
Abstract. The paper reviews the basic experimental facts and a
number of theoretical models relevant to the understanding of
the pseudogap state in high-temperature superconductors. The
state is observed in the region of less-than-optimal current-
carrier concentrations in the HTSC cuprate phase diagram
and manifests itself as various anomalies in the electronic
properties, presumably due to the antiferromagnetic short-
range-order fluctuations that occur as the antiferromagnetic
region of the phase diagram is approached. The interaction of
current carriers with these fluctuations leads to an anisotropic
transformation of the electron spectrum and causes the system
to behave as a non-Fermi liquid in certain regions of the Fermi
surface. Simple theoretical models for describing the basic
properties of the pseudogap state, in particular renormaliza-
tion-induced anomalies in the superconducting state, are dis-
cussed.

1. Introduction

The study of high-temperature (or high-Tc) superconductiv-
ity (HTSC) in copper oxides remains one of the central
avenues of research in the physics of the condensed state.
Despite enormous efforts of both experimenters and theore-
ticians, the nature of this phenomenon remains unclear. It is a
well-known fact that the main difficulties here are related to

the very unusual properties of these systems in the normal
(nonsuperconducting) state, and without a clear understand-
ing of the nature of these properties there is little hope for
completely elucidating themicroscopicmechanism of high-Tc

superconductivity. In recent years one of the main aspects of
high-Tc superconductor physics has been the study of the
anomalies of what is known as the pseudogap state [1], which
is observed in the region of the phase diagram corresponding
to charge-carrier concentrations lower than optimal one (i.e.
the concentration corresponding to the maximum tempera-
ture of the superconducting transition, Tc); it is usually called
the `underdoped' region. In this region there are many
anomalies of the electronic properties in both the normal
and the superconducting state, which are related to the drop
in the single-particle density of states and to the anisotropic
transformation of the charge-carrier spectral density. The
understanding of the nature and properties of the pseudogap
state is the central problem of any approach to the description
of the complex phase diagram ofHTSC systems. Hundreds of
experimental and theoretical papers have been devoted to this
problem 1.

The goal of the present review is to present the main
experimental facts pertaining to the observations of the
pseudogap state in underdoped high-Tc cuprates and to
discuss a number of simple theoretical models of this state.
The review is not exhaustive in either describing the experi-
mental data or giving the full theoretical picture. The
experimental data are presented fairly briefly, since the
literature already has a number of good reviews [2 ± 6]
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1 Suffice it to say that the well-known E-archive of preprints, cond-mat,

contains more than 600 papers devoted, in one way or another, to the

physics of the pseudogap sate. At the major conference on superconduc-

tivity held in Houston, M2S ±HTSC-VI ( February 2000), four section

meetings were devoted to this problemÐmore than to any other problem

of HTSC physics.



devoted to these problems in one way or another. The
theoretical part is also fairly subjective and, to a large
extent, reflects the author's viewpoint. There are two basic
theoretical scenarios for explaining the pseudogap anomalies
ofHTSC systems. The first one is based on themodel in which
Cooper pairs are formed above the transition temperature
[7 ± 10], with the subsequent establishment of their phase
coherence at T < Tc. The second scenario assumes that the
pseudogap state emerges due to `dielectric' type, short-range-
order fluctuations, which are present in the region of under-
doped compositions in the phase diagram. The most popular
picture here is that of antiferromagnetic (AFM) fluctuations
[11 ± 15], although one cannot exclude that fluctuations of
charge-density waves (CDW), structural distortions, or phase
separation on a microscopic scale can play a similar role. I
believe that many experiments conducted in recent years
speak in favor (fairly persuasively) of the second scenario.
Hence in our theoretical discussion we will limit ourselves to
relevant models, giving a quite full description of the work of
the present author and his collaborators, and also of the work
of other researchers whose main ideas and approaches are in
the same vein. Accordingly, in the most part of the review we
will deal with the model of antiferromagnetic fluctuations,
although its validity cannot be thought of as fully corrobo-
rated.

Neither can we claim that the list of references is complete
and, the more so, that it reflects priorities in this field. It is
assumed that the reader will find the necessary literature from
the papers in the list of references. The author would like to
apologize to the numerous authors of papers not cited hereÐ
the aim was to make the list not too long.

2. Basic experimental facts

Typical variants of the phase diagram of HTSC cuprates are
depicted in Fig. 1. Depending on the concentration of charge
carriers (mainly holes), several phases and regions with
anomalous physical properties can be observed in the high-
conductivity CuO2 plane. In the region of low hole concentra-
tions all known HTSC cuprates are antiferromagnetic
insulators. As the current-carrier concentration increases,
the NeÂ el temperature TN rapidly drops from values of several

hundred kelvins and vanishes at hole concentrations p lower
or of order 0.05, with the system becoming a (poor) metal. A
further increase in the hole concentration transforms the
system into a superconductor, with the transition tempera-
ture increasing with the carrier concentration and going
through a characteristic maximum at p0 � 0:15 ± 0.17 (opti-
mum doping) and then decreasing and vanishing at
p � 0:25ÿ0:30, although in this (overdoped) region the
metallic behavior is still quite evident. Here, at p > p0 the
metallic properties are fairly traditional (Fermi-liquid beha-
vior), while at p < p0 the system becomes an anomalous
metal, whose behavior (as most researchers believe) cannot
be described by the Fermi-liquid theory 2.

The anomalies of physical properties currently attributed
to the formation of a pseudogap state are observed in the
metallic phase at p < p0 and at temperatures T < T �, where
T � decreases from values of order TN at p � 0:05 and vanish
at a certain `critical' carrier concentration pc somewhat higher
than p0 (Fig. 1a). For instance, Tallon and Loram [6] stated
that this happens at p � pc � 0:19. According to some
researchers (mostly adherents of the idea of the superconduct-
ing nature of the pseudogap), T � merges with the line of the
superconducting-transition temperatureTc near the optimum
concentration p0 (Fig. 1b). Belowwe will see that the majority
of new experimental data most likely support the variant of
the phase diagram depicted in Fig. 1a (for more details see
Ref. [6]). Note that most researchers agree that T � does not
have the meaning of the temperature of a phase transition;
rather, it simply defines a characteristic temperature scale
below which pseudogap anomalies appear in the system. In
this region of the phase diagram a system exhibits no features
characteristic of phase transitions in the behavior of thermo-
dynamic quantities 3. The general idea is that all these
anomalies, to put it simply, are related to the suppression (in
the given region) of the density of states of single-particle
excitations near the Fermi level, which is what the general
concept of the pseudogap means 4. Here T � is simply
proportional to the size of the pseudogap on the energy
scale. Sometimes another characteristic temperature scale is
specified, T �2 (see Fig. 1b), which is related to the transition
from a `weak'- to a `strong'-pseudogap regime [14]. The
reasoning here is based on a change in the spin response of
the system in the vicinity of this temperature. In the present
review we almost never touch on the corresponding details.

Now let us turn to a detailed description of the most
typical experimental manifestations of the corresponding
anomalies in HTSC cuprates.
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Figure 1. Variants of the phase diagram of high-Tc cuprates.

2 Note that the problem of whether or not HTSC systems behave like

Fermi liquids has become very involved due to the discussions of

numerous researchers belonging to different schools and often using very

different definitions of the idea of a Fermi liquid. In what follows we use

the terminology adopted by the majority of researchers (although this

majority is not cleary defined).
3However, it is only proper to note that recently Chakravarty et al. [16]

proposed an opposite idea, namely, that the line of T � in the phase

diagram is directly linked to a `hidden' symmetry breaking, strongly

`blurred' by the internal disorder.
4 The idea of a pseudogap was first formulated by Mott in the qualitative

theory of disordered (noncrystalline) semiconductors [17]. According to

Mott, a pseudogap is a region of reduced electronic-state density within an

energy interval corresponding to the forbidden band of an ideal crystal

and is simply a `recollection' about this band that is retained even under

strong disordering (amorphization, melting, etc.).
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2.1 Specific heat and tunneling
Let us consider data on the electronic contribution to the
specific heat of HTSC cuprates. For metals this contribution
is usually written as C � g�T �T, so that in the normal state
�T > Tc) we have g � N�0�, whereN�0� is the density of states
at the Fermi level. At T � Tc there emerges a well-known
anomaly related to a second-order phase transition, and the
temperature dependence g�T � has a characteristic peak
(discontinuity). As an example, Fig. 2 depicts typical
experimental data for the Y0.8Ca0.2Ba2Cu3O7ÿd system at
different values of d [18]. In optimally doped and overdoped
samples, the temperature dependence g�T � is practically a
straight line parallel to the temperature axis over the entire
region where T > Tc, while in underdoped samples there is a
substantial lowering of g�T � in the temperature range
T < 150 ± 200 K. This fact directly indicates that the density
of electronic states at the Fermi level drops and that a
pseudogap forms when T < T �.

We also note that near the transition temperature Tc the
size of the specific-heat discontinuity decreases substantially
with the transition to the region of underdoped compositions.
A more thorough analysis done by Tallon and Loram [6]
shows that the corresponding discontinuity Dgc begins to
rapidly diminish starting with the `critical' carrier concentra-
tion pc � 0:19, which is considered the moment of emergence
of a pseudogap in the electron spectrum.

Combining the data on the specific heat with the more or
less standard ideas of the BCS theory, we can attempt to
estimate the width of the energy gap in the electron spectrum
and its temperature dependence. Figure 3 depicts the data on

the YBa2Cu3O7ÿd (YBCO) system gathered by Loram et al.
[19]. Clearly, the energy gap in the spectrum estimated in this
manner does not vanish at T � Tc (as it should vanish in a
standard superconductor) but instead extends itself into the
region of higher temperatures, and the greater the under-
doping the stronger the effect. Very often these data are
naively interpreted as evidence for the existence of Cooper
pairs at temperatures T > Tc.

The formation of a pseudogap in the density of states is
clearly seen from experiments on single-particle tunneling.
For instance, the frequently cited paper written by Renner et
al. [20] describes tunneling experiments involving single
crystals of Bi2Sr2CaCu2O8�d (Bi-2212) with varying oxygen
content. For underdoped samples the formation of a
pseudogap in the density of states was clearly observed at
temperatures much higher than Tc. Here the pseudogap
smoothly evolved into a superconducting gap in the region
T < Tc, which has also been frequently interpreted as direct
evidence for the superconducting nature of the pseudogap.
Traces of the existence of a pseudogap were also observed by
the same researchers in slightly overdoped samples.

Usually, in discussing tunneling experiments involving
HTSC cuprates, the question of the quality of the surfaces of
the investigated samples is important. Hence of special
interest are the recent investigations conducted by Krasnov
et al. [21, 22]. They measured the intrinsic tunneling in mesa-
structures 5 created on the surface of the same Bi-2212 system
and were able to clearly demonstrate the existence of a
superconducting gap, which vanishes at T � Tc, against the
background of a smooth pseudogap, which exists even at
higher temperatures. The relevant data are depicted in Fig. 4a.
Clearly, typical features of the formation of a superconduct-
ing gap exist against the background of a smoothminimumof
the density of states. What is especially important is that
Krasnov et al. [22] have shown that the superconducting
features of the tunnel characteristics are suppressed by an
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5Mesa (Spanish `table'), flat-topped tableland with one or more steep

sides, common in the Colorado Plateau regions of the United States and

Mexico (Mesa Central) (Britannica CD97, 1997).
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external magnetic field, while the size of the pseudogap proves
to be almost independent of the field strength, which points to
its nonsuperconducting nature. The corresponding data are
depicted in Fig. 4b.

2.2 NMR and kinetic properties
Pseudogap formation also manifests itself in the kinetic
properties of HTSC systems in the normal state, the Knight
shift, and the NMR relaxation time. In particular, a feature
related to such formation is the change in the standard (for
optimally doped compositions) linear temperature depen-
dence of the electrical resistivity in the region T < T � for
underdoped samples. TheKnight shift in such samples proves
to be temperature dependent: in the region T < T � there is a
rapid drop in the value of this quantity. In underdoped
samples the quantity �TT1�ÿ1, where T1 is the NMR spin ±
lattice relaxation time, behaves in a similar manner. The
reader will recall that in common metals the Knight shift is
proportional to N�0�, while �TT1�ÿ1 � N 2�0� (Korringa
behavior), and the electrical resistivity r is proportional to
the scattering rate (the inverse of the mean free time)
g � N�0�. Hence it is natural that the significant decrease in
all these quantities is related to the drop in the density of

electronic states, N�0�, at the Fermi level 6. Figure 5a, taken
from Batlogg and Varma's paper [1], shows a summary of the
relevant experimental data for underdoped samples of the
YBa2Cu4O8 system based on the papers of Bucher et al. [23],
Yasuoka [24], and Alloul and Adrian [25]. Note that this
interpretation is, of course, extremely simplified, especially
when one is speaking of the temperature dependence of the
corresponding quantities. For instance, in the case of
electrical resistivity this dependence is largely determined by
inelastic scattering, whose physics in HTSC systems still
remains not completely understood. In particular, a decrease
in the density of states (with the spectrum becoming partially
dielectric) could lead to a corresponding increase in electrical
resistivity.

