ only by some phase factor ei˛ . Then

Sˆ0
int .�1/ D ei˛ˆ0

int .�1/ D h0jS j0iˆ0
int .�1/ (7.25)

or, making a complex conjugation and taking into account the unitarity of S ,

ˆ0�
int .�1/S�1 D h0jS j0i�1ˆ0�

int .�1/ (7.26)

Now it is clear that (7.23) can be rewritten as

D��.x � x0/ D i
h0jTAint� .x/Aint� .x0/S j0i

h0jS j0i . (7.27)

Substituting into the numerator and denominator perturbation expansion of the S -
matrix defined by (6.56), and performing averaging with the help of the Wick theorem,
we can obtain the expansion of D�� in powers of the coupling constant e2.

In the numerator of (7.27), the expressions being averaged differ from similar ex-
pressions for the matrix elements of the scattering matrix, as analyzed in the previ-
ous chapter, by the replacement of the “external” creation and annihilation operator
of photons by the operators Aint� .x/ and Aint� .x0/. As all factors here stand under
the symbol of T -product, the pairings of these operators with “internal” operators
Aint� .x1/,Aint� .x2/will produce photon propagatorsD�� . Thus, the results of averag-
ing will be expressed by sets of diagrams with two external legs, which are constructed
by the rules, given in the previous chapter, with the only difference that both the ex-
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Figure 7.1

Figure 7.2

ternal and internal photon lines are now associated with the propagators D�� , instead
of the amplitudes of real photons. In a zero-order approximation, when S D 1, the
numerator of (7.27) just coincides with D��.x � x0/. The next nonzero terms are of
the order of � e2. These are represented by diagrams with two external legs and two
vertices, as shown in Figure 7.1. The second of these diagrams consists of two discon-
nected parts: a wavy line (corresponding to �iD��) and a closed loop. This means that
analytic expression for this diagram consists of two independent factors. Adding to the
diagrams in Figure 7.1 the wavy line, corresponding with a zero order approximation,
and moving it “outside the brackets”, we obtain, up to the terms of the order of � e2,
that the numerator of (7.27) is expressed by the diagrams in Figure 7.2. The expression
h0jS j0i in the denominator of (7.27) represents the amplitude of a “vacuum–vacuum”
transition. Its expansion into the perturbation series contains only diagrams with no
external legs. In the zero-order approximation h0jS j0i D 1, while up to terms of the
order of � e2 this amplitude is expressed diagrammatically, as shown in Figure 7.3.
Dividing (up to the same accuracy � e2) the numerator of (7.27) by the denomina-
tor, we obtain the diagrams shown in Figure 7.4. so that the contribution of “vacuum”

Figure 7.3

Figure 7.4
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Figure 7.5

Figure 7.6

terms (under the figure brackets) is completely cancelled. Thus, the disconnected dia-
gram in Figure 7.1(b) drops out of the answer. This result is, in fact, of a quite general
nature. A more detailed analysis of the diagrams in the numerator and denominator of
(7.27) shows, that the role of the denominator h0jS j0i reduces to the general cancel-
lation of all disconnected diagrams (in any order of perturbation theory), so that the
exact propagator D�� is expressed only by diagrams without disconnected parts, or
by connected diagrams only!

Note that diagrams without external legs (closed loops) are of no physical impor-
tance, as these loops represent radiation corrections to the diagonal element of the
S -matrix, describing vacuum–vacuum quantum transitions, and we already noted that
the sum of all such loops (together with 1 from the zero-th order) produces only an
irrelevant phase factor which does not influence physical results.

Transformation from coordinate to momentum representation is done in the usual
way. For example, up to the terms of the order of � e2, the propagator �iD��.k/ is
given by the diagrams shown in Figure 7.5, where the propagator itself is shown as a
“fat” wavy line in the left-hand side. The analytic expression corresponding to these
diagrams is

D��.k/ D D��.k/C ie2D��.k/

�Z
d 4p

.2�/4
Sp��G.p C k/��G.p/

�
D��.k/ .

(7.28)
Terms of the higher orders are constructed in a similar way and are graphically rep-
resented by diagrams with two external photon lines and the necessary number of
vertices, corresponding to the order of perturbation theory. For example, terms of the
order of � e4 are represented by diagrams with four vertices, as shown in Figure 7.6.
The diagram shown in Figure 7.7 also contains four vertices, with an electron loop
in its upper part. This loop corresponds to the pairing (contraction) N .x/� .x/, i. e.,
simply to the vacuum average of the current h0jj.x/j0i. Even from the definition of the
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Figure 7.7

Figure 7.8

Figure 7.9

vacuum itself it is obvious, that this average should identically be zero, and this fact
cannot be changed by any radiation (higher-order) corrections to this loop (though di-
rect calculation, by the way, produces an infinite result here!). Thus, no diagrams with
electron loops of this kind should be taken into account in any order of perturbation
theory.

Part of the diagram (“block”) between two photon lines (external or internal) is
called a photon self-energy part2. In the general case, such a block can itself be divided
into parts connected by one photon line, as shown in Figure 7.8, where circles denote
blocks which cannot be further divided in this way. Such blocks are called irreducible
(or single-particle irreducible). Let us denote the sum (of an infinite number!) of all
irreducible photon self-energy parts as iP��=4� and call it the polarization operator.
Classifying diagrams by the number of full irreducible self-energy parts (polarization
operators), we can represent the exact photon propagator D�� by the diagrammatic
series shown in Figure 7.9, where each dashed circle represents iP��=4� . The orre-
sponding analytic expression is written as

D D D CD
P

4�
D CD

P

4�
D

P

4�
D C � � �

D D

²
1 C P

4�

�
D CD

P

4�
D C � � �

�³
. (7.29)

2 Or, for brevity, just self-energy!
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It is obvious that the series in square brackets again produces the complete series for D .
Thus, we obtain

D��.k/ D D��.k/CD��.k/
P ��.k/

4�
D��.k/ . (7.30)

Multiplying this equality from the left side by the inverse tensor .D�1/�� and from
the right side by .D�1/�� , we get

D�1
�� D D�1

�� � 1

4�
P�� . (7.31)

Everything that was said in the previous chapter about tensor structure and gauge de-
pendence of the free photon propagator D�� is also valid for the exact propagator
D�� . Let us write its general form as

D��.k/ D D.k2/

�
g�� � k�k�

k2

�
C D l.k2/

k�k�

k2
, (7.32)

where D l.k2/ is an arbitrary function determined by the choice of gauge. For the free
propagator we write similarly

D��.k/ D D.k2/

�
g�� � k�k�

k2

�
CDl.k2/

k�k�

k2
, (7.33)

which is formally different from the form used in the previous chapter, but is, in fact,
equivalent to it, differing only by the definition ofDl.k2/. The longitudinal part of the
propagator (the second term in these expressions) is related to unphysical longitudinal
part of the 4-potential and does not participate in interactions. Thus, interaction does
not change it and we can always assume that

D l.k2/ D Dl .k2/ . (7.34)

Let us now introduce inverse tensors which satisfy the following equalities:

D�1
��D�� D ı�� , D�1

��D
�� D ı�� . (7.35)

For (7.32) and (7.33) the inverse tensors, taking (7.34) into account, has the form

D�1
�� D 1

D

�
g�� � k�k�

k2

�
C 1

Dl

k�k�

k2
, (7.36)

D�1
�� D 1

D

�
g�� � k�k�

k2

�
C 1

Dl

k�k�

k2
. (7.37)

Now it follows that the polarization operator is actually the transverse tensor:

P�� D P .k2/

�
g�� � k�k�

k2
,

�
(7.38)
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Figure 7.10

where P .k2/ D k2 � 4�=D.k2/, so that3

D.k2/ D 4�

k2Œ1 � P .k2/=k2�
. (7.39)

Thus, in contrast to the photon propagator, the polarization operator is gauge invariant!
Sometimes it is useful to introduce photon self-energy, defined as the sum of all (not

only irreducible) the diagrams. Let us denote it as i…��=4�; then we have

D�� D D�� CD��
…��

4�
D�� , (7.40)

which is shown by the diagrams in Figure 7.10. Determining now …�� , we obtain

1

4�
…�� D D�1

��D��D�1
�� �D�1

�� (7.41)

and, using (7.32), (7.33), (7.36), and (7.37), we get

…�� D ….k2/

�
g�� � k�k�

k2

�
, … D P

1 � P=k2
. (7.42)

Now we see that …�� , as well as P�� , is the gauge invariant tensor.

7.3 The exact propagator of electrons

An exact electron propagator is defined as

G .x � x0/ D �ih0jT .x/ N .x0/j0i , (7.43)

which is different from the case of the free particle propagator

G.x � x0/ D �ih0jT int .x/ N int .x0/j0i (7.44)

by replacement of the  -operators in interaction representation by operators in the
Heisenberg representation. Similarly to the case of photon propagator, discussed
above, equation (7.43) can be transformed to

G .x � x0/ D �i h0jT int .x/ N int .x0/S j0i
h0jS j0i . (7.45)

3 It is useful to note that P .k2/ D P
�
� .k

2/=3.
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Figure 7.11

Figure 7.12

Expansion of this expression in powers of e2 leads to a diagrammatic series for the
G -function. The role of the denominator in (7.45) again reduces to the cancellation of
vacuum–vacuum transitions, so that the diagrammatic expansion for Green’s function
contains diagrams without an isolated vacuum loops. Up to the terms of the order � e4

diagrams for G are shown in Figure 7.11, where the exact propagator itself is shown
by a “fat” line. Diagrams like that in Figure 7.12, as noted before, should not be taken
into account. In momentum representation, a “fat” line corresponds to iG .p/, and the
usual full and wavy lines represent propagators of free particles iG.p/ and �iD.k/.

Let us present a formal proof of the cancellation of vacuum diagrams. Consider the n-th order
correction to the Green’s function (propagator) of an electron, described by some disconnected
diagram, representing two multiples. The first one includes all HI , contracted with  .x/ and
N .x0/, i. e., corresponds to a connected block with external legs. The second one describes the

rest of the diagram. Thus, the analytic expression for this correction looks like

� i .�i /
n

nŠ

Z
dt1 � � �

Z
dtmh0jT � int .x/ N int .x0/HI .t1/ � � �HI .tm/

�j0ic
�
Z
dtmC1 � � �

Z
dtnh0jT .HI .tmC1/ � � �HI .tn//j0i . (7.46)

Here h0j � � � j0ic and h0j � � � j0i corresponds to some definite set of contractions (pairings) de-
scribed by the Wick theorem, and the symbol h� � � ic denotes that pairings in this expression
produce a connected diagram.

It is easily seen, that some of the diagrams give identical contributions. In fact, if we change
the pairings just by making different permutations of HI between h� � � ic and h� � � i, this will
simply correspond to the renaming integration variables and will not change the value of the
correction to G . The number of such diagrams is equal to the number of ways to break n
operators in HI into groups of m and n �m operators, i. e., it will be equal to nŠ

mŠ.n�m/Š .
The total contribution of these diagrams is given by

� i .�i /
m

mŠ

Z
dt1 � � �

Z
dtmh0jT . int .x/ N int .x0/HI .t1/ � � �HI .tm//j0ic

� .�i /n�m

.n �m/Š
Z
dtmC1 � � �

Z
dtnh0jT .HI .tmC1/ � � �HI .tn//j0i . (7.47)
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Let us sum the contributions of all diagrams of an arbitrary order, containing the definite con-
nected part and the arbitrary disconnected parts. Obviously, we shall get

� i .�i /
m

mŠ

Z
dt1 � � �

Z
dtmh0jT . int .x/ N int .x0/HI .t1/ � � �HI .tm//j0ic

�
²

1 � i
Z
dtmC1h0jHI .tmC1/j0i � 1

2

Z
dtmC1

Z
dtmC2h0jT .HI .tmC1/HI .tmC2//j0i

C � � � C .�i /k
kŠ

Z
dtmC1 � � �

Z
dtmCkh0jT .HI .tmC1/ � � �HI .tmCk//j0i C � � �

³
. (7.48)

Let us return to the initial expression (7.45). If we expand h0jS j0i in the denominator in a series
in powers of HI , we shall get exactly the same expression, which stands in figure brackets in
(7.48). Thus,

h0jT int .x/ N int .x0/S j0i D h0jT int .x/ N int .x0/S j0ich0jS j0i , (7.49)

so that, according to (7.45),

G .x � x0/ D �ih0jT int .x/ N int .x0/S j0ic , (7.50)

which completes our proof! This rule is valid for calculations of arbitrary expressions like
(7.27) or (7.45) with an arbitrary number of field operators. In practice this means that we can
just drop the factor of h0jS j0i in the denominator, and do not take into account disconnected
diagrams.

Further simplifications appear due to the fact that all types of pairings in

�i .�i /
m

mŠ

Z
dt1 � � �

Z
dtmh0jT . int .x/ N int .x0/HI .t1/ � � �HI .tm//j0ic , (7.51)

differing only by permutations of HI , give the same contributions. Because of this, we can
drop the factor of 1=mŠ and take into account only those pairings which lead to topologically
nonequivalent diagrams, i. e., those which can not be obtained from each other by permutation
of operatorsHI . Now the contribution of each diagram does not contain a factor with relevant
dependence on the order of diagram m. Due to this fact, each diagram can be separated into
elements which can be considered separately as corrections to one or another Green’s function.
There may be irrelevant dependences onm, such as factors like �m, where � is some constant.
Such factors do not prohibit separation of the diagram into different elements (blocks). On
the contrary, the presence of a factor like 1=m does not allow such separation and separate
summations within different parts of the diagram.

The block between two electron lines is called the electron self-energy part. As in the
case of photons, it is called irreducible (or single particle irreducible), if it cannot be cut
into two self-energies by cutting one electron line. We denote the sum of all irreducible
self-energy parts as �iM.p/, and call M.p/ the mass operator. Up to terms of the
order of � e4 the mass operator is represented by diagrams shown in Figure 7.13.
Performing summation, similar to that done during the derivation of equation (7.30),
we obtain the Dyson equation,

G .p/ D G.p/CG.p/M.p/G .p/ (7.52)
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Figure 7.13

or, in terms of inverse matrices,

G �1.p/ D G�1.p/ � M.p/ D ��p� �m � M.p/ . (7.53)

Equation (7.30) can also be called a Dyson equation for a photon propagator. Below
we shall return many times to the discussion of these equations.

Heisenberg  -operators (in contrast to  -operators in interaction representation),
as previously noted, do change under gauge transformations. In a similar way, the
exact telectron propagator G is also not a gauge invariant quantity. It is clear that the
change of G under gauge transformations should be expressible via the same arbitrary
function Dl , which is added to the photon propagator. It is clear from the fact that,
during the calculations of G via a diagrammatic perturbation series, any term in this
series is expressed via the photon Green’s functions D, and no other terms related to
an electromagnetic field are present at all. We can make some assumptions about the
properties of the operator� in (7.9), with the only limitation that the result be expressed
via Dl . Under (7.9) the propagators D and G transform into

D�� ! ih0jT ŒA�.x/ � @��.x/�ŒA� � @0
��.x

0/�j0i , (7.54)

G ! �ih0jT .x/eie�.x/e�ie�.x0/ N .x0/j0i . (7.55)

We shall assume that operators � are averaged over the vacuum independently of oth-
ers, which is natural, as gauge invariance of electrodynamics requires that the “field” �
does not take part in the interactions. Now put also h0j�.x/j0i D 0. Then, in equa-
tions (7.54) and (7.55), terms containing � are separated and we obtain

D�� ! D�� C ih0jT @��.x/@0
��.x

0/j0i , (7.56)

G ! G h0jTeie�.x/e�ie�.x0/j0i . (7.57)

Let us stress once again that here the � are operators. Next we consider the case of
infinitesimal gauge transformations and introduce ı� instead of �. Transformation
(7.56), independently of the smallness of ı�, can be written as

D�� ! D�� C ıD�� , ıD�� D @�@
0
�d
l .x � x0/ , (7.58)

where
d l .x � x0/ D ih0jT ı�.x/ı�.x0/j0i . (7.59)

Now we see that d l determines the change of the longitudinal part of the photon prop-
agator D l under the gauge transformation.
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In (7.57) we can expand the exponents in powers of ı� up to quadratic terms, so
that

h0jTeieı�.x/e�ieı�.x0/j0i � 1 � 1

2
e2h0jı�2.x/C ı�2.x0/ � 2T ı�.x/ı�.x0/j0i .

(7.60)
Taking into account the definition (7.59) we get

G ! G C ıG , ıG D ie2G .x � x0/Œd l .0/ � d l.x � x0/� . (7.61)

In momentum representation

ıG .p/ D ie2
Z

d 4q

.2�/4
ŒG .p/ � G .p � q/�d l.q/ , (7.62)

with
q2d l.q/ D ıD l.q/ . (7.63)

These expressions give the general gauge transformation rules for exact propagators
in QED.

7.4 Vertex parts

Besides the self-energy parts, in more complicated diagrams we can introduce addi-
tional blocks with special physical meaning. Consider the function

K�.x1, x2, x3/ D h0jTA�.x1/ .x2/ N .x3/j0i . (7.64)

Due to the homogeneity of space-time, this function depends only on differences of
its arguments. After transformation to interaction representation we have

K�.x1, x2, x3/ D h0jTA�int .x1/ 
int .x2/ N int .x3/S j0i

h0jS j0i . (7.65)

In momentum representation we can write

K�.p2,p1; k/.2�/4ı.p1 C k � p2/ D
Z
d 4x1

Z
d 4x2

Z
d 4x3e

�ikx1Cip2x2�ip1x3K�.x1, x2, x3/ . (7.66)

In the diagram technique function K� is described by a “three leg” graph, shown in
Figure 7.14, with one photon and two electron legs, with the 4-momenta satisfying the
conservation law

p1 C k D p2 . (7.67)

The zero-th order term in the perturbation expansion of this function is obviously zero,
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Figure 7.14 Figure 7.15

Figure 7.16

while the first-order term in coordinate representation is

K�.x1, x2, x3/ D e

Z
d 4xG.x2 � x/��G.x � x3/D

��.x1 � x/ (7.68)

or, in momentum representation

K�.p2,p1; k/ D eG.p2/��G.p1/D
��.k/ , (7.69)

which is shown by the diagram in Figure 7.15. In higher orders, diagrams become
more complicated due to the addition of extra vertices. For example, in the third order
the diagrams shown in Figure 7.16 appear. In the first three diagrams of Figure 7.16
we can separate the obvious self-energy parts of the photon and electrons. However,
there are no such blocks in the fourth diagram. This is a general situation: corrections
of self-energy type simply replace in (7.69) Green’s functions G and D by G and D .
The sum of the remaining terms of expansion lead to the change of the factor �� in
(7.69). Denoting this quantity as �� we have, by definition,

K�.p2,p1; k/ D ¹iG .p2/Œ�ie��.p2,p1; k/�iG .p1/º Œ�iD��.k/� . (7.70)

The block connected with the other parts of diagram by a single photon and two elec-
tron lines is called the vertex part, if this block can not be separated into parts, which
are connected to each other by single (electron or photon) lines. Block ��, introduced
above, representing the sum of all possible vertex parts, including the simple vertex
��, is called the vertex operator (or vertex function). Up terms of the fifth order it is
expressed by the diagrams shown in Figure 7.17. All three momenta here cannot be si-
multaneously related to real particles: we have already seen that absorption (emission)
of a photon by the free electron is impossible because of 4-momentum conservation.
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(a)                 (b)                 (c)                  (d)    

(e)                 (f )                 (g)                 (h)                  (i)

Figure 7.17

Figure 7.18

Thus, one of the legs in this graph can only be related a virtual particle (or external
field).

We can now introduce the notions of compact and noncompact vertex parts. Those
vertex parts which do not contain self-energy corrections to internal lines are called
compact, and we cannot separate the parts representing corrections to the internal ver-
tices. Among the graphs shown in Figure 7.17, only diagrams (b) and (d) are compact.
Diagrams (g,h,i) contain self-energy corrections either to the electron or the photon
lines. In diagram (c) the upper horizontal wavy line can be considered as a correction
to the upper vertex, while the wavy lines at the sides of diagrams (e) and (f) represent
corrections to vertices at these sides. Replacing internal lines in compact diagrams
by “fat” lines representing exact Green’s functions, we obtain the expansion of the
vertex operator in the form, shown in Figure 7.18, which is usually called a “skele-
ton” diagram expansion. This expansion, in fact, produces an integral equation for � ,
but with an infinite number of terms in the right-hand side; there is no closed equa-
tion for the vertex parts, similar to that of the Dyson equation for Green’s functions
(propagators).

We can also introduce vertices with a larger number of external legs, e. g., the “four-
leg” vertex shown in Figure 7.19. We can obtain such a vertex considering the function

K.x1, x2; x3, x4/ D h0jT .x1/ .x2/ N .x3/ N .x4/j0i , (7.71)
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Figure 7.19

Figure 7.20

which is usually called a two particle Green’s function. It also depends on differences
of its arguments, and its Fourier transformation can be written as
Z
d 4x1

Z
d 4x2

Z
d 4x3

Z
d 4x4K.x1, x2; x3, x4/e

i.p3x1Cp4x2�p1x3�p2x4/ D
.2�/4ı.p1 C p2 � p3 � p4/K.p3,p4;p1,p2/ , (7.72)

where

K.p3,p4;p1,p2/ D .2�/4ı.p1 � p3/G .p1/G .p2/ � .2�/4ı.p2 � p3/G .p1/G .p2/

C G .p3/G .p4/Œ�i�.p3,p4;p1,p2/�G .p1/G .p2/ . (7.73)

The first two terms here exclude from the definition of �.p3,p4;p1,p2/ diagrams like
those shown in Figure 7.20. Similarly, in the third term in (7.73), the factors G exclude
from the definition of �-vertex those graphs which represent corrections to external
electron lines. Using the properties of the T -product of fermion operators, we may
easily see that �.p3,p4;p1,p2/ has the following (anti)symmetry properties:

�.p3,p4;p1,p2/ D ��.p4,p3;p1,p2/ D ��.p3,p4;p2,p1/ . (7.74)

This vertex describes, e. g., the process of scattering of two electrons; its amplitude
can be found if we associate with the external legs the amplitudes of the initial and
final particles (instead of propagators G ):

iMf i D Nu.p3/ Nu.p4/Œ�ie�.p3,p4;p1,p2/�u.p1/u.p2/ , (7.75)

and here � describes all the possible interaction processes in all orders of perturbation
theory.
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Figure 7.21

Figure 7.22

Figure 7.23

7.5 Dyson equations

Exact propagators and vertex parts are connected to each other, as we have already
seen, by certain integral relations. Let us analyze these relations in more detail. Con-
sider diagrams for irreducible self-energies of an electron. It is easy to see that among
the infinite number of these diagrams, only one, shown in Figure 7.21, is compact in
the sense discussed in the previous section, while the others can be considered as in-
troducing corrections to one of its vertices. It is clear that all vertex corrections should
be attributed only to one (any of two) vertices of this diagram, while the other remains
“bare” (to avoid double counting). Correspondingly, the sum of all irreducible self-
energy parts (i. e., the mass operator) can be expressed by only one skeleton diagram,
shown in Figure 7.22. The appropriate analytic expression has the form

M.p/ D G�1.p/� G �1.p/ D �ie2
Z

d 4k

.2�/4
��G .pC k/��.pC k,p; k/D��.k/ .

(7.76)
Similar expression can be also written for the polarization operator. Among irreducible
self-energies for a photon, again only one is compact, and the polarization operator is
represented by the diagram shown in Figure 7.23. the orresponding analytic expres-
sion is

1

4�
P��.k/ D D�1

��.k/�D�1
�� .k/ D ie2Sp

Z
d 4p

.2�/4
��G .pCk/��.pCk,p; k/G .p/ .

(7.77)
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Equations (7.76) and (7.77) give an explicit form of the Dyson equations (7.52)
and (7.30), which are integral equations for exact propagators, expressing them via
exact vertex parts. However, there are no similar “closed” integral equations for vertex
parts, so that in practical cases we have to solve the Dyson equations using different
types of approximations for the vertex part, e. g., based partial summation of Feynman
diagrams.

7.6 Ward identity

There are certain exact relations between propagators and vertices which are simpler
than Dyson type equations. Consider the electron propagator. Let us make a gauge
transformation (7.9), assuming �.x/ D ı�.x/, where ı�.x/ is an infinitesimal non-
operator function of the coordinates x. Then, the electron propagator will change as

ıG .x, x0/ D ieG .x � x0/Œı�.x/ � ı�.x0/� . (7.78)

Such a gauge transformation breaks the homogeneity of space-time, and ıG now de-
pends on x and x0 separately, not only on x � x0. Now we have to make a Fourier
transformation over x and x0 separately, so that in momentum representation ıG be-
comes the function of two 4-momenta:

ıG .p2,p1/ D
Z
d 4x

Z
d 4x0ıG .x, x0/eip2x�ip1x

0

. (7.79)

Substituting here (7.78) and integrating over d 4xd 4� or d 4x0d 4� , where � D x � x0,
we obtain

ıG .p C q,p/ D ieı�.q/ŒG .p/ � G .p C q/� . (7.80)

On the other hand, the same gauge transformation applied to the operator of electro-
magnetic vector-potential A�.x/ produces

ıA.e/� .x/ D � @

@x�
ı� , (7.81)

which may be considered as an infinitesimal external field. In momentum representa-
tion,

ıA.e/� .q/ D iq�ı�.q/ . (7.82)

The value of ıG can be also calculated as the change of propagator under the influence
of this field. Up to terms of the first order over ı�, this change can be expressed by the
single skeleton diagram shown in Figure 7.24, where the “fat” wavy line denotes the
effective external field

ıA.e/� .q/C ıA
.e/

�
.q/

1

4�
P ��.q/D��.q/ , (7.83)
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which takes into account the self-energy corrections. However, the 4-vector ıA.e/
�
.q/ is

longitudinal (with respect to q), while the tensor P �� is transversal (cf. (7.38, (7.42)).
Thus, the second term here simply gives zero, so what remains is, in fact, the contri-
bution of the diagram shown in Figure 7.24, where the line of the external field can be
taken as “thin” and equal to ıA.e/� .q/. In analytic form,

ıG .p C q,p/ D eG .p C q/��.p C q,p; q/G .p/ıA.e/� .q/ . (7.84)

Substituting here (7.82) and comparing with (7.80), we find

G .p C q/ � G .p/ D �G .p C q/q��
�.p C q,p; q/G .p/ (7.85)

or, in terms of inverse matrices,

G �1.p C q/ � G �1.p/ D q��
�.p C q,p; q/ . (7.86)

For q ! 0, comparing the coefficients before infinitesimal q� in both sides of this
relation, we get

@

@p�
G �1.p/ D ��.p,p; 0/ (7.87)

which is called the Ward identity in differential form. Relation (7.86) is also called a
Ward identity, but for finite q. From (7.87) we can see that the derivative of G �1.p/

over the momentum coincides with a vertex operator with zero momentum transfer.
The derivative of Green’s function G .p/ itself is equal to

� @

@p�
iG .p/ D iG .p/Œ�i��.p,p; 0/�iG .p/ (7.88)

In zero-th approximation this identity is obvious, as from G�1 D ��p� � m we
immediately obtain @G�1

@p�
D ��. Now it is easy to obtain a diagrammatic derivation of

Ward identity: from Dyson equation (7.53) it is obvious, that the differentiation of the
inverse Green’s function over the momentum is equivalent to all possible insertions of
lines of a fictitious external field, with zero momentum transfer, into all diagrams for
irreducible self-energy, which generates all the diagrams for the corresponding vertex
part. The Ward identity is of great importance for checking the self-consistency of
concrete approximations in different problems of quantum field theory.

A little more technical is a similar derivation of similar identities for an exact photon
propagator (polarization operator). The details of this derivation can be found in [6].

Figure 7.24



Chapter 8

Some applications of quantum electrodynamics

8.1 Electron scattering by static charge: higher order
corrections

In this chapter we shall consider the calculations of some specific effects of quantum
electrodynamics (QED), as well as some conceptual problems related to the founda-
tions of QED. It should be noted that QED is actually an example of the quite suc-
cessful theory of interacting elementary particles. It allows exceptionally precise cal-
culations of different effects due to electromagnetic interactions, which are in an ideal
agreement with current. The detailed analysis of the vast number of QED effects can
be found in [2, 6], while here we shall limit ourselves to only few of the most typical
cases. During our discussion we shall more or less skip the technical details, concen-
trating on the qualitative aspects of the theory.

Let us return to the previously discussed problem (cf. Chapter 4) of electron scatter-
ing by static charge of the nuclei (Rutherford scattering). In the first order of perturba-
tion theory this scattering process is described by the diagram shown in Figure 8.1(a),
where the static charge is denoted by a cross. According to the general rules of diagram
technique, the corresponding scattering amplitude is written as

Mf i D �i
Z
d 4xhf jj�.x/jiiA�.x/ , (8.1)

where the matrix element of transition current is

hf jj�.x/jii D e Nuf ��uie�iqx , (8.2)

(a)                                              (b)

Figure 8.1
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with q D pi � pf , and we introduced the spinors of an initial and final state of an
electron. Vector potential A�.x/ describes electromagnetic field of the static charge.
Then we can write

Mf i D �ie Nuf ��uiA�.q/ , (8.3)

where

A�.q/ D
Z
d 4x e�iqxA�.x/ . (8.4)

For a static charge, the value of A�.x/ is time independent, so that

A�.q/ D
Z
dt e�i.Ei �Ef /t

Z
d 3r eiqrA�.r/ D 2�ı.Ef � Ei /A�.q/ . (8.5)

The static Maxwell equation is written as

r2A�.r/ D �4�j�.r/ . (8.6)

Then we have

A�.q/ D 4�

jqj2 j
�.q/ . (8.7)

Accordingly, from (8.3) and (8.5) we obtain

Mf i D �2�iı.Ef �Ei /e Nuf ��ui 4�

jqj2 j
�.q/ . (8.8)

To shorten expressions to follow, we drop the ı-function for the conservation law and
define the amplitude M as

�iM D ie Nuf ��ui 4�

jqj2 j
�.q/ . (8.9)

During static charge scattering, an electron changes its momentum so that pi ¤ pf ,
but energy is conserved, and Ei D Ef , or q0 D 0. Thus,

q2 D �jqj2 < 0 (8.10)

is a space-like scattering vector, and (8.9) is rewritten as

�iM D .ie Nuf ��ui /
��4�ig��

q2

�
.�ij �.q// . (8.11)

Here the first factor describes the vertex part, while the second represents the photon
propagator. For static nuclei with charge Ze we have

j 0.r/ D �.r/ D Zeı.r/ , j.r/ D 0 , (8.12)
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so that

�iM D .ie Nuf �0ui /

��4�i

q2

�
.�iZe/ , (8.13)

which is expressed by the diagram in Figure 8.1(a) and coincides in fact with (4.75).
These expressions describe Rutherford scattering and the corresponding crossection
is given by (4.79):

d


d�
� jM j2 � q�4 � 1

sin4 �
2

, (8.14)

where � is the scattering angle determined by kinematics:

q2 D .pi � pf /2 � �2k2.1 � cos �/ D �4k2 sin2 �

2
, (8.15)

where we have neglected electron mass (in comparison to that of nuclei) and intro-
duced k 	 jpi j D jpf j.

This is the result of the first order perturbation theory. Let us discuss higher order
(radiation) corrections. Let us consider as an example the third order diagram, shown in
Figure 8.2. Using the general rules of diagram technique we obtain the corresponding

Figure 8.2
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analytic expression

�iM D .�1/.ie Nuf ��ui /
�

�i 4�g��0

q2

�Z
d 4p

.2�/4
Sp (8.16)

�
²
.ie��

0

/
i. Op Cm/

p2 �m2
.ie��

0

/
i. Oq � Op Cm/

.q � p/2 �m2

³�
�i 4�g�0�

q2

�
.�ij �.q// .

In comparison to the first order result (8.11), here we observe the obvious modification
of the photon propagator by the single-loop polarization “insertion”, so that

� i 4�g��
q2

! �i 4�g��
q2

C
�

�i 4�g��0

q2

�
I�

0�0

�
�i 4�g�0�

q2

�
D

� i 4�g��
q2

C .�4�i/

q2
I��.q

2/
.�4�i/

q2
, (8.17)

where

I��.q
2/ D .�1/

Z
d 4p

.2�/4
Sp

²
.ie��/

i. Op Cm/

p2 �m2
.ie��/

i. Oq � Op Cm/

.q � p/2 �m2

³
. (8.18)

Immediately we see that for jpj ! 1 the integral in I�� contains the contribution
of a term (from the polarization loop) like

R
dpp

3

p2 , which is seems to be quadratically
divergent at the upper limit. This is a a typical divergence that appears in higher orders
of perturbation theory in practically every model of quantum field theory. The physical
origin of this divergence is obviously related to the point-like (local) nature of field
interactions in relativistic theory. In fact, divergence here is weaker (logarithmic), but
the problem remains. Below we shall discuss its qualitative aspects.

Direct, but rather tedious, calculations show [2] that I�� can be written as

I��.q
2/ D �ig��q2I.q2/C � � � , (8.19)

where

I.q2/ D e2

3�

Z 1

m2

dp2

p2
� 2e2

�

Z 1

0
dzz.1 � z/ ln

�
1 � q2z.1 � z/

m2

�
, (8.20)

and the multiple dot in (8.19) replaces the terms proportional to q�q� , which give
a zero contribution after tensor contraction of the photon propagator with external
charges (currents). The first term in (8.19) gives precisely the logarithmic divergence
of the polarization loop1.

It is useful to explicitly write expressions for I.q2/ in the limits of large and small
.�q/2. To make the integral sensible we introduce in the first term of (8.20) the upper
limit cutoff ƒ2 (with dimensionality of momentum (mass) ƒ2 � m2 squared). Then,

1 Logarithmic, not quadratic, divergence here is due to some “hidden” algebra of the integrand [2].
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for .�q2/ 
 m2 we have

ln

�
1 � q2z.1 � z/

m2

�
� �q

2z.1 � z/
m2

(8.21)

and accordingly,

I.q2/ � e2

3�
ln

�
ƒ2

m2

�
C e2

15�

q2

m2
. (8.22)

For .�q2/ � m2 we have

ln

�
1 � q2z.1 � z/

m2

�
� ln

��q2

m2

�
, (8.23)

so that

I.q2/ � e2

3�
ln

�
ƒ2

m2

�
� e2

3�
ln

��q2

m2

�
D e2

3�
ln

�
ƒ2

�q2

�
. (8.24)

Now we can write the scattering amplitude with a single-loop correction at .�q2/ 

m2 in the form2

�iM D .ie Nuf �0ui /

�
�4�i

q2

��
1 � e2

3�
ln

�
ƒ2

m2

�
� e2

15�

q2

m2
CO.e4/

�
.�iZe/ .

(8.25)
This expression can be rewritten with the same accuracy as

�iM D .ieR Nuf �0ui /

�
�4�i

q2

��
1 � e2

R

15�

q2

m2

�
.�iZeR/ , (8.26)

where we introduced the renormalized charge

eR D e

�
1 � e2

3�
ln
ƒ2

m2

�1=2

. (8.27)

Let us assume that the value of eR from (8.27) represents the “true” (experimentally
measurable) electric charge. Then the scattering amplitude (8.26) becomes finite, and
its divergence is “concealed” in eR, which is taken from the experiment and is not
calculable within our theory. Thus we have explicitly performed the renormalization
of the divergent radiation correction. In the following we shall see that in QED all
divergences which appearing in higher orders of perturbation theory can be similarly
“hidden” in the finite number of parameters, which should be determined experimen-
tally. This reflects the fundamental property of the renormalizability of this theory.
Only renormalizable models of quantum field theory are physically sensible.

2 Perturbation expansion here is in powers of dimensionless parameter e2 ! e2

„c � 1
137 .
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8.2 The Lamb shift and the anomalous magnetic moment

The first term in equation (8.26) is obviously due to the Coulomb potential

V0.r/ D �Ze2
R

Z
d 3q
.2�/3

eiqr
4�

jqj2 D �Ze
2
R

r
. (8.28)

The second term in (8.26) corresponds to quantum corrections to the Coulomb poten-
tial, related to the possibility of creating virtual eCe�-pairs. The factor of jqj2 there,
after the transformation to coordinate representation, is replaced by �r2. Then, taking
into account (8.28) and the Fourier expansion of ı-function

ı.r/ D
Z

d 3q
.2�/3

eiqr , (8.29)

or using the well-known relation [33] r2 1
r

D �4�ı.r/, we can see that equation (8.26)
in coordinate representation corresponds to the interaction of the form

V.r/ D �Ze2
R

�
1 � e2

R

60�2m2
r2
�

1

r
D �Ze

2
R

r
� Ze4

R

15�m2
ı.r/ . (8.30)

Thus, the creation of virtual eCe�-pairs (vacuum polarization) leads to the modifi-
cation of Coulomb interaction at small distances, corresponding to some additional
attraction to nuclei. Obviously this expression is not rigorous, being obtained from the
asymtotics of a single-loop contribution in the limit of .�q/2 
 m2. However, it is
sufficient for simple estimates.

Consider the case of Z D 1 (proton). It is clear that the second term in equa-
tion (8.30) can lead to the shift of energy levels Enl of hydrogen. Considering this
term as perturbation, we easily obtain this shift as

	Enl D � e4
R

15�m2
j nl .0/j2ıl0 D � 8e6

R

15�n3
Ry ıl0 , (8.31)

where  nl .0/ is a hydrogen wave function, corresponding to the main quantum num-
ber n and orbital moment l , and Ry D me4=2 is the Rydberg constant (Ry � 13.6 eV).
Due to the point-like nature of additional interaction in (8.30), it acts upon only the
wave functions, which are nonzero at the nuclei (proton), i. e., upon the s-states (with
l D 0). A corresponding shift of the levels is observed experimentally and mea-
sured with high accuracy. In some first experiments Lamb measured the energy dif-
ference between the 2s1=2 and 2p1=2 levels, which are degenerate according to the
Schroedinger–Dirac theory, which does not take radiation correction into account. The
observed value of the shift is equal to C1057 MHz. Calculations with equation (8.31)
give the shift of �27 MHz. However, we should note that the contribution of vac-
uum polarization is responsible only for the part of the shift between 2s1=2 and 2p1=2.
The complete set of Feynman diagrams responsible for the Lamb shift in this order
of perturbation theory (� e3) is shown in Figure 8.3. All divergences appearing in
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(a)                              (b)

(c)

Figure 8.3

these diagrams can be “hidden” in electron charge, mass, and wave function renor-
malization. This allows the calculation of total Lamb shift, giving the result in an ideal
correspondence with the experiment3. This was a triumph of the renormalization ap-
proach in QED. As the value of the Lamb shift is known with an accuracy of the order
of �0.01%, one is easily convinced of the importance of the contributions of each
of the diagrams in Figure 8.3, including the relatively small contribution of vacuum
polarization expressed by the diagram in Figure 8.3(a). The main contribution is due
to the renormalization of the electron mass (diagram in Figure 8.3(c)). Physically this
effect is due to the fact that the value (formally infinite!) of radiation corrections to
the mass of a free electron is different from that for an electron bound within an atom
(which is also infinite!). The difference of these infinite corrections is finite [18, 60]
and produces the main contribution to the shift of atomic levels.

Consider in more detail the effects connected with the diagram in Figure 8.3(b).
In fact this diagram modifies the structure of electron transition current (vertex)
�e Nuf ��ui . Calculation of the finite part of this diagram in the limit of small .�q2/

gives [2, 18, 33]

�e Nuf ��ui ! �e Nuf
²
��

�
1 C e2

3�

q2

m2

�
ln
m

m

� 3

8

��
�
�
e2

2�

1

2m
i
��q

�

�³
ui ,

(8.32)
where 
�� D i

2.�
��� � ����/. The expression in the first square brackets here gives

the corresponding contribution to the Lamb shift, as this term is similar in form to
(8.26). However, here we also meet the divergence at small momenta, which can be

3 These calculations are very cumbersome, and we refer reader for details to [2, 6].
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formally avoided in (8.32) by introducing a small fictitious photon mass m
 . This
divergence is related to the so-called infrared catastrophe. In fact, the contribution
connected with the fictitious mass m
 is exactly cancelled by similar terms, originat-
ing from diagrams in Figure 8.3(c). Infrared divergences in QED do not lead to major
difficulties like in the case of ultraviolet divergences (appearing due to the divergence
of Feynman integrals at the upper limit) discussed above. The infrared catastrophe is
related to the ever-present possibility (for any QED process) of radiation of the large
number of very “soft” photons with very small energy (frequency). Thus, the appear-
ance of the infrared catastrophe is connected with the somehow inconsistent formula-
tion of the problem: What is the probability for electron scattering by static nuclei with
no photon being emitted? In reality we have to determine the scattering amplitude for
an electron without a single photon emission, as well as the amplitudes with the emis-
sion of one, two, three etc. “soft” photons with energies less than m
 . Each of these
amplitudes diverges, but an artificial introduction ofm
 makes them finite. The sum of
all these amplitudes does not diverge, and the fictitious parameterm
 just cancels. This
problem was analyzed in detail at the early stages of development of QED [2, 6, 18].

We are now interested in the second term in the square brackets in (8.32), which
modifies ��, i. e., the structure of the current. In fact, we can convince ourselves [2,
6, 18], that the contribution of the type 
��q� describes the magnetic moment of an
electron � D � e

2m� , which is usually written as � D �g e
2ms, with spin s D 1

2� , and
g being the gyromagnetic ratio for an electron (in Dirac’s theory g D 2). Accordingly,
the second term in (8.32) describes the additional contribution to the magnetic moment
of an electron, so that

� D � e

2m

�
1 C e2

2�

�
� (8.33)

or

g D 2 C e2

�
. (8.34)

Thus, in addition to Dirac’s magnetic moment of an electron, there appears the so-
called anomalous magnetic moment e2=2� . A more precise expression for the anoma-
lous contribution to the gyromagnetic ratio, obtained through very tedious calculations
taking into account terms up to the order of � e6, has the form

g � 2

2
D 1

2

e2

�
�0.32848

�
e2

�

�2

C.1.49˙0.2/

�
e2

�

�3

C� � � D .1159655.4˙3.3/�10�9.

(8.35)
The uncertainty shown here is related to the difficulty of calculating the very large
number of diagrams of the order of � e6. The experimental value of the anomalous
gyromagnetic ratio is

g � 2

2

ˇ̌
ˇ
exp

D .1159657.7 ˙ 3.5/ � 10�9 . (8.36)



Section 8.2 The Lamb shift and the anomalous magnetic moment 183

This is the reason why QED is considered to be probably the most exact of the the-
ories of interacting elementary particles. To the author’s knowledge, up to now no
discrepancies between QED predictions and experiments were ever found in purely
electrodynamic phenomena.

The analysis of the radiation corrections using Feynman diagrams, being rigorous, is rather
complicated and requires tedious calculations. To understand the physics of these effects, it is
useful to refer to the qualitative approach proposed by Welton, which allows us to obtain their
simple interpretation, based on the picture of the vacuum fluctuations of an electromagnetic
field and the role of the electron–positron vacuum.

First of all, let us discuss the mean-square fluctuations of an electromagnetic field in the
arbitrary point of a physical vacuum. Consider a field in some normalization volume V . Zero-
point oscillation with frequency ! has the energy „!

2 . We can write the obvious relation

„!
2

D 1

8�

Z
dV.E2

! CH2
!/ D 1

4�

Z
dV E2

! D E2
0!

8�
V , (8.37)

where E0! andH0! are amplitudes of electric and magnetic fields in a vacuum, corresponding
to zero-point oscillation with frequency!, while the line denotes averaging over the oscillation
period. From (8.37) we find the mean-square amplitude of a zero-point oscillation of the field,
corresponding to frequency !, as

E2
0! D 4�„!

V
. (8.38)

Consider an electron bound within an atom. It is acted upon by a Coulomb field of nuclei
and also by zero-point fluctuations of the electromagnetic field in a vacuum. Thus, the orbital
motion of an electron is superposed with additional chaotic motion due to vacuum fluctuations
of the electromagnetic field. Let V.r/ denote the potential energy of an electron at a point r. We
can write the electron coordinate as r D r0 C r0, where r0 denotes the usual coordinate, which
is more or less regularly changing during its orbital motion, while r0 is its small displacement
under the influence of a random force from vacuum field fluctuations. Then we can write the
change of the average potential energy of an electron under these random displacements as

h	V.r/i D hV.r0 C r0/ � V.r0/i �
�
x0
i

@V

@xi
C 1

2
.x0
ix

0
k/

@2V

@xi@xk



D 1

2
r2V h.x0

i /
2i D 1

6
r2V h.r0/2i . (8.39)

Here the angular brackets denote the average over all the possible values of the random variable
r0. During this averaging we take into account that hx0

i i D 0, and hx0
ix

0
k
i D 1

3 h.r0/2i due to the
spatial isotropy of these random displacements.

For the Coulomb field of the proton we have

r2V.r0/ D 4�e2ı.r0/ , (8.40)

so that

hV.r/i D V.r0/C 2�e2

3
ı.r0/hr02i . (8.41)
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To estimate the Lamb shift of an atomic level, we have to average (8.41) over the electron state
of the atom, so that

	ELamb D 2�

3
e2
Z
dV j n.r0/j2ı.r0/hr02i D 2�

3
e2j n.0/j2hr02i , (8.42)

where  n is the wave function of the relevant atomic state.
To estimate hr02i we assume that electron displacement under the influence of field fluctu-

ations is independent of its orbital motion. Let us write the classical equation of motion:

m
d 2r0!
dt2

D eE! D eE0! sin.kr � !t/ , (8.43)

which gives

r0! D �eE0!

m!2
sin.kr � !t/ . (8.44)

Accordingly,

h.r0!/2i D e2

2m2!4
E2

0! D 2�e2„
m2!3V

, (8.45)

where the line again denotes time averaging, and to get the last equality we used (8.38).
Zero-point oscillations with different frequencies are independent, so that their contribution

to the mean square displacement of an electron can be written as a simple sum:

hr02i D V

�2c3

Z
d!!2h.r0!/2i D 2e2„

�c3m2

Z !max

!min

d!

!
. (8.46)

In the absence of an electron–positron vacuum, the upper integration limit here can be arbitrar-
ily large, and the integral diverges. In fact, for frequencies of the order of mc2=„ zero-point
oscillations of the electromagnetic field begin to interact with the filled negative energy (“back-
ground”) states of the electron–positron vacuum. We can imagine the interaction of current
fluctuations due to random displacement of electrons with positive energy and similar currents
due to random displacement of “background” electrons from the filled states. Due to the Pauli
principle, all electrons tend to avoid each other, and these current fluctuations should be in the
opposite phase, leading to their effective compensation. This leads to the effective cutoff in
(8.46) for !max � mc2. The cutoff at the lower limit in (8.46) is determined by some average
frequency of electronic excitation in an atom, which is of the order of the Rydberg frequency:
!min D !0 � Ry

„ D me4

2„3 . Then (8.46) reduces to

h.r02/i D 2e2„
�c3m2

ln
mc2

„!0
D 2

�

e2

„c
� „
mc

�2

ln
mc2

„!0
. (8.47)

Now we obtain for the value of Lamb shift (8.42):

	ELamb D 4

3

e2

„c
� „
mc

�2

j n.0/j2 ln
mc2

„!0
. (8.48)

This shift is always positive, and the s-level of hydrogen is higher in energy than predicted by
the standard Schroedinger–Dirac theory. For a hydrogen atom

j n.0/j2 D

 1

na�1=3

�3
, (8.49)
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where a D „2

me2 is the Bohr radius, and we obtain

	ELamb D 8

3�

�
e2

„c
�3 Ry

n3
ln
mc2

„!0
. (8.50)

More accurate and detailed calculations by Bethe produced more precise result: „!0 �
18 Ry. Then from (8.50) it follows the value of the Lamb shift for 2s-state of hydrogen is
	ELamb.2s/ � 1040 MHz, which is very close to the result of rigorous calculations based
upon the general QED formalism and renormalization theory. Thus, the Lamb shift is another
confirmation of the reality of the physical “vacuum” of quantum field theory.

8.3 Renormalization – how it works

Previous examples of the calculation of radiation corrections in QED demonstrated the
major role of renormalization procedures, allowing us to get rid of the inevitable di-
vergences of Feynman integrals in the higher orders of perturbation theory. The devel-
opment of the theory of renormalization in QED leads to the development of practical
methods for calculating the arbitrary physical effects due to electromagnetic interac-
tion, as well as for analyzing some conceptual problems of the theory. The notion of
renormalizability is crucial for modern quantum field theory. Models of interacting
fields lacking this property are usually treated as nonphysical. Before moving to a
rigorous treatment of the renormalization procedure, we shall discuss the qualitative
aspects of this approach, using as an example the case of charge renormalization in a
single-loop approximation.

Let us return to equation (8.27), which contains a ln ƒ
2

m2 divergence. The value of
the electric charge enters the theory via the diagram for an elementary vertex, shown
in Figure 8.4. There is an infinite number of corrections to this vertex, with some
examples shown in Figure 8.5, which actually change the value of the charge. The
physical charge is determined by all the corrections of this type and the result of the
summation of all diagrams for the vertex part is experimentally measured as the charge
of an electron. Let us call the “initial” charge, associated with an elementary vertex of
Figure 8.4, the “bare” charge e0. Then for the “true” or “dressed” charge e we can write
the perturbation expansion in powers of the “bare” charge, e. g., built upon the single-
loop polarization correction, as represented by the diagrams in Figure 8.6, where dots
replace the similar diagrams of higher orders. The relation between e2 and e2

0 can be

Figure 8.4
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Figure 8.5

Figure 8.6

established, as shown in Figure 8.6, at some appropriate (from an experimental point
of view) value of transferred (by photon line) momentum4 q2 	 �Q2 D ��2. In
most traditional methods, to determine the charge value we use the low-energy limit
of Q2 
 m2. As a result, the expansion shown in Figure 8.6 can be schematically
written as

e2 D e2
0 Œ1 � I.Q2 D �2/CO.e4

0/� , (8.51)

where the value of I.Q2/ is determined by equations (8.17)–(8.20), i. e., by the single-
loop approximation � e2

0. Taking the square root of both sides of equation (8.51), we
obtain

e D e0

�
1 � 1

2
I.Q2 D �2/CO.e4

0/

�
, (8.52)

which coincides with (8.27) after the square root expansion. Eexpansion (8.52) is
shown in diagramatic form in Figure 8.7. Accordingly, taking into account all the

Figure 8.7

4 The value of Q2 is introduced here instead of .�q2/, just for convenience, to deal with Q2 > 0.
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Figure 8.8

Figure 8.9

orders of perturbation theory, we have

e D e0Œ1 C e2
0A1.Q

2/C e4
0A2.Q

2/C : : :�Q2D�2 . (8.53)

It is clear that A1.Q
2/,A2.Q

2/, : : : are infinite in the limit of ƒ2 ! 1. Consider
some physical scattering process, e. g., the one shown in the diagrams of Figure 8.8.
In analytic form:

�iM.e2
0/ D e2

0ŒF1.Q
2/C e2

0F2.Q
2/CO.e4

0/� . (8.54)

Here all the terms are also divergent. But now we are taking a crucial step. Let us
renormalize the value of �iM.e2

0/, expressing e0 via e, by inversing (8.52), or, in
other words, reconstructing the diagrams of Figure 8.7 with the same accuracy, as
shown in Figure 8.9, and substituting this expansion into the vertices of the diagrams
in Figure 8.8. Then we obtain the diagrammatic expansion shown in Figure 8.10. The
first two diagrams of this expansion originate from the first diagram of Figure 8.8,

Figure 8.10
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Figure 8.11

while the factor of 2 appears because we have to express e0 via e in every vertex.
In the remaining diagram of Figure 8.8 we can simply replace e0 by e, as inaccuracy
here is of the order of e6. We can rewrite the expansion of Figure 8.10 as shown in
Figure 8.11. In analytic form this expansion is written as

�iM.e2/ D e2ŒF 0
1.Q

2/C e2F 0
2.Q

2/CO.e4/� . (8.55)

Now we have achieved everything we wanted: comparing (8.54) and (8.55) we can see
that the new scattering amplitude is expressed only via the “experimental” charge e,
defined according to (8.53) and measured at Q2 D �2. Actually, here we have not
added or dropped anything, but just changed the parameters in (8.54), and in fact
M.e2/ D M.e2

0/. At the same time, the term � e4
0 in (8.54) is infinite, while the

term � e4 in (8.55) is finite! It is clear from the fact that the “experimental” charge e
is finite by definition, while two terms in the brackets in Figure 8.11 are of the opposite
sign, so that after summation we obtain

�
e2

3�
ln
ƒ2

Q2
� e2

3�
ln
ƒ2

�2

�
D e2

3�
ln
�2

Q2
, (8.56)

which is independent of cutoffƒ2. Different choices of parameter�2 (renormalization
point) lead to different expansions (8.55). However, the observable value of jM j2
should not depend on the choice of�. This requirement can be written as the following
differential equation:

�
dM

d�
D
�
�
@

@�
C �

@e

@�

@

@e

�
M D 0 . (8.57)

This means that the explicit dependence of M on � which is contained in the co-
efficients F 0

i .Q
2,�2/ in expansion (8.55) is compensated for by the appropriate �2-

dependence of e2.�2/. Equation (8.57) is a typical differential equation of the renor-
malization group, which is of great significance in quantum field theory. Below we
shall once more return to a discussion of this (renormalization) invariance of the the-
ory, which allows one to analyze conceptual foundations of quantum field theory and
gives an effective formalism to perform calculations of specific effects.
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8.4 “Running” the coupling constant

The expansion of Figure 8.6 can be redrawn as shown in Figure 8.12. If we limit
ourselves only to loop diagrams, we obtain geometric a progression which is easily
summed, as shown in Figure 8.13. We have seen above that divergences can be elim-
inated if we work with the physical (renormalized) charge e, which is determined by
the expansion shown in Figure 8.13 at Q2 D �2. Actually we can use any value of
�2. Different choices of Q2 D �2

1,�2
2, : : : correspond to the perturbation expansion

in powers of numerically different values of the physical charge e.�2
i /. In fact, from

Figure 8.13 we obtain

e2.Q2/ D e2
0

1 C I.Q2/
, (8.58)

so that the experimentally observable charge depends on the value of transferred (dur-
ing the scattering) momentumQ2. The value of e.Q2/ is called the “running” coupling
constant. In the limits of large Q2 	 .�q2/ the value of I.q2/ is given by (8.24), and
we get

e2.Q2/ D e2
0

1 � e2
0

3	 ln


Q2

ƒ2

� . (8.59)

To exclude in equation (8.59) the explicit dependence of e2.Q2/ on the cutoff param-
eterƒ, we consider this expression atQ2 D �2 and express e0 via e2.�2/. As a result,

Figure 8.12

Figure 8.13
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for large Q2 we can rewrite (8.59) as

e2.Q2/ D e2.�2/

1 � e2.�2/
3	 ln



Q2

�2

� . (8.60)

Here everything is finite! The “running” coupling constant e.Q2/ describes the de-
pendence of the effective charge on the transferred momentum Q2, i. e., in fact on the
distance between the charged particles. We shall see later that it is really the observ-
able effect, and the corresponding dependence is precisely logarithmic. However, the
result expressed by equation (8.60) raises a number of conceptual questions on the
consistency of QED. The thing is that from (8.60) we can see that with the growth of
Q2 (reduction of distance) the value of effective charge grows, so that sooner or later
perturbation theory becomes invalid at small distances, and for

Q2 D �2 exp

�
3�

e2.�2/

�
(8.61)

we obtain an obviously unphysical divergence (“ghost” pole). ForQ2 larger than this
value the charge becomes imaginary! For historical reasons this behavior is called
“Moscow zero” (or the “zero-charge” problem). In the following we shall return sev-
eral times to the discussion of this situation and related problems.

Actually, somewhat prematurely, we note that in quantum chromodynamics (QCD) situation
is just the opposite. There we also obtain the “running” coupling constant of gluons and quarks,
which is expressed (similarly to (8.60)) as

g2.Q2/ D g2.�/

1 C g2.�2/
12	 .33 � 2nf / ln



Q2

�2

� , (8.62)

where nf is the number of flavors of quarks, while the constant factor of 33 is connected to
the non-Abelian nature of gauge symmetry in QCD (in fact it is calculated as some constant,
related to the properties of the matrices of generators of the color group SU.3/). Only for the
world with nf > 16, the sign in the denominator of equation (8.62) will be the same as in
QED. In the real world we have nf D 6. Thus, the effective charge in QCD does not grow,
but diminishes with the growth of Q2 and becomes small at small distances. This behavior
is called “asymptotic freedom”. For small enough Q2 (at large distances between quarks) the
effective coupling constant (in contrast to QED!) becomes large, which is directly related to
the confinement of quarks (“infrared prison”). Let us denote the value ofQ2, corresponding to
the pole (“ghost pole” again!) in (8.62), as ƒ2, so that

ƒ2 D �2 exp

�
� 12�

.33 � 2nf /g2.�2/

�
. (8.63)

Then (8.62) can be rewritten as

g2.Q2/ D 12�

.33 � 2nf / ln


Q2

ƒ2

� . (8.64)
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ForQ2 � ƒ2 the effective coupling constant is small, and the interaction of quarks and gluons
(at small distances of large momenta) can be described by perturbation theory, similarly to
interactions of electrons and photons in QED (at large distances or small momenta). ForQ2 �
ƒ2 such a description becomes impossible, while quarks and gluons form strongly coupled
clusters: the hadrons. The experimental value of ƒ is somewhere in the interval between 0.1
and 0.5 GeV. Then, for experiments at Q2 � .30 GeV/2 it follows from (8.64) that g2 � 0.1,
so that perturbation theory is valid, like in QED. In the limits of large Q2 we can neglect all
quark masses, but there is still a mass scale in the theory, given by �2, which appears in the
process of renormalization.

