Electron-electron interaction in a self-consistent localization theory
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First-order corrections to the density of states due to electron-electron interactions are evaluated within a self-
consistent theory. A generalization of the well-known results of Al'tshuler and Aronov to the insulating phase
is obtained. A kink in the density of states at the Fermi level is flattened, but the resultant correction to the
density of states exhibits a logarithmic singularity at the Fermi level throughout the whole region of localized

states. Screening in the insulating phase is discussed.

PACS numbers: 71.50. + t, 71.20. +¢, 71.30. + h

Localization of electrons in disordered systems is
usually studied neglecting the electron—electron interac-
tions.! However, the importance of this interaction both
for "dirty" metals?™? and for strongly localized elec—
trons®® has been emphasized. There have been several
studies’ 12 attempting to treat consistently the interac-
tion effects near the metal —insulator transition in dis-
ordered systems. Only the metallic (or "quasimetallic"”
for two-dimensional systems) phase has been considered
but the approach tothe Anderson (or Mott) transition, i.e.,
the insulating phase, has not been studied. Although there
are serious contradictions between various treatments,
all the results indicate that correlations play animportant
if not the dominant role in the description of the metal—in-
sulator transition in disordered systems. Several prob-
lems remain unresolved, for example, the most funda-
mental problem of the existence of localization in sys-
tems with electron—electron interactions. The situation
is complicated by the well-known difficulties! which arise
in a theoretical description of the Anderson transition
even in the one-electron approximation. It is our opinion
that great progress in qualitative understanding of the
physics of localization was made by Vollhardt and Wolfle
(Refs.13-17), who developed 2 new version of a self-con-
sistent localization theory. The main advantage of their
theory is that it is possible to calculate all the relevant
physical quantities in the whole range of variation of the
parameters of the problem, i.e., ranging from a "good"
metal to an Anderson insulator. It appears that such a
theory provides a qualitatively correct interpolation
scheme which describes the Anderson transition, al-
though it does not contain a well-defined small parameter
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in the three-dimensional case.l® Another advantage of a
self-consistent theory is that it could be generalized to
various types of interaction and it could also include ap-
plied fields.

We shall study the effect of first-order perturbation
corrections to the electron—electron interaction within a
self-consistent localization theory. We shall mainly con-
sider corrections to the density of states. It will be
shown that the approach of Aronov and Al'tshuler?™ can
be naturally included in a self-consistent theory and a
simple generalization of their results can be thus obtained
for the insulating side of the Anderson transition. We
shall assume that the concept of localization remains
valid even in systems with interactions. In fact, such an
assumption is necessary for a treatment based on the
first-order corrections in the interaction to be valid
within the context of a general theory of the transition
described by a self-consistent localization theory.

1. PRINCIPAL RESULTS OF A SELF-CONSISTENT
LOCALIZATION THEORY

The self-consistent localization theory is based on
the Bethe —Salpeter equation in d-dimensional space
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o two-particle electron Green function and averaging
M; random distribution of scatterers is indicated by
y jar brackets. Moreover, Upp (qw) is the irreducible
RA channel) vertex part and Eg is the Fermi en-

Graphlcal representation of Eq. (1) using an cqua-
- for the total vortex part I'pi(qw) is shown in Fig. 1.
:Ul}lo Eq. (1), we can obtain (Refs. 13-15) the following
iloxlmate expression for the Green function:
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(N, is the one-electron density of states at the Fermi level).

Here, We introduced a generalized diffusion coefficient
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where m is the electron mass and MEF(qw) is a relaxa-

tion kernel which satisfies the following self-consistency
equation?®™1% in the limit g — 0z
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where v = Tp VN is the Born rate of the scattering of
electrons from point scatterers distributed at random
with a density p in space and V is the amplitude of the
scattering from a point potential. The most rigorous de-
rivation of Eq. (5) which is based on exact diagrammatic
analysis neglecting the terms less singular in the limit
w—0 (for d 3 2!) is given in Ref. 15. Equation (5) is
equivalent to an approach in which U, :(Qw) is given by
the sum of the well-known sequence of maximum crossing
diagrams ("cooperon") and the classical diffusion coeffi-
cient is replaced by the generalized coefficient defined by
Eq. (4) (see Refs. 13-15). The solution of Eq. (5) for 2 <
d < 4 is given by4~17
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where o (EF)=—liT Mg, (©) >0 for Ep < Ec and E;
defined by wi(Eg) = 0 is the mobility edge.

