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Disorder effects in BCS–BEC crossover region of attractive Hubbard

model
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We study the disorder effects upon superconducting transition temperature Tc and the number of local

pairs in attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximations.

We analyze the wide range of attractive interaction U , from the weak coupling region, where instability of the

normal phase and superconductivity are well described by BCS model, to the limit of strong coupling, where

superconducting transition is determined by Bose–Einstein condensation of compact Cooper pairs, forming at

temperatures much higher than superconducting transition temperature. It is shown that disorder can either

suppress Tc in the weak coupling limit, or significantly enhance Tc in the case of strong coupling. However, in

all cases we actually prove the validity of generalized Anderson theorem, so that all changes of Tc are related

to change of the effective bandwidth due to disorder. Similarly, disorder effects on the number of local pairs

are only due to these band-widening effects.
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1. Introduction. The problem of superconductiv-

ity in the limit of strong coupling has attracted theo-

rists for rather long time [1]. The significant progress in

this field was achieved by Nozieres and Schmitt-Rink [2],

who proposed an effective method to study the crossover

from weak coupling BCS behavior to Bose–Einstein con-

densation (BEC) in strong coupling region. In recent

years the progress of experimental studies of ultracold

quantum gases in magnetic and optical dipole traps, as

well as in optical lattices, allowing controllable change

of density and interaction parameters (see reviews [3, 4])

has also increased the interest to studies of BCS–BEC

crossover. One of the simplest models allowing the study

of BCS–BEC crossover is the Hubbard model with at-

tractive interaction.

The most effective theoretical method to study

strongly correlated systems both in the case of repul-

sive interactions and in the case of attraction (includ-

ing the region of BCS–BEC crossover) is the dynamical

mean-field theory (DMFT) [5–7]. Within the framework

of DMFT the attractive Hubbard model has already

been studied in the number of papers [8–11]. However,

there are only few works devoted to the studies of dis-

order effects on the properties of normal and supercon-

ducting phases in this model. Qualitatively the influence
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of disorder on the superconducting critical temperature

Tc in the region of BCS–BEC crossover was studied in

Ref. [12]. Diagrammatic approach to the analysis of dis-

order effects upon Tc and normal phase properties in the

crossover region was developed in Ref. [13]. Recently we

have studied [14] the disorder influence on single-particle

properties and optical conductivity in disordered attrac-

tive Hubbard model within our general DMFT+Σ ap-

proach [15], which is especially convenient to take into

account different additional interactions like scattering

by short-range order parameter fluctuations [16–19], dis-

order [20, 21] or electron-phonon interaction [22]. In

this paper we use DMFT+Σ approach combined with

Nozieres–Schmitt-Rink approximation [2] to study the

influence of disorder upon superconducting transition

temperature Tc and the number of local pairs in attrac-

tive Hubbard model for the wide range of interaction

parameter U , including the BCS–BEC crossover region.

2. Basics of Nozieres–Schmitt-Rink and

DMFT+Σ approaches. We shall consider disordered

attractive Hubbard model with the Hamiltonian:

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ − U
∑

i

ni↑ni↓, (1)

where t > 0 is the transfer integral between nearest

neighbors on the lattice, U is Hubbard onsite attrac-

tion, niσ = a†iσaiσ is electron number operator on the

lattice site, aiσ (a†iσ) is electron annihilation (creation)
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operator with spin projection σ and local energies ǫi are

assumed to be independent random variables on differ-

ent lattice cites. To simplify diagrammatic analysis we

assume the Gaussian distribution for ǫi:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

. (2)

Parameter ∆ here is the measure of disorder and the

Gaussian random field with short-ranged (“white-noise”)

correlations is equivalent to the usual “impurity” scat-

tering, leading the standard diagram technique for the

averaged Green’s functions [23].

In the following we shall consider the model system

with “bare” semi-elliptic density of states (per elemen-

tary lattice cell and one spin projection) given by:

N0(ε) =
2

πD2

√

D2 − ε2 (3)

so that the bandwidth is W = 2D. All calculations be-

low were made for the case of quarter-filled band (elec-

tron density per cite n = 0.5).

In the absence of disorder superconducting transi-

tion temperature was analyzed in this model in a num-

ber of papers [8, 9, 11] both from the condition of

Cooper instability of the normal phase [8] (divergence

of Cooper susceptibility) and also from the condition of

superconducting order parameter becoming zero at Tc

[9, 11]. In Ref. [14] we have determined this critical tem-

perature from the condition of instability of the normal

phase, as reflected in specific instability of DMFT itera-

tion procedure. The results obtained in this way in fact

just coincide with the results of Refs. [8, 9, 11].