8.5 Annihilation of eCe� into hadrons. Proof of
the existence of quarks

As an interesting illustration of QED applications, let us show how purely electro-
dynamic experiments prove the existence of quarks [24]. This becomes possible via
studies of the high-energy annihilation processes of electrons and positrons, with ar-
bitrary hadrons in the final state. In fact, these reactions are going through the creation
of quark–antiquark pairs, i. e., eCe� ! q Nq, which afterwards form hadrons. We can
show that the crossection for such processes can be obtained from an easily calculable
QED cross section for electron–positron annihilation into muons: eCe� ! � N�.

To calculate the cross section of this process in QED it is sufficient to consider the
second of the Feynman diagrams shown in Figure 6.6, where the final products of the
reaction is the pair � N�5. The standard calculation, using the rules of QED diagram
technique, gives the total cross section for such process as [24]


.eCe� ! � N�/ D 4�e2

3Q2
, (8.65)

where Q2 D 4E2 is the square of energy in the center of the mass reference frame
(Mandelstam variable s). Then, the cross section for annihilation into the quark–anti-
quark pair is given by


.eCe� ! q Nq/ D 3e2
q
.e

Ce� ! � N�/ , (8.66)

where eq is the q-quark charge. An additional factor of 3 appears here due to three
separate diagrams for different quark colors, which are to be summed, so that appro-
priate cross sections are also to be summed. To find the cross section for the creation
of all possible hadrons it is necessary to sum over all quark flavors q D u, d , s, : : :, so
that


.eCe� ! hadrons/ D
X

q


.eCe� ! q Nq/ D 3
X

q

e2
q
.e

Ce� ! � N�/ . (8.67)

5 We remind, that muons are just like electrons, but with larger (about 200 times) rest mass.



192 Chapter 8 Some applications of quantum electrodynamics

Thus we obtain the very important prediction

R 	 
.eCe� ! hadrons/


.eCe� ! � N�/ D 3
X

q

e2
q . (8.68)

As cross section 
.eCe� ! � N�/ is well studied (and is in excellent agreement
with equation (8.65)), the experimental measurements of the cross section for eCe�-
annihilation into hadrons give direct information on the number of quarks, their fla-
vors, and their colors. We have

R D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

3

�
2

3

�2
C

1

3

�2
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1

3

�2
�

D 2 for u, d , s .

2 C 3

2

3

�2
D 10

3
for u, d , s, c ,

10

3
C 3


1

3

�2
D 11

3
for u, d , s, c, b etc.

(8.69)

These predictions have been well confirmed by experiments! The value of R D 2
is observed for Q < 2.mc C mu/ � 3.7 GeV, i. e., below the threshold for cre-
ation of c-quarks. Above the threshold for creation of five quark flavors, i. e., for
Q > 2mb � 10 GeV, the experimentally observed value of this ratio is R D 11=3.
These experiments directly confirm the existence of three colors of quarks with the
appropriate (fractional!) values of the electric charge.

Within QCD we can also take into account the contributions of diagrams with quarks (or anti-
quarks) emitting gluons [24]. In the first order over g2, equation (8.68) is modified as follows:

R D 3
X

q

e2
q

�
1 C g2.Q2/

�

�
, (8.70)

so that the weak (logarithmic) dependence of R on Q2 is also observed.

8.6 The physical conditions for renormalization

Let us now discuss more rigorously the basics of renormalizability in QED. It is clear
that the general scheme of invariant perturbation theory and diagrammatic equations
for exact propagators presented above was rather formal. We have operated with all
the entities of the theory as with the usual finite mathematical expressions, though
explicit calculations of D ,G, and � , using perturbation theory, inevitably produce
diverging integrals. We shall explicitly show below that using certain recipes in QED
allows us to perform the well-defined “subtraction” of all infinities and to obtain finite
expressions for all the measurable physical characteristics. These recipes are based
upon the obvious physical requirements of the photon mass being exactly zero, while
the electron charge and mass are equal to their observable values. Our presentation will
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necessarily be a bit schematic, but further details can be found in [6] and in especially
detailed analysis in [2].

A physical photon has zero mass, so that its dispersion is given by k2 D 0. This
means that the exact photon propagator should always have a pole at k2 D 0, so that

D.k2/ D 4�

k2
Z for k2 ! 0 , (8.71)

whereZ is some constant. According to equation (7.39), the general form of the prop-
agator is expressed via the polarization operator as

D.k2/ D 4�

k2.1 � P .k2/=k2/
, (8.72)

so that from (8.71) we get for polarization operator

P .0/ D 0 . (8.73)

Similarly, the constant Z in equation (8.71) can be defined as

1

Z
D 1 � P .k2/

k2

ˇ̌
ˇ̌
k2!0

. (8.74)

Further limitations on the behavior of P .k2/ can be obtained from the analysis of the
physical definition of electric charge. Two classical (very heavy!) particles being at
rest at some large distance from each other (r � m�1, where m is electron mass),
are interacting according to the Coulomb law: V.r/ D e2=r . On the other hand, this
interaction is expressed by the diagram shown in Figure 8.14, where the “fat” wavy
line denotes the exact propagator of the virtual photon and the upper and lower lines
correspond to classical particles. Self-energy corrections for the photon are taken into
account in its exact propagator. Any other self-energy corrections, acting upon the
lines of heavy particles, lead to the corresponding diagrams being zero. In fact, an ad-
dition of some internal line into the diagram of Figure 8.14, e. g., joining 1 and 3 or
1 and 2 by a photon line, leads to the appearance in corresponding diagrams of heavy
virtual particles (due to particle lines under the extra photon lines), with the propa-
gators containing large mass M of the classical particle in denominators, giving zero
contribution in the limit of M ! 1. Then it is clear that the facto of e2D.k2/ in

Figure 8.14
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the diagram of Figure 8.14 is given (up to a sign) by the Fourier transform of the in-
teraction potential of our particles. The static nature of interaction (particles at rest!)
corresponds to the frequency of virtual photon ! D 0, while the large distances cor-
respond to the small wave vectors k. As D depends only on k2 D !2 � k2, we arrive
at the condition

e2D ! 4�e2

k2
for k2 ! 0 , (8.75)

so that in equation (8.71) we have to put Z D 1. Then from equation (8.74) it imme-
diately follows that

P .k2/

k2
! 0 for k2 ! 0 . (8.76)

Besides the previously derived condition (8.73) it follows now that

P 0.0/ 	 dP .k2/

dk2

ˇ̌
ˇ̌
k2D0

D 0 . (8.77)

Note that the effective external line of a real photon should be associated with the
factor of

p
4�Œ1 C 1

4	P .k2/D.k2/�e�. However, for the real photon we always have
k2 D 0, and due to (8.76) we conclude that in the lines of external photons we can
safely drop all radiation corrections.

Thus, the natural physical requirements lead to definite values (zeroes!) for P .0/
and P 0.0/. At the same time, direct calculation using the diagram rules of perturba-
tion theory leads here to diverging integrals. We can get rid of these divergencies if
we attribute the finite values dictated by physical requirements to these divergent ex-
pressions. This is the main idea of renormalization. Another way to formulate this
operation e. g., for charge renormalization, is as follows. We can introduce the non-
physical “bare” charge e0, as a parameter entering the initial expression for an operator
of electromagnetic interaction, which is used in formal perturbation theory. After that,
the renormalization condition is formulated as the requirement of

e2
0D.k2/ ! 4�e2

k2
for k2 ! 0 , (8.78)

where e is the true physical charge of a particle. The we find the relation

e2 D Ze2
0 (8.79)

Now the unphysical e0 is excluded from all expressions, determining the physical ef-
fects (while divergence is “hidden” in the renormalization factor Z). If we require
Z D 1 from the very beginning, we actually perform renormalization “on the fly” [6],
so that there is no need to introduce any fictitious entities into the intermediate calcu-
lations.

Let us now consider the physical conditions for renormalization of the electron prop-
agator. It is obvious that the exact propagator G .p/ should have a pole at p2 D m2,
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where m is the mass of physical electron. Then we can write

G .p/ � Z1
��p� Cm

p2 �m2 C i0
C g.p/ for p2 ! m2 , (8.80)

whereZ1 is a scalar constant (renormalization factor) and g.p/ is finite for p2 ! m2.
From (8.80) we immediately obtain the inverse propagator as

G �1.p/ � 1

Z1
.��p��m/� .��p��m/g.p/.��p��m/ for p2 ! m2 . (8.81)

The mass operator for p2 ! m2 now has the form

M.p/ D G�1.p/�G �1.p/ �
�

1� 1

Z1

�
.��p��m/C.��p��m/g.p/.��p��m/ .

(8.82)
We associate the following factor with the effective external electron line (e. g.,

incoming) in the scattering diagram:

U.p/ D u.p/C G .p/M.p/u.p/ , (8.83)

where u.p/ is the usual electron bispinor, satisfying the Dirac equation .��p� �
m/u D 0. Due to relativistic invariance (U is also the bispinor) the limiting value
of U(p) for p2 ! m2 can differ from u.p/ by a constant scalar factor (wave function
renormalization)

U.p/ D Z0u.p/ . (8.84)

It is not difficult to show [6] the validity of a simple relation

Z0 D
p
Z1 . (8.85)

This is almost obvious, since Green’s function (propagator) is quadratic in electron
operators.

Now, after the establishment of the limiting behavior of the electron propagator,
there is no need of any additional conditions for the vertex operators. Consider the
diagram in Figure 8.15 and let us assume that it describes first-order electron scattering
by an external field A.e/� .k/, taking into account all radiation corrections. In the limit
of k ! 0 we have p2 ! p1 	 p and the radiation corrections to the line of the

Figure 8.15
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external field vanish (we already noted above that they vanish for arbitrary k2 D 0).
Then this diagram corresponds to the amplitude

Mf i D �e NU.p/��.p,p; 0/U.p/A.e/� .k ! 0/ . (8.86)

But for k ! 0 the potential A.e/� .k/ reduces to a constant independent of coordinates
and time, which does not describe any physical field and cannot lead to any change
of transition current. In other words, in this limit, transition current NU��U should
simply coincide with free current Nu��u:

NU.p/��.p,p; 0/U.p/ D Z1 Nu.p/��u.p/ D Nu.p/��u.p/ . (8.87)

This relation is automatically satisfied due to Ward identity, independent of the value
of Z1. In fact, substituting G �1.p/ from (8.81) into (7.87), we obtain

��.p,p; 0/ D 1

Z1
�� � ��g.p/.��p� �m/ � .��p� �m/g.p/�� (8.88)

and (8.87) is satisfied due to .��p� �m/u.p/ D 0 and Nu.p/.��p� �m/ D 0. This
again simply gives us the definition of the physical electron charge. We see that the
renormalization factor Z1 just drops from the amplitude of the physical process. We
can simply require

Nu.p/��.p,p; 0/u.p/ D Nu.p/��u.p/ for p2 D m2 , (8.89)

i. e., putZ1 D 1. The convenience of such a definition is that now there is no necessity
to introduce any corrections to external electron lines, and we simply have U.p/ D
u.p/. It is also clear also that, for Z1 D 1, for mass operator (8.82) we have

M.p/ D .��p� �m/g.p/.��p� �m/ , (8.90)

so that the second term in (8.83) obviously reduces to zero. Thus, there is no need to
renormalize the external lines of all real particles, both photons and electrons.

8.7 The classification and elimination of divergences

The physical conditions of renormalization introduced above allow us, in principle.
to obtain the finite and definite values for the amplitudes of any QED process in an
arbitrary order of the perturbation theory.

Consider first the character of divergences appearing in different Feynman integrals.
First of all we calculate the powers of the virtual 4-momenta, entering the integrand.
Consider an arbitrary diagram of the n-th order (n is the number of vertices!), con-
taining external lines of Ne electron and N
 photon. The number Ne is always even.
The total number of electron lines is equal to 2n; of these Ne are external and Ie are
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internal. During the calculation of the number of lines, the internal lines are counted
twice, as each of them connects two vertices, so that

2n D Ne C 2Ie . (8.91)

Correspondingly, the total number of internal electron lines in the diagram is

Ie D n � Ne

2
. (8.92)

Each vertex is connected with one photon line, and forN
 vertices this line is external,
while for the remaining n � N
 vertices this line is internal. As each internal photon
line connects two vertices, the total number of these lines is equal to

n �N

2

. (8.93)

Each internal photon line is associated with the propagator D.k/, which contains k to
the power of �2. Each internal electron line is associated with the propagator G.p/,
which behaves like p to power of �1 (for p2 � m2). Thus, the total power of the
4-momenta in the denominator of the integrand is

2
n �N


2
C n � Ne

2
D 2n � Ne

2
�N
 . (8.94)

The number of integrations over d 4p and d 4k in the diagram is equal to the number of
internal lines, but the conservation law of the 4-momentum in each vertex leads to an
additional n� 1 constraint on integration momenta (one of these n conservation laws
is connected with external momenta, and it corresponds to the general conservation
law for the scattering process described by this diagram). Correspondingly, taking
into account equations (8.92) and (8.93), we conclude that the total number of internal
lines (both electron and photon) in the diagram is given by

n � Ne

2
C n

2
� N


2
D 3

2
n � Ne

2
� N


2
, (8.95)

which gives the number of integrations, not taking conservation laws into account.
Then, subtracting n�1 we obtain for the number of independent integration momenta

3

2
n � Ne

2
� N


2
� nC 1 D n

2
C 1 � Ne

2
� N


2
. (8.96)

Multiplication by 4 gives the total number of integrations:

2.n �Ne �N
 C 2/ . (8.97)

The difference between the number of integrations and the power of the momenta in
the denominator of the integrand for our diagram is equal to the difference between
(8.97) and (8.94):

r D 4 � 3

2
Ne �N
 . (8.98)
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This number determines whether the appropriate Feynman integral is convergent or
divergent6. Strictly speaking, the situation is more complicated, as the condition of
r < 0 for the diagram as a whole is not sufficient to guarantee its convergence. We also
have to require the negative values of r 0 for all internal blocks which can be contained
within our diagram. The presence of internal blocks with r 0 > 0 leads to the divergence
of the diagram as a whole, though all other integrals may be convergent. The condition
r < 0 is sufficient to guarantee the convergence of the simplest diagrams.

For r � 0 the integral is always divergent. The power of divergence is not less
than r if r is even, and not less than r � 1 if r is odd (the drop of divergence power by
1 in the last case is related to the integration of the product of odd number of 4-vectors
over the whole 4-space giving zero!). The power of divergence can grow due to the
presence of internal blocks with r 0 > 0.

Note that the divergence power of the diagram r , according to (8.98), does not de-
pend on the diagram order n. This remarkable property, as we shall see later, makes the
theory renormalizable. Briefly speaking, the important thing here is that from (8.98) it
becomes immediately clear that only the finite number of types of divergence exists in
such a theory, because with positivity of bothNe andN
 we can obtain r � 0 for only a
few pairs of the values of these integers, and thus only the finite number of the simplest
primitively diverging diagrams. Correspondingly, we can introduce the finite number
of parameters (to be determined from the experiments) to “hide” all divergences. In
the case of n entering (with positive sign) into (8.98), the number of divergence types
will grow with the growth of n, so that situation will become hopeless! For QED we
can explicitly list all primitively diverging diagrams. From the very beginning we can
exclude the cases ofNe D N
 D 0 (vacuum loops) andNe D 0,N
 D 1 (the average
value of vacuum current). All other cases are shown in Figure 8.16. For the first of
these diagrams we have r D 2, and divergence is formally quadratic; in all other cases
r D 0 or r D 1, and divergence is logarithmic.

The diagram of Figure 8.16(d) represents the first correction to the vertex. It should
satisfy (8.89), which can be written as

Nu.p/ƒ�.p,p; 0/u.p/ D 0 for p2 D m2 , (8.99)

where
ƒ� D �� � �� . (8.100)

Let us denote the Feynman integral, written according to diagram rules, as
Nƒ�.p2,p1; k/. This integral is logarithmically divergent and does not satisfy (8.99).
However, we can obtain the expression satisfying this condition by constructing the
difference

ƒ�.p2,p2; k/ D Nƒ�.p2,p1; k/ � Nƒ�.p1,p1; 0/jp2
1Dm2 . (8.101)

6 Let us recall that in all cases we are dealing with divergences of integrals at the upper integration
limit!
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(a)                                          (b)                                               (c)

(d)                                                              (e)

Figure 8.16

Divergence in the integral for Nƒ�.p2,p1; k/ can be separated if we consider the limit of a very
large 4-momentum of the virtual photon f . Then we obtain

� 4�ie2
Z

d 4f

.2�/4
��G.p2 � f /��G.p1 � f /��D��.f / �

� 4�ie2
Z

d 4f

.2�/4
��.��f�/�

�.��f�/��

f 2f 2f 2
, (8.102)

which is independent of the values of the 4-momentum of the external lines. Then in the dif-
ference given by (8.101) divergences are cancelled, and we obtain the finite expression.

Such a procedure for cancelling divergence is called the subtraction scheme
of renormalization. Let us stress that the possibility for cancelling divergence in
Nƒ�.p2,p1; k/ by only one subtraction is guaranteed by (the weakest possible) log-
arithmic nature of the divergence.

After determining the first correction for �� (i. e., the first term of expansion for
ƒ�), the first correction for the electron propagator (diagram of Figure 8.16(b)) can
be calculated using the Ward identity (7.87), which can be rewritten as

�@M.p/

@p�
D ƒ�.p,p; 0/ , (8.103)

introducing the mass operator M instead of G and ƒ� instead of ��. This equation
can be easily integrated with the boundary condition

Nu.p/M.p/u.p/ D 0 for p2 D m2 , (8.104)

which follows from (8.90).
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In principle, in a similar (though more tedious) way we can cancel divergences
from the polarization operator of Figure 8.16(a) [2, 6], but here we have to make two
subtractions:

P .k2/ D NP .k2/ � NP .0/ � k2 NP 0.0/ , (8.105)

where NP denotes the Feynman integral, corresponding to this diagram. It is obvious
that (8.105) satisfies the physical requirements given by (8.73) and (8.77).

The next order of the perturbation theory for the vertex operatorƒ.2/� is determined
by the diagrams shown in Figure 7.17(c–i). Of these, only the diagrams shown in Fig-
ure 7.17(d–f) are compact, which can be made finite with the help of one subtraction
(8.101). Internal self-energy and vertex parts, contained within the noncompact dia-
grams, can be directly replaced by the already-known (renormalized) values of the first
order, given by P .1/, M.1/ andƒ.1/� , so that integrals are again made finite by subtrac-
tion (8.101). Corrections M.2/ and P .2/ are then calculated using the Ward identity
(8.103) and (8.105). The systematic application of such procedure gives, in principle,
the rigorous way to obtain finite expressions for P , M, andƒ� in an arbitrary order of
the perturbation theory [2,6]. This makes possible the calculation of the amplitudes of
the physical scattering processes, containing blocks like P , M, andƒ�. The physical
conditions of renormalizability formulated above are sufficient to cancel divergences
from all Feynman integrals. This is the manifestation of the quite nontrivial property
of renormalizability of QED. Below we shall return several times to the discussion of
renormalizability and its use in other models of quantum field theory.

8.8 The asymptotic behavior of a photon propagator
at large momenta

Let us consider the conceptually very important problem of photon propagator asymp-
totic behavior at large momenta jk2j � m2. In the lowest order of perturbation the-
ory the polarization operator is determined by the simple loop diagram shown in Fig-
ure 8.17. It is defined by the Feynman integral

i

4�
P��.k/ D �e2

Z
d 4p

.2�/4
Sp��G.p/��G.p � k/ . (8.106)

However, this integral (over the whole 4-dimensional p-space) diverges (quadrati-
cally, according to a simple power counting of the previous section, but actually only

Figure 8.17
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logarithmically due to a “hidden” algebra of the integrand). These divergence can be
cancelled using the renormalization recipes of the previous sections. Direct calcula-
tions are rather tedious [2]. This analysis is much simplified in the asymptotic limit of
jk2j � m2, which is of major interest to us. As we shall see below, after the renor-
malization 8.106), in this limit we have

P .k2/ D e2

3�
k2 ln

jkj2
m2

. (8.107)

In essence, this gives the first order correction inverse photon propagator 4�D�1 D k2

and it is valid until the following condition is satisfied:

e2

3�
ln

jk2j
m2


 1 , (8.108)

which limits the validity region of our approximation at high values of jkj2. In fact,
equation (8.107) can be used even under the much weaker condition of

e2

3�
ln

jk2j
m2

. 1 . (8.109)

Now we shall give a proof of this statement and also obtain the result (8.107) itself [6].
First of all, let us note that, although for (8.109) there may be additional contributions
to P .k2/ due to the higher orders of perturbation theory, in the n-th order it is sufficient
to take into account only the terms of the order of � .e2/n lnn. jkj2

m2 /, containing the
large logarithm, appearing in the limit of jk2j � m2. This logarithm should enter with
the same power as e2, because terms with lower powers of the logarithm are obviously
smaller due to e2 
 1. This is called the approximation of leading logarithms.

Consider now the Dyson equation for polarization operator (7.77)

P .k2/ D 4�ie2

3
Sp

Z
d 4p

.2�/4
��G .p C k/��.p C k,p; k/G .p/ . (8.110)

As we have shown above, P .k2/ is gauge invariant, so that calculating it using Feyn-
man diagrams we can use any gauge for the propagators and vertices. Most convenient
is the Landau gauge, when the photon propagator is written as (Dl D 0):

D��.k/ D 4�

k2

�
g�� � k�k�

k2

�
. (8.111)

A detailed analysis of the correction diagrams for (8.106), which can be found in [6],
shows that in this gauge perturbation theory series does not contain terms with the
required powers of logarithms at all.

Then in (8.110) it is sufficient to use the zero-th order approximations G D G and
�� D ��. Then (8.110) reduces to the integral

P .k2/ D 4�ie2

3
Sp

Z
d 4p

.2�/4
��G.p C k/��G.p/ , (8.112)
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the same as in (8.106). Let us discuss the appearance of the logarithm in this integral.
It is easily seen that it originates from the integration region

p2 � jk2j for jk2j � m2 . (8.113)

In fact, in this limit we can write7

G.p/ � 1

��p�
D ��p�

p2
, (8.114)

G.p � k/ �Š 1

��p� � ��k� D 1

��p�
C 1

��p�
��k�

1

�˛p˛

C 1

��p�
��k�

1

�˛p˛
��k�

1

�ˇpˇ
C � � �

D ��p�

p2
C .��p�/.�

�k�/.�
˛p˛/

.p2/2

C .��p�/.�
�k�/.�

˛p˛/.�
�k�/.�

ˇpˇ /

.p2/3
C � � � . (8.115)

After substitution of these expressions into (8.112) the first term, independent of k,
drops out due to renormalization in accordance with the condition P .0/ D 0 (the first
subtraction in (8.105)). The second term also becomes zero after integration over the
directions of p. The third integral is logarithmically divergent over p2; it can be easily
estimated making the integration from p2 � jk2j (lower limit of the region (8.113))
up to some “cutoff parameter” ƒ2:
Z
d 4p

p4

p8
�
Z
dp p3p

4

p8
�
Z ƒ2

jk2j
dp2 p2p

4

p8
�
Z ƒ2

jk2j
dp2 1

p2
� ln

ƒ2

jk2j . (8.116)

Finally we get

P .k2/ D � e2

3�
k2 ln

ƒ2

jk2j . (8.117)

This is not the end of our derivation; for the final cancellation of the divergence (at
ƒ ! 1) we need to subtract from P .k2/=k2 its value at k2 D 0 (second subtraction
in (8.105)). However, logarithmic accuracy of our calculations assumes jk2j � m2, so
that it is sufficient to subtract the value of (8.117) at jk2j � m2, andƒ2 in the argument
of logarithm is simply replaced by m2. Thus, we obtain the required result (8.107). In
the Landau gauge there are no corrections to G and � with the “proper” powers of the
logarithm, and equation (8.107) is actually valid under the condition (8.109).

The function D.k2/, corresponding to the polarization operator (8.107), has the
form

D.k2/ D 4�

k2

1

1 � e2

3	 ln jk2j
m2

. (8.118)

7 The signs here are determined by the properties of the � -matrices.
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Because of (8.109) there is no need to expand this expression in the powers e2. How-
ever, the validity of (8.118) is limited from the side of large jk2j due to the diminishing
denominator. The derivation of (8.118) was based on logarithmic approximation and
neglect of infinite sequences of the diagrams of higher orders, which do not contain
leading logarithms. According to (8.118) an addition of each new “fat” photon line
introduces an additional factor of e2D , and the small parameter of the perturbation
theory instead of e2 is given by

e2

1 � e2

3	 ln jk2j
m2


 1 , (8.119)

which coincides with the “running” coupling constant (8.60) discussed above. As jk2j
grows, this coupling becomes of the order of unity, so that the small expansion param-
eter actually disappears, and perturbation theory can not be further applied.

8.9 Relation between the “bare” and “true” charges

The situation with (8.118), (8.119) can be understood more clearly if, during the deriva-
tion of (8.118), we do not do renormalization “on the fly”, but introduce the first “bare”
charge e0, which afterwards is fitted to obtain the correct observable value of charge e
(or eR in the notations used above). If the logarithmically divergent integral is cut off
at the upper limit at some ƒ2 (above we have also used the notation M 2 as the cutoff
parameter), the “bare” charge can be considered to be its function: e0 D e0.ƒ

2/, and
at the end we have to perform the limit ƒ ! 1. In this approach, the polarization
operator takes the form (8.117)

P .k2/ D � e2
0

3�
k2 ln

ƒ2

jk2j . (8.120)

Correspondingly,
D.k2/ D 4�

k2

1

1 C e2
0

3	 ln ƒ2

jk2j
. (8.121)

Let us define the physical charge e according to

e2
0D.k2/ ! 4�e2

k2
where k2 ! m2 , (8.122)

i. e., at distances of the order of m�1 (i. e., the Compton length of an electron „=mc,
which in quantum field theory defines its effective size). Then we obtain

e2 D e2
0

1 C e2
0

3	 ln ƒ
2

m2

, (8.123)
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which, in fact, coincides with (8.59) if we choose the normalization point �2 D m2.
Then

e2
0 D e2

1 � e2

3	 ln ƒ
2

m2

. (8.124)

If we formally consider the limit of point-like charge ƒ ! 1 in (8.123), we shall
obtain e ! 0, independently of the possible form of the function e2

0.ƒ/. This behav-
ior is called the “zero charge” (or “Moscow zero”). It was first noted by Landau and
Pomeranchuk and independently by Fradkin in the mid-1950s. In the opinion of Lan-
dau [49] this situation reflected the internal inconsistency of both the renormalization
procedure and QED (and any other model of quantum field theory known at that time)
itself.

Let us consider the arguments of Landau and Pomeranchuk, which lead them to this rather
radical conclusion. Let the ratio ƒ2

jk2j be so large that

e2
0

3�
ln
ƒ2

jk2j � 1 , (8.125)

but, at the same time, we still have e0 
 1. Then in equation (8.121) we can neglect unity in
the denominator, so that

D.k2/ D 12�2

k2e2
0 ln ƒ2

jk2j
(8.126)

and, correspondingly, from (8.122) we have

e2 D 3�

� ln ƒ2

m2

, (8.127)

which is independent of the value of “bare” charge e0. Note that here we divided (8.127)
by an additional parameter �, which denotes the number of the fundamental fermions which
contribute to vacuum polarization (the corresponding contributions to polarization loops are
additive!). Let us now introduce, instead of the standard 4-potential of electromagnetic field
A�, a new 4-vector A� D e0A

�. Then the interaction Hamiltonian HI will not contain the
“bare” charge e0, while the free electromagnetic field Hamiltonian H0 (quadratic in A�) will
contain e2

0 in the denominator. The function QD.k2/, defined with the help of A� in the same
way that D.k2/ is defined via A�, will be equal to

QD.k2/ D e2
0D.k2/ D 12�2

k2 ln ƒ2

jk2j
. (8.128)

This expression does not contain e0, and this means that it corresponds to the neglect in the
total Hamiltonian H D H0 C HI (depending of e0) of the term H0. If this neglect of H0 in
comparison to HI is possible (at large ƒ) already for e2

0 
 1, it is natural to assume, that
it is even more justified at not so small e2

0. Then equation (8.126), and also equation (8.127),
become unrelated to the condition of e2

0 
 1, so that the limit of ƒ ! 1 becomes feasible.
Then e2 ! 0 independent of the form of the function e2

0.ƒ/.
The cutoff parameter ƒ, guaranteeing the validity of (8.127), is in any case very large. At

corresponding (very small!) distances the effects of gravitation may exceed those of electro-
magnetism. This leads to the very attractive idea that the “crisis” of QED happens precisely
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at those distances (energies) where gravitation coupling matches that of electromagnetism.
Choosing the cutoff parameter of the order of the Planck length, we have

GNƒ
2 � 1 , (8.129)

whereGN is the Newtonian gravitational constant. If we accept such a point of view, the value
of the physical charge e will be automatically determined by the theory via equations (8.127)
and (8.129), which will lead to the limitation of � � 12. In fact, if � < 12, the effects of
gravitation will become important well before the effective charge becomes of the order of
unity. In the opposite case of � > 12 the effects of gravitation will not “save” electrodynam-
ics, becoming important “too late”. Note that, according to the modern experimental data on
elementary particles (see Chapter 1), there are precisely 12 fundamental fermions!

At the same time, we must stress the opinion of the majority of theorists, who believe
that the limit of ƒ ! 1 in expressions like (8.123) and (8.124) cannot be performed
without breaking the assumptions made during their derivation. From (8.124) it is seen,
that as ƒ grows (with fixed e2) the value of e2

0 also grows and for e2
0 � 1 all these

expressions just become invalid, as their derivation was based on the assumption of
e2

0 
 1, which is simply the criterion of the applicability of perturbation theory.
Note that for QED all these difficulties are of a rather “academic” importance, since

they appear at fantastically high energies of no real interest: e
2

	
ln.E

2

m2 / D 1 is achieved
for E � 1093m, which is essentially due to the smallness of e2 D 1

137 . Much earlier,
as we shall see later, electromagnetic interactions become “intermixed” with the weak
and strong interactions of the elementary particles, so that “pure” electrodynamics
looses its meaning. At the end of this volume we shall return to the discussion of the
problems of consistency of quantum field theory and its asymptotic behavior.

Fora better understanding of these problems we now present a simple qualitative discussion
on coordinate space [5]. We can transform our asymptotic expressions of QED to “coordinate
representation” by an obvious (from dimensionality arguments) replacement: m ! r�1 and
ƒ ! r�1

0 , where r is the characteristic distance from the “center” of an electron (which can
be taken to be of the order of its Compton wavelength), while r0 is some fundamental length,
characterizing the geometric size of the “bare” charge, which can be imagined to be a small
sphere with radius r0. Then (8.123) can be written as

e2.r/ D e2.r0/

1 C 2e2.r0/
3	2 ln r

r0

. (8.130)

Let the value of the “bare” charge e2.r0/ be fixed. Our aim now is to go to the limit of a
point-like “bare” charge, so we start to diminish r0, with a fixed value of e2

0.r0/. Then, sooner
or later we obtain 2e2.r0/

3	2 ln r
r0

� 1, and we can neglect unity in the denominator of (8.130).
Correspondingly, we have

e2.r/ D 1
2

3	2 ln r
r0

. (8.131)
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But now, with a further diminishing of r0 we obtain e2.r/ ! 0 for r0 ! 0. This is “zero
charge” behavior (or “Moscow zero”). On this ground, Landau and Pomeranchuk claimed 8:
“We are coming to the fundamental conclusion that the formal quantum electrodynamics ap-
parently leads to the zero charge of an electron. The word “apparently” here is related to some
lack of rigorousness in the above arguments”. The physics here is that in this approximation
vacuum polarization (due to creation of virtual electron–positron pairs) is so strong at small dis-
tances that on some distance the remnant charge is actually independent of the initial (“bare”)
charge. In the limit of the point-like “bare” charge nothing remains of it on any finite distance:
we have the complete screening. Note that this result is quite transparent; the phenomenon of
screening is well known in plasma and solid state physics [36], where it is described by quite
similar calculations of the polarization operator in many body systems [1]. But in this situation,
how we can understand the magnificent successes of QED?

Let us write (8.130) in the form solved with respect to e2.r0/ and put r D �e D m�1 (the
Compton wave length of an electron):

e2.r0/ D e2.�e/

1 � 2e2.�e/
3	2 ln �e

r0

. (8.132)

Here e2.�e/ should be understood as the “physical” charge of an electron, i. e., that charge
which is measured at large distances (of the order of �e) outside the effective region of vac-
uum polarization (screening). When we “enter” this region (r0 < �e), the charge grows due to
the diminishing screening inside the “cloud” of electron–positron pairs9. However, we cannot
reach the limit of a very large charge due to the existence of the “Landau ghost pole”, close
to which equation (8.132) simply becomes invalid. From a practical point of view all this is
not important at all, as we are speaking here about the region of r0 � �e expŒ�.137/.3�2/=2�.
QED is a practical theory precisely because we are using nonexact solutions with point-like
interaction and leave open the question of the correct behavior at small distances, where other
interactions become quite important. And who knows; is there not some physical mechanism
cutting off divergences at small distances (e. g., related to gravitation; cf. (8.129)!), which is
still unknown to us, but which makes interactions in quantum field theory effectively nonpoint-
like? Thus, the pragmatic (majority!) point-of-view is that we are dealing with the experimen-
tally defined “physical” charge e.�e/, such that we can work with solutions in the form of a
perturbation series, though modern theory becomes invalid at small distances. Thus, the prob-
lem of the asymptotic behavior of QED still remains unsolved (we shall return to this at the
end of the book).

In asymptotically free field theories, e. g., in QCD, the situation is different. The sign in the
denominators of expressions similar to (8.130) and (8.132) is opposite to that in QED, and
the asymptotic behavior of the interaction “constant” (charge) is also opposite: g2.r0/ ! 0
for r0 ! 0. It is not that the charge at the finite distance is becoming zero for an arbitrary
value of the “bare” charge, but the zero point-like charge corresponds to a finite charge at the
finite distance: g2.r/ grows with the growth of r . In QCD we are dealing with an effective
“antiscreening” of the “bare” charge. However, we do not know which values of r0 and g.r0/

should be fixed and up to what values of r we can use an logarithmic expression like (8.130).
We cannot use it infinitely, as the diminishing (with growth of r) denominator again makes

8 Reports of the USSR Academy of Sciences 102, 489 (1955)
9 In fact, this corresponds to the dependence of the “fine structure constant” on momentum, transferred

during the scattering process. We already noted that this effect is experimentally observable!
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perturbation theory inapplicable. Qualitatively it is clear that this growth of the charge with
r corresponds to the confinement force (acting upon quarks). These dependences are now
measured experimentally, and we shall return later to the discussion of asymptotic freedom
in QCD .

8.10 The renormalization group in QED

Let us show now how equations (8.130) and (8.124) can be derived using simple analy-
sis, based on dimensional analysis and the notion of renormalizability which constitute
the essence of the so-called renormalization group introduced in QED by Gell-Mann
and Low. Consider again the square of the “bare” charge as a function of cutoff pa-
rameter e2

0.ƒ/ and introduce some function d which relates e2
0 for two different values

of its argument (cutoff):
e2

0.ƒ
2
2/ D e2

0.ƒ
2
1/d . (8.133)

Forƒ2
1,ƒ2

2 � m2 the function d does not depend onm and, being dimensionless, can
depend only on the dimensionless arguments e2

0.ƒ
2
1/ andƒ2

2=ƒ
2
1, so that we can write

e2
0.ƒ

2
2/ D e2

0.ƒ
2
1/d

�
e2

0.ƒ
2
1/,
ƒ2

2

ƒ2
1

�
. (8.134)

This is the main relation of the renormalization group. Its physical meaning is quite
clear: in renormalizable theory any change of the cutoff parameter can be compensated
for by the appropriate change of the “bare” charge, with no change in the physical
results (in this case, of the physical charge!). The functional equation (8.134) can be
conveniently rewritten in a differential form. Consider the infinitesimally close values
of cutoff parametersƒ2

1 andƒ2
2. Let us denoteƒ2

1 D � andƒ2
2 D �Cd� . Then, from

(8.134) we obtain
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�
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xD1
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�
, (8.135)

which gives, on account of d.e2
0.�/, 1/ D 1,

de2
0.�/ D e2

0.�/
@d.e2

0.�/, x/

@x

ˇ̌
ˇ̌
xD1

d�

�
, (8.136)

giving the differential Gell-Mann–Low equation

de2
0

d ln �
D  .e2

0/ , (8.137)

where we have introduced the Gell-Mann–Low function

 .e2
0/ D e2

0

�
@d.e2

0, x/

@x

�

xD1
. (8.138)
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Writing (8.137) as de2
0

 .e2
0/

D d�
�

and integrating it from � D ƒ2
1 to � D ƒ2

2, we get

ln
ƒ2

2

ƒ2
1

D
Z e2

0.ƒ
2
2/

e2
0.ƒ

2
1/

de2

 .e2/
. (8.139)

If in the entire integration region the value of e2
0 is small, we can use for  .e2/ the

expression obtained from the first order of perturbation theory. From the general ex-
pression D.k2/ D 4	

k2 .1 � P .k2/
k2 /�1 it is clear that corrections to the “bare” charge e2

0
are given by e2

0k
�2P .k2/. Then, using for the polarization operator its lowest order

expression (8.120), we find (cf. (8.123))

e2 D e2
0.ƒ

2
1/

�
1 � e2

0.ƒ
2
1/

3�
ln
ƒ2

1

jk2j
�

D e2
0.ƒ

2
2/

�
1 � e2

0.ƒ
2
2/

3�
ln
ƒ2

2

jk2j
�

. (8.140)

Then

d

�
e2

0,
ƒ2

2

ƒ2
1

�
D

1 � e2
0

3	 ln ƒ2
1jk2j

1 � e2
0

3	 ln ƒ2
2jk2j

� 1 C e2
0

3�
ln
ƒ2

2

ƒ2
1

. (8.141)

Correspondingly, using the definition (8.138), we obtain

 .e2
0/ D e4

0

3�
, (8.142)

so that the Gell-Mann–Low function is quadratically growing with its argument. Now
we can perform integration in (8.139) explicitly:

1

3�
ln
ƒ2

2

ƒ2
1

D 1

e2
0.ƒ

2
1/

� 1

e2
0.ƒ

2
2/

. (8.143)

If we define the physical charge as e2 D limƒ2
1!m2 e2

0.ƒ
2
1/, the expression (8.143)

reduces to (8.123) and (8.124). Thus, the calculation of the Gell-Mann–Low function
in the lowest order of perturbation theory and the subsequent integration of the differ-
ential renormalization group equation give the result obtained above by summation of
the leading logarithms of diagrammatic expansion. In this sense, we can “overcome”
the problems of the rigorous justification of this summation procedure. Sometimes
it is said that the renormalization group provides an “improved” perturbation theory,
where the role of the coupling constant is played by (8.119). However, all the main
questions discussed above actually remain. The result (8.143) was obtained from an
approximate expression for the Gell-Mann–Low function (8.142), which is valid only
for e2

0 
 1. It is not clear how it is changed by higher order corrections, and no reliable
analysis of this problem is available. However, later we shall see that the qualitative
analysis of the possible consequences of a differential equation like (8.137), based on
certain assumptions on the form of the Gell-Mann–Low function for arbitrary values
of its argument, is actually possible and may be quite useful for the general discussion
on the asymptotic properties of quantum field theory.
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8.11 The asymptotic nature of a perturbation series

The scheme of renormalization discussed above allows the total cancellation of diver-
gences in separate diagrams, i. e., in separate terms of the perturbation expansion of
the scattering matrix in powers of an electron charge, but not in the scattering matrix
as a whole. The question arises of whether or not this renormalized perturbation series
is convergent. There is an argument, due to Dyson, which proves that this series is
actually divergent and belongs to the class of the so-called asymptotic expansions.

We have seen that the interaction between two electrons is determined by the func-
tion e2

RD.k2/, where eR is the renormalized (physical) charge. Calculating, with the
help of this function, some physical property F.p; e2

R/, we obtain the infinite series in
powers of e2

R

F.p; e2
R/ D

1X

nD0

e2n
R fn.p/ , (8.144)

where fn.p/ are some functions of the 4-momenta of the particles. Assume that this
series (with separate terms renormalized according to the procedure discussed above)
is convergent for some value of eR. Then F.p; e2

R/ 	 F.e2
R/ is an analytic function

of e2
R for e2

R � 0, so that F.�e2
R/ is also an analytic function, expressible as a power

series. But F.�e2
R/ represents our property F for the case of particle interaction given

by �e2
RD.k2/, which corresponds to particle attraction rather than repulsion.

It can be easily seen that in this case the usual definition of the vacuum does not cor-
respond to the state with the lowest possible energy! In fact, imagine the creation ofN
electron–positron pairs with all electrons being concentrated in one region of space and
while all positrons in another region. If both regions are small and well separated, for
large enough N the negative Coulomb energy of these attracting regions will become
larger than their rest and kinetic energies. Let us call these states “pathological”.

Assuming that charge interaction is determined by �e2
RD.k2/, consider some usual

state characterized by the presence of several particles. In particular, this may be the
usual vacuum state (state with no particles). This state is separated from the “patholog-
ical” state with the same energy by some energy barrier, and the height of this barrier
is determined by the minimal energy needed to create N pairs, i. e., by the rest energy
of these N particles.

Due to quantum mechanical tunneling there is a finite probability of transition from
the usual to the “pathological” state. This means that every physical state is actually
unstable towards the spontaneous creation of a large number of particles. The “patho-
logical” state, to which our system tunnels, will not be stationary, because more and
more particles will be created, so that the vacuum state in particular will be destroyed,
and there will be no ground state for our system at all! Due to such “pathology”, we
cannot assume that QED interaction �e2

RD.k2/ leads to well-defined analytic func-
tions. Actually, the function F.�e2

R/ cannot be analytic and the perturbation series
(8.144) can not be convergent for e2

R ¤ 0.
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Again we can pose the natural questions: What is the physical meaning of perturba-
tion series (8.144), and why is QED, operating with such expansions, so successful in
explaining experiments? The answer is that expansion (8.144) represents an asymp-
totic series. Such expansions, under certain conditions, can be used to describe the
functions they represent with high (but always finite!) accuracy [71]. In contrast to a
convergent series, the terms of the asymptotic series e2n

R fn.p/ first diminish with the
growth of n, but then, starting from some number n0, start to grow (and this growth is
in general unlimited). The maximal accuracy for an asymptotic series to the approx-
imate function F is determined by the value of fn0 . The less this term is, the higher
is this accuracy. In the case of QED, there are reasons to believe that in the series
(8.144) the values of fn will diminish up to n of the order of n0 � „c=e2

R D 137. This
value of n0 is so large that the accuracy of the QED series (8.144) in describing reality
is very high. Apparently, the error here can be estimated as exp.�„c=e2

R/, which is
immensely small. For the practical tasks of QED, such accuracy is overwhelming!



Chapter 9

Path integrals and quantum mechanics

9.1 Quantum mechanics and path integrals

It is well known that quantum mechanics was initially formulated in two equivalent
forms: matrix Heisenberg mechanics and wave mechanics, based on the Schroedinger
equation. Later Feynman proposed [20] another quite elegant path integral formula-
tion of quantum mechanics, which will be briefly described in this chapter. Of course,
all these formulations of are equivalent and may be used to solve different practical
problems, choosing those more convenient for the problem at hand. Conceptually, they
stress different aspects of the same universal quantum theory and allow different ways
of generalizing towards the appropriate quantum field theory. Feynman’s formulation
is especially convenient for this kind of generalization, as we shall see later.

Let  .qi , ti / be a wave function of a quantum particle at the initial moment of time
ti , where qi denotes the appropriate coordinate dependence. For simplicity we shall
consider here only one-dimensional motion. We have seen in Chapter 4 that the value
of the wave function at a later moment of time t can be written as

 .qf , tf / D
Z
dqiK.qf tf ; qi ti / .qi ti / , (9.1)

where K.qf tf ; qi ti / is the appropriate propagator (Green’s function of the Schroe-
dinger equation). According to standard interpretation,  .qf , tf / represents the prob-
ability amplitude for finding the particle at spatial point qf at time moment tf . Corre-
spondingly, propagator K.qf tf ; qi ti / represents the probability amplitude of particle
transition from the initial point qi at moment ti to the final point qf at moment tf . The
probability of this transition is given by

P.qf tf ; qi ti / D jK.qf tf ; qi ti /j2 . (9.2)

Let us divide the time interval between moments ti and tf into two intervals separated
by the time moment t . Repeated use of (9.1) gives

 .qf , tf / D
Z
dqi

Z
dqK.qf tf ; qt/K.qt ; qi ti / .qi ti / , (9.3)

so that

K.qf tf ; qi ti / D
Z
dqK.qf tf ; qt/K.qt ; qi ti / . (9.4)
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Figure 9.1

Thus, the qi ti ! qf tf transition can be considered as the particle transition via all
possible intermediate points (states), as shown in Figure 9.1. As an example, we may
recall the notorious experiment on two slot electron diffraction. This is schematically
shown in Figure 9.2, where slots are placed at points 2A and 2B. In this case the
analogue of equation (9.4) can be written as

K.3; 1/ D K.3; 2A/K.2A; 1/CK.3; 2B/K.2B; 1/ . (9.5)

The intensity distribution at the screen, placed at point 3, is determined by

P.3; 1/ D jK.3; 1/j2 , (9.6)

with obvious interference contributions. It can be said that in this experiment the elec-
tron simultaneously moves along both paths (trajectories). Registering it somehow at
one of the slots destroys the interference picture.

Figure 9.2
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Let us introduce eigenvectors of the coordinate operator in Dirac’s notations:

Oqjqi D qjqi . (9.7)

Then the wave function of our particle can be written as

 .qt/ D hqj t iS , (9.8)

where j t iS is the state vector in the Schroedinger representation, related to the time-
independent state vector in Heisenberg representation j iH by

j t iS D e�iHt=„j iH . (9.9)

Let us define the time-dependent state vector as

jqti D eiHt=„jqi . (9.10)

Then we can rewrite (9.8) as

 .qt/ D hqt j iH . (9.11)

All these relations are well known from elementary quantum mechanics. Using the
completeness of the set of state vectors (9.7), (9.10) we can write

hqf tf j iH D
Z
dqi hqf tf jqi ti ihqi ti j iH , (9.12)

which reduces (with the account of (9.11)) to

 .qf tf / D
Z
dqi hqf tf jqi ti i .qi ti / . (9.13)

Comparing (9.13) with (9.1) we see that the propagator can be written as

K.qf tf ; qi ti / D hqf tf jqi ti i , (9.14)

which (in a slightly different form) we already used in Chapter 4. Below we shall
widely use (9.14) in our discussion.

Let us divide the time interval between moments ti and tf into .nC 1/ equal seg-
ments of duration � . Then the propagation of particle from qi ti to qf tf can be con-
sidered as shown in Figure 9.3, which by repeated use of (9.4), allows us to write the
transition amplitude (propagator) as

hqf tf jqi ti i D
Z

� � �
Z
dq1dq2 � � �dqnhqf tf jqntnihqntnjqn�1tn�1i � � � hq1t1jqi ti i ,

(9.15)
where the multiple integral is taken over all possible trajectories, connecting initial
point qi with final qf . In the limit of n ! 1 or � ! 0 equation (9.15) determines the
propagator as a Feynman’s path integral (continual or functional integral). Already at
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Figure 9.3

this level we can see the major difference between classical and quantum mechanics.
The classical particle propagates from some initial point to the final point, moving
along the single trajectory determined by the least action principle, while in quantum
mechanics the particle motion involves the whole continuum of all possible trajecto-
ries, connecting these points!

The propagator at a small trajectory segment is easily calculated. From equation
(9.10) we get

hqjC1tjC1jqj tj i D hqjC1je�iH�=„jqj i D
�
qjC1

ˇ̌
ˇ̌1 � i

„H� CO.�2/

ˇ̌
ˇ̌ qj



D ı.qjC1 � qj / � i�

„ hqjC1jH jqj i

D
Z

dp

2�„ exp

�
i

„p.qjC1 � qj /
�

� i�

„ hqjC1jH jqj i , (9.16)

where we have used an obvious representation of the ı-function via a Fourier integral.
In the general case the HamiltonianH is some function of q and p. Consider the most
common case of a particle moving in a potential field, when

H D p2

2m
C V.q/ . (9.17)

Then the kinetic energy term can be rewritten as
�
qjC1

ˇ̌
ˇ̌ p

2

2m

ˇ̌
ˇ̌ qj


D
Z
dp0

Z
dphqjC1jp0i

�
p0
ˇ̌
ˇ̌ p

2

2m

ˇ̌
ˇ̌p


hpjqj i , (9.18)

so that using

hqjC1jp0i D 1p
2�„ exp

�
ip0qjC1

„
�

, hpjqj i D 1p
2�„ exp

�
� ipqj„

�
,
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we obtain
�
qjC1

ˇ
ˇ̌
ˇ
p2

2m

ˇ
ˇ̌
ˇ qj


D
“

dpdp0
2�„ exp

�
i

„.p
0qjC1 � pqj /

�
p2

2m
ı.p � p0/

D
Z

dp

2�„ exp

�
i

„p.qjC1 � qj /
�
p2

2m
. (9.19)

Note that in the left-hand side of this expression p is represented by operator, while
in the right-hand side it is just a c-number! In a similar way we can obtain

hqjC1jV.q/jqj i D V

�
qjC1 C qj

2

�
hqjC1jqj i D V

�
qjC1 C qj

2

�
ı.qjC1 � qj /

D
Z

dp

2�„ exp

�
i

„p.qjC1 � qj /
�
V. Nqj / , (9.20)

where Nqj D 1
2.qjC1 C qj /. Now, from (9.19) and (9.20), we get

hqjC1jH jqj i D
Z

dp

2�„ exp

�
i

„p.qjC1 � qj /
�
H.p, Nq/ , (9.21)

so that (9.16) is rewritten as

hqjC1tjC1jqj tj i D
Z
dpj

2�„ exp

²
i

„
�
pj .qjC1 � qj / � �H.pj , Nqj /

�³
, (9.22)

where pj is momentum at the moment between tj and tjC1 (between qj and qjC1).
The corresponding segments of the trajectory in momentum space are shown in Fig-
ure 9.4. Equation (9.22) defines the propagator on a small segment of one of the paths
(trajectories). The complete propagator is obtained by substitution of (9.22) into (9.15),

Figure 9.4
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so that

hqf tf jqi ti i D lim
n!1

Z nY

jD1

dqj

nY

iD0

dpi

2�„ exp

´
i

„
nX

lD0

Œpl .qlC1 � ql/ � �H.pl , Nql/�
μ

,

(9.23)
where q0 D qi and qnC1 D qf . In fact we are dealing here with a multiple integral of
an infinite order. Usually equation (9.23) is written in the symbolic form

hqf tf jqi ti i D
Z

Dq.t/Dp.t/

2�„ exp

²
i

„
Z tf

ti

dt Œp Pq �H.p, q/�

³
, (9.24)

where q.ti / D qi and q.tf / D qf . This form defines the measure for integration
over all trajectories .q.t/,p.t// in the phase space of a particle, and it has no other
meaning except the compact notation for (9.23). The situation here is quite similar to
the definition of the usual integral via the limiting behavior of Riemann sums. This
notation (9.24) introduces the notion of a functional (continual) integral over all tra-
jectories (paths) in the phase space. Variables p.t/ and q.t/ entering (9.24) are the
usual c-number functions.

The definition of the propagator via the functional integral over all trajectories in
phase space (9.24) is absolutely general and is valid for the arbitrary Hamiltonian
H.p, q/. In the case of the Hamiltonian given by (9.17) we can make further sim-
plifications and transform the propagator to a functional integral over all the paths in
coordinate space only. In this case we can write

hqf tf jqi ti i D

lim
n!1

Z nY

jD1

dqj

nY

iD0

dpi

2�„ exp

´
i

„
nX

lD0

�
pl .qlC1 � ql/ � p2

l

2m
� � V. Nql /�

�μ

.

(9.25)
The integrals over pj here are easily calculated using the standard expressions pre-
sented below. Then we get

hqf tf jqi ti i D

lim
n!1


 m

2�i„�
�nC1

2
Z nY

jD1

dqj exp

´
i�

„
nX

lD0

hm
2


qlC1 � ql
�

�2 � V. Nql /
iμ

, (9.26)

so that in a continuous limit we can write

hqf tf jqi ti i D N

Z
Dq.t/ exp

²
i

„
Z tf

ti

dt
hm

2
Pq2 � V.q/

i³

D N

Z
Dq.t/ exp

²
i

„
Z tf

ti

dtL.q, Pq/
³

D N

Z
Dq.t/ exp

²
i

„S
³

,

(9.27)

where L D T � V is the classical Lagrange function of our particle, while S DR tf
ti
dtL.q, Pq/ is the classical action, calculated for an arbitrary trajectory q.t/, con-
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necting the initial point q.ti / with final q.tf /. The functional integral (9.27) is taken
over all the possible trajectories, connecting the initial and final points. The normaliza-
tion factor N introduced here is formally divergent in the limit of n ! 1, but this is
irrelevant; as we shall see later it always cancels from physical transition amplitudes.

The remarkable result (9.27) allows, in particular, a qualitative understanding of
the physical origin of the classical principle of least action. We can see that in the
classical limit of „ ! 0 the Feynman integral (9.27) contains the continuum of rapidly
oscillating factors of exp.iS=„/, which “on the average” cancel each other. The only
“surviving” one is the contribution of the most slowly changing factor withSmin, which
corresponds to the single trajectory described by the least action principle and the
Newtonian equations of motion of classical mechanics.

Remarks on some useful integrals

Below we present some common integrals, which are useful for practical calculations with
functional integrals. First of all, we have the well-known Gauss–Poisson integral:

Z 1

�1
dx e�ax2 D

r
�

a
, a > 0 . (9.28)

This result follows immediately if we write
Z 1

�1
dx

Z 1

�1
dy e�a.x2Cy2/ D �

a
, (9.29)

which, after the transformation to polar coordinates in the .x,y/ plane, reduces to
Z 2	

0
d�

Z 1

0
dr re�ar2 D �

Z 1

0
d.r2/ e�ar2 D �

a
. (9.30)

The last equality is obvious and proves (9.28).
Consider now the integral of an exponent, depending on the quadratic form:

Z 1

�1
dx e�ax2CbxCc 	

Z 1

�1
dx eq.x/ , (9.31)

where we assume a > 0. Then we have q0.x/ D �2ax C b, q00.x/ D �2a, q000.x/ D 0 : : : ,
and we easily find Nx, the value of x corresponding to the minimum of q.x/:

Nx D b

2a
, q. Nx/ D b2

4a
C c . (9.32)

Now it is convenient to rewrite q.x/ as

q.x/ D q. Nx/ � a.x � Nx/2 . (9.33)

Then, Z 1

�1
dx eq.x/ D eq. Nx/

Z 1

�1
dxe�a.x� Nx/2 D eq. Nx/

r
�

a
, (9.34)

so that finally we have
Z 1

�1
dxe�ax2CbxCc 	

Z 1

�1
eq.x/ D exp

�
b2

4a
C c

�r
�

a
. (9.35)

This expression was used to derive (9.26), (9.25).
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Let us quote also the generalization of (9.35) for the case of n integration variables [56]:
Z 1

�1
dx1 � � �

Z 1

�1
dxn exp ¹i�Œ.x1 � a/2 C .x2 � x1/

2 C � � � C .b � xn/2�º D
�

in�n

.nC 1/�n

�1=2

exp

�
i�

nC 1
.b � a/2

�
, (9.36)

which will be useful in the following.