In the region Ep < E¢, we obtain from Eq. (3) the fol-

lowing result in the limit w — 0z
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Plays the role of the localization radius and the quantity
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2B,
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(11)
will be called the renormalized diffusion coefficient. It
follows from Egs. (8)-(10) that the results of the self-
consistent localization theory are equivalent to the gen-
eral localization criterion formulated in Ref. 18.

2. DENSITY OF STATES

We shall illustrate the effect of the interaction cor-
rections for the one-electron density of states which is
defined by the well-known expression

4
— [ Sy

where ¢ =E — Ep is the energy measured from the Fermi
level. We note that various definitions of the density of
states can be given for a many-electron system?:4~6:8
depending on the physical quantities which are to be de-
fined. The density of states defined by Eq. (12) can be
determined from tunneling experiments,?4

N (e)= (12)

For simplicity, we shall consider the electron—elec-
tron interaction described by a finite-range repulsive po-
tential. Following Ref. 2, we shall calculate the simplest
correction to the one-electron Green function described
by the diagram in Fig. 2a, where the following vertex part
defined by (Fig. 2b)
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is used. The corresponding correction to the density of
states is given by?
BN (z)
Ne
1 dd dlq [ dw
—smem [ (o | 2 e ki@ 64— op— @) [6" (P
€
1 4¢ d
_2_121"1 @T;‘S‘ —2—:“7%“ (qw)_l)(q). (14)
It can be easily shown that
. i (% ra
% (e - opy) G (c0-) g (a0} =2 s 8 ) (15)

Using then the following result of the self-consistent
theory employed in the derivation of Eq. (3) (see Ref. 13)
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we obtain from Egs. (13) and (15) the required quantity in
the self-consistent theory
1
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Equation (17) holds for small w and q. It can be seen that
the quantity v(qw) determined within the self-consistent
theory has the same form as for a "dirty" metal,’”* but
the classical diffusion coefficient is now replaced by the
generalized diffusion cocfficient defined by Eq. (4). For
example, Egs. (17) and (6)~(8) yield in the localization
region (Ef < Eg) for w —0
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Equation (18) is quite general within the context of the
localization criterion given in Ref. 18,

Equation (14) then assumes the form
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and, using the approximation defined by Eq. (6) (4 — 0),
we obtain
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For w}(Ef) =0, i.e., in the metallic phase, only the con-
tribution defined by Eq. (21) is nonzero. For a contact
interaction v(Q) =v, we can use a simple estimate of the
integral in Eq. (21) to obtain
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where Sy = 2“(d'1)7r‘d/2/ r(d/2). We have defined a char-
acteristic energy E related to the cutoff parameter for the

1944 Sov. Phys. Solid State 25(11), November 1883

upper integration limitin Eq. (21). Such a cutoff jg
quired since the "diffusion" approximation in the ill[(;;
grand [MEF(qw) — Mg . (w)] ceases to be valid for lage:
momenta. Following the method of Refs. 16 and 17 \\,;; )
a similar cutoff in Eq. (5) was discussed, we sha]] Chchh‘
the cutoff parameter to be of the order of the Ferpy; Im%
mentum pg = (ZmEF)l/z, which yields o

E=Dp,pj. (24)
Alternatively, we could choose the cutoff parameter ¢, t
equal to 71, i.e., equal to the reciprocal of the Born
mean free path.!%15 However, since the condition -1 .,
is satisfied near the mobility edge, both definitions of
the cutoff parameter are equivalent. It follows from
scaling arguments of Ref. 8, which apply near the mo-
bility edge in the limit Ryoo(EF) > I, bR that the cut-
off parameter satisfies ~Rj, éc(E F) but such a choice
would contradict the self-consistent localization theory,
The estimate defined by Eq. (23) holds provided

e
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Equation (30) is replaced in the special case d =2 by
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The contribution defined by Eq. (22) is dominant in an ex-
ponentially small neighborhood of the Fermi level and an
estimate of the corresponding integral yields
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Equations (23) and (26) reduce in the metallic phasc

(w? = 0) to the well-known results of Refs. 2 and 3 including
a renormalization of the diffusion coefficient. For [&|
w}(Ep) TER» such a behavior is also obtained in the in-
sulating phase. For |e| <« w}(Ep) TR, a kink in the
density of states at the Fermi level, which occurs in the
metallic phase, is rounded off and is replaced by 2 smooth
minimum. However, a logarithmic singularity defined by
Eq. (27) is obtained in an exponentially small neighbor-
hood of the Fermi level. It is clear that our treatment
applies only for 6N(e)/N, < 1.