The essence of Nozieres–Schmitt-Rink approach [2]

to calculation of Tc in the wide region of coupling

strengths U , providing an effective interpolation from

weak to strong coupling (including the BCS–BEC

crossover region) is to solve the BCS equation for tran-

sition temperature:

1 =
|U |
2

∫ ∞

−∞

dεN0(ε)
th

ε− µ

2Tc

ε− µ
, (4)

jointly with an equation for chemical potential (implic-

itly determined by the band-filling), which actually con-

trols Tc in strong coupling BEC region. In Ref. [14] we

have shown that such calculations, with an equation

for chemical potential solved via DMFT, produce the

dependence Tc on U , which is in almost quantitative

agreement with results obtained via much more time-

consuming exact DMFT calculations. This is rather sur-

prising, because of neglect of all vertex corrections due

to U (ladder approximation) in Eq. (4), especially in

the region of large U . Apparently this signifies rather

small role of these vertex corrections (fluctuation effects)

for BCS-like instability both in crossover and strong

coupling regions. However, in calculations of chemical

potential µ (controlling Tc for large U) these correc-

tions are quite important and only their correct account

within DMFT allows us to obtain the correct behavior

of Tc in the limit of large U .

This allows us to calculate Tc for the case of dis-

ordered attractive Hubbard model using the same ap-

proach. Actually, we shall solve Eq. (4), from which all

corrections due to disorder scattering just drop out, ex-

cept those leading to disorder widening of the density of

states [24] (replacing N0(ε) in Eq. (4) by disorder renor-

malized density of states), jointly with an equation for

chemical potential, obtained via DMFT+Σ procedure

[15], which takes into contributions due to disorder, pro-

ducing the chemical potential for different values of U

and disorder ∆.

This generalized DMFT+Σ approach [15–18]

supplies the standard dynamical mean-field the-

ory (DMFT) [5–7] with an additional (“external”)

self-energy Σp(ε) (which can in general be momentum

dependent), taking into account any possible interaction

outside the DMFT, which gives an effective calculation

method for either single-particle or two-particle proper-

ties [19, 20]. The success of this generalized approach is

connected with the choice of the single-particle Green’s

function in the following form:

G(ε,p) =
1

ε+ µ− ε(p)− Σ(ε)− Σp(ε)
, (5)

where ε(p) is the “bare” electronic dispersion, while the

total self-energy is given by the additive sum of local

Σ(ε), determined by DMFT, and “external” Σp(ε), thus

neglecting any interference between Hubbard and “ex-

ternal” interactions. This allows us to preserve the struc-

ture of self-consistent equations of the standard DMFT

[5–7]. Hovewer, there are two major difference with tra-

ditional DMFT. During each DMFT iteration step we

recalculate an “external” self-energy Σp(ε) using some

approximate scheme, taking into account additional in-

teractions, and the local Green’s function is “dressed”

by Σp(ε) at each iteration step.

Below for an “external” self-energy due to disorder

scattering, entering DMFT+Σ cycle, we use the sim-

plest approximation neglecting “crossing” diagrams, i.e.

the self-consistent Born approximation, which in case

of Gaussian distribution of site energies takes the (mo-

mentum independent) form:

Σp(ε) → Σ̃(ε) = ∆2
∑

p

G(ε,p), (6)
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where G(ε,p) is the single-electron Green’s function (5)

and ∆ is the disorder amplitude.

To solve the effective Anderson impurity problem

of DMFT below we use the numerical renormalization

group approach [25].

3. Main results. In Fig. 1 we show the dependence

of superconducting transition temperature, normalized

Fig. 1. Dependence of superconducting critical tempera-

ture on disorder for different values of Hubbard attraction;

|U |/2D = 0.6(1), 0.8(2), 1.0(3), 1.4(4), 1.6(5)

by the critical temperature in the absence of disorder

(Tc0 = Tc(∆ = 0)), for quarter-filled band (n = 0.5) for

different values of attractive interaction U . We can see

that in the case of weak coupling (U/2D ≪ 1) disorder

somehow suppresses Tc (curve 1). At intermediate cou-

plings (U/2D ∼ 1) weak disorder leads to the growth of

Tc, while the further increase of disorder suppresses the

critical temperature (curves 2 and 3). In the strong cou-

pling region (U/2D ≫ 1) the growth of disorder leads to

significant increase of the critical temperature (curves 4

and 5).

