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A model of a quasi-one-dimensional system undergoing a Peierls structural transition is analyzed on the
basis of the Ginzburg— Landau one-dimensional model. The electronic-state density with a pseudogap
is derived for a strictly one-dimensional system, in which there is no true transition. The pseudogap
arises because of fluctuations in the short-range order corresponding to a Peierls lattice distortion. The
dielectric properties of the system turn out to occupy an intermediate position between those of metals
and dielectrics. An analysis is also made of the role of fluctuations below the temperature of the true
transition, which is stabilized in a three-dimensional system, These fluctuations lead to the formation
of a pseudogap in the state density, so that measurements of the electronic characteristics of the system

cannot reveal the point at which the true transition occurs.

Quasi-one-dimensional systems having a metallic conduc-
tivity have recently been the object of considerable experi-
mental work.!»? Study of crystals based on TCNQ and plat-
inum complexes [of the type K;Pt(CN),Brg 333H;0] has
spurred interest inthe familiar Peierls arguments regard-
ing the instability of a one-dimensional metal with respect
to a change in the lattice constant.’ According to x-ray
structural®’ and neutron-diffraction® data, a Peierls transi-
tion actually occurs in the compound K;Pt(CN)4Brg 333H,0,
so that at temperatures T £ 80°K the initial lattice con-
stant is increased by a factor of 6, while at higher tem-
peratures there is a pronounced softening of the frequency
of phonons having a quasimomentum ~ 2pq (py is the Fermi
momentum of the electrons). It is also highly probable
that a Peierls transition has been observed in the com-
pound’ TFF—TCNQ, although as yet there is no directevi-
dence for a doubling of the lattice constant in this system.

Below we describe a model for systems of this type
under conditions such that the correlation length for the
fluctuations in the order parameter corresponding to the
deformation of the lattice with the new lattice constant is
much longer than the interatomic distance. We analyze
the one-electron spectrum and the state density of the
system. We then turn to the dielectric constant corre-
sponding to the reaction to an electric field oriented par-
allel to the metallic chains, and we analyze the conductiv-
ity along the chains at high frequencies. The properties
of this system turn out to occupy an intermediate position
between typical metallic and typical semiconducting prop-
erties, implying that there are certain unique features in
quasi-one-dimensional systems in which the fluctuations
of the order parameter near a second-order phase tran-
sition are extremely important.

We begin from the Hamiltonian
\ 1
H= ; $papap + E wgbgbe + 75 2 84%5+q2p (bg 1+ V2,), @)
q re

where £ is the free-electron energy, reckoned from the
Fermi level; wq is the phonon spectrum; gp corresponds
to the electron—phonon interaction; and ap and bp are the
electron and phonon annihilation operators. Theory has
already been worked out®~!? for a Peierls transition in the
self-consistent-field approximation in a strictly one-di-
mensional system; it is also known'! that fluctuations of
the self-consistent field in a one-dimensional system are
extremely important and rule out the possibility of phase
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transitions altogether in a strictly one-dimensional sys-
tem. Account of the three-dimensional nature of a real
system can help stabilize the true transition (or suppress
fluctuations). We are essentially adopting the Peierls-
transition model proposed by Lee et al.,!? which is based
on the one-dimensional Ginzburg—Landau model, which
has been analyzed in detail.!®> Although there is no true
transition according to this model, the correlation radius
for short-range order becomes macroscopic at a certain
temperature Tp ~ 1/4T¢ (T is the transition temperature
in the self-consistent-field approximation). We are in-
terested in the temperature range T ~ Tp, in which this
radius is quite large. If the true (three-dimensional) tran-
sition is stabilized at a certain temperature, i.e., if long-
range order appears, the analysis must be modified. How-
ever, fluctuations are also important in the neighborhood
of the true transition. The corresponding calculations are
given in the Appendix.