We shall now quote explicit dependences which are
obtained within the self-consistent localization theory 10
the insulating phase. For 2 <d < 4, the solution of the
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_stem (5) is given by (we omit unimportant constants)
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where A =v/ TEF is a dimensionless perturbation pa-
rameter proportional to a random field and v = 1/d — 2
is the critical index of the localization radius. The mo-
hility edge E¢ determined in a model of point scatterers
Jistributed at random in space is given byl

2
d
B~ d—
d
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4 3
where E ,=m*4(pV?)+-4 is the "strong coupling® energy
(Refs. 1, 18) (for Ex ~ Eg¢, We obtain A ~ 1 and per-
turbation theory is no longer applicable). It follows from
Eqs. (28) and (29) that the condition (25) can be easily
satisfied. For | & | < w}(EF)7ER, Egs. (23) and (28)-(30)
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Similarly, we obtain from Eq (27) the following result:
N (e) 5 2
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The dlvergence of the corrections to the density of states
which occurs for Ex — E¢ [a singularity analogous tothat
defined by Eq. (32) is also obtained in the metallic phase]
indicates that our approximations break down in the vi~
cinity of the mobility edge.

For d =2, we obtainl?
5 1
wﬁ(Er)TEF"‘EFexP('“T); E‘~E_,.|:i—exp(—
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and, since the condition ) < 1 is satisfied, the contribu-
tion defined by Eq. (27) is dominant

(34)
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where Ny =m/2r is the free-electron density of states
In two dimensions.

3. COULOMB INTERACTION

We shall discuss in this section the Coulomb inter-
action and perform our calculations using the Matsubara
method in three dimensions. The wavy line in Fig. 2a
torresponds to a dynamically screened interaction

4 2
V (qup,) =qz£;‘ﬁ . Wp=2umT, (36)
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where

(qun) (37)

is the permittivity and the polarization operator II (qwyy,)
is defined by the diagram in Fig. 2c.

The "triangular" vertex in the Matsubara method is
defined by

T{Aomen) =0 (e,) 0 (e4 + Op) 48 (—e,) B (—e, — “’m)
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The polarization operator is given by
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where AEF(q) is defined by Eq. (8) and B(m,_)__[o m<o.

It can be seen that Eq. (40) contains a "localization™ con-
tribution

00 (Gum) = Nodg, (@) B m0e (41)

Such a contribution reflects the well-known differences
in the behavior of the static adiabatic and isothermal
response in systems exhibiting nonergodic behavior,19:20
The Matsubara response "senses" nonergodic behavior??
and localization is a typical nonergodic phenomenon,21-23
The polarization operator is proportional to the electron
compressibility. The static isothermal compressibility
is given by

17 (q0) = 1T (qu,, = 0); (42)
the adiabatic compressibility is given by
4 (q0) = g, (Qity —> 0 4 i5 — 0) . (43)
It then follows from Refs. 22 and 23 that
1
T (q0) —u* (q0)—Nn-4EF(q)=-1\onqu- (44)

The static isothermal polarization operator is given by

1L (qup, = 0) = NV (45)
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The corresponding static adiabatic permittivity is given

by
o 127 .
Ot 2 ey =] TP ARCR,
=) reg (dw —>
o~ a« 1+apR loc( ) [T (EF)v
(46)
where n]z) = 47e?N o- The static isothermal permittivity
is given by
r 4me? )
e (‘IO):1+_qz'n(qwm=0)=1+?l- (47)
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In fact, the permittivity defined by Ed. (47) governs screen-
ing of a static applied field under experimental conditions
(Ref. 24). It follows from Eq. (47) that the static field is
completely screcned even in the localized phase. The
physical interpretation of this result will be discussed
elsewhere (see also Ref. 24). However, in the present
context, the "localization” term defined by Ed. (41) is
unimportant and its contribution tothe diagram shown

in Fig. 2a tends to zero in the limit T — 0 and we cah

thus consider only the regular contribution Hreg(qwm).