Figure 5b depicts the experimental data of Gorny et al.
[26], who measured �TT1�ÿ1 on 63Cu nuclei in slightly
underdoped YBa2Cu3O7ÿd in a sufficiently strong magnetic
field. Clearly, there is no magnetic-field dependence, which is
a strong argument in favor of the nonsuperconducting nature
of the pseudogap, since otherwise a magnetic field would
substantially change the magnitude of the effect. Note that
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6Historically speaking, the first data on the significant drop in the density

of states in underdoped cuprates were gathered precisely in NMR

experiments and in the magnetic scattering of neutrons. Hence the first

term actively used was `spin gap.' Later studies revealed similar effects

related not only to the spin degrees of freedom, and so the term

`pseudogap' became generally accepted.
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an estimate for the shift in the data expected in the case of suppression of

the pseudogap by a magnetic field; its position is determined by the

observed shift in Tc.
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the strong influence of a magnetic field on the size of the
Knight shift and the NMR relaxation frequency of 63Cu was
observed in slightly overdoped TlSr2CaCu2O6.8, where it can
be described fairly well in terms of the effect of suppression of
superconducting fluctuations [27]. This fact is strong evidence
in favor of the disappearance (at a certain lower carrier
concentration) of the pseudogap of a nonsuperconducting
nature (independent of the magnetic field) discussed above.

Note that in different experiments the temperature T �

below which anomalies associated with pseudogap formation
emerge is somewhat different, depending on the quantity that
is measured. However, in all cases there is a systematic
dependence of T � on the doping level, and this temperature
vanishes when the carrier concentration is equal to or
somewhat higher than the optimal doping level. This implies
that T � is not a clearly defined temperature (say, of a phase
transition); it only determines the scale of the temperature
(energy) below which these anomalies manifest themselves.
One can attempt to determine the corresponding energy scale
from experiments, say, by modeling the pseudogap by a
V-like energy dependence (with a width Eg) of the density of
states near the Fermi level (then T � � 0:4Eg) [6]. Figure 6
depicts the consolidated data for the gap widths in YBCO
found in this manner (from processing the results of different
experiments) as a function of hole concentration [6]. Clearly,
the pseudogap `closes' at the critical value pc � 0:19. We note
once more that both the T �-line in the phase diagram and the
`critical' concentration pc have a fairly conventional meaning.
Nevertheless, some researchers have attempted to interpret pc
as a `quantum' critical point (QCP) of some sort [28].

2.3 Optical conductivity
Pseudogap formation in the region of underdoped composi-
tions of HTSC cuprates also manifests itself very clearly in
experiments measuring optical conductivity, both in the
direction of the electric field vector along the high-conductiv-
ity CuO2 plane and in the perpendicular direction along the
tetragonal c-axis. The relevant data have been described fairly
thoroughly by Timusk and Statt [2] and Puchkov et al. [29].
As a typical example, in Fig. 7a we depict the data of Startseva
et al. [30] on optical conductivity in the CuO2 plane of

underdoped La1.87Sr0.13CuO4. Characteristic features of
these data are the presence of a narrow Drude peak in the
frequency range o < 250 cmÿ1 and the appearance of a
`pseudogap dip' in the interval from 250 to 700 cmÿ1 with a
diffuse maximum in the vicinity of o � 800 cmÿ1. The
pseudogap anomaly is especially pronounced when the
optical data are processed by what is known as the extended
Drude formula [2, 29], where effective (i.e. depending on the
frequency of the external field) scattering rate and current-
carrier mass are introduced:
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speaking, the use of equations (1) and (2) implies only data
processing, since one uses them for representation in the form
1=t�o� and m ��o� instead of two other characteristics, the
real and imaginary parts of the conductivity. Accordingly,
t�o� and m ��o� have no deep physical meaning. Never-
theless, such a representation of experimental data is
extremely popular among researchers.

Figure 7b depicts the results of such processing of the data
presented in Fig. 7a [30]. Clearly, at temperatures below
T � � 450 K the effective scattering rate decreases dramati-
cally in the range of external-field frequencies below 700 cmÿ1,
while at higher frequencies 1=t�o� increases linearly with o,
demonstrating anomalous non-Fermi liquid behavior. It is
the presence of this dip in 1=t�o� that reflects, as it is
commonly assumed, the presence of a pseudogap in optical
data. At the same time, taking into account the above notes, it
should be noted that the data onm ��o� depicted in Fig. 7b do
not allow for any graphic interpretation.

Similar behavior of 1=t�o� is also observed in the data on
the transverse optical conductivity sc�o� in almost all studied
HTSC cuprates in the region of underdoped compositions [2,
29].

2.4 Fermi surface and ARPES
The most dramatic effects related to pseudogap formation
manifest themselves in angle-resolved photoemission spectro-
scopy (ARPES) experiments [4, 5]. Such experiments play the
leading role in studies of the topology of the Fermi surface of
HTSC cuprates [4, 31, 32] and are practically the only source
of information in this area of research.

Figure 8 depicts the data, gathered by Ino et al. [33], on the
Fermi surface of the La2ÿxSrxCuO4 system for two different
compositions. In the overdoped state �x � 0:3� the Fermi
surface is electronic with its center at point G�0; 0� of the
Brillouin zone. As x decreases, the topology of the surface

changes, so that for the optimal concentration of Sr and in the
underdoped state �x � 0:1� it becomes a hole surface with its
center at point Y�p; p�. It is this latter topology of the Fermi
surface that is observed in almost all ARPES experiments for
the majority of other HTSC cuprates.

An interesting example is presented in Fig. 9, taken from
the paper of Gatt et al. [34]. It depicts the hole Fermi surface
of the Bi-2212 system in the overdoped state, a system that has
been most thoroughly studied by the ARPES method. A
distinctive feature here is the discovery in these experiments of
large flat regions of the Fermi surface that are orthogonal to
the symmetric directions YM. This result was corroborated
independently by Feng et al. [35] for an optimally doped
system. The presence of flat regions on the Fermi surface may
be extremely important in developing microscopic theories of
the electronic properties of HTSC systems.

If we ignore these details, then, to a rather rough
approximation, the topology of the Fermi surface and the
spectrum of elementary excitations in the CuO2 plane, which
are observed in ARPES, can be described fairly well by the
strong-coupling model:

ek � ÿ2t�cos kxa� cos kya� ÿ 4t 0 cos kxa cos kya ; �3�

where t � 0:25 eV is the transport integral between nearest
neighbors; t 0 is the transport integral between next nearest
neighbors, which can vary from t 0 � ÿ0:4t for YBa2Cu3O7ÿd
to t 0 � ÿ0:25t for La2ÿxSrxCuO4; and a is the (square-)
lattice constant.

Very recently the above simple picture was substantially
revised by several researchers [35 ± 38]. They used new
ARPES data obtained with synchrotron radiation whose
energy was higher than that used in previous experiments.
The researchers claim that the Fermi surface of Bi-2212 is
electronic with its center at point G. The main disagreement
with the earlier data is related to the most interesting, from
our viewpoint, neighborhood of the point �0; p� in the
reciprocal space. These results met with strong opposition
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from other groups of ARPES experimenters [39 ± 43]. The
problem is being actively debated, but in the present review
we will keep to the traditional interpretation.

Since there are several good reviews describing the
observations of pseudogap anomalies in ARPES [3 ± 5], we
will only briefly describe the main qualitative statements. The
ARPES intensity (the energy distribution of photoelectrons)
is in fact defined as follows [4]:

I�k;o� � I0�k� f �o�A�k;o� ; �4�

where k is the momentum in the Brillouin zone, o is the
energy of the initial state measured from the Fermi level (the
chemical potential) 7, and I0�k� incorporates kinematic
factors and the square of the matrix element of the electron±
photon interaction and, to a rough approximation, is kept
constant. The quantity

A�k;o� � ÿ 1

p
ImG�k;o� id� ; �5�

with G�k;o� the Green function, is the carrier spectral
density. The Fermi distribution function f �o� �
�exp�o=T � � 1�ÿ1 reflects the fact that electrons from
occupied states participate in the photoemission process.
Thus, to the rough approximation mentioned earlier, we can
say that it is the product f �o�A�k;o� that is directly
measured in ARPES experiments; thus, we get direct
information about the spectral properties of single-particle
excitations of the system.

Figure 10 depicts typical ARPES data for the
Bi2Sr2CaCu2O8 system [44] obtained for three different
points on the Fermi surface at different temperatures. The
presence of a gap (pseudogap) manifests itself in the shift (to
the left) of the threshold (leading edge) of the energy
distribution of photoelectrons from the sample, as compared
to the reference spectrum of a good metal (Pt). Clearly, the
gap closes at different temperatures for different values of k,
and the size (width) of the gap decreases with the departure
from the �0; 0�ÿ�0; p� direction. In the direction of the zone's
diagonal �0; 0�ÿ�p; p� there is no pseudogap. At low
temperatures this agrees fairly well with the picture of d-
pairing, well established in numerous experiments involving
HTSC cuprates [45 ± 47]. What is important, however, is that
the `gap' in ARPES data is also observed at temperatures
much higher the superconducting transition temperature Tc.

Figure 11 depicts the angular behavior of the gap width in
the Brillouin zone and the temperature dependence of the
maximum size of the gap for a number of samples of Bi-2212
of different compositions, as obtained from ARPES data by
Ding et al. [48]. Clearly, in the case of the general d-wave
symmetry, the gap in the spectrum of an optimally doped
system vanishes virtually at T � Tc, while in the spectrum of
underdoped samples there appear `tails' of the temperature
dependence of the gap in the region T > Tc, which are quite
similar to those shown in Fig. 3. Qualitatively we can say that
the formation of a pseudogap anisotropic in the reciprocal
space at T > Tc, which is continuously transformed into a
superconducting gap at T < Tc, leads to the `destruction' of
the Fermi surface of underdoped samples even at T < T � in
regions surrounding point �0; p� (and symmetric with respect

to this point), with the width of these regions increasing as the
temperature decreases [49].

Of course, the most interesting problem is here the
evolution of the spectral density A�kF;o� at the Fermi
surface. Under fairly weak assumptions, this function can be
extracted from ARPES data [49]. It there is electron ± hole
symmetry, we have A�kF;o� � A�kF;ÿo� (which is always
true near the Fermi surface and actually occurs when joj is
smaller than several tenths of meV), so that combining
f �ÿo� � 1ÿ f �ÿo� and equation (4) with k � kF immedi-
ately yields I �o� � I �ÿo� � A�kF;o�. Hence the spectral
density on the Fermi surface can be directly obtained from
experiment bymeans of constructing a symmetrized spectrum
I �o� � I �ÿo�. As an example, in Fig. 12 we depict the data of
Norman et al. [50] for an underdoped sample of Bi-2212 with
Tc � 83 K and an overdoped sample with Tc � 82 K at
different temperatures. Clearly, a pseudogap manifests itself
in the form of a characteristic `double-humped' structure of
the spectral density, which appears (for an undoped system)
at temperatures much higher than Tc.

Note that well-defined quasiparticles correspond to a
fairly narrow peak in the spectral density A�kF;o� at o � 0.
Such behavior is almost never encountered in HTSC
cuprates, at least at temperatures higher than Tc. This fact,
however, is not very surprising, since it is difficult to imagine
well-defined quasiparticles in systems at T > 100 K, almost

7 In a real experiment o is measured with respect to the Fermi level of a

goodmetal of the Pt orAg type that is in electrical contact with the sample.
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without exception. Nevertheless, the resolution of modern
ARPES devices apparently provides reasons to state that the
width of the corresponding peak is larger than the experi-
mental resolution, so the problem is accessible to experiments
[51]. It turns out that in the superconducting phase, atT5Tc,
near the point of intersection of the Fermi surface and the
diagonal of the Brillouin zone [the �0; 0�ÿ�p; p� direction]
there appears a fairly sharp spectral-density peak correspond-
ing to well-defined quasiparticles [51]. Near point �0; p� the
Fermi surface is `destroyed' by a superconducting gap
corresponding to d-type pairing, which results in a double-
peaked structure of the spectral density.