However, this complicated dependence of supercon-

ducting critical temperature on disorder is easily ex-

plained by the conduction band widening by growing

disorder. In Fig. 2 the black curve with pentagonal data

points represents the dependence of critical temperature

Tc/2D on attraction strength U/2D in the absence of

disorder (∆ = 0) in Nozieres–Schmitt-Rink approxima-

tion [14]. The growth of disorder leads to the effective

widening of the conduction band, so that in our self-

consistent Born approximation for disorder scattering

(6) the semi-elliptic form of the density of states does

not change, while the effective half-bandwidth grows as

[20]:

Deff = D

√

1 + 4
∆2

D2
. (7)

Fig. 2. Universal dependence of superconducting critical

temperature on the strength of Hubbard attraction for

different values of disorder

The other data points shown in Fig. 2 represent the

results of our calculations in the combined Nozieres–

Schmitt-Rink and DMFT+Σ approximations for differ-

ent values of disorder. We can see that all data points

as expressed via appropriately scaled variables U/2Deff

and Tc/2Deff perfectly follow the universal curve, ob-

tained in the absence of disorder. These results illus-

trate, at least in approximations used here, the valid-

ity of the generalized Anderson theorem [24, 26] (for

all couplings, including the BCS–BEC crossover and

strong coupling regions) — the critical temperature of

superconducting transition (for the case of s-wave pair-

ing) is affected by disorder only through the appropri-

ate change of electron bandwidth (density of states).

From Fig. 2 we can see, that in the weak coupling region

U/2Deff ≪ 1 the critical temperature in this approxima-

tion is close to that obtained in the usual BCS model

(dashed curve in Fig. 2). For U/2Deff ∼ 1 the critical

temperature Tc reaches the maximum. For U/2Deff ≫ 1

it drops with the growth of U , showing Tc ∼ 1/U be-

havior [2], as in the strong coupling region Tc is deter-

mined by the condition of Bose–Einstein condensation

of Cooper pairs and hopping motion of these pairs (via

virtual ionization) appears only in the second order of

perturbation theory being proportional to t2/U [2].

Band widening due to disorder also leads to the ef-

fective suppression of the number of local pairs (doubly

occupied sites). The average number of local pairs is de-

termined by pair correlation function 〈n↑n↓〉, which in

the absence of disorder grows with the increase of Hub-

bard attraction U from 〈n↑n↓〉 = 〈n↑〉〈n↑〉 = n2/4 for

U/2Deff ≪ 1 to 〈n↑n↓〉 = n/2 for U/2Deff ≫ 1, when

all electrons are paired. The growth of Deff with disor-

der leads to an effective suppression of the parameter
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U/2Deff and corresponding suppression of the number

of doubly occupied sites. In Fig. 3 we show the disor-

Fig. 3. Dependence of the number of local pairs on disorder

for different values of Hubbard attraction; U/2D = 0.4(1),

1.0(2), 1.4(3)

der dependence of the number of doubly occupied sites

for three different values of Hubbard attraction. We see

that in all cases the growth of disorder suppresses the

number of doubly occupied sites (local pairs). In fact,

similarly to Tc, the change of the number of local pairs

with disorder can be attributed only to the change of

the effective bandwidth of the “bare” band (7) with the

growth of disorder. In Fig. 4 the curve with black squares

Fig. 4. Universal dependence of the number of local pairs

on the strength of Hubbard attraction for different values

of disorder

shows the dependence of the number of doubly occupied

sites on Hubbard attraction for the case of quarter-filled

band (n = 0.5) in the absence of disorder at tempera-

ture T/2D = 0.0586. This curve is actually universal –

the dependence of the number of local pairs 〈n↑n↓〉 on

the scaled parameter U/2Deff with appropriately scaled

temperature T/2Deff = 0.0586 in the presence of disor-

der is given by the same curve, which as shown by cir-

cles, representing data obtained for five different disor-

der levels and shown in Fig. 4 for the case of U/2D = 1.

4. Conclusion. In this paper, using the combined

Nozieres–Schmitt-Rink and DMFT+Σ approximations

we have investigated the influence of disorder on super-

conducting critical temperature and the number of lo-

cal pairs in disordered attractive Hubbard model. We

have studied the wide range of attractive couplings

U , from the weak coupling region of U/2Deff ≪ 1,

where normal phase instability and superconductivity

is described by BCS model, to the strong coupling re-

gion of U/2Deff ≫ 1, where superconducting transition

is related to Bose–Einstein condensation of preformed

Cooper pairs, which appear in the system at tempera-

tures significantly higher, than superconducting transi-

tion temperature. Disorder can either suppress the crit-

ical temperature Tc in the case of weak coupling, or

significantly increase Tc in the of strong coupling. How-

ever, these dependences in fact confirm the validity of

the generalized Anderson theorem – all changes of su-

perconducting critical temperature can be attributed to

general widening of conduction band by disorder (for the

case of s-wave pairing, which can only be realized in the

attractive Hubbard model). In the weak coupling region

transition temperature is well described by BCS model,

while in the strong coupling region it is determined by

the condition of Bose–Einstein condensation and drops

with the growth of |U | as 1/|U |, passing the maximum

at |U |/2Deff ∼ 1. Similarly, only the band widening by

disorder is responsible for the change of the number of

local pairs (doubly occupied sites). The growth of disor-

der leads to the effective drop of the ratio U/2Deff and

corresponding drop of the number of local pairs.
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