Equation (9.27), in fact, contains the whole of the quantum mechanics of a particle
and is widely used to solve practical problems [20]. Let us show how the common
Schroedinger equation is derived from this representation. First of all, we write the
basic relation (9.1), which connects the wave function at moment t2 with its value at
the previous moment t1:

 .x2, t2/ D
Z 1

�1
dx1K.x2t2; x1t1/ .x1t1/ . (9.37)

Let moments t2 and t1 be very close, so that t2 D t1 C ", where " ! 0. Then the prop-
agator is determined by the contribution of a single small segment of the trajectory, so
that using (9.26) we can write (9.37) as

 .x, t C "/ D A

Z 1

�1
exp

�
i

„
m.x � y/2

2"

�
exp

�
� i„"V

�
x C y

2
, t

��
 .y, t /dy ,

(9.38)
whereA D �

m
2	i„"

	1=2
. Due to the first exponent, a significant contribution to the inte-

gral originates only from the values y close to x. Making the variable transformation
y D x C � we rewrite (9.38) as

 .x, tC"/ D A

Z 1

�1
exp

�
im�2

2„"
�

exp

�
� i"„ V



x C �

2
, t
��
 .xC�, t /d� . (9.39)

The main contribution here comes from the small values of �, and expanding both
sides of (9.39) we have

 .x, t /C "
@ 

@t
D

A

Z 1

�1
exp

�
im�2

2„"
��

1 � i"

„ V.x, t /

� �
 .x, t /C �

@ 

@x
C 1

2
�2 @

2 

@x2

�
d� . (9.40)

Now we can take into account that

A

Z 1

�1
eim�

2=2„"d� D 1 ,

A

Z 1

�1
eim�

2=2„"�d� D 0 ,

A

Z 1

�1
eim�

2=2„"�2d� D i„"
m

.
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Then (9.40) reduces to

 .x, t /C "
@ 

@t
D  � i"

„ V � „"
2im

@2 

@x2
. (9.41)

This equation is valid (for " ! 0) if  satisfies the one-dimensional Schroedinger
equation

i„@ 
@t

D � „2

2m

@2 

@x2
C V.x, t / . (9.42)

This completes our derivation.

9.2 Perturbation theory

Let us consider potential V.x/ as a small perturbation. More strictly speaking we re-
quire the smallness (in comparison with „) of the time integral of V.x, t /. Then we
can write an expansion:

exp

²
� i„

Z tf

ti

dtV .x, t /

³
� 1 � i

„
Z tf

ti

dtV .x, t / � 1

2Š„2

�Z tf

ti

dtV .x, t /

�2

C � � � .

(9.43)
Using this type of expansion in equation (9.27), we can obtain the the perturbation
expansion for the propagator K.xf tf ; xi ti /:

K D K0 CK1 CK2 C � � � . (9.44)

The zero-th order term here represents the free particle propagator:

K0 D N

Z
Dx exp

�
i

„
Z
dt

1

2
m Px2

�
. (9.45)

To make an explicit calculation, we return to the definition of the path integral (9.23)
and write (9.45) as a limit of the multiple integral (cf. (9.26)):

K0 D lim
n!1


 m

2�i„�
�nC1

2
Z 1

�1

nY

jD1

dxj exp

�
im

2„�
nX

lD0

.xlC1 � xl/2
�

. (9.46)

Denoting the multiple integral here as I , we can calculate it using (9.36) and obtain

I D 1

.nC 1/1=2

�
i2�„�
m

�n=2

exp

²
im

2„.nC 1/�
.xf � xi /2

³
. (9.47)

Taking .n C 1/� D tf � ti , from (9.46) we get the explicit form of the free particle
propagator

K0.xf tf ; xi ti / D �.tf � ti /
�

m

2�i„.tf � ti /
�1=2

exp

²
im.xf � xi /2

2„.tf � ti /
³

, (9.48)
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where we have added a factor of �.tf � ti /, which guarantees causality. The general-
ization of this expression for a particle moving in three-dimensional space is quite ob-
vious: the corresponding propagator reduces to the product of free propagators (9.48)
along three axes x, y, z.

In Chapter 4 we have seen the that particle propagator satisfies Schroedinger equa-
tion with the ı-source:

�
i„ @

@tf
�H.xf /

�
K.xf tf ; xi ti / D i„ı.tf � ti /ı.xf � xi / . (9.49)

For one-dimensional free particle motion H.xf / D � „2

2m
@2

@x2
f

. Correspondingly, the
free particle propagator satisfies the equation

�
i„ @

@tf
C „2

2m

@2

@x2
f

�
K0.xf tf ; xi ti / D i„ı.tf � ti /ı.xf � xi / . (9.50)

It can also be checked by direct substitution of (9.48) into this equation.

In equations (9.48) and (9.50) we make the replacements t ! �i„t and „
2m ! D; equa-

tion (9.50) transforms into
"
@

@tf
�D @2

@x2
f

#

K0.xf tf ; xi ti / D ı.tf � ti /ı.xf � xi / , (9.51)

andK0.xf tf ; xi ti / now represents the Green’s function of the diffusion equation [70] with the
diffusion coefficient D. All the imaginary terms of (9.48) disappear, and this expression de-
scribes the diffusion of particles from the point-like source. In fact, path integrals first appeared
in the theory of diffusion processes, where these are called Wiener integrals. The disappear-
ance of oscillations from (9.48) (which are replaced by rapidly the diminishing exponents of
diffusion theory) is quite convenient for numerical calculations, particularly for calculations of
path integrals by Monte-Carlo algorithms. Such formal transformation to the imaginary time is
widely used in studies of different problems of quantum mechanics and quantum field theory.

There is one more aspect of transformation to imaginary time, which is even more funda-
mental for physics. Equilibrium statistical mechanics is based of the use of Gibbs canonical
distribution, with the density matrix of the following form [36]:

� D 1

Z
e�ˇH , (9.52)

where H is the system Hamiltonian, Z is the partition function, and ˇ D 1
T

is the inverse
temperature. Then it is easy to get

@�

@ˇ
D �H� . (9.53)

But this equation (also called the Bloch equation) can be obtained from the usual Schroedinger
equation:

i„@ 
@t

D H (9.54)

after the formal replacement  ! �, t ! �i„ˇ. Thus we may say that all of statistical
mechanics is the same theory as quantum mechanics in “imaginary time”. The calculation of
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the equilibrium density matrix of the system of interacting particles can be performed solv-
ing equation (9.53) with the help of Green’s function formalism (propagators) in imaginary
(so-called “Matsubara”) time [1]. These propagators can be represented by Feynman path in-
tegrals (Wiener integrals), which allows the development of an alternative general approach
to problems of statistical physics [19].

Now let us calculate K1, the first order correction over the potential V.x/. From
(9.26) and (9.43) we have

K1 D

� i�

„ lim
n!1


 m

2�i„�
�nC1

2
nX

iD1

Z
dx1 � � �dxnV.xi , ti / exp

²
im

2„�
nX

jD0

.xjC1 �xj /2
³

,

(9.55)

where we have replaced integration over t by summation over ti . As V depends here
on xi , we break the sum in the exponent in two: one performed from j D 0 to j D i�1
and the other from j D i to j D n. Let us also separate the integral over xi . As a
result, equation (9.55) is rewritten as

K1 D � lim
n!1

i�

„
nX

iD1

Z

� dxi
²
 m

2�i„�
�n�iC1

2
Z
dxiC1 � � �dxn exp

�
im

2„�
nX

jDi
.xjC1 � xj /2

�³

� V.xi , ti /
²�

m

2�i„�
� i

2
Z
dx1 � � �dxi�1 exp

�
im

2„�
i�1X

jD0

.xjC1 � xj /2
�³

.

(9.56)

The terms in the figure brackets are equal to K0.xf tf ; xt/ and K0.xt ; xi ti /, so that
after the replacement �

P
i

R
dxi by

R
dx
R
dt equation (9.56) reduces to

K1 D � i„
Z tf

ti

dt

Z 1

�1
dx K0.xf tf ; xt/V .x, t /K0.xt ; xi ti / . (9.57)

Taking into account that K0.xf tf ; xt/ D 0 for t > tf , while K0.xt ; xi ti / D 0 for
t < ti , we can write equation (9.57) as

K1 D � i„
Z 1

�1
dt

Z 1

�1
dx K0.xf tf ; xt/V .x, t /K0.xt ; xi ti / , (9.58)

which is the final expression for the first order correction to the propagator (Green’s
function) of our particle.
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Quite similarly, but by more tedious calculations, we can find the second-order cor-
rection:

K2.xf tf ; xi ti / D
�

� i„
�2 Z 1

�1
dt1

Z 1

�1
dt2

Z 1

�1
dx1

Z 1

�1
dx2 (9.59)

�K0.xf tf ; x2t2/V .x2t2/K0.x2t2; x1t1/V .x1t1/K0.x1t1; xi ti / .

Now the structure of the higher orders becomes clear, and we obtain the perturbation
series for the propagator:

K.xf tf ; xi ti / D K0.xf tf ; xi ti / � i

„
Z
dt1dx1K0.xf tf ; x1t1/V .x1, t1/K0.x1t1; xi ti /

� 1

„2

Z
dt1dt2dx1dx2K0.xf tf ; x2t2/V .x2t2/K0.x2t2; x1t1/

� V.x1t1/K0.x1t1; xi ti /C � � � . (9.60)

which coincides with the similar expansion introduced in Chapter 4. Note that in equa-
tion (9.59) there is no factor of 1=2Š, which is present in expansion (9.43). This is due
to the fact that two interactions V at different moments of time are equivalent, and we
can write

1

2Š

Z 1

�1
dt 0

Z 1

�1
dt 00V.t 0/V .t 00/

D
Z 1

�1
dt 0

Z 1

�1
dt 00Œ�.t 0 � t 00/V .t 0/V .t 00/C �.t 00 � t 0/V .t 0/V .t 00/

D
Z 1

�1
dt1

Z 1

�1
dt2V.t1/V .t2/�.t1 � t2/ . (9.61)

For the same reason, the correction of the arbitrary orderKn does not contain the factor
of 1=nŠ. It is clear that expansion (9.60) corresponds to the simple diagram technique:
each term of the series can be expressed by a diagram, if we associate the straight line
with the propagator and the wavy lines with the potential, acting at appropriate points
of space at appropriate moments of time (over which we perform integration).

Substitution of expansion (9.60) into (9.1) gives

 .xf tf / D
Z
dxiK.xf tf ; xi ti / .xi ti /

D
Z
dxiK0.xf tf ; xi ti / .xi ti /

� i

„
Z
dt

Z
dx

Z
dxiK0.xf tf ; xt/V .x, t /K0.xt , xi ti / .xi ti /C � � � .

(9.62)

The contribution of higher order terms, which are not written here, obviously reduces
to the replacement of the last propagator K0 by the complete propagator K. Corre-
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spondingly we obtain the exact integral equation for the wave function:

 .xf tf / D
Z
dxiK0.xf tf ; xi ti / .xi ti / � i

„
Z
dt

Z
dxK0.xf tf ; xt/V .x, t / .xt/ ,

(9.63)
which is just equivalent to the Schroedinger equation for the problem under discussion.
Assuming that for ti ! �1 the wave function is the solution of the free particle
Schroedinger equation (plane wave!) and denoting it by '.xt/, we may rewrite (9.63)
as

 .xf tf / D '.xf tf / � i

„
Z
dt

Z
dxK0.xf tf ; xt/V .x, t / .xt/ , (9.64)

because the plane wave remains the plane wave during free particle motion.
For practical tasks it is more convenient to use the momentum representation. Let

K.p1t1; p0t0/ be the probability amplitude for a particle with momentum p0 at moment
t0 to be registered at a later moment t1 with momentum p1. This amplitude is given by

K.p1t1; p0t0/ D
Z
dx0

Z
dx1 exp

�
� i„p1x1

�
K.x1t1; x0t0/ exp

�
i

„p0x0

�
,

(9.65)
where the free propagator K.x1t1; x0t0/ for a particle moving in three-dimensional
space (in accordance with the remark made after equation (9.48)) has the form

K0.x1t1; x0t0/ D �.t1 � t0/
�

m

2�i„.t1 � t0/
�3=2

exp

²
im.x1 � x0/

2

2„.t1 � t0/
³

. (9.66)

Then we have

K.p1t1; p0t0/ D �.t1 � t0/
�

m

2�i„.t1 � t0/
�3=2

�
Z
dx0

Z
dx1 exp

�
i

„.p0x0 � p1x1/

�
exp

�
im.x0 � x1/

2

2„.t1 � t0/
�

.

(9.67)

Let us introduce the new integration variables

x D x0 � x1 , X D x0 C x1 , p D p0 � p1 , P D p0 C p1 , (9.68)

so that 2.p0x0 � p1x1/ D PxC pX. The Jacobian of this variables transformation is
equal to .1=2/3 D 1=8. Correspondingly, equation (9.67) is rewritten as

K.p1t1; p0t0/ D �.t1�t0/

 ˛
i�

�3=2 1

8

Z
dX exp

�
i

2„pX
�Z

dx exp

�
i

2„Px
�
ei˛x

2
,

(9.69)
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where ˛ D m
2„.t1�t0/ . The first integral here is equal to 8.2�„/3ı.p/ D 8.2�„/3ı.p0 �

p1/, so that

K.p1t1; p0t0/ D
.2�„/3�.t1 � t0/ı.p0 � p1/


 ˛
i�

�3=2
Z
dx exp

�
i

2„PxC i˛x2
�

, (9.70)

and using (9.35) we obtain

K.p1t1; p0t0/ D .2�„/3�.t1 � t0/ı.p0 � p1/ exp

�
� iP

2.t1 � t0/
8m„

�
, (9.71)

where the ı-function expresses momentum conservation. Taking into account P2 D
4p2

0, we get finally

K.p1t1; p0t0/ D .2�„/3�.t1 � t0/ı.p0 � p1/ exp

�
� ip

2
0.t1 � t0/
2m„

�
. (9.72)

At last we can calculate the Fourier transform of the propagator over time:

K.p1E1; p0E0/ D
Z
dt0

Z
dt1 exp

�
i

„E1t1

�
K.p1t1; p0t0/ exp

�
� i„E0t0

�

D .2�„/3ı.p0 � p1/

Z
dt0

Z
dt1�.�/

� exp

�
� ip2

1

2m„�
�

exp

�
i

„.E1t1 �E0t0/

�
, (9.73)

where we have introduced � D t1 � t0. Considering � and t0 as independent variables,
we obtain

K.p1E1; p0E0/ D .2�„/3ı.p0 � p1/

Z 1

�1
dt0 exp

�
i

„.E1 �E0/t0

�

�
Z 1

�1
d��.�/ exp

�
i

„.E1 � p2
1

2m
/�

�
. (9.74)

The first integral here yields .2�„/ı.E1 � E0/, while the second one, because of the
presence of �.�/, should be understood as1

lim
ı!C0

Z 1

0
d�ei.E1�p2

1=2mCiı/�=„ D i„
E1 � p2

1
2m C iı

. (9.75)

1 Fourier transform of �.t/ is defined by

�.t/ D lim
ı!C0

Z 1

�1
d!

2�
e�i!t i

! C iı
,

which can be easily checked making the integration along the real axis and closing integration contour
in upper or lower half-planes of complex !, depending on the sign of t .
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Thus finally we have

K.p1E1; p0E0/ D .2�„/4ı.p0 �p1/ı.E0 �E1/
i„

E1 � p2
1

2m C iı
, ı ! C0 , (9.76)

which is the Fourier transform of the retarded Green’s function of the free particle,
where ı-functions express the momentum and energy conservation laws. Note that the
pole here is in fact determined by the kinetic energy of a particle, which reflects the
general property of Green’s functions [1]: their poles determine the energy spectrum
of the corresponding particles (quasiparticles).

If we introduce the Fourier transform of potential, writing V.x, t / as

V.x, t / D
Z
d!

2�

Z
d 3q
.2�/3

ei.qx�!t/V.q!/ , (9.77)

perturbation series (9.60) generates the standard diagram technique in momentum rep-
resentation for the Green’s function of a particle in an external field [1].

9.3 Functional derivatives

The Green’s function (particle propagator) written in the form of Feynman path inte-
gral

hqf tf jqi ti i D N

Z
Dq.t/ exp

²
i

„
Z tf

ti

dt
hm

2
Pq2 � V.q/

i³

D N

Z
Dq.t/ exp

²
i

„
Z tf

ti

dtL.q, Pq/
³

(9.78)

introduces the notion of the functional integral: integration is performed here over all
functions (trajectories) q.t/, connecting the initial and final points. Thus, the calcu-
lation of (9.78) relates the whole set of functions q.t/ with some concrete (complex)
number: the amplitude of quantum mechanical transition in the left-hand side. Thus,
equation (9.78) is the concrete realization of the mathematical notion of functional:
the mapping of the set of functions into the set of numbers:

� Functional: function ) number

In contrast, the usual function defines the mapping of one set of numbers into another
set of numbers:

� Function: number ) number

In particular, the functional is not simply the function of another function (this is again
just a function!).

Usually, the functional F of function f .x/ is denoted as F Œf .x/�. A typical exam-
ple of a functional is the definite integral: F Œf .x/� D R b

a dxf .x/.
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Let us now define the functional derivative. In analogy with the the usual differen-
tiation, the functional (or variational) derivative of some functional F Œf .x/� over the
function f .y/ is defined as

ıF Œf .x/�

ıf .y/
D lim
"!0

F Œf .x/C "ı.x � y/� � F Œf .x/�
"

. (9.79)

For example, for F Œf .x/� given by definite integral:

ıF Œf .x/�

ıf .y/
D lim
"!0

1

"

�Z
dxŒf .x/C "ı.x � y/� �

Z
dxf .x/

�
D
Z
dxı.x�y/ D 1 .

(9.80)
As another example, we consider the functional

FxŒf � D
Z
dyf .y/G.x, y/ , (9.81)

where the variable x in the left-hand side is considered as a parameter. Then we have

ıFxŒf �

ıf .z/
D lim
"!0

1

"

�Z
dy¹G.x, y/Œf .y/C "ı.y � z/�º �

Z
dyG.x, y/f .y/

�

D
Z
dyG.x, y/ı.y � z/ D G.x, z/ . (9.82)

These expressions are sufficient for understanding all the expressions related to func-
tional differentiation which will be used below.

9.4 Some properties of functional integrals

The amplitude of quantum particle transition from initial point qi ti to final qf tf is
given by

hqf tf jqi ti i D N

Z q.tf /Dqf

q.ti /Dqi

Dq.t/ exp

²
i

„
Z tf

ti

dt
hm

2
Pq2 � V.q/

i³

D N

Z q.tf /Dqf

q.ti /Dqi

Dq.t/ exp

²
i

„
Z tf

ti

dtL.q, Pq/
³

. (9.83)

Let us derive some formal relations, which will be quite useful below during the gener-
alization to quantum field theory. We can add to the Lagrange function of our particle
an extra “source” term:

L ! LC „J.t/q.t/ (9.84)

where J.t/ is some arbitrary function of time. Let us assume that J.t/ is nonzero at
some time interval between moments t and t 0 (t < t 0), which is shown in Figure 9.5.
Consider also the moment T , previous to t , and another moment T 0, which is later
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Figure 9.5

than t 0. Then the transition amplitude of the system, interacting with source, between
arbitrary states (points) in these moments of time is given by

hQ0T 0jQT iJ D N

Z
Dq.t/ exp

²
i

„
Z T 0

T

dt
�
L.q, Pq/C „Jq�

³
. (9.85)

On the other hand, using (9.4) we can write

hQ0T 0jQT iJ D
Z
dq0

Z
dqhQ0T 0jq0t 0ihq0t 0jqtiJ hqt jQT i , (9.86)

where (due to our assumption on the form of J.t/) only the “intermediate” propagator
is source dependent. Using (9.10) we have

hQ0T 0jq0t 0i D
�
Q0
ˇ̌
ˇ̌exp

�
� i„HT

0
�

exp

�
i

„Ht
0
�ˇ̌
ˇ̌ q0


D

D
X

m

'm.Q
0/'�

m.q
0/ exp

�
i

„Em.t
0 � T 0/

�
, (9.87)

where ¹'m.q/º is the complete set of the eigenfunctions of the Hamiltonian (energy
operator). In a similar way we obtain

hqt jQT i D
X

n

'n.q/'
�
n.Q/ exp

�
� i„En.t � T /

�
. (9.88)

Substituting (9.87) and (9.88) into (9.86) and making the replacement T 0 ! T 0e�iı
and T ! Te�iı (“rotating” the time axis by an arbitrary angle ı < �=2 in a complex
plane of “time”, as shown in Figure 9.5), we perform the limits of T 0 ! 1 and
T ! �1. In this case, because of the “damping” factor ı in the transition amplitude
(9.86), all the contributions of the states with En > 0,Em > 0 just vanish, while the
term with E0 D 0 survives, which gives the contribution of the ground state level of
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our particle in potential V.q/2. Then we get

lim
T 0!1e�iı

lim
T!�1e�iı

hQ0T 0jQT iJ D '�
0 .Q/'0.Q

0/ exp

�
� i„E0.T

0 � T /
�

�
Z
dq0

Z
dq'�

0 .q
0t 0/hq0t 0jqtiJ'0.qt/

(9.89)

or
Z
dq0

Z
dq'�

0 .q
0t 0/hq0t 0jqtiJ'0.qt/ D

lim
T 0!1e�iı

lim
T!�1e�iı

hQ0T 0jQT iJ
'�

0 .Q/'0.Q0/ exp
� � i

„E0.T 0 � T /� . (9.90)

The left-hand side of this expression represents the transition amplitude (in the pres-
ence of the source), averaged over the ground state (“vacuum”) of the system. Now
we can make t 0 ! 1 and t ! �1 and introduce denoting our averaged transition
amplitude (9.90) as h0, 1j0, �1iJ , which corresponds to a “vacuum–vacuum” tran-
sition during the infinite interval of time. The denominator in the right-hand side of
(9.90) is a simple number, and we can write

h0, 1j0, �1iJ � lim
T 0!1e�iı

lim
T!�1e�iı

hQ0T 0jQT iJ 	 ZŒJ � , (9.91)

where we have introduced the following functional of the source:

ZŒJ � D lim
T 0!1e�iı

lim
T!�1e�iı

N

Z
DQ.t/ exp

²
i

„
Z T 0

T

dtŒL.Q, PQ/C „JQ�
³

.

(9.92)

Note that instead of time axis “rotation” in a complex plane to extract a ground state
contribution, we could just add a small negative imaginary part to the Hamiltonian of
our system (9.17), which can conveniently be written as �1

2 i"q
2." ! C0/. In this

case the entire energy level will acquire small imaginary parts, which in the limit of
T 0 ! 1,T ! �1 will lead to the same effect of the exponential damping of the
contributions of levels with En > 03. In a Lagrange function this L is equivalent to

2 Here it is important that the eigenlevels of energy can be ordered:E0 < E1 < E2 < � � � < En < � � � ,
so that this procedure separates the contribution of the lowest energy level, which may be set as energy
zero (or left explicitly as the most slowly vanishing term). At the end we may safely go to the limit of
ı ! C0, to get rid of “complex” time.

3 It is obvious that the explicit coordinate dependence � 1
2q

2 introduced here is just irrelevant for these
argumentation. However, later we shall see its convenience.
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an addition of the term C1
2 i"q

2. Then we can write

ZŒJ � D N

Z
Dq.t/ exp

²
i

„
Z 1

�1
dt
h
L.q, Pq/C „Jq C 1

2
i"q2

i³
, " ! C0 .

(9.93)
We shall see that the thusly defined functional ZŒJ � possesses a number of useful and
interesting properties.

Instead of transition amplitude hqf tf jqi ti i we may consider the matrix element of
coordinate operator hqf tf j Oq.tn1/jqi ti i, where tf > tn1 > ti . Using the well-known
general rules we can write

hqf tf j Oq.tn1/jqi ti i D
Z
dq1 � � � dqnhqf tf jqntnihqntnjqn�1tn�1i

� � � hqn1tn1j Oq.tn1/jqn1�1tn1�1i � � � .hq1t1jqi ti i. (9.94)

Obviously,

hqn1tn1j Oq.tn1/jqn1�1tn1�1i D q.tn1/hqn1tn1jqn1�1tn1�1i , (9.95)

where in the right-hand side q.tn1/ is now not an operator, but a c-number (eigen-
value). Then we can repeat all the arguments used during the transformation from
(9.15) to (9.24) and write (9.94) in the form of aFeynman path integral:

hqf tf j Oq.t1/jqi ti i D
Z

DqDp

2�„ q.t1/ exp

²
i

„
Z tf

ti

dtŒp Pq �H.p, q/�

³
. (9.96)

Now let us calculate the matrix element hqf tf j Oq.tn1/ Oq.tn2/jqi ti i. For tn1 > tn2 we
can write

hqf tf j Oq.tn1/ Oq.tn2/jqi ti i D
Z
dq1 � � �dqnhqf tf jqntnihqntnjqn�1tn�1i

� � � hqn1tn1j Oq.tn1/jqn1�1tn1�1i
� � � hqn2tn2j Oq.tn2/jqn2�1tn2�1i � � � hq1t1jqi ti i , (9.97)

producing (as limiting behavior) the path integral of the form

hqf tf j Oq.t1/ Oq.t2/jqi ti i D
Z

DqDp

2�„ q.t1/q.t2/ exp

²
i

„
Z tf

ti

dtŒp Pq �H.p, q/�

³
.

(9.98)

Here we assumed t1 > t2. If we consider the case of t2 > t1, the matrix elements of the
coordinate in time moments t1 and t2 in the right-hand side of (9.94) will interchange
positions, so that this expression, as well as the path integral in the right-hand side of
(9.98), reduces to hqf tf j Oq.t2/ Oq.t1/jqi ti i. Thus, in the general case the path integral in
the right-hand side of (9.98) defines the matrix element of the chronological product
of operators hqf tf jT Œ Oq.t1/ Oq.t2/�jqi ti i, where the operation of the T-ordering of two
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operators is defined as

T ŒA.t1/B.t2/� D
²
A.t1/B.t2/ for t1 > t2 ,
B.t2/A.t1/ for t2 > t1 .

(9.99)

Thus, in general case we can write

hqf tf jT Œ Oq.t1/ Oq.t2/ � � � Oq.tn/�jqi ti i D
Z

DqDp

2�„ q.t1/q.t2/ � � � q.tn/ exp

²
i

„
Z tf

ti

dtŒp Pq �H.p, q/�

³
, (9.100)

which gives the general expression for the average of the chronological product of the
operators via the functional (path) integral. For the case, when the Hamiltonian can be
written in the form given by equation (9.17), we can make additional simplifications
and write

hqf tf jT Œ Oq.t1/ Oq.t2/ � � � q.tn/�jqi ti i D
N

Z
Dq q.t1/q.t2/ � � � q.tn/ exp

²
i

„
Z tf

ti

dtL

³
. (9.101)

Using the definition of the functional ZŒJ � (9.93) we can easily see that its functional
(variational) derivative over the source J is written as

ıZŒJ �

ıJ.t1/
D iN

Z
Dq.t/ q.t1/ exp

²
i

„
Z 1

�1
dt
h
L.q, Pq/C „Jq C 1

2
i"q2

i ³
.

(9.102)

In the general case,

ınZŒJ �

ıJ.t1/ : : : ıJ.tn/
D inN

Z
D q.t/q.t1/

� � � q.tn/ exp

²
i

„
Z 1

�1
dt
h
L.q, Pq/C „Jq C 1

2
i"q2

i³
.

(9.103)

Now putting J D 0 here, we get

ınZŒJ �

ıJ.t1/ : : : ıJ.tn/

ˇ̌
ˇ̌
JD0

D inN

Z
D q.t/q.t1/

� � � q.tn/ exp

²
i

„
Z 1

�1
dt
h
L.q, Pq/C 1

2
i"q2

i³
. (9.104)

Remembering that the term i
2"q

2 allows us to extract the ground state contribution
from the quantum averages, and using (9.101), we come to the following expression
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for the “vacuum” average of chronological product of operators:

ınZŒJ �

ıJ.t1/ : : : ıJ.tn/

ˇ̌
ˇ̌
JD0

� inh0, 1jT Œ Oq.t1/ � � � Oq.tn/�j0, �1i . (9.105)

Thus, the multiple functional differentiation ofZŒJ � over the source J “generates” the
averages of T -ordered products of the quantum operators, while the source itself can
be put to zero at the end of calculations. Thus, the functional ZŒJ � can be called the
generating functional for these averages. As a byproduct, we obtain the representation
of such averages in the form of functional (path) integrals.

We have seen above that vacuum averages of T -ordered products of field operators
determine the whole set of Green’s functions of quantum field theory. The transition
from quantum mechanics to quantum field theory reduces to the generalization to the
system with an infinite number of degrees of freedom, when the operators of coordi-
nates are replaced by field operators at each point of space-time. Now it becomes clear
that the path integral formulation of quantum mechanics can be used for the direct
construction of quantum field theory, based on formalism of functional integrals over
field variables. This will be our task in the next chapters.



Chapter 10

Functional integrals: scalars and spinors

10.1 Generating the functional for scalar fields

Now we we will begin discussing the modern functional formulation of quantum field
theory. Let us first consider t the simplest case of the free scalar field '.x/, interacting
with an arbitrary source J.x/. Directly generalizing the analysis given in the previous
chapter, we can introduce the generating functional:

ZŒJ � D
Z

D'.x�/ exp

²
i

Z
d 4xŒL.'/C J.x/'.x/C i

2
"'2.x/�

³

� h0, 1j0, �1iJ , (10.1)

which is proportional to the vacuum–vacuum transition amplitude. Here L.'/ is a
Klein–Gordon Lagrangian, and we replaced integration over the trajectories of a par-
ticle to integration over all possible field configurations1 in space-time: Dq.t/ !
D'.x�/. The meaning of such integration is rather simple. We can represent space-
time as a set of small four-dimensional cubes (cells) of volume ı4 and assume our
field a constant within any of these cells (the average value of the field inside the
cube): ' � '.xi , yj , zk , tl/. Field derivatives can be expressed via finite differences
as

@'

@xi

ˇ
ˇ̌
ˇ
i ,j ,k,l

� 1

ı
Œ'.xi C ı, yj , zk , tl/ � '.xi , yj , zk , tl/�, (10.2)

etc. Replacing the set of indices .i , j , k, l/ by a single index n which enumerates the
cells (cubes), we can write

L.'n, @�'n/ D Ln . (10.3)

In any of the indices .i , j , k, l/ takes N values; the new index n takes N 4 values, and
we can write the action as

S D
Z
d 4xL D

N 4X

nD1

ı4Ln . (10.4)

1 In classical field theory we are dealing with only one configuration of the field in space-time, those
satisfying the Lagrange equations (principle of the least action). In quantum field theory all kinds of
field configurations are “at work”, each one entering the theory with the “weight” exp¹iSº, where S
is the classical action.
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Then generating functional ZŒJ � takes the form

ZŒJ � D lim
N!1

Z N 4Y

nD1

d'n exp

²
i

N 4X

nD1

ı4
�

Ln C 'nJn C i

2
"'2
n

�³
, (10.5)

which defines the meaning of the formal expression (10.1) and introduces the notion
of the functional integral over field configurations (instead of the particle trajectories
in quantum mechanics).

Let us calculate ZŒJ � for the free field, when

L ! L0 D 1

2
.@�'@

�' �m2'2/ (10.6)

is a Klein–Gordon Lagrangian. Then

Z0ŒJ � D
Z

D' exp

²
i

Z
d 4x

�
1

2

�
@�'@

�' � .m2 � i"/'2	C 'J

�³
. (10.7)

We can move further even without explicit calculation of the functional integral. Let
us use the obvious identity @�.'@�'/ D @�'@

�' C '@�@
�' and write

Z
d 4x@�'@

�' D
Z
d 4x@�.'@

�'/ �
Z
d 4x'�' . (10.8)

Then the first term in the right-hand side is transformed according to the Gauss theorem
into a surface integral, which can be made zero if we move this surface to infinity
(where we assume that ' ! 0). Then,

Z
d 4x@�'@

�' D �
Z
d 4x'�' (10.9)

and generating the functional is rewritten as

Z0ŒJ � D
Z

D' exp

²
� i

Z
d 4x

�
1

2
'.� Cm2 � i"/' � 'J

�³
. (10.10)

Let us stress that the field ' in this expression is arbitrary (integration variable!) and
does not satisfy the Klein–Gordon equation at all! Now we can change the integration
variable as

'.x/ ! '0.x/C '.x/ (10.11)

and use the relation (which is derived similarly to (10.9)):
Z
d 4x'0Œ� Cm2 � i"�' D

Z
d 4x'.� Cm2 � i"/'0 . (10.12)
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Then we have
Z
d 4x

�
1

2
'.� Cm2 � i"/' � 'J

�
!
Z
d 4x

�
1

2
'.� Cm2 � i"/' C

C '.� Cm2 � i"/'0 C 1

2
'0.� Cm2 � i"/'0 � 'J � '0J

�
. (10.13)

And now we can require that '0.x/ satisfy the Klein–Gordon equation with the source
in the right-hand side:

.� Cm2 � i"/'0.x/ D J.x/ . (10.14)

Then the integral of interest to us reduces to
Z
d 4x

�
1

2
'.� Cm2 � i"/' � 1

2
'0J

�
. (10.15)

The solution of equation (10.14) has the form

'0.x/ D �
Z
d 4y	F .x � y/J.y/ , (10.16)

where 	F .x � y/ is Feynman’s propagator of a scalar field, satisfying the equation
(already written in Chapter 4)

.� Cm2 � i"/	F .x/ D �ı.x/ . (10.17)

Substituting (10.16) into (10.15) we see that the expression in the exponent in (10.10)
is equal to

�i
²

1

2

Z
d 4x'.� Cm2 � i"/' C 1

2

Z
d 4xd 4yJ.x/	F .x � y/J.y/

³
. (10.18)

Thus we obtain2

Z0ŒJ � D exp

²
� i

2

Z
dxdyJ.x/	F .x � y/J.y/

³

�
Z

D' exp

²
� i

2

Z
dx'.� Cm2 � i"/'

³
. (10.19)

However, the integral over D' is simply some number (it is taken over all the possible
configurations of the field ')! Denoting this number as N , we obtain finally

Z0ŒJ � D N exp

²
� i

2

Z
dxdyJ.x/	F .x � y/J.y/

³
. (10.20)

The value of N is of no special importance: this is just a normalization factor.

2 Further we write for brevity dx instead of d 4x, etc.
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Figure 10.1

Figure 10.2

The Fourier expansion for 	F .x/ has the form

	F .x/ D
Z

d 4k

.2�/4
e�ikx

k2 �m2 C i"
. (10.21)

The presence of i" ! i0C in the denominator here dictates the choice of the integra-
tion contour in the integral over k0 in accordance with Feynman rule to deal with the
poles at k0 D ˙p

k2 Cm2. The poles are situated at the points (in the complex k0

plane) determined by equation: k2
0 D k2 Cm2 � i", i. e., at

k0 D ˙p
k2 Cm2 � iı D ˙E � iı , (10.22)

as shown in Figure 10.1. In the limit of ı ! 0." ! 0/ these poles move to the real
axis, and the integration contour goes as shown in Figure 10.2.

We have seen above that this approach corresponds to the “rotation” of the time
axis by a small angle ı in the complex plane for time. This guarantees us the correct
boundary conditions for the vacuum–vacuum transition amplitude. The same aim can
be achieved by making finite angle rotation by ��=2, so that t ! �i t .! �i1/.
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Introducing the notation
x4 D i t D ix0 , (10.23)

we see that this limit corresponds to x4 ! 1. Such space-time (with imaginary time)
is Euclidean, with the invariant interval (distance between two adjacent points) given
by

ds2 D �.dx0/2 � .dx/2 � .dy/2 � .dz/2 D �
4X

�D1

.dx�/2 . (10.24)

In momentum space we can similarly introduce

k4 D �ik0 , (10.25)

so that

k2 D �.k2
1 C k2

2 C k2
3 C k2

4/ D �k2
E , d 4kE D d 3kdk4 D �id 4k , (10.26)

where the indexE denotes Euclidean momentum space. Now the Feynman propagator
takes the form

	F .x/ D �i
Z
d 4kE

.2�/4
e�ikx
k2
E Cm2

. (10.27)

Note that this expression3, up to a factor of �i , coincides with the Ornstein–Zernike
correlation function of the theory of critical phenomena in four-dimensional space
[3, 36, 42], if we take m2 � T � Tc , where Tc is the temperature of the second or-
der phase transition (and for simplicity we are dealing with temperatures T > Tc).
Here we meet for the first time the deep interconnections between quantum field the-
ory and the modern theory of critical phenomena in statistical physics [3, 42]. From
equation (10.7), taking into account d 4x D �id 4xE and .@�'/2 D �.@�E'/2, we
obtain the generating functional of Euclidean field theory as

Z0E ŒJ � D
Z

D' exp

²
�
Z
d 4xE


1

2
Œ.@
�
E'/

2 Cm2'2� � 'J
�³

, (10.28)

which actually coincides with the partition function of the Gaussian model of the phase
transition (i. e., the Landau theory [36] with no � '4 and higher-order terms in Landau
expansion) for scalar-order parameter ', interacting with the external field J [3, 42].

3 There is no problem with encircling poles here: both are at the imaginary axis at points k4 D
˙i
q
k2
E

Cm2.
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10.2 Functional integration

Now we present the formal discussion of functional integration. Let us start from the
well-known expression for the Poisson–Gauss integral (9.28):

Z 1

�1
dxe� 1

2ax
2 D

r
2�

a
. (10.29)

In the following we assume the integration limits to be always from �1 to 1 and do
not write them explicitly. Let us take the product of n such integrals:

Z
dx1dx2 : : : dxn exp

�
� 1

2

X

n

anx
2
n

�
D .2�/n=2

Qn
iD1 a

1=2
i

. (10.30)

Let A be the diagonal matrix with elements a1, a2, : : : , an and x the n-dimensional
vector (column) with components x1, x2, : : : , xn. Then the expression in the exponent
in (10.30) can be written as the scalar product:

.x,Ax/ D
X

n

anx
2
n , (10.31)

The determinant of the matrix A is

DetA D a1a2 � � � an D
nY

iD1

ai . (10.32)

Then (10.30) can be written as
Z
dnxe� 1

2 .x,Ax/ D .2�/n=2.DetA/�1=2 . (10.33)

This expression is valid for any diagonal matrix; correspondingly it is also valid for
any real symmetric matrix, as it can always be diagonalized by linear transformation.
Let us define the integration measure as

Œdx� D .2�/�n=2dnx . (10.34)

Then (10.33) is rewritten as
Z
Œdx�e� 1

2 .x,Ax/ D .DetA/�1=2 . (10.35)

This relation is easily generalized to the case when there is a general quadratic form
in the exponent:

Q.x/ D 1

2
.x,Ax/C .b, x/C c . (10.36)

We can proceed as during the derivation of (9.35). The form (10.36) reaches its mini-
mum for Nx D �A�1b and can be rewritten as

Q.x/ D Q. Nx/C 1

2
Œx � Nx,A.x � Nx/� . (10.37)
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Then we immediately obtain the analogue of (9.35) as
Z
Œdx� exp

�
� 1

2
.x,Ax/�.b, x/�c

�
D exp

�
1

2
.b,A�1b/�c

�
.DetA/�1=2 , (10.38)

where A�1 denotes the inverse matrix.
Consider now the case of Hermitian matrices. Taking the square of (10.29) we write

Z
dxdye� 1

2a.x
2Cy2/ D 2�

a
. (10.39)

Let us introduce z D x C iy and z� D x � iy, so that (calculating the Jacobian of
transformation from x, y to z, z�) we have dxdy D �idz�dz=2, so that (10.39) can
be written as Z

dz�

.2�i/1=2

dz

.2�i/1=2
e�az�z D 1

a
(10.40)

We can generalize this expression, similarly to the transformation from (10.30) to
(10.35) and (10.38), introducing the positive definite Hermitian matrixA, the complex
vector b, and the integration measure

Œdz� D .2�i/�n=2dnz . (10.41)

Then we obtain
Z
Œdz��Œdz�e�.z�,Az/ D .DetA/�1 . (10.42a)

Z
Œdz��Œdz�e�.z�,Az/�.b�,z/�.z�,b/�c D exp

�
.b�,A�1b/ � c� .DetA/�1

(10.42b)

All these expressions are quite rigorous and represent the direct generalization of
“one-dimensional” integrals to the case of the vector space of finite dimensionality.
Let us make the formal generalization to the case of infinite-dimensional functional
space. Consider the space of real functions '.x�/. We can define the scalar product as

.','/ D
Z
d 4xŒ'.x/�2 . (10.43)

The generalization of equation (10.35) is written as
Z

D'.x/ exp

²
�1

2

Z
dx'.x/A'.x/

³
D .DetA/�1=2 , (10.44)

where A is some operator acting upon functions '.x/:

A'.x/ D
Z
dy A.x, y/'.y/ , (10.45)
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and its determinant is naturally defined as the the corresponding product of eigen-
values. Integration measure is D'.x/ D Œd'.x/�. All these expressions should be
understood as the limiting expression like (10.5). Expression (10.44) is usually called
a Gaussian functional integral.

If '.x/ is a complex function (field), we obtain the natural generalization of (10.42a)
Z

D'�.x/D'.x/ exp

²
�
Z
dx'�.x/A'.x/

³
D .DetA/�1 , (10.46)

where A is the Hermitian operator.
Generalization of (10.38) for the case of real fields '.x/ has the form

Z
D'.x/ exp

²
�1

2

Z
dx

Z
dy'.x/A.x, y/'.y/ �

Z
dxB.x/'.x/ � c

³
D

exp

²
1

2

Z
dx

Z
dyB.x/A�1.x, y/B.y/ � c

³
.DetA/�1=2 (10.47)

where A�1.x, y/ denotes the inverse operator. A similar expression for integration
over complex fields differs from (10.47) by the presence of integration over '� and ',
as well by the replacement of .DetA/�1=2 by .DetA/�1:

Z
D'�.x/D'.x/ exp

²
�
Z
dx

Z
dy'�.x/A.x, y/'.y/

�
Z
dx
�
B�.x/'.x/C '�.x/B.x/

� � c
³

D

exp

²Z
dx

Z
dyB�.x/A�1.x, y/B.y/ � c

³
.DetA/�1 . (10.48)

Let us return to the discussion of the general expression for generating the functional
of a Klein–Gordon field (10.10):

Z0ŒJ � D
Z

D' exp

²
� i

Z
d 4x

�
1

2
'.� Cm2 � i"/' � 'J

�³
. (10.49)

Here we have precisely the Gaussian functional integral like (10.47) with A.x, y/ D
i.� Cm2 � i"/ı.x � y/, B.x/ D �iJ.x/, c D 0. Then, from (10.47) we get

Z0ŒJ � D exp

²
i

2

Z
dxdyJ.x/.� Cm2 � i"/�1J.y/

³
Œi Det.� Cm2 � i"/��1=2 .

(10.50)
The determinant here can be rewritten using (10.44) as

Œi Det.� Cm2 � i"/��1=2 D
Z

D'.x/ exp

²
� i

2

Z
dx'.x/.� Cm2 � i"/'.x/

³
,

(10.51)
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and the inverse operator is

.� Cm2 � i"/�1 D �	F .x � y/ , (10.52)

which follows directly from (10.17). Then equation (10.50) reduces to

Z0ŒJ � D exp

²
� i

2

Z
dxdyJ.x/	F .x � y/J.y/

³

�
Z

D' exp

²
� i

2

Z
dx'.� Cm2 � i"/'

³
, (10.53)

which coincides with (10.19). Thus, the direct calculation using the rules of functional
integration produces the same result obtained above via “indirect” arguments.

The expressions for Gaussian functional integrals will be widely used below.

10.3 Free particle Green’s functions

Let us now show that Z0ŒJ � is the generating functional for the Green’s functions of
free particles. We can expand (10.20) in the series:

Z0ŒJ � D N

²
1 � i

2

Z
dxdyJ.x/	F .x � y/J.y/

C 1

2Š

�
i

2

�2 �Z
dxdyJ.x/	F .x � y/J.y/

�2

� 1

3Š

�
i

2

�3 �Z
dxdyJ.x/	F .x � y/J.y/

�3

C � � �
³

. (10.54)

Introducing Fourier representation for the source

J.x/ D
Z
d 4pJ.p/e�ipx (10.55)

and using (10.21) we easily obtain

� i
2

Z
d 4xd 4yJ.x/	F .x � y/J.y/ D � i

2
.2�/4

Z
d 4p

J.�p/J.p/
p2 �m2 C i"

. (10.56)

We may associate analytic expressions in these series with graphic elements as shown
in Figure 10.3. Then equation (10.56) corresponds to the diagram, shown in Fig-
ure 10.4. As a result, the expansion of the generating functional (vacuum–vacuum
transition amplitude) (10.54) is represented by the diagrams shown in Figure 10.54.
We see that this series describes the propagation of 1, 2, 3, etc. “particles” between
sources, so that we are dealing with a many particle theory. It is clear thatZ0ŒJ � is the
generating functional for the Green’s functions of our field theory.

4 Normalization factor N is dropped here.
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Figure 10.3

Figure 10.4

Figure 10.5

Let us comment on the formal aspects of this analysis. Consider, for example, Taylor expansion
of some functions F.y1, : : : ,yk/ of k variables y1, : : : ,yk :

F ¹yº 	 F.y1, : : : ,yk/ D
1X

nD0

kX

i1D1

� � �
kX

inD1

1

nŠ
Tn.i1, : : : , in/yi1 : : : yin , (10.57)

where

Tn D @nF ¹yº
@yi1 : : : @yin

ˇ̌
ˇ
ˇ
yD0

. (10.58)

We may go to the intuitively clear limit, when variables form the continuum i ! x,yi .i D
1, : : : , k/ ! y.x/,

P
i ! R

dx and obtain an expansion for the functional

F Œy� D
1X

nD0

Z
dx1 : : : dxn

1

nŠ
Tn.x1, : : : , xn/y.x1/ : : : y.xn/ , (10.59)

where

Tn.x1, : : : , xn/ D ı

ıy.x1/
� � � ı

ıy.xn/
F Œy�

ˇ̌
ˇ̌
yD0

. (10.60)

In such a case we call F Œy� the generating functional for functions Tn.x1, : : : xn/.
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Our generating functional ZŒJ � should be normalized. We have seen that it is, pro-
portional to vacuum-vacuum transition amplitude in the presence of a source J Natural
normalization is ZŒJ D 0� D 1. Then we can write

ZŒJ � D h0, 1j0, �1iJ , (10.61)

so that ZŒ0� D 1 is satisfied automatically. Thus, we have to rewrite both (10.10) and
(10.20) as

Z0ŒJ � D

Z
D' exp

²
�i
Z
d 4x

h1

2
'.� Cm2 � i"/' � 'J

i³

Z
D' exp

²
�i
Z
d 4x

1

2
'.� Cm2 � i"/'

³ , (10.62)

Z0ŒJ � D exp

²
� i

2

Z
dxdyJ.x/	F .x � y/J.y/

³
. (10.63)

These new definitions obviously satisfy the condition ofZŒJ D 0� D 1, justifying our
dropping of the irrelevant normalization factor N . The functional Z0ŒJ �, defined by
equation (10.63) in accordance with equation (10.60), is the generating functional of
the functions

�.x1, : : : , xn/ D 1

in
ınZ0ŒJ �

ıJ.x1/ : : : ıJ.xn/

ˇ̌
ˇ
ˇ
JD0

. (10.64)

Recalling equation (9.105), we understand that

ınZ0ŒJ �

ıJ.x1/ : : : ıJ.xn/

ˇ̌
ˇ̌
JD0

D inh0jT '.x1/ : : : '.xn/j0i , (10.65)

so that
�.x1, : : : , xn/ D h0jT '.x1/ � � �'.xn/j0i (10.66)

represents the vacuum average of the chronological product of the field operators, i. e.,
n-point (number of coordinates) Green’s functions of our theory. This definition coin-
cides with our previous definition of the Green’s functions in the operator formalism
of quantum field theory. Generating the functional can now be written as

Z0ŒJ � D
1X

nD0

in

nŠ

Z
dx1 : : : dxnJ.x1/ : : : J.xn/�.x1, : : : , xn/ , (10.67)

which means that Z0ŒJ � is the generating functional of the Green’s functions
�.x1, : : : , xn/. This expansion is shown graphically in Figure 10.5.

Let us now calculate some simplest n-point Green’s functions in our free scalar field
theory. We start with a 2-point function

�.x, y/ D � ı2Z0ŒJ �

ıJ.x/ıJ.y/

ˇ
ˇ̌
ˇ
JD0

. (10.68)
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Calculations can be done explicitly, using the general definition of the functional
derivative. We have

1

i

ıZ0ŒJ �

ıJ.x/
D 1

i

ı

ıJ.x/
exp

�
� i

2

Z
dx1dx2J.x1/	F .x1 � x2/J.x2/

�

D �
Z
dx1	F .x � x1/J.x1/ exp

�
� i

2

Z
dx1dx2J.x1/	F .x1 � x2/J.x2/

�

(10.69)

1

i

ı

ıJ.x/

1

i

ı

ıJ.y/
Z0ŒJ � D i	F .x � y/ exp

�
� i

2

Z
J	F J

�

C
Z
dx1	F .x � x1/J.x1/

Z
dx2	F .y � x2/J.x2/ exp

�
� i

2

Z
J	F J

�

(10.70)

where we use the shortened notations in the exponent. Putting now J D 0 we get

1

i

ı

ıJ.x/

1

i

ı

ıJ.y/
Z0ŒJ �

ˇ̌
ˇ̌
JD0

D i	F .x � y/ (10.71)

or
�.x, y/ D i	F .x � y/ . (10.72)

It is clear that the 2-point Green’s function in fact coincides with the Feynman prop-
agator for a scalar particle (single-particle Green’s function of a free scalar particle).
Let us once more consider its physical meaning. We start with operator formalism. By
definition of the chronological product we have

�.x, y/ D h0jT '.x/'.y/j0i
D �.x0 � y0/h'.x/'.y/i C �.y0 � x0/h'.y/'.x/j0i . (10.73)

Here the first term represents the probability amplitude of particle creation at point y
at time moment y0, and its annihilation at point x at later moment x0. The second term
gives the probability amplitude of particle creation at point x at moment x0 and its
annihilation at point y at time moment y0. These processes are graphically illustrated
in Figure 10.6. The sum of these amplitudes gives the Feynman propagator. We know
that in operator formalism the field ' can be written as the sum of the terms with
positive and negative frequencies (cf. Chapter 3)

'.x/ D '.C/.x/C '.�/.x/ , (10.74)

where

'.C/.x/ D
Z

d 3k
.2�/3

1p
2!k

ake
�ikx , (10.75)

'.�/.x/ D
Z

d 3k
.2�/3

1p
2!k

aC
k e

ikx , (10.76)



244 Chapter 10 Functional integrals: scalars and spinors

time time

space space

Figure 10.6

where !k D p
k2 Cm2 and aC

k , ak are the corresponding creation and annihilation
operators. Taking into account the physical meaning of these operators, only terms
like '.C/'.�/ remain in the vacuum average (10.73):

�.x, y/ D �.x0 � y0/h0j'.C/.x/'.�/.y/j0i C �.y0 � x0/h0j'.C/.y/'.�/.x/j0i .
(10.77)

Substituting here (10.75) into (10.76) we get

�.x, y/ D
Z

d 3kd 3k0
.2�/6

p
2!k!k0

Œ�.x0 � y0/e
�i.kx�k0y/ C �.y0 � x0/e

�i.ky�k0x/�h0jakaC
k0 j0i ,

(10.78)

so that interchanging operators in the vacuum average using commutation relations
(to separate normal product of operators giving zero and nonzero contribution from
ı-function) we obtain

�.x, y/ D
Z

d 3k
.2�/32!k

Œ�.x0 � y0/e
�ik.x�y/ C �.y0 � x0/e

ik.x�y/� . (10.79)

Actually, this expression can be shown to coincide with i	F .x�y/, where	F .x�y/
is given by (10.21). and equation (10.21) can be rewritten as

	F .x/ D
Z

d 4k

.2�/4
e�ikx

k2 �m2 C i"
D
Z
d 3kdk0

.2�/4
e�ikx

k2
0 � .k2 Cm2/C i"

D
Z
d 3kdk0

.2�/4
e�ikx
2!k

²
1

k0 � !k C iı
� 1

k0 C !k � iı
³

. (10.80)

The integral over k0 can be calculated as usual by contour integration in a complex
plane. Due to the exponential factor e�ik0x0 , for x0 > 0 we are closing the integration
contour in the lower half-plane of k0, so that the integral is determined by the contri-
bution of the pole at k0 D !k � iı. For x0 < 0 we close the integration contour in the
upper half-plane, so that integral is determined by the pole at k0 D �!k C iı. Then,
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using the Cauchy theorem, we have

	F .x/ D
Z

d 2k
.2�/3

eikx

2!k

�
�.x0/.�i/e�i!kx0 � �.�x0/ie

i!kx0
�

. (10.81)

After the replacement k ! �k in the second integral and variable transformation
x ! x � y, we obtain

	F .x�y/ D �i
Z

d 3k
.2�/32!k

�
�.x0�y0/e

�ik.x�y/C�.y0�x0/e
ik.x�y/� , (10.82)

which coincides with �i�.x, y/ from (10.79). Thus, the 2-point Green’s function ap-
pearing in the functional approach coincides with single-particle propagator of the
operator formulation of quantum field theory.

But what is the 1-point function? From (10.69) we obviously have

�.x/D h0jT '.x/j0i D h0j'.x/j0i D 1

i

ıZ0ŒJ �

ıJ.x/

ˇ̌
ˇ̌
JD0

D �
Z
dx1	F .x � x1/J.x1/ exp

�
� i

2

Z
J	F J

�ˇ̌
ˇ̌
JD0

D 0, (10.83)

i. e., the vacuum average of the field itself is just zero!
Let us now find the 3-point function. Differentiating (10.70) once more, we get
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J	F J
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Z
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Z
J	F J
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Z
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Z
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�
Z
dz	F .x1 � z/J.z/ exp

�
� i

2

Z
J	F J

�
, (10.84)

which for J D 0 obviously gives zero. Thus

�.x1, x2, x3/ D h0jT '.x1/'.x2/'.x3/j0i D 0 . (10.85)
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Figure 10.7

Similar calculations give
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ıJ.x4/
Z0ŒJ �D �	F .x2 � x3/	F .x1 � x4/ exp
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Z
J	F J
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�	F .x2 � x1/	F .x3 � x4/ exp
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� i
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J	F J
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�	F .x3 � x1/	F .x2 � x4/ exp

�
� i

2

Z
J	F J

�

C � � � , (10.86)

where multiple dots denote terms giving zero for J D 0. Accordingly, we obtain

�.x1, x2, x3, x4/ D �	F .x2 � x3/	F .x1 � x4/ �	F .x2 � x1/	F .x3 � x4/

�	F .x3 � x1/	F .x2 � x4/ , (10.87)

which is graphically shown by the diagrams in Figure 10.7 and represents the propa-
gation amplitude of two free particles. Here we have just four space-time points inter-
connected in all possible ways by the lines of free particles.

Going to n-point functions, we can easily be convinced that for the odd value of n
they are just zero:

�.x1, x2, : : : , x2nC1/ D 0 . (10.88)

For even n each n-point function is factorized into the sum of the products of the 2-
point functions (i. e., the sum of all “pairings” (contractions), defined by all possible
permutations of the coordinates, entering in pairs):

�.x1, x2, : : : , x2n/ D
X

P

�.xp1 , xp2/ � � � �.xp2k�1 , xp2k
/ , (10.89)
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where
�.x1, x2/ D i	F .x � y/ . (10.90)

This reduces to the Wick theorem we are familiar with, which is now proved in a
functional formulation of quantum field theory.

10.4 Generating the functional for interacting fields

So far we have discussed the case of a free (noninteracting) field. How can this formal-
ism be generalized to the interacting case? Consider the simplest case of interacting
theory, taking the Lagrangian of a scalar field in the form

L D 1

2
@�'@�' � m2

2
'2 � g

4Š
'4 D L0 C Lint , (10.91)

where g is some coupling constant. This is the so-called g'4-theory. The interaction
Lagrangian is

Lint D � g
4Š
'4 . (10.92)

Lagrange equations for such theory are nonlinear (containing the term � g'3), which
reflects the presence of (self)interaction. In the general case the interaction Lagrangian
is some function V.'/. In principle, we could consider even nonpolynomial functions,
but we shall limit ourselves here to the simplest models.