Instead of the Ginzburg—Landau model we couldadopt
an interaction having a soft phonon mode near the transi-
tion point,“ but in this case we would have to use specific
models for the soft mode, and the range of applicability of
these models is unclear. For the problem under consid-
eration here the Landau free energy is'

F (¥} =a (T, 2p0) | %o [?
5(T, 2p0) | ¥ |4+ < (T, 280) (Q —280)? | ¥ 2, @)

where the order parameter g = gQ (bQ +b:Q) is propor-
tional to the Pierles lattice deformation. The expansion
coefficients are

—T 2 93,
a=N, Ta" le%Ele‘p{_F}[;—o}:
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where Iny =C is the Euler constant, N is the free-elec-
tron state density at the Fermi level, Ep is the Fermi en-
ergy, and vy is the Fermi velocity. Account of the elec-
tron-band structure in the strong-coupling approximation
alters the constants in (3) only slightly.15 In this model an
electron is scattered in the static field of random fluctua-
tions of the order parameter y. The simplest eigenener-
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gy part of the one-electron Green's function is %1% [g, =
(2n + 1)7T]

dQ 1
2 (e P) =<4D S 2 S Q=g 4)
where S(B) is the static structural factor for fluctuations
of the order parameter, proportional to the Fourier trans-
form of the two-point correlation function for the order

parameter. For this model we have!?!3

F £1(7) £1(7) (5)
28 Q==+ T OF 2R F+E2(D)"

where £(T) is the correlation length for fluctuations in the
order parameter (the short-range correlation radius). At
T ~ 1/4Te the length £(T) increases exponentially with de-
creasing temperature.“ Now assuming an electron having
p ~ + pg, we find

2 (e P)= 42 [leg + Ep + topf71 (T)] 72 == 82 (e, + £} 77 (6)
A=y, (7)

where we have used Ep-2p, = “ép for the one-dimensional
system.

The approximate equality in (6) holds [the corrections
‘or the finite width of the S(Q) peak are small] under the
:onditions!’

E(N)>lp—pol™
vkl (T) <€ 25T } ®)

The first condition in (8) imposes a restriction on our
inalysis in the immediate vicinity of the Fermi level T ~
1/4T,, where £(T) is large, the corresponding energy range
is extremely narrow and of no particular interest. Accord-
ing to the data of ref. 5, we have ¢a (T = 300°K) > 10%, where
7 is the Pt—Ptdistance in the compound K;Pt(CN)4Brj_333H,0.
Although the estimates of ref. 12 are less favorable, the
salues of £(T) near the "transition" are undoubtedly very
arge and can reach hundreds of interatomic distances.

Using approximation (6) in the higher-order diagrams,
ve can sum all!) the important diagrams by the perturba-
tion-theory method proposed in ref. 17. Scalapino et al. 13
analyzed the contribution of only the simplest diagram in
(6), but the higher-order approximations are extremely
important. Carrying out the summation, we find!” the one-
zlectron Green's function to be

< fen+§
6 (en A= ae o T =G o 2 P, O)
0

vhere

ien+ &

Gy (en Py P)= P+ —ar (10)

is the normal Green's function of an ideal Peierls insula-
tor having an energy gap | Al. It is easy to say that Eq. (9)
is the Green's function of an electron in an external field
W cos 2px whose amplitude "fluctuates" with a distribution

2
P{W}=|W !/Aze“(W /Az). The integral in (9) denotes an
averaging over these fluctuations.

After the standard analytic continuation to the real
frequencies, we find the electronic-state density to be
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Fig. 1. Electronic density.
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where Erfi x = S dx®®. Figure 1 shows this state density,

0
which contains a typical pseudogap having a width on the
order of |A| ~ (y? )1/2- The temperature dependence of

(¢ 2) was calculated in ref. 13; the asymptotic behavior is

N (¢)

" N (¢) _ e2
No - as

e|]>w; —m— =255 >0 as
Ng a2

le|—0.