The smooth evolution of an ARPES pseudogap at
T > Tc into a superconducting gap corresponding to d-
pairing at T < Tc is often considered an argument in favor
of the superconducting nature of the pseudogap state. Most
likely this is not the case, however. In this connection note
the very interesting work of Ronning et al. [52], who carried
out ARPES investigations of the dielectric oxide
Ca2CuO2Cl2, which is structurally similar to La2CuO4 and
becomes a high-Tc superconductor when doped with
sodium or potassium. ARPES measurements in this system
also proved to be possible in the dielectric phase due to the
good quality of the samples' surface. A remarkable feature
of this paper [52] is that it apparently presents the first
report of an observation of the `residual' Fermi surface in
this Mott insulator, which is, naturally, `blocked' by a gap
(probably of the Mott ±Hubbard type). At the same time,
Ronning et al. [52] observed a strong anisotropy of this gap
in the reciprocal space with a d-type symmetry, closely
resembling similar data on HTSC oxides in the metallic
phase. It is quite natural to assume that this anisotropic gap
is of the same nature as the pseudogap in the high-energy
region, say, in Bi-2212 [52]. Clearly there is no Cooper
pairing in the insulator.

2.5 Other experiments
The pseudogap behavior also manifests itself in other
experiments, such as Raman scattering of light on electrons
[53] or magnetic scattering of neutrons [54]. All these data
point, in one way or another, to a substantial suppression of
the density of states of single-particle excitations near the
Fermi level of underdoped HTSC cuprates at temperatures
below T �, i.e. even in the normal phase. In view of the
shortage of space, we will not discuss these data in greater
detail, the more so that good reviews can be found in the
above-cited papers and in Ref. [2].

3. Theoretical models of the pseudogap state

3.1 Scattering on short-range-order fluctuations:
Qualitative ideas
As noted in the Introduction, there are two main theoretical
scenarios for explaining the pseudogap anomalies in HTSC
systems. The first one is based on the model of Cooper pair
formation above the superconducting transition temperature
(precursor pairing), while the second one assumes that the
origin of the pseudogap state is related to short-range-order
fluctuations of a `dielectric' type (e.g. antiferromagnetic or of
the charge-density-wave type), which exist in the underdoped-
composition range and strongly scatter electrons, which leads
to a pseudogap transformation of the electron spectrum. We
believe the second scenario to be preferable, which follows
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from both the experimental data8 discussed in Section 2 and
the simple fact that all pseudogap anomalies intensify as
underdoping increases, i.e. as the system departs from the
phase-diagram region optimal for superconductivity and
approaches the region of the dielectric (antiferromagnetic)
phase.

Let us examine a typical Fermi surface of carriers in the
CuO2 plane depicted in Fig. 13a. The phase transition to the
antiferromagnetic state doubles the lattice spacing and leads
to the emergence of a `magnetic' Brillouin zone in the
reciprocal space, depicted in Fig. 13a by dashed lines. If the
carrier spectrum is given by equation (3) with t 0 � 0, then for
a half-filled zone the Fermi surface is a square coinciding with
the boundaries of the magnetic zone, so that there is complete
nesting, i.e. translation by the antiferromagnetism vector
Q � ��p=a;�p=a� results in the alignment of the flat regions
of the Fermi surface. At T � 0 the electron spectrum is
unstable: a gap opens everywhere on the Fermi surface and
the system passes to a dielectric state caused by an
antiferromagnetic spin-density wave (SDW) 9. Such ideas
form the basis for the popular explanation of antiferromag-
netism in HTSC cuprates Ð see, for instance, Ref. [55]. A
review of such models can be found in Ref. [56]. In the case of
the Fermi surface depicted in Fig. 13a, as antiferromagnetic
long-range order emerges, then, according to the general
principles of band theory [57], at the points of intersection of
constant-energy surfaces (the Fermi surface, for one thing)
and the boundaries of the new (magnetic) Brillouin zone,
these surfaces experience a discontinuity related to the
opening of a gap in the spectrum at points connected by the
vector Q.

In the region of the phase diagram of HTSC cuprates of
interest to us there is no antiferromagnetic long-range order,
but there are convincing experimental indications that every-
where below theT �-line there are well-developed fluctuations
of antiferromagnetic short-range order. The model of a
`nearly antiferromagnetic' Fermi liquid [58, 59] introduces
an effective interaction between electrons and spin fluctua-
tions, which is described by the dynamic spin susceptibility
wq�o�, whose shape is determined through matching to the
data of NMR experiments [46, 60]:

Veff�q;o� � g 2wq�o� �
g 2x 2

1� x 2�qÿQ�2 ÿ io=osf

; �6�

where g is the coupling constant, x is the correlation length of
the spin fluctuations, Q � ��p=a;�p=a� is the vector of
antiferromagnetic ordering in the dielectric phase, and osf is
the characteristic spin ± fluctuation frequency.

Since the dynamic spin susceptibility wq�o� has peaks at
wave vectors lying in the neighborhood of ��p=a;�p=a�, two
types of quasiparticles appear in the system Ð `hot'
quasiparticles, whose momenta are in the neighborhood of
`hot' spots on the Fermi surface (Fig. 13a) and whose energies
obey the inequality

jek ÿ ek�Qj < vF
x

�7�

(vF is the velocity on the Fermi surface), and `cold'
quasiparticles, whose momenta are near the regions of the
Fermi surface that surround the diagonals of the Brillouin
zone, j pxj � j pyj, and do not satisfy the condition (7) [14].
This terminology reflects the fact that quasiparticles in the
vicinity of `hot' spots experience a strong scattering of order
Q due to interactions with spin fluctuation [Eqn (6)], while for
quasiparticles with momenta far from the `hot' spots this
interaction is fairly weak. In what follows we call such a
model the `hot'-spots model10.

We will see that the correlation length x of antiferromag-
netic short-range-order fluctuations, described by equation
(6), plays an important role. Note that in real HTSC systems x
is usually not very large and can vary from 2a to 8a [61, 62].

Depending on the type of the compound and doping level,
the characteristic spin-fluctuation frequency osf ranges from
10 to 100 K [61, 62], so that in the most part of the pseudogap
region on the phase diagram the condition pT4osf holds
fairly well. This condition makes it possible to ignore the spin
dynamics and restrict the analysis to the quasistatic approx-

8For instance, in my opinion, the tunneling experiments of Krasnov et al.

[21, 22] bear out almost entirely the `superconducting' scenario of

pseudogap formation.
9A similar picture emerges in the case of dielectrization due to charge-

density-wave formation.
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Figure 13. (a) Fermi surface in the Brillouin zone and the hot-point model.

The dashed lines depict the boundaries of the magnetic Brillouin zone,

which emerges as a result of lattice-spacing doubling related to the

appearance of antiferromagnetism. The `hot' spots are the points of

intersection of the Fermi surface and the boundaries of the magnetic

zone. (b) The Fermi surface in the hot-regions model (the hot spots, or hot

regions, are depicted by heavy lines). The width of the hot spots is of order

� xÿ1. Angle a determines the size of a hot region [63], with a � p=4
corresponding to a square Fermi surface.

10Note that the antiferromagnetic nature of the fluctuations is unimpor-

tant for further analysis, and themodel is of amore general nature.What is

important here is the strong scattering of electrons by vectors fairly close

to the vectorQ, which `moves' electrons from one side of the Fermi surface

to the other. Both charge-density-wave (CDW) fluctuations and structural

fluctuations may be responsible for such processes.
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imation 11:

Veff�q� � eW 2 x 2

1� x 2�qÿQ�2 ; �8�

where eW is an effective parameter with dimensions of energy,
which can be written in the model of antiferromagnetic
fluctuations [14] as

eW 2 � g 2T
X
m; q

wq�iom� � g 2hS 2
i i

3
; �9�

with Si the spin at the lattice site (the Cu ion in the CuO2 plane
for HTSC cuprates).

In what follows both eW and x are interpreted as
phenomenological parameters of the theory. In particular,eW defines the effective width of the pseudogap. Here we will
not attempt to develop a complete microscopic theory of the
pseudogap state. In what follows we will mainly model the
corresponding transformation of the electron spectrum and
its effect on the physical properties of the system (e.g. on
superconductivity).

All calculations can bemademuch simpler if instead of (8)
we use a model interaction of the form

Veff�q� �W 2 2xÿ1

xÿ2 � �qx ÿQx�2
2xÿ1

xÿ2 � �qy ÿQy�2
; �10�

where W 2 � eW 2=4 (the first to use this approach were
Kampf and Schrieffer [11]). Qualitatively, equation (10)
closely resembles (8) and quantitatively differs very little in
the most interesting region jqÿQj < xÿ1. A similar (but
somewhat different in form) effective interaction was used
by Schmalian et al. [14]. Actually, such an approach
effectively reduces the problem to a one-dimensional one.

The scattering on antiferromagnetic fluctuations inHTSC
cuprates not always reaches its intensity maximum at the
vector Q � �p=a; p=a� commensurate with the spacing of the
original lattice; generally, the vector Q may correspond to
incommensurate scattering. The observed topology of the
Fermi surface with flat regions of the type depicted in Fig. 9
suggests another model of scattering on short-range-order
fluctuations of the antiferromagnetic type 12, which we will
call the hot-region model [63]. Let us assume that the Fermi
surface of a two-dimensional electronic system has a shape as
depicted in Fig. 13b. The size of the `hot' regions is determined
by the angular parameter a. It is well known that the presence
of flat regions on the Fermi surface leads to the instability of
the system against the formation of charge- or spin-density
waves, with the onset of a corresponding long-range order
and the formation of a (dielectric) energy gap in these regions.
However, we are interested in situations characteristic of the
fluctuation region of the corresponding phase diagram, when

there is no long-range order 13. Such a model of the Fermi
surface has been applied to HTSC cuprates for a fairly long
time by Virosztek and Ruvalds [65], Ruvalds et al. [66], and
Zheleznyak et al. [67], who, in particular, analyze in detail the
microscopic criteria for the existence of the antiferromagnetic
and superconducting phases (the phase diagram).

We assume that short-range-order fluctuations are static
and have a Gaussian form 14 and define the correlation
function of these fluctuations as follows (in a manner similar
to that assumed in Ref. [11]):

S�q� � 1

p 2

xÿ1

�qx ÿQx�2 � xÿ2
xÿ1

�qy ÿQy�2 � xÿ2
: �11�

Here x is again the correlation length of fluctuations, and the
scattering vector is taken in the form Qx � �2kF, Qy � 0 or
Qy � �2kF, Qx � 0. We also assume that only the electrons
from the flat (`hot') regions of the Fermi surface, which are
shown in Fig. 13b, interact with these fluctuations, and the
scattering is actually one-dimensional. In particular, at
a � p=4 we simply have a square Fermi surface, and the
problem becomes purely one-dimensional. When a < p=4,
the Fermi surface has `cold' regions, where the scattering is
either absent or very weak. The effective interaction of the
electrons from the `hot' regions with fluctuations will be
described here by the quantity �2p�2W 2S�q�, where the
parameter W with dimensions of energy again determines
the energy scale (width) of the pseudogap 15. The choice of the
scattering vector,Q � ��2kF; 0� orQ � �0;�2kF�, generally
implies that there are incommensurate fluctuations, since the
Fermi momentum pF � �hkF is generally not related to the
reciprocal lattice spacing. The commensurate case can also be
considered with this model (see Ref. [63]).

As noted earlier, the main idea of the models under
consideration consists in examining strong scattering on
short-range-order fluctuations, which, in accordance with
(6), (10), or (11), is effectively finite only within a limited
region of the reciprocal space, of the size of order xÿ1,
surrounding `hot' spots or regions, which leads to a
pseudogap transformation of the electron spectrum in such
regions 16.

Let us qualitatively examine the nature of the correspond-
ing changes in the one-electron spectral density (5). In the
standard Fermi-liquid theory [69], the one-electron Green
function of a metal has the form

G�o; k� � Zk

oÿ xk ÿ igk
� Gincoh ; �12�

11According to the terminology used by Schmalian et al. [14], this

corresponds to a `weak' pseudogap.
12 Since in what follows we ignore, for the sake of simplicity, the spin

structure of the interaction, our reasoning is, strictly speaking, applicable

to the case of interaction of electrons and short-range-order CDW-type

fluctuations. This simplification, however, is unimportant from the view-

point of the qualitativemanifestations of the pseudogap transformation of

the electron spectrum. Note that some researchers suggest using the

interaction with CDW-type fluctuations to explain the anomalies of

HTSC cuprates in the region of interest as an alternative to the spin

fluctuation model [64].

13 The assumption that there are flat regions on the Fermi surface is not

really important in the model but substantially simplifies calculations,

which can be done, at least in principle, for the more realistic `hot'-spots

model.
14 Strictly speaking, this assumption is applicable only when the tempera-

ture is sufficiently high.
15We can say that we introduce an effective coupling constant of the

electron-fluctuation interaction in the form Wp �W
�
y� p 0

x ÿ px��
y� p 0

x � px� � y� p 0
y ÿ py�y� p 0

y � py�
�
(Fig. 13b).