Remarks on the dimensionality of coupling constants

We have seen above that the actionS D R
d 4xL is dimensionless (we are using natural system

units with „ D 1). Correspondingly, the dimensionality of the Lagrangian ŒL� D l�4, where
l is some length. The dimensionality of energy (mass) is: ŒE� D Œm� D l�1. From the explicit
expression (10.91) for the Lagrangian it is clear that Œ'� D l�1. Then from equation (10.92) it
is clear that in g'4-theory the interaction constant g is dimensionless. This is very important!
Due to this property, this theory is renormalizable. Intuitively, this can be understood from the
following elementary arguments. Consider a more general interaction Lagrangian:

Lint D gk'
4Ck k > 0 (10.93)

In this case the dimensionality of the coupling constant Œgk� D lk . However, perturbation
expansion should be always performed in powers of some dimensionless small parameter. In
our case, such a parameter is given by

gkl
�k � gkm

k � gkE
k (10.94)

which grows with the growth of energy E (or at small distances). This is bad and actually
reflect the nonrenormalizability of such a theory. Roughly speaking, we may say that the di-
mensionality of the coupling constant is a necessary (but not sufficient!) condition for the
renormalizability of any theory of interacting particles. More precisely, it is necessary that in-
teraction constant be dimensionless, or that it has the dimensionality of some negative power
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of length: g � l�a, a > 0. In this last case, the dimensionless parameter of perturbation the-
ory is gE�a, which is harmless at high energies. From this point of view, g'3-theory is also
satisfactory, but it leads to other problems: it breaks the positive definiteness of energy (there
is no stable ground state). Thus, the g'4-theory is actually the only “reasonable” theory of a
scalar field in 4-dimensional space-time5.

For the spinor field .s D 1=2/ we argue in a similar way. Dirac’s Lagrangian L � i N @ �
m N  , so that Œ � D Œ N � D l�3=2. Correspondingly, if we write the interaction Lagrangian of
Dirac field with scalar fields in the obvious form (so-called Yukawa interaction)

Lint � g N  ' , (10.95)

the appropriate interaction constant g is again dimensionless, and the theory is renormalizable.
However, if we take the 4-Fermion interaction (Fermi)

Lint � G N  N  , (10.96)

the coupling constant G is dimensional: ŒG� D Œm�2� D l2. Such a theory has “bad” behavior
at high energies and is nonrenormalizable.

Modern quantum field theory deals mainly with renormalizable theories. The dimensional-
ity of the coupling constant is the crude criterion for choosing between different interaction
Lagrangians, satisfying the general requirements of relativistic invariance.

Tje normalized generating functional for the theory with interactions is defined sim-
ilarly to the case of noninteracting theory (cf.(10.1), (10.62)):

ZŒJ � D
R

D' exp
�
iS C i

R
dxJ'

	
R

D'eiS
, (10.97)

where S D R
d 4xL is the action of our theory, including the contribution from the

interaction Lagrangian. For Lint D 0, (10.97) naturally reduces to the case of the free
theory. In the general case we can write S D S0 C Sint , where Sint D R

d 4xLint .
Performing functional differentiation explicitly, we have

1

i

ıZ

ıJ.x/
D
R

D' exp
�
iS C i

R
dxJ'

	
'.x/

R
D'eiS

, (10.98)

1

i2

ı2Z

ıJ.x/ıJ.y/
D
R

D' exp
�
iS C i

R
dxJ'

	
'.x/'.y/

R
D'eiS

, (10.99)

etc. Putting here J D 0 we generate all the Green’s functions of our theory:

h0jT '.x/'.y/j0i D
R

D' exp .iS/ '.x/'.y/
R

D'eiS
, (10.100)

h0jT '.x1/'.x2/'.x3/'.x4/j0i D
R

D' exp .iS/ '.x1/'.x2/'.x3/'.x4/R
D'eiS

, (10.101)

5 These arguments, including the dependence on spatial dimensionality, will be discussed later in more
detail.
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etc. We see that Green’s functions are represented by the functional “averages” of the
products of an even number of fields, and “averaging” is performed with “weight” eiS .
If we write here S D S0 CSint and perform an expansion of the exponent in powers of
Sint (i. e., consider the perturbation series in powers of the coupling constant) and use
Wick theorem (proven above), we can build a diagram technique for calculating arbi-
trary Green’s functions, similarly to the case of operator formalism. The “averages”
of the pairs of fields in different points will be “averaged” with eiS0 . These “averages”
are easily calculated (Gaussian integrals!) and reduced to the appropriate free Green’s
functions. However, below we shall use a more formal approach based on the analysis
of the general relations for generating the functional of interacting theory (10.97).

Note that
1

i

ı

ıJ.x/
ei
R
dxJ' D '.x/ei

R
dxJ' . (10.102)

As J and ' here are independent (functional) variables, a similar equality also is valid
for an arbitrary function of ':

V

�
1

i

ı

ıJ.x/

�
ei
R
dxJ' D V .'.x// ei

R
dxJ' , (10.103)

which is easily proven making Taylor expansion of V.'/. Then we have

e�i R dxV.'/ei
R
dxJ' D e

�i R dxV
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dxJ' . (10.104)

Now, taking for V.'/ the interaction Lagrangian Lint .'/, we can write the generating
functional of interacting theory as

ZŒJ � D N
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Z0ŒJ � (10.105)

or, using (10.20),

ZŒJ � D N exp

�
i

Z
dxLint

�
1

i

ı

ıJ.x/

��
exp

²
� i

2

Z
dxdyJ.x/	F .x � y/J.y/

³
.

(10.106)

Thus we have obtained the general expression for generating functional of interacting
theory, which will be used below to construct a diagram technique.
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10.5 '4 theory

Let us return to the theory with interaction the Lagrangian

Lint D � g
4Š
'4 . (10.107)

The normalized generating functional for this theory is written as

ZŒJ � D
exp

h
i
R
dzLint
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(10.108)

Perturbation theory is constructed by expanding this expression into the series in pow-
ers of the interaction constant g. Let us write the first terms of this expansion for the
numerator:
�
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(10.109)

Making all the necessary differentiations we get
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, (10.111)
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(10.113)

These expressions can be associated with diagrams. Let us draw function �i	F .x�y/
(propagator) by the straight line, connecting points x and y. The value of �i	F .0/ D
�i	F .x � x/ will be drawn as closed loop, connected with point x. Then, equa-
tion (10.113) is graphically represented as shown in Figure 10.8. The origin of coef-
ficients 3, 6, 1 here can be understood from symmetry considerations. For example,
coefficient 3 corresponds to three ways to connect two pairs of lines to draw diagram
with two loops. Similarly, in the second term there are 6 ways to connect two lines
to obtain the diagram shown in Figure 10.8. These coefficients are called symmetry
factors, and we later shall discuss the general algorithm for finding them. Note that the
first term in (10.113) and in Figure 10.8 represents the typical vacuum contribution
(diagram) with no external lines.

Consider now the denominator of (10.108). We can simply put J D 0 in (10.113),
which excludes the second and third terms in Figure 10.8. Thus, up to the terms of
the order of g, generating the functional is expressed by the diagrams shown in Fig-
ure 10.9, where the second equality is obtained by expanding the denominator to the
same accuracy, so that the vacuum diagram from the denominator is “lifted upwards”
and cancels the vacuum diagram from the numerator. This reflects the general rule of
cancellation of vacuum diagrams valid for normalized generating functionals in quan-
tum field theory.

Figure 10.8
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Figure 10.9

2-point function

2-point function is defined as

�.x1, x2/ D � ı2ZŒJ �

ıJ.x1/ıJ.x2/

ˇ
ˇ̌
ˇ
JD0

. (10.114)

From Figure 10.9 it is clear, that contribution of the first term of ZŒJ � into �.x1, x2/

is equal simply to i	F .x1 �x2/, i. e., the free propagator. The diagram in Figure 10.9
with four “legs” contains four factors of J and does not contribute .J D 0/ to the
2-point function. The contribution of the diagram with lthe oop in ZŒJ � is equal to

g

4
	F .0/

Z
dxdy	F .z � x/J.x/	F .z � y/J.y/ exp
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2
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�
. (10.115)

Differentiating this expression twice we get
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(10.116)
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where we have dropped the terms giving zero for J ! 0. Finally, we have

�.x1, x2/ D i	F .x1 � x2/ � g

2
	F .0/

Z
dz	F .z � x1/	F .z � x2/CO.g2/ ,

(10.118)
which is shown by the diagrams in Figure 10.10. For the free particle we have

�.x/ D i	F .x/ D i

Z
d 4k

.2�/4
e�ikx

k2 �m2 C i"
(10.119)
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Figure 10.10

and the Fourier transform of the free propagator has the pole at k2 D m2, which
determines the spectrum of the corresponding particle. It is easy to see that in the
presence of interactions the particle mass becomes different form m. In fact, we can
write the second term of Figure 10.10 as
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, (10.120)

so that (10.118) reduces to
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For g 
 1 the term in the figure brackets in (10.121) can be rewritten (with the same
accuracy) as ²

1 � i g
2

	F .0/

p2 �m2 C i"

³�1

. (10.122)

Then

�.x1, x2/ D i

Z
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.2�/4
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2g	F .0/C i"

. (10.123)

We see that now the Fourier transform of �.x1, x2/ has the pole at

p2 D m2 C i

2
g	F .0/ 	 m2 C ım2 D m2

r , (10.124)

where
ım2 D i

2
g	F .0/ , (10.125)

and mr here represents the physical (or renormalized) mass of the particle. Thus, in-
teraction changes the mass. Unfortunately, the value of ım2 cannot be calculated, as

it is formally infinite as 	F .0/ � R
d 4k
k2 � R

dkk3=k2 � R
dkk, and this inte-

gral is quadratically divergent at the upper limit. This is again a typical example of
“ultraviolet” divergence in quantum field theory. The situation here is the same as
in QED. The physical origin of divergence is the point-like nature of interaction in
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local field theory. We do not know whether or not any “realistic” mechanism of the
“cutoff” of these divergences exists. In the theory of condensed matter, in similar situ-
ations the upper limit of integration in momentum space is usually � 1=a, where a is
some “minimal” length of the order of the average interatomic distance or lattice con-
stant. There is no known analogue of such “minimal” length in quantum field theory.
Its introduction (e. g., by assuming a kind of lattice structure of space-time at small
distances) explicitly breaks the relativistic invariance of the theory. The problem is
solved for renormalizable theories, where all such divergences can be “hidden” in the
finite number of parameters to be determined from experiments. For renormalizable
g'4-theory we shall return to the discussion of these problem later.

4-point function

We have

�.x1, x2, x3, x4/ D ı4ZŒJ �

ıJ.x1/ıJ.x2/ıJ.x3/ıJ.x4/

ˇ̌
ˇ̌
JD0

. (10.126)

The term of the order of g0 was considered above, and from (10.87) we have

�.x1, x2, x3, x4/ D �	F .x2 � x3/	F .x1 � x4/ �	F .x2 � x1/	F .x3 � x4/

�	F .x3 � x1/	F .x2 � x4/ , (10.127)

which is shown diagrammatically in Figure 10.7 and corresponds to the free propaga-
tion of two particles without any scattering. Consider the contribution of the first order
in g. From the diagrammatic form of generating a functional, shown in Figure 10.9, it
is clear that one of the contributions of this type, which is due to differentiation of the
loop graph in ZŒJ �, is shown in Figure 10.11 and is equal to

g

4

ı4

ıJ.x1/ıJ.x2/ıJ.x3/ıJ.x4/

²
	F .0/

Z
dx

Z
dy

Z
dz	F .x � z/	F .y � z/

� J.y/J.x/ exp

�
� i

2

Z
J	F J

�³ˇ̌
ˇ
ˇ
JD0

D

� ig

2
	F .0/

Z
dzŒ	F .z � x1/	F .z � x2/	F .x3 � x4/

C	F .z � x1/	F .z � x3/	F .x2 � x4/

C	F .z � x1/	F .z � x4/	F .x2 � x3/

C	F .z � x2/	F .z � x3/	F .x1 � x4/

C	F .z � x2/	F .z � x4/	F .x1 � x2/

C	F .z � x3/	F .z � x4/	F .x1 � x2/� , (10.128)

which is shown by the diagram in Figure 10.12, which replaces six terms in this ex-
pression. The other contribution of the first order in g is obtained by differentiation
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Figure 10.11

Figure 10.12

of the “four leg” graph in ZŒJ �, which gives

� ig

4Š

ı4

ıJ.x1/ � � � ıJ.x4/

²Z
dz

�Z
dx	F .z � x/J.x/

�4

exp

�
� i

2

Z
J	F J

�³ˇˇ̌
ˇ
JD0

D �ig
Z
dz	F .x1 � z/	F .x2 � z/	F .x3 � z/	F .x4 � z/ , (10.129)

which may be expressed graphically by a point with four “legs”, where the point rep-
resents the elementary (“bare”) interaction vertex.

Thus, the 4-point function up to terms of the order of g is expressed by the dia-
grams in Figure 10.13. Here the first term of the order g0, as we noted above, does not
contribute to scattering, the second term describes the self-interaction of one particles,
and scattering itself is described only by the third term.

The numerical coefficients in Figure 10.13, as well as in other similar cases, can
be understood from simple combinatorics. Consider an arbitrary diagram of the order
gn for a 4-point function. It contains n vertices, as shown in Figure 10.14. A 4-point
function has 4 external “legs”, as shown in Figure 10.15 (“prediagram”). Now we
have to connect these “legs” in all possible ways with n vertices, using the rules of
diagram technique. For example, in the first order in g there exist three topologically

Figure 10.13
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Figure 10.14

Figure 10.15

(a)                         (b)                           (c)

Figure 10.16

different types of Feynman diagrams, shown in Figure 10.16. To obtain the diagram of
Figure 10.16(a) we have to connect x1 in the prediagram of Figure 10.15 with one of
the legs of the vertex; there are four ways to do this Afterwards, there remain only three
ways to connect x2 with one of the remaining legs, etc. In total, there are 4Š D 24 ways
to obtain this diagram from the prediagram, leading to the corresponding coefficient in
Figure 10.13. To obtain the diagram of Figure 10.16(b) we have to connect x1 with one
of the external legs x2, x3, x4, which will produce a single line: there are three ways
to do this. Then we take one of the vertex legs and connect it with one of remaining
external points: this can be done in 4 � 2 ways. After that, we connect one of the
three remaining legs of the dotted vertex to the last remaining point, which can be
done in three ways. Finally, we connect the two remaining legs with each other. As
a result, we obtain a multiplicity factor of 3 � 4 � 2 � 3 D 12 � 6, which gives the
coefficient before the diagram in Figure 10.13. It is clear that the multiplicity of the
diagram in Figure 10.16(c) is equal to 3 � 3 D 9, but this (vacuum) diagram is not
present in Figure 10.13, being cancelled by the corresponding contribution from the
denominator of the normalized functional ZŒJ �.

Finally, we formulate the following diagram rules for g'4-theory (in coordinate
representation).

� The free particle propagator �i	F .x � y/ is associated with the continuous line,
connecting points x and y.

� The elementary interaction vertex is expressed by a point, connected with four con-
tinuous lines, and associated with factor �ig. There is integration over the vertex
coordinates.
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� Each diagram is multiplied by the corresponding symmetry factor S.1=4Š/n, where
S is the number of ways to construct this diagram from the corresponding pre-
diagram.

10.6 The generating functional for connected diagrams

We can introduce the generating functional W ŒJ �, which generates only connected
Feynman diagrams, i. e., diagrams which can not be represented by independent
“blocks”6. Connected diagrams are important, because only these diagrams contribute
to the nontrivial part of the S -matrix (scattering). The functional W ŒJ � is defined as

W ŒJ � D �i lnZŒJ � , (10.130)

so that
ZŒJ � D exp .iW ŒJ �/ . (10.131)

Let us consider, for example, 2-point and 4-point functions and show that W ŒJ � gen-
erates only connected diagrams. We have

ı2W

ıJ.x1/ıJ.x2/
D i

Z2

ıZ

ıJ.x1/

ıZ

ıJ.x2/
� i

Z

ı2Z

ıJ.x1/ıJ.x2/
. (10.132)

For J D 0 we have
ıZŒJ �

ıJ.x/

ˇ
ˇ̌
ˇ
JD0

D 0 , ZŒ0� D 1 , (10.133)

so that

ı2W

ıJ.x1/ıJ.x2/

ˇ̌
ˇ̌
JD0

D �i ı2Z

ıJ.x1/ıJ.x2/

ˇ̌
ˇ̌
JD0

D i�.x1, x2/ . (10.134)

We see that W determines the propagator in all orders of g.
Now for 4-point function: let us differentiate (10.132) two more times and put

J D 0. Then we have

ı4W

ıJ.x1/ıJ.x2/ıJ.x3/ıJ.x4/

D i

�
1

Z2

ı2Z

ıJ.x1/ıJ.x2/

ı2Z

ıJ.x3/ıJ.x4/
C 1

Z2

ı2Z

ıJ.x1/ıJ.x3/

ı2Z

ıJ.x2/ıJ.x4/

C 1

Z2

ı2Z

ıJ.x1/ıJ.x4/

ı2Z

ıJ.x2/ıJ.x3/
� 1

Z2

ı4Z

ıJ.x1/ıJ.x2/ıJ.x3/ıJ.x4/

�ˇ̌
ˇ̌
JD0

D i Œ�.x1, x2/�.x3, x4/C�.x1, x3/�.x2, x4/C�.x1, x4/�.x2, x3/��.x1, x2, x3, x4/� .

(10.135)

6 An example of a nonconnected diagram is shown in Figure 10.16(b).
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Figure 10.17

It is easily seen that this expression does not contain nonconnected diagrams. Sub-
stituting (10.118) and (10.129) into (10.135), with an accuracy up to the terms of the
order g, we obtain Figure 10.17. We see that only connected diagrams contribute here.

Let us briefly discuss the n-point function

�.x1, : : : , xn/ D 1

in
ınZŒJ �

ıJ.x1/ : : : ıJ.xn/

ˇ̌
ˇ̌
JD0

. (10.136)

The irreducible (connected) n-point function '.x1, : : : , xn/ can be defined as

'.x1, : : : , xn/ D 1

in
ınW ŒJ �

ıJ.x1/ � � � ıJ.xn/
ˇ̌
ˇ̌
JD0

. (10.137)

In fact, from Figure 10.13 and equation (10.136) directly follow the expressions, shown
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Figure 10.18

Figure 10.19

Figure 10.20

Figure 10.21

in Figure 10.18. From (10.135) it follows that

i'.x1, : : : , x4/ D
�.x1, : : : , x4/��.x1, x2/�.x3, x4/��.x1, x3/�.x2, x4/��.x1, x4/�.x2, x3/ .

(10.138)

As �.x1, x2/ D i'.x1, x2/, we have:

�.x1, : : : , x4/ D i'.x1, : : : , x4/ �
X

p

'.xi1 , xi2/'.xi3 , xi4/ , (10.139)

where the sum is taken over all the possible combinations of the indices .1, : : : , 4/
into the pairs .i1, i2/, .i3, i4/. Thus, the 4-point function breaks into an “irreducible”
(or connected) part and reducible parts, as shown in Figure 10.19. In the first order over
g we have the diagrams shown in Figure 10.20. For the case of n-points functions, the
appropriate generalization has the form shown in Figure 10.21.
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10.7 Self-energy and vertex functions

Let us continue our discussion of the general structure of equations in quantum field
theory in the functional formulation, limiting ourselves mainly to the g'4-theory.
From the generating functionalZŒJ �we can determine n-point functions �.x1, : : : , xn/
(Green’s functions Gn.x1, : : : , xn/):

�.x1, : : : , xn/ D G.n/.x1, : : : , xn/ D 1

in
ınZŒJ �

ıJ.x1/ : : : ıJ.xn/

ˇ̌
ˇ̌
JD0

. (10.140)

These functions contain both connected (irreducible) and nonconnected (reducible)
parts, as shown, for example, for the case of G.4/ in Figure 10.22. The scattering pro-
cesses are determined only by connected diagrams, which are generated by functional
W D �i lnZ, so that the connected Green’s functions are defined as

i'.x1, : : : , xn/ D G.n/c .x1, : : : , xn/ D 1

in�1

ınW ŒJ �

ıJ.x1/ : : : ıJ.xn/

ˇ̌
ˇ
ˇ
JD0

. (10.141)

Then, of all the graphs shown in Figure 10.22 only the third one remains, which de-
termines G.4/c in the first order over g.

Connected (irreducible) 2-point Green’s function, up to the terms g3, is determined
by the diagrams shown in Figure 10.23. The complete sum of such diagrams gives

Figure 10.22

Figure 10.23
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Figure 10.24

the “dressed” propagator G.2/c .x, y/, which is usually depicted by a “fat” line. We can
perform the usual procedure, extracting single-particle irreducible diagrams (which
cannot be cut over the single-particle line), and introduce their sum, as shown in Fig-
ure 10.24. This sum defines the irreducible self-energy part. The exact (dressed) prop-
agator is now determined by the Dyson equation:

G.2/c .p/ D G0.p/CG0.p/
1

i
†.p/G0.p/CG0.p/

1

i
†.p/G0.p/

1

i
†.p/G0.p/C � � �

D G0

°
1 C 1

i
†G0 C 1

i
†G0

1

i
†G0 C : : :

±
D

D G0

h
1 � 1

i
†G0

i�1
D
h
G�1

0 .p/ � 1

i
†.p/

i�1
(10.142)

or

G.2/c .p/ D i

p2 �m2 �†.p/ , (10.143)

where we have taken into account that

G0.p/ D i

p2 �m2
. (10.144)

The Dyson equation is shown in diagrammatic form in Figure 10.25. Defining the

Figure 10.25
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physical mass of a particle mphys from the pole of the dressed propagator7

G.2/c .p/ D i

p2 �m2
phys

, (10.145)

we obtain
m2
phys D m2 C†.p2 D m2

phys/ . (10.146)

From equation (10.142) we have

ŒG.2/c .p/��1 D G�1
0 .p/ � 1

i
†.p/ , (10.147)

so that the inverse 2-point function contains (besides an inverse “bare” propagator)
only single-particle irreducible diagrams. Formally, we can define the 2-point vertex
function �.2/.p/ by

G.2/c .p/�.2/.p/ D i , (10.148)

which, according to (10.147), reduces to

�.2/.p/ D p2 �m2 �†.p/ . (10.149)

In fact, the nontrivial part of this construction reduces simply to †.p/, but this new
notation is convenient within the framework of some universal notation system, which
introduces the general notion of vertex functions8.

We can also introduce the generating functional for n-point single-particle irre-
ducible vertices �n. This is denoted as �Œ'� and is usually called the effective action.
This functional is defined by the so-called Legendre transformation of the functional
W ŒJ �:

W ŒJ � D �Œ'�C
Z
dxJ.x/'.x/ . (10.150)

Now we immediately obtain

ıW ŒJ �

ıJ.x/
D '.x/ ,

ı�Œ'�

ı'.x/
D �J.x/ . (10.151)

Then as propagator we have

G.x, y/ D � ı2W ŒJ �

ıJ.x/ıJ.y/
D �ı'.x/

ıJ.y/
. (10.152)

Let us define �.x, y/ as

�.x, y/ D ı2�Œ'�

ı'.x/ı'.y/
D � ıJ.x/

ı'.y/
, (10.153)

7 The energy spectrum of a freely propagating “dressed” particle is determined from p2 D m2
phys

.
8 It is convenient to exclude the imaginary i from the definition of G.2/c .p/, so that the right-hand side

of (10.148) is equal simply to 1. Correspondingly, in the Dyson equation we replace 1
i † ! †. These

notations are most common in the literature.
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which is inverse to the propagator:
Z
dxG.x, z/�.z, y/ D �

Z
dz

ı2W ŒJ �

ıJ.x/ıJ.z/

ı2�Œ'�

ı'.z/ı'.y/

D
Z
dz
ı'.x/

ıJ.z/

ıJ.z/

ı'.y/
D ı'.x/

ı'.y/
D ı.x � y/ , (10.154)

Differentiating both sides of (10.154) by J.x00/, replacing y by z, and using the relation

ı

ıJ.x00/
D
Z
dz00 ı'.z00/

ıJ.x00/
ı

ı'.z00/
D �

Z
dz00G.x00, z00/

ı

ı'.z00/
; (10.155)

we then obtain
Z
dz

ı3W

ıJ.x/ıJ.x00/ıJ.z/
ı2�

ı'.z/ı'.z0/
�
Z
dz

�
Z
dz00 ı2W

ıJ.x/ıJ.z/
G.x00, z00/

ı3�

ı'.z/ı'.z0/ı'.z00/
D 0 , (10.156)

so that
Z
dz

ı3W

ıJ.x/ıJ.x00/ıJ.z/
�.z, z0/

C
Z
dzdz00G.x, z/G.x00, z00/

ı3�

ı'.z/ı'.z0/ı'.z00/
D 0 . (10.157)

Multiplying both sides of the last equation by G.x0, z0/ and integrating by z0, taking into ac-
count (10.154), we get

ı3W

ıJ.x/ıJ.x0/ıJ.x00/
D �

Z
dzdz0dz00G.x, z/G.x0, z0/G.x00, z00/

ı3�

ı'.z/ı'.z0/ı'.z00/
.

(10.158)

Thus, the connected 3-point function reduces to a single-particle irreducible 3-point vertex

function, with external lines given by exact propagators. Correspondingly, ı3�
ı'.z/ı'.z0/ı'.z00/

represents the complete three-leg vertex. All this is shown graphically in Figure 10.26.
Equation (10.158) can be inverted with the help of (10.154), so that

ı3�

ı'.y/ı'.y0/ı'.y00/
D �

Z
dxdx0dx00�.x,y/�.x0,y0/�.x00,y00/

ı3W

ıJ.x/ıJ.x0/ıJ.x00/
.

(10.159)

In the right-hand side the external legs of (10.158) are “amputated”.

Figure 10.26
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Figure 10.27

Differentiating (10.158) once more, we obtain the 4-point function represented by the dia-
grams in Figure 10.27, where a 4-leg irreducible vertex and a three single-particle reducible
contributions appeared, corresponding to the three cross-channels of the reaction.

Thermodynamic analogy

There is a deep analogy between quantum field theory and statistical mechanics, which
is expressed by the following table:

Quantum field theory Statistical mechanics

Z - generating functional Z - partition function

Z D eiW Z D e� F
T

W ŒJ � D �Œ'�C R
J' F – free energy

In the following section we shall consider an explicit example of the application of
the methods of quantum field theory to the theory of the critical phenomena at second-
order phase transitions.

10.8 The theory of critical phenomena

Let us consider briefly one of most successful applications of quantum field theory
methods to problems of statistical physics: the theory of critical phenomena in the
vicinity of the critical temperature of the second order phase transitions. This problem
remained unsolved by the traditional methods of statistical physics for a long time.
The essence of the problem is well known: in the rather narrow (so-called critical)
region near the phase transition temperature Tc , the critical exponent describing the
singular behavior of physical properties at Tc is not satisfactory, as described by the
general Landau theory of second-order phase transitions [36]. The reason for this de-
ficiency is also quite clear; close to a phase transition point, strong fluctuations of the
order parameter develop in the system which strongly interact with each other [36,42].
Significant progress in the theory was achieved with the introduction of the important
concept of scale invariance, or scaling [42, 48]. However, the rigorous derivation of
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this concept and the explicit calculations of the critical exponents became possible only
after the development of the appropriate quantum field theory methods, which lead to
the successes of the modern theory of critical phenomena [3, 42, 48]. Below we shall
give a very short presentation of the main ideas and results of this theory, which illus-
trate a deep relationship between quantum field theory and statistical physics. Many
important details of the calculations will, however, be skipped.

The Landau functional of free energy can be written in the standard form as [3, 42,
48]9

1

T
F Œ�.r/� D

Z
dd r

´
1

2

nX

jD1

h
.r�j /2 C ��2

j

i
C 1

8
g

 
nX

jD1

�2
j

!2μ

, (10.160)

where T is the temperature and the parameter � D T�Tc

Tc
determines the the size

of the critical region close to the phase transition point. We shall limit ourselves to
the temperature region T > Tc (symmetric phase). The order parameter �j is rep-
resented by an n-component vector in some “isotopic” space with dimensionality n.
Equation (10.160) is quite general. In fact, we are dealing with anO.n/-symmetric
(isotropic) model of phase transition, which well describes a rather wide class of real
systems. The case of n D 1 corresponds to the Ising model, n D 2 describes the so-
called XY -model (superfluidity, superconductivity), n D 3 corresponds to isotropic
Heisenberg ferromagnet, etc. [42, 48].

In the Landau theory, which completely neglects fluctuations of the order parameter
(mean-field theory), � D 0 for T > Tc [36]. However, even for T > Tc , fluctuations
may lead to the appearance of regions in the system with �.r/ ¤ 0. The probability
of such fluctuations is defined by [36, 42]

P Œ�.r/� D 1

Z
exp

°
� 1

T
F Œ�.r/�

±
, (10.161)

where partition function Z is determined by functional integral:

Z D
Z

D�.r/ exp
°
� 1

T
F Œ�.r/�

±
. (10.162)

The free energy of the whole system is given by

F D �T lnZ. (10.163)

The correlation function of the order parameter is defined as

Gjl.r , r 0/ D Z�1
Z

D�.r/�j .r/�l .r
0/ exp

°
� 1

T
F Œ�.r/�

±
	 h�j .r/�l .r 0/i .

(10.164)

9 From the very beginning we shall consider the space of dimension d because of the important depen-
dence of critical phenomena on spatial dimensionality [36, 42].
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Figure 10.28

An analogy with the results of the previous sections is obvious: the theory of critical
phenomena is equivalent to the Euclidean quantum theory of an n-component scalar
field in d -dimensional space. Equation (10.164) is simply the propagator (Green’s
function or 2-point function) of such a field theory. In the simplest variant of the
so-called Gaussian model of critical phenomena we have already met this theory in
connection with equation (10.28).

The structure of the perturbation theory over the coupling constant g for fluctua-
tions of the order parameter is quite similar to that in the g'4-theory with a single-
component scalar field discussed above. The free Green’s function coincides with
Ornstein–Zernike correlator (cf.(10.27)):

G0jl.p/ D ıjl

p2 C �
. (10.165)

The correlation function of interacting fluctuations is determined by the Dyson equa-
tion

G�1.p/ D G�1
0 .p/ �†.p/ , (10.166)

where the self-energy part †.p/ is represented by the diagrams in Figure 10.28. The
vertex part (“four-leg” vertex) determines the 4-point correlator h�i .r1/�j .r2/�l .r3/
�m.r4/i etc.

Nontrivial physics of critical phenomena is connected with interaction of fluctua-
tions. Let us consider the lowest-order perturbation theory corrections to the “bare”
interaction, defined by the coupling constant g. In Figure 10.29 we show diagrams
� g2, corresponding to the three cross-channels of “two-particle scattering”, deter-
mined by three sums of incoming momenta10:

1. p1 C p2,

2. p1 � p3,

3. p1 � p4.

Naturally, we have the conservation of the total momentum

p1 C p2 D p3 C p4 . (10.167)

In the problem with an n-component field it is convenient to use the symmetrized (over
“isotopic” indices) form of the “bare” interaction

 D g.ıij ıkl C ıikıjl C ıilıjk/ 	 gIijkl . (10.168)

10 Arrows on lines define the directions of incoming and outgoing momenta.
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Then the interaction term in (10.160) is � Iijkl�i�j�k�l , where we assume summa-
tion over the repeating indices from 1 to n.

To find the full vertex part of a two-particle scattering, we need to perform the
summation of all the diagrams like those shown in Figure 10.30. Obviously, in the
general case this problem is unsolvable. However, we can introduce some topological
classification of diagrams which allows us to write the general system of the so-called
“parquet”(integral) equations, which determines this full vertex part [17]. It is clear
that the full vertex � can be written as

� D RC �1 C �2 C �3 , (10.169)

where the “blocks” �1,�2,�3 are built of diagrams which can be cut over two lines in
channels 1,2,3, while blockR consists of all diagrams which cannot be cut in this way
in either of these channels. Then for blocks �1,�2,�3 we can construct diagrammatic
equations, which are shown in Figure 10.31. Here we introduced blocks

Ii D RC
X

j¤i
�j , (10.170)

which cannot be cut over two lines in channel i . The structure of the diagrams, deter-
mining block R, is clear from the diagrams shown in Figure 10.32.

This system of integral equations is very complicated. However, there is a case,
where the solution is more or less simple. This is the so-called approximation of the
“leading logarithms”. To understand the main idea, let us estimate Diagram 1 in Fig-
ure 10.2911. Analytically, the contribution of this diagram is determined by the fol-
lowing integral:

g2.nC 8/
Z

ddp

.2�/d
1

p2 C �

1

.p C k/2 C �
. (10.171)

Figure 10.29

11 In the following, in most cases we drop irrelevant numerical constants like symmetry factors etc.
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Figure 10.30

Figure 10.31

Figure 10.32

The factor nC 8 here originates from the product of two factors (10.168), standing at
the vertices

IijmnImnkl C IikmnImnjl C IilmnImnjk D .nC 8/.ıij ıkl C ıikıjl C ıilıjk/ .
(10.172)

Now consider our theory in 4-dimensional space d D 4. Then we can estimate our
integral as

Z
d 4p

1

p2 C �

1

.p C k/2 C �
�
Z ƒ

Max.k,
p
�/

dpp3

p4
�
Z ƒ

Max.k,
p
�/

dp

p

� ln
ƒ

Max.k,
p
�/

, (10.173)
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where we have introduced upper limit cutoffƒ � 1
a

. Here, in contrast to quantum field
theory, we do not have any problem with logarithmic divergence at the upper limit;
Landau expansion (10.160) is valid only on the length scale, which is much larger
than the interatomic distances a, and there is simply no fluctuation with shorter wave-
lengths. The value of a plays the role of “minimal length”, which is absent in quantum
field theory. However, the presence of logarithmic divergence in (10.173) is of prime
importance. This logarithm becomes very large in the vicinity of a phase transition
point when we are dealing with k,

p
� 
 ƒ. Here we have “infrared” divergence for

� or k tending to zero! In fact, with an accuracy up to second order terms in g we now
have

�.k/ � g � g2.nC 8/ ln
ƒ

Max.k,
p
�/

C � � � . (10.174)

We see that the first correction to the interaction vertex for � ! 0, k ! 0 can be-
come much larger than the bare coupling constant g; fluctuations become strongly
interacting as we move to the transition point. This is the essence of the problem: we
need some everywhere relevant corrections, and this is not an easy problem to solve!
For d D 3 this seems to be a hopeless task; however, for d D 4, due to the rela-
tively weak logarithmic singularity, we can perform the summation of a certain set
of diagrams, corresponding to the “leading logarithm” approximation. The logarithm
appears from momentum integration in the loop graph. In higher orders higher pow-
ers of logarithm appear, with their powers determined by the number of loops in the
corresponding diagram. For example, considering in a similar way Diagrams 2 and 3
in Figure 10.30, we estimate their contribution to be � g3 ln2 ƒ

Max.k,
p
�/

, while for

Diagram 4 we get � g4 ln3 ƒ
Max.k,

p
�/

. At the same time, the estimate of Diagram 6

gives � g4 ln ƒ
Max.k,

p
�/

, while for Diagram 7 we have � g5 ln ƒ
Max.k,

p
�/

, which is
much smaller than contributions of 2, 3, 4 due to the assumption of weakness of the
“bare” coupling g 
 1. Thus, we can limit ourselves to the “leading logarithms”, i. e.,
take into account only those diagrams which give the power of the logarithm as equal
to the power of coupling constant g minus 1; in Figure 10.30 these are Diagrams 2,
3, and 4. The topology of these diagrams is quite clear: in the given order they con-
tain the maximal number of loops, like Figure 10.29. This set of graphs is typically
called “parquet” diagrams. “Parquet” takes into account all the vertex corrections of
the order of � gn lnn, but neglects contributions like � gnCk lnn. Moreover, we can
neglect the contributions without logarithms. In particular, block R introduced above
now reduces to the first term in Figure 10.32, i. e., simply to the “bare” interaction g.
In such an approximation the “parquet” equations of Figure 10.31 can be solved. How-
ever, the procedure of this solution is rather complicated, and we shall not discuss it.
The correct answer for the full vertex can be obtained using a more “naïve” analysis,
which will be used here. Consider the simple one-dimensional set of diagrams shown
in Figure 10.33. This is a simple progression, which is easily summed (in contrast to
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Figure 10.33

a two-dimensional “parquet”):

�.k/ D g � g2.nC 8/ ln
ƒ

Max.k,
p
�/

C g3.nC 8/2 ln2 ƒ

Max.k,
p
�/

C � � �

D g

1 C g.nC 8/ ln ƒ
Max.k,

p
�/

. (10.175)

The rigorous solution of “parquet” equations gives the same answer (for external mo-
menta of the same order of magnitude)12. “Parquet” equations for such vertices are
reduced to the differential equation

d�.s/

ds
D �.nC 8/�2.s/ (10.176)

with the boundary condition �.s/ ! g for s ! 0. Here we introduce the logarithmic
variable

s D ln
ƒ

Max.k,
p
�/

. (10.177)

Integration of (10.176) gives

�.s/ D g

1 C g.nC 8/s
, (10.178)

which coincides with (10.175). In fact, this result is completely similar to expressions
for physical charge obtained in Chapter 8 during our discussion on the asymptotic
properties of QED which lead to the problem of the “Moscow zero” or the Landau
“ghost pole”13.

Consider the case of k D 0 (interaction of fluctuations with very long wavelengths).
Then (10.175) reduces to

�.k D 0/ D g

1 C g.nC 8/ ln ƒp
�

! 1

.nC 8/ ln ƒp
�

for � ! 0 . (10.179)

Now, as we approach the point of phase transition, the dependence on the “bare” cou-
pling constant g cancels, while the effective interaction tends to zero (typical “zero-
charge” behavior!)14. But here, in contrast to relativistic field theory, this behavior

12 This coincidence with the correct answer is pretty accidental; the rigorous solution was first obtained
in [17].

13 A result of the type of (10.175) was first obtained from the analysis of “parquet” equations during the
studies of asymptotic properties of relativistic scalar field g'4-theory [17]. In the theory of critical
phenomena for d D 4 it was obtained much later by Larkin and Khmelnitskii [38].

14 Let us stress that in the theory of critical phenomena we have g > 0, so that here we have no problems
like “ghost poles”.
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does not lead to any problem and, in fact, completely clarifies the situation. Equa-
tion (10.179) corresponds to the effective interaction of fluctuations becoming weaker
as we approach the phase transition. We can explicitly calculate the influence of this
weak interaction on all physical characteristics which are singular at the phase transi-
tion point, and we can see that it leads only to some insignificant (logarithmic) temper-
ature corrections to the critical behavior described by the Landau theory. These log-
arithmic corrections do not change the powers of the temperature singularities, i. e.,
critical exponents. Thus, for d D 4 the critical indices (exponents) are simply equal
to their values of the Landau theory!

Definitions of critical exponents

The theory of critical phenomena usually considers the following standard set of physical char-
acteristics of the system and critical exponents (indices), determining sthe ingular behavior of
these characteristics for � D T�Tc

Tc
! 0.

Order parameter:

N' � j� jˇ , T ! Tc � 0 , (10.180)

N' � h
1
ı , T D Tc , (10.181)

where h is the external field, interacting with the order parameter.

Susceptibility:

� �
²
��
 , T ! Tc C 0 ,
j� j�
 0

. T ! Tc � 0 .
(10.182)

Correlation function of the order parameter (d – spatial dimensionality):

G.r/ � exp .�r=�/
rd�.2��/ , (10.183)

where the correlation length is

� �
²
��� , T ! Tc C 0 ,
j� j��0

, T ! Tc � 0 .
(10.184)

At the critical point itself,

G.r/ � 1

rd�.2��/ , (10.185)

G.p/ � 1

k2�� . (10.186)

In a similar way we introduce the critical index of specific heat ˛:

C.� , h D 0/ D AC

˛
Œ��˛ � 1�C BC , T ! Tc C 0 , (10.187)

C.� , h D 0/ D A�

˛0 Œj� j�˛0 � 1�C B� , T ! Tc � 0 , (10.188)

so that ˛ D 0 corresponds to logarithmic singularity.
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It is important to note that in Landau theory (mean-filed theory) the values of the
critical indices are [36]

� D 1

2
, � D 1 , � D 0 ,

˛ D 0 , ˇ D 1

2
, ı D 3 (10.189)

and satisfy the standard scaling relations [36, 42]

� D �

2 � � ,

˛ D 2 � �d , (10.190)

ˇ D 1

2
�.d � 2 C �/ ,

in 4-dimensional space d D 4. In this sense we can say that Landau theory gives a
correct description of critical phenomena for d D 4. The same statement is actually
valid for all d > 4; it can be easily seen that corrections of the type of (10.171) do
not lead to any divergences for d > 4 and are small due to the assumption of g 
 1.
Spatial dimensionality d D 4 is called the upper critical dimension of the theory.

For the physically most interesting case of d D 3 there is no possibility of choosing
the “leading” (dominating) diagrams in a perturbation series; actually, all the diagrams
are of the same order. This was the main obstacle for construction a rigorous theory
of critical phenomena. Wilson has proposed an original method for calculating crit-
ical exponents, which is based on the idea of the introduction of an artificial small
parameter of the perturbation theory " D 4 � d : a deviation from the upper critical
dimensionality d D 4, for which all critical indices coincide with the predictions of
the mean-field theory ("-expansion). The idea of “fractional” spatial dimensionality is
rather simple. In all the Feynman integrals above we have dealt with integration over
the volume of d -dimensional momentum space, with the volume element in spherical
coordinates (for the integrand depending only on the absolute value of momentum)
written as

ddp D �dp
d�1dp , (10.191)

where �d is the surface of a d -dimensional sphere of the unit radius

�d D 2�d=2

�


d
2

� , (10.192)

where we use the usual definition of a�-function. In this expression we already can
consider d as an arbitrary (noninteger) real parameter. Then we can write

Z
ddp

.2�/d
� � � D �d

.2�/d

Z
dp pd�1 � � � D Kd

Z
dp pd�1 � � � , (10.193)
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where we introduces the standard notation

Kd D 2�.d�1/��d=2
�
�

�
d

2

���1

. (10.194)

In particular,K4 D .8�2/�1. Previously, during our estimates of (10.173) this constant
was just dropped. In the following we shall also drop it.

Let us estimate once again the contribution of Diagram 1 in Figure 10.29 for the
space dimensionality d D 4 � ". Instead of (10.173) we have

g2.nC 8/Kd

Z ƒ

Max.k,
p
�/

dp pd�1 1

p4
� g2.nC 8/

Z ƒ

Max.k,
p
�/

dp pd�5

� g2.nC 8/
1

d � 4
pd�4

ˇ̌
ˇ
ƒ

Max.k,
p
�/

� g2.nC 8/
1

"

°�
Max.k,

p
�/
��" �ƒ�"± .

(10.195)

The changes in comparison to the case of d D 4 reduce the replacement of logarithm
(10.173) by a “logarithmic variable”

s D 1

"

°�
Max.k,

p
�/
��" �ƒ�"± , (10.196)

which gives the same logarithm in the limit of " ! 0. Thus, during the solution of
“parquet” equations, we can again use the approximation of the “leading logarithms”,
and the differential equation for the vertex (10.176) conserves its form. Its solution
(10.178) for the case of k D 0 in space with d D 4 � " can now be written as

�.k D 0/ D g

1 C g.nC 8/1
"
Œ��"=2 �ƒ�"�

!

1

.nC 8/ 1
"�"=2

D "�"=2

.nC 8/
for � ! 0 . (10.197)

We see that the effective interaction of fluctuations is small due to the assumed small-
ness of our artificial parameter " D 4 � d .

Equation (10.176) can also be considered as a differential equation over cutoff pa-
rameter ƒ, which enters the variable s (10.196), (10.177): ds D ƒ�.1C"/dƒ. In this
case this equation describes the renormalization of the vertex � under infinitesimal
transformation of the cutoff parameter ƒ ! ƒ0 D ƒ C dƒ. Essentially this is the
differential equation of the renormalization group introduced first by Gell-Mann and
Low and already known to us in the case of QED. Renormalization group ideology is
the basis of the modern theory of phase transitions [3, 42, 69].

Let us schematically present how critical exponents are calculated in "-expansion.
Consider a correlation function of the order parameter (Green’s function) G.p�/. We
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Figure 10.34

have, by definition:

G.p D 0�/ D �.�/ � ��
 ,

G.p� D 0/ � p�2C� . (10.198)

Let us limit ourselves to indices � aqnd�, as all others can be determined from scaling
relations like (10.190) [42, 48].

In this theory we may prove two Ward identities:

@

@p˛
G�1
jl .p� D 0/ D 2p˛ıjl � 2

Z
ddp0

.2�/d
p 0̨ G2

mm.p
00/�jlmm.ppp0p0/ ,

(10.199)
@

@�
G�1
jl .p� D 0/ D ıjl �

Z
ddp0

.2�/d
G2
mm.p

00/�jlmm.ppp0p0/ . (10.200)

Introducing the “triangular” vertex Tjl D @
@�
G�1
jl
.p� D 0/, we can draw the second

of these identities as shown in Figure 10.34. This identity can be derived by differen-
tiation of diagrams for self-energy (inverse propagator), as is shown schematically in
Figure 10.35. Differentiation of the inverse free propagator (10.165) (Figure 10.35(a))
gives the first term, while differentiation of the simplest contribution to self-energy
(Figure 10.35(a)) gives lowest order contributions to the vertex with two linked “legs”,
i. e., the lowest-order contribution to the second term. The full series of “differentiated”
graphs is summed to the full vertex. The identity (10.199) is derived in a similar way,
differentiating by p˛.

Let us substitute into (10.199) the “parquet” solution for �.ppp0p0/. We have not
derived it explicitly, but it is sufficient to know that (similarly to �.k/ derived above)
it depends only on the absolute values jpj and jp0j, so that the integral in the right-hand

(a)

(b)

Figure 10.35
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Figure 10.36

side of (10.199) gives zero after integration over the polar angle. Thus, we simply have

@G�1.p� D 0/

@p˛
D 2p˛ , (10.201)

so that
G.p� D 0/ � 1

p2
, (10.202)

which gives the value of the critical exponent � D 0.
Let us use now the Ward identity (10.200). In a “parquet” approximation we can

resume the diagrams in such a way that this identity reduces to an integral equation
for a “triangular” vertex, shown in Figure 10.36. Using logarithmic variables we can
rewrite this equation as

Tjl.s/ D ıjl �
Z s

0
dt�jlmn.t/Tmn.t/ . (10.203)

Using Tjl D T ıjl and (10.168) we obtain

Ijlmnımn D .nC 2/ıjl (10.204)

and (10.203) reduces to

T .s/ D 1 � .nC 2/
Z s

0
dt�.t/T .t/ . (10.205)

Differentiating by s, we reduce this integral equation to a differential one:

dT .s/

ds
D �.nC 2/�.s/T .s/ (10.206)

with boundary condition T .s D 0/ D 1. Then we find

T .s/ D exp

²
�.nC 2/

Z s

0
dt�.t/

³
. (10.207)

Using here (10.178), we obtain finally

T .s/ D Œ1 C g.nC 8/s��
nC2
nC8 . (10.208)

Then we have

@

@�
G�1.p D 0�/ D @��1.�/

@�
D Œ1 C g.nC 8/s��

nC2
nC8 (10.209)
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Integrating with the necessary accuracy, we get

�.�/ � 1

�

°
1 C g.nC 8/

1

"
Œ��"=2 �ƒ�"�

±nC2
nC8 ! ��.1C "

2
nC2
nC8 / (10.210)

for � ! 0. Then, for the susceptibility critical exponent we find

� D 1 C nC 2

nC 8

"

2
C � � � . (10.211)

This expression, as well as the previous result � D 0, are valid up to the terms of the
first order in ", and represent the first terms of the "-expansion of critical indices. More
tedious calculations allow the derivation of higher order corrections.

One remarkable result of the modern theory following from these expressions is the
universality of critical behavior; the values of the critical exponents in quite differ-
ent physical systems are determined only by the dimensionality of space (or system)
and the number of components n of the order parameter (i. e., in fact, the type of the
symmetry broken during the phase transition).

Expansion (10.160) may in principle contain higher powers of the order parameter.
What is their role in critical behavior? Why have we limited ourselves only to g�4?
Consider a possible term like ��6 and the simplest diagram due to such an interaction,
shown in Figure 10.37. By the order of magnitude it is determined by the integral:

�2
Z
d 3p1

Z
d 3p2

1

p2
1p

2
2.p

2
1 C p2

2/
� �2

Z ƒ

p
�

dp1

Z ƒ

p
�

dp2
p2

1p
2
2

p2
1p

2
2.p

2
1 C p2

2/

� �2 ln
ƒp
�

. (10.212)

For d > 3 this correction just converges (at the lower limit, for � ! 0), so that for
d D 4 � " an interaction of the type of ��6 is actually irrelevant. Quite analogous is
the situation with the higher-order terms of the Landau expansion, which justifies the
analysis made above.

In conclusion, let us quote the values of critical indices up to the terms of the order
of � "2 for the theory with an n-component order parameter [3, 42]:

� D 1 C nC 2

nC 8

"

2
C nC 2

nC 8

n2 C 22nC 52

.nC 8/2
"2

4
C � � � ,

Figure 10.37
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2� D 1 C nC 2

nC 8

"

2
C nC 2

nC 8

n2 C 23nC 60

.nC 8/2
"2

4
C � � � ,

� D nC 2

2.nC 8/2
"2 C nC 2

2.nC 8/2

�
6.3nC 14/

.nC 8/2
� 1

4

�
"3 C � � � ,

ı D 3 C "C
�

1

2
� nC 2

.nC 8/2

�
"2 C � � � ,

ˇ D 1

2
� 3

nC 8

"

2
C .nC 2/.2nC 1/

2.nC 8/3
"2 C � � � ,

˛ D 4 � n
nC 8

"

2
C � � � . (10.213)

It is interesting to compare the values calculated from these expressions for d D 3
." D 1/ and n D 1 (the Ising case), with the results of numerical calculations (high-
temperature expansion) for the three-dimensional Ising model. In the table we also
show the values derived from the mean-field theory (Landau). We see that "-expansion
gives rather a satisfactory agreement with the results of numerical analysis15.

Table 10.1. Critical indices for the Ising model (n D 1).

Index Wilson Numerical Landau

� 0.626 0.642 0.5
� 0.037 0.055 0
� 1.244 1.250 1
˛ 0.077 0.125 0
ˇ 0.340 0.312 0.5
ı 4.460 5.15 3

Modern methods of the calculation of critical exponents significantly improve the re-
sults of simple "-expansion; taking into account higher-order diagrams, they give the
values of the indices, which practically coincide with the results of numerical calcu-
lations and experiments [69].

10.9 Functional methods for fermions

Generalization of the functional integral approach to quantization to fermions is not
obvious. In the Bose case, functional integration is performed over all possible clas-
sical (c-number) field configurations. For fermion fields the classical limit is absent,

15 Another effective method for calculating critical indices is based on the expansion in powers of the
inverse number of components of the order parameter 1=n [3,42]; as for n ! 1 it can be shown that
the indices also reduce to their values in the mean-field approximation (Landau theory). Calculations
are based on the summation of loop diagrams, as each loop contribution is � n.
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and it is not clear what kind of field configurations we can introduce at all. The classi-
cal limit is achieved as „ ! 0. In this case, the nontrivial right-hand side of all Bose
field operators, as considered in Chapter 2, tend to zero, and the operators become
c-numbers. For fermion fields, quantization is done with anticommutators, so that for
„ ! 0 in the Fermi case we just get some anticommuting variables, with no obvious
“common-sense” meaning. However, it happens that these variables lead to a correct
solution of our problem. Such variables were introduced in mathematics by Grassmann
in the middle of 19th century and are called Grassmann variables. A functional formu-
lation in quantum field theory for fermions, using Grassmann variables, was proposed
by Berezin, who introduced the notion of integration over these variables [7].

Consider first the mathematical definitions. Generators Ci of n-dimensional Grass-
mann algebra satisfy the anticommutation relations

¹Ci ,Cj º 	 CiCj C CjCi D 0 , (10.214)

where i D 1, 2, : : : ,n. In particular,

C 2
i D 0 . (10.215)

Thus, the series expansion of an arbitrary function f .Ci / can contain only a finite
number of terms. For example, in the case of one-dimensional algebra we have

f .C / D aC bC , (10.216)

where a and b are usual numbers. The quadratic and higher-power terms of this ex-
pansion are equal to zero.

For the general n-dimensional case the analogue of (10.216) takes the form

f .C / D P0 C P i1Ci C P ij2 CiCj C � � � C PnC1C2 � � �Cn , (10.217)

where each summation index takes values from 1 to n, and coefficients P are antisymmetric
with respect to the permutation of any pair of indices i , j , : : : . Expansion is cut a finite number
of terms because of (10.214).

Consider the notion of differentiation over Grassmann variables. We can introduce
two types of derivatives, left and right. The left derivative of the product C1C2 is
defined as

@L

@Ci
.C1C2/ D ıi1C2 � ıi2C1 . (10.218)

Ccorrespondingly, the right derivative is given by

@R

@Ci
.C1C2/ D ıi2C1 � ıi1C2 . (10.219)
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Then we have the following equalities:
²
@

@Ci
,Cj

³
D ıij , (10.220)

²
@

@Ci
,
@

@Cj

³
D 0 . (10.221)

In particular, for one-dimensional algebra,
²
d

dC
,C

³
D 1 (10.222)

and we always have �
@

@Ci

�2

D 0 . (10.223)

All these relations are rather natural.
In contrast, the definition of an integral over Grassmann variables is rather formal.

In particular, it is impossible to introduce it as the inverse operation to differentiation.
However, it can be defined in such a way that it possesses some general properties
characteristic of the usual integral. For example, we can require our integral to be
invariant towards the shift of the integration variable by a constant:

Z
dCf .C / D

Z
dCf .C C ˛/ . (10.224)

This is always so for the usual integral with infinite limits of integration, but here our
new definition of integration has nothing in common with the usual definition (except
the notation

R
), and there is no limits of integration here in the usual sense. Using the

explicit form of f .C / (10.216), we obtain
Z
dC.aC bC / D

Z
dC ŒaC b.C C ˛/� , so that

Z
dC bC D

Z
dC b.C C ˛/ , (10.225)

from which it follows that Z
dC b˛ D 0 (10.226)

or, due to arbitrariness of b˛, Z
dC D 0 . (10.227)

Here ˛ is another element of Grassmann algebra, independent of and anticommuting
with C . The remaining integral

R
dC C can be just defined by the condition
Z
dC C D 1 . (10.228)
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Equations (10.227) and (10.228) completely determine integration over Grassmann
variables.

Naturally, integration thus defined has nothing in common with the usual notion
of an integral. Moreover, in the case of one-dimensional Grassmann algebra we have
df
dC

D b and
R
dCf .C / D b, so that the operation of integration acts upon a function

in the same way as differentiation!
In the n-dimensional case we assume

Z
dCi D 0 ,

Z
dCiCi D 1 . (10.229)

Let � and N� be independent Grassmann variables, so that
Z
d� D

Z
d N� D 0 ,

Z
d�� D

Z
d N� N� D 1 . (10.230)

As �2 D N�2 D 0, we have
e� N�� D 1 � N�� , (10.231)

so that
Z
d N�d� e� N�� D

Z
d N�d� �

Z
d N�d� N�� D 0 C

Z
d N�d� � N� D 1 . (10.232)

Let us find the generalization of this expression for the case of a larger number of
dimensions. Consider the two-dimensional case, introducing for convenience the new
notations

� D
�
�1

�2

�
, N� D

� N�1

N�2

�
. (10.233)

The exponent N�� (or more precisely N�T �) has the form

N�� D N�1�1 C N�2�2 . (10.234)

Then,

. N��/2 D . N�1�1 C N�2�2/. N�1�1 C N�2�2/

D N�1�1 N�2�2 C N�2�2 N�1�1 D 2 N�1�1 N�2�2 , (10.235)

where we have taken into account that �2
1 D �2

2 D N�2
1 N�2

2 D 0. Higher powers of N�� are
equal to zero, and we get

e� N�� D 1 � . N�1�1 C N�2�2/C N�1�1 N�2�2 . (10.236)

Applying our integration rules, we see that
Z
d N�d�e� N�� D

Z
d N�1d�1d N�2d�2 N�1�1 N�2�2 D 1 , (10.237)

as in the one-dimensional case. Let us transform the integration variables as

� D M˛ , N� D N N̨ , (10.238)
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whereM andN are 2�2-matrices, while ˛ and N̨ are new Grassmann variables. Then
we have

�1�2 D .M11˛1 CM12˛2/.M21˛1 CM22˛2/

D .M11M22 �M12M21/˛1˛2 D .DetM/˛1˛2 , (10.239)

where we have taken into account the anticommutativity of Grassmann variables. To
conserve the integration rules

Z
d�1d�2�1�2 D

Z
d˛1d˛2˛1˛2 , (10.240)

we have to require that

d�1d�2 D .DetM/�1d˛1d˛2 , (10.241)

which differs from the usual rule for an integration variable change by the power of
the determinant. Taking into account that

N�� D N N̨M˛ D N N̨˛MT D �˛MTN N̨ D N̨MTN˛ , (10.242)

we write (10.237) as

.DetMN/�1
Z
d N̨d˛e� N̨MTN˛ D 1 . (10.243)

As DetMN D DetMTN we obtain the general result
Z
d N̨d˛e� N̨A˛ D DetA , (10.244)

which represents the Gaussian integral over Grassmann variables.
To describe fermion fields we make a transition to Grassmann algebra with infinite

dimensions, with the appropriate generators denoted as C.x/:

¹C.x/,C.y/º D 0 , (10.245)

@L,RC.x/

@C.y/
D ı.x � y/ , (10.246)

Z
dC.x/ D 0 ,

Z
dC.x/C.x/ D 1 . (10.247)

As a result we obtain functional integrals over Grassmann (Fermion) fields.
As we already know, Dirac’s Lagrangian has the form

L D i N ��@� �m N  . (10.248)

Then, the normalized generating functional for the free Dirac field can be written as

Z0Œ�, N�� D 1

N

Z
D N D 

� exp

²
i

Z
dxŒ N .x/.i��@� �m/ .x/C N�.x/ .x/C N .x/�.x/�

³
, (10.249)
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where the normalization factor is

N D
Z

D N D exp

�
i

Z
dx N .x/.i��@� �m/ .x/

�
. (10.250)

Here we introduced the Grassmannian source N�.x/ for field  .x/ and �.x/ for field
N .x/.