The vanishing of the state density in the middle of the
pseudogap is nonphysical; our analysis is not valid inthe im-
mediate vicinity of the Fermi level because of restriction
(8). Accordingly, in contrast with the situation in ref. 13,
the summation of all the important diagrams leads to the
existence of a pseudogap not only at T > 1/4T, but also at
T < 1/4T¢. A true gap does not arise even at low temper-
atures in the "dielectric" phase.z) As is shown in the Ap-
pendix, this result holds even in the case of a true phase
transition (at T £ Tg), so that, strictly speaking, measure-
ments of the electronic characteristics of the system can-
not reveal the transition point.

We turn now to the reaction of the system to a longi-
tudinal electric field directed parallel to the metallic
chains. A variation §¢ & (q is the wave vector along the
chain and w is the frequency of the external field) causes
a variation in the one-electron Green's function:

G (¢, p)
(S

=G, T (e, by cto, P+OG (o, p+q), (12)
where T'(g, p, € + w, p + q) is the corresponding vertex
part. In this model the variational derivative in (12) can
be calculated immediately;!" we find

3G (e,
—#=—B<Gw(5. Py p)Geye(et+w, p+a, PHal>,

'_‘e<G;A’ (s, P, P—ZPO) Gy (2t o, p—2py+q, P+9)>(, (13)
where e is the electronic charge, GA2? (g, p, p) is given in
(10), and

A
G2 iz, Py P — 2pg) = (e )2 — £3 — a2

(14)
is the anomalous Green's function of a Peierls dielectric,
which describes the flipping p — p—2p,. Accordingly, av-
erages over binary products of anomalous Green's func-
tions arise in the theory, while the anomalous functions
themselves do not, in correspondence with the absence of
long-range order in the system.

The polarization operator is (wy = 2rmT)

I (qow) = — § dte27 DNy X
0 n
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where TIA2(q, wm) is the polarization operator of a Peierls
dielectric, and p is the density of the metallic chains in a
cross section of the sample (here we are interested inthe
response of a unit volume of the system). The analysis
continues as in ref. 17. The dielectric constant along the
metallic chains is

e (g, ) =1+

4me?
q2

IT (qu) = <9;A1 (qm)>(’ (16)

where

4re?
g (q0) =1+~ Tye (a, w) 7)

is the dielectric constant of a Peierls dielectric.

We consider first the case w = 0; then for this model

we find!?
vix2 242 2 02
e (q, O)QI—GL;exp%Ei (——--Ub.%—), (18)

where w? = 81r2N0p is the inverse square of the Debye
screening radius, and Ei(—x) is the integral exponential
function. Hence, with vpq> | A|, we find £(g, 0)~ 1 +
?/q%). Forvgq < | A|we find

vjx2 vl g2

e(q, 0)&1—W1n7—;A—2. (19)
This £(g, 0) behavior occupies an intermediate posi-

tion between the behavior characteristic of metals andthat

characteristic of dielectrics.

Turning now to the case w = 0, vpq < | A|, we find!’

Rez(w)&i—iEi(— “’2) w;{i—e—%’}, (20)

642 4A% ) T w?
where w%) = V2F'H2 is the square of the plasma frequency.

In the case w > 2|A| we have Re ¢ (w)=~ 1—(w§)/w2); in
the case w « 2| A | we have

w? w?
Rea(m)&i—aﬁ%ln'{m. (21)

Of particular interest is the behavior ofthe imaginary
part of the dielectric constant, since it governsthe absorp-
tion of electromagnetic energy in the system. The real
part of the conductivity is

Res (u) =7 Im ¢ (o). (22)

By analogy with ref. 17 we have

w?
aar
A L
Ime(w)=%w§l—w‘?‘S dle-t T
W
0 Vm—c

[}

= Lt e (i — g oot ( 57a7) b 23)

Asymptotically we find
w,\2/7A\2
Ime('w)%’n(*f) (T) ’

3 (24)
1 /A2 @
Res (o) =7 7) =
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Fig. 2. Qualitative behavior of the imaginary part of the dielectric con-
stant (a) and of the real part of the conductivity (b) as functions of the
frequency of the external field.
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for w » 2| A |; for w « 2| A |, we find

2
“p

k4
Im:(w)%ﬁﬁ,

(25)
1 [0\
Rec(w)zl‘—s(—A-) w—>0 for o—0.