Using the vertex defined by Eq. (38) in the evaluation
of the contribution shown in Fig. 2a, we obtain® (the addi-
tional factor of 2 takes account of spin degeneracy)
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In the case gy > 0, it follows that
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Using the analytic continuation and evaluating the im-
aginary part of the Green function, we arrive at the fol-
Jowing correction to the density of states:

£
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Ep 5
where f(g) is the Fermi distribution function and
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Substituting the asymptotic expression (52) in Eq. (51),
we obtain
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which represents u generalization of the results of Aronov
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and Al'tshuler? and is identical up to a constang vy
(23) and (27) which apply to the zero-range intel"}igt; 1s,

4. HARTREE AND OTIIER DIAGRAMS

We have considered only the Fock correction des
by the diagram in Fig. 2a. In fact, there are severs;
diagrams in the first order of perturbation theory v
spect to the interaction and examples of some of the:
diagrams are shownin Fig. 3. We shall first consi
the "Hartree" diagram in FFig. 3a. We can estimate it
contribution within the self-consistent localization 1
by the method of Refs. 3 and 4. In fact, the total ver
part in the self-consistent theory is given by (for s 1
g and w)

2V
RA
Top (qw) =~ 50T Dy (o) ¢ T DEF T

Equation (53) is a generalization of the standard dif]
vertex obtained by summation of ladder diagrams. The
result defined by Eq. (55) is almost self-evident and it
can be easily shown that, when it is substituted in F. (13
it 1eads to Eq. (17). For a repulsive potential of finite
range, we can follow Refs. 3 and 4 and use Eq. (55) to
show that the ratio of the diagrams for the self-ene
parts defined by Fig. 3a and Fig. 2a can be estimated as

F= S d2u (2p); sin e;z)fs dv (0) (56

(it is important to note that, in contrast to the Fock ¢
tribution, the frequency transfer which is equal to zero

is important in the Hartree diagram rather than the sm:
momenta transferred along the interaction line). The in
tegrals with respect to the solid angle in Eq. (56) arc t

from the Fourier transform of the interaction poten
v(Q) and 0 is the angle between two momenta on the l'err
surface. It can be easily shown that F <1 for an inter
action potential whose range is of the order of several
interatomic distances. For example, for the screcned
Coulomb interaction in three dimensions,** we obtiin

1 . 1 *D &Pk
F == dﬂsmﬁ——f—'_=—-—3—.ln[l+—7' . (£]
3 4p3 4p k3 v
S {4~z sin? 02 i 2

D

It follows that F < 1 forn} < p} but F —1 for ph <
For a contact interaction, ' =1 and the Hartree cor-
tribution in Fig. 3a including spin is twice as large as |
Fock contribution defined in Fig. 2a. I this limit, all

a b
trwp-¢ grw-p
77 E 7
27

€p ep’ P P

FIG. 3
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he forementloned corrections to the density of statcs
) \1p1Y change their signs. In the absence of interactions
 reaking invariance under time reversal (magnetic field,
nagnetic impurities, etc.), the contribution of the diagram
(wwn in Fig. 3b which contains the interaction in the
scooper” channel is equal to the contribution of the diag-
pam Showlt in Fig. 3a and, therefore, is small of the or-
grof F- A similar small parameter appears in the
pock diagram shown in Fig. 3¢ involving the interaction
in the nCooper” channel. As in the case of the diagram
in Fig. 32 the aforementioned diagram differs from the
jagram shown in Fig, 2a since the momentum trans-
ferred along the interaction line is not small, The diag-
-am shown in Fig. 3d can be easily estimated

I 3 (2p) = eV BN (e), (58)

and we find that it contains an additional small param-
eter pV2. It follows that our treatment based on the
diagram shown in Fig. 2a is valid for interaction poten-
tials whose radius is not too small. The role of higher-
order contributions in the interaction remains to be clari-

fied.
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