To shorten the notations we introduce

S�1 D i��@� �m . (10.251)

Then,

Z0Œ�, N�� D 1

N

Z
D N D exp

�
i

Z
dx. N S�1 C N� C N �/

�
. (10.252)

Consider the quadratic form

Q. , N / D N S�1 C N� C N � . (10.253)

Let us find the value of  “minimizing” this form from the condition

@LQ

@ N D S�1 C � D 0 ,
@RQ

@ 
D N S�1 C N� D 0 , (10.254)

which gives
 m D �S� , N m D �N�S , (10.255)

where we have assumed the existence of the inverse operator S�1. At the “minimum”
we have

Q D Qm D Q. m, N m/ D �N�S� . (10.256)

Then our quadratic form can be written as

Q D Qm C . N � N m/S�1. �  m/ . (10.257)

Correspondingly16,

Z0Œ�, N�� D 1

N

Z
D N D exp

²
i

Z
dxŒQm C . N � N m/S�1. �  m/�

³

D 1

N
exp

�
�i
Z
dx

Z
dy N�.x/S.x � y/�.y/

�
Det.�iS�1/ , (10.258)

where the last expression was derived extracting the factor exp
�
i
R
Qm

�
outside the

integral, as Qm does not depend on  and N and used the obvious functional gener-
alization of (10.244) Z

D N D e� N A D DetA . (10.259)

16 The second equality in (10.258) is the fermion analogue of equation (10.48) for a complex boson field.
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In a similar way we may show that N D Det.�iS�1/, so that finally we obtain the
generating functional of the free Dirac field as

Z0Œ�, N�� D exp

�
�i
Z
dx

Z
dy N�.x/S.x � y/�.y/

�
. (10.260)

It is easy to see that operator S really exists. It has the form

S.x/ D .i��@� Cm/	F .x/ , (10.261)

where 	F .x/ is the well-known Feynman propagator of a scalar field. In fact, using
(10.251) we have

S�1S D .i��@��m/.i��@�Cm/	F .x/ D .���m2/	F .x/ D ı.x/ . (10.262)

Now we can define the free propagator of the Dirac field as

�.x, y/ D � ı2Z0Œ�, N��
ı�.x/ı N�.y/

ˇ̌
ˇ̌
�D N�D0

D � ı

ı�.x/

ı

ı N�.y/
²

�i
Z
dx

Z
dy N�.x/S.x � y/�.y/

³ˇ̌
ˇ̌
�D N�D0

D iS.x � y/ , (10.263)

where we have used exp.�N�S�/ D 1 � N�S�.
Let us summarize the main expressions related to the free scalar and spinor fields.

For the scalar field we have

L0 D 1

2
@�'@

�' � 1

2
m2'2 D �1

2
'.� Cm2/' . (10.264)

We have seen above that
�.x, y/ D i	F .x � y/ , (10.265)

where 	F is the Feynman propagator satisfying the equation

.� Cm2/	F .x � y/ D �ı.x � y/ . (10.266)

For the spinor (Dirac) field we have

L0 D i N ��@� �m N  D N S�1 , (10.267)

�.x, y/ D iS.x � y/ . (10.268)

In both cases we see that the propagator is inverse (operator) to the coefficient be-
fore the quadratic term in the Lagrangian. We can take this as the definition of a free
propagator in the functional formulation for an arbitrary field.
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Generating the functional of interacting Dirac fields can be defined similarly to the
case of scalar fields:

ZŒ�, N�� D exp

�
i

Z
dxLint

�
1

i

ı

ı�
,

1

i

ı

ı N�
��
Z0Œ�, N�� . (10.269)

From this expression we can derive all the rules of diagram technique for Fermi fields,
in the same way how this was done above for the scalar field. The only important dif-
ference, due to the Grassmann nature of fermion fields, is the necessity of associating
an additional factor of .�1/ with each fermion loop17. We shall not give details of
the diagrammatic rules for purely fermion models of particle interaction, as all such
theories are nonrenormalizable in 4-dimensional space-time.

As an example of a fermion interaction model which is really applicable to particle interactions,
we only mention the so-called Fermi (4-fermion) interaction. This is quite successful as a
description of low-energy interactions of leptons. The corresponding interaction Lagrangian
(for two lower generations of leptons) is written in the standard form [40]

Lint D Gp
2
jC
w jw , (10.270)

where jw is a lepton-weak current operator:

j ˛w D N e�˛ �e C N ��˛ �� ,

j ˛C
w D N �e�˛ e C N ���˛ � , (10.271)

where
�˛ D 1

2
.1 � �5/�˛.1 C �5/ , (10.272)

and the lower indices of the field operators denote the corresponding particles (electron e,
muon �, electron neutrino �e , muon neutrino ��).

From simple dimensional analysis it becomes clear that the Lagrangian corresponds to non-
renormalizable theory: the coupling constant G is dimensional, with the dimensionality of
squared length or the inverse square of the mass. Its numerical value is well known from ex-
perimental data on low-energy processes (well-described by first order of perturbation theory
over G), such as muon decay, and is written usually as

G D 1.0 � 10�5 „3

m2
pc

D 1.43 � 10�49 erg � cm3 , (10.273)

where mp is the proton mass, introduced here just as a dimensional parameter. Its appearance
in (10.273) is rather artificial, and later we shall see how such interaction appears as effective in
the modern theory of weak and electromagnetic interactions, and which mass scale is actually
at work here.

Due to the nonrenormalizability of field theory with the interaction Lagrangian (10.270), it
cannot be considered as fundamental, and it is rather senseless to write higher-order corrections
of perturbation theory over G.

17 It can be shown [56], that the origin of this factor is related to the functional generalization of (10.221),
which has the form ı2

ı�.x/ı�.y/
D � ı2

ı�.y/ı�.x/
.
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10.10 Propagators and gauge conditions in QED

In QED we can write down the generating functional of Maxwell field as

ZŒJ � D
Z

DA� exp

²
i

Z
dx.L C J�A�/

³
, (10.274)

where J� is an external source current,

L D � 1

16�
F��F

�� . (10.275)

Making partial integration over dx and dropping the surface integrals, we can rewrite
this Lagrangian as

L D 1

8�
A�Œg��� � @�@� �A� . (10.276)

The Lagrangian of the electromagnetic field is invariant to gradient (gauge) transfor-
mations A� ! A� C @�ƒ. At the same time, the functional integral in (10.274) is
taken over all A�, including those connected with each other by gauge transforma-
tions. Obviously this leads to the appearance of an infinite contribution to Z and to
Green’s functions. It is clear that it is necessary to fix some gauge, so that the integral
over A� is not calculated over the field configurations, which are obtained from each
other by gauge transformations. Physically these configurations are just equivalent!
Here we meet a problem which becomes especially difficult for non-Abelian gauge
theories. In fact, this problem can be rigorously solved, as it will be shown in the next
chapter. Here we just limit ourselves to several technical remarks.

If we use the Lorentz gauge @�A� D 0, the Lagrangian (10.276) becomes

L D 1

8�
A�g���A� . (10.277)

The inverse operator for g��� is represented by the Feynman propagator (see e. g.,
Chapter 4)

DF��.x, y/ D g��4�	F .x, y;m D 0/ . (10.278)

In momentum representation, the operator �g��k2, originating from (10.277), has an
inverse operator written as �g�� 1

k2 , so that the Feynman propagator of the electro-
magnetic field in the Lorentz gauge has the form

DF��.k/ D g��
4�

k2
. (10.279)

In the general case we can add to the Lagrangian an extra term, fixing the gauge, with
an arbitrary coefficient ˛:

L D � 1

16�
F��F

�� � 1

8�˛
.@�A

�/2 D 1

8�
A�

h
g��� C


 1

˛
� 1

�
@�@�

i
A� .

(10.280)
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In momentum representation, the coefficient before the square of the field is

�k2g�� C



1 � 1

˛

�
k�k� , (10.281)

with the corresponding inverse operator produces propagator as

D��.k/ D 4�

k2

�
g�� C .˛ � 1/

k�k�

k2

�
. (10.282)

For ˛ ! 1 we obtain a Feynman propagator (Lorentz-Feynman gauge), while for
˛ ! 0 we obtain the propagator in a Landau gauge.



Chapter 11

Functional integrals: gauge fields

11.1 Non-Abelian gauge fields and Faddeev–Popov
quantization

Let us consider the quantum theory of non-Abelian gauge fields. For a long time, quan-
tization of Yang-Mills fields remained an unsolved problem due to difficulties related
to the necessity of a correct account of gauge invariance. In particular, attempts to
quantize this theory along the lines of the traditional (operator) approach in quantum
field theory were mostly unsuccessful, despite the successes of Abelian QED. The
complete solution of the problem was achieved by Faddeev and Popov, who used
functional methods. In the following we mainly follow the presentation of [13].

The heuristic idea

We have seen above that the value of the generating functionalZ, defined in the usual
way, in case of gauge theory (even QED) is. in general, infinite, as it contains integra-
tion over all fields A�, including those connected with each other by gauge transfor-
mations, which leave an integrand invariant.

Before we start the analysis, allowing separation of the corresponding infinite “vol-
ume” factor from the (infinite-dimensional) functional integral over the gauge field,
we shall consider a simple illustration of the main idea of our general method for the
case of the usual two-dimensional integral:

W D
Z
dx

Z
dyeiS.x,y/ D

Z
dreiS.r/ , (11.1)

where r D .r , �/ defines the polar coordinates of a point on the plane. Assume that
function S.r/ (analogue to the action!) is invariant with respect to rotations in two-
dimensional space:

S.r/ D S.r�/ (11.2)

as r D .r , �/ ! r� D .r , � C �/. This means, that S.r/ is constant at the circles
(“orbits”) in the .x, y/-plane, as shown in Figure 11.1(a). In this trivial example, if we
want to take into account only contributions from nonequivalent values of S.r/, we
need to extract a “volume factor”, corresponding to integration over angular variable1

1 Angular integration is assumed to be done from 0 to 2� , and we just drop these integration limits
below.



288 Chapter 11 Functional integrals: gauge fields

(a)                                                    (b)

Figure 11.1

R
d� D 2� . To formalize this, we shall use the following “recipe”, to be generalized

for more complicated cases later. Let us put inside our integral a factor 1, written in
the form2

1 D
Z
d�ı.� � �/ . (11.3)

Then we have

W D
Z
d�

Z
dreiS.r/ı.� � �/ D

Z
d�W� , (11.4)

where

W� D
Z
drı.� � �/eiS.r/ (11.5)

is calculated for the given value of � D � . Thus, first of all we calculate W at the
fixed value of � D � (constraint!), and afterwards integrate over all values of � (see
Figure 11.1(a)). Using the invariance of S (11.2), we have

W� D W�0 . (11.6)

We see that the “volume” of the orbit can be extracted as a factor:

W D
Z
d�W� D W�

Z
d� D 2�W� . (11.7)

In the eneral case, we can use a more complicated constraint (instead of � D � ), which
can be represented by some curve g.r/ D 0, crossing each orbit only once, as shown in
Figure 11.1(b), so that the equation g.r�/ D 0 has the unique solution for � at a fixed
value of r . Taking such a general constraint, we define, instead of simple equation
(11.3), the “representation of unity” of the form

1 D 	g.r/
Z
d�ıŒg.r�/� . (11.8)

In other words, we define the function 	g.r/ as

Œ	g.r/��1 D
Z
d�ıŒg.r�/� . (11.9)

2 Here it is assumed that � is within the interval .0, 2�/.
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Using the general rule
Z
dxıŒf .x/� D

Z
df

1

df=dx
ı.f / D 1

df=dx

ˇ̌
ˇ̌
fD0

, (11.10)

we obtain

	g.r/ D @g.r� /
@�

ˇ̌
ˇ̌
gD0

, (11.11)

and 	g.r/ here is invariant with respect to two-dimensional rotations:

Œ	g.r�0/��1 D
Z
d�ıŒg.r�C�0/� D

Z
d�00ıŒg.r�00/� D Œ	g.r/��1 . (11.12)

Then, repeating arguments similar to those used during the transformation from (11.4)
to (11.7), we can again extract from our integral the “volume factor” 2�:

W D
Z
d�

Z
dr	g.r/ıŒg.r�/�eiS.r/ D

Z
d�W� , (11.13)

where

W� D
Z
dreiS.r/	g.r/ıŒg.r�/� . (11.14)

The entire nontrivial part of the integral is here! The “volume factor” is equal just to
2� , which is the formal outcome of the invariance ofW� with respect to the rotations:

W�0 D
Z
dreiS.r/	g.r/ıŒg.r�0/� D

Z
dr0eiS.r0/	g.r0�/ D W� , (11.15)

where we have introduced the variable r0 D .r ,�0/ and used the rotational invariance
of S.r/, 	g.r/ and the integration measure dr. Thus, our “recipe” for extracting the
“volume factor” is to introduce into the integrand the constraining ı-function, which
is multiplied by 	g , defined by (11.9).

Extracting the “volume factor” in a functional integral

Now let us discuss non-Abelian gauge fields. To be concrete, we consider here the
case of Yang–Mills fields for a SU.2/ gauge group. The Lagrangian of this theory is
written as

L D � 1

16�
F a��F

a�� , a D 1, 2, 3 , (11.16)

where (cf. equation (2.112))

F a�� D @�A
a
� � @�Aa� C g"abcAb�A

c
� . (11.17)

Here g is the Yang–Mills coupling constant. We define the generating functional as
usual:

ZŒ EJ � D
Z

D EA� exp

²
i

Z
dxŒL.x/C EJ� � EA�.x/�

³
. (11.18)
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The action is invariant with respect to gauge transformations

EA� ! EA�� , (11.19)

where (cf. equations (2.156), (2.159), and (2.162))

EA�� � E�
2

D U.�/

�
EA� � E�

2
C 1

ig
U�1.�/@�U.�/

�
U�1.�/ . (11.20)

Here

U.�/ D exp

�
i E�.x/ � E�

2

�
(11.21)

is the spinor transformation of SU.2/. Near the unit transformation, we can writeU.�/
as

U.�/ D 1 C i E� � E�
2

CO.�2/ . (11.22)

The values of E�.x/ represent the group parameters, depending on the point of space-
time, while E� are Pauli matrices in isotopic space.

The action of our theory is constant (invariant) on the orbit of the gauge group, con-
sisting of all EA��, obtained from some fixed field configuration EA� by transformation
U.�/, which encompasses all elements of the group SU.2/. For the correct quanti-
zation procedure, functional integration should be done over the “hypersurface” in
functional space, which crosses each orbit only once. Thus, if we write the equation
for this hypersurface as

fa. EA�/ D 0 , a D 1, 2, 3 ; (11.23)

equation
fa. EA��/ D 0 (11.24)

should have the unique solution E� for the given field configuration EA�. This condition
fixes the gauge.

Let us define integration over the gauge group parameters as

Œd E�� D
3Y

aD1

d�a . (11.25)

If we make two gauge transformations E� and E� 0, the corresponding matrix is U.�/
U.� 0/, and the transformation parameters are summed: E� C E� 0. Thus, the integration
measure defined as in (11.25) is gauge invariant; if � angles encompass all possible
values, the shift by a constant � 0 is irrelevant. Symbolically we write this as d.E� E� 0/ D
d E� 00 D d E� .
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Now we can act as above (in the case of usual integral) and introduce 	f Œ EA�� as
follows:

	�1
f Œ EA�� D

Z
Œd E�.x/�ıŒfa. EA��/� . (11.26)

Then we have
	f Œ EA�� D DetMf (11.27)

which is called the Faddeev–Popov determinant, where

.Mf /ab D ıfa

ı�b
. (11.28)

In more detail, making the usual discretization of space (followed by the continuous limit), we
can write

	�1
f Œ EA�� D

Z Y

x

Y

a

d�a.x/ıŒfa.x/� D
Y

x

Y

a

Z
dfa.x/ıŒfa.x/�

@.�1.x/, �2.x/, �3.x//

@.f1.x/,f2.x/,f3.x//

D
Y

x

Det

�
@�a.x/

@fb.x/

�

fD0
D Det

�
ı�a.x/

ıfb.x/

�

fD0
. (11.29)

In the last equality (after transformation to continuous x) the functional determinant (Jacobian)
of the matrix with continuous indices ı�a.x/

ıfb.y/
, appearked which is defined as the product of

eigenstates of this matrix.

The matrix Mf is related to the infinitesimal gauge transformations of the function

faŒ EA��:
faŒ EA��.x/� D faŒ EA�.x/�C

Z
dy
ıfa.x/

ı�b.y/
�b.y/CO.�2/

D faŒ EA�.x/�C
Z
dyŒMf .x, y/�ab�b.y/CO.�2/ . (11.30)

Then, demanding the uniqueness of the solution of equation (11.24) fa. EA��/ D 0 with

respect to E� , we conclude that DetMf should be nonzero. The explicit form of Mf
is naturally dependent on the choice of specific gauge condition (the form of function
fa); concrete expressions for the case for Lorentz gauge will be presented below.

The Faddeev–Popov determinant 	f Œ EA�� is gauge invariant. In fact, we can write

	�1
f Œ EA�� D

Z
Œd E� 0.x/�ı

�
fa. EA� 0

� /
�

. (11.31)

Then

	�1
f Œ EA��� D

Z
Œd E� 0.x/�ıŒfa. EA�� 0

� /� D
Z
Œd E�.x/E� 0.x/�ıŒfa. EA�� 0

� /�

D
Z
Œd E� 00.x/�ıŒfa. EA� 00

� /� D 	�1
f Œ EA�� , (11.32)

which completes the proof. Actually, this situation is similar to (11.12)).
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Let us substitute the “unity representation” following from (11.26)

1 D
Z
Œd E�.x/�	f Œ EA��ıŒfa. EA��/� (11.33)

into (11.18). Then, denoting the integration measure over the Yang–Mills fields as
Œd EA�.x/�, we obtain
Z
Œd EA�.x/� exp

²
i

Z
dxL.x/

³

D
Z
Œd E�.x/�

Z
Œd EA�.x/�	f Œ EA��ıŒfa. EA��/� exp

²
i

Z
dxL.x/

³

D
Z
Œd�.x/�

Z
Œd EA�.x/�	f Œ EA�.x/�ıŒfa. EA�/� exp

²
i

Z
dxL.x/

³
. (11.34)

To obtain the last equality we used the invariance of 	f Œ EA�� and exp
®
i
R
dxL.x/

¯

to gauge transformations EA�� ! EA�. Then we see that the integrand does not depend

on E�.x/, and
R
Œd E�.x/� D R Q

x d
E�.x/ simply gives infinite “volume” of the orbit,

which we wanted to separate! Thus, dropping this irrelevant factor, we can write the
generating functional for gauge field EA� as

ZŒ EJ � D
Z
Œd EA��	f Œ EA��ıŒfa. EA�/� exp

²
i

Z
dxŒL.x/C EJ� � EA��

³

D
Z
Œd EA��.DetMf /ıŒfa. EA�/� exp

²
i

Z
dxŒL.x/C EJ� � EA��

³
. (11.35)

This is the essence of the so-called Faddeev–Popov Ansatz – we isolate and can-
cel all the irrelevant integrations, introducing into integration measure the factor of
DetMf ıŒfa. EA�/�.

Abelian gauge theory (QED)

Consider the simplest example – QED. In this case infinitesimal gauge transformation
is written as

A�� D A�.x/ � 1

g
@��.x/ . (11.36)

For any choice of the gauge condition (11.23) linear over field A�.x/, the matrix Mf
(11.28) is independent of field A�.x/. Then, Faddeev-Popov determinant is unimpor-
tant from physical point of view and can be moved outside functional integral over
A�.x/ and just dropped3. Then we can write generating functional as:

ZŒJ � D
Z
ŒdA��ıŒf .A�/� exp

²
i

Z
dxŒL.x/C J�.x/A

�.x/�

³
, (11.37)

where ıŒf .A�/� fixes the gauge and we obtain the usual formulation of QED.

3 In terms of general case, discussed below, we can say, that in QED Faddeev-Popov “ghosts” do not
interact with field A� and are irrelevant.
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11.2 Feynman diagrams for non-Abelian theory

Consider now the details of the diagram technique for non-Abelian theory. Let us
rewrite the generating functional (11.35) as

ZŒ EJ � D
Z
Œd EA�� exp

²
iSeff C i

Z
dx EJ� � EA�

³
, (11.38)

where we have rewritten the factor DetMf ıŒfa. EA�/� as exp ln.DetMf ıŒfa. EA�/�/,
and included �i ln.DetMf ıŒfa. EA�/�/ into the definition of effective action Seff .
Naturally, the presence of such a term in effective action complicates the construction
of the diagram technique. First we shall try to write this term in a more natural and
convenient form.

Faddeev–Popov “ghosts”

We can write DetMf as an exponential, using the expression

DetMf D expŒSp lnMf � . (11.39)

The proof of (11.39) is trivial. The equality ln DetMf D Sp lnMf is obvious for any matrix:
DetMf is represented by the product of eigenvalues of Mf , so that ln DetMf gives the sum
of the logarithms of all eigenvalues of Mf , i. e., precisely Sp lnMf .

Writing the matrix Mf as
Mf D 1 C L (11.40)

and expanding the logarithms, we have

expŒSp lnMf � D exp

�
SpL � 1

2
SpL2 C � � � C .�1/nC1

n
SpLn C � � �

�

D exp

²Z
dxLaa.x, x/ � 1

2

Z
dx

Z
dyLab.x, y/Lba.y, x/C � � �

³
.

(11.41)

We see that the Faddeev–Popov determinant can be represented as a loop expansion4,
as shown in Figure 11.2, where lines denote the propagators of some fictitious particles
(Faddeev–Popov “ghosts”), forming a triplet of complex scalar (spinless) fields Ec.x/.
These fields and their interactions can be described by the generating functional

DetMf D
Z
Œd Ec�Œd EcC� exp

²
i

Z
dxdy

X

ab

cC
a .x/ŒMf .x, y/�abcb.y/

³
. (11.42)

4 This expansion is similar to the loop expansion of free energy in the theory of condensed matter [1]
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Figure 11.2

Here integration is done over Grassmannian Ec.x/, EcC.x/, as the use of common c-
number fields will lead to .DetMf /�1! Thus, our scalar fields Ec.x/, EcC.x/ obey Fermi
statistics, and the Faddeev–Popov “ghosts” are fermions with spin)! There is no con-
tradiction with the spin and statistics theorem here, because these “ghosts” are purely
fictitious particles which are introduced to the theory just “for convenience”. As their
contribution to the generating functional reduces to the loop series (11.41), there are
no diagrams with external “ghost” lines.

Gauge-fixing terms

Now we shall transform to the exponential form the term ıŒfa. EA�/�. First of all, we
generalize the gauge-fixing condition, writing it as

faŒ EA�� D Ba.x/ , a D 1, 2, 3 , (11.43)

where Ba.x/ is some arbitrary function of space-time point, independent of gauge
field EA�. Correspondingly we define 	f by the condition

	f Œ EA��
Z
Œd E�.x/�ıŒfa. EA��/ � Ba.x/� D 1 . (11.44)

Obviously, because of the independence of Ba.x/ from EA�, this is the same function
	f defined in (11.26)5; in fact there is no dependence on Ba.x/ here at all! Thus the
generating functional (11.35) can be rewritten as

ZŒ EJ � D
Z
Œd EA��Œd EB�.DetMf /ıŒfa. EA�/ � Ba�

� exp

²
i

Z
dx

�
L.x/ � EJ� � EA� � 1

8��
EB2.x/

�³
, (11.45)

where we have included in the integrand the constant term like
Z
Œd EB� exp

²
� i

8��

Z
dx EB2.x/

³
, (11.46)

5 This is simply the analogue of (11.6) in the case of usual integration.
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where � is an arbitrary constant coefficient which is usually called the gauge parameter.
As a result, the generating functional (11.45) differs from (11.35) by an irrelevant
constant factor which can be hidden into normalization. But now, using the ı-function,
entering (11.45), we can lift integration over Œd EB.x/�. Finally, taking into account also
(11.42), we obtain

ZŒ EJ � D
Z
Œd EA��Œd Ec�Œd EcC� exp.iSeff Œ EJ �/ , (11.47)

where
Seff Œ EJ � D SŒ EJ �C Sf ix C Sghost , (11.48)

where SŒ EJ � D R
dxŒL.x/C EJ� � EA�� is the usual action of our theory,

Sf ix D � 1

8��

Z
dx¹faŒ EA�.x/�º2 (11.49)

is the so-called gauge fixing term, and

Sghost D
Z
dxdy

X

ab

cC
a .x/ŒMf .x, y/�abcb.y/ (11.50)

is “ghosts” action.

The Lorentz gauge

In the Lorentz gauge we have

fa. EA�/ 	 @�Aa� D 0 , a D 1, 2, 3 . (11.51)

Under infinitesimal gauge transformations

U.�/ D 1 C i E�.x/ � E�
2

CO.�2/ , (11.52)

so that
Aa�� D Aa�.x/ � "abc�b.x/Ac�.x/C 1

g
@��

a.x/ . (11.53)

Substituting (11.53) into (11.51) we have

fa. EA��/ D fa. EA�/ � @�
�
"abc�b.x/Ac�.x/ � 1

g
@��

a.x/

�

D fa. EA�/C
Z
dyŒMf .x, y/�ab�

b.y/ , (11.54)

where in the last equality we have used (11.30). Then we see that in this case

ŒMf .x, y/�ab D 1

g
@�Œıab@� � g"abcAc��ı.x � y/ . (11.55)
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Now, substituting everything into (11.49) and (11.50), we obtain

Sf ix D � 1

8��

Z
dx.@� EA�/2 , (11.56)

Sghost D 1

g

Z
dx
X

ab

cC
a .x/@

�Œıab@� � g"abcAc��cb.x/ . (11.57)

We see that now “ghosts” are interacting with the gauge field EA�, which is described
by the second term in square brackets in (11.57). In similar expressions in QED such
a term was just absent6.

Let us also introduce the sources �C
a , �a for “ghost” fields ca, cC

a and write the
generating functional of gauge theory as

ZŒ EJ , E�, E�C� D
Z
Œd EA�d Ecd EcC� exp

²
i

Z
dx

�
L.x/ � 1

8��
.@� EA�/2

C cC
a @

�.ıab@� � g"abcAc�/cb C J a�A
a� C �aCca C �acaC

�³
,

(11.58)

where we redefined fields ca, cC
a in an obvious way by including the factor 1=g.

Perturbation expansion

Let us write the action of our theory as

Seff D S0 C SI , (11.59)

where

S0 D
Z
dx

�
� 1

16�
.@�A

a
� � @�Aa�/2 � 1

8��
.@�Aa�/

2 C cC
a @

2ca C J a�A
a�

C �aCca C �acaC
�

, (11.60)

and the interaction term, containing fields in powers higher than two, has the form

SI D
Z
dx

�
� 1

8�
.@�A

a
� � @�Aa�/g"abcAb�Ac�

� 1

16�
g2"abc"adeAb�A

c
�A

d�Ae� � gcaC@�"abcAc�cb
�

.

(11.61)

6 In the non-Abelian case it is also possible to choose a special, so-called axial, gauge, where “ghosts”
are completely excluded [13], but this gauge is rather inconvenient for practical calculations due to a
very complicated form of the gauge field propagator.
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Generating functional can now be written as

ZŒ EJ , E�, E�C� D exp

²
iSI

�
ı

iı EJ�
,
ı

iıE� ,
ı

iıE�C

�³
Z0
AŒ

EJ �Z0
c ŒE�, E�C� , (11.62)

where

Z0
AŒ

EJ � D
Z
Œd EA�� exp

²
i

Z
dx

�
� 1

16�
.@�A

a
� � @�Aa�/2

� 1

8��
.@�Aa�/

2 C J a�A
a�

�³
, (11.63)

Z0
c ŒE�, E�C� D

Z
Œd EcC�Œd Ec� exp

²
i

Z
dx
�
caC@2ca � �aCca � �acaC�

³
. (11.64)

These expressions allow the direct derivation of perturbation theory. We shall not give
the detailed derivation here, but limit ourselves to the summary of the main rules of
the diagram technique. Readers interested in details can find everything in a number
of books , e.g., [13, 25, 28, 53, 56].

Propagators

To find the propagator of field EA� we rewrite Z0
A as

Z0
AŒ

EJ � D
Z
Œd EA�� exp

²
i

Z
dx

�
1

8�
ıabA

a
�

�
g��@2 � � � 1

�
@�@�

�
Ab� C J a�A

a�

�³

D
Z
Œd EA�� exp

²
i

Z
dx
h1

2
Aa�K

��

ab
Ab� C J a�A

a�
i³

, (11.65)

where

K
��

ab
D
�
g��@2 �

�
1 � 1

�

�
@�@�

�
ıab . (11.66)

Integration over Œd EA�� can be performed using the well-known Gaussian integral
(10.47), which in this case can be written as

Z
Œd'� exp

h
�1

2
h'K'i C hJ'i

i
� .DetK/�1=2 exphJK�1J i , (11.67)

where angular brackets denote the appropriate integrals. Application of this expression
to (11.65) gives

Z0
AŒ

EJ � D exp

²
� i

2

Z
dxdyJ a�.x/G

��

ab
.x � y/J b� .y/

³
, (11.68)

where

G
��

ab
.x � y/ D ıab

Z
d 4k

.2�/4
e�ik.x�y/

�
�
�
g�� � k�k�

k2

�
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�
4�
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.

(11.69)
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It is easy to check that
Z
dyK

��

ab
.x � y/Gbc��.y � z/ D g

�

�
ıcaı.x � z/ , (11.70)

so that the propagator G is the inverse of K.
Similarly we find

Z0
c ŒE�, E�C� D exp

²
�i
Z
dxdy�aC.x/Gab.x � y/�a.y/

³
, (11.71)

where

Gab.x � y/ D �
Z

d 4k

.2�/4
e�ik.x�y/
k2 C i"

ıab . (11.72)

This directly corresponds to the fact, that “ghosts” are scalar particles with zero mass
(obeying Fermi statistics).

Finally, we have

1. the propagator of massless vector bosons

i	ab��.k/ D �iıab
�
g�� � .1 � �/k�k�

k2

�
4�

k2 C i"
, (11.73)

denoted in diagrams by a wave-like line;

2. the propagator of Faddeev-Popov “ghosts”

i	ab.k/ D �iıab 4�

k2 C i"
, (11.74)

which is denoted by a dashed line with an arrow (a “ghost” is different from an
“anti-ghost”!).

Elementary vertices

In non-Abelian gauge theories there are two types of self-interactions, which can be
written as

"�a .k1/"
�
b.k2/"

�
c .k3/�

abc
���.k1, k2, k3/ , (11.75)

"�a .k1/"
�
b.k2/"

�
c .k3/"

�

d
.k4/�

abcd
���� .k1, k2, k3, k4/ , (11.76)

where we also explicitly show the corresponding polarization vectors. Feynman rules
are derived directly from (11.61), (11.62). In momentum representation the first term
in (11.61) can be written as

1

3Š
Aa�.k1/A

b�.k2/A
c�.k3/�

abc
���.k1, k2, k3/ . (11.77)

The vertex part�abc
���

shouldbe completely antisymmetric with respect to permutations
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Figure 11.3 Figure 11.4 Figure 11.5

of fields A. The structure related to SU.2/ gauge group is already fixed:

�abc���.k1, k2, k3/ D "abc����.k1, k2, k3/ , (11.78)

while the Lorentzian (relativistic) structure of this function can be obtained as follows.
From (11.61) it is clear that ����.k1, k2, k3/ consists of terms like k�g��. A precise
combination of these terms can be established from the requirement of antisymmetry
of ����.k1, k2, k3/ with respect to permutations of the indices: �, �, 1, 2 etc., taking
into account the total antisymmetry of the tensor "abc . Thus, we find

i�abc��� D ig"abc Œ.k1 � k2/�g�� C .k2 � k3/�g�� C .k3 � k1/�g��� (11.79)

where k1 C k2 C k3 D 0. The corresponding diagram for a “triple” vertex is shown in
Figure 11.3.

Similarly we can find the vertex of “quartic” interaction of the gauge field, corre-
sponding to the second term in (11.61):

i�abcd���� D ig2Œ"abe"cde.g��g�� � g��g��/C "ace"bde.g��g�� � g��g��/
C "ade"cbe.g��g�� � g��g��/� (11.80)

which is expressed by the diagram in Figure 11.4. Here k1 C k2 C k3 C k4 D 0.
For the vertex connecting the “ghosts” and gauge fields with polarization vector

"�.q/ we have
i�abc� D ig"abck2� (11.81)

where k2 D k1 C q. This vertex is shown in Figure 11.5; it is antisymmetric over the
isospin indices. Let us recall that “ghost” lines enter diagrams only in loops. Besides
each diagram containing a closed loop of the gauge field, there is a corresponding
diagram with a closed “ghost” line. As in the case of the usual fermion fields, each
“ghost” loop can be multiplied by an additional .�1/.

The ropagator of gauge field (11.69) depends on the gauge parameter � . Its value is
chosen for the convenience of explicit calculations while solving concrete problems.
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For example, � D 1 corresponds to the so-called t’Hooft–Feynman gauge, while � D 0
gives the Landau gauge.

The introduction of fermions into the Yang–Mills theory is not difficult: it is suffi-
cient to add to the Lagrangian gauge invariant terms such as

Lf D N .i��D� �m/ (11.82)

where
D� D @� � igT aAa� (11.83)

Here T a is the gauge group generator in the given representation. For example, if  
is a SU.2/ doublet, we have T a D �a=2. Thus we obtain additional Feynman rules
for fermions (with group indices n,m, : : :):

1. the fermion propagator has the standard form

i	mn.k/ D ınm
1

��k� �mC i"
(11.84)

and is expressed by continuous line;

2. the fermion-gauge field interaction vertex has the form

i�˛�nm D ig.T a/nm�
�. (11.85)

This is shown diagrammatically in Figure 11.6.
The structure of the diagram technique described above is also conserved for the

other gauge groups, such as the very important SU.3/ describing the color symmetry
of quarks. The only difference is in the dimensionality of the corresponding irreducible
representations and the explicit form of generator matrices.

So far we have already studied the basics of the modern theory of quantum gauge
fields, which forms the foundations of the standard model of elementary particles.
Now we will begin out discussion on specific models of interactions. However, some
conceptual problems, which we have discussed from the beginning, still remain. In
particular, so far it is still unclear how we should deal with the problem of the mass-
less nature of Yang–Mills fields, which is in striking contrast to experiments, which
clearly demonstrate that the only long-range interaction in nature (except gravitation)

Figure 11.6
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is electromagnetism. In the next chapter we shall see how this problem is solved in
the unified theory of weak and electromagnetic interactions. The remarkable fact is
that this solution is completely based on the ideas and methods originating from the
modern theory of condensed matter.



Chapter 12

The Weinberg–Salam model

12.1 Spontaneous symmetry-breaking and the Goldstone
theorem

As we have already noted, the significant progress in modern theory of elementary
particles was achieved using some fundamental concepts of the modern theory of the
condensed state. Most important was the introduction into quantum field theory of the
idea of the possibility of phase transitions when the symmetry of the ground state be-
comes lower than the symmetry of the Lagrangian. This allowed the effective solution
of the problem of mass generation for gauge fields without breaking local gauge invari-
ance, directly leadto to quite rich and nontrivial foundations of the Standard Model.
Moreover, the picture of possible “vacuum” phase transitions form the basis of mod-
ern cosmology and physics of matter at very high densities and temperatures. Here we
shall limit ourselves to a presentation of some of the main ideas which played a de-
cisive role during the construction of the unified theory of weak and electromagnetic
interactions1.

Let us again begin with the simplest example of the real scalar self-interacting field
'.x/, described by the Lagrangian

L D 1

2
.@�'/

2 � V.'/ D 1

2
.@t'/

2 � 1

2
.r'/2 � V.'/ , (12.1)

where V.'/ is some function of field invariants. The first term in this expression may
be considered to be kinetic energy density, and all the others represent potential energy
density.

From (12.1) we obtain the equations of motion

@2
�' D �@V.'/

@'
or

@2
t' � r2' D �@V.'/

@'
. (12.2)

The character of the solutions of these field equations depends essentially on the form
of “potential energy” of self-interaction V.'/. Consider first the case of the tradi-
tional field theory, which was analyzed before. Let V.'/ be of the form shown in
Figure 12.1(a). Then our system has the “stable equilibrium” state with ' D 0 and can

1 In this chapter we mainly follow [5].
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(a)                                                                      (b)      

Figure 12.1

oscillate around it. Close enough to this equilibrium state we can always write

V.'/ � �2

2
'2 , (12.3)

where �2 D


@2V
@'2

�

'D0
, so that (12.2) reduces to:

@2
�' C �2' D 0 , (12.4)

i. e., to the Klein–Gordon equation. If we are looking for the plane-wave solution of
this equation ' � eikx , from (12.4), the usual relativistic dispersion of a particle with
mass �: k2

0 D k2 C �2 immediately follows. The higher-order terms of expansion of
V.'/ lead to nonlinear terms in field equations, describing interactions of these plane
waves or particle scattering. Let us limit ourselves to

V.'/ D 1

2
�2'2 C 1

4
�'4 . (12.5)

There is no cubic term here, as V.'/ should be symmetric with respect to ' ! �', so
that there is always a minimum of V.'/ at ' D 0. Limitation to powers not higher than
� '4 is of conceptual importance, as the coupling constant � > 0 is dimensionless and
the theory is renormalizable. Thus, in this case we are dealing with the well-known
'4-theory.

Consider now the case of �2 < 0. This can seem strange, as from the naïve point
of view we are dealing with imaginary mass. However, we need to be more accurate.
Now ' D 0 is no longer a stable equilibrium, as the potential energy has the form
shown in Figure 12.1(b)2. We now see two stable equilibrium states, corresponding to

' D � D ˙
r

j�j2
�

. (12.6)

2 The situation here is completely analogous to the Landau theory of phase transitions, where �2 �
T � Tc , so that �2 < 0 for T < Tc , i. e., below the phase transition temperature.
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Expanding V.'/ around points (12.6) up to the quadratic terms, we have

V.'/ D �2�2

4
� �2.' � �/2 D �2�2

4
� �2.ı'/2 , (12.7)

where ı' D ' � � and ��2.ı'/2 > 0 because of �2 < 0. Now we see that field
equations (12.2) will have plane-wave solutions for ı' with wave-vector k, satisfying
the condition (determining dispersion) k2 D 2j�j2, so that these waves will correspond
to particles with real positive mass m D p

2j�j2.
In fact, here we are dealing with a phase transition in quantum field theory. The sys-

tem chooses one of two equilibrium positions in Figure 12.1(b), and the field oscillates
close to this new ground state.

In quantum mechanics the system with two such minima of potential energy does not only
oscillates around the single minimum, because of the possibility of quantum tunneling be-
tween these two equilibrium positions. The quantum state is split in two: the symmetric and
the antisymmetric (with respect to these minima) states. The ground state corresponds to the
symmetric state [35]. Thus, in quantum mechanics the symmetry of the ground state is in com-
plete agreement with the symmetry of the Lagrange function (in our case even in '). Quantum
field theory in this sense is reminiscent of classical mechanics. Actually, the probability of
quantum tunneling transition becomes less with the growth of the number of degrees of free-
dom, and becomes zero in the case of their number being infinite. In fact, let us consider the
field in a finite volume �. Then the Lagrange function is L D R

d 3xL � L�, so that the
corresponding kinetic energy � � P'2, while the potential is � �V.'/. Thus, our problem is
equivalent to the tunneling of a particle with mass M � � through the potential barrier of
width jxj � � and height V � �m2�2. The probability of such tunnelling transition [35] is of
the order of exp.�p

2MV jxj/ � exp.��m�2/ ! 0 for � ! 1. We can say that our field
in the ground state is represented by a macroscopic “string” or “rope” of infinite length, lying
in the left or right valley of the potential in Figure 12.1(b), along the whole valley, which is
perpendicular to the plane in the figure. Naturally, such an object cannot tunnel between the
valleys of the potential.

In quantum field theory the ground state is called a vacuum. Thus, we have to choose
the single ground state: one definite vacuum. The presence of another vacuum (phys-
ically equivalent to the first one) is now irrelevant. Two minima of V.'/ correspond
to two separate and vacuums of the theory which are orthogonal to each other, two
orthogonal Hilbert spaces of excited states, two separate “worlds”.

Traditional quantum field theory, corresponding to the potential V.'/ shown in Fig-
ure 12.1(a), is constructed, as we know, as follows. The field is represented by the sum
of the oscillators which are described by the creation and annihilation operators a� and
a, and the vacuum is the state without the particles aj0i D 0, so that

h0j'j0i D 0 . (12.8)
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In the case of potential V.'/, shown in Figure 12.1(b), the sum over the oscillators
represents not the field ' itself, but its deviation from the equilibrium ı' D ' � �. In
this case

h0j'j0i D � , (12.9)

i. e., the vacuum average of the field operator is nonzero: the system acquires the Bose-
condensate3 of particles corresponding to field '. The initial Lagrangian (12.1), (12.5)
is symmetric with respect to ' ! �'. However, for �2 < 0 it leads to a nonsym-
metric ground state (vacuum), which is expressed by (12.9). Excitations above this
vacuum also do not possess the symmetry of the initial Lagrangian, as V.'/ from
Figure 12.1(b) is nonsymmetric with respect to ' D �. This phenomenon in quan-
tum field theory is called spontaneous symmetry-breaking, while in condensed matter
theory this is the well-known situation of phase transition into the state with lower
symmetry.

The mechanism of mass generation

The existence of the nonzero vacuum average of a scalar field can automatically lead
to the generation of mass of an initially massless particle, which interacts with this
field. Consider as an example Dirac’s field of massless particles with spin 1/2. The
Lagrangian of this field has the form

L D i N L O@ L C i N R O@ R , (12.10)

where O@ D ��@� and we introduced “left” and “right” components of bispinor  :

 R D 1

2
.1 C �5/ ,  L D 1

2
.1 � �5/ ,  L C  R D  . (12.11)

Now we can introduce the interaction of fields L, R with our scalar field ' breaking
the symmetry of the ground state. Let us add to the Lagrangian (12.10) the term

Lint D �~Œ N L R C N R L�' , (12.12)

where an expression in square brackets represents the only scalar which can be con-
structed from  L and  R, while ~ is a dimensionless coupling constant (so that this
interaction is renormalizable). Let us replace field ' in (12.12) by its vacuum aver-
age �; this means that we are not taking into account the particle creation processes
for field '. Then we have

Lint D �~�. N L R C N R L/ D �~� N  , (12.13)

so that the sum of (12.10) and (12.13) gives

L D i N O@ �m N  , (12.14)

3 Compare with Bogolyubov’s approach to nonideal Bose gas!
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which corresponds to the Dirac Lagrangian for fermions with mass

m D ~� . (12.15)

Thus, we can start with the model of initially massless “left” and “right” fermions,
which interact with scalar field ', undergoing the phase transition and transforming
“left” particles into “right” ones and vice versa, and leading to the generation of mass.

Above we considered the simplest example of a Lagrangian with discrete symmetry
with respect to ' ! �'. Let us now consider the case of continuous symmetry-
breaking. To do this we introduce the complex scalar field ', which is equivalent to
two real fields '1,'2, related by (see Chapter 2)

'.x/ D 1p
2
Œ'1.x/C i'2.x/� (12.16)

the Lagrangian of this field can be written as

L D 1

2
.@�'1/

2 C 1

2
.@�'2/

2 � V.'1,'2/ D .@�'/.@
�'�/ � V.'1,'2/ . (12.17)

Let us assume that the potential V.'1,'2/ depends only on the absolute value of ', i.i.
on �2 D '2

1 C '2
2 D 2'�', so that V D V.�/. This is equivalent to the requirement

of an additional (“internal”) symmetry of the theory with respect to transformations of
group U.1/:

' ! ei˛' (12.18)

or, which is just the same, the invariance of the Lagrangian with respect to rotations
in an “isotopic” plane:

'1 ! '1 cos˛ � '2 sin˛ ,

'2 ! '1 sin˛ C '2 cos˛ . (12.19)

We have seen (see Chapter 2), that this symmetry determines the conservation of some
charge (electric, barion, etc.). Fields ' and '� have the opposite values of this charge.

Consider now the potential V.�/, shown in Figure 12.2. which can be modelled, for
example, by

V.�/ D 1

2
�2�2 C 1

4
��4 (12.20)

with �2 < 0. Writing the field as (modulus-phase representation),

'.x/ D 1p
2
�.x/ei#.x/ , (12.21)

where �.x/ and #.x/ are real functions, we can see that V.�/ has the minimum at

� D � D
q

j�2j
�

, i. e., for field values

' D 1p
2
�ei˛ (12.22)
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Figure 12.2

with arbitrary ˛! Here we have continuous degeneracy of the ground state with dif-
ferent values of ˛. Each value of ˛ corresponds to its own vacuum (ground state) with
the same (minimal) energy V.�/. All these vacuums are physically equivalent, but we
have to choose the only one, e. g., corresponding to ˛ D 0, and the Hilbert space of
states associated with this single vacuum, where we already have no U.1/ symmetry
(12.18), (12.19).

Let us see which particles are describe by the Lagrangian (12.17). Using (12.21) we
can rewrite the Lagrangian as

L D 1

2
.@��/

2 � V.�/C �2

2
.@�#/

2 . (12.23)

If we limit ourselves in (12.23) to terms which are quadratic in a field, we have to
expand V.�/ around � D � in powers of �0 D � � �, and in third term of (12.23)
replace � by �. Then we obtain the free particle Lagrangian as

L D const C 1

2
.@��

0/2 � m2

2
�02 C �2

2
.@�#/

2 , (12.24)

where m2 D 2j�2j. From here we immediately obtain the equations of motion

.@2
� Cm2/�0 D 0 , @2

�# D 0 . (12.25)

Thus, we obtained two neutral (real) fields �0 and # , where the first one describes par-
ticles with mass m, while the second one corresponds to massless particles. In equa-
tion (12.25) we have dropped the terms of higher orders describing the interactions of
these particles.
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The appearance of massless particles due to the spontaneous breaking of contin-
uous symmetry is the essence of the Goldstone theorem; these particles are called
Goldstones4.

It is not difficult to generalize the Goldstone theorem to the case of higher symme-
tries. Consider '.x/with n components. Then, group transformations can be written as

Ê D S Ê 0 , (12.26)

where Ê and Ê 0 are columns with n components .'1, : : : .'n/, abd S is an n�n-matrix.
Let the potential V. Ê / be dependent only on �2 D '2

1 C : : :C'2
n, and there is no other

invariants. Then
L D 1

2
.@� Ê /2 � V.�/ . (12.27)

In this case we can again make the transformation to “polar” coordinates for field
Ê when the field is determined by the modulus �.x/ and n � 1 “angular” variables
(phases) ˛i .x/.i D 1, 2, : : : ,n � 1/. Then the Lagrangian is written as

L D 1

2
.@��/

2 C �2

2

n�1X

i ,kD1

�ik.˛i /@�˛i@�˛k � V.�/ . (12.28)

Assume V.�/ having its minimum at � D �, i. e., h0j�j0i D �. Angular components
˛i can be fixed by the condition h0j˛i j0i D 0 (the choice of vacuum!) and by �ik for
˛i D 0 having the form �ik.0/ D ıik . Then, again introducing �0 D � � �, we have

L D const C 1

2
.@��

0/2 � m2

2
�02 C 1

2
�2
n�1X

iD1

.@�˛i /
2 . (12.29)

We see that particles corresponding to fields ˛i have zero masses, so that there are
now n � 1 Goldstones. This is the general form of the Goldstone theorem.

12.2 Gauge fields and the Higgs phenomenon

It may seem that the appearance of Goldstone particles with zero mass creates addi-
tional difficulties, as our main task is actually to solve the problem of zero mass of
gauge gosons. But this is not the case! The unification of the main idea of gauge the-
ories with the concept of spontaneous symmetry-breaking allows us to formulate the
natural strategy for the construction of realistic models of interacting particles.

Consider the interaction of scalar field ', breaking symmetry, with gauge field A�
in its simplest Abelian (Maxwell) variant. The Lagrangian invariant with respect to

4 In condensed matter theory the situation is just the same. For example, phase transition into the fer-
romagnetic state breaks the continuous symmetry of a rotation group – the Heisenberg exchange
Hamiltonian is invariant to rotations (it contains scalar products of spins on lattice sites), while in the
ground state we have a special direction: that of the vector of spontaneous magnetization (symmetry
is lower!). Analogue of Goldstones in this case are acoustic spin waves.
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local transformations of U.1/, has the form5

L D �
.@� � ieA�/'���.@� C ieA�/'

� � 1

4
F��F

�� � V.','�/ , (12.30)

where F�� D @�A� � @�A�,

V.','�/ D �2'�' C �.'�'/2 , �2 < 0 . (12.31)

Let us again introduce modulus-phase representation of field ':

'.x/ D 1p
2
�.x/ei#.x/ . (12.32)

But now we can consider (12.32) as a local gauge transformation of U.1/:

'.x/ D eie�.x/'0.x/ , (12.33)

where
�.x/ D 1

e
#.x/ , '0.x/ D 1p

2
�.x/ . (12.34)

Then, the covariant derivative, entering (12.30), is transformed as follows:

D�' D .@� C ieA�/e
ie�'0 D eie�.@� C ie@��C ieA�/'

0 D eie�.@� C ieA0
�/'

0 ,
(12.35)

where
A0
� D A� C @�� (12.36)

or, taking into account (12.33), (12.34),

.@� C ieA�/' D 1p
2
ei#.@� C ieA0

�/� , (12.37)

where
A0
� D A� C 1

e
@�# . (12.38)

As a result, our Lagrangian is rewritten as

L D 1

2
Œ.@� � ieA0

�/��Œ.@
� C ieA0�/�� � V.�2/ � 1

4
F��F

��

D 1

2
.@��/

2 C e2

2
�2A0�A0

� � V.�2/ � 1

4
F��F

�� . (12.39)

We see that phase component # of field ' disappeared from the Lagrangian (so that
the possibility of Goldstone also disappeared!); it just “gauged-out” into a redefined
vector-potential.

5 Later in this chapter we use the Heaviside system of units.
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Let us expand (12.39) in powers of deviation �0 D � � � from vacuum average �,
limiting ourselves only to quadratic terms. Then we get

L D 1

2
.@��

0/2 � m2

2
�02 � 1

4
F��F

�� C 1

2
e2�2A0�A0

� C const , (12.40)

where m2 D 2j�2j. This Lagrangian describes a pair of free fields: the field �0 of
particles with mass m and the vector field A0

� with mass

mA D e� , (12.41)

which is due to the presence of a nonzero vacuum average of the scalar field. The
equations of motion for these fields are

@2
��

0 Cm2�0 D 0 , @�F
�� Cm2

AA
0� D 0 . (12.42)

The second equation here has the form of a Proca equation.
Thus, in the initial Lagrangian we had the two-component field ' and the vector

Maxwell (massless) field A�. For �2 > 0, retaining only terms quadratic over fields,
we obtain the Lagrangian of two free fields, one describing the charged particles with
spin 0, while another corresponding to a photon with zero mass and two polariza-
tions, i. e., four particles in total. For �2 < 0 the total number of particles remains
the same (conservation of the degrees of freedom), but their character has changed:
now we have one neutral scalar filed with spin 0 and three independent components
of a massive vector boson with spin 1. Initially we had QED of a scalar field, while
after the reconstruction of the field we have a “completely different” theory. However,
it should be stressed that all transformations were done exactly, and the initial gauge
invariance of the theory is conserved (and was used during the derivation!), despite
the appearance of gauge field mass! Renormalizability of the theory is also conserved.

The appearance of the vector gauge field mass due to its interaction with scalar
field, breaking the symmetry of the ground state, is called the Higgs phenomenon,
while field � is usually called a Higgs field (and the corresponding scalar particles are
called Higgs bosons).

Remarks on the Ginzburg–Landau theory

Let us show that our theory is the precise analogue of the Ginzburg–Landau theory of supercon-
ducting transition, which was formulated long before the discovery of the Higgs phenomenon.

Consider the static case of the Higgs model, when @0' D 0, @0A
� D 0. The electromag-

netic field will be considered in a Coulomb gauge: A� D .' D 0,A/, r � A D 0. Then the
Lagrangian (12.30) is written as

L D �1

2

�
.r � ieA/'��.r C ieA/'�� � 1

2
m2j'j2 � 1

4
�j'j4 � 1

4
.r �A/2 . (12.43)

Then

F D �L D 1

4
.r �A/2 C 1

2
j.r � ieA/'j2 C 1

2
m2j'j2 C 1

4
�j'j4 (12.44)
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is precisely the free energy density of Ginzburg–Landau theory [37] if we putm2 D a.T �Tc/,
where Tc is the temperature of the superconducting transition6. In this case we have m2 > 0
for temperatures T > Tc and m2 < 0 for T < Tc . For T < Tc the minimum of F is at

j'j2 D �m
2

�
> 0 , (12.45)

which defines the equilibrium value of the superconducting order parameter, which is the
precise analogue of the vacuum average of a Higgs field introduced above (ground state of the
Higgs field, T D 0.).

Ginzburg–Landau free energy is invariant with respect to a gauge transformation:

' ! eiƒ.x/' , A ! AC 1

e
rƒ.x/ , (12.46)

and the corresponding conserved current is

j D � ie
2
.'�r' � 'r'�/ � e2j'j2A . (12.47)

For T < Tc and for the spatially homogeneous order parameter ', only the second term in
(12.47) contributes

j D e2m2

�
A , (12.48)

which is the so-called London equation. If we also take into account Maxwell equations r �
H D 4�j, r � H D 0 and calculatethe curl of both sides of equation (12.48), we obtain the
equation for the magnetic field inside the superconductor:

r2H D k2H , k2 D �e
2m2

�
> 0 , (12.49)

which describes the Meissner effect: the exclusion of the magnetic field from interior of the su-
perconductor. The field is exponentially decreasing inside the superconductor on characteristic
length jkj�1 (penetration depth) [37].

Finally, from (12.49) it follows that r2A D k2A, which is an analogue of the relativis-
tic equation �A� D �k2A�: the “photon” inside the superconductor acquires “mass” jkj,
which is equivalent to the Higgs effect. Thus, the Higgs model is the relativistic analogue of
the Ginzburg-Landau theory, and the Higgs vacuum is similar to the ground state of a super-
conductor.

12.3 Yang–Mills fields and spontaneous
symmetry-breaking

Let us now consider the Higgs mechanism in non-Abelian gauge theories. First of all,
we shall recall the main facts related to Yang–Mills fields, using the example of the
SU.2/ gauge group.

6 In contrast with standard notations [37], her ewe put the electron mass and velocity of light equal to 1.
More importantly, in the Ginzburg–Landau theory e ! 2e in (12.44), in accordance with the value
of the Cooper pair charge. But these slight differences are irrelevant for our discussion.
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Interaction of scalar field ' with Yang–Mills field EA� (the arrow denotes a vector
in isotopic space) is described by the replacement of the usual derivative @�' by the
covariant derivative

D�' D .@� � ig ET � EA�/' , (12.50)

where ET is the gauge group generator; for SU.2/ we have ET D 1
2 E� .

The Gauge invariance of the Lagrangian puts constraints on the field EA�. If ' corre-
sponds to some isotopic multiplet, its transformation under rotations in isotopic space
can be written as

' D S'0 , (12.51)

where the operator S depends on the three parameters (angles) of the rotation vector
E!.x/. Then we write the covariant derivative as

D�' D S@�'
0 C .@�S/'

0 � ig ET � EA�S'0

D S.@� C S�1@�S � igS�1 ET � EA�S/'0 . (12.52)

This expression should be the same as

D�' D S.@� � ig ET � EA0
�/'

0 , (12.53)

so that we have to require

ET � EA0
� D S�1. ET � EA�/S C i

g
S�1@�S . (12.54)

For small E! we have
S D 1 C i ET � E! . (12.55)

Then

S�1. ET � EA�/S D .1 � i ET � E!/ ET � EA�.1 C i ET � E!/
D ET � EA� � i Œ ET � E!, ET � EA�� D ET � A� C Œ E! � EA�� � ET , (12.56)

where we have used ŒTi ,Tj � D i"ijkTk: the commutation relations for generators of

SU.2/. Taking into account S�1@�S D i ET �@� E! (12.54) and (12.55) give the general
transformation rule

EA0
� D EA� C Œ E! � EA�� � 1

g
@� E! , (12.57)

so that, besides gradient transformation, the Yang–Mills field is rotated in isotopic
space.