Accordingly, the static conductivity vanishes in our
approximation. Analogously, the static conductivity of a
Peierls dielectric vanishes at zero temperature. Equa-
tion (23) describes a sort of interband absorption (Fig. 2),
having a peak at w ~ 2| A |. We also see that our model
describes a substance whose properties are intermediate
between those of metals and dielectrics: In a metal we
would have Im ¢ (w) ~ 1/w as w —0, while in a dielectric
we would have Im g (w) = 0 at w = 0. In our case thequan
tity Im ¢ (w) has a finite discontinuity at w = 0:

(Im e () = —Im e (—w)).

Strictly speaking, these equations do not hold at low

frequencies, since the entire analysis breaks down near

the Fermi level, according to the first condition in (8).
Our calculation of the polarization operator holds only for

03> v E71(T). (26)

This condition has a clear meaning: Over the scale
time for a change in the external field an electron moves
a distance shorter than £(T).

A Peierls system thus apparently represents a sub-
stance whose properties occupy an intermediate position
between those of metals and dielectrics. An experimental
search for absorption peaks at frequencies corresponding
to the width of the pseudogap would be very interesting.
The possible anomalous behavior of & (w) according to (2]
and (25) at w ¢ 2| A| emphasizes the importance of ex-
periments in the rf range. No reliable experimental data
are presently available.

In conclusion the author thanks L. V. Keldysh, L. N,
Bulaevskii, and D. I. Khomskii for many discussions and
comments.

APPENDIX

A phase transition cannot occur in a strictly one-di-
mensional system because of the disruptive influence of
fluctuations.!! In particular, the self-consistent-field ap
proximation does not have a range of applicability becaus
of the large width of the critical region, AT/ Te ~ 1 (ref,
13). However, since real systems are three-dimensional
in nature, fluctuations can be suppressed in some manner
(e.g., the fluctuation amplitude can be limited by a long-
range Coulomb interaction between electrons of neighbor



ing chains). Then a true phase transition is possible inthe
in the system at T = Te. Apparently it is this case which
oceurs in KyPt(CN)4Br 333H,0 (ref. 4), where the true
(three-dimensional) transition stabilizes at T¢ £ 80°K.
Then, at T < T¢, a long-range order arises, and the sys-
tem can be described satisfactorily in the self-consistent-
field approximation. However, the fluctuations of the or-
der parameter, even though suppressed, can turn out to be
important even at T < Ts. In this case we have!®

Yo=0+ 3y, (A.1)
where
¢n2l, VT 7 r T<T
a\'h @ e 4 @ o
A=(—E) - - (A.2)
TT" at T—=0

is the equilibrium value of the order parameter, and 5y

is its fluctuation. Here A plays the roleof acoherentfield,
which transmits a momentum 2p, and which leads to Bragg
scattering of electrons by the boundaries of the new Bril-
louin zone, and 6YQ is the random field. In the diagram
technique we find two types of interaction lines: lines of the
coherent field A, which transmita momentum 2p,, and lines
of the random field, which are associated with the corre-
lator (8% 0¥ _Q) = (63*)S(Q). Here S(Q) is again given by
(5) (ref. 13). The equations for (6 ?) and ¢(T) derived on
the basis of the self-consistent-field approximation'® are
now, generally speaking, inapplicable (because ofthe three-
dimensional nature of the critical fluctuations), so that
(6¢*yand ¢(T) are treated below as parameters of the the-
ory. Near the transition point (T £ T¢) the quantity £(T)
increases, so that we can again use an approximation like
that in (6)-(8). Then the random-field lines also trans-
mit a momentum 2p,. In the expansion of the one-elec-
tron Green's function a sequence of alternating Green's
functions {ie — £p } ™! and {ig; + £p} ™! dominates. In per-
turbation theory of order n there are 2n vertices, of
which 2k are connected by random-field lines of the fluc-
tuations, and with which factors 6 A% = (6 ¢% are associ-
ated; at 2(n — k) vertices, single coherent-scattering lines
arise, each of which is associated with a factor A. Then
the expansion of the Green's function is