16A similar situation is realized in molten metals and semiconductors,

where the information about the lost crystalline structure is saved in the

so-called structure factor and leads to a characteristic maximum in this

factor in momentum space. This quantity plays a determinant role in the

Ziman and Edwards theory of the electronic structure of liquid metals and

semiconductors [68]. However, in 3D isotropic liquids averaging over

angles usually leads to a significant weakening of pseudogap effects.
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where xk � ek ÿ m is the quasiparticle energy measured from
the Fermi level (chemical potential) m, and gk is the
quasiparticle damping. For the residue at the pole,
0 < Zk < 1, and Gincoh is the nonsingular (incoherent)
contribution of many-particle excitations. Then the corre-
sponding spectral density is given by the formula

A�o; k� � 1

p
Zk

gk
�oÿ xk�2 � g2k

� . . . ; �13�

where the ellipsis stands for the more or less invariable
contribution originating from Gincoh, and the quasiparticle
spectrum manifests itself in a narrow (as gk is small)
Lorentzian peak. The situation is illustrated in Fig. 14a.

If long-range order (say, of SDW- or CDW-type) sets in in
the system, a (dielectric) gap of width Wk opens in the
spectrum of the elementary excitations of the system (the
dependence on k emphasizes the possibility of the appearance
of a finite gap only within a certain portion of the Fermi
surface), and the one-electron Green function becomes the
well-known Gor'kov function [55, 56] to which the decay Gk

can be added:

G�o; k� � u 2
k

oÿ Ek � iGk
� v 2k
o� Ek ÿ iGk

; �14�

where the excitation spectrum is

Ek �
������������������
x 2
k �W 2

k

q
�15�

and where we have introduced the Bogolyubov coefficients

u 2
k �

1

2

�
1� xk

Ek

�
; �16�

v 2
k �

1

2

�
1ÿ xk

Ek

�
: �17�

Then the spectral density is given by the formula

A�o; k� � u 2
k

p
Gk

�oÿ Ek�2 � G 2
k

� v
2
k

p
Gk

�o� Ek�2 � G 2
k

� . . . ;

�18�
where we now have two peaks, narrow as Gk is small and
corresponding to `Bogolyubov' quasiparticles.

Now suppose that there is no CDW- or SDW-type long-
range order but strong scattering on fluctuations with the
correspondingwave vectors is present [cf. (6) and (10) or (11)].
Then it is easy to imagine that, in the region of momentum
space where a dielectric gap opens in the presence of long-
range order, the spectral density retains a `recollection' (or
`premonition') of this gap in the form of a characteristic
`double-humped' structure, as shown qualitatively in
Fig. 14 17. Here the width of the peaks is naturally deter-
mined by a parameter like vF=x, i.e. by the reciprocal time of
transit of an electron through a region of size x in which the
`dielectric' order is effectively retained. Thus, the qualitative
picture of the process agrees fairly well with the ARPES data
displayed in Fig. 12. Below we will see that a systematic
treatment of the problem leads to precisely these results. Our
further discussion will be devoted to justifying this qualitative
scheme and to deriving various corollaries.

3.2 Recurrent procedure for the Green functions
The model of the pseudogap state considered here is
actually a two-dimensional generalization of the pseudogap
model proposed many years ago by Lee et al. [70] and the
present author [71 ± 73] for the fluctuation region of the
Peierls (CDW) structural transition in one-dimensional
systems 18. In particular, in Refs [71, 72] an exact solution
of the problem was derived in the limit of very large
correlation lengths of short-range-order fluctuations,
x!1, while in Ref. [73] a generalization to the case of
finite x was carried out. What sets Refs [71 ± 73] apart from
the paper by Lee et al. [70] is the allowance for all diagrams
of the Feynman series in the theory of perturbation in the
interaction with fluctuations. A two-dimensional general-
ization of this approach was carried out by Schmalian et al.
[14] and Kuchinski|̄ and Sadovski|̄ [15] in the `hot'-spots
model, while in the hot-region model such a generalization
is trivial because the problem can be completely reduced to
a one-dimensional one.

The contribution of an arbitrary diagram for the self-
energy part of a one-electron Green function of theNth order
in the interaction (10) or (11) with fluctuations can be
approximately written as follows [15]:

S �N��en; p� �W 2N
Y2Nÿ1
j�1

1

ien ÿ xj � injvj K
; �19�

where in the hot-point model xj � xp�Q and vj �
jvxp�Qj � jv yp�Qj for j odd and xj � xp and vj � jvxp j � jv yp j for
j even, while in the hot-region model, xj � �ÿ1� jxp and
vj � vF. In equation (19) we have introduced the reciprocal
correlation length K � xÿ1, nj is the number of interaction
lines encompassing the jth Green function in the given
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Figure 14. Qualitative picture of the evolution of the spectral density. (a)

Normal metal (Fermi liquid) at xk � 0, i.e. at the Fermi surface. (b) Two

narrow peaks corresponding to `Bogolyubov' quasiparticles in a system

with a dielectric gap Wk (in the presence of long-range CDW- or SDW-

type order). The diffuse maxima represent a system without long-range

order (pseudogap behavior), xk � 0 (at the Fermi surface). (c) The same as

in (b) but with xk > 0, i.e. above the Fermi surface. In this case the spectral

density acquires a characteristic asymmetry.

17 In what follows, the term `non-Fermi-liquid behavior' will be used only

in this, fairly limited, sense.
18 In Ref. [71] this model was used to explain the appearance of a

pseudogap in liquid semiconductors.
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diagram, en � �2n� 1�pT, and, for the sake of definiteness,
en > 0.

Actually, equation (19) is a fairly successful ansatz for
calculating the contribution of a diagram of any order. In this
case any diagram with the interaction lines crossed proves to
be equal to a diagram of the same order but without
interaction-line crossing. Hence we can actually consider
only diagrams without interaction-line crossing and allow
for the diagrams with line crossing by introducing additional
combinatorial factors at the interaction vertices. Such an
approach was first used (in another problem) by Elyutin [74]
and was then employed in Ref. [73] for a one-dimensional
model of the pseudogap state. Equation (19) is not exact [75]
and can be justified in the two-dimensional case only for
certain topologies of the Fermi surface, such that the
projections of the electron velocities at `hot' spots linked by
the vector Q have the same sign and hence v x

p v
x
p�Q > 0 and

v y
p v

y
p�Q > 0 [15]. This condition is obviously invalid in the

one-dimensional case and for a topology of the Fermi surface
typical of HTSC cuprates (see Fig. 13a). However, as shown
in Ref. [15], in such cases the use of equation (19) also leads to
a satisfactory description, reproducing the well-known exact
results for the limits x!1 and x! 0 19.

As a result we arrive at the following recurrent relation
(represented in the form of a continued fraction [73]) for the
one-electron Green function:

Gÿ1�en; xp� � Gÿ10 �en; xp� ÿ S1�en; xp� ; �20�

Sk�en; xp� �W 2 v�k�
ien ÿ xk � ikvkKÿ Sk�1�en; xp�

: �21�

The combinatorial factor

v�k� � k �22�

corresponds to the case of commensurate fluctuations with
Q � ��p=a;�p=a� (considered here) [73]. It is really easy to
examine also the case of incommensurate fluctuations, where
Q is not related to the reciprocal lattice spacing. In this case
the contribution of the diagrams in which the interaction lines
encompass an odd number of vertices is much smaller than
that of the diagrams in which the interaction lines encompass
an even number of vertices. Hence only the latter type of
diagram can be taken into account [71 ± 73]. In this case the
recurrent relation (21) is still valid, but the combinatorics of
the diagrams changes and so do the factors v�k� [73]:

v�k� �
k� 1

2
for odd k ;

k

2
for even k :

8>><>>: �23�

Schmalian et al. [14] allowed for the spin structure of the
interaction in the model of an `almost antiferromagnetic'

Fermi liquid (the spin ± fermion model). It proves that
allowing for this structure leads to a more complex combina-
torics of the diagrams in the commensurate case
Q � ��p=a;�p=a�. More precisely, scattering with spin
conservation yields formally commensurate combinatorics,
while scattering with a spin flip is described by diagrams for
the incommensurate case (a `charged' random field, in the
terminology of Schmalian et al. [14]). As a result, the
recurrent relation for the Green function is still of the form
(21), but the combinatorial factor v�k� becomes [14]

v�k� �
k� 2

3
for odd k ;

k

3
for even k :

8>><>>: �24�

3.3 Spectral density and the density of states
The recurrence relations (20) and (21) are very convenient for
numerical calculations. Fairly detailed calculations of spec-
tral densities, ARPES characteristics, and densities of states
have been carried out for different variants of the `hot'-spots
model [14, 15]. As a typical example, Fig. 15a depicts the
results of Ref. [15] for the spectral density of carriers in the
incommensurate case. Clearly, the spectral density near a
`hot' spot has the expected non-Fermi-liquid shape, and the
quasiparticle concept does not work here. Far from a `hot'
spot the spectral density has a sharp peak corresponding to
well-defined quasiparticles (a Fermi liquid). In Fig. 15b
(taken from Ref. [14]) we depict the product of the distribu-
tion function by the spectral density for different points on the
`renormalized' Fermi surface determined from the equation
ek ÿReS�o � 0; k� � 0, where the `bare' spectrum ek was
taken in the form (3) with t � ÿ0:25 eV, t 0 � ÿ0:35t, hole
concentration nh � 0:16, coupling constant in (6) g � 0:8 eV,
and correlation length x � 3a (the commensurate case and the
spin ± fermion model). There are clearly full qualitative
agreement with the ARPES data discussed above and a
qualitatively different behavior near the `hot' spot and far
from it. Finally, in Fig. 16 (taken fromRef. [14]) we depict the
positions of the maximum of A�o; k� calculated in the spin±
fermion model with interaction (6) (the static limit) for two
different hole concentrations, and the corresponding ARPES
data of Marshall et al. [79] for the Bi2Sr2Ca1ÿxDyxCu2O8�d
system. The point is that for an ideal system of a Fermi-liquid
type the positions of the maximum of the spectral density in
the �o; k� plane found from ARPES data actually determine
the dispersion law for the corresponding quasiparticles (Fig.
14a). For an overdoped system the values nh � 0:22 and x � a
were taken. The results demonstrate branches of the spec-
trum, defined fairly well, in both the direction of the diagonal
of the Brillouin zone and the direction �0; 0� ± �p; 0�. For an
underdoped system the values nh � 0:16 and x � 3a were
assumed. Here in the direction of the diagonal one can clearly
see the intersection of the spectrumwith the Fermi level, while
near `hot' spots, in the neighborhood of �p; 0�, the diffuse
maximum of the spectral density remains approximately
200 meV below the Fermi level (a pseudogap). On the
whole, agreement between the theoretical model and the
experimental data can be considered quite satisfactory.

Now let us turn to the one-electron density of states

N�E� �
X
p

A�E; p� � ÿ 1

p

X
p

ImGR�E; p� ; �25�

19 In the least favorable case of a one-dimensionalmodel, ansatz (19) yields

a very good quantitative approximation, e.g., for the density of states,

which becomes evident from a direct comparison [76] of the results of Ref.

[73] for an incommensurate case with the results of the exact numerical

simulation of the problem in question done by Bartosh and Kopietz [77]

and Millis and Monien [78]. In a commensurate case, (19) does not

describe only a Dyson singularity in the density of states are the center of

the pseudogap [77, 78], which is certainly absent in the 2D case.
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which is determined by an integral of A�E; p� over the entire
Brillouin zone. Detailed calculations of the density of states in
the `hot'-spots model were done in Ref. [15]. For a typical
value t 0=t � ÿ0:4, a small dip (pseudogap) is observed in the
density of states. The dip in the density of states only weakly
depends on the correlation length x. At the same time, say at
t 0=t � ÿ0:6 (which is not typical of HTSC cuprates), the
Fermi surface does contain `hot' spots, but a pseudogap in
the density of states can hardly be identified. What is
noticeable is the blurring of the Van Hove singularity, which
exists in the absence of scattering on fluctuations.

In the hot-region model, the use of (20) and (21) leads to a
spectral density quite similar in the `hot' regions to that
depicted in Fig. 15a [81, 82]. In the `cold' regions of the
Fermi surface the spectral density reduces to a Dirac delta
function, which is typical of Fermi liquids (cf. Fig. 14a). The

density of states is given by the formula

N�E � � ÿ 1

p
N0�0�

�2p
0

df
2p

�1
ÿ1

dxp ImGR�E; xp�

� 4a
p

NW�E� �
�
1ÿ 4a

p

�
N0�0� ; �26�

where N0�0� is the density of states of free electrons on the
Fermi level, and NW�E � is the density of states in the one-
dimensional problem (a square Fermi surface), found earlier
in Refs [71 ± 73].