The tensor of the Yang–Mills fields has the form

EF�� D @� EA� � @� EA� C gŒ EA� � EA�� , (12.58)
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Using (12.57) we can easily show that under infinitesimal rotations in isotopic space
EF�� is transformed like an isovector:

EF 0
�� D EF�� C Œ E! � EF�� � . (12.59)

The Yang–Mills Lagrangian is written as

LYM D �1

4
EF�� � EF�� , (12.60)

which is invariant under local gauge group transformations.
Consider now the Yang–Mills field interacting with scalar Higgs field breaking sym-

metry. Let the Higgs field � be an isospinor having two complex (four real) compo-
nents

� D
�
'1

'2

�
, (12.61)

which transform under rotations in isotopic space as

� D S�0 , S D e
i
2gE� E!.x/ . (12.62)

For small E! we have S D 1 C ig E!E�=2.
The Lagrangian for fields � and EA� is written as

L D .D��/.D
��/� � V.�/ � 1

4
EF�� EF�� , (12.63)

where

D� D @� � ig E�
2

EA� , (12.64)

V.�/ D �2��� C �.���/2 . (12.65)

Then, for �2 < 0 (12.65) has a minimum at

��� D 1

2
�2 , �2 D j�2j

�
. (12.66)

The vacuum state has infinite degeneracy, but we have to choose a single definite
vacuum (break symmetry!), e. g., taking

h0j�j0i D 1p
2

�
0
�

�
, (12.67)

where � is real and positive. Let us transform to “polar” coordinates:

�.x/ D ei
E�
2

E#.x/�0.x/ D
�

cos
#

2
C i.En � E�/ sin

#

2

�
�0.x/ , (12.68)

where

�0.x/ D 1p
2

�
0
�.x/

�
, E# D En# (12.69)

and En is unity vector in the direction of the rotation axis in isospace.
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Equations (12.68) and (12.69) define the parametrization of isospinor � D .
'1
'2
/ by the four

real functions �,# , � ,', where # , � ,' are polar angles determining the direction of vector En
in isospace:

� D 1p
2

 
i� sin #

2 cos �ei'

�



cos #2 � i sin #
2 cos �

�
!

, (12.70)

so that ��� D �2=2, h0j�j0i D �, h0j#j0i D h0j� j0i D h0j'j0i D 0.

Note that (12.68) is equivalent to (12.62) if we put E! D E#=g. The Lagrangian is
invariant with respect to such transformations and has the form

L D 1

2
.D0

��/.D
0��/� � V.�/ � 1

4
EF 0
��

EF 0�� , (12.71)

where in D0
� and EF 0

�� we replaced EA� ! EA0
�, which corresponds to the gauge trans-

formation (12.57). We see that only one of the four components of the field � that is
� remain in the Lagrangian; the other three have gauged out!

Taking into account the form of the spinor �0 D 1p
2
.

0
�
/, we rewrite the Lagrangian

as (the prime over EA� is now dropped)

L D 1

2
.@��/

2 C g2

8
�2 EA� � EA� � V.�/ � 1

4
EF�� EF�� , (12.72)

where
V.�/ D 1

2
�2�2 C 1

4
��4 . (12.73)

For small deviations from the vacuum state, making again an expansion of V.�/ in
powers of �0 D � � � and retaining only quadratic terms we obtain

L D const C 1

2
.@��

0/2 � m2

2
�02 � 1

4
EF 0
��

EF 0�� C 1

8
g2�2 EA� � EA� , (12.74)

where m2 D 2j�2j and EF 0
�� D @� EA� � @� EA�. This Lagrangian describes four free

fields: the real scalar field � and the triplet vector fields EA�. The scalar field describes
particles with mass m, the vector fields particles with mass

mA D g�

2
. (12.75)

Thus, symmetry-breaking has again created masses for particles described by vector
(gauge) field EA�. Gauge invariance of the theory is conserved, despite the appearance
of these masses! The total number of degrees of freedom has not changed: instead of
the three components of field � (Goldstones) which “disappeared”, we got longitudinal
polarization components of EA�. In this model all the components of the Yang–Mills
field acquired mass.

However, to construct the realistic unified theory of weak and electromagnetic in-
teractions we have to guarantee the massiveness of vector bosons, responsible for the
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weak interactions (short range forces!), while the electromagnetic field should remain
massless. This can be done by some generalization of our SU.2/-model. We note that
the invariant ��� of the scalar field automatically satisfies an additional symmetry,
different from SU.2/ used above. We can multiply � by an arbitrary phase factor like

exp
h
i f2 �.x/

i
, and nothing will change. This is the transformation of U.1/, so that we

shall now consider the theory with SU.2/˝U.1/ symmetry. This additional Abelian
symmetry U.1/ allows us to associate with the particles of the field �, except isospin,
some new “hypercharge”, which leads to the introduction of an additional (Abelian)
gauge field, which will be denoted as B�. As a result, the full symmetry of our model
corresponds to the invariance to local gauge transformations

� D S�0 , (12.76)

where

S D exp

�
ig E!.x/ � E�

2
C if

�.x/

2

�
, (12.77)

with the Lagrangian of the model having the form

L D .D��/.D
��/� � V.�/ � 1

4
EF�� EF�� � 1

4
G��G

�� , (12.78)

where

D� D @� � ig E�
2

� EA� � i f
2
B� , (12.79)

G�� D @�B� � @�B� . (12.80)

Further analysis, in fact, just repeats the previous analysis, so that we drop the de-
tails. It is convenient to introduce, instead of fields A�1,A�2,A�3 and B�, the linear
combinations

W� D 1p
2
.A�1 C iA�2/ , (12.81)

Z� D A�3 cos˛ � B� sin˛ , A�3 D Z� cos˛ C A� sin˛ ,

A� D A�3 sin˛ C B� cos˛ , B� D �Z� sin˛ C A� cos˛ , (12.82)

where

cos˛ D g

Qg , sin˛ D f

Qg , Qg D
p
g2 C f 2 , tg˛ D f

g
. (12.83)

Then our Lagrangian (12.78) is rewritten in terms of these new fields as

L D 1

2
.@��/

2 � V.�/C �2

4

�
g2W ��W� C Qg2

2
Z�Z�

�
� 1

4
EF�� EF �� � 1

4
G��G

�� .

(12.84)
Here it is important that field A� from (12.82) does not enter the square bracket term,
so that after the appearance of the nonzero vacuum average for field � (spontaneous
symmetry-breaking) this field remains massless and can be identified with the usual
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electromagnetic field. At the same time, fields W� and Z� acquire the mass

mW D g�

2
, mZ D Qg�

2
D mW

cos˛
. (12.85)

This is immediately seen if we rewrite the Lagrangian (12.84) up to the quadratic terms
in �0 D � � �, W� and Z�:

L D 1

2
.@��

0/2 � 1

2
m2�02 � 1

2
.@�W� � @�W�/.@�W �

� � @�W �
� /

C 1

4
g2�2W �

�W
� � 1

4
.@�Z� � @�Z�/2 C 1

8
Qg2�2Z2

�

� 1

4
.@�A� � @�A�/2 C const , (12.86)

where m2 D 2j�2j.
FieldW� (12.81) is complex, i. e., charged, while fields A� andZ� (12.82) are real

(neutral). From the definition EF�� (12.58) and (12.81), (12.82) it follows that

1p
2
.F 1 C iF 2/�� D D�W� �D�W� , (12.87)

where
D� D @� C igA�3 D @� C ig sin˛A� C ig cos˛Z� . (12.88)

If we identify field A� with the Maxwell electromagnetic field, from (12.88) we get
the following relation between Yang-Mills coupling constant g and the usual electric
charge e:

e D g sin˛ . (12.89)

An important property of this theory is its renormalizability. Renormalizability of
QED is guaranteed by the masslessness of the photon and also by its neutrality. We can
drop one of these properties, but the theory will still be renormalizable. For example,
we can work with the renormalizable theory of fermions interacting with a massive
vector neutral field. Thus, we do not worry much whether or not the photon has very
small (undetected up to now) mass. The theory will not change much. Also renor-
malizable is the Yang–Mills theory of two charged and one neutral massless fields
interacting with fermions. Due to the Higgs phenomenon the charged Yang–Mills
fields may become massive: in the following we shall call them charged intermediate
W -bosons, transmitting weak interactions, while Z-bosons are similar neutral par-
ticles. The electromagnetic field A� remains massless. The question arises whether
or not our theory will remain renormalizable after the Higgs phenomenon (sponta-
neous symmetry-breaking). We can expect it to remain renormalizable, as the initial
Lagrangian is definitely renormalizable, and all further results were obtained by clear
transformations and change in notations. These expectations are actually confirmed by
the rigorous proof which we shall not consider here.
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12.4 The Weinberg–Salam model

The correct scheme for the unified description of weak and electromagnetic interac-
tions was proposed (independently) by Weinberg and Salam.This model is well con-
firmed by experiments and forms the basis of the Standard Model. The main idea of
the theory of electroweak interactions is that weak interactions are mediated by gauge
bosons .W ˙,Z/, which are “initially” massless, while their masses (short range na-
ture of weak forces!) are acquired as a result of the Higgs mechanism. The electro-
magnetic field obviously remains massless. This scheme for gauge fields was pre-
sented in the previous section. Now we have to include the leptons: the electron and
the neutrino7, which are also assumed to initially be massless. The Higgs mechanism
(spontaneous symmetry-breaking) should generate the mass of an electron, leaving the
neutrino massless8.

The Dirac Lagrangian
L D i N ��@� �m N  (12.90)

form D 0 transforms to i N ��@� . Let us introduce, as is usual for massless fermions,

 L D 1

2
.1 � �5/ ,  R D 1

2
.1 C �5/ ,  D  L C  R , (12.91)

where �5 D �i�0�1�2�3. Then

i N ��@� D i N R��@� R C i N L��@� L , (12.92)

as �5 anticommutes with ��. The electron (as well as the muon and the � -lepton)
have both L and R components, while the neutrino, according to the two-component
neutrino model, i. e., �e (and also ��, �� ) has only L-components. Then the initial
Lagrangian of the leptons can be written as

L D i NeR��@�eR C i NeL��@�eL C i N�e��@��e C .e ! �/C .e ! �/ , (12.93)

where the fermion fields are denoted by the symbols of the appropriate particles. The
contribution of the higher generations can be written in a similar form, but we skip it
here for brevity.

The transformations of a gauge group should be applied to particles with the same
space-time properties, i. e., the only possibility is to mix eL è �e. We introduce the
isospinor

 L D
�
�e
eL

�
(12.94)

and associate with this doublet the non-Abelian charge (“weak” isospin) IW D 1=2,
with its projections corresponding to its two components: neutrino �e corresponds to

7 The other generations of leptons are described precisely in the same way.
8 Here we neglect the possibility of very small neutrino mass.
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I 3
W D C1=2, while “electron” eL to I 3

W D �1=2. The remaining

 R D eR , (12.95)

is considered to be an isosinglet: IW D 0. Then we can write the Lagrangian as

L D i N R��@� R C i N L��@� L , (12.96)

which is invariant with respect to the SU.2/ group of isospin transformations:

 L ! e� i
2 E� Ę L ,  R !  R (12.97)

or, in more detail, 0

@
�e
eL
eR

1

A !
 
e�i E�

2 Ę 0
0 1

!0

@
�e
eL
eR

1

A . (12.98)

The electric chargeQ and the third component of the weak isospin I 3
W for the left and

right fields are connected by the obvious relations

L : Q D I 3
W � 1

2
; R : Q D I 3

W � 1 . (12.99)

If we make this symmetry a local gauge symmetry, i. e., put Ę D Ę.x/, this will lead to
the appearance of three massless Yang–Mills fields. However, the photon will not be
there, as the right electron eR, being an isosinglet, will not interact with these fields,
while it is obviously interacting with the usual photons. To solve this problem we can
use the fact that SU.2/ is not the maximal possible symmetry of our Lagrangian. We
can additionally transform eR by simple U.1/:

eR ! eiˇeR . (12.100)

But this can be only the common transformation for all the fields of our model. Then
�e and eL should also acquire the common phase factor, but its phase is not necessarily
the same as for R. Thus, we can write

0

@
�e
eL
eR

1

A !
0

@
einˇ 0 0

0 einˇ 0
0 0 eiˇ

1

A

0

@
�e
eL
eR

1

A . (12.101)

where n is some number to be determined later. This U.1/-symmetry leads to the
existence of some conserving charge, with eR having one value of this charge, while
both �e and eL have another value. This is obviously not the electric charge Q, as �e
and eL in reality have different values ofQ. The gauge field corresponding to thisU.1/
symmetry is not the usual electromagnetic field. Weinberg proposed to consider this
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symmetry as the conservation of the “weak hypercharge” YW , defined by the relation9

Q D I 3
W C YW

2
. (12.102)

Comparing this expression with (12.99), we see that for the left and right leptons it is
necessary to introduce

L : YW D �1 ; R : YW D �2 . (12.103)

Thus, in equation (12.101) we have to put n D 1=2, so that the coupling constant
for interaction of the hypercharge gauge field for left fields is twice as small as the
corresponding constant for right fields. As a result, the U.1/ group transformation is
finally written as

0

@
�e
eL
eR

1

A !
0

@
eiˇ=2 0 0

0 eiˇ=2 0
0 0 eiˇ

1

A

0

@
�e
eL
eR

1

A . (12.104)

Thus, the Lagrangian (12.93), (12.96) is invariant to the direct product of groups
SU.2/ ˝ U.1/. The Yang–Mills theory with such a symmetry was already exam-
ined in the previous section. We have introduced four gauge fields: isotriplet EA� and
isosinglet B�, for all of them YW D 0.

Lepton fields  L and  R interact with fields EA�,B�, and the Higgs field �. First of
all, let us consider this last interaction. The corresponding term in Lagrangian is written
in a form similar to equation (12.12), which was already discussed in connection with
the mass generation mechanism for fermions:

LM D �p
2a. N L R� C N R L��/ , (12.105)

where a is the dimensionless coupling constant of this (renormalizable!) interaction.
We write the Higgs field as an isospinor:

� D
�
'C
'0

�
, �� D .'�,'0�/ , (12.106)

with components corresponding to projections of weak isospin I 3
W D ˙1=2. From

(12.102) we find the corresponding quantum numbers

IW D 1=2 , YW D 1 . (12.107)

Both fields 'C and '0 are complex, so that we can write

� D
�
'C
'0

�
D
 

1p
2
.'3 C i'4/

1p
2
.'1 C i'2/

!

, (12.108)

where '1, : : : ,'4 are real fields.

9 This expression is written in analogy with the Gell-Mann–Nishijima formula for the hypercharge of
hadrons [40]
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The covariant derivative describing the interaction of the Higgs field with the gauge
fields has the form

D�� D .@� � i

2
gE� � EA� � i

2
fB�/� . (12.109)

Finally, the part of the Lagrangian containing field � is equal to

L� D .D��/�.D��/��2�����.���/4 �p
2a. N L R�C N R L��/ . (12.110)

The part of the Lagrangian corresponding to Higgs field interaction with the leptons
is written in more detail as

�p
2a. N�eeR'C C NeLeR'0 C NeR�e'� C NeReL'0/ . (12.111)

Further, we have

��� D .'C/�'C C .'0/�'0 D 1

2
.'2

1 C '2
2 C '2

3 C '2
4/ . (12.112)

For �2 < 0 the Higgs field Bose condenses and the minimum energy corresponds to

h0j.'�'/j0i D �2 D ��
2

�
. (12.113)

Let us choose a vacuum to satisfy

h0j'1j0i D � , h0j'2j0i D h0j'3j0i D h0j'4j0i D 0 , (12.114)

i. e.,

h0j�j0i D 1p
2

�
0
�

�
. (12.115)

Then, the lowest-order (over excitations) interaction is written as

LM D p
2a. N L R C N R L/� D a. NeLeR C NeReL/� D a� N  , (12.116)

so that the Higgs condensate � interacts only with electrons. Thus, we achieved what
was desired: the electron acquired the mass

me D a� , (12.117)

while the neutrino remained massless!
Consider now lepton interactions with gauge fields, which is described by the co-

variant derivatives

D� D
�
@� � ig ET � EA� � if Y

2
B�

�
 , (12.118)

where Y is the weak hypercharge of field  , and g and f are the corresponding cou-
pling constants. For  L we have ET D 1

2 E� , Y D �1, while for  R we have ET D 0 and
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Y D �2. Then the part of the Lagrangian corresponding to the interaction between
the leptons and the gauge fields has the form

L D i N L��
�
@� � ig E�

2
� EA� C i

f

2
B�

�
 L C i N R��.@� C ifB�/ R . (12.119)

The gauge fields entering these expressions, as we seen in (12.81), (12.82), (12.83),
can be divided into three types: a field of charged heavy nosons W�, a field of neutral
heavy bosons Z�, and an electromagnetic field A�. Let us separately write the parts
of Lagrangian LW , LZ , LA, corresponding to the interaction with these fields. First
we write

LW D g

2
N L��.�1A1� C �2A2�/ L D gp

2
��. N�eW�eL C NeLW �

� �e/ . (12.120)

This is the Lagrangian of the weak interaction of the leptons due to the exchange by
W ˙-bosons (the so-called charged currents). There are also interactions with fields
A�3 and B�, from (12.119); these are written as

1

2
N L��.g�3A�3 � fB�/ L � f N R��B� R (12.121)

or, using (12.82), (12.83),

Qg
2
��Œ N�e.cos˛A�3 � sin˛B�/�e � NeL.cos˛A�3 C sin˛B�/eL � 2 sin˛ NeRB�eR� ,

(12.122)
so that, expressing A�3 and B� via Z� and A� according to (12.82), we get

LZ D Qg
2
��. N�eZ��e � cos 2˛ NeLZ�eL C 2 sin2 ˛ NeRZ�eR/, (12.123)

the weak interaction due to the exchange by neutral Z-bosons (the so-called neutral
currents), and

LA D �g sin˛��. NeLA�eL C NeRA�eR/, (12.124)

the usual electromagnetic interaction. Note that (12.124) once more confirms the rela-
tion for the electric charge (12.89). Thus, the model under discussion gives a unified
description of weak and electromagnetic interactions, where the fields corresponding
to W ˙- and Z-bosons as well as to the electromagnetic field appear from the funda-
mental requirement of invariance with respect to the local gauge transformations of
SU.2/˝ U.1/.

During the first years since the construction of Weinberg–Salam model, weak in-
teraction processes due to neutral currents (12.123) were not known, which was con-
sidered to be a shortcoming of the model. The experimental discovery of such pro-
cesses in 1973 in CERN was actually the first serious confirmation of the theory of
electroweak interactions. One of the simplest processes due to weak interactions is
muon � decay, described by the diagram shown in Figure 12.3. If the mass of the
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Figure 12.3

W -boson is a significantly larger muon mass, its propagator is simply proportional to
1
m2

W

, and the appropriate transition amplitude is equivalent to the amplitude derived
from the phenomenological (nonrenormalizable) 4-fermion interaction introduced by
Fermi (10.96), (10.270):

g2

2m2
W

. NeL�˛�e/. N���˛�/ . (12.125)

Comparing with (10.270), we obtain the following expression for Fermi coupling:

Gp
2

D g2

8m2
W

. (12.126)

The value of G is well known experimentally (10.273). We see, that its smallness
(“weakness” of the weak interactions) is actually due to the large mass of the interme-
diate boson in the denominator of (12.125), while the fundamental coupling constant
is actually g � e ! Using (12.89)) and the experimental values of e and G, we can,
with the help of (12.85) and (12.126), find the following estimates for the masses of
intermediate gauge bosons:

mW D e

25=4G1=2 sin˛
D 37 GeV

sin˛
, mZ D mW

cos˛
D 74 GeV

sin 2˛
, (12.127)

so that mW > 37 GeV and mZ > 74 GeV. Using (12.85) and (12.127) we can write

� D mW

g
D 37 GeV

e
D 122 GeV . (12.128)

Then from (12.117) we have

a D me

�
� 5 � 10�6 , (12.129)

so that the coupling constant of leptons with the Higgs field is very small.



Section 12.4 The Weinberg–Salam model 323

Experimental studies of the weak interactions due to neutral currents has already
led in the early 1980s to the following estimate of “angle” ˛:

sin˛ � 0.47 . (12.130)

Then from (12.127) we have

mW � 78.6 GeV , mZ � 89.3 GeV . (12.131)

The triumph of the theory was the experimental discovery in 1983 of W ˙- and Z-
bosons in CERN with masses mW � 80 GeV, mZ � 92 GeV. Since then the theory
has been confirmed in numerous experiments, and at present it is the commonly ac-
cepted scheme for describing electroweak interactions. The constants of the theory are
known with high accuracy. The present-day experimental situation is well described
in [67].

For many years the main unsolved problem was the absence of any direct experi-
mental observation of Higgs bosons. One of the difficulties was due to the inability to
make definite predictions for Higgs boson mass within the Weinberg–Salam model;
only a rather wide interval of possible values were theoretically predicted. However, as
we already mentioned in Chapter 1, in July 2012 it was announced that a particle with
the properties expected for the Higgs boson was discovered in a number of LHC ex-
periments, with mass around 125–126 GeV. If finally confirmed by further studies, this
will definitely be the final triumph of the theory. The brief discussion of the present-
day situation with the experimental discovery of the Higgs oson can be found in [55].

The Standard Model

The “Standard Model” of elementary particles is the combination of the electroweak
theory due to Weinberg and Salam with quantum chromodynamics (QCD), which we
discussed above babove. The full gauge symmetry is given by the direct product of
color symmetry and the symmetries of weak isospin and weak hypercharge: SU.3/˝
SU.2/˝U.1/. If we limit ourselves to the most important first generation of fermions,
the fermion sector of the model is defined by

L D
�
�e
e

�

L

, eR, QL D
�
u˛
d˛

�

L

, uR˛ , dR˛ , (12.132)

where u and d denote the corresponding quarks (˛ is the color index). The covariant
derivative which determine the fermion interactions with Yang–Mills fields has the
form

D� D @� � ig1
Y

2
B� � ig2

� i

2
W i
� � ig3

�a

2
Ga� , (12.133)

where �a are the generators of the color group SU.3/ (cf. Chapter 2) and Ga� are the
vector fields of gluons. The Higgs sector of the theory was described above. Gluons
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remain massless, but they are not observed as free particles, due to the phenomenon of
“confinement”, which we shall discuss later. This theory is sufficient, in principle, to
describe the entire world (or universe) surrounding us. At present all the predictions of
this theory are rather satisfactorily confirmed by existing experiments10. The attempts
of the real unification of all known interactions within some single gauge group, which
includes symmetries SU.3/ ˝ SU.2/ ˝ U.1/ of the Standard Model as a subgroup,
are usually called “great unification theories” (GUT). We shall briefly discuss such
attempts in the next chapter.

Phase transitions in quantum field theory at finite temperatures

Finally, let us briefly discuss one very interesting direction of research in modern quan-
tum field theory. We have seen that the basis of the unified theory of electroweak inter-
actions is the phenomenon of spontaneous symmetry-breaking and the Higgs mecha-
nism. We already noted that this is a typical phase transition, like that taking place e. g.,
in superconductors. From the theory of condensed matter we know that any symmetry-
breaking disappears at high enough temperature T > Tc , when the system goes to a
symmetric phase. The same phenomenon takes place in the models of quantum field
theory introduced above. This was clearly demonstrated for the first time by Kirzhnitz
and Linde [41]. An appropriate theoretical analysis can be performed using the stan-
dard (Matsubara) formulation of quantum field theory at finite temperatures, which is
widely used in statistical physics [1]. We have no room for a detailed discussion of
these interesting problems here and therefore limit ourselves only to formulating some
of the main conclusions.

The vacuum average of the Higgs field, which plays the role of the order parameter,
becomes zero for T > Tc , where

Tc �
r

3j�2j
�

� �.0/ � 102 � 103 GeV . (12.134)

For T < Tc the order parameter behaves in the more or less usual way:

�2.T / D j�2j
�

�ˆ.T / , (12.135)

where ˆ.T / is some increasing function of temperature. As a result, we obtain the
order parameter dependence shown in Figure 12.4(a). But we have seen above that
masses appearing due to spontaneous symmetry-breaking are proportional to the vac-
uum average � at T D 0. Correspondingly, as temperature increases the masses of
the gauge bosons, leptons, and other particles diminish, and at T D Tc become zero,
as shown in Figure 12.4(b). Already at this elementary level of discussion it becomes

10 A rief review of experimental situation with the Standard Model can be found in the review paper [22],
while the importance of this theory for “common day” life is well-described in [12].
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(a)                                                                                  (b)

Figure 12.4

clear that the disappearance of the masses of the elementary particles creates strong
long range forces which may play a decisive role in cosmology, because in the first
moments after the “Big Bang” the temperature of the universe was extremely high.
These conclusions were followed by explosive developments of new approaches in
cosmology [16, 41]. Similar effects may be important for experiments with very high
energy collisions of heavy nuclei when very high temperatures can also be generated.

At present, the analysis the effects of temperature in quantum field theory is an im-
portant part of elementary particles theory, which again stresses the unity of quantum
field theory and modern statistical physics.



Chapter 13

Renormalization

13.1 Divergences in '4

The concept of renormalizability plays an absolutely fundamental role in modern quan-
tum field theory. Only renormalizable theories are considered to be physical. In Chap-
ter 8 we briefly discussed the renormalizability of QED. Now we will return to a more
detailed discussion of the general situation for different field theory models.

Below we shall mainly consider the simplest scalar field g'4 theory, which was al-
ready discussed above in Chapter 10. There we already met with typical divergences
like in equation (10.125). Now we shall present a more serious analysis of divergences.
Using the rules of diagram technique we can once again write the first order (� g) cor-
rection to self-energy, corresponding to the diagram in Figure 13.1. The corresponding
analytic expression is

1

i
† D �ig1

2

Z
d 4q

.2�/4
1

q2 �m2
, (13.1)

where we have taken into account the symmetry factor 1=2. Here in the integrand we
have the fourth power of q, while in the denominator we have q squared, so that our
integral diverges quadratically at large q (i. e., at the upper limit, “ultraviolet diver-
gence”).

Another typical divergence arises in the order � g2 from the diagram shown in
Figure 13.2, where p1 C p2 D q and p1 C p2 C p3 C p4 D 0. The corresponding
analytic expression is

�g2
Z

d 4p

.2�/4
1

p2 �m2

1

.p � q/2 �m2
. (13.2)

Figure 13.1 Figure 13.2
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Here we have the fourth power of p both in the numerator and denominator of the
integrand, which leads to logarithmic divergence1.

Let us show how we can determine the divergence power of an arbitrary diagram.
A similar analysis was already performed for QED in Chapter 8. But here we shall
present more of the details. It is obvious that in an arbitrary diagram each propagator
contributes � p2 (for large p we can neglectm!) in the denominator of the integrand,
while each vertex contributes � p4 in the numerator, as well as the ı-function, ex-
pressing momentum conservation in this vertex. The number of independent integra-
tion momenta is equal to the number of closed loops in the diagram. For the diagrams,
shown above, this number is 1 (one-loop diagrams). Consider a diagram of the order
of � gn, i. e., with n vertices. Suppose it has E external lines, I internal lines, and
L loops. For generality we consider space-time with dimensionality d ; in this case
the vertices contribute pd to the numerator. Let us define the conditional degree of
divergence D of the given diagram as

D D dL � 2I . (13.3)

For the diagrams shown above we have D D 2 and D D 0. Now we can express
D via E and n, excluding I and L. In fact, we have in total I internal momenta. In
each of the n vertices we have momentum conservation, and we also have the total
momentum conservation law for the scattering process described by our diagram (ex-
ternal momenta are fixed). As a result, there are in total n � 1 relations between the
integration momenta. Thus, there are only I�nC1 independent integration momenta.
But this number is equal to L:

L D I � nC 1 . (13.4)

In '4-theory each vertex is entered by four lines, so that we have in total 4n lines in
the diagram, but part of the lines are internal and another part external. During these
calculations the internal lines are counted twice, as each of them connects two vertices.
Then we have

4n D E C 2I . (13.5)

From (13.3), (13.4), (13.5) we immediately get

D D d �
�
d

2
� 1

�
E C n.d � 4/ . (13.6)

In particular, for d D 4 we have

D D 4 �E , (13.7)

1 In fact, we have already considered such diagrams during our discussion of the theory of critical phe-
nomena in four-dimensional space, where the problem of divergence was solved by the introduction
of a natural cutoff ƒ, of the order of the inverse lattice constant.
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which, by the way, gives the correct answers for the simplest diagrams discussed
above. From (13.7) we can see that the degree of divergence diminishes with the
growth of the number of external lines (and depends only on this number!)2.

Let us return to the discussion of the general formula (13.6) and consider the last
term in this expression. If the coefficient before n is positive, the situation is hopeless:
the degree of divergenceD grows with the growth of n, so that the full theory (summed
over all n) will contain an infinite number of terms containing divergences (in each
order of perturbation theory) with a higher degree of divergence (than in the previous
order). This is equivalent to the nonrenormalizability of the theory. In '4-theory at d D
4, the degree of divergence depends only on E and does not depend on the order of
perturbation theory, so that we have the finite number of the types of divergences, so we
can hope that the corresponding infinite contributions can be hidden in a finite number
of (infinite) renormalizations of the appropriate physical characteristics (renormalized
theory). A finite number of the types of divergences is the necessary condition for
renormalizability.

It is useful to analyze similar formulas for the theory with the general interaction
'r . Equations (13.3) and (13.4) do not change, while equation (13.5) transforms into

rn D E C 2I , (13.8)

so that equation (13.6) is rewritten as

D D d �
�
d

2
� 1

�
E C n

hr
2
.d � 2/ � d

i
. (13.9)

Now for d D 4 we have
D D 4 �E C n.r � 4/ . (13.10)

For '6-theory we have D D 4 � E C 2n, and it is nonrenormalizable. On the other
hand, for '3-theory we haveD D 4 �E�n, and the degree of divergence diminishes
with the increase of n, so that for fixed E there is only the finite number of divergent
diagrams, and we are dealing with the so-called super-renormalizable theory3. Note
that for d D 2 we have D D 2 � 2n and independent of r .

Let us return to equation (13.7) and discuss the convergence or divergence of dia-
grams with E > 4. In '4-theory the number E is always even. Consider the examples
of diagrams shown in Figure 13.3. Here E D 6, so that according to criterion (13.7)
all of these diagrams seem to be convergent. This is correct for the diagram in Fig-
ure 13.3(a), but obviously wrong for diagrams (b) and (c), which contain “hidden”
divergences from loops (considered above). It is because of such cases that we called
D the conditional degree of divergence. It is important, however, that the inverse state-

2 It may seem that all diagrams with the number of external lines greater than 4 are convergent. For
example, for E D 6 we have D D �2. However, this is a wrong conclusion, as we shall see below.

3 However, this theory is actually bad: there is a stable ground state!
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(a)                                             (b)                                                     (c)

Figure 13.3

ment is always correct: the Feynman diagram converges if its degree of divergenceD
and the degrees of divergence of all its subdiagrams are negative (Weinberg theorem).

Two divergent diagrams shown above in Figures 13.1 and 13.2, are called primi-
tively divergent. These are the only primitively divergent diagrams of '4-theory (types
of divergences).

Dimensional analysis

Let us perform dimensional analysis in d -dimensional space. The action S D R
ddxL

is dimensionless. Then we easily find

ŒL� D L�d , ŒL� D ƒd , (13.11)

where L is some length, and ƒ is the corresponding momentum. From the term
� @�'@

�' in L, taking into account Œ@�� D L�1, we have

Œ'� D L1� d
2 D ƒ

d
2 �1 . (13.12)

Consider the interaction g'r . If we define the dimensionality of the coupling constant

as Œg� D L�ı D ƒı , we obviously get �ı C r



1 � d
2

�
D �d , so that

ı D d C r � rd

2
. (13.13)

Thus, the dimensionality of the coupling constants in different theories is

g'4 : ı D 4 � d , Œg� D ƒ4�d , ı � 0 for d � 4 ,

g'3 : ı D 3 � d
2 , Œg� D ƒ3� d

2 , ı � 0 for d � 6 ,

g'6 : ı D 6 � 2d , Œg� D ƒ6�2d , ı � 0 for d � 3 .

(13.14)

Excluding the r-form equations (13.9) and (13.13), we obtain

D D d �
�
d

2
� 1

�
E � nı . (13.15)
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In particular, for d D 4 we have D D 4 � E � nı. Now it is clear that the necessary
condition for the renormalizability of the theory is ı � 0. Previously, for simplicity we
have spoken of the dimensionless coupling constants .ı D 0/ as the necessary condi-
tion for renormalizability. From (13.14) we can see when this condition is fulfilled for
the simplest models of interaction. These results show that the dependence on spatial
dimensionality is also very important.

In conclusion, we present the table of “canonical” dimensions for different Green’s
functions and vertices [56]:

Field function Dimensionality in units of ƒ Dimensionality at d D 4

' d
2 � 1 1

G.n/.x1, : : : , xn/ n


d
2 � 1

�
n

G.n/.p1, : : : ,pn/ �nd C n


d
2 � 1

�
D �n



d
2 C 1

�
�3n

NG.n/.p1, : : : ,pn�1/ d � n


d
2 C 1

�
4 � 3n

�.2/.x � y/ 2 C d 6

�.n/.x1, : : : xn/ n


d
2 C 1

�
3n

�.n/.p1, : : : ,pn/ �dnC n


d
2 C 1

�
D n



1 � d

2

�
�n

N�.n/.p1, : : : ,pn�1/ d C n



1 � d
2

�
4 � n

In addition to the Green’s functions and vertices already known to us, we introduced
here NG.n/ and N�.n/, defined as

G.n/.p1, : : : ,pn/ D NG.n/.p1, : : : ,pn�1/ı.p1 C � � � C pn/ ,

�.n/.p1, : : : ,pn/ D N�.n/.p1, : : : ,pn�1/ı.p1 C � � � C pn/ , (13.16)

where the ı-function of the total momentum conservation is explicitly shown (in units
of ƒ it has dimensionality �d ).

13.2 Dimensional regularization of '4-theory

To analyze divergences of Feynman diagrams, first of all we have to formulate well
defined rules to separate the divergent parts of integrals. This is achieved by one or
another method of regularization of Feynman integrals. Above (e. g., during our dis-
cussion of divergences in QED in Chapter 8) we used the simplest regularization pro-
cedure, introducing the upper integration limit cutoffƒ. This method explicitly breaks
relativistic invariance, as it is equivalent to the introduction of some “minimal length”.
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Now we shall discuss a more modern and elegant method of the so-called dimensional
regularization (t’Hooft and Veltman). The main idea of this method is somehow sim-
ilar to the analysis of critical phenomena in the space with d D 4 � " dimensions
(Wilson) and considers divergent integrals in space-time with continuous d < 4, with
further limiting procedure of d ! 4. We shall see that the singularities of single-loop
diagrams considered above are simple poles over the variable " D d � 4.

First we have to generalize the Lagrangian of 4-dimensional theory

L D 1

2
@�'@

�' � m2

2
'2 � g

4Š
'4 (13.17)

to d dimensions. As field ' has dimensionality d
2 � 1, while the dimensionality of the

Lagrangian L is d , the coupling constant g is dimensionless for d D 4; and to make it
dimensionless in d dimensions we have to multiply it �4�d , where � is an arbitrary
parameter of dimensionality of mass (or momentum)4 . Thus, in the following we shall
consider the theory with the Lagrangian

L D 1

2
@�'@

�' � m2

2
'2 � 1

4Š
g�4�d'4 . (13.18)

Let us calculate the simplest self-energy correction shown by the diagram in Fig-
ure 13.1. Similarly to (13.1) it is determined by the integral

1

2
g�4�d

Z
ddp

.2�/d
1

p2 �m2
. (13.19)

This integral should be calculated at arbitrary d .

Integration in d-dimensions

We are working in d-dimensional “Minkowski space” with one time and d � 1 spatial dimen-
sions .d � 4/. Consider an integral of the general form

Id .q/ D
Z
ddp

1

.p2 C 2pq �m2/˛
, (13.20)

where p D .p0, r/. Let us introduce polar coordinates .p0, r ,', �1, �2, : : : , �d�3/, so that

ddp D dp0r
d�2drd' sin �1d�1 sin2 �2d�2 � � � sind�3 �d�3d�d�3

D dp0r
d�2drd'

d�3Y

kD1

sink �kd�k ,

.�1 < p0 < 1 , 0 < r < 1 , 0 < ' < 2� , 0 < �k < �/ . (13.21)

Then

Id .q/ D 2�
Z 1

�1
dp0

Z C1

0
dr rd�2

Z 	

0

Qd�3
kD1 sink �kd�k

.p2
0 � r2 C 2p0q0 � 2r jqj cos �

d�3 �m2/˛
.

(13.22)

4 The arbitrariness of parameter� is obvious, because at the end we have to perform the limit of d ! 4
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Direct calculations [56] give

Id .q/ D i�d=2
�


˛ � d

2

�

�.˛/

1

Œ�q2 �m2�˛�d=2
. (13.23)

Using (13.23) we obtain for (13.19)

� ig

32�2
m2
�

�4��2

m2

�2� d
2

�

�
1 � d

2

�
. (13.24)

The �-function has poles at zero and at negative integers. We see that the divergence
of (13.24) is reflected in the simple pole for d ! 4. It can be shown that

�.�nC "/ D .�1/n

nŠ

�
1

"
C  1.nC 1/CO."/

�
, (13.25)

where  1.z/ D d ln�.z/=dz D � 0.z/=�.z/ is the logarithmic derivative of the �-
function, for which  1.nC 1/ D 1 C 1

2 C � � � C 1
n

� � , where � D � 1.1/ D 0.577
is the Euler constant. Taking " D 4 � d we obtain

�

�
1 � d

2

�
D �



�1 C "

2

�
D �2

"
� 1 C � CO."/ . (13.26)

As a result, using a" D 1 C " ln aC � � � we obtain the following expansion of (13.24)
near d D 4:

� igm2

32�2

h
�2

"
� 1 C � CO."/

i �
1 C "

2
ln

�
�4��2

m2

��

D igm2

16�2"
C igm2

32�2

�
1 � � C ln

�
�4��2

m2

��
CO."/

D igm2

16�2"
C finite expression. (13.27)

The finite contribution here is of no special importance, but we note that it depends on
the arbitrary factor �. The important point is that we succeeded in a correct separation
of the divergent part. For " > 0 this contribution is finite, and we can deal with it in a
normal way.

Let us now calculate a 4-point function up to the terms of the order of � g2. Simi-
larly to (13.2) we obtain the contribution of the diagram in Figure 13.2 as

�1

2
g2.�2/4�d

Z
ddp

.2�/d
1

p2 �m2

1

.p � q/2 �m2
. (13.28)

Denominators in the integrand here can be joined with the help of Feynman’s formula

1

ab
D
Z 1

0

dz

Œaz C b.1 � z/�2 . (13.29)



Section 13.2 Dimensional regularization of '4-theory 333

This formula is derived from

1

ab
D 1

b � a

1

a
� 1

b

�
D 1

b � a
Z b

a

dx

x2
, (13.30)

taking x D az C b.1 � z/, with a and b complex, to exclude singularity at a D b.
Now we have

1

p2 �m2

1

.p � q/2 �m2
D
Z 1

0

dz

Œp2 �m2 � 2pq.1 � z/C q2.1 � z/�2 . (13.31)

Changing variables to p0 D p�q.1�z/, we see that the denominator of the integrand
is the square of p02 �m2 Cq2z.1�z/. We have ddp0 D ddp, so that after the change
of notations p0 ! p, (13.28) takes the form

�1

2
g2.�2/4�d

Z 1

0
dz

Z
ddp

.2�/d
1

Œp2 �m2 C q2z.1 � z/�2 . (13.32)

Using (13.23) we now have

ig2

2
.�2/4�d 
 1

4�

�d=2 �.2 � d=2/

�.2/

Z 1

0
dzŒq2z.1 � z/ �m2�d=2�2 D

ig2

32�2
.�2/2�d=2�

�
2 � d

2

�Z 1

0
dz

�
q2z.1 � z/ �m2

4��2

�d
2 �2

. (13.33)

In the limit of d ! 4, from (13.25) we get

�

�
2 � d

2

�
D 2

"
� � CO."/ , (13.34)

so that after writing a" � 1 C " ln a (13.33) take the form

ig2�"

32�2

�
2

"
� � CO."/

�²
1 � "

2

Z 1

0
dz ln

�
q2z.1 � z/ �m2

4��2

�³
D

ig2�"

16�2"
� ig2�"

32�2

²
� C

Z 1

0
ln

�
q2z.1 � z/ �m2

4��2

�³
. (13.35)

In this expression, the main (diverging) term depends on �, while the finite part de-
pends on the square of .p1 C p2/

2 D q2 D s (Mandelstam variable). Let us define ta
function

F.s,m,�/ D
Z 1

0
dz ln

�
sz.1 � z/ �m2

4��2

�
. (13.36)

Then the final expression for the contribution of the diagram of Figure 13.2 is written as

� ig
2�"

16�2"
C ig2�"

32�2
Œ� C F.s,m,�/� D � ig

2�"

16�2"
C finite expression . (13.37)

Thus, we have explicitly written the lowest order corrections to 2-point and 4-point
functions in '4-theory. Let us now write the corresponding irreducible vertices�.2/.p/
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Figure 13.4

and �.4/.pi /. Equation (13.27) according to (13.1) reduces to 1
i
†, so that in the first

order over g we have

†.p/ D � gm2

16�2"
C finite expression. (13.38)

Accordingly, from the definition �.2/.p/ D G�1.p/G.p/G�1.p/ D p2 �m2 �†.p/
we have

�.2/.p/ D G�1.p/ D p2 �m2



1 � g

16�2"

�
. (13.39)

Obviously, for " ! 4 this expression diverges.
Further on, the 4-point vertex �.4/.p1, : : : ,p4/ in momentum representation is writ-

ten as

�.4/.p1,p2,p3,p4/ D G�1.p1/G
�1.p2/G

.4/.p1,p2,p3,p4/G
�1.p3/G

�1.p4/

(13.40)

and is expressed by the sum of the diagrams shown in Figure 13.4, taking into account
contributions of all the cross-channels, which are obtained from (13.37) and another
two similar terms obtained from (13.37), changing the Mandelstam variable s to t and
u (cf. Chapter 5):

s D .p1 C p2/
2 , t D .p1 C p3/

2 , u D .p1 C p4/
2 . (13.41)

The action of G�1.pi / in (13.40) reduces to the “amputation” of the external lines.
Finally we obtain

�.4/.pi / D �ig�" � 3ig2�"

16�2"
C ig2�"

32�2
Œ3�CF.s,m,�/CF.t ,m,�/CF.u,m,�/�

D �ig�"



1 C 3g

16�2"

�
C finite expression. (13.42)

The main contribution here is also infinite for " ! 0. To make vertices �.2/ and �.4/

physically sensible, we should make them finite! This is done by renormalization!

Loop expansion

Note that above we analyzed diagrams with the same number of loops equal to 1 (single-loop
approximation). Actually, we can present arguments showing that loop-expansion is, in some
sense, even more interesting than the usual perturbation expansion in powers of g. Expansion
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in the number of loops L is equivalent to expansion in the powers of the Planck constant „. In
fact, restoring „ in all expressions, we can write the generating functional as

ZŒJ.x/� D
Z

D' exp

²
i

„
Z
dxŒL.x/C „J.x/'.x/�

³
. (13.43)

Introducing L D L0 C Lint , we can write

ZŒJ � D exp

²
i

„Lint

�
1

i

ı

ıJ

�³
Z0ŒJ � , (13.44)

where

Z0ŒJ � D N exp

�
�1

2
i„
Z
dx

Z
dyJ.x/	F .x � y/J.y/

�
. (13.45)

From (13.44) it follows that every vertex introduces the factor of „�1 into an arbitrary diagram
of the n-th order of the usual perturbation theory, while from (13.45) it follows that each
propagator contributes the factor of „. Thus, the given diagram contains the factor of „I�n D
„L�1 (where we have used the previously derived relation (13.4): L D I � n C 1, where I
is the number of internal lines of this diagram). Then we conclude that the expansion over the
number of loops is actually an expansion in the powers of „, i. e., the expansion “around” the
classical theory.

13.3 Renormalization of '4-theory

Our aim now is to make all physical quantities finite! In a single-loop approximation
we can easily explicitly make renormalization. After the regularization, all the quanti-
ties we are dealing with are finite, and we can act in a direct way. From the definition
of the physical mass of the particle it is clear that the inverse propagator must be of
the form

G�1.p/ D �.2/.p/ D p2 �m2
1 or m2

1 D ��.2/.0/ D �G�1.0/ , (13.46)

where the physical mass m1 is finite. The initial (“bare”) mass m entering the La-
grangian does not have any direct physical meaning and can even be infinite in the
limit of d ! 4. This is a mass which characterizes a particle in the absence of inter-
actions, which is unobservable; only m1 is physically sensible, and it should be finite.
From (13.39) and definition (13.46) we have

m2
1 D m2



1 � g

16�2"

�
. (13.47)

In the second term in the right-hand side we may, with the same accuracy � g, replace
m by m1, which gives

m2
1 D m2 � g

16�"
m2

1 , (13.48)

so that we get
m2 D m2

1



1 C g

16�2"

�
. (13.49)
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This is the value of the “bare” mass guaranteeing the finite value m1 of the physical
mass in single-loop approximation. We see that for " ! 0 the value of m diverges,
but m1 is finite!

We can similarly analyze the vertex part �.4/. We rewrite (13.42) as

i�.4/.pi / D g�" C g2�"

32�2

�
6

"
� 3� � F.s,m,�/ � F.t ,m,�/ � F.u,m,�/

�
.

(13.50)

Let us define the renormalized (finite!) coupling constant g1 as

g1 D i�.4/.pi D 0/ , (13.51)

i. e., as the vertex part for particles with zero momenta. Then, from (13.50) we obtain

g1 D g�" C g2�"

32�2

�
6

"
� 3� � 3F.0,m,�/

�
. (13.52)

Considering g1 to be fixed and finite, we immediately see that the “bare” coupling
constant g should be infinite (for " ! 0). In fact, rewriting equation (13.52) replacing
g by g1�

�" and m by m1 everywhere (which always can be done with an accuracy
up to terms �g2), we can obtain an expression for g, expressed via g1, similar to
equation (13.49):

g D g1�
�" � 3g2

1�
�2"

32�2

�
2

"
� � � F.0,m1,�/

�
. (13.53)

Then we can express �.4/ (13.50) via g1 as

i�.4/.pi / D g1 � g2
1�

�"
32�2

ŒF .s,m1,�/CF.t ,m1,�/CF.u,m1,�/� 3F.0,m1,�/� .
(13.54)

From here (13.51) follows directly, as for p1 D p2 D p3 D p4 D 0 we have s D t D
u D 0. Thus, the physical (renormalized) coupling constant g1 coincides with i�.4/

with all external momenta equal to zero5. Now everything is finite! We completed
renormalization in a single-loop approximation.

Now, how does this look in two-loop approximation? In this case we have to con-
sider the diagrams shown in Figure 13.5. Appropriate analysis shows that in this case
G�1.p/ D �.2/.p/ acquires an additional divergence due to the diagram of Fig-
ure 13.5(b). This divergence is not cancelled by mass and coupling constant renor-
malization. It is hidden into an additional multiplicative factor, which is introduced by
redefining 2-point function as

G�1
r D �.2/r D Z'.g1,m1,�/�.2/.p,m1/ . (13.55)

5 This is not the only way to define the renormalized coupling constant. Sometimes g1 is defined via
i�.4/ at the so-called symmetric point p2

i D m2, pipj D �m2=3 .i ¤ j /, which corresponds to
s D t D u D 4m2=3.
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(a)                                            (b)                               (c)                                  (d)                                (e)

Figure 13.5

Here �.2/r is finite, while the factor Z' is infinite. The factor of Z1=2
' is called wave

function renormalization. For Z' it is possible to write an expansion in the number of
loops, which has the form

Z' D 1 C g1Z1 C g2
1Z2 C � � � D 1 C g2

1Z2 C � � � , (13.56)

because the single-loop contribution is absent. Wave function renormalization (renor-
malization of the field amplitude) cannot be just arbitrary. To define it we need to
require that at some point, e. g., at p2 D 0, we have

@

@p2
G�1
r .p/

ˇ̌
ˇ̌
p2D0

D @

@p2
�.2/r

ˇ̌
ˇ̌
p2D0

D 1 . (13.57)

The choice of p2 D 0 is more or less arbitrary.
The divergence of Z' means that in a two-loop approximation the value of m1

defined above is actually infinite (in the limit of " ! 0). However, renormalized
G�1
r .p/ D �

.2/
r gives the finite value of renormalized mass mr :

m2
r D Z'm

2
1 . (13.58)

In other words, divergences ofZ' andm2
1 cancel each other. The value of renormalized

coupling constant changes similarly. For �.4/r we have the relation similar to (13.55):

�.4/r D Z2
'�

.4/.p,m1,�/ (13.59)

and the new renormalized coupling constant gr , defined by the relation similar to
(13.46), has the form

i�.4/r .pi D 0/ D gr D Z2
'g1 . (13.60)

The factor Z' is the function of g�", so that writing this dependence explicitly we
obtain the renormalized n-particle vertex part as

�.n/r .pi ,gr ,mr ,�/ D Zn=2
' .g�"/�.n/.pi ,g,m/ (13.61)

or
�.n/.pi ,g,m/ D Z�n=2

' .g�"/�.n/r .pi ,gr ,mr ,�/ . (13.62)

Thus, in two-loop approximation we also can make our theory finite. Is it so in any
order? This is the problem of the proof of renormalizability. This proof is tedious
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enough, but it can actually be done in all orders of perturbation theory (Dyson). A
detailed presentation of this proof for different models of quantum field theory can be
found in [9]. Note, that the proof of renormalizability in '4-theory is actually more
difficult than the similar proof for QED, which is made more simple due to the gauge
invariance.

Counter-terms

There is an alternative way to introduce renormalizability, which became popular after
the publication of [9]. The point is that from the start we can consider parameters m
and g in an initial Lagrangian as the physical mass and charge (coupling constant).
The fact that this Lagrangian does not produce finite Green’s functions now leads to
the requirement that we introduce into the Lagrangian some additional terms which
cancel the divergences. These terms are called counter-terms. Renormalized theory
can be made finite by the introduction of the finite number of counter-terms. Let us
briefly describe how this is done.

Consider again mass renormalization in a single-loop approximation, which is de-
fined by equations (13.46)–(13.49). This may be described as follows. A single-loop
correction to a free propagator is shown in Figure 13.6 and diverges for " ! 0. Let
us add to the initial Lagrangian L the term

ıL1 D � gm2

32�2"
'2 	 �1

2
ım2'2 . (13.63)

This may be considered as an additional interaction, which we shall denote by the
“cross” on the diagrams:

� D � igm2

16�2"
D �iım2 . (13.64)

Then, up to terms of the order of �g, the total inverse propagator is represented by
diagrams in Figure 13.7 and is equal to

�.2/.p/ D iG.p/�1

D i

�
1

i
.p2 �m2/ �

�
igm2

16�2

1

"
C finite part

�
C igm2

16�2"

�

D p2 �m2 , (13.65)

where we have dropped the finite contribution (alternatively we can include it intom2).
Here m2 is considered to be the finite physical mass, which in corresponding order of

Figure 13.6
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Figure 13.7

perturbation theory is equal to ��.2/.0/. The Lagrangian is now LC ıL1, where ıL1

is a diverging counter-term.

The meaning of the introduction of a mass term in the Lagrangian as an additional interaction
is rather simple. Consider noninteracting theory:

L D 1

2
.@�'/.@

�'/ � 1

2
m2' (13.66)

and assume,that it describes massless field (first term in Lagrangian), with interaction deter-
mined by the second terms. Corresponding Feynman rules are shown in Figure 13.8. The full
propagator is determined now by the diagrams shown in Figure 13.9. Then, the perturbation
series reduces to the simple geometric progression

G.p/ D i

p2
C i

p2
.�im2/

i

p2
C i

p2
.�im2/

i

p2
.�im2/

i

p2
C � � � D i

p2 �m2
, (13.67)

which gives the usual propagator of the massive field. This we actually used while considering
the mass counter-term as perturbation.

In a similar way we can also deal with �.4/. From (13.42) it is seen, that �.4/,
corresponding to diagrams � g2, shown in Figure 13.10, diverges for " ! 0. Then
we can add to the Lagrangian the counter-term

ıL2 D 1

4Š

3g2�"

16�2"
'4 D Bg�"

4Š
'4 , (13.68)

corresponding to the additional interaction, shown in Figure 13.11. As a result �.4/, as
shown in Figure 13.12, becomes finite. The divergence of �.2/ in a two-loop approxi-
mation, qualitatively described above and leading to the necessity to multiply �.n/ by

Figure 13.8

Figure 13.9
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Figure 13.10

Figure 13.11

Figure 13.12

Z
n=2
' , is equivalent to the addition to the Lagrangian of the counter-term

ıL3 D A

2
.@�'/

2 , (13.69)

where 1 C A D Z' .
Thus, finite expressions for Green’s functions and vertices can be obtained by adding

to the Lagrangian

L D 1

2
@�'@

�' � 1

2
m2'2 � 1

4Š
g�4�d'4 (13.70)

the counter-term LCT :

LCT D A

2
@�'@

�' � 1

2
ım2'2 � 1

4Š
Bg�4�d'4 . (13.71)

The total Lagrangian, which is usually called the “bare” Lagrangian LB , is equal to

LB D L C LCT D 1 C A

2
@�'@

�' � 1

2
.m2 C ım2/'2 � 1

4Š
.1 C B/g�4�d'4 .

(13.72)
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Thus, the addition of counter-terms is equivalent to the multiplication of ', m, and
g by some renormalization factors Z (multiplicative renormalization). If we define
“bare” quantities

'B D p
Z''r , Z' D 1 C A ,

mB D Zmmr , Z2
m D m2 C ım2

1 C A
, (13.73)

gB D �"Zggr , Zg D 1 C B

.1 C A/2
,

the “bare” Lagrangian (13.72) is written as

LB D 1

2
@�'B@

�'B � 1

2
m2
B'

2
B � 1

4Š
gB'

4
B . (13.74)

Note that here there is no explicit dependence on �. The values of A, B , and ım2 are
assumed to be chosen in such a way as to make Green’s functions finite (for " ! 0). In
terms of the counter-terms approach, the theory is renormalizable if the counter-terms
needed to cancel the divergences in every order of perturbation theory have the same
form as the terms entering the initial Lagrangian. If this is so, the “bare” quantities can
be defined with (infinite!) renormalization factors, as was done above, and the “bare”
Lagrangian has the same form as the initial Lagrangian.

Lagrangian LB leads to finite theory, in contrast to initial L. This means that, “hid-
ing” all divergences into 'B , mB and gB , we can make theory finite: the divergences
are absorbed by renormalization. All “bare” quantities are divergent for " ! 0 6, while
renormalized quantities are finite for " ! 0, but their values are more or less arbitrary
and should be taken to be equal to the physical parameters of the theory.

Equation (13.62) is also obvious from the counter-terms approach. From equa-
tions (13.73) and (13.74) it is clear that, taking (13.74) as the initial Lagrangian, we
have to replacem ! mB , g ! gB , ' ! 'B in all expressions for Green’s functions.
But now we can (and need to!) express the “bare” parameters via physicalmr , gr , and
'r according to expressions (13.73). Then we obtain

�
.n/
B .pi ,gB ,mB/ D Z�n=2

' �.n/r .pi ,gr ,mr ,�/ , (13.75)

which is equivalent to (13.62) (index B can now be dropped). The absence of explicit
dependence of the left-hand side of this equation on � is obvious from the form of the
Lagrangian (13.74), where it is also absent.

6 For finite " there are no divergences at all!
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13.4 The renormalization group

In Chapter 8 we already discussed briefly the renormalization group in QED. Renor-
malization groups plays the major role in quantum field theory [9,28,56] and statistical
physics [3, 42], as well as in some other fields of theoretical physics. Below we shall
present a more detailed discussion. There are several (more or less equivalent) for-
mulations of this method. For example, in Chapter 8 the renormalization group was
related to transformations from one value of the cutoff parameter (for divergent in-
tegrals) to another, in the theory of critical phenomena [42] Wilson’s formulation is
quite popular, which is based on integrating out regions of momentum space, corre-
sponding to large momenta, i. e., restricting the analysis of fluctuations to long enough
wavelengths etc. Here we shall use the most common (though probably more formal)
approach used in quantum field theory literature, which is based on dimensional reg-
ularization [56].

