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 2012 June 10Consistent LDA0+DMFT { an unambiguous way to avoid doublecounting problem: NiO testI. A.Nekrasov+1), N. S. Pavlov+1), M.V. Sadovskii+�1)+Institute for Electrophysics, UB of the RAS, 620016 Ekaterinburg, Russia�Institute for Metal Physics, UB of the RAS, 620990 Ekaterinburg, RussiaSubmitted 16 April 2012We present a consistent way of treating a double counting problem unavoidably arising within theLDA+DMFT combined approach to realistic calculations of electronic structure of strongly correlated sys-tems. The main obstacle here is the absence of systematic (e.g. diagrammatic) way to express LDA (localdensity approximation) contribution to exchange correlation energy appearing in the density functional theory.It is not clear then, which part of interaction entering DMFT (dynamical mean-�eld theory) is already takeninto account through LDA calculations. Because of that, up to now there is no accepted unique expressionfor the double counting correction in LDA+DMFT. To avoid this problem we propose here the consistentLDA0+DMFT approach, where LDA exchange correlation contribution is explicitly excluded for correlatedstates (bands) during self-consistent band structure calculations. What is left out of Coulomb interaction forthose strongly correlated states (bands) is its non-local part, which is not included in DMFT, and the localHartree like contribution. Then the double counting correction is uniquely reduced to the local Hartree con-tribution. Correlations for strongly correlated states are then directly accounted for via the standard DMFT.We further test the consistent LDA0+DMFT scheme and compare it with conventional LDA+DMFT calculat-ing the electronic structure of NiO. Opposite to the conventional LDA+DMFT our consistent LDA0+DMFTapproach unambiguously produces the insulating band structure in agreement with experiments.1. Introduction. During the last 15 years the socalled LDA+DMFT approach (local density approxi-mation + dynamical mean-�eld theory) became a com-mon tool to describe band structure of real stronglycorrelated materials [1{6]. In this approach the resultsof LDA band structure calculations are supplementedwith local Coulomb (Hubbard) interaction term for thosestates which are counted as strongly correlated. For-mally the LDA+DMFT Hamiltonian can be written asĤ = ĤLDA � ĤDC ++ 12 Xi=id;l=ld Xm�;m0�00 U��0mm0 n̂ilm�n̂ilm0�0 �� 12 Xi=id;l=ld 0Xm�;m0�� Jmm0 ĉyilm� ĉyilm0�� ĉilm0� ĉilm�� : (1)Here U��0mm0 are the most important matrix elements ofCoulomb matrix (Coulomb repulsion and z-componentof Hund's rule coupling) and Jmm0 are spin-
ip terms ofHund's rule couplings between the strongly correlatedelectrons (assumed here to be d-states, enumerated byi = id and l = ld). The prime on the sum indicatesthat at least two of the indices of operators have to bedi�erent, and �� =#(") for � ="(#).1)e-mail: nekrasov@iep.uran.ru; pavlov@iep.uran.ru;sadovski@iep.uran.ru

The LDA part of the Hamiltonian (1) is given by:ĤLDA=� ~22me�+ Vion(r)+ Z d3r0 �(r0)Vee(r�r0)++ �ELDAxc (�)��(r) ; (2)where � is the Laplace operator, me the electron mass,e the electron charge, andVion(r)=� e2Xi Zijr�Rij ; Vee(r�r0) = e22 Xr6=r0 1jr� r0j(3)denote the one-particle potential due to all ions i withcharge eZi at given positions Ri, and the electron-electron interaction, respectively.The ELDAxc [�(r)] in (2) is a function of local chargedensity which approximates true exchange correlationfunctional Exc[�] of density functional theory in theframework of local density approximation [7]. The formof the function ELDAxc [�(r)] is usually calculated fromperturbation theory [8] or numerical simulations [9] ofthe \jellium" model with Vion(r) = const. Once wechoose some basis set of one-particle wave functions 'i(e.g. to do practical calculations and explicitly express�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012 659 3�



660 I. A.Nekrasov, N. S. Pavlov, M.V. Sadovskiimatrix elements of the Hamiltonian (2)), we can obtain� as: �(r) = NXi=1 j'i(r)j2: (4)Finally a term ĤDC is subtracted in Eq. (1) toavoid double-counting of those contributions of the lo-cal Coulomb interaction already contained in ĤLDA viaHartree term and ELDAxc [�(r)]. Since there does not exista direct microscopic or diagrammatic link between themodel (Hubbard like) Hamiltonian approach and LDAit is not possible to express ĤDC rigorously in termsof U , J and �. Thus there is no unique and acceptedexpression for ĤDC (see e.g. Ref. [10]).One popular expression for ĤDC is the Hartree like(fully localized limit) expression [11]:HDC = 12Und(nd � 1)� 12JX� nd�(nd� � 1): (5)Here, nd� = Pm nildm� = Pmhn̂ildm�i is total num-ber of electrons on interacting orbitals per spin, nd ==P� nd�, U is Coulomb (Hubbard) repulsion and J isthe exchange or Hund's rule coupling obtained usuallyfrom constrained LDA procedure [12]. The nd valuecan be obtained either from LDA calculations or canbe recalculated during the DMFT loop. Practically, thevalues obtained are pretty close to each other.Below we introduce the consistent LDA0+DMFT ap-proach, which allows one to avoid the double countingproblem unambiguously. To illustrate the advantagesof this new approach we shall apply it to calculations ofthe band structure of the well known prototype of chargetransfer insulating system NiO.2. Consistent LDA0+DMFT approach. Oneof the possible ways to solve the double countingproblem is to perform Hartree+DMFT or Hartree{Fock+DMFT calculations (see for the overview of theconcept Ref. [13]). This approach uses the advantageof knowledge of diagrammatic expression for Hartree orHartree{Fock terms. Thus, performing Hartree{Fockband structure calculations for real materials we doknow exactly what portion of interaction is, in fact, ex-plicitly included. Then obviously, the double countingterm should be chosen in the form of Eq. (5). However,up to now we are unaware of any Hartree+DMFT orHartree{Fock+DMFT calculations for real materials.In fact, Hartree{Fock band structure calculations arein some sense a large step backwards from DFT/LDAapproach, which was so successful in description of manyreal materials. Even in the case of strongly correlatedsystems DFT/LDA is recognized as a best starting point

for further model Hamiltonian treatments, such as e.g.LDA+DMFT method.In view of this we suggest a kind of compromise be-tween Hartree{Fock and DFT/LDA starting points tobe followed by DMFT calculations. As described abovemain obstacle to express double counting term exactlyis exchange correlation ELDAxc [�(r)] portion of interac-tion within LDA. It seems somehow inconsistent to useit to describe correlation e�ects in narrow (strongly cor-related) bands from the very beginning, as these shouldbe treated via more elaborate schemes like DMFT. Toovercome this di�culty for these states, we propose torede�ne charge density (4) in ELDAxc as follows:�0(r) =Xi 6=id j'i(r)j2 (6)excluding the contribution of the density of strongly cor-related electrons. Then this rede�ned �0(r) is used toobtain ELDAxc and perform the self-consistent LDA bandstructure calculations for correlated bands at the initialstage of LDA+DMFT, while correlations of d-electronsare left to be treated via DMFT. This means that whatis left for correlated states out of interaction on theLDA stage would be just the Hartree contribution ofEq. (2). At the same time all other states (not countedas strongly correlated) are to be treated with the fullpower of DFT/LDA and full � in ELDAxc . Now, the prob-lem of double counting correction is uniquely de�ned {it should be taken in the form of the Hartree like term,given by Eq. (5).This approach to describe realistic strongly corre-lated systems we shall call the consistent LDA0+DMFT.It is in precise correspondence with the standard de�n-ition of correlations, as interaction corrections \above"Hartree{Fock. We explicitly exclude contributions toELDAxc from (strongly) correlated bands, where correla-tions are treated via DMFT, while we take all electronsinto account in LDA calculations for all other (non cor-related) bands.3. Results. Following many recent works [10, 14,15] (and references therein) we choose as a testing sys-tem the prototype charge transfer insulator NiO. LDAband structure calculations for NiO were performedwithin the linearized mu�n-tin orbitals (LMTO) basisset [16]. In the corresponding program package TB-LMTO v. 47 the ELDAxc was taken in von Barth{Hedinform [8].In the Fig. 1 we present LDA densities of states (leftpanel) and band dispersions (right panel) of NiO. Banddispersions consist of two separate sets of bands: theO-2p bands (from �3 to �9 eV) and Ni-3d bands, cross-ing the Fermi level (from 1.5 to �3 eV). Dashed lines�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012