Let us present more detailed results for a rather artificial
limit of very long fluctuation correlation lengths, x!1.
This limit allows easily summing the entire perturbation series
for an electron scattered on such fluctuations [71, 72] and
obtaining the exact analytical solution for the one-electron
Green function in the form [63]

G�en; p� �
�1
0

dDP�D� ien � xp
�ien�2 ÿ x 2

p ÿD�f�2 ; �27�

where D�f� is defined for 04f4 p=2 as

D�f� �
D ; 04f4a ;

p
2
ÿ a4f4

p
2
;

0 ; a4f4
p
2
ÿ a :

8><>: �28�

For other values of f the quantity D�f� is obviously defined
from symmetry considerations in a manner similar to (28).

The amplitude of the dielectric gapD is a randomquantity
distributed according to the Rayleigh law [73] [its phase is
also random and is distributed uniformly over the interval
�0; 2p�]:

P�D� � 2D

W 2
exp

�
ÿ D 2

W 2

�
: �29�

Thus, in the `hot' regions, the Green function has the shape of
a `normal'Gor'kov function averaged over fluctuations of the
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Figure 15. (a) Spectral density in the `hot'-spots model, the case of
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dielectric gap D [distributed according to (29)], which are
spatially uniform. Here the `anomalous' Gor'kov function is
zero due to the randomness of the phases of the dielectric gap
D, which corresponds to the absence of long-range order in
the system 20.

For finite correlation lengths x the amplitude of our one-
dimensional `periodic' random field is approximately con-
stant over a length of order x, and its values in different
regions of size � x are random. An electron is effectively
scattered only when it passes fromone such region to another,
which takes a characteristic time � x=vF and leads to decay
� vF=x. Interesting data on simulation of a random field in
which the motion of the electron is treated within the
framework of the one-dimensional variant of the model at
hand can be found in Ref. [75].

Outside the `hot' regions [the second inequality in (28)] the
Green function (27) is simply the Green function of free
electrons.

The density of states corresponding to (27) has the form
(26), where

NW�E�
N0�0� �

���� EW
���� � E 2=W 2

0

dz
exp�ÿz�������������������������
E 2=W 2 ÿ z

p
� 2

���� EW
���� exp�ÿ E 2

W 2

�
Erfi

�
E

W

�
: �30�

Here Erfi�x� is the error function of imaginary argument.
Figure 17 depicts diagrams of the density of states in our

model for different values of the parameter a, i.e. for `hot'
regions of different sizes. Clearly, the pseudogap in the
density of states becomes `blurred' rather rapidly with the
decrease in the size of `hot' regions and is in general not very
distinct. In a certain sense the effect of decreasing a is similar
to the effect of decreasing correlation length x of the
fluctuations [73], so that the above approximation x!1 is,
possibly, not a very strong limitation on the applicability of

the model. The finiteness of x can easily be taken into account
using (20) and (21), which additionally suppresses of the
pseudogap as x decreases. Note the general qualitative
agreement between the shape of the pseudogap in the density
of states in the hot-region model and the shape of the
pseudogap observed in tunnel experiments, which becomes
evident if we look at Fig. 4.

3.4 Two-particle Green function and optical conductivity
A remarkable feature of the models in question is the
possibility of doing a fairly consistent calculation of the two-
particle Green function of the electron in the field of random
short-range-order fluctuations [80, 81] (see also Ref. [14]) that
allows for all diagrams in the Feynman perturbation series.
Since calculations in the hot-point model are fraught with
serious difficulties related to the use of a `realistic' current-
carrier spectrum (3), we limit ourselves to a simplified analysis
of the hot-region model [83].

We assume that in `cold' regions of the Fermi surface there
is weak static scattering of an arbitrary nature, whose rate we
will describe by a phenomenological parameter g assuming
that always g5W, so that in `hot' regions this scattering can
be ignored. Accordingly, in `cold' regions the electron
spectrum is described by the ordinary expressions for the
Green functions in a system with weak scattering.

We begin with the limit x!1, where the one-electron
Green function has the form (27) and the two-particle Green
function can also be found exactly by the methods described
in Refs [71, 72].

The conductivity in the given model always consists of
additive contributions from `hot' and `cold' regions, similar to
(26). In particular, for the real part of the conductivity we
have, as x!1,

Re s�o� � 4a
p

Re sW�o� �
�
1ÿ 4a

p

�
Re sD�o� ; �31�

where, with allowance for the results obtained in Refs [71, 72],

Re sW�o� �
o 2

pl

4

W

o 2

�o 2=4W 2

0

dz exp�ÿz� z��������������������������
o 2=4W 2 ÿ z

p :

�32�
Here opl is the plasma frequency, and

Re sD�o� �
o 2

pl

4p
g

o 2 � g 2
�33�

is the common Drude part of the conductivity due to `cold'
regions.

Even in this very simple approximation theo-dependence
of Re s closely resembles the experimental data given in Refs
[29, 30, 84, 85] and is characterized by a narrowDrude peak at
low frequencies and a smooth maximum in the absorption
through the pseudogap ato � 2W. As the rate g of scattering
on `cold' regions increases, the characteristic Drude peak at
low frequencies is more and more suppressed.

A more realistic case of a finite correlation length x of
fluctuations of short-range `antiferromagnetic' order in (11)
can be analyzed using (20) and (21). The vertex part
J RA�E; xp; E� o; xp�q�, which determines the density ± den-
sity response function (the two-particle Green function) in
`hot' regions, can be found by the following recurrent
procedure (for more details see Refs. [80, 81] and also

20Note that the pair averages of the anomalous functions are finite and

contribute to the corresponding exact solution for the two-particle Green

function [71, 72].
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Figure 17. Density of electronic states for `hot' regions of different sizes

[63]: (1) a � p=4, (2) a � p=6, (3) a � p=8, (4) a � p=12, and (5) a � p=24.
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Ref. [14]), which allows for all diagrams in the interaction
with fluctuations:

J RA
kÿ1�E; xp; E� o; xp�q� � e�W 2v�k�GA

k �E; xp�
� GR

k �E� o; xp�q�J RA
k �E; xp; E� o; xp�q�

�
�
1� 2ivFKk

n
oÿ �ÿ1�kvFq� v�k� 1�W 2

� �GA
k�1�E; xp� ÿ GR

k�1�E� o; xp�q�
�oÿ1�

: �34�

Here e is the electron charge, the superscript R(A) indicates
the retarded (advanced) Green function, and the vertex of
interest to us is determined by zero order, k � 0, in the given
recurrent procedure. The contribution to the conductivity
from `hot' regions, Re sW�o�, in (31) can now be calculated as
in Refs [80, 81], while Re sD�o� is still given by (33).

The typical results of calculations are depicted in Fig. 18
for the case of incommensurate fluctuations. The allowance
for the combinatorics of the spin ± fermion model leads to
only slight quantitative changes. The general qualitative
picture for the commensurate case is the same [83]. Con-
ductivity is always characterized by the presence of a fairly
narrow Drude peak at low frequencies, o < g, which emerges
from the `cold' regions on the Fermi surface, and a gently
sloping maximum at frequencieso � 2W, which corresponds
to absorption through the pseudogap that opens in the `hot
regions. The Drude peak rapidly becomes blurred as g
increases. The dependence on the fluctuation correlation
length x � Kÿ1 in the most interesting region of parameters
is fairly weak. This qualitative picture closely resembles the

pattern of experimental data for a broad range of HTSC
systems [29, 30, 84, 85], with a typical example of such data
depicted in Fig. 7. In the model in question we can calculate
not only the real but also the imaginary part of the
conductivity and, accordingly, the parameters of the
extended Drude model (1) and (2) [86]. The calculated
behavior of 1=t�o� is shown in the inset in Fig. 18 and
represents the pseudogap behavior at frequencies o <W,
similar to that depicted in Fig. 7b 21. Thus, the resulting dip in
1=t�o� in the frequency range o <W is a direct reflection of
the presence of a pseudogap in the electron spectrum. It is
probably easy to fit our results to the experimental data using
the well-known valuesopl � 1:5ÿ2:5 eV and 2W � 0:1 eV, as
well as the values of g determined experimentally from the
width of the Drude peak, and varying the adjustable
parameters a (the size of `hot' regions) and x (for the latter
quantity we can use the well-known estimates from other
experiments [14]).

4. Superconductivity in the pseudogap state

4.1 Gor'kov equations
At present there is no unified viewpoint on the mechanism of
Cooper pairing in HTSC cuprates. What has been firmly
established is only the fact of anisotropic pairing and d-wave
symmetry of Cooper pairs [45 ± 47], although even in this
problem there are alternative viewpoints. Apparently, there is
a tendency among most researchers to adhering to one or
another variant of pairing caused by the exchange of spin
(antiferromagnetic) fluctuations. A recent review of the
attempts made in this direction can be found in Ref. [46]. A
typical example of theories of this type is the model of a
`nearly antiferromagnetic' Fermi liquid (the spin ± fermion
model), which is being actively developed by Pines and his
collaborators (see Refs [58, 59]). The model is based on the
assumption that electrons interact with spin fluctuations, and
the form of this interaction [Eqn (6)] is determined, as noted
above, bymeans of fitting toNMRdata [60]. This approach is
being actively developed (the results of recent work in this
area of research can be found in Refs [87 ± 89]), and there are
conclusive experimental facts in favor of this HTSC mechan-
ism [46, 90]. At the same time, we have seen that the
interaction (6) can also be responsible for the formation of a
`dielectric' pseudogap at sufficiently high temperatures.
Unfortunately, so far there has been no studies that would
consistently examine in conjunction the phenomenon of
Cooper pairing and the formation of a pseudogap with the
spin ± fermion model.

On the other hand, rephrasing Landau's statement
(quoted in Ref. [91]) that `nobody has abrogated the
Coulomb law for metals,' we can say that nobody has
abrogated the electron ± phonon interaction as well, and this
interaction can serve as a possible microscopic pairing
mechanism in HTSC. Reviews of the corresponding calcula-
tions with really impressive results can be found in Refs [91,
92] and in an earlier review by Ginzburg and Maksimov [93].
Perhaps themain difficulty of the pairingmodels based on the
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Figure 18. Real part of the conductivity as a function of the frequency of

the external field at a fixed value of the correlation length vFK � 0:5W for

different values of g (conductivity is in units of o 2
pl=4pW): (1) g=W � 0:2,

(2) g=W � 0:5, and (3) g=W � 1:0. The size of the `hot' regions is a � p=6
[83]. The inset presents the calculated generalized scattering rate 1=t (in

units of W) as a function of the frequency of the external field at a fixed

g � 0:2W for different values of the correlation length: (1) vFK � 0:1, (2)
vFK � 0:5, and (3) vFK � 1:0 [86].

21When o >W, the linear increase of 1=t�o� with frequency is not

reproduced, but, to allow for such an increase, one can use a phenomen-

ological substitution like g�o� � g0 � ao, in the spirit of the theory of

marginal Fermi liquids. Themeaning of such a substitution is to `allow' for

inelastic scattering processes, completely ignored in our model.
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electron ± phonon interaction in HTSC cuprates is the d-wave
symmetry of Cooper pairs (mentioned earlier). At the same
time, interesting attempts have been made to explain
anisotropic pairing based on the electron ± phonon interac-
tion [91, 92], and there are serious doubts on the efficiency of
the spin-fluctuation mechanism [91].

I am not inclined to take sides in this discussion and
believe that these (or similar [94]) fairly traditional mechan-
isms probably play a leading role in the microscopic theory of
high-Tc superconductivity. In any case, in this review there
will be no discussion of other, more radical, approaches like
the Luttinger-liquid model [95], which has been developed for
many years in different variants. The reason is that there are
no well-established results and conclusions in these new
approaches.

The above-discussed substantial transformation of the
electron spectrum (pseudogap) has inevitably a strong effect
on the properties of the system in the superconducting state.
In the approach considered above, which is based on the
scenario of pseudogap formation due to `dielectric' (AFM,
SDW, or CDW) type, short-range-order fluctuations, the
discussion is about the effect of the pseudogap on super-
conductivity. In such an approach the investigation can be
carried out without knowing the specifics of the pairing
mechanisms, as is done, for instance, in analyzing the effects
of such factors as structural disordering and the presence of
impurities on superconductivity. From the physical view-
point, the least justified in our further investigation is the
above assumption that short-range-order fluctuations are
static, since the dynamics of these fluctuations [say, within
the model (6)] can play a leading role at low temperatures (in
the superconducting phase), being possibly responsible for
the very mechanism of Cooper pairing. We deliberately
introduce appropriate simplifications, since for the time
being it is impossible to get the full solution of the problem
in a dynamical model. Moreover, our analysis will entirely be
based on the simplified hot-region model 22 discussed in
Section 3.1. For the sake of completeness, we consider s-
and d-pairing in conjunction.