Within the framework of dimensional regularization we have introduced an arbi-
trary parameter � with dimensionality of the mass. Dependence of renormalized irre-
ducible vertices on� is determined, according to equation (13.61), by a corresponding
�-dependence of renormalization factor Z' . In other words (cf. (13.62), (13.75)) the
nonrenormalized (“bare”) function �.n/ does not depend on �:

�.n/.pi ,g,m/ D Z�n=2
' .g�"/�.n/r .pi ,gr ,mr ,�/ (13.76)

and, in this sense, is invariant towards the group of transformations

� ! es� or � D es�0 i. e., s D ln
�

�0
. (13.77)

These transformations represent the renormalization group. Introducing the dimen-
sionless differential operator � @

@�
, we get

�
@

@�
�.n/ D 0 (13.78)

or, taking into account (13.76),

�
@

@�
ŒZ�n=2
' .g�"/�.n/r .pi ,gr ,mr ,�/� D 0 , (13.79)

where gr andmr depend on �. Making a differentiation and multiplying the result by
Z
n=2
' , we obtain
�
�n� @

@�
ln
p
Z' C �

@

@�
C �

@gr

@�

@

@gr
C �

@mr

@�

@

@mr

�
�.n/r D 0 . (13.80)

In the following, for brevity we shall everywhere write g instead of gr and m instead
of mr , assuming that we are dealing only with renormalized quantities. In general,
only renormalized quantities enter equation (13.80), which are finite for " ! 0.
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Let us define the following functions:

m�m.g/ D �
@m

@�
,

�.g/ D �
@

@�
ln
p
Z' , (13.81)

ˇ.g/ D �
@g

@�
.

Then equation (13.80) takes the form
�
�
@

@�
C ˇ.g/

@

@g
� n�.g/Cm�m.g/

@

@m

�
�.n/ D 0 . (13.82)

This is the main differential equation of the renormalization group, usually called a
Callan–Symanzik equation. It reflects invariance of the renormalized vertex �.n/ to
changes of the regularization parameter �7.

Let us write a similar equation, expressing the invariance of �.n/ to changes of the
momentum scale (mass). Consider the replacement pi ! tpi ,m ! tm,� ! t�. The
vertex �.n/ has mass dimensionality D, determined according to the table presented
above, by the following expression

D D d C n

�
1 � d

2

�
D 4 � nC "


n
2

� 1
�

, (13.83)

where d D 4 � ". Then we have

�.n/.tpi , tm, t�/ D tD�.n/.pi ,m,�/ , (13.84)

which, after the simple variable changes tm ! Qm, m ! Qm=t , Qm ! m, and t� !
Q�, � ! Q�=t , Q� ! �, is rewritten as

�.n/.tpi ,m,�/ D tD�.n/.pi ,m=t ,�=t/ . (13.85)

Thus, �.n/ is actually the homogeneous function of its variables of the power D.

Homogeneous functions. The Euler theorem

Let us recall the basic facts about homogeneous functions. The function u D f .x1, x2, : : : , xm/
is called a homogeneous function of power p, if for any t we have

u D f .tx1, : : : , txm/ D tpf .x1, : : : , xm/ . (13.86)

For homogeneous functions we have the Euler theorem

x1
@u

@x1
C � � � C xm

@u

@xm
D pu . (13.87)

7 To avoid misunderstanding we note that here we are dealing with the vertex, defined in (13.16) and
denoted previously by N�.n/.
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To prove this, consider u D f .tx0
1 , : : : , tx0

m/, where .x0
1 , : : : , x0

m/ is an arbitrary point, from
the region of the definition of our function. Then we have

du

dt

ˇ̌
ˇ
ˇ
tD1

D @u

@x1
x0

1 C : : :C @u

@xm
x0
m . (13.88)

On the other hand,

du

dt
D ptp�1f .x0

1 , : : : , x0
m/ , so that

du

dt

ˇ̌
ˇ̌
tD1

D pf .x0
1 , : : : , x0

m/ D pu . (13.89)

Comparison of (13.88) with (13.89) gives (13.87).

From (13.85), using the Euler theorem, we have
�
t
@

@t
Cm

@

@m
C �

@

@�
�D

�
�.n/.tpi ,g,m,�/ D 0 . (13.90)

Excluding �@�
.n/

@�
from (13.82) and (13.90), we obtain another form of the Callan–

Symanzik equation:
�
�t @
@t

C ˇ
@

@g
� n�.g/Cm.�m.g/ � 1/

@

@m
CD

�
�.n/.tpi ,g,m,�/ D 0 ,

(13.91)

which directly expresses the result of the scale change of momenta in �.n/ by the
factor of t . Note that for ˇ.g/ D �.g/ D 0, �m.g/ D 1, this result reduces to the
canonical dimension D, which is determined by the “naïve” dimensional analysis.
The necessity of renormalization and nontrivial values of ˇ.g/, �.g/, �m.g/ is directly
related to interactions which lead to anomalous dimensions.

Let us find the solution of equation (13.91). In fact, this equation reflects the fact
that the change of t can be compensated by an appropriate change of m and g and of
the common factor. Suppose the existence of functions g.t/,m.t/ and f .t/, such that

�.n/.tp,m,g,�/ D f .t/�.n/.p,m.t/,g.t/,�/ . (13.92)

Differentiating by t , we obtain

@

@t
�.n/.tp,m,g,�/ D

df .t/

dt
�.n/.p,m.t/,g.t/,�/C f .t/

 
@m

@t

@�.n/

@m
C @g

@t

@�.n/

@g

!

, (13.93)
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or, taking into account (13.92),

t
@

@t
�.n/.tp,m,g,�/

D
�
t
df .t/

dt
C f .t/t

@m

@t

@

@m
C f .t/t

@g

@t

@

@g

�
�.n/.p,m.t/,g.t/,�/

D
�
t
df .t/

dt
C tf .t/

@m

@t

@

@m
C tf .t/

@g

@t

@

@g

�
1

f .t/
�.n/.tp,m,g,�/ , (13.94)

which, after the regrouping, reduces to
�

�t @
@t

C t

f .t/

df .t/

dt
C t

@m

@t

@

@m
C t

@g

@t

@

@g

�
�.n/.tp,m,g,�/ D 0 . (13.95)

Compare now (13.91) with (13.95). Equating the coefficients at @=@g, we obtain the
Gell-Mann–Low equation

t
@g.t/

@t
D ˇ.g/ . (13.96)

The function g.t/ is called the “running” coupling constant, and the ˇ.g/-function is
called the Gell-Mann–Low function. This equation is of basic importance in the study
of asymptotic properties in quantum field theory. The knowledge of ˇ.g/ allows us to
find g.t/. Of major interest, as we shall see, is the asymptotics of g.t/ at t ! 1. The
initial condition for equation (13.96) is g.1/ D g.

Comparison of the coefficients before @=@m in (13.91) and (13.95) gives

t
@m

@t
D mŒ�m.g/ � 1� , (13.97)

and comparison of the remaining terms gives

t

f .t/

df .t/

dt
D D � n�.g/ . (13.98)

The last equation can be integrated to obtain

f .t/ D tD exp

�
�
Z t

0
dt
n�.g.t//

t

�
; (13.99)

substituting this into (13.92) and takingD D 4 �nC "
�
n
2 � 1

	
, in the limit of " ! 0,

we get

�.n/.tp,m,g,�/ D t4�n exp

�
�n

Z t

0
dt
�.g.t//

t

�
�.n/.p,m.t/,g.t/,�/ . (13.100)

This is the solution of (13.91), expressed via the “running” coupling constant g.t/
and the “running” mass m.t/. The exponential determines the anomalous dimension.
Thus, the physics at high momenta is determined by functions g.t/ andm.t/. Relations
like (13.100) in some sense allow us to analyze the situation outside the region of
applicability of perturbation theory.
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(a)                                                                                            (b)

Figure 13.13

In the limit of very large momenta we can neglect particle masses. Thus, we can
usually limit our analysis to studies of the Gell-Mann–Low equation (13.96). Con-
sider the possible qualitative behavior which may appear. We shall be interested in
the behavior of g.t/ for t ! 1. The Gell-Mann–Low equation is written as (13.96),
and the possible variants of the qualitative behavior of the ˇ.g/-function are shown
in Figure 13.13. We always have ˇ.g D 0/ D 0, which corresponds to free the-
ory without interactions. Perturbation theory allows us to determine the behavior of
ˇ.g/ close to g D 0; it is always (as we shall see below) quadratic in g. In principle,
where zeroes of ˇ.g/ at finite g, may be, it is sufficient to consider only one, say at
g D g0, to understand the consequences of its existence. Consider first ˇ.g/, shown
in Figure 13.13(a). The zeroes of this function at g D 0 and g D g0 correspond to the
so-called fixed points of the Gell-Mann–Low equation. It is easy to see that, for t ! 1
and initial values of g close to g0, the value of g.t/, determined from (13.96), tends to
g0. In fact, for initial g < g0 we have ˇ.g/ > 0, so that g grows with the growth of t
and tends to g0 (where further growth is just stopped). Similarly, for initial g > g0 we
have ˇ.g/ < 0, and g diminishes with the growth of t , i. e., also tends to g0, moving in
a negative direction. Thus g.1/ D g0, and we have an ultraviolet stable fixed point:
the fixed value of the coupling constant (charge) at very large momenta. For small
initial values of g in the limit of t ! 0 we always obtain g D 0, the infrared stable
fixed point (“Moscow zero”). If the zeroes of the Gell-Mann–Low function at finite
g are absent, equation (13.96) leads to the continuous growth of g for t ! 1, and a
fixed value of charge does not appear. If for the large values of argument ˇ.g/ � g˛

and ˛ > 1, the theory becomes internally inconsistent: the inevitable divergence of
g appears at the finite value of t (the Landau “ghost pole”). For ˛ � 1 we obtain the
monotonous growth of g for t ! 1; the theory is consistent, but for t ! 1 we have
a crossover to “strong coupling”.

Consider now the ˇ.g/-function, shown in Figure 13.13(b). Again we have two
fixed points, but the sign of ˇ.g/ is now opposite, so that g D g0 is not the infrared
stable fixed point at .t ! 0/, while g D 0 is the ultraviolet stable fixed point at
.t ! 1/. In the last case g ! 0 for t ! 1 and effective interaction diminishes with
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the growth of energy (momentum) becoming zero in the limit. This is called asymptotic
freedom. With the absence of zero ofˇ.g/ at finite values of g now we have problems at
small momenta; interaction grows and can produce unphysical divergence. In any case,
here we obtain the transition to “strong coupling” at large distances (confinement?).

These possibilities in fact represent all the variants of asymptotic behavior in any
reasonable model of quantum field theory. As a concrete example we can consider the
g'4 .g > 0/-theory. Let us take the result of the single-loop approximation (13.52)
for the renormalized coupling constant. Dropping irrelevant finite corrections we can
write

g1 D g�"



1 C 3g

16�2"

�
. (13.101)

Then we have

�
@g1

@�
D "g�" C 3g2

16�2
�" . (13.102)

For finite " everything is finite, and we can (with the same accuracy) rewrite (13.102)
as

�
@g1

@�
D "g1 C 3g2

1

16�2
��" , (13.103)

and then just drop the index 1, assuming that we are working with a renormalized
coupling constant. Then from (13.103), for " ! 0, we obtain the Gell-Mann–Low
function as

ˇ.g/ D �
@g

@�
D 3g2

16�2
. (13.104)

Introducing s D ln t D ln �
�0

, so that � @
@�

D @
@s

D t @
@t

, we can rewrite equa-
tion (13.103) as

@g

@s
D 3g2

16�2
. (13.105)

Now, without any calculations we can see that “running” coupling constant of '4-
theory grows with the growth of s, i. e., with the growth of momentum, so that this
theory is not asymptotically free. The Gell-Mann–Low function is �g2. The elemen-
tary integration of equation (13.105) with initial condition g.s D 0/ D g0 gives

g D g0

1 � 3
16	2g0s

D g0

1 � 3
16	2g0 ln t

D g0

1 � 3
16	2g0 ln �

�0

. (13.106)

With the growth of t (or �) the coupling constant grows, and finally we meet the
unphysical singularity (“ghost pole”) at 1 D 3

16	2g0 ln. �
�0
/, which corresponds to� D

�0 exp.16	2

3g0
/. The situation here is quite similar to that in QED, which we discussed

in Chapter 8. The same behavior was discussed in Chapter 10 in relation to critical
phenomena.

Of course, this behavior of the Gell-Mann–Low function is completely based on
a single-loop approximation and is formally valid only for small enough values of
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the coupling constant g. The problem of the ˇ.g/ behavior for large values of g and
the related question of the consistency of g'4-theory remains open. Many researchers
obtain forg ! 1 the asymptotic behavior ofˇ.g/, which is practically the same as the
result of a single-loop approximation, which is equivalent to the internal inconsistency
of the theory in accordance with the initial Landau claim, discussed above in Chapter 8.
Alternative suggestions will be discussed in Chapter 14.

Note that g'4-theory is “easily” made asymptotically free if we assume g < 0. Then we
obviously have to change the sign before the logarithm in the denominator of equation (13.106)
and the effective coupling constant will drop with the growth of t and �. However, such a
theory is unstable: there is no ground state (potential energy can be arbitrarily negative), and
this model is usually not considered in quantum field theory. However, the specific variant
of such models, which is reduced to the generalized Landau functional (10.160), with the
number of field components n D 0 (!), describes the motion of an electron in the random
potential field of impurities with point-like potential V , chaotically distributed in space with
fixed average density �, if in (10.160) we put g D ��V 2 and � D �E, whereE is the electron
energy. This problem is basic for the theory of electrons in disordered systems and related to
the still unsolved problem of electron localization in such systems (Anderson localization – the
basic mechanism of metal-insulator transitions). These problems are deeply connected with the
description of the infrared region of asymptotically free models in quantum field theory. We
shall not discuss these problems in more detail here, referring the readers to existing reviews
[57, 64].

13.5 Asymptotic freedom of the Yang–Mills theory

Now let us consider the asymptotic properties of gauge theories. The situation in QED
was discussed in Chapter 8, where it was shown that this theory is not asymptotically
free, which leads to a “zero-charge” problem and pathological behavior at large mo-
menta (energy). Remarkably, in non-Abelian theories the situation is different, and in
these theories we can obtain asymptotic freedom. The discovery of this phenomenon
by Gross and Wilczek has opened the way to construction of quantum chromody-
namics and guaranteed the possibility of reliable calculations of QCD effects at high
energies using perturbation theory.

Here we limit ourselves to the main results for the case of SU.3/ gauge theory
(QCD) and a qualitative interpretation of asymptotic freedom, referring the reader for
details to existing textbooks [13, 53, 56]. The key to finding asymptotic behavior is
the Gell-Mann–Low ˇ.g/-function. In QED in Chapter 8 we used the simplest single-
loop approximation for vacuum polarization. In single-loop approximation of QCD
we have additional contributions, related to the non-Abelian nature of the theory (self-
interaction). We have to take into account the contribution to charge renormalization
from the simple loop graphs for gluon–gluon interaction, shown in Figure 13.14, from
gluon–ghost interaction, shown in Figure 13.15, and the QED-like contribution from
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Figure 13.14 Figure 13.15 Figure 13.16

gluon–quark interaction, shown in Figure 13.16. After some tedious calculations [56]
we obtain the renormalized QCD coupling constant in a single-loop approximation,
similar to (13.101), in the form 8

g1 D g�"=2
�

1 C g2

4�"



�11 C 2nf

3

��
, (13.107)

where nf is the number of quark “flavors” (type of quarks). A similar single-loop
correction for electrons in QED is e2

4	

��4
3

	
. The sign of the fermion loop contribution

in QCD is the same as in QED. However, the combined contribution from the diagrams
of Figures 13.14 and 13.15 has the opposite sign! Correspondingly, for nf < 16 the
sign of the full polarization correction in (13.107) is opposite to that in QED (“anti-
screening”). The physical reasons for such behavior will be explained below, while
now, acting similarly to transformations leading from (13.101) to (13.104), in the limit
of " ! 0, we obtain

ˇ.g/ D �
@g

@�
D g3

12�

��33 C 2nf
	

. (13.108)

For nf � 16 from (13.108) it follows that ˇ.g/ < 0 and the coupling constant g
diminishes with the growth of the momentum (mass) scale, in accordance with the
qualitative picture discussed above. We see that in this case the theory is asymptoti-
cally free. In nature we have nf D 6.

Let us obtain the expression for the “running” coupling constant. Introducing once
again s D ln t D ln �

�0
, � @

@�
D @

@s
, we obtain the Gell-Mann–Low equation

@g

@s
D ��g3 , where � D 33 � 2nf

12�
. (13.109)

Let us rewrite it as
d

ds
.g�2/ D 2� . (13.110)

8 Here we use the Gaussian system of units.



350 Chapter 13 Renormalization

It is easy to see that the solution of this equation has the form

1

g2
D 1

g2
0

C 2�s (13.111)

or

g2 D g2
0

1 C 2g2
0�s

D g2
0

1 C 2g2
0� ln t

. (13.112)

Introducing t D Q=� and defining g0 atQ D �, we obtain the result, already quoted
in Chapter 8,

g2.Q2/ D g2.�/

1 C g2.�2/
12	 .33 � 2nf / ln



Q2

�2

� . (13.113)

Only in the world with nf > 16 the sign in the denominator of (13.113) will be the
same as in QED. In real world the effective charge of QCD does not grow, but drops
with the growth of Q2 and becomes small at small distances. In contrast, for small
enough Q2 (at large distances between quarks) the effective coupling constant be-
comes large, which is reflected in confinement of quarks (“infrared jail”). For the value
of Q2, corresponding to the “ghost pole” in (13.113), we can introduce the notation
ƒ2
QCD:

ƒ2
QCD D �2 exp

�
� 12�

.33 � 2nf /g2.�2/

�
. (13.114)

so that (13.113) is rewritten as

g2.Q2/ D 12�

.33 � 2nf / ln


Q2

ƒ2

� . (13.115)

For Q2 � ƒ2
QCD the effective coupling constant is small, and quark–gluon interac-

tion (at small distances or large momenta) can be described by perturbation theory,
similarly to electron-photon interactions in QED (at big distances of small momenta).
For Q2 � ƒ2

QCD such a description becomes impossible, and quarks and gluons
form strongly interacting clusters: hadrons. The experimental value ofƒQCD is some-
where in the interval between 0.1 and 0.5 GeV. Then, for experiments being done at
Q2 � .30 GeV/2 from (13.115) we obtain g2 � 0.1, so that perturbation theory is
applicable as in QED. In the limit of large Q2 we can neglect all quark masses, but
the theory still contains the mass scale �2, which appeared during the renormalization
procedure.

Let us stress that the theoretical result (13.115) is well confirmed by experiments!
In Figure 13.17 we show the experimental data for the effective coupling constant
of QCD, as a function of the characteristic energy-momentum scale if with different
scattering processes, studied at different experimental installations9. We see a rather
convincing agreement between the theory and experiments.

9 M. Schmelling. ArXiv: hep-ex/9701002.
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Figure 13.17

Antiscreening – the paramagnetism of Yang–Mills vacuum

We have seen that asymptotic freedom appears due to charge antiscreening in a Yang–Mills
vacuum. This phenomenon has a rather simple explanation, based upon analogies with con-
densed matter theory10.

Charge antiscreening means that a vacuum acts like dielectric a medium with dielectric
permeability  < 1. The vacuum of quantum field theory differs from the usual polarizable
medium in one important aspect: it is relativistically invariant. This means that its magnetic
permeability � is related to dielectric and both satisfy

� D 1 . (13.116)

In fact,  is the coefficient before the electric field term in action EE � ED / FoiF
oi , while ��1

is the coefficient before the magnetic field term EB � EH / ��1FijF
ij . The sum of these terms

is relativistically invariant only if the condition  D ��1 is satisfied. This relation allows us
to connect electric properties of the medium with their magnetic properties, which may be of
two types:

1. Landau diamagnetism (� < 1). Charged particles in the medium respond to the magnetic
field creating the current, which itself induces the magnetic field with the direction opposite
to the external field.

2. Pauli paramagnetism (� > 1). If particles possess magnetic moments, these are oriented
along the field direction.

10 Below we shall follow mainly F. Wilczek. Asymptotic Freedom. ArXiv: hep-th/9609099.
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Then, the property of antiscreening of a Yang–Mills vacuum can be interpreted as � > 1, i. e.,
paramagnetism11. The thing is that non-Abelian gauge fields are Bose fields and, in contrast
to Abelian photons, possess a gauge charge. Let us stress that the terminology of electromag-
netism is used here, based on the analogy with U.1/ gauge theory (QED), while in reality we
mean charges, corresponding to gauge SU.3/ (color) symmetry and color charges; electric and
magnetic fields are understood as electric-like and magnetic-like components of a non-Abelian
gauge field, corresponding to SU.3/ symmetry of QCD. When we are speaking about Yang–
Mills fields in QCD (gluons) possessing charge and a magnetic moment, we mean that these
fields possess a color charge and a color magnetic moment. Gluons are, of course. electrically
neutral in the usual (electrodynamic) sense.

The well-known result of the theory of metals is that for an ideal gas of electrons Landau
diamagnetism is overtaken by Pauli paramagnetism, so that the total response is paramagnetic
[36]. We shall see that for non-Abelian gauge theories the situation is similar.

The standard classical Lagrangian of non-Abelian gauge theory has the form

L D � 1

16�
Ga˛ˇG

a˛ˇ C N .i��D� �m/ C ��.�D�D� � �2/� C other contributions,

(13.117)

where the field tensor is defined as Ga
˛ˇ

	 @˛A
a
ˇ

� @ˇA
a
˛ � gf abcAb˛A

c
ˇ

, and f abc are the
structural constants of the gauge group, covariant derivativeD� D @�C igAa� �T a, and T a are
the generators of the group (e. g., Pauli matrices �2 for the fundamental representation ofSU.2/,

or Gell–Mann matrices �2 for fundamental representation of SU.3/). “Other contributions” are
assumed to originate from Yukawa-type interactions and self-interactions of scalar fields. It is
important that these contributions are independent of gauge fields. It is convenient to redefine
gA ! A, so that the Yang–Mills constant g enters only the “free” part of the gauge field
Lagrangian:

L D � 1

16�g2
Ga˛ˇG

a˛ˇ C N .i��D� �m/ C ��.�D�D� � �2/� C other contributions,

(13.118)

where now Ga
˛ˇ

	 @˛A
a
ˇ

� @ˇAa˛ � f abcAb˛Acˇ , D� D @� C iAa� � T a and g now enters only
as a coefficient in the first term.

To calculate the magnetic susceptibility of a vacuum we need to know the change of its
energy density due to a change of the external magnetic field. It may seem that everything is
determined only by the first term in (13.118): 1

8	g2B
2. But this is only the classical contribution

to energy; in quantum theory we need also to consider the charge of zero-point energy of all
fields, entering (13.118), under the change of the external magnetic field. In fact, everything
is similar to the theory of metals, where the vacuum corresponds to the filled Fermi sphere.

Before starting explicit calculations we shall write the correct answer and analyze its mean-
ing and consequences. As we shall show, with the additional contribution of the zero-point

11 The usual polarizable medium, in contrast, can simultaneously be screening ( > 1) and paramagnetic
(� > 1). But still, there is some historical irony that the physical behavior leading to asymptotic
freedom was, in fact, known to Landau, who made some fundamental contributions to the quantum
theory of magnetism, but at the same time criticized the basics of quantum field theory, because of
the pathological behavior of interactions at high momenta.
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oscillations	E , the vacuum energy density in the external magnetic fieldB can be written as12

E C	E D 1

8�g2.ƒ2/
B2 � 1

8�
�B2 ln

�
ƒ2

B

�
C finite contributions , (13.119)

where � was defined above in (13.109):

� D 33 � 2nf
12�

, (13.120)

and the neglected terms are finite in the limit of g ! 0 and ƒ ! 1. Here we introduced
the usual cutoff ƒ, i. e., dropped the contribution of all oscillations with wave vectors exceed-
ing ƒ. The origin of the notation g2.ƒ2/ will soon become clear.

Consider the case when the cutoffƒ in (13.120) is changed to a smaller valueƒ0. Then it is
easy to see that all oscillation modes with wave vectors in the interval betweenƒ0 andƒ give
the following contribution to the change of vacuum energy:

ı.E C	E/ D � 1

8�
�B2 ln

�
ƒ2

ƒ02
�

D
�

1

�
� 1

�
1

8�g2
B2 , (13.121)

where in the second equality we introduced the contribution to vacuum magnetic susceptibility
(permeability) from these modes, thus giving, in fact, its definition.

Now, for small g, we get

� � 1 D �g2 ln

�
ƒ2

ƒ02

�
, (13.122)

where we explicitly wrote the contribution to susceptibility from modes with energies (mo-
menta) in the interval between ƒ0 and ƒ. From equation (13.120) it is clear that here (as in
the theory of metals) we have two contributions: the first is connected with the tendency of
spins to orient along the field (paramagnetism), while the second is due to the orbital motion
of charged particles (diamagnetism). For electron gas the paramagnetic response is three times
greater, than the diamagnetic one [36]. The result (13.122) shows that in QCD the situation
is similar and � > 1, which, as we have seen, corresponds to the antiscreening of the charge
. < 1/. To determine the correct sign we have to take into account the fact that particles
with spin 1 (gluons) have only two polarizations, and also that the fermion (quark) contribu-
tion to vacuum energy is negative (cf. Chapter 3), which leads to partial cancellation of the
paramagnetic effect. In particular, in QED, where the Abelian electromagnetic field is not self-
interacting, the entire effect is due to fermions, and we have the usual vacuum screening of the
charge.

What are the consequences of equation (13.119) for physical observables? First of all we
have to deal with the problem of arbitrary cutoffƒ. We define the effective coupling constant
in such a way that the right-hand side of (13.119) becomes independent of ƒ. To achieve this
we require

const 	 1

g2.ƒ2/
� � ln

�
ƒ2

B

�
, (13.123)

which is equivalent to (13.111). It is better to write this condition in a differential form:

d

d.lnƒ2/

1

g2.ƒ2/
D � , (13.124)

12 In our system of units ŒB� D ŒL�2� D Œƒ2�, and we are using here the Gaussian system of units of
electrodynamics.
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which is the same as the Gell-Mann–Low equation (13.110). Now we see that the effective
coupling constant drops with the growth of cutoffƒ, going to zero as the inverse logarithm of
ƒ for ƒ ! 1, when there are not too many quarks i. e., until � > 0. This is what we called
asymptotic freedom.

Now let us proceed with the derivation of equation (13.119). A paramagnetic contribution
to � from spin projections ˙s is easily calculated as follows. Let the electric charge be 1,
and gyromagnetic ratio gm. As we are interested in the contribution of modes with very large
momenta, the cutoff parameter ƒ is much larger than the masses of all the particles, and we
can consider all of them as massless (ignoring infrared divergences, which we may regularize,
introducing a low momentum cutoff �B). Switching on the magnetic field leads to the energy
shift of the relativistic particle [6]:E2 D k2

1 Ck2
2 Ck2

3 ! E2˙gmBs. Thus, the corresponding
change of zero-point energy is

	E D
Z

d 3k

.2�/3
1

2
.
p
k2 C gmsB C

p
k2 � gmsB � 2

p
k2/ . (13.125)

Expanding here up to terms quadratic in B and making angular integrations, we get

	E D �B2.gms/
2 1

32�2

Z ƒ2

0

dk2

k2
D �B2.gms/

2 1

32�2
ln
ƒ2

B
. (13.126)

This gives the paramagnetic contribution to (13.119). The precise value of the numerical co-
efficient in (13.119) is related to group constants of SU.3/ and we shall not derive it here.

Calculation of diamagnetic contribution to � is more difficultı. Let us take the vector poten-
tial of a magnetic field in the Landau gauge: Ay D Bx. the Klein–Gordon equation for orbital
motion of a relativistic particle in a magnetic field is

�
E2 C @2

@x2
C
�
@

@y
� iBx

�2

C @2

@z2

�
� D 0 , (13.127)

and its solutions are written as

� D ei.k2yCk3z/�n

�
x � k2

B

�
(13.128)

with corresponding eigenvalues E2
n D k2

3 C B.2n C 1/. Here �n is the usual oscillator
wave function [35]. Energy levels are characterized by the integer n and momentum k3, but
are degenerate over k2, as for the usual Landau levels in a magnetic field [35]. If we con-
sider the states in the cube with side L, the coordinate of the center of the oscillator k2=B

should satisfy the inequality 0 � k2=B � L, which means that in the interval 	k3 we have
	k2	k3=.2�/2 D B

4	2	k3 states with fixed n (for unit volume L3 D 1). Then the corre-
sponding contribution to the energy of zero-point modes is given by

E0 D B

.2�/2

ƒ2
2B � 1

2X

nD0

Z 1

�1
dk3�

�
ƒ2 �k2

3 �B.2nC1/
�p
k2

3 C B.2nC 1/ 	
ƒ2
2B � 1

2X

nD0

f


nC 1

2

�
.

(13.129)
This is a rather complicated expression because of the sum over n. For us it is sufficient to take
into account the first nontrivial contribution using the Euler–Maclaurin summation formula:

pX

nD0

g


nC 1

2

�
D
Z pC1

0
dng.n/ � 1

24
.g0.p C 1/ � g0.0//C : : : (13.130)



Section 13.6 “Running” coupling constants and the “grand unification” 355

as the next terms lead to contributions of higher orders inB=ƒ2. Applying (13.130) to (13.129),
we see that the integral term is independent ofB , while the significant contribution comes from
the derivative at zero:

1

24
f 0.0/ D 1

24

B

4�2
2
Z ƒ

p
B

dk3
B
p
k2

3

D B2 1

96�2
ln
ƒ2

B
. (13.131)

This gives the diamagnetic part of (13.119), which is smaller than paramagnetic term (13.126)
for any reasonable values of gm and s.

As we noted many times, the discovery of asymptotic freedom in non-Abelian gauge
theories played a revolutionary role in modern quantum field theory, transforming
QCD into a “respectable” theory and the foundation of the Standard Model. Dur-
ing the last thirty-five or so years this theory was tested in many experiments and
was always confirmed. We shall not discuss this. Many aspects of QCD are discussed
in [13]. A raher detailed presentation of the mathematical apparatus of QCD can be
found in [62]. Among the unsolved problems we have to mention the problem of con-
finements, which is deeply related to the problem description of the strong coupling
(nonperturbative) effects of QCD in the infrared region (large distances). We shall
briefly discuss these problems in the next chapter.

In recent years there has been an intensive development of the theory of quark-
gluon matter under extreme conditions of high temperatures and densities, important
for problems of astrophysics and cosmology as well as for the study of heavy nuclei
collisions in accelerator experiments. Here we meet some remarkable analogies with
the physics of condensed matter. In particular, great attention is devoted to the study of
the so-called color superconductivity, appearing in quark-gluon matter due to Cooper
pairing of quarks, induced by the attraction due to gluon exchange. A detailed and
clear presentation of these problems can be found in [54, 72]13.

13.6 “Running” coupling constants and the “grand
unification”

In Chapter 12 we considered the SU.2/ ˝ U.1/ symmetric unified theory of elec-
troweak interactions, which is in remarkable agreement with experiments, similarly
to the SU.3/ invariant QCD. But is it really a unified theory? In fact, SU.2/˝ U.1/
represents the direct product of two disconnected groups of gauge transformations: the
SU.2/ group of weak isospin with coupling constant g and the U.1/ group of weak
hypercharge with coupling constant f . The ratio of these two coupling constants, in-
troduced in equation (12.83) as

tg˛ D f

g
(13.132)

13 An elementary presentation of the successes of modern QCD is given in a mini-review [74].
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is to be determined from experiments. However, if we consider groups SU.2/ and
U.1/ as subgroups of some larger gauge group

G � SU.2/˝ U.1/ , (13.133)

the constants g and f can be related to each other by group relations, which will
determine the Weinberg angle ˛. Some of the transformations of the wider group G
will connect previously disconnected subsets of groups SU.2/ and U.1/. It is natural
to try to unify electroweak symmetries SU.2/ and U.1/ with the color gauge SU.3/
symmetry of QCD:

G � SU.3/˝ SU.2/˝ U.1/ . (13.134)

Then the gauge transformations of the group G will connect electroweak constants
g and f with QCD coupling. As a result all known interactions will be described
by a single gauge group with the single coupling constant gG , while all observable
constants of known interactions will be unambiguously defined by the group structure
of G. This type of model is usually called grand unified theories (GUT). There are a
number of such models under discussion for possible verification, and below we shall
briefly discuss some aspects of this approach.

The foundation for such a description can be guessed from the real behavior of “run-
ning” coupling constants for known interactions. We shall denote these constants as
g1.Q/, g2.Q/, and g3.Q/, corresponding to gauge groups U.1/, SU.2/, and SU.3/.
Let us introduce the following standard notations relating gi .i D 1, 2, 3/ with the
coupling constants used above:

SU.3/ : g2.Q/ D 4�g2
3.Q/ ,

SU.2/ : g.Q/ D g2.Q/ ,
U.1/ : f .Q/ D 1

C
g1.Q/ .

(13.135)

Here we also introduced (not very important for us in the future) the coefficient C ,
which is usually defined by some group constants ofG. In particular, the angle ˛ from
(13.132) becomes the function of Q:

tg˛.Q/ D 1

C

g1.Q/

g2.Q/
. (13.136)

Figure 13.18 shows the behavior of “running” coupling constants of the Standard

Model ˛i D g2
i

4	 as functions of log10.�=GeV/, obtained from scattering experi-
ments and (at very large momenta) from single-loop expressions, which were dis-
cussed above in some details for QED and QCD. We see that the QCD constant g3

drops with the growth of momentum (asymptotic freedom), while the constants of
electroweak theory g1 and g2 grow. However, we clearly observe the tendency for
effective constants to become more or less equal in the region of Q � 1015 GeV. It
can be expected, that in the true theory of elementary particles at some large value of
Q � MX (at small distances!) all three constants become just one universal constant
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Figure 13.18

of “grand unification”14:

gi .Q/ D gG.Q/ for Q � MX , (13.137)

corresponding to gauge group G. ForQ < MX constants gi .Q/ separate and at large
distances tend to the phenomenological constants gi , describing the observable in-
teractions, roughly corresponding to Q � � � 10 GeV. Such behavior of coupling
constants is also obtained in some supersymmetric generalizations of the Standard
Model15. An example of the “running” couplings behavior obtained in such models
is shown in Figure 13.19. Such behavior of effective coupling constants is considered
a strong argument for theories with supersymmetry. However, it should be noted that
supersymmetry is, in any case, strongly broken in real nature. Also, up to now there
is no experimental evidence for its existence. In particular, it is not known whether or
not any “superpartners” of the known elementary particles exist.

Assuming the existence of the GUT groupG and using the phenomenological values
of coupling constants determined at Q � � � mW , we can make a more accurate
estimate of MX . For the QCD constant, using (13.109)–(13.113), we can write

1

g2
3.�/

D 1

g2
3.Q/

C 2b3 ln
Q

�
, (13.138)

14 In this region the Weinberg angle, in accordance with (13.136), is determined by group coefficient C .
15 We recall that supersymmetry transforms fermions into bosons and back.
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Figure 13.19

where we have introduced

b3 D 1

.4�/2


2

3
nf � 11

�
, (13.139)

which differs from � introduced above, by its sign and constant factor. For Q D MX
we have g3 D gG , so that from equation (13.138) we get

1

g2
i .�/

D 1

g2
G

C 2bi ln
MX

�
, where i D 3 . (13.140)

The same relation can be applied to coupling constants g1 and g2 of gauge groups
SU.2/ and U.1/, with

b1D 1

.4�/2


4

3
ng

�
,

b2D 1

.4�/2



�22

3

�
C b1 , (13.141)

b3D 1

.4�/2
.�11/C b1 , (13.142)

where ng is the number of fermion flavors for the given model. In the general case of
SU.N/ gauge group, we have

bN D 1

.4�/2



�11

4
N C 4

3
ng

�
, (13.143)
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where the first term is connected with loop contribution of gauge bosons, while the
second one with fermion loops.

Excluding ng and gG from three equations like (13.142) and using (13.143) we can
compose the following linear combination:

C 2

g2
1

C 1

g2
2

� 1 C C 2

g2
3

D 2ŒC 2b1 C b2 � .1 C C 2/b3� ln
MX

�
, (13.144)

where g2
i D g2

i .�/. The left hand side here is chosen in such a way that it can be
expressed via e2 and g2

3. In fact, we have

C 2

g2
1

C 1

g2
2

D 1

f 2
C 1

g2
D 1

e2
, (13.145)

where we have used (13.135) and electroweak theory relation e D g sin˛ D f cos˛.
Substituting the coefficients bi from (13.142) into (13.144), we obtain

ln
MX

�
D 3.4�/2

22.1 C 3C 2/

�
1

e2
� 1 C C 2

g2
3

�
. (13.146)

For � � 10 GeV we have e2 � 10�2 and g2
3 � 0.1. Assuming16 C 2 D 5=3 we have

MX � 5 � 1014 GeV. (13.147)

This estimate is not very sensitive to the choice of � and the precise value of C .
Actually, the mass MX is very large, but we can still neglect the gravitation effects17.

A minimal group satisfying the condition of

G � SU.3/˝ SU.2/˝ U.1/ (13.148)

is SU.5/, leading to the simplest GUT model (Georgi–Glashow). What kinds of gauge
bosons appear in this theory? In the general case of a SU.N/-symmetric gauge group
we have N 2 � 1 gauge bosons. Then for SU.5/ we have

24 D .8, 1/Gluons C Œ.1, 3/C .1, 1/�W ,Z,
 C Œ.3, 2/C .N3, 2/�X ,Y . (13.149)

Thus, in this model superheavy bosons X and Y appeark. They have color and are

16 This follows from (13.136) and sin2 ˛ � 0.2. In the general case, from (13.136) we have sin2 ˛ D
g2

1 .Q/

g2
1 .Q/CC 2g2

2 .Q/
. If we take C 2 D 5=3, then for Q D MX , i. e., for g1 D g2, we get sin2 ˛ D 3=8.

However, for Q � � the value of sin2 ˛ is different because of g1 ¤ g2..
17 The account of gravitation becomes important for GM

2

r j
rD „

MC

� Mc2, which gives the Planck mass

MP c
2 � .„c5

G
/1=2 � 1.2 � 1019 GeV.
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intermediate bosons for interactions, transforming quarks into leptons:

.u, d/L ! eC
L C . NY , NX/ , (13.150)

which inevitably leads to proton decay18

Fermions in the SU.5/ model belong to fundamental representations N5 and 10. Ex-
plicitly, for left-handed states we have

N5 D .1, 2/C .N3, 1/ D .�e , e
�/L C NdL ,

10 D .1, 1/C .N3, 1/C .3, 2/ D eC
L C uC

L C .u, d/L . (13.151)

Theoretical estimates for the lifetime of proton give

�p � M 4
X

m5
p

. (13.152)

It is seen that its numerical value is not very sensitive to the precise value of MX
and is within the interval of 1030–1032 years! The present day experimental limit is
�p > 1032 years. This contradicts the simplest SU.5/ GUT model. However, in more
complicated GUT models, the proton lifetime can be made much larger. Unfortunately,
at present there is no clear experimental way to search for proton decay with a lifetime
exceeding 1032 years. In this sense, and also because of the immense scale of the
MX masses, all GUT models represent a kind of theoretical “game”. However, purely
theoretical considerations stimulate further work in this direction [73].

18 Proton decay is not so unexpected as it may seem. Conservation of electric charge is related to the
existence of a massless photon, but apparently there are no particles, responsible for conservation of
baryon charge (cf. Chapter 2). ForQ � MX ,Y the strong color interaction is mixed with electroweak
interaction, and a clear distinction between color quarks and colorless leptons just vanishes.



Chapter 14

Nonperturbative approaches

14.1 The lattice field theory

Our previous presentation of the theory of interacting quantum fields was based on
perturbation theory. In fact, it is the only universal method to deal with interactions.
However, it is clear that there is are number of problems in quantum field theory which
cannot be solved without the use of methods outside perturbation theory. In particular,
we are meeting such problems in studies of the asymptotic properties of quantum field
theory, where we have to use nonperturbative approaches in our attempts to find the
correct behavior of the Gell-Mann–Low function. Among the physical problems of
interest here we mention first of all the problem of quark confinement. It is obvious
that there is no universal way to move outside the framework of perturbation theory.
At the same time, a number of specific approaches were developed in the literature
allowing us to analyze certain nonperturbative effects. This has led to some general
concepts, which are currently important not only in quantum field theory, but also in
other fields, such as condensed matter theory. In this chapter we shall discuss a number
of such problems, concentrating mainly on these conceptual aspects.

An important part of modern quantum field theory is lattice gauge theory. It was
proposed by Wilson, and so far is the only method allowing a more or less complete
solution of the confinement problem. In this approach, instead of the usual space-time
continuum, we introduce discrete space-time1. Now we do not have any problem with
ultraviolet divergences, as we have a natural cutof: wavelengths in a discrete lattice
cannot be smaller than the double lattice constant a, while the momentum projection
can change from zero up to 	

a
(i. e., within the first Brillouin zone of solid state theory).

In this formulation, quantum field theory becomes similar to the statistical mechanics
of lattice models, where we have well-developed methods which allow (sometimes)
us to solve problems outside the limits of perturbation theory. In particular, in lattice
models we can effectively use numerical approaches, such as Monte-Carlo simula-
tions. Below we follow mainly [13]; a more detailed presentation of the lattice models
in quantum field theory can be found in [30, 31].

Here we shall deal only with the Euclidean formulation of lattice quantum field
theory, though there are methods allowing the explicit treatment of time dependence.
We shall consider only simple the cubic lattice with the lattice constant a in four-

1 The introduction of the lattice obviously breaks the relativistic invariance of the theory, but it is not
very important for problems under discussion; our main interest will be QCD behavior at large dis-
tances, where we can just forget about the discrete lattice.
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dimensional space. The lattice sites will be parametrized by 4-vector n. Then, four-
dimensional integration is replaced by summation:

Z
d 4x � � � ! a4

X

n

� � � . (14.1)

Scalar fields

Consider the simplest case of scalar field �.x/. The action in continuous Euclidean
space has the form

S.�/ D
Z
d 4x

h1

2
.@��/

2 C V.�/
i

, (14.2)

where

V.�/ D 1

2
m2�2 C �

4
�4 . (14.3)

To go to the lattice representation we note that scalar filed is now defined at every
lattice site n:

�.x/ D �n . (14.4)

The erivative of the field on the lattice is defined as

@��.x/ ! 1

a
.�nC O� � �n/ , (14.5)

where O� is the 4-vector with length a in direction �.
Then for the lattice action we have

S.�/ D
X

n

´
a2

2

4X

�D1

.�nC O� � �n/2 C a4
�
m2

2
�2
n C �

4
�4
n

�μ

. (14.6)

It is useful to transform to momentum representation and define the excitation spec-
trum of free theory .� D 0/. Let us use Fourier transformation:

�n D
Z

d 4k

.2�/4
eik�n�.k/ . (14.7)

Integration in (14.7) is performed over the Brillouin zone of the inverse lattice, i. e.,

��
a

� k� � �

a
for every � D 1, : : : , 4 . (14.8)

Here k� 	 k � O�. After the substitution of (14.7) into (14.6) we can write terms,
originating from “kinetic” energy, as

a4
X

n

Z
d 4k

.2�/4

Z
d 4k0
.2�/4

ei.kCk0/�n.eiak� � 1/.eiak
0

� � 1/ D
Z

d 4k

.2�/4
.eiak� � 1/.e�iak� � 1/ D 4

Z
d 4k

.2�/4
sin2

�
ak�

2

�
, (14.9)
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(a)                                                                             (b)

Figure 14.1

so that free action takes the form

S0.�/ D 1

2

Z
d 4k

.2�/4

�X

�

4

a2
sin2

�
ak�

2

�
Cm2

�
�.�k/�.k/ , (14.10)

Thus, each mode gives the following contribution to action:

S.k/ D 1

2

�X

�

4

a2
sin2

�
ak�

2

�
Cm2

�
(14.11)

instead of standard 1
2

�
k2 Cm2

	
. However, both expressions have the same continuous

limit (the limit of small k), so that everything is consistent. The spectrum obtained is
shown in Figure 14.1(a).

The theory with lattice action (14.6) can be quantized using functional integral for-
malism, when the vacuum average is defined as2

h0j�n1�n2 � � ��nl j0i D 1

Z

Z Y

n

Œd�n�.�n1�n2 � � ��nl /e�SŒ�� , (14.12)

where

Z D
Z Y

n

Œd�n�e
�SŒ�� . (14.13)

This is a typical statistical mechanics of the field (order parameter) �n on a lattice!
The value of SŒ�� corresponds to fluctuation-free energy. Equation (14.12) represents
the correlation function of this order parameter at different lattice sites. It is useful
to compare these expressions with equations (10.160), (10.162), and (10.164), used
above in the theory of critical phenomena.

Let us change the variable (change the field scale):

�0
n D

p
��n . (14.14)

2 In Euclidean theory there is no sense in introducing T -ordering!
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Then the lattice action takes the form

S.�/ D 1

�
S 0.�0/ , (14.15)

where

S 0.�0/ D
X

n

´
a2

2

X

�

.�0
nC� � �0

n/
2 C a4

�
m2

2
�02
n C 1

4
�04
n

�μ

, (14.16)

so that the coupling constant � becomes the common factor for the whole action. Then
(14.12) and (14.13) are rewritten as

h0j�0
n1�

0
n2 � � ��0

nl j0i D 1

Z0
Z Y

n

Œd�0
n�.�

0
n1�

0
n2 � � ��0

nl / exp
°
� 1

�
S 0Œ�0�

±
, (14.17)

Z0 D
Z Y

n

Œd�0
n� exp

²
�S

0Œ�0�
�

³
. (14.18)

If we change here 1

�
! ˇ D 1

T
, (14.19)

where T is the temperature, the strong coupling expansion of quantum field theory,
which is to be done over the inverse powers of coupling constant�, becomes equivalent
to the high temperature expansion of statistical mechanics. This opens wide prospects
for studying such expansions, as the high-temperature expansions are widely used in
lattice models of statistical mechanics (e. g., to study critical phenomena) and are fairly
well developed [21, 63].

Fermion fields

Let us consider fermions. The same procedure as we used for scalar fields leads to
Euclidean action of free fermions in the form

S0. / D
X

n

²
a3

2

4X

�D1

N n��. nC O� �  n� O�/Cma4 N n n
³

, (14.20)

where the � -matrices of Euclidean theory satisfy anticommutation relations:

¹��, ��º D 2ı�� . (14.21)

In momentum representation the action (14.20) is written as

S0. / D
Z

d 4k

.2�/4
N .�k/

²
i
X

�

��
sin ak�
a

Cm

³
 .k/ . (14.22)

As compared with the continuous case we have the replacement ��k� ! ��
1
a

sin ak�.
In the same way as in the usual (Euclidean) Dirac’s theory, the operator ��k� C m
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produces the spectrum k2 Cm2; here we obtain the excitation spectrum

S.k/ D sin2 ak�

a2
Cm2 , (14.23)

shown in Figure 14.1(b). We see that now we have two equivalent minima of the spec-
trum in the Brillouin zone. One is at k D 0 and leads to the correct continuous limit.
The other mode, corresponding to the minimum at k� D ˙	

a
, corresponds (in the limit

of a ! 0) to infinite momentum, but can be excited in the case of finite a. Correspond-
ingly, we have to modify the theory in such a way that we exclude the contribution of
the second minimum without changing the continuous limit. To achieve this, Wilson
proposed adding to the lattice Lagrangian the term

	L D 1

2a
N n. nC O� C  n� O� � 2 n/ , (14.24)

so that in Euclidean space the action of free fermions takes the form

S0. / D
X

n

²
a3

2

X

�

N nŒ.1 C ��/ nC O� C .1 � ��/ n� O� � 2 n�Cma4 N n n
³

.

(14.25)
In momentum representation we have

S0. / D
Z

d 4k

.2�/4
N .�k/

²
i
X

�

��
sin ak�
a

Cm�
X

�

cos ak� � 1

a

³
 .k/. (14.26)

This action leads to the shift of the second minimum to finite energies, while the be-
havior at small k does not change. Then, in the continuous limit we remain only with
the contribution from the “correct” minimum at k D 0.

Local gauge invariance

Let us now construct the lattice gauge theory. For concreteness we shall deal with
SU.3/-symmetric QCD. Local (depending on the site!) gauge transformation is writ-
ten as

 n ! ˆn n , N n ! N nˆC
n , (14.27)

where

ˆn D exp

´

i
�i

2
� in

μ

. (14.28)

Here �i .i D 1, 2, : : : , 8/ are Gell-Mann matrices (generators of SU.3/), cf. equa-
tions (2.186)).

Now we introduce the so-called link variable, defined on the lattice link, connecting
the nearest neighbors sites:

U.nC O�,n/ D exp

´

iga
�i

2
Ain�

μ

, (14.29)
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Figure 14.2

where Ain� is the lattice field of the gluons, g is the Yang–Mills coupling constant.
Gauge transformation for this matrix is defined as

U.nC O�,n/ ! ˆnC O�U.nC O�,n/ˆC
n . (14.30)

From (14.27) and (14.30) it follows that the combination N nU.n,nC O�/ nC O� is the
gauge invariant. Then in becomes clear how we should modify the action (14.25) to
obtain the quark part of SU.3/-symmetric action of QCD:

SQCD D S.q/C S.A/ , (14.31)

S.q/ D
X

n

´
a3

2

X

�

� N n.1 C ��/U.n,nC O�/ nC O�

C N n.1 � ��/U.n,n � O�/ n� O� � 2 n
�Cma4 N n n

μ

. (14.32)

In the continuous limit of a ! 0 the expansion of (14.32) in powers of a gives the
usual expression for fermion action with the covariant derivatives of gauge theory.

How should we write the action for gauge (gluon) field itself? It is clear that it should
be built of link variables. The simplest gauge invariant combination is defined on the
elementary square of plaquette of the lattice, shown in Figure 14.2. Let us compose
the matrix product of link variables, taken along the links of the plaquette p:

Up D U.n,nC O�/U.nC O�,nC O�C O�/U.nC O�C O�,nC O�/U.nC O�,n/. (14.33)

This combination is obviously invariant with respect to transformations (14.30). Let
us define the action of the gauge field as the following sum over all plaquettes on the
lattice:

S.A/ D � 1

8�g2

X

p

SpUp . (14.34)

Here the trace of the product is taken over the SU.3/ matrix indices. If we expand
the exponents in (14.33), (14.34) in powers of a and neglect the terms of the order of
O.a3/, equation (14.34) can be rewritten as

S.A/ D � 1

8�g2

X

p

Sp¹exp.iga2Fn��/º , (14.35)
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where
Fn�� D @�An� � @�An� � igŒAn� ,An�� , (14.36)

where we have introduced the notation

@�An� 	 1

a
.AnC O�� � An�/ , (14.37)

where An� D Ai��
i=2 is the gluon field at lattice site n. This expression immediately

gives the correct continuous limit:

S.A/ D � 1

8�g2

X

p

²
1 � g2a4

2
F i��F

i�� C � � �
³

! const C 1

16�

Z
d 4xF i��F

i�� ,

(14.38)
where during the derivation we used Sp�i D 0 and Sp.�i�j / D 2ıij .

The criterion for confinement. The Wilson loop

To define the confinement criterion for quarks in QCD, we shall find the energy of the
system consisting of a quark at point x D .t , 0/ and an antiquark at x D .t ,R/. In the
absence of confinement we obviously have

E.R/ ! 2m for R ! 1 , (14.39)

where m is the quark mass. Confinement corresponds to the infinitely growing (with
interquark distance) interaction potential:

E.R/ ! 1 for R ! 1 . (14.40)

We shall denote the fermion quark field as q.x/ and introduce the gauge invariant
q Nq-operator:

�Œx, x0;C � D Nq.x0/U.x0, x;C/q.x/ , (14.41)

whereU.x0, x;C/ is the ordered product of link variables along some path (trajectory)
C , connecting points x and x0 on the lattice3. Consider the gauge invariant correlator,
describing the overlap of q Nq at the moment of (Euclidean!) time t D 0 and q Nq at the
time moment t D T :

�.T ,R/ D h0j�CŒ.0, 0/, .0,R/;C ��Œ.T , 0/, .T ,R/;C �j0i . (14.42)

Inserting between operators the unity representation (completeness condition!) via the
sum over the complete system of the energy eigenstates of our system, we obtain (com-
pare the similar treatment in Chapter 9)

�.T ,R/ D
X

n

jh0j�CŒ.0, 0/, .0,R/;C �jnij2e�EnT . (14.43)

3 In a continuous limit: U.x0,x/ D P exp¹ig R x0

x dy� �
i

2 A
i
�.y/º, where P is the ordering operator

along path C .
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Figure 14.3

We see that for large T the main contribution here comes from the state with the
smallestEn. This minimal eigenvalue of energy obviously corresponds to the potential
energy of the static q Nq system, with a quark and antiquark placed at distance R from
each other:

lim
T!1�.T ,R/ � e�E.R/T . (14.44)

In terms of quark fields we have

�.T ,R/ D
h0j Nq.0,R/U Œ.0,R/, .0, 0/;C �q.0, 0/ Nq.T , 0/U Œ.T , 0/, .T ,R/;C �q.T ,R/j0i .

(14.45)

Considering quarks as very heavy (classical c-number) external sources and path
C , represented by closed rectangle, shown in Figure 14.3, we may rewrite equa-
tion (14.45) as

�.T ,R/ � e�2mTW.C/ � e�E.R/T , (14.46)

where
W.C/ D h0jSpU Œx, x0;C �j0i (14.47)

defines the so-called Wilson loop. The behavior of the correlator W.C/ determines
the presence or absence of confinement. In fact, from (14.46) it is clear that

lim
T!1W.C/ � exp¹�T ŒE.R/ � 2m�º . (14.48)

As we shall see below, in the limit of the strong coupling .g ! 1/ of the lattice theory
the Wilson loop satisfies the so-called area law, so that for large enough contour C
we have

W.C/ � exp¹�KA.C/º , (14.49)

where K is some constant and A.C/ is the area encircled on the lattice by contour C
(i. e., the minimal area of the surface, with its border defined byC ). For the rectangular
contour shown in Figure 14.3 we have

A.C/ D TR . (14.50)

Then from (14.48), (14.49), and (14.50) we obtain

T ŒE.R/ � 2m� � KTR or E.R/ � 2m � KR , (14.51)
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i. e., linearly growing with R interaction potential in the q Nq system, which obviously
corresponds to the confinement. CoefficientK is called the string tension (the force of
confinement). This term is connected with the picture of gluon fields between quarks
being in a tube – “string” – to produce linearly growing potential. This string connects
quarks, and its tension grows when quarks move from each other, thus preventing their
separation at large distances.

Area law in strong coupling expansion

Let us present a schematic derivation of area law in the limit of strong coupling. Link
variables, associated with gauge fields, can be used as the main dynamic degrees of
freedom in lattice theories. This allows us to write (14.47) in the form of “functional”
integral4

W.C/ D 1

Z

Z Y

m,�

dU.n,nC O�/SpU.x, x;C/ exp

²
� 1

8�g2

X

p

SpUp

³
, (14.52)

where

Z D
Z Y

m,�

dU.n,nC O�/ exp

²
� 1

8�g2

X

p

SpUp

³
. (14.53)

Note that, here, there is no need of additional gauge fixing terms, as the link variables
change in the limited interval. Correspondingly, the volume of field configurations
space generated by gauge transformations is actually finite.

Link variables, as was shown above, are the elements of the SU.3/ group. The uni-
tary matrices of SU.3/ are parametrized by eight generalized Euler angles, so that the
group integrals in (14.52), (14.53) can be explicitly written via these angles. We shall
not do so, limiting ourselves to the quotation of the following orthogonality condi-
tions [13]:

Z
dU.n,nC O�/ŒU.n,nC O�/�ij D 0 ,

Z
dU.n,nC O�/ŒU.n,nC O�/�ij ŒUC.n,nC O�/�kl D 1

3
ıilıjk , (14.54)

Z
dU.n,nC O�/ŒU.n,nC O�/�ij ŒU.n,nC O�/�kl D 0 .

Equations (14.54) mean that during the computation of the integrals determining
(14.52), the only nonzero contributions are from the lattice links, which are passed
in opposite directions. Thus, if we consider two neighboring plaquettes of the same
orientation, then after integration over the variables defined on their common link,
these plaquettes are “joined” in one rectangle, as shown in Figure 14.4.

4 On a lattice this is just the usual multiple integral!
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Figure 14.4

In the strong coupling limit the value of 1
g2 is considered to be a small parameter.