Gl t)=3 3 B, &), (A.3)
n=0 k=0
where
E== (A.4)

!
181800 [ T ] 138 9B (e — )7 iy o+ £ (i — (£

Actually, an electronic line has 2k vertices, to which
random-field lines are attached; of these vertices, khave
an outgoing line, which goes to the remaining k vertices
inany of k! methods. Here [n!/k! (n—k)!]* is the num-
ber of arrangements of single coherent-field lines at any
2(n - k) vertices taken from the total of 2n vertices; the
circumstance that the momentum 2p, "enters" half of
these vertices and "exits" from the other half is taken
into account. We use the identity (1 + x)(1 + y)B =

*E Xka?C%iClé?, where we have set
o

B BA
s=lg =|Lle? 7 y=24

1635  Sov. Phys. Solid State, Vol. 16

2

| (e RY (e BY - S e (3"
3 k=0

-]

k 2
using | dlePl e el € < k1, we find
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G (e &) = 5‘ d|tpeler
0

o

% j d? iel+Ep
2 N BA\2 B
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0

i ie, + &
=;5dte'l([‘ ? TSR (A.5)
(12)2 — 8 — 221 + L
where
@ 2%
[ax...=(ametame...=(ajeperf ap...
0 0

We have obtained a normal Green's function with a
gap which "fluctuates™ around A as given by Eqs. (A.2).
The equation for the anomalous Green's function is obvi-
ous. As A —0, Eq. (A.5) converts into Eq. (9), and in the
case 6A —0 we find (10), i.e., an ideal Peierls dielectric.
Accordingly, the analysis above is valid for the case T >
Tc. Obviously, even in the case T € T, the fluctuations
are extremely important. For the state density we have

: 9[5‘2—A2 1+r32]
NG Lol | e iy A
Ny T = /’ 3A 2 .6)
. V e—-sjt+ig

Omitting the lengthy details, we state that as 6A — 0
(i.e., as T —0) we would have

lel
N ) »[ﬁ e .1
No 0 for |e|<A,

i.e., we find an ideal dielectric with a gap 2A. When §A is
finite we always have N(e)/N, = 0 for | ¢| < A.

For example, as | €| = 0 we would have

o ::7‘%"52” - 1.68 {1—Erfo(%‘%|)}. (A.8)

z

where Erfc x =2 /y7 dee'xz. With | €| = A we find

2

N( e]= ANy~ Ja/Tsal.

Accordingly, we again find a state density having a
pseudogap. In the case [§A| <« A the state density in the
energy gap is of course small, but this is not generally
true in the case T ¢ To. We see that fluctuations of the
order parameter are extremely important even in the case
of a true phase transition. Near the transition, the state
density has a pseudogap at both T > T, and T £ Tg. In this
sense the transition point is not defined and cannot be de-
termined from measurements of electronic characteristics
of the system. In terms of their effects, the fluctuations
turn out to be analogous to an internal disorder of the sys-
tem, analyzed in ref. 18: They suppress the true transi-
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tion and "smear" its effects on the electronic properties.

Note added in proof. D.B. Tanner recently
reported [Phys. Rev. Lett., 32,1303 (1974)] experimental
data on IR absorption in TTF = TCNQ at 65 and 320°K. The
results are qualitatively analogous to Fig. 2b, with Re o
@ =2 |Al) = 5-10°-10° @' em™ . Extrapolating (25)to
w = 2 |A| andusing the experimental values 2|A | = 0.14
eV, and wp, = 1.2 eV, we find Re ¢ (@ -2|Aly~8-10071-
cm-1.

Y'We assume that all the higher-order correlators for the order parameter
can be factored into binary correlators; this procedure is equivalent to
taking only Gaussian fluctuations into account, '

) Account of non-Gaussian fluctuations could hardly have a qualitative ef-
fect on this result. The gap can appear only in the presence of a true long-
range order.
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