In view of what we have said, without concretizing the
microscopic mechanism, we adopt the simple BCS-type
model for the pairing interaction and assume that Cooper
pairing occurs because of an attractive `potential' of the
following simple type:

Vsc�p; p 0� � V�f;f 0� � ÿVe�f�e�f 0� ; �35�
where f is the polar angle determining the direction of the
electronmomentum p in the plane, and e�f� is specified by the
simple model dependence

e�f� � 1 �s-pairing� ;���
2
p

cos 2f �d-pairing� :
�

�36�

As usual, the attraction constant V is assumed to be nonzero
within a certain layer of width 2oc near the Fermi level (oc is
the characteristic frequency of the quanta ensuring the
attraction of electrons). The model interaction of type (35)
has been successfully used by Borkowski and Hirschfeld [96]
and Fehrenbacher and Norman [97] to analyze the effect of
impurities on anisotropic Cooper pairing.

In this case the superconducting gap has the form

D�p� � D�f� � De�f� : �37�

To avoid dealing with cumbersome formulas, we will herein-
after assume that D stands precisely for D�f� and will indicate
the angular dependence explicitly only where this is required.

In the superconducting state, a theory that uses the
interaction with AFM fluctuations (11) as a perturbation
must be based on the `free' normal and anomalous Green
functions of the superconductor,

G00�en; p� � ÿ
ien � xp

e 2n � x 2
p � jDj2

;

F �00�en; p� �
D�

e 2n � x 2
p � jDj2

: �38�

In this case, we can formulate a direct analog of the
approximation (19) in the superconducting state [98]. The
contribution of an arbitrary diagram of the Nth order in the
interaction (10) to the normal or anomalous Green function
has the form of the product ofN� 1 `free' normal �G0 kj� and
anomalous �F �0 kj�Green functions, with frequencies and gaps
renormalized in a certain way. Here kj is the number of
interaction lines encompassing the given jth (as counted from
the beginning of the diagram) electron line. As in the normal
phase, the contribution of any diagram is determined by a set
of integers kj, and each diagram with intersecting interaction
lines is equal to a diagram of the same order without
intersections of these lines. Hence we can again focus solely
on diagrams without intersections, taking into account the
contribution of other diagrams by introducing the same
combinatorial factors v�k� assigned to the interaction lines
as in the normal phase. As a result, we arrive at an analog of
the Gor'kov equations [69]. Accordingly, there emerge two
coupled recurrent equations for the normal and anomalous
Green functions:

Gk � G0 k � G0 k
eGGk ÿ G0 k

eFF �k ÿ F0 k
eG �F �k ÿ F0 k

eF �Gk ;

F �k � F �0 k � F �0 k eGGk ÿ F �0 k eFF �k � G �0 k eG �F �k � G �0 k eF �Gk ;

�39�

whereeG �W 2v �k� 1�Gk�1 ; eF � �W 2v �k� 1�F �k�1 ; �40�

G0 k�en; p� � ÿ
ien � �ÿ1�kxp
~e 2n � x 2

p � j ~Dj 2
; F �0 k�en; p� �

~D �

~e 2n � x 2
p � j ~Dj 2
�41�

and we have introduced the above-mentioned renormalized
frequency ~e and gap ~D,

~en � Zken ; ~D� ZkD ; Zk � 1� kvFK�������������������
e 2n � jDj 2

q ; �42�

similar to those that appear when one considers super-
conductors with impurities [69].

The normal and anomalous Green functions of the
superconductor, in which we are interested, are determined
by (39) with k � 0 and represent the completely summed
series of perturbation theory in the interaction of an electron

22 This simplification is not very important. A similar analysis can be done

within the hot-point model, but the complexity of the calculations

increases substantially.

530 M V Sadovski|̄ Physics ±Uspekhi 44 (5)



in the superconductor with antiferromagnetic short-range-
order fluctuations.

Actually we are examining the Gor'kov-type Green
functions averaged over the ensemble of random (Gaussian)
short-range-order fluctuations in a similar way as is done in
the problem of the effects of impurities on superconductivity
[69]. Here we assume that the superconductor order para-
meter (the energy gap) D is self-averaging over these
fluctuations, which makes it possible to average it irrespec-
tive of the electronic Green functions in the diagrammatic
series. The usual arguments in favor of the possibility of such
independent averaging is as follows [99 ± 101]: the value of D
varies over characteristic lengths of order x0 � vF=D (the
coherence length of the BCS theory), while the Green
functions vary rapidly over much smaller lengths, of the
order of interatomic distances. Naturally, the last assump-
tion does not hold if a new characteristic length x!1
appears in the electronic subsystem. At the same time, in
conditions where the AFM correlation length x is much
smaller than x0 (i.e. when AFM fluctuations correlate over
distances shorter than the characteristic size of Cooper pairs),
the assumption that D is self-averaging is valid, breaking
down only in the region x > x0. As a result, we can use the
standard approach of the theory of disordered superconduc-
tors (the mean-field approximation, in the terminology of
Ref. [102]). A possible manifestation of the non-self-aver-
aging nature of D [102] will be considered below. Note that in
real HTSC cuprates x is probably always of order x0, so that
they both are in the region that presents most difficulties for
the theory.

4.2 Transition temperature
and the temperature dependence of the gap
The energy gap of a superconductor is specified by the
equation

D�p� � ÿT
X
p 0

X
e n

Vsc�p; p 0�F �en; p 0� : �43�

On flat sections of the Fermi surface the anomalous Green
function can be found by applying the recurrent procedure
(39). In the remaining (`cold') part of the Fermi surface there
is no scattering on AFM fluctuations in our model, and the
anomalous Green function has the form (38). The results of
calculations of the temperature dependences of the energy
gap for different values of the correlation length x of short-
range order fluctuations can be found in Ref. [98]. These
dependences are of a fairly traditional shape.

An equation for the superconducting transition tempera-
ture Tc immediately follows for (43) if D! 0. The depen-
dences of Tc on the gap width W and the correlation length
(the parameter K � xÿ1) that were calculated in Ref. [98] are
depicted in Fig. 19, where Tc 0 is the transition temperature in
the absence of a pseudogap. In these calculations the value of
a was rather arbitrarily taken equal to p=6, which is close to
the experimental data of Gatt et al. [34].

The general qualitative conclusion is that a pseudogap
suppresses superconductivity due to partial `dielectrization'
of the electron spectrum in the `hot' regions of the Fermi
surface. The suppression effect is maximum at K � 0 (infinite
correlation length of AFM fluctuations [63, 102]) and
decreases with the decrease of the correlation length, which
completely agrees with the experimental phase diagram of
HTSC systems. As noted above, the parameters of this model

are phenomenological. For instance, the effective width of the
pseudogap, 2W, can probably be identified with the para-
meter Eg; experimental data on the magnitude of this
parameter are depicted in Fig. 6 as a function of the doping
level for the YBCO system. The data on the correlation length
x and its temperature and concentration dependences are very
incomplete. Indirectly the necessary information was
extracted from data of NMR experiments [14, 60]. Direct
data of neutron-scattering experiments are rather ambiguous.
Nevertheless, as an example, we take the result of Balatsky
and Bourges [103], who summarized the data on the width of
the peak in neutron scattering by the vector �p=a; p=a� in the
YBCO system with varying oxygen content. It is only natural
to identify the reciprocal of the peak width with x. These
researchers found an interesting correlation between the
superconducting transition temperature and the quantity
xÿ1 defined in this manner (see Fig. 20). Obviously, this
dependence is in direct correspondence to the dependence of
Tc on K � xÿ1 depicted in the inset in Fig. 19. A quantitative
fitting of these data to the above-calculated dependences
(which follow from the simple model of the pseudogap state
considered here) is of course possible, but it requires taking
into account rather ambiguous information about the
concentration dependence of the parameter W. In particu-
lar, it is not quite clear whether there is any physical meaning
in the vanishing of the quantity Eg �W at a certain `critical'
carrier concentration, as shown in Fig. 6. The effect of the
pseudogap can also disappear as a result of a proper decrease
in the correlation length x, which leads to the `filling' rather
than `collapse' of the pseudogap in the density of states.
However, if we adopt the data [6] in Fig. 6 on the pseudogap
width, then our parameter 2W changes from a value of order
700 K at a hole concentration of p � 0:05 to a value of order
Tc � 100 K near the optimal concentration p � 0:17, vanish-
ing at p � 0:19. If we use the microscopic expression (9) for
the parameter W, which follows from the theory of a `nearly
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Figure 19. Dependence of the superconducting transition temperature on

the pseudogap width W and the correlation length of antiferromagnetic

fluctuations (the parameter K � xÿ1): (1) vFK=W � 0:1, (2) vFK=W � 1:0,
and (3) vFK=W � 10:0. The dotted line corresponds to K � 0 [63]. The inset

presents Tc as a function of K atW=Tc 0 � 5 [98].
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antiferromagnetic' Fermi liquid, we can relate such a
behavior of the concentration to the corresponding depen-
dence for the local spin hS 2

i i on an ion of Cu. I am not aware
any direct data of this kind, but it is worthmentioning a paper
by Tallon [104], who demonstrated the vanishing of the
effective interaction with antiferromagnetic spin fluctuations
at p � 0:19 by means of processing the experimental data on
NMR relaxation times.

We stress once more that the above theoretical results
hold under the assumption that the superconducting order
parameter (gap) is self-averaging over AFM fluctuations (the
mean-field approximation, in the terminology of Ref. [102]),
which is true if the correlation length is not too large, x < x0,
where x0 is the coherence length of the superconductor (the
size of the Cooper pairs atT � 0).Wewill see that, for x4 x0,
non-self-averaging sets in, which results in the appearance of
characteristic `tails' in the temperature dependence of the
averaged gap in the temperature range Tc < T < Tc 0 [102].

4.3 Cooper instability
As is known, there is another way of finding the transition
temperature, namely, from the equation for the Cooper
instability of the normal phase,

1ÿ Vw�0; 0� � 0 ; �44�

where w�0; 0� is the generalized Cooper susceptibility

w�q; 0;T � � ÿT
X
e n

X
p

G�en; p� q�G�ÿen; p�

� e 2�f�G�en;ÿen; q� : �45�
The problem is to calculate the `triangular' vertex part
G�en;ÿen; q�, which takes into account the interaction with
AFM fluctuations. For a one-dimensional analog of our
problem (and for real frequencies, T � 0), the corresponding
recurrent procedure was formulated in Ref. [80]. For the two-
dimensional model considered here, the optical conductivity
was calculated on the basis of this procedure using themethod

discussed above [83]. The given procedure can be generalized
fairly easily to the case ofMatsubara frequencies [98]. For the
sake of definiteness wewill assume that en > 0. Thenwe arrive
at an expression similar to (34):

Gkÿ1�en;ÿen; q� � 1�W 2v �k�Gk
�Gk

�
�
1� 2ikvFK

2ien ÿ �ÿ1�kvFqÿW 2v �k� 1��Gk�1 ÿ �Gk�1�

�
� Gk�en;ÿen; q� ;

G�en;ÿen; q� � G0�en;ÿen; q� ; �46�

where Gk � Gk�en; p� q� and �Gk � Gk�ÿen; p� can be calcu-
lated using (21).

In calculating Tc we are interested in the vertex at q � 0.
Then �Gk � G �k , and the verticesGk become real-valued, which
substantially simplifies the procedure (46).

We have the following exact relation of the type of the
Ward identity [98]:

G�en; p�G�ÿen; p�G�en;ÿen; 0� � ÿ ImG�en; p�
en

: �47�

Numerical calculations completely corroborate this relation
and demonstrate perfect consistency between the recurrent
procedures for the single-particle Green function and the
vertex part. Formula (47) leads to a situation in which the
equation for Tc obtained from the condition for the Cooper
instability is equivalent to the equation obtained through
linearizing the equation for the gap, although seemingly
different recurrent procedures of taking into account AFM
fluctuations were used in deriving these equations.

4.4 Ginzburg ±Landau equations and the basic properties
of superconductors with a pseudogap near Tc

The Ginzburg ±Landau expansion for the difference in the
free-energy densities between the superconducting and
normal states can be written in the following standard form:

Fs ÿ Fn � AjDqj2 � q 2CjDqj2 � B

2
jDqj4 ; �48�

where Dq is the amplitude of the Fourier transform of the
order parameter,

D�f; q� � Dqe�f� : �49�
The expansion (48) is determined by the diagrams of the loop
expansion for the free energy in the field of order-parameter
fluctuations with a small wave vector q [63].

We write the Ginzburg ±Landau coefficients in the form

A � A0KA ; C � C0KC ; B � B0KB ; �50�

where A0, B0, and C0 denote the standard expressions for
these coefficients in the case of isotropic s-pairing:

A0 � N0�0� Tÿ Tc

Tc
; C0 � N0�0� 7z�3�

32p 2

v 2
F

T 2
c

;

B0 � N0�0� 7z�3�
8p 2T 2

c

: �51�

All features of this model related to pseudogap formation are
contained in the dimensionless coefficientsKA,KC, andKB. In
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Figure 20. Superconducting transition temperature Tc as a function of the

width of the peak in neutron scattering at q � �p=a; p=a�, this width being

identified with the reciprocal correlation length of short-range-order

fluctuations [103].
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the absence of a pseudogap all these coefficients are equal to
unity, and only in the case of d-pairing we have KB � 3=2.