Thus, the exponent in (14.52) can be expanded as

W.C/ D 1

Z

Z Y

n,�

dU.n,nC O�/SpU.x, x;C/

�
1 � 1

8�g2

X

p

SpUp

C 1

2Š

�
1

8�g2

�2X

p

X

p0

SpUpSpUp0 C � � �
�

. (14.55)

For simplicity we can consider a rectangular path C. According to equations (14.54),
in this expansion a nonzero contribution comes only from those terms in the expansion
in powers of 1

g2 , for which the plaquettes completely fill the surface, encircled by the
path C . Only in this case is each link in group integral passed twice in opposite direc-
tions (or is not passed at all), so that the corresponding integrals over the link variables
give finite contributions. Thus, the nonzero contribution to W.C/ in the lowest order
comes from the term of the order of . 1

g2 /
Np , where Np is the minimum number of

plaquettes necessary to fill the surface encircled by C :

W.C/ �
�

1

g2

�Np

. (14.56)

This corresponds to area law, as the surface area of C is given by

A.C/ D a2Np . (14.57)

Then
W.C/ � .g2/�A.C/=a2 D exp¹�.TR ln g2/=a2º . (14.58)

Comparing this expression with (14.49) and (14.51), we obtain linearly the growing
potential

E.R/ D KR , where K D 1

a2
ln g2 , (14.59)

which corresponds to g2.a/ � eKa
2
.

We can also consider the weak coupling expansion for a Wilson loop, transforming
to the continuous limit and taking the action in a Gaussian approximation. In this case
the perimeter law is obtained, which corresponds to Coulomb potential E.R/ � 1

R
.
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Does all this mean, that we have proved the confinement? No! All our argumen-
tation can actually be repeated also for the Abelian SU.1/ theory; we never used a
non-Abelian nature of SU.3/. Strong coupling and weak coupling regimes can be
separated by one or several phase transitions, taking place at different values of cou-
pling constant g. There is no general proof of the absence of such transitions in QCD.
This problem was thoroughly studied numerically, using Monte-Carlo simulations.
These calculations has shown that in QCD there are no phase transitions at interme-
diate values of g, and there is continuous crossover from g2.a/ � eKa

2
dependence

of equation (14.59) in the strong coupling region, to weak the coupling region with
asymptotically free behavior g2.a/ � 1

lna�1 , valid for a ! 0. The interaction poten-
tial of quarks, following from these calculations, is well approximated by the superpo-
sition of the Coulomb potential, dominating at small distances, and linearly growing
potential, determining confinement at large distances: V.R/ D C

R
C KR. A typical

result of such calculations is shown in Figure 14.5 [61], where we show the potential
acting between two static quarks, calculated for the lattice with 324 sites, with the link
a D 0.055 � 10�13 cm. the continuous line shows the fit with the superposition of the

Figure 14.5
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Figure 14.6

Coulomb and linear potentials. It is clearly seen that the linear growth of V.R/ takes
place at distances R > 0.25 � 10�13 cm. At smaller distances we have the usual per-
turbation theory dynamics and asymptotic freedom. A typical value of string tension,
following from these calculations, isK � 0.2 GeV2 � 1.0�1013 GeVcm�1 � 14 tons!
Thes effectively proves the confinement.

The details of Monte-Carlo calculations for the lattice field theories are well de-
scribed in [11, 43]. The current situation with analytical models of confinement is re-
viewed in [61].

The study of lattice models has become one of the most important and actively de-
veloping directions in quantum field theory. As an illustration we show in Figure 14.6
[4] the early results of Monte-Carlo calculations of the masses of light hadrons, con-
sidered as bound states of quarks and gluons, which demonstrates a rather satisfac-
tory agreement with experiments. Current results on hadron masses are well described
in [11].

Confinement is not absolute, and at some very high temperature Tc (deconfinement
temperature), or at some very high density there is a phase transition from the phase of
hadron matter to quark–gluon plasma [72]. Physically this is rather clear. Ifƒ is some
characteristic momentum scale characterizing the transition to asymptotically free be-
havior, then at T � ƒ the transferred momentum in scattering processes will almost
always satisfy the inequality Q2 � ƒ2. Correspondingly we can apply the usual per-
turbation theory. But in the perturbative approach to QCD, both quarks and gluons are
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physical states of the theory. This means that at T � ƒ we have nearly an ideal gas
of quarks and gluons (quark–gluon plasma). This phase transition is quite important
in astrophysics for neutron stars and cosmology. Experimentally this transition can be
observed in collisions of heavy nuclei, and there are already some indications for it in
CERN experiments. The value of Tc was calculated by Monte-Carlo in lattice QCD.
Typical values obtained show that Tc is somewhere in the interval of 0.15–0.20 MeV.
A detailed review of phase transitions in QCD can be found in [45].

14.2 Effective potential and loop expansion

To study the theories with spontaneous symmetry-breaking the convenient concept
there is the so-called effective potential. It allows a universal analysis of these the-
ories and calculation of quantum corrections to the classical picture of spontaneous
symmetry-breaking which was discussed above.

Let us once again discuss the simplest case of a scalar field:

L D 1

2
.@�'/

2 � V.'/ , V.'/ D m2

2
'2 C g

4Š
'4 , SŒ'� D

Z
d 4xL . (14.60)

This Lagrangian is invariant with respect to ' ! �', but in the case of spontaneous
symmetry-breaking this property is absent for the solutions of the equation

dV

d'

ˇ̌
ˇ̌
'D'0

D 0 , (14.61)

where '0 ¤ 0. This is already obvious from our previous analysis.
Quantum corrections, as we have seen above, appear from loop expansion contain-

ing divergences which require renormalization. The conditions for renormalization
were formulated in terms of irreducible vertices �.n/. The generating functional for
�.n/.x1, : : : , xn/ is the effective action �.'/, defined in (10.150). The meaning of this
term will be clarified below.

The generating functional for connected diagrams W ŒJ � is defined according to
(10.131) as

eiW ŒJ � D h0j0iJ . (14.62)

Then the classical field 'c (in the presence of source J ) is determined from (10.151):

'c.x/ D ıW ŒJ �

ıJ.x/
D h0j'.x/j0iJ

h0j0iJ . (14.63)

The vacuum average h'i is by definition

h'i D lim
J!0

'c . (14.64)
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According to (10.150) the effective action �Œ'c � is given by

�.'c/ D W ŒJ � �
Z
dxJ.x/'c.x/ (14.65)

and, in accordance with (10.151), it satisfies the equation

ı�Œ'c�

ı'c.x/
D �J.x/ . (14.66)

For J.x/ ! 0 the value of 'c becomes constant, equal to h'i, so that the vacuum
average of ' is the solution of the equation

d�Œ'c�

d'c

ˇ̌
ˇ̌
'cDh'i

D 0 . (14.67)

The usual expansion of the functional �Œ'c� in powers of 'c is written as

�Œ'c� D
1X

nD0

1

nŠ

Z
dx1 � � �dxn�.n/.x1, : : : , xn/'c.x1/ � � �'c.xn/ (14.68)

or, equivalently, in momentum representation,

�Œ'c� D
1X

nD0

1

nŠ

Z
dp1 � � �dpnı.p1 C � � � C pn/�

.n/.p1, : : : ,pn/'c.p1/ � � �'c.pn/ .

(14.69)
Alternatively, we can expand �Œ'c� over field 'c and its derivatives:

�Œ'c� D
Z
dx ¹�U.'c.x//º C 1

2
.@�'c/

2Z.'c.x// . (14.70)

In this case, the function (not a functional!) U.'c/ is called an effective potential.
Below we shall see that in classical limit it just coincides with the potential V.'/. In
the case when 'c.x/ D h'i D ' D const , all terms of the last expansion except for
the first one are zero, so that

�Œ'� D ��U.'/ , (14.71)

where � is the total volume, filled by the field in space-time. Comparing (14.69) and
(14.71), we have

U.'/ D �
1X

nD0

'n�.n/.pi D 0/ . (14.72)

The normalization conditions for �.2/.pi D 0/ and �.4/.pi D 0/ can be reformulated
in terms of potential U :

d 2U.'c/

d 2'c

ˇ
ˇ̌
ˇ
'cDh'i

D m2 , (14.73)
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d 4U.'c/

d 4'c

ˇ
ˇ̌
ˇ
'cDh'i

D g . (14.74)

Besides, the condition (14.67) for the vacuum average takes the form

dU.'c/

d'c

ˇ̌
ˇ
ˇ
'cDh'i

D 0 . (14.75)

To study the properties of the theory with spontaneous symmetry-breaking, it is con-
venient to define the new field '0:

'0 D ' � h'i , (14.76)

for which the vacuum average is simply zero.
Note that all divergences of the theory were hidden in counter-terms before we

apply normalization conditions (14.73), (14.74), so that in the theory with sponta-
neous symmetry-breaking no new divergences appear (in addition to the theory with-
out symmetry-breaking), so that the structure of the divergences in renormalized field
theory is not changed by spontaneous symmetry-breaking.

Let us calculate the effective potential. We shall use (14.65) and start with calcu-
lations of the functional W ŒJ � by the stationary phase (or steepest descent method).
Let us recall what steepest descent calculation is in the case of the usual integral of the
form

I D
Z 1

�1
dx e�f .x/ . (14.77)

Assume that the function f .x/ has a minimum at some point x0. Then we have

f .x/ D f .x0/C 1

2
.x � x0/

2f 00.x0/C � � � , (14.78)

so that we can write

I � e�f .x0/

Z 1

�1
dx e� 1

2 .x�x0/
2f 00.x0/, (14.79)

and the problem reduces to the calculation of the well-known Gaussian integral, which
is an easy task.

Restoring the Planck constant in the definition of the functional W ŒJ �, we have

e
i
„
W ŒJ � D

Z
D' e

i
„
SŒ',J � , (14.80)

where

SŒ', J � D
Z
d 4xŒL.'/C „'.x/J.x/� . (14.81)

From (14.60) and (14.61) it follows that

ıSŒ', J �

ı'.x/

ˇ
ˇ̌
ˇ
'0

D „J.x/ . (14.82)
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For J ! 0 this reduces to the condition of extremal action. Let us expand the action
in the vicinity of '0:

SŒ', J � D SŒ'0, J �C
Z
dxŒ'.x/ � '0�

ıS

ı'.x/

ˇ̌
ˇ̌
'0

C
Z
dx

Z
dy

1

2
Œ'.x/ � '0�

ı2S

ı'.x/ı'.y/

ˇ̌
ˇ̌
'0

Œ'.y/ � '0�C � � �

D SŒ'0, J �C „
Z
dxŒ'.x/ � '0�J.x/

C 1

2

Z
dx

Z
dyŒ'.x/ � '0�

ı2S

ı'.x/ı'.y/

ˇ̌
ˇ
ˇ
'

Œ'.y/ � '0�C � � � , (14.83)

where we have used (14.82). Performing functional differentiation we can understand
that

ı2S

ı'.x/ı'.y/

ˇ̌
ˇ̌
'0

D �Œ� C V 00.'0/�ı.x � y/. (14.84)

If we take '0 D ' � '0, the expansion (14.83) takes the form

SŒ', J � D SŒ'0, J �C „
Z
dx'0.x/J.x/ � 1

2

Z
dx'0.x/Œ� C V 00.'0/�'

0.x/C � � � .

(14.85)
Substitution of this expression into (14.80), to use the stationary phase approach,

gives (here we write ' instead of '0)

exp

�
i

„W
�

D exp

²
i

„SŒ'0, J �

³Z
D' exp

²
� i„

1

2

Z
dx'Œ� C V 00.'0/�'

³
,

(14.86)

where we have dropped the contribution of the second term in (14.85), as in the follow-
ing we shall make the transition to the limit of J ! 0. To obtain the loop expansion
(equivalent, as we have seen, to the expansion in „), we replace ' ! „1=2', thus
excluding „ from the second exponent in (14.86). Let us transform the integral to Eu-
clidean space so that i also vanishes. Now, calculating the functional integral we can
use the usual Gaussian expression and obtain

exp

�
i

„W
�

D exp

²
i

„SŒ'0, J �

³
.DetŒ� C V 00.'0/�/

�1=2 . (14.87)

Using the relation DetA D expSp lnA, we get

W ŒJ � D SŒ'0�C „
Z
dx'0.x/J.x/C i„

2
Sp lnŒ� C V 00.'0/� . (14.88)

This expression gives W ŒJ � with a single-loop correction, while the terms O.„2/ are
dropped. Now we can substitute (14.88) into (14.65). But first we express SŒ'c � via
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SŒ'0�. Taking '0 D 'c � '1, we have

SŒ'0� D SŒ'c � '1� (14.89)

D SŒ'c� �
Z
dx'1.x/

ıS

ı'.x/

ˇ̌
ˇ̌
'c

C � � �

D SŒ'c� � „
Z
dx'1.x/J.x/C � � � . (14.90)

Then the substitution of (14.88) and (14.90) into (14.65), in the limit of J ! 0, yields

�Œ'c � D SŒ'c�C i„
2
Sp lnŒ� C V 00.'0/� (14.91)

which is the effective action with a single-loop quantum correction. Take now 'c.x/ D
' D const . Then �Œ'� is determined by (14.71), while from (14.60) it follows that
SŒ'� D ��V.'/. Correspondingly, from (14.91) we obtain the effective potential of
the form

U.'/ D V.'/ � i„
2
��1Sp lnŒ� C V 00.'/� . (14.92)

Now we see that for „ ! 0 (in the classical limit) the effective potential just co-
incides with the classical potential V.'/, while the effective action (14.91) reduces
to the classical action (14.60). A trace of an operator gives the sum (integral) over
all eigenvalues, and we can (after the transformation to Euclidean momentum space)
rewrite (14.92) as

U.'/ D V.'/C „
2

Z
d 4kE

.2�/4
lnŒk2

E C V 00.'/�

D V.'/C „
2

Z
d 4kE

.2�/4
ln


k2
E Cm2 C 1

2
g'2

�
. (14.93)

This type of expression can be used to study spontaneous symmetry-breaking taking
into account the quantum corrections. In the classical limit we used above, form2 > 0
the vacuum is nondegenerate, while for m2 < 0 there was spontaneous symmetry-
breaking and the appearance of degeneracy of the vacuum (phase transition). What
will happen taking into account the quantum corrections, in particular at m2 D 0?
From the single-loop expression for effective potential it follows that the nontrivial
minimum ' ¤ 0 already appears at m2 D 0, so that we have spontaneous symmetry-
breaking due to quantum corrections. Unfortunately, the single-loop approximation is
insufficient for a complete understanding of this problem [13, 56]. A more detailed
discussion of effective potential formalism, its relation to the renormalization group,
and the other aspects of the theory are presented in [27].

The loop expansion, considered above, is in fact the expansion in powers of „, not in powers
of the coupling constant g. In this sense it is nonperturbative, but in fact this is not precisely
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so! In classical theory, g is irrelevant by itself. It can be easily understood if we make the
transformation to '0 D g'. Then the Lagrangian of '4-theory can be rewritten as

L D 1

g2


1

2
@�'

0@�'0 � 1

2
m2'02 � '04� . (14.94)

and g just drops from the classical equations of motion, becoming irrelevant. This is obviously
not the case in quantum theory, which is essentially due to the appearance of „. In quantum
theory we are always dealing with the ratio:

1

„L D 1

g2„

1

2
@�'

0@�'0 C � � �
�

(14.95)

and the relevant parameter is g2„. Thus, the quasi-classical approximation (small „) is, in fact,
intimately connected with the weak coupling approximation (small g).

14.3 Instantons in quantum mechanics

Nontrivial nonperturbative effects can arise in quantum field theory even for small
values of the coupling constant, and perturbation theory may become inadequate when
naïvely it should be applicable5. A simple example is quantum tunneling, which we
shall consider below.

Let us start with quantum mechanics. Consider a particle with unit mass, moving in
one-dimensional potential:

H D 1

2
p2 � V.x/ . (14.96)

Below we shall derive the well-known results of quantum mechanics, but in a rather
unusual way, which will be further generalized for the case of quantum field theory.

Euclidean path integrals

Consider the Euclidean (imaginary time!) version of the Feynman path integral:

hxf je�HT=„jxi i D N

Z
Œdx�e�S=„ . (14.97)

Here jxi i and jxf i are eigenstates of the coordinate operator of the particle, H is its
Hamiltonian. Here the integration measure which we previously denoted as Dx, is
written as Œdx�; T is considered to be positive.

Let us introduce as usual the complete set of eigenstates of the Hamiltonian:

H jni D Enjni (14.98)

and write
hxf je�HT=„jxi i D

X

n

e�EnT=„hxf jnihnjxi i . (14.99)

Then in the limit of T ! 1 only the contribution of the ground state survives.

5 Below we follow mainly lectures by Coleman [15]; these problems are discussed in more detail in the
nice book by Rajaraman [52]
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In the right-hand side of (14.97) is the Euclidean action:

S D
Z T=2

�T=2
dt

�
1

2

�
dx

dt

�2

C V

�
. (14.100)

Integration Œdx� is performed over all trajectories, with boundary conditions
x.�T=2/ D xi , x.T=2/ D xf . In more detail, if Nx.t/ is the given function and sat-
isfies these conditions, the arbitrary function, satisfying the same conditions, can be
written as

x.t/ D Nx.t/C
X

n

cnxn.t/ , (14.101)

where xn.t/ is the complete set of orthonormalized functions, being zero at the bound-
aries: Z T=2

�T=2
dtxn.t/xm.t/ D ınm , xn.˙T=2/ D 0 . (14.102)

Then the integration measure Œdx� can be defined as

Œdx� D
Y

n

.2�„/�1=2dcn . (14.103)

It is obvious, that acting in this way we take into account all the paths, and this defini-
tion differs from that of Feynman only by the normalization constant.

The right-hand side of equation (14.97) is easily calculated in quasi-classical ap-
proximation (small „!). The main contribution to the action comes from the vicinity
of the extremal trajectory, defined by

ıS

ı Nx D �d
2 Nx
dt2

C V 0. Nx/ D 0, (14.104)

Euclidean Newton equations. Let us choose xn as the eigenfunctions of the second
variational derivative of action S at Nx:

�d
2xn

dt2
C V 00. Nx/xn D �nxn . (14.105)

Similarly to the analysis carried out at the beginning of Chapter 2, the first variation of the
action, due to variation of trajectory x ! Nx C a, in this case reduces to

ıS D
Z T=2

�T=2
dt a

�
�d

2x

dt2
C V 0.x/

�
D 0 for x D Nx , (14.106)

which leads to Newton law (14.104). If we vary once again x ! Nx C a, we get

ı2S D
Z T=2

�T=2
dt a

�
�d

2. Nx C a/

dt2
C V 0. Nx C a/

�
D
Z T=2

�T=2
dt aŒ� RNx � RaC V 0. Nx/C V 00. Nx/a�

D
Z T=2

�T=2
dt aŒ�RaC V 00. Nx/a� , (14.107)
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where during the transformation to the last equality we used equations of motion (14.104).
Now it is clear that the second variational derivative of action S is determined by the left-hand
side of equation (14.105).

Then in the limit of small „, after substituting (14.101) into (14.100), we can limit
ourselves to quadratic deviations from the classical trajectory Nx, so that the integrals
over cn become Gaussian, and we find

hxf je�HT=„jxi i D N e�S. Nx/=„Y

n

��1=2
n Œ1 CO.„/�

D N e�S. Nx/=„ �Det.�@2
t C V 00. Nx//��1=2

Œ1 CO.„/� . (14.108)

If there are several stationary points of action, the corresponding contributions should
be summed.

Note that the Euclidean equation of motion (14.104) is equivalent to the usual New-
tonian equation for a particle with unit mass, moving in the inverted potential minus
V ! For such an equation we have the integral of motion:

E D 1

2

�
d Nx
dt

�2

� V. Nx/ . (14.109)

Consider the potential V shown in Figure 14.7(a). Let xi D xf D 0. The inverted
potential is shown in Figure 14.7(b). It is obvious that the only solution of classical
equations of motion in this potential, satisfying boundary conditions, is

Nx D 0 (14.110)

i. e., the particle stays at rest at the top. For this solution we have S D 0. Then from
(14.108) we have

h0je�HT=„j0i D N ŒDet.�@2
t C !2/��1=2Œ1 CO.„/� , (14.111)

(a)                                                                         (b)

Figure 14.7
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where zeroes denote transition from the origin to the origin of our coordinate system,
while !2 D V 00.0/ is the square of the frequency of the small oscillations around the
minimum of potential V . It can be shown [15] that for large T

N ŒDet.@2
t C !2/��1=2 D


 !
�„
�1=2

e�!T=2 . (14.112)

Then from (14.111) and the discussion around (14.99) we immediately see that the
ground state energy in this problem is given by

E0 D 1

2
„!Œ1 CO.„/� , (14.113)

i. e., the zero-point energy of the oscillator near the minimum of V . The probability
for a particle to be at the origin of the coordinate system when it is at its ground state
is given by

jhx D 0jn D 0ij2 D

 !
�„
�1=2

Œ1 CO.„/� . (14.114)

These are the well-known results of the quasi-classical approximation of quantum
mechanics. Actually, from this correspondence we immediately see the validity of
(14.112). The physics is also quite clear: in the limit of small „ the particle is in the
ground state of oscillator near th#e origin of coordinate system.

Double-well potential and instantons

Let us consider now a more interesting example: the double-well potential, shown in
Figure 14.8(a). Here we have V.x/ D V.�x/, and the potential minima are at points
x D ˙a. We can also introduce !2 D V 00.˙a/: the square of the frequency of the
classical oscillations of a particle in the vicinity of the minima. Let us calculate the
transition amplitudes:

h�aje�HT=„j � ai D haje�HT=„jai , (14.115)

haje�HT=„j � ai D h�aje�HT=„jai , (14.116)

(a)                                                                               (b)

Figure 14.8
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making a quasi-classical approximation for the path integral, similar to the case of
a particle in single well. As a first step we shall again look for the solutions of the
classical Euclidean equations of motion (14.104), satisfying the appropriate bound-
ary conditions. There are two obvious solutions: one corresponding to the case of the
particle remaining the entire time at the top of the left or right hill in Figure 14.8(b).
However, there may be also another more interesting solution when the particle starts
from one of the tops (e. g., the left one) at the moment �T=2 and rolls to the right top,
reaching it at the moment CT=2 (T ! 1). Here we are dealing with solutions of
equations of motion, corresponding to energy E D 0 (because E D 0 in the initial
states x D ˙a). Correspondingly (cf. (14.109)),

d Nx
dt

D p
2V , (14.117)

and the solution of this equation has the form

t D t1 C
Z x

0
dx0 1p

2V
, (14.118)

where t1 is the integration constant (time at which x D 0). This solution obviously
has the form shown in Figure 14.9. This solution is called an instanton6, centered
at point t1. A mirror reflection of this solution can be called an anti-instanton. It is
important to stress that an instanton has a finite action:

S0 D
Z T=2

�T=2
dt

�
1

2

�
d Nx
dt

�2

C V

�
D
Z T=2

�T=2
dt

�
d Nx
dt

�2

D
Z a

�a
dx

p
2V , (14.119)

Figure 14.9

6 The origin of this term is related to the obvious analogy with soliton, but stresses the fact that we are
dealing here with solutions of Euclidean equations of motion.
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Figure 14.10

where we have used (14.117). For large t we have Nx ! a, so that (14.117) can be
approximated by

d Nx
dt

D
p
!2. Nx � a/2 D !.a � Nx/ (14.120)

so that at large t ,
.a � Nx/ � e�!t (14.121)

and the instanton is “localized in time” (at times � 1
!

), which clarifies its name.
It is clear that for large T the instanton and anti-instanton are not the only solutions

of equations of motion; approximate solutions can be built as chains of well-separated
instantons and anti-instantons. An example of such a configuration is shown in Fig-
ure 14.10, with n objects (instantons and anti-instantons), centered at points t1, : : : , tn:

T

2
> t1 > t2 > � � � > tn > �T

2
. (14.122)

Correspondingly, in the path integral we have to sum the contributions from all such
configurations.

Now let us calculate! Obviously, n well-separated objects contribute additively to
the actions giving S D nS0, which in the path integral give the contribution of the
order � exp.�nS0/. To find the determinant we need the more complicated procedure.
Consider the time evolution operator e�HT as the product of the operators of evolution
between the points where instantons and anti-instantons are placed. In the absence of
these, on all time axes we have V 00 D !2, and we get the same result as above for the
case of single-well potential (14.112):


 !
�„
�1=2

e�!T=2 . (14.123)
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Intervals with instantons and anti-instantons lead to a correction, which we can write as

 !
�„
�1=2

e�!T=2Kn , (14.124)

whereK can be determined from the requirement of a correct answer for the case of a
single instanton. Later we shall give the appropriate explicit expression, while for the
moment we note that in order to take into account all the possible contributions to the
path integral we have to integrate over the arbitrary positions of all centers:

Z T=2

�T=2
dt1

Z t1

�T=2
dt2 � � �

Z tn�1

�T=2
dtn D T n

nŠ
. (14.125)

We should also take into account the fact, that we are not completely free in placing
the instantons and anti-instantons. For example, if we start from �a, the first object
we meet is to be an instanton, the next one an anti-instanton, etc. If we finally return
to �a, n should be even, while if we end at Ca, n should be odd. Thus we obtain

h�aje�HT=„j � ai D

 !
�„
�1=2

e�!T=2
X

Even n

.Ke�S0=„T /n
nŠ

Œ1 CO.„/� , (14.126)

while haje�HT=„j � ai is given by the same expression, but with summation over
odd n. The sums are elementary, and we obtain

h˙aje�HT=„j � ai D

 !
�„
�1=2

e�!T=2 1

2

�
exp.Ke�S0=„T /� exp.�Ke�S0=„T /

�
.

(14.127)

Recalling (14.99),

hxf je�HT=„jxi i D
X

n

e�EnT=„hxf jnihnjxi i , (14.128)

we understand that the two lowest energy levels correspond to energies

E˙ D 1

2
„! ˙ „Ke�S0=„ . (14.129)

If we denote the corresponding states as jCi and j�i, we see that

jhCj ˙ aij2 D jh�j ˙ aij2 D haj�ih�j � ai D �hajCihCj � ai D 1

2


 !
�„
� .1=2

(14.130)

These are the well-known results of quantum mechanics [35]: we just obtained the
splitting of the level in the double-well potential due to tunneling (degeneracy lifting
of two levels in two potential wells). The size of this splitting is � e�S0=„. The lowest
state j�i is even combination of wave functions, corresponding to a particle, localized
in each of the wells, while the first excited state jCi is described by antisymmetric
combination of these functions.
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Now let us calculate the factor K. First, let us study the properties of the solutions
of equation (14.105):

�d
2xn

dt2
C V 00. Nx/xn D �nxn , (14.131)

where Nx denotes a single instanton solution. Due to invariance with respect to the
time-shift (the instanton center can be placed at an arbitrary point on the time axis),
this equation has an eigenfunction with zero eigenvalue (the so-called zero translation
mode). Explicitly this function is written as

x1 D S
�1=2
0

d Nx
dt

. (14.132)

The normalization factor here appears from (14.119):
Z
dt

�
d Nx
dt

�2

D S0 , (14.133)

The existence of zero-mode can be confirmed as follows. The instanton Nx.t/ satisfies the equa-
tion (14.104):

�d
2 Nx
dt2

C V 0. Nx/ D 0 . (14.134)

But Nx.t C T /, with arbitrary T , is also the solution of this equation:

�d
2 Nx.t C T /

dt2
C V 0. Nx.t C T // D 0 . (14.135)

Differentiating this equation by T , we obtain

�d
2x1

dt2
C V 00. Nx/x1 D 0 , (14.136)

which proves our statement on (14.132).

The existence of zero-mode with �1 D 0 seems to lead to a problem. If we cal-
culate the Gaussian integral around the extremal trajectory (instanton), as described
in connection with (14.101), (14.103), and (14.108), integration over c1 will lead to
divergence! However, we have already done the appropriate integration, integrating
over the centers of the instantons (anti-instantons) in (14.125). In fact, the change of
x.t/ under the small shift of the instanton center t1 is equal to

dx D
�
d Nx
dt

�
dt1 . (14.137)

At the same time, the corresponding change due to variation of the coefficient c1 in
(14.101) is

dx D x1dc1 . (14.138)
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Then, writing in (14.137)


d Nx
dt

�
dt1 D p

S0x1dt1, and comparing this with (14.138),

we get dc1 D p
S0dt1, or

.2�„/�1=2dc1 D
�
S0

2�„
�1=2

dt1 , (14.139)

where „ is introduced to make normalization dimensionless. Thus, during the calcu-
lation of the determinant in the Gaussian integral in expressions like (14.108) we do
not need to include the zero eigenvalue, but instead we have to include inK the factor
. S0

2	„/
1=2. Then the single-instanton contribution to the matrix element is given by

haje�HT=„j�ai1inst D N T

�
S0

2�„
�1=2

e�S0=„ŒDet0.�@2
tCV 00. Nx//��1=2, (14.140)

where the prime over the determinant corresponds to dropping the zero eigenvalue.
Comparing (14.140) with the single-instanton contribution to (14.126), we find

K D
�
S0

2�„
�1=2 ˇ̌

ˇ̌ Det.�@2
t C !2/

Det0.�@2
t C V 00. Nx//

ˇ̌
ˇ̌
1=2

. (14.141)

This completes our calculation!
Let us make some comments:

1. It can be shown that the results obtained are equivalent to the standard results of
quantum mechanics [35].

2. We assumed that all �n > 0 (except �1 D 0). This is really so, as the lowest state x1

(as is easily seen from its explicit form) does not have zeroes, as it should be for the
solution of a one-dimensional Schroedinger equation. This is clear from the fact that
our instanton is monotonously growing (ant-instanton: decreasing) function of t , so
that its derivative x1 � d Nx

dt
has no zeroes.

3. The coefficient K is proportional to „�1=2, which is related to the contribution of
the zero-mode. In fact, this is a general rule: each zero-mode (there may be several
such modes!) produces the factor of „�1=2.

In a similar way we can analyze the problem of a particle moving in a periodic potential, as
shown in Figure 14.11. The difference from the previous case is that now we have no restriction
of alternating the placement of the instantons and anti-instantons, which is connected with the
existence here of the multitude of equivalent potential minima. At the same time, the total
number of instantons minus the total number of anti-instantons should now be equal to the
change of Nx between the initial and final coordinates. Then, from (14.127) we obtain

hjCje�HT=„jj�i D

 !
�„
�1=2

e�!T=2
1X

nD0

1X

NnD0

1

nŠ NnŠ .Ke
�S0=„T /nC Nnın� Nn�jCCj�

, (14.142)
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(a)

(b)

Figure 14.11

where n is the number of instantons, while Nn is the number of anti-instantons. Using now

ıab D
Z 2	

0

d�

2�
ei�.a�b/ , (14.143)

twe rewrite (14.142) as

hjCje�HT=„jj�i D

 !
�„
�1=2

e�!T=2
Z 2	

0

d�

2�
expŒ2KT cos �e�S0=„� expŒ�i�.jC � j /� .

(14.144)
In this case we have the continuum of energy eigenvalues (band!), parametrized by an “an-
gle” � :

E.�/ D 1

2
„! � 2„Ke�S0=„ cos � . (14.145)

Matrix elements

h� jj i D

 !
�„
�1=4

.2�/�1=2eij� (14.146)

represent, in fact, the appropriate Bloch wave.

Instantons and metastable states

Consider the potential shown in Figure 14.12(a). If we neglect tunneling, there will be
a bound state at the origin. Reflected potential is shown in Figure 14.12(b). Classical
equations of motion have the obvious solution corresponding to a particle starting from
the top of the hill at x D 0, which is then reflected from the classical point of return

 and returns back to the top, as shown in Figure 14.13. Let us calculate the matrix
element of transition from x D 0 to x D 0, summing over all the well-separated
instantons of Figure 14.13. We can proceed as above (with obvious redefinition of S0,
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(a)                                                                                                         (b)

Figure 14.12

Figure 14.13

!2, etc.), but with no limitation on the number of instantons being even or odd. Then
the summation produces the full exponent:

h0je�HT=„j0i D

 !
�„
�1=2

e�!T=2 expŒKTe�S0=„� (14.147)

and the ground state energy eigenvalue is

E0 D 1

2
„! � „Ke�S0=„ (14.148)

But this is wrong! In fact, in this situation we have tunneling and the appearance of
an unstable state! From the form of the instanton in Figure 14.13 it is clear that the
eigenfunction x1 � d Nx

dt
has zero and cannot be the ground-state wave function. But

its energy is zero, and now we understand that there is another state with �0 < 0 and
an eigenfunction without zeroes. Then the factor K, containing the square root of the
product of the eigenvalues, is imaginary. Thus, in fact we obtain

ImE0 D �

2
� „jKje�S0=„ (14.149)

which corresponds to the finite-level width, corresponding to the metastable state.
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14.4 Instantons and the unstable vacuum in field theory

Consider now Euclidean scalar field theory with the action

S D
Z
d 4x

h1

2
.@��/

2 C U.�/
i

, (14.150)

where potential U.�/ is shown in Figure 14.14. Here we have two nonequivalent min-
ima at �C and ��, and �� is an absolute minimum. Let us choose the origin of the
energy scale so that U.�C/ D 0. In quantum theory, the minimum at � D �C plays
the role of a “false” (metastable) vacuum. The description of the decay of such “false”
vacuums is similar to the description of nucleation in statistical physics (e. g., during
the boiling of a superheated liquid). In quantum field theory this problem is of impor-
tance for cosmology [41]. Who knows whether our vacuum is stable or metastable!

We have to calculate the value of �
V

, the probability of metastable vacuum decay in
units of time per unit volume. First we have to find the corresponding instanton N� as
a solution of the Euclidean equations of motion:

@�@
� N� D U 0. N�/ , (14.151)

satisfying the boundary conditions

lim
x4!˙1

N�.x, x4/ D �C . (14.152)

It is easily seen that to guarantee the finiteness of the action at instanton we have to
satisfy the condition

lim
jxj!1

N�.x, x4/ D �C . (14.153)

If an instanton is found, then in the leading approximation in „ we have

�

V
D Ke�S0 , (14.154)

Figure 14.14
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where S0 D S. N�/, while the preexponential factorK is determined by the appropriate
determinant.

The trivial solution N� D �C is not interesting; for ı2S
ı�2 does not have negative

eigenvalues, so that it does not contribute to the vacuum decay. Equations (14.151)–
(14.153) are invariant with respect to four-dimensional rotations (O.4/ group). We
assume that an instanton is also O.4/ invariant7, so that the corresponding N� is the
function of r only. Then equation (14.151) reduces to

d 2 N�
dr2

C 3

r

d N�
dr

D U 0. N�/ , (14.155)

and from (14.152) and (14.153) it follows that

lim
r!1

N�.r/ D �C . (14.156)

Obviously, we also have to require

d N�
dr

ˇ̌
ˇ
ˇ
rD0

D 0 , (14.157)

or N� will be singular at the origin.
Equation (14.155) can be interpreted as an equation of motion (considering r as

time!) of a particle, moving in potential minus U , shown in Figure 14.15, and under
the action of a time-dependent friction force (� 1

r
� velocity). The particle can start

from the state of rest (cf. (14.157)) at the moment r D 0 from the appropriate initial
position and stops at r ! 1 at point �C: such motion precisely corresponds to an
instanton. Obviously, such a solution exists.

� The particle starting to the right of �0 will not reach �C; it will not have enough
energy because of friction.

Figure 14.15

7 This assumption can be rigorously justified: a spherically symmetric instanton has the minimal action.
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� If we choose the initial point correctly to the left of �0 but to the right of ��, we can
guarantee that for large r the particle will reach �C and stop there.

In fact, for � close to �� we can linearize the equation of motion and write it as
�
d 2

dr2
C 3

r

d

dr
� �2

�
. N� � ��/ D 0 , (14.158)

where �2 D U 00.��/. This equation can be solved rather easily [15], and its solution
is expressed via the modified Bessel function. Then we see that choosing N�.0/ close
enough to ��, we can also guarantee that for large-enough r the particle will remain as
close as possible to ��. But for large-enough r we can neglect friction, as it is � 1=r .
But in absence of friction the particle will overshoot the top at �C. This means that in
our problem there is always an intermediate point (between �� and �0), starting from
which the particle will at r ! 1 stop at �C.

Let UC.�/ be some even function of �:

UC.�/ D UC.��/ (14.159)

with minima at points ˙a:
U 0C.˙a/ D 0 . (14.160)

Let us define
�2 D U 00C.˙a/ . (14.161)

Let us add to UC a small term, breaking the symmetry between the minima:

U D UC C ".� � a/=2a , " > 0 . (14.162)

In the first order in " we have
�˙ D ˙a . (14.163)

The value of " defines the energy difference between the “true” and “false” vacuum.
Let us choose the initial position of the particle N�.0/ very close to ��. Then the particle
remains close to �� up to some large moment of time r D R; then afterwards it rapidly
passes through the valley and slowly approaches �C for r ! 1. Thus, our instanton
looks like a large four-dimensional spherically symmetric “bubble” of radius R with
a thin wall separating the “false” vacuum �C (outside the bubble) from the “true”
vacuum �� (inside the bubble). Correspondingly, our bubble (instanton) represents
the nuclei of a new (“true”) vacuum inside the metastable (“false”) vacuum.

For r � R we can neglect the friction as well as the "-dependent term in U . Then
the equation of motion has the form

d 2 N�
dr2

D U 0C. N�/ , (14.164)

which corresponds to the classical equation of motion of a particle in a double-well po-
tential, which was analyzed in details above. This equation has as its solution the sim-
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plest one-dimensional instanton of Figure 14.9, which we studied above (and which
describes the transition from �a to Ca at “moment” R with the growth of r). This is
the approximate description of an instanton in our field problem.

Up to now we have not yet defined R. The action of the instanton is given by

S D 2�2
Z 1

0
dr r3

�
1

2

�
d N�
dr

�2

C U. N�/
�

. (14.165)

Here we have three regions of integration: outside the bubble, close to its surface, and
inside. Outside we can take N� D �C and U D 0, so that this contribution to the
integral is just zero (which actually guarantees the finiteness of the instanton action).
Inside the bubble we have N� D ��, U D �", so that the corresponding contribution
to the integral is

�1

2
�2R4" . (14.166)

Close to the bubble surface, i. e., for r � R, we can neglect �" term in U, so that the
integral reduces to

2�2R3
Z
dr

�
1

2

�
d N�
dr

�2

C UC
�

D 2�2R3S1 , (14.167)

where

S1 D
Z a

�a
d�
p

2UC (14.168)

is the action of the one-dimensional instanton (14.119). Finally we get

S D �1

2
�2R4"C 2�2R3S1 . (14.169)

Let us now define R from the requirement of extremal action:
dS

dR
D �2�2R3"C 6�2R2S1 D 0 , (14.170)

which gives

R D 3S1

"
. (14.171)

Then we have8

S0 D 27�2S4
1

2"3
. (14.172)

The bubble radius (14.171) can be found from the elementary considerations used in nucle-
ation theory of statistical mechanics: the energy gain within the bubble should compensate the
energy loss, connected with the surface tension of the bubble:

4

3
�R3" D 4�R2
 , which gives R D 3


"
, (14.173)

where 
 is the surface energy of the bubble well. In our case 
 D S1.

8 Our analysis is valid in the limit of small " and in the limit when the bubble radius is much larger than
the width of its wall: R � ��1, which reduces to 3S1� � ".
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Finally, we obtain the probability of “false” vacuum decay as

�

V
� exp.�S0/ . (14.174)

Determinants and renormalization

The preexponential factor in (14.174) should be defined in the same way as in the quan-
tum mechanical problem discussed above. But there are some important differences
and questions:

1. In quantum mechanics we had only one zero translational mode; here there are four.

2. It was very important that there was only one negative energy eigenvalue, leading
to an imaginary contribution. Is this also the case in the present problem?

3. In quantum field theory we have ultraviolet divergences, and it is necessary to per-
form renormalization. What is the role of renormalization here?

Consider first the zero modes. Here we have four directions for instanton translation
(the instanton can be place at an arbitrary point of four-dimensional Euclidean space);
correspondingly we have four eigenfunctions of a differential operator, related to the
second variational derivative of action, with zero eigenstates. These functions � @� N�.
The normalization condition reduces toZ

d 4x@� N�@� N� D 1

4
ı��

Z
d 4x@� N�@� N� D ı��S0 . (14.175)

As a result, the preexponential in (14.174) contains four factors of


S0
2	

�1=2
instead of

one.

The proof of the last equality in (14.175) goes as follows. Consider ��.x/ D N�.x=�/. Then
the action is

S.��/ D 1

2
�2
Z
d 4x.@� N�/2 C �4

Z
d 4xU. N�/ . (14.176)

As N� is the solution of equations of motion, we should satisfy the condition of stationarity of
the action (14.176) at � D 1. This yields

Z
d 4x.@� N�/2 D �4

Z
d 4xU. N�/ (14.177)

or

S0 D 1

4

Z
d 4x.@� N�/2 > 0 . (14.178)

Finally, we obtain the preexponential factor as

K D S2
0

4�2

ˇ
ˇ̌
ˇ

Det0Œ�@�@� C U 00. N�/�
DetŒ�@�@� C U 00.�C/�

ˇ
ˇ̌
ˇ

�1=2

, (14.179)

assuming there are no problems with negative eigenvalues and renormalization.
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As to negative eigenvalues, this is really so. It is clear that ı
2S
ı�2 (at the instanton)

has at least one negative eigenstate. It can be rigorously proved that there is only one
negative eigenstate in this problem [15]. Thus, equation (14.179) gives the correct
probability of vacuum decay.

We shall not discuss in detail the problem of the renormalization of (14.174). In principle,
it is clear that in theories with renormalizable U.'/, all expressions, including (14.179), can
be rewritten via renormalized parameters, and everything should be finite. Some additional
details can be found in [15].

The bubble, expanding in real Minkowski space-time, can be obtained as the ana-
lytical continuation of the instanton:

�.x0, x/ D N�.r D
q

jxj2 � x2
0/ . (14.180)

Thus, at small " we have a thin wall at r D R, separating the two vacuums, and
expansion of the bubble is determined by

jxj2 � x2
0 � R2 . (14.181)

The value of R is determined, as we have seen, by the microscopic parameters of the
theory and is itself microscopic. Then, equation (14.181) means that the expanding
surface of the bubble moves practically with the speed of light (v � 1)! The wall
transports the energy (per unit surface) S1p

1�v2
. At the moment, when the bubble radius

reaches jxj, the wall energy becomes

Ewall D 4�jxj2S1p
1 � v2

. (14.182)

From (14.181) it is easy to find that

v D d jxj
dt

D
s

1 � R2

jxj2 . (14.183)

Then the wall energy is

Ewall D 4�jxj3S1

R
D 4�"jxj3

3
, (14.184)

so that practically the whole energy released during the “false” vacuum decay goes
to the wall acceleration. No particles are created; from both sides of the wall we have
the corresponding vacuum states. In this sense, the “observer” will never know that
the wall passed through him; he will also just “decay” in the corresponding micro-
scopic time.
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Examples of applications of this formalism to problems of relativistic cosmology
can be found in [41].

The concept of instantons plays a major role in many problems of quantum field
theory and statistical mechanics. As an example, we can again mention the g'4 with
g < 0 and the number of filed components n D 0, which describes the motion of
an electron in the random field of impurities in solid state theory. In this model with
an unstable ground state there are t instanton solutions which determine the electron
density of the states in the so-called “tail” region, appearing due to electron localization
by random field fluctuations [57, 64].

Especially important are nontrivial instanton solutions in non-Abelian gauge theo-
ries, which are related to the topological properties of gauge transformations and the
complicated structure of a Yang–Mills vacuum [15,51,52]. We shall not discuss these
aspects of the theory here, as well as their importance for particle physics (QCD). A
detailed presentation can be found in [52, 58].

14.5 The Lipatov asymptotics of a perturbation series

At the end of Chapter 8 we briefly discussed the asymptotic nature of a perturbation
series in quantum field theory. Here we shall consider it in more detail, describing
the elements of the elegant approach proposed by Lipatov. The idea of the Lipatov
method is as follows. If we have some physical function F.g/ which is expanded in a
perturbation series in powers of coupling constant g

F.g/ D
1X

ND0

FNg
N , (14.185)

the coefficients of this expansion FN can be determined as

FN D
Z

C

dg

2�i

F.g/

gNC1
, (14.186)

where integration contour C encircles the point g D 0 in the complex plane of the
coupling constant. Rewriting the denominator here as exp ¹�.N C 1/ ln gº, for large
N we can use the steepest-descent (stationary phase) approach to estimate (14.186).

We know that all problems solved by the diagram technique can be reformulated in
terms of functional integrals like

Z.g/ D
Z
D' exp .�S0¹'º � gSint ¹'º/ , (14.187)

and we can write the coefficients of perturbation expansion as

ZN D
Z

C

dg

2�ig

Z
D' exp .�S0¹'º � gSint ¹'º �N ln g/ . (14.188)
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The Lipatov idea is to search for the steepest descent in (14.188) not simply over g,
but over g and ' simultaneously:

ıS.'/

ı'

ˇ
ˇ̌
ˇ
'c

D 0 , (14.189)

S.'c/

gc
D 0 . (14.190)

The solution of these equations exists for all interesting models and is realized on a
spatially localized instanton 'c.x/. The steepest descent approach is applicable here
for large N , independent of its applicability to the initial functional integral (14.187).
This fact is of prime importance; in the general case an exact calculation of the func-
tional integrals is impossible, but they are easily calculated by steepest descent.

This allows us to determine the general form of large N asymptotics of the pertur-
bation theory coefficients for any physical characteristics (such as Green’s functions,
vertex parts, etc.) for different models of quantum field theory. The typical form of
Lipatov asymptotics for the perturbation coefficients of an arbitrary function F.g/
has the form

FN D c �.N C b/aN , (14.191)

where �.x/ is the �-function, and parameters a, b, c depend on the specific problem
under discussion. In a concrete model of field theory the constant a is universal, the
parameter b depends on the physical function F.g/ under study, and c contains de-
pendence on external momenta (or coordinates). The appearance of �.N C b/ � NŠ

in (14.191) simply reflects the factorial growth of the number of diagrams with the
order N of perturbation theory. Obviously, such asymptotic behavior of perturbation
theory coefficients corresponds to the divergent series!

The knowledge of Lipatov asymptotics in combination with the exact results for
a few lowest orders of perturbation theory, obtained by direct diagrammatic calcu-
lations, gives information on the perturbation series as a whole. Approximating the
complete series by the sum of lowest order contributions with asymptotics of higher
orders, and applying the mathematical methods of the summation of the divergent se-
ries, we can obtain approximate solutions of an arbitrary physical problem.

The most common method to deal with a divergent (asymptotic) series of perturba-
tion theory is to use so-called Borel transformation. We can divide and multiply each
term of the series by NŠ and use the integral representation of the �-function, so that
after the interchange of summation and integration, we can write

F.g/ D
1X

ND0

FNg
N D

1X

ND0

FN

NŠ

Z 1

0
dx xN e�xgN D

Z 1

0
dx e�x

1X

ND0

FN

NŠ
.gx/N .

(14.192)
The power series in the right-hand side is in most cases converging (it actually has
factorially improved convergence!) and defines Borel transform B.z/ of the function
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F.g/, which can now be determined from the following integral transformation:

F.g/ D
Z 1

0
dx e�xB.gx/ , B.z/ D

1X

ND0

FN

NŠ
zN , (14.193)

Borel transformation gives the natural method of summation of a factorially divergent
perturbation series of quantum field theory9.

14.6 The end of the “zero-charge” story?

In Chapter 13 we stressed the importance of the asymptotic behavior of the Gell-
Mann–Low function ˇ.g/ at large values of the coupling constant g for the internal
consistency of quantum field theory. However, until recently, only perturbation the-
ory estimates of ˇ.g/ were available, and no definite conclusions on its behavior at
large g could be drawn. Below we shall present some nonperturbative arguments due
to Suslov, allowing us to find this asymptotic behavior in analytic form [66].

For simplicity we shall consider the O.N/ symmetric Euclidean '4 theory in d -
dimensional space with the action10

S¹'º D
Z
ddx

²
1
2

NX

˛D1

.r'˛/2 C 1
2m

2
0

NX

˛D1

' 2
˛ C 1

8u

� NX

˛D1

' 2
˛

�2³
, (14.194)

where u D g0ƒ
� and  D 4 � d . Actually, this is the direct analogue of equa-

tion (10.160) used in the theory of critical phenomena. Here we are using lattice reg-
ularization of ultraviolet divergences, introducing the cut-off ƒ � a�1, where a is
the lattice constant. Following the usual renormalization group formalism, we con-
sider the “amputated” vertex �.n/ with n external lines of field '. The multiplicative
renormalizability of the theory means that we may write the direct analogue of equa-
tion (13.76) as

�.n/.pi ;g0,m0,ƒ/ D Z�n=2�
.n/
R .pi ;g,m/ , (14.195)

so that divergence at ƒ ! 1 disappears after extraction of the proper Z-factors and
their transfer to the renormalized charge and mass, which are denoted here as g and
m. We shall accept the renormalization conditions at zero momentum:

�
.2/
R .p;g,m/

ˇ̌
ˇ
p!0

D m2 C p2 CO.p4/ ,

�
.4/
R .pi ;g,m/

ˇ̌
ˇ
pi D0

D gm� , (14.196)

9 A detailed discussion of methods to deal with divergent series of perturbation theory can be found in
the review paper [65]

10 Generalization to QED is more or less straightforward.
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which are typical for applications in the phase transitions theory. From equa-
tions (14.196) and (14.195) we can obtain expressions for renormalized g, m, Z in
terms of the “bare” quantities:

Z.g0,m0,ƒ/ D
�
@

@p2
�.2/.p;g0,m0,ƒ/

ˇ̌
ˇ
pD0

��1

,

m2 D Z.g0,m0,ƒ/ �.2/.p;g0,m0,ƒ/
ˇ̌
ˇ
pD0

,

g D m��Z2.g0,m0,ƒ/ �.4/.pi ;g0,m0,ƒ/
ˇ̌
ˇ
pi D0

. (14.197)

Applying the differential operator d=d lnm to (14.195) for fixed g0 and ƒ gives the
direct equivalent of the Callan–Symanzik equation (13.82), which for large momenta
jpi j=m � 1 has the form

�
@

@ lnm
C ˇ.g/

@

@g
� n�.g/

�
�
.n/
R .pi ;g,m/ � 0 , (14.198)

where functions ˇ.g/ and �.g/ are defined as

ˇ.g/ D dg

d lnm

ˇ̌
ˇ̌
g0,ƒD const

, �.g/ D d ln
p
Z

d lnm

ˇ̌
ˇ̌
ˇ
g0,ƒD const

, (14.199)

and according to the general theorems depend only on g.
Now we shall show how the renormalization group functions are expressed via func-

tional integrals. The functional integrals of '4-theory are determined as

Z.M/
˛1:::˛M

.x1, : : : , xM / D
Z
D' '˛1.x1/'˛2.x2/ � � �'˛M

.xM / exp .�S¹'º/ .

(14.200)
Fourier transform of equation (14.200) can be written as

Z.M/
˛1:::˛M

.p1, : : : ,pM /N ıp1C���CpM

D
X

x1,:::,xM

Z.M/
˛1:::˛M

.x1, : : : , xM /e
ip1x1C:::CipMxM

D KM .pi /I˛1:::˛M
ıp1C���CpM

(14.201)

where N is the number of sites on the lattice, which is implied in the definition of the
(regularized) functional integral, and symmetry factors I˛1���˛M

are similar to those
discussed in Chapter 10 in relation to critical phenomena. Now we have

Z.0/ D K0 , Z
.2/
˛ˇ
.p, �p/ D K2.p/ı˛ˇ , Z

.4/
˛ˇ
ı

¹piº D K4¹piºI˛ˇ
ı (14.202)

where I˛ˇ
ı is given by an expression similar to that in equation (10.168). Now we can
introduce the vertex part �.4/ by the usual relation for two-particle (4-point) Green’s
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function:

G
.4/
˛ˇ
ı

.p1, : : : ,p4/ D G
.2/
˛ˇ
.p1/G

.2/

ı
.p3/N ıp1Cp2 CG.2/˛
 .p1/G

.2/
ˇı
.p2/N ıp1Cp3

CG
.2/
˛ı
.p1/G

.2/
ˇ

.p3/N ıp1Cp4

�G.2/˛˛0.p1/G
.2/
ˇˇ 0
.p2/G

.2/


 0.p3/G

.2/
ıı0
.p4/�

.4/
˛0ˇ 0
 0ı0

.p1, : : : ,p4/

(14.203)

where G.2/
˛ˇ
.pi / are single-particle (2-point) Green’ functions. Extracting factors

I˛1:::˛M
we have

G
.2/
˛ˇ
.p/ D G2.p/ı˛ˇ , G

.4/
˛ˇ
ı

¹piº D G4¹piºI˛ˇ
ı , �
.4/
˛ˇ
ı

¹piº D �4¹piºI˛ˇ
ı
(14.204)

Now we can write

G4 D K4

K0
, �4 D �G4

G4
2

D �K4K
3
0

K4
2

, (14.205)

and

G2 D K2.p/

K0
, �2.p/ D 1

G2.p/
D K0

K2.p/
� K0

K2
C K0 QK2

K2
2
p2 , (14.206)

where for small p we have written

K2.p/ D K2 � QK2p
2 C � � � . (14.207)

Expressions for the Z-factors, renormalized mass, and charge follow from (14.197):

Z D
�
@

@p2
�2.p/

��1

pD0
D K2

2

K0 QK2
, (14.208)

m2 D Z�2.0/ D K2

QK2
, (14.209)

g D m��Z2�4 D �
�
K2

QK2

�d=2 K4K0

K2
2

, (14.210)

and
dm2

dm2
0

D
�
K2

QK2

�0
D K 0

2
QK2 �K2 QK 0

2

QK2
2

, (14.211)

where the prime denotes the derivatives overm2
0. Parameters g0 andƒ are considered

to be fixed, while m2 is a function of m2
0 only and derivative dm2

0=dm
2 is defined by
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the expression inverse to (14.211). Using the definitions (14.199) we have

ˇ.g/ D
�
K2

QK2

�d=2
´

�d K4K0

K2
2

C2
.K 0

4K0 CK4K
0
0/K2 � 2K4K0K

0
2

K2
2

QK2

K2 QK 0
2 �K 0

2
QK2

μ

(14.212)

�.g/ D � K2 QK2

K2 QK 0
2 �K 0

2
QK2

"

2
K 0

2

K2
� K 0

0

K0
�

QK 0
2

QK2

#

(14.213)

These equations determine ˇ.g/ and �.g/ in parametric form: for fixed g0 and ƒ, the
right-hand side of these equations are functions of m2

0 only, while dependence on the
specific choice of g0 and ƒ is absent due to general theorems.

Any infinities in the right-hand sides of equations (14.212) and (14.213) can be
induced only by the zeroes of functional integrals11. It is clear from equation (14.210)
that the limit g ! 1 can be achieved by two ways: tending to zero either K2 or QK2.
For QK2 ! 0 equations (14.210) and equations (14.212), (14.213) give

g D �
�
K2

QK2

�d=2 K4K0

K2
2

, ˇ.g/ D �d
�
K2

QK2

�d=2 K4K0

K2
2

, �.g/ ! 1 , (14.214)

and the parametric representation is resolved as

ˇ.g/ D dg , �.g/ D 1 , .g ! 1/ . (14.215)

For K2 ! 0, the limit of g ! 1 can be achieved only for d < 4:

ˇ.g/ D .d � 4/g , �.g/ ! 2 .g ! 1/ . (14.216)

The results (14.215) and (14.216) probably correspond to different branches of the
function ˇ.g/. It is easy to understand that the physical branch is the first one. Indeed,
it is commonly accepted in phase transitions theory that the properties of '4-theory
change smoothly as a function of space dimension, and the results for d D 2, 3 can
be obtained by analytic continuation from d D 4 � . All the available information
indicates the positivity of ˇ.g/ for d D 4, and consequently its asymptotics at g ! 1
is also positive. The same property is expected for d < 4 by continuity. The result
(14.215) does obey such a property, while the branch (14.216) does not exist for d D 4
at all.

According to our discussion in Chapter 13, the behavior of the Gell-Mann–Low
function given by equation (14.215) corresponds to the continuous growth of the renor-
malized charge as we go to the region of strong coupling at small distances, and sig-
nifies the consistency of quantum field theory without “pathologies” like a Landau

11 This is the most nontrivial moment of our discussion. Actually, it can be shown that zeroes of the
functional integrals can be obtained by a rather subtle compensation of the contributions of the trivial
vacuum and some instanton configuration with finite action.
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“ghost pole” (or a “zero-charge” problem). However, it should be clearly understood,
that during our discussion here we have skipped many subtle details, which are to be
looked for in original papers, as well as the difficulties which are making this point-
of-view less than commonly accepted.
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