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Fig. 1. LDA (dashed line) and LDA0 (full line) calculated band dispersions and densities of states of NiO. The Fermi level EFis at zero energyin Fig. 1 show conventional LDA results. Full linescorrespond to LDA0 calculations without ELDAxc on Ni-3d states, namely, with rede�ned charge density (6) inELDAxc . Overall changes can be characterized as an al-most rigid shift of oxygen states down in energy byabout 1 eV for LDA0 calculations, while Ni-3d statesare only slightly modi�ed due to change of Ni-O hy-bridization. In other words LDA0 calculations lead to thechange of charge transfer energy � = j"d� "pj by about1 eV. Rather small in
uence of ELDAxc on Ni-3d states isnot surprising, since ELDAxc for metallic (LDA producesmetallic state for NiO) electron densities rs = 2�6 areknown to be of the order of 1 eV [9]. Further we per-form DMFT calculations using LDA and LDA0 Hamilto-nians, which include all states (without any projecting).DMFT impurity solver used was Hirsh{Fye quantumMonte-Carlo algorithm [17]. Inverse temperature wastaken � = 5 eV�1 (2321K) and 80 time slices were used,with 106 Monte-Carlo sweeps. The use of very high tem-perature does not lead to any qualitative e�ects in theresults, allowing us to avoid unnecessary computationale�orts. Parameters of Coulomb interaction were chosenas typical for NiO [10, 15]: U = 8 eV and J = 1 eV. Toobtain DMFT(QMC) densities of states at real energies,we employed the maximum entropy method [18].In the Fig. 2 we compare the conventional LDA ++ DMFT (upper panel) and consistent LDA0+DMFT

(lower panel) results for NiO. Di�erent lines representpartial Ni-3d(t2g) (solid line), Ni-3d(eg) (dashed line)and oxygen O-2p (dash-dot line) contributions to den-sity of states. To obtain O-2p states DMFT(QMC) self-energy was analytically continued to real frequenciesby Pade approximant method. For both conventionalLDA+DMFT and consistent LDA0+DMFT calculationswe used HDC of Eq. (5) with nd recalculated on eachDMFT iteration step. Corresponding values of HDC are62 eV (nd = 8:7) and 58.13 eV (nd = 8:2) for conven-tional LDA+DMFT and consistent LDA0+DMFT re-spectively. The total occupancies of Ni-3d states withinLDA and LDA0 calculations were 8.5 and 8.3.Within conventional LDA+DMFT we obtain themetallic solution, which contradicts experiments. Thisfact can be explained as follows. We already mentionedthat LDA and LDA0 calculations results di�er mainly bythe values of charge transfer energy � = j"d � "pj. Infact, we observed [19] that double counting correctionessentially a�ects �, or the other way around, the dif-ferent values of � require the di�erent values of doublecounting corrections to obtain the same results. In itsturn, the di�erent values of double counting correctioncan lead either to metallic or insulating solutions for thesame set of other parameters [10, 19].Once we employ the consistent LDA0+DMFT ap-proach, we obtain the charge transfer insulating solution�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012
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Fig. 2. Consistent LDA0+DMFT (lower panel) andLDA+DMFT (upper panel) partial densities of states forNiO: solid line { Ni-3d(t2g), dashed line { Ni-3d(eg), dot-dashed line { O-2p. The Fermi level is at zero energyfor NiO, which agrees well with other LDA+DMFT cal-culations for NiO [10, 15] and experiment [20], con�rm-ing the e�ectiveness of our approach. Namely, the peakat �2 eV which consists almost in equal parts from Ni-3d and O-2p states is nothing else but Zhang{Rice boundstate (in agreement with Ref. [15]). Lower Hubbardband formed mainly from Ni-3d states is located lower inenergy than Zhang{Rice band. Conducting band is justthe upper Hubbard band dominated by Ni-3d states.As an additional check of consistency of our ap-proach we also performed LDA0+DMFT calculations forSrVO3. The results obtained are in good agreementwith those obtained in Ref. [21], further validating ourproposed LDA0+DMFT approach as an e�ective andunambiguous method of band structure calculations forstrongly correlated systems.4. Conclusion. In this work we proposed the con-sistent LDA0+DMFT approach, which solves the prob-lem of non-uniqueness of the double counting correc-tion. By excluding LDA exchange correlation contribu-tion for correlated states within the self-consistent LDAcalculations (e.g. for Ni-3d states) we end up with justHartree like portion of interaction for (strongly) corre-lated states. Then we know exactly, what should be
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