Now we go back to the generalized Cooper susceptibility
(45). Using it allows us to easily write the coefficients KA and
KC in the form [98]

KA � w�0; 0;T � ÿ w�0; 0;Tc�
A0

; �52�

KC � lim
q!0

w�q; 0;Tc� ÿ w�0; 0;Tc�
q 2C0

: �53�

Then all calculations can be done via the recurrent procedure
(46).

Generally, the situation with the coefficient B is compli-
cated. Significant simplifications are possible if we limit
ourselves to the case q � 0 in the order jDqj4, as is usually
done. Then the coefficient B can be found directly from the
anomalous Green function F, for which we already have the
recurrent procedure (39) [98].

In the limit x!1, all Ginzburg ±Landau coefficients
can be obtained in an analytic form [63] using the exact
solution (discussed above) for the Green function of the
pseudogap state.

The Ginzburg ±Landau equations determine two char-
acteristic lengths of a superconductor: the coherence length
and the depth of magnetic-field penetration. The coherence
length for a given temperature, x�T �, gives the characteristic
scale of inhomogeneities in the order parameter D:

x 2�T � � ÿC

A
: �54�

In the absence of a pseudogap,

x 2
BCS�T � � ÿ

C0

A0
; �55�

xBCS�T � � 0;74
x0�������������������

1ÿ T=Tc

p ; �56�

where x0 � 0:18vF=Tc. For the model we consider here,

x 2�T �
x 2
BCS�T �

� KC

KA
: �57�

The corresponding dependences of x 2�T �=x 2
BCS�T � on the

pseudogap width W and the fluctuation correlation length
(the parameter K) for the case of d-pairing are given in
Ref. [98]; they are fairly smooth, and the variations in the
ratio (57) are relatively small.

For the depth of magnetic-field penetration for a super-
conductor without a pseudogap we have

lBCS�T � � 1���
2
p l0�������������������

1ÿ T=Tc

p ; �58�

where l20 � mc 2=�4pne 2� is the penetration depth at T � 0.
Generally,

l2�T � � ÿ c 2

32pe 2
B

AC
: �59�

Then we have from our model:

l�T �
lBCS�T � �

�
KB

KAKC

�1=2

: �60�

The dependences of this quantity on the pseudogapwidth and
the correlation length for the case of d-pairing can also be
found in Refs. [98], and the corresponding variations of (60)
are also fairly small.

Near Tc the upper critical fieldHc2 is determined in terms
of the Ginzburg ±Landau coefficients as follows:

Hc2 � f0

2px 2�T � � ÿ
f0

2p
A

C
; �61�

where f0 � cp=e is the fluxoid. Then the slope of the curve of
the upper critical field near Tc is���� dHc2

dT

����
Tc

� 24pf0

7z�3�v 2
F

Tc
KA

KC
: �62�

The diagrams representing the dependence of the upper-
critical-field slope jdHc2=dT jTc

at the temperature Tc 0 on
the effective width W of the pseudogap and the correlation-
length parameter K are given in Ref. [98]. At sufficiently large
correlation lengths, the field slope rapidly decreases with the
pseudogap width. However, at fairly short correlation
lengths, this parameter may slowly increase at small pseudo-
gap widths. At a fixed pseudogap width, the slope of Hc2

increases appreciably as the fluctuation correlation length
decreases.

Finally, let us examine the specific-heat discontinuity at
the transition point:

Cs ÿ Cn

O
� Tc

B

�
A

Tÿ Tc

�2

; �63�

where Cs and Cn are, respectively, the specific heats of the
superconducting and normal states, and O is the sample's
volume. At Tc 0 (in the absence of a pseudogap, orW � 0) we
have�

Cs ÿ Cn

O

�
Tc 0

� N�0� 8p
2Tc 0

7z�3� : �64�

Then the relative specific-heat discontinuity in this model can
be written as

�Cs ÿ Cn�Tc

�Cs ÿ Cn�Tc 0

� Tc

Tc 0

K 2
A

KB
: �65�

The corresponding dependences on the effective pseudogap
width W and the correlation-length parameter K for the case
of d-pairing are depicted in Fig. 21. Clearly, the specific-heat
discontinuity rapidly decreases with increasing pseudogap
width and, on the other hand, increases as the correlation
length of AFM fluctuations decreases.

For superconductors with s-pairing the dependences of
the physical quantities considered here are similar, and the
only difference is in a larger scale of W over which the
changes take place, which corresponds to a greater stability
of isotropic superconductors against partial `dielectrization'
of the electron spectrum caused by pseudogap formation in
the `hot' regions of the Fermi surface [63, 102].

These results are in full qualitative agreement with the
data on the specific-heat discontinuity [6, 18, 19] discussed
above. As seen from Fig. 2, the discontinuity rapidly
decreases with the transition to the region of underdoped
compositions, where the pseudogap grows according to the
data depicted in Fig. 6.
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4.5 Effects of the non-self-averaging nature
of the order parameter
Our study of superconductivity was based on the assumption
that the superconducting order parameter D is a self-
averaging quantity. This assumption is justified only if the
correlation length x of short-range-order (AFM) fluctuations
is short compared to the characteristic size of the Cooper
pairs, x0 (the coherence length of the BCS theory). The
opposite limit, x4 x0, can be treated within the scope of the
exactly solvable model of the pseudogap state with x!1,
which has been described above in the variant of the hot-
region model in equations (27) and (29) [102].

We begin with the problem of superconductivity in a
system that has a fixed dielectric gap D in the `hot' regions of
the Fermi surface. The problem of superconductivity in a
system with partial dielectrization of the spectrum in selected
regions of the Fermi surface has been studied by many
researchers (e.g. see Refs [105, 106]), and in a model closest
to our case, by Bilbro and McMillan [107], whose results we
can use here. We will employ the simplest model of pairing Ð
equations (35) and (36) of the BCS theory.

If the value of the dielectric gap D in the `hot' regions of
the Fermi surface is fixed, the equation of our model for the
superconducting gap D in the case of s-pairing assumes the
form

1 � l
�oc

0

dx ~a
tanh

h ������������������������������������
x 2 �D 2 � D2�D�

q �
2T
i

������������������������������������
x 2 �D 2 � D2�D�

q
8><>:

��1ÿ ~a�
tanh

h ������������������������
x 2 � D2�D�

q �
2T
i

�����������������������
x2 � D2�D�

q
9>=>; ; �66�

where l � VN0�0� is the dimensionless coupling constant of
the pairing interaction, and ~a � 4a=p. The first term on the
right-hand side of equation (66) corresponds to the contribu-
tion of `hot' (dielectric) regions in which the electron spectrum
has the form [107] Ep � �x 2

p �D 2 � D2�1=2, while the second
term represents the contribution of `cold' (metallic) regions,
where the spectrum is the same as in the BCS theory:
Ep � �x 2

p � D2�1=2. Equation (66) yields the superconducting
gapD�D� at a fixed value of the dielectric gapD, which is finite
in `hot' regions.

In the case of d-pairing a similar equation has the form

1 � l
4

p

�oc

0

dx

�
�a
0

df e 2�f�
tanh

h �����������������������������������������������
x 2 �D 2 � D2�D�e 2�f�

q �
2T
i

�����������������������������������������������
x 2 �D 2 � D2�D�e 2�f�

q
8><>:

�
�p=4
a

df e 2�f�
tanh

h �����������������������������������
x 2 � D2�D�e 2�f�

q �
2T
i

�����������������������������������
x 2 � D2�D�e 2�f�

q
9>=>; : �67�

These equations show that D�D� decreases with increasing D,
and D�0� coincides with the ordinary gap D0 in the absence of
dielectrization in flat regions, i.e., the gap that appears at a
temperature T � Tc 0 specified by the equation

1 � l
�oc

0

dx
tanh�x=2Tc 0�

x
; �68�

for both s- and for d-pairing.
As D!1, the first terms on the right-hand sides of

equations (66) and (67) vanish, so that the corresponding
equations for D1 � D�D!1� are

1� l
�oc

0

dx �1ÿ ~a�
tanh

� ������������������
x 2 � D2

1
q �

2T
�

������������������
x 2 � D2

1
q �s-pairing�;

�69�

1 � l
4

p

�oc

0

dx
�p=4
a

df

� e2�f�
tanh

h ������������������������������
x 2 � D2

1e 2�f�
q �

2T
i

������������������������������
x 2 � D2

1e 2�f�
q �d-pairing� :

�70�

Equation (69) coincides with the equation for a gap at D � 0
with the `renormalized' coupling constant ~l � l�1ÿ ~a�, so
that for the case of s-pairing we have

D1 � D0

�
~l � l�1ÿ ~a�� ; �71�

and, accordingly, a nonzero gap with D!1 emerges for
T < Tc1:

Tc1 � Tc 0

�
~l � l�1ÿ ~a�� : �72�

In the case of d-pairing, equation (70) yields

Tc1 � Tc 0

�
~l � l�1ÿ ad�

�
; �73�
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Figure 21. Specific-heat discontinuity as a function of the gap widthW and

the correlation length of AFM fluctuations (the parameter K � xÿ1): (1)
vFK=W � 0:1, (2) vFK=W � 1:0, and (3) vFK=W � 10:0. The dotted curve

corresponds to K � 0 [63]. The inset presents the specific-heat discontinu-

ity as a function of K atW=Tc 0 � 5.
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where

ad � ~a� sin p~a
p

�74�

is the `effective' fraction of flat regions in the case of d-pairing.
Thus, if T < Tc1, the gap does not vanish for all values of D
and decreases from D0 to D1 as D increases. For
Tc1 < T < Tc 0, the gap differs from zero only for
D < Dmax. The corresponding dependences of D on D can
easily be found by numerically solving equations (66) and
(67).

In ourmodel of the pseudogap state, the dielectric gapD is
a random rather than fixed quantity distributed according to
(29). The above equations must be averaged over these
fluctuations. Here we can directly calculate the superconduct-
ing gap averaged over the fluctuations of D:

hDi �
�1
0

dD P�D�D�D� � 2

W 2

�1
0

dDD exp

�
ÿ D 2

W 2

�
D�D� :
�75�

In this case, the above-described behavior of D�D� leads to a
situation in which the averaged gap (75) differs from zero
until T � Tc 0, i.e. until the superconducting transition
temperature in the absence of pseudogap anomalies. At the
same time, the superconducting transition temperature Tc for
a superconductor with a pseudogap is obviously lower than
Tc 0 [63]. Such paradoxical behavior of hDi apparently means
the appearance of local regions with D 6� 0 (superconducting
`drops') in the system, which are induced by fluctuations ofD,
over the entire temperature range Tc < T < Tc 0, while a
superconducting state coherent over the entire sample occurs
only for temperatures below Tc. Obviously, analyzing a more
realistic model with a finite correlation length x of antiferro-
magnetic short-ranger-order fluctuations is necessary to
completely substantiate such a qualitative picture 23. At the
same time, the simplicity of our model with x!1 makes it
possible to immediately arrive at an exact solution for hDi.

To determine the superconducting transition temperature
Tc in the sample as a whole we can employ the standard
procedure of the mean-field approximation over random
short-range-order fluctuations (cf., e.g., a similar approach
in the problem of a superconductor with impurities [101]),
which implies that the superconducting gap is self-averaging
over fluctuations of D (i.e., actually, it is assumed that D is
independent of fluctuations ofD). Then the equations for the
mean-field gap Dmf are

1 � l
�oc

0

dx

"
~a

2

W 2

�1
0

dDD exp

�
ÿ D 2

W 2

�

�
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2T
�

�������������������
x 2 � D2

mf

q #
�76�

for the case of s-pairing and
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�77�

for the case of d-pairing. These equations represent the
limiting form (for x!1) of the equations for the super-
conducting gap examined above [Eqn (43)] on the basis of the
recurrent procedure (39).

From equations (76) and (77) we can easily obtain the
corresponding equations for Tc, the temperature at which a
gap homogeneous over the sample, Dmf, emerges. For
instance, for the case of s-pairing we have

1 � l
�
~a

2

W 2
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������������������
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0
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x

�
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For the case of d-pairing, we must replace ~a in (78) with the
`effective' ad from (74). These equations for Tc coincide with
those obtained in the microscopic derivation of the Ginz-
burg ±Landau expansion in Ref. [63] and with the limiting
form (for x!1) that emerges in an analysis based on (39)
and (43). In general, we always have Tc1 < Tc < Tc 0.

The temperature dependences of the averaged gap hDi and
the mean-field gap Dmf obtained through numerical solution
of the equations of our model for the case of s-pairing are
depicted in Fig. 22a 24. The gapDmf vanishes atT � Tc < Tc 0,
and hDi is finite untilT � Tc 0; we believe that the correspond-
ing `tails' in the temperature dependence of hDi for
Tc < T < Tc 0 agree with to the above-mentioned idea of
superconducting `drops' in this temperature range present in
the absence of superconductivity in the entire sample. Note
that the temperature dependences hD�T �i in Fig. 22a
resemble the corresponding dependences of the gap in
underdoped HTSC cuprates, which can be found from
ARPES experiments [49] and specific-heat measurements
[19] (see Figs 3 and 11), if we assume that the Tc observed in
these samples corresponds to our mean-field Tc, while `drops'
with hDi 6� 0 exist even at temperatures higher than Tc up to
Tc 0, which is much higher thanTc. The fact that the gap is not
a self-averaging quantity also manifests itself in our model in
that the variance hD2i ÿ hDi2 becomes nonzero over the entire
temperature range T < Tc 0, which indirectly supports the
proposed qualitative picture, a complete substantiation of
which is possible only if one allows for the finiteness of x.
Note that Tc 0 is defined rather poorly from the viewpoint of
comparisons with experiment. In the above consideration of
the transition temperature in the absence of a pseudogap, we
assumed that Tc 0 is of order Tc for an optimal carrier

23Qualitatively, this situation resembles the onset of an inhomogeneous

superconducting state induced by strong fluctuations in the local density

of states near the Anderson metal ± insulator transition [108, 101].

24Qualitatively, the temperature dependences of hDi andDmf in the case of

d-pairing are similar to those in the case of s-pairing.
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concentration. Here, for possible comparisons of the data of
Fig. 22a with the data of Figs 3 and 11, the values of Tc 0 must
be much higher than the optimal Tc. In this sense, the idea of
superconducting `drops' induced by `dielectric' fluctuations is
not radically different from the ideas used in the scenario of
pseudogap formation (precursor pairing). Of course, the data
like those presented in Figs 3 and 11 could be a direct
implication of the existence of a dielectric pseudogap rather
than of the effects of the non-self-averaging nature of the
superconducting gap D. In particular, the superconducting
gap extracted from tunneling data [21, 22] (which manifests
itself against the background of a wider pseudogap) demon-
strates a `normal' temperature behavior and vanishes at
T � Tc.

Although there is no superconductivity in the entire
sample for Tc < T < Tc 0, the presence in this temperature

range of a nonzero averaged gap hDi leads to the appearance
of anomalies in the observed quantities, such as the tunneling
density of states and the spectral density measured in ARPES
experiments [102].

For instance, the tunneling density of states for the case of
d-pairing has the form [102]
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�79�
Under the assumption of self-averaging, D equals Dmf and is
independent of D. Then the width of the superconducting
pseudogap in the density of states is of order Dmf, and as
T! Tc the corresponding contribution vanishes, and only
the pseudogap related to AFM fluctuations remains. Actu-
ally,D in (79) isD�D�, which can be found from equation (67).

The behavior of the density of states in the d-case is
depicted in Fig. 22b. Clearly, there is a substantial difference
between the exact density of states and that obtained in the
mean-field approximation, and this difference is related to
fluctuations of the superconducting gap (superconducting
`drops') caused by antiferromagnetic short-range-order fluc-
tuations. Actually, the exact density of states does not `feel'
the superconducting transition that occurs in the entire
system at T � Tc; the characteristic width of the super-
conducting gap (pseudogap) in the density of states is of
order D0 rather than Dmf yielded by the approximation of the
mean field over short-range-order fluctuations. The corre-
sponding contributions become observable even at
T � Tc 0 > Tc.

These results can, at least in principle, explain the
unusually large values of the ratio 2D=Tc observed in a
number of tunnel experiments involving underdoped HTSC
cuprates [20, 109] and in ARPES measurements [110]. The
presence of superconducting `drops' in the system can also
explain the anomalous diamagnetism of these systems
observed in many cases at temperatures higher than Tc [111].

5. Conclusion. Problems and prospects

In conclusion, we sum up the content of this article and
examine remaining problems. The scenario of pseudogap
formation based on the idea of AFM (SDW or CDW) type
short-range-order fluctuations leads to a general qualitative
agreement with the basic experimental facts. In our theore-
tical consideration, we deliberately employed a semi-phenom-
enological approach based on a simple model of the
pseudogap transformation of the electron spectrum,
described by two parameters Ð the effective pseudogap
width W and the correlation length x, which can be
determined (at least in principle) from experiments. The
models of `hot' spots or regions at the Fermi surface,
considered here, admit an `almost exact' solution [14, 15],
which makes it possible to achieve a substantial progress in
analyzing such problems as the effect of a pseudogap on
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Figure 22. Temperature dependences of the superconducting gaps Dmf

(dotted curves), hDi (solid curves), and D0 (dashed curve) in the case of

s-pairing [102]: (1) l � 0:4, ~a � 2=3, and oc=W � 3 �Tc=Tc 0 � 0:42�;
(2) l � 0:4, ~a � 0:2, oc=W � 1 �Tc=Tc 0 � 0:71�. (b) Density of states in

the case of d-pairing [102] at l � 0:4, ~a � 2=3, and oc=W � 5

�Tc=Tc 0 � 0:48, with Tc1=Tc 0 � 10ÿ18�: (1) T=Tc 0 � 0:8, (2)

T=Tc 0 � 0:48, and (3) T=Tc 0 � 0:1. The dotted curve represents the

behavior of the mean-field density of states Nmf�E � at T=Tc 0 � 0:1, and
the dashed curve represents the pseudogap behavior of the density of states

for T > Tc 0.\
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superconductivity. Actually, it is unimportant whether we are
speaking about AFM fluctuations (as the most popular
model) or about short-range-order fluctuations of a different
nature that lead to a partial dielectrization of the spectrum,
such as CDW or structural distortions.

The drawbacks of these models stem from the simplifying
assumptions that are needed to obtained these `almost exact'
solutions. The most important assumptions are the static
approximation and the hypothesis of the Gaussian nature of
short-range-order fluctuations. Allowance for the dynamics
of fluctuation is absolutely necessary in the low-temperature
region, in particular, in the superconducting phase, where the
pairing interaction itself may be controlled by the dynamics of
these fluctuations [58, 59]. We believe, however, that the
above simplified consideration can describe the most essen-
tial effects of changes in the electron spectrum (pseudogap
formation in `hot' regions of the Fermi surface) and the
influence of these changes on superconductivity. To allow
for the dynamics of spin fluctuations, we would have to go
beyond the simple phenomenology of the BCS model. Also,
the assumption of the Gaussian character of the statistics of
fluctuations can be justified only at high temperatures and
not very close to the line of antiferromagnetic instability.
Nevertheless, even in this very simple variant of the model,
one can qualitatively describe the basic features of pseudogap
formation. The rejection of this very simple assumption also
destroys the fairly simple structure of the equations of the
theory, which actually makes it possible to analyze the
superconducting phase.

We can step beyond the semi-phenomenological
approach employed here by means of a complete micro-
scopic analysis of the problem, say, using the Hubbard
model. Such attempts have been made by some researchers,
e.g., in Refs [11 ± 13] cited above and in Refs [122, 113].
Although many qualitative conclusions of these studies
coincide with those discussed here or are close to them, the
treatment of the problem is usually limited to allowing for the
first few diagrams in perturbation theory [114, 115] or to some
variant of self-consistency based on these diagrams. Of
course, in this way, one can take into account the dynamics
of spin fluctuations. However, going beyond these simple
qualitative estimates is fairly difficult.

What would be important is a microscopic justification of
the existence of a broad region in the phase diagramwithwell-
developed short-range-order AFM (SDW) fluctuations. Note
that the region of such `critical' fluctuations may be
anomalously large simply because of the reduced dimension-
ality (quasi-two-dimensional structure) of the systems in
question. For instance, the size of the region of super-
conducting fluctuations in HTSC systems is fairly large and
can reach tens of kelvins [116]. Since AFM fluctuations are
characterized by energies an order of magnitude higher, the
presence of a `critical' region with a width of hundreds of
kelvins does not seem unlikely. Nevertheless, there is still no
microscopic justification for such a picture.

Apparently, the main qualitative conclusion that can be
drawn from the physical picture discussed above concerns the
old discussion of whether the spectrum of electronic excita-
tions in HTSC systems is of Fermi-liquid or non-Fermi-liquid
nature. According to the simple models examined here, the
electron spectrum (spectral density) is of Fermi-liquid nature
only in the `cold' regions of the Fermi surface (near the
diagonals of the Brillouin zone), while in the `hot' regions
the spectrum undergoes a non-Fermi-liquid transformation

(in the above-specified, narrow sense) due to the strong
scattering on AFM fluctuations [14, 15]. The presence or
absence of a Fermi-liquid behavior depends on the fluctua-
tion correlation length x (cf. [81, 82]). In their recent paper,
Abrahams and Varma [117] criticised such a picture on the
basic of their fairly successful processing of experimental data
[51, 118, 119] for ARPES in optimally doped Bi-2212, using
ideas of the theory of marginal Fermi liquids. In particular,
Abrahams and Varma [117] state that the decay of quasipar-
ticles does not exhibit Fermi-liquid behavior anywhere on the
Fermi surface and also declare that there is no evidence for a
momentum dependence of this decay. Actually, however,
they introduce a substantial dependence of the static decay
on momentum, needed for the description of the data even in
the case of optimal doping (under study), which they assign to
the anisotropy of impurity scattering. On the other hand, the
linear dependence of the decay on the quasiparticle energy,
which is actually observed in HTSC systems (and postulated
in the theory of marginal Fermi liquids), cannot serve as a
refutation of the ordinary ideas of the Fermi-liquid theory,
since a standard quadratic dependence can be observed only
in a fairly narrow energy interval near the Fermi level that is
beyond the limit of accuracy of ARPES experiments. An
exhaustive discussion of these aspects can be found in reviews
by Maksimov [91] and Ginzburg and Maksimov [93].
Generally, it should be noted that the presence of anomalous
scattering on AFM fluctuations (with wave vectors of order
of the antiferromagnetism vector) is beyond question 25.

Our theoretical consideration was based on the fairly
traditional scheme of averaging over the mean field of AFM
(SDW, CDW) fluctuations, which assumes the spatial
homogeneity of the system on average. At the same time,
some experimental data and theoretical ideas point to the
possibility of phase separation in a number of HTSC systems
(especially in the region of underdoped compositions) [121,
122]. Such separation occurs on a microscopic scale, so that
the system separates into `metallic' (superconducting) and
`dielectric' (antiferromagnetic) domains with characteristic
sizes of order of several interatomic distances. Naturally, it is
rather difficult to describe such a system using the above
standard methods, while the very fact of phase separation
may play, as many researchers believe, a crucial role in HTSC
physics. In this context we only remark that the qualitative
picture of the random field of AFM (SDW, CDW) short-
range-order fluctuations, used above, also indirectly assumes
the appearance of effective regions with AFM order in the
system, of a characteristic size� x, that alternate with regions
of the same size in which this order is destroyed. In this sense
our picture does not strongly differ from the pattern of phase
separation Ð the only difference is probably in that the
boundaries of the corresponding regions are diffuse. Clearly
the formalism of some models of phase separation based on
the idea of proximity to a CDW-type instability [64, 123, 124]
is fairly close to that used in this review and is based on the
picture of scattering on fluctuations with some distinguished
wave vectors.

25We would like to mention the interesting work done by Li Jian-Xin et al.

[120], who managed to give a fairly good description of the kinetic

properties of HTSC oxides on the basis of a simple consideration of

Boltzmann scattering on spin fluctuations with a straightforward elimina-

tion of the contributions from `hot' regions of the Fermi surface to the

current-carrier kinetics.
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Finally, it is worth noting that HTSC systems contain a
large number of anomalies related to the behavior of such
systems under sufficiently strong structural disordering [101].
The role of structural disordering in systems with a pseudo-
gap is understood very poorly. There are only a few papers
that examine the effect of substitutional impurities [125, 126].
They show that controlled disordering can serve as a fairly
informative method of studying the pseudogap state. This
problem has not yet been studied theoretically almost at all.

The study of anomalies in HTSC systems related to
pseudogap formation is of considerable importance for
applications. Since, as we have seen, the pseudogap sup-
presses, in a certain sense, superconductivity, such character-
istics of a superconductor as the critical current and the
critical magnetic fields prove to be maximum not at the
`optimal' carrier concentration p0 � 0:15ÿ0:17 correspond-
ing to the maximum Tc but in the vicinity of the `critical'
concentration pc � 0:19 [127]. This fact may be important for
optimizing the compositions of commercial HTSC-type
superconductors.
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