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Pseudogap physics in strongly correlated systems is essentially scale dependent. We generalize
the dynamical mean-field theory (DMFT) by introducing into the DMFT equations dependence on
the correlation length of pseudogap fluctuations via an additional (momentum-dependent) self-en-
ergy �k. This self-energy describes nonlocal dynamical correlations induced by short-ranged collec-
tive SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temper-
atures these fluctuations can be viewed as a quenched Gaussian random field with finite
correlation length. This generalized DMFT + �k approach is used for the numerical solution of the
weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice
with nearest and next nearest neighbor hopping. The effective single impurity problem is solved by
the numerical renormalization group (NRG). Both types of strongly correlated metals, namely (i)
the doped Mott insulator and (ii) the case of bandwidth W U� (U is the value of local Coulomb
interaction) are considered. Densities of states, spectral functions and ARPES spectra calculated
within DMFT + �k show a pseudogap formation near the Fermi level of the quasiparticle band. We
also briefly discuss effects of random impurity scattering. Finally we demonstrate the qualitative
picture of Fermi surface «destruction» due to pseudogap fluctuations and formation of «Fermi
arcs» which agrees well with ARPES observations.

PACS: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.–h
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1. Introduction

Pseudogap formation in the electronic spectrum of
underdoped copper oxides [1,2] is an especially strik-
ing anomaly of the normal state of high-temperature
superconductors. Despite continuing discussions on
the nature of the pseudogap, we believe that the pref-
erable «scenario» for its formation is most likely based
on the model of strong scattering of the charge carriers
by short-ranged antiferromagnetic (AFM, SDW) spin
fluctuations [2,3]. In the momentum representation
this scattering transfers momenta of the order of
Q � ( , )� �/ /a a (a is the lattice constant of the two
dimensional lattice). This leads to the formation of
structures in the one-particle spectrum, which are pre-
cursors of the changes in the spectra due to long-range
AFM order (period doubling). As a result we obtain
non-Fermi liquid like behavior (dielectrization) of the
spectral density in the vicinity of the so-called «hot

spots» on the Fermi surface, appearing at intersections
of the Fermi surface with the antiferromagnetic Bril-
louin zone boundary [2].

Within this spin-fluctuation scenario a simplified
model of the pseudogap state was studied [2,4,5] un-
der the assumption that the scattering