self-consistent theory of localization in 2 < d < 4 dimensions
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The self-consistent theory of electron localization in disordered systems proposed by Vollhardt and Wélfle
[Phys. Rev. B 22, 4666 (1980])] is generalized to 2<d <4 dimensions. The mobility edge position is

determined and the critical behavior of various physical quantities in the vicinity of the mobility edge is
discussed. It is shown that the description of the vicinity of the mobility edge in a self-consistent theory is
outside the range of validity of perturbation theory and, therefore, the results obtained by perturbation theory
are only qualitative. The case of d >4 is briefly discussed and the frequency dependence of the electrical

conductivity for d = 2 is also considered.

PACS numbers: 71.55.Jv, 71.10. + x

1. It is well known that there are fundamental diffi-
ulties in the consistent description of localization of
tectrons in disordered systems,! In particular, it has
1ot been possible to describe the localization effect it-
%lf within the standard formalism based on averaged
freen functions. The only exception is the one-dimen-
fional case, In higher dimensions, it has been necessary
bresort to nonstandard methods based on the original
Anderson paper.2 However, it is practically impossible
bealeulate various physical quantities within the Ander-
“n method,! We believe that the recent self-consistent
proach to the localization theory developed in Ref, 3
presents an important step toward the solution of the
@calization problem, The main advantage of this method
§its simplicity and standard formulation which make it
Bssible to generalize such a theory to include new scat-
“Iing mechanisms and the effects of applied fields (see,
br example, Refs, 4 and 5), Reference 3 is mainly con-
*med with the two-dimensional case which is of par-
‘lar interest in the context of the present theory.! The
froach of Ref, 3 is particularly suitable in the two-
Wensional case since it is based on the summation of a
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special class of diagrams®®' which dominate the per-
turbation series for d = 2, However, the aforementioned
method can be easily generalized to dimensions d > 2,

It will be shown that such a generalization yields reason-
able and qualitively correct results for all the principal
physical quantities of interest near the mobility edge.
The position of the mobility edge is also obtained within
such theory, After the completion of the present work,
Ref, 8 appeared and some of our results are quoted in
Ref. 8 (without derivation and discussion), Our aim is

to address ourselves to a number of questions which have
not been answered satisfactorily in Refs, 3-5 and 8, In
particular, we shall demonstrate explicitly that the de-
scription of the mobility edge 2 < d < 4 in dimensions,
obtained in the self-consistent theory of localization, is
outside the range of validity of the self-consistent theory,
We shall also discuss some special features of conduction
in two-dimensional systems, The behavior of the theory
for d = 4 is also briefly discussed,

2. The self-consistent theory of Ref, 3 is based on
the two-electron Green function averaged over the dis-
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tribution of impurities and on the related quantity
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where GR and GA are the one-electron Green functions
before averaging; E is the electron energy (Fermi ener-
gy); w is the frequency; p, = p+(1/2)q; and the angular
brackets indicate averaging over impurities, The quantity
cp%A(w, q) determines the density-density response func-
tion and, therefore, the conductivity of the system,

The function W%A(w, q) can be obtained as the solu-
tion of an approximate "transport equation” in the follow-
ing form (m is the electron mass):
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where Mg(q, w) is the so-called "relaxation kernel,"? In.
general, the relaxation kernel is determined by the sum
of diagrams for the irreducible vertex part in the two-
particle (R—A) channel and N(E) is the one-electron den-
sity of states,

By considering a self-consistent generalization of
the summation of Langer—Neal®? diagrams which yields
the dominant contribution for d = 2, Vollhardt and Wolfle?
derived the following self-consistent equation for ME(q =
0, W)
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where 1/7 = 27p V2N(E) is the Born rate of the scattering
electrons from impurities which are assumed to be ran-
domly distributed in space with a concentration p; V is
the Fourier transform of the impurity potential which is
assumed to be completely localized; and Dy = 2E7/md is
the classical diffusion coefficient, The choice of the cut-
off momentum k; in Eq, (3) is discussed below,

The frequency-dependent electrical conductivity of
the system is given by®
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It can be seen that Re Mg (0, @ = 0) = 0 holds in the metal-
lic region,

In the energy range corresponding to localized states,
we obtain o g(w —0) — 0 and the quantity
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which determines the "localization probability™ becomes
nonzero.%? For q —0, we obtain!®

Apiq) =1—a*R},, (£), (6)
where the localization radius Rioc(E) is given by

2E

R (B)=gory s w8=—lim My, w) >0. 0

2034 Sov. Phys. Solid State 24(12), December 1982

It follows that the localization is related in the Dresep;
formalism to the divergence of the relaxation kerne, \} :
w) for w—0 (see Ref. 3). ha

The self-consistent equation (3) was studied ip Re
only for d = 2. However, it can be easily generaljzeq
arbitrary dimensions d, It is clear that the COrrespong;,
results can describe localization only qualitatively Sine;'h
Eq. (3) is based completely on the summation of Lange,._
Neal diagrams which are important only for d = 2, Nevey
theless, such calculations are interesting since they yield_
a simple description of localization in arbitrary dime,_
sion and, undoubtedly, describe correctly some featyreg
of the localization, The validity of such calculations v
be discussed later.

3. Introducing in Eq. (3) a dimensionless integratiy,
variable, we can write this equation in the following forp,
which is more suitable for our further calculations;
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where A is a dimensionless coupling constant and x; =
k)/V2mE. Careful examination of the equations of Ref, 3
[prior to the introduction of Mp(4, w) in Eq, (27) of Ref, 3
indicates that k; ~pF ~ V2mE (pp is the Fermi momen-
tum). Such a choice of the cutoff momentum was used in
Ref, 3 although the authors of Ref. 3 do not discuss in
detail their choice of k; (see Ref, 8, where the momentum
k, in Ref, 4 was chosen differently). We believe that the
choice of the cutoff momentum kj ~pp ~ vV 2mkE is unique
and very important for the subsequent estimates. For
such a choice, it is clear that x; = const ~1,

oy 9)

Setting w = 0 in Eq. (8) and considering the metallic
regime Re Mg (0, w = 0) = 0, we find that
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It can be seen that E¢ plays the role of a mobility edge
2 4 d\(E—E,
sb%%’c( - )( = ); < d<h 14

for E > Ec. Our result (12) is practically identical with
the estimate of E obtained by another method in Ref. 9-
For d = 3, the mobility edge E lies in the "strong cou~
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pliﬂg" region Esc = m3(P V“’)2 where the set of diagrams
used in the calculation of this quantity is no longer dom-
;pant!*® and all the diagrams of perturbation theory should
pe included. In fact, it follows from Eq, (9) that the con-
dition E > Esc is equivalent to the requirement A <1,
i.e., it represents the simplest condition of validity of
perturbation theory, For d —2, we obtain E, — «, which
corresponds to the currently accepted view that there is
complete localization in two dimensions.'%? Moreover,
as shown in Ref, 9, it is more important that Eq. (12) de-
fines essentially the dimensions of the "Ginzburg critical
region“i-s where higher orders of perturbation theory are
important since the geometrie factor (d— 2)2/(4-0 5p_
pears in the theory, It follows that, in spite of the fact that
the inequality Ec > Eg¢ (A < 1) is satisfied, the mobility
edge defined by EqQ. (12) falls even for d — 2 in an energy
range where perturbation theory (and the corresponding
choice of diagrams used in the present self-consistent
theory) is not valid, Nevertheless, it is reasonable to
assume that Eq, (12) yields a correct order-of-magnitude
estimate of the mobility edge, At the same time, the re-
sult (14) implying that the conductivity tends to zero lin-
early in the limit E — E¢ cannot be regarded as proved,

We shall now discuss the region of localized states
(E < E¢). We shall set [see Eq. (7)] Im ME(0, w) =0
and ReMg (0, w) = —wg /“’0 and multiply Eq. (8) by w,
which yields in the limit w— 0 the following equation for
wh
C oyt dwg
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The integral in Eq, (15) can be expressed in terms of the
hypergeometric function and Eq, (15) then assumes the
form
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When the mobility edge is approached from below (E £
Ec), we can expand Eq, (16) in powers of z (small w%).
Simple transformations yield

2
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It follows from Eq. (7) that the localization radius is
given by

2
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Where the critical index of the localization radius is

1

v:m_

(19)

Fquations (19) and (14) indicate that Wegner's scaling
Telation s = (d — 2)v is satisfied for the critical conduc-
livity index,! The corresponding values of the critical
Indices describing the behavior of physical quantities
lear the mobility edge agree with the results obtained in
the prine ipal approximation in the € = d — 2 expansion
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obtained by the field-theoretic method based on nonlinear
o models (see, for example, Refs, 11-13) and also on the
basis of the € expansion in the qualitative scaling theory.“‘
We believe that these results should not be taken too
seriously since they were obtained by extrapolations out-
side the range of validity of perturbation theory and are
based on an inconsistent self-consistency procedure,
Nevertheless, the self-consistent theory of localization
of Ref, 3 is a powerful method since it yields quite simple
results that are equivalent to the results obtained by more
complex methods,!1713

4, We shall now discuss the results of the present
self-consistent theory for d = 4, It follows from kq. (10)
that
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The solution defined by Eq, (20) for d > 4 is clearly not
physical since the region of localized states and the metal-
lic region are interchanged, For d = 4, we obtain metallic
conduction and m% V? is the dimensionless coupling con-
stant of the four-dimensional theory of Ref, 15, Our treat-
ment is clearly meaningful for m? V3« 1, [It follows
from Eq. (15) that @2 < g}, This result also follows since
the quantity Ego defined by Eq, (13) tends to zero for d —
4 (from below) for m% V2« 1, The interchange of the
metallic region and of the region of localized states for

d >4 is a natural consequence of the following fact noted
already in Refs, 15 and 16: the perturbation expansion

in the present theory is in powers of the parameter

(E/E Sc)“'d)/2 and such anexpansion for d < 4 diverges

in the limit E —0; for d > 4, it diverges for E —», Non-
physical behavior of the model for d > 4 indicates that a
model based on a point interaction (correlation of a ran-
dom potential of "white noise" type) is not adequate for

d > 4 (see Ref. 17), The situation changes completely if
we assume that the cutoff parameter k; in Eq. (3) is deter-
mined by the range of the potential (pair correlation function
of random potential) rather than by the Fermi momentum,
i.e., by Rint, which implies k, ~R7}, < pp (long-range
interactions), For d < 4, we obtain the same results as
before but the mobility edge is now given by

d m g2 ECL k3
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It follows that the critical index of the localization radius
is v =1/2 for d > 4. In this sense, we can regard d = 4
as the upper bound on the dimension of space in which
localization effect can occur,! However, we would like
to point out that a choice of k; independent of pp does not
follow from the model under study which is applicable

to d < 4, This important factor has not been discussed
in Ref, 8,
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5, Finally, we shall quote (in more detail than in
Ref, 3) our results on the frequency dependence of the
conductivity in the self-consistent theory applying to d =
2. A somewhatlengthybut straightforwrad analysis of
Eq. (3) for d = 2indicates that there are several frequency
intervals with different behavior of the conductivity. At
very low frequencies w < @/ ryet /M1/T), we obtain

ne

2 1 o2
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(249

i.e,, we obtain insulating pehavior.® At somewhat higher
frequencies

(25)

o () = 57 T(zk)t

nQuasimetallic" behavior with logarithmic corrections
first derived in Ref, 7 is obtained at frequencies satis-
fying (1 /A9)et A /1) < w< (A¥T), Le.,
2 1
op (o) = (=2 57)- (26)

Finally, for A*/r <w<« 1/, the self-consistent theory
yields

ne? E
ap ()= = :(1——7-), (27)
where
Ec';:lnﬁ—ﬂ'2 1[1322‘. (28)

The last result is especially interesting since the conduc-
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tivity in this frequency range is essentially constant {in-
dependent of w) and cor~reSponds to metallic conductigy,
with the mobility edge E¢ defined by Eq. (28). It is pos.
sible that this result explains the well-known diSCl‘epa.nQ\
between various numerical approaches to the calculatjq,
of the two-dimensional conductivity's logarithmic corre,_
tions and insulating behavior manifest themselves only

at extremely low frequencies and, at the same time, they,
is an interval of frequencies (since A is small) in which
the system is characterized by a finite mobility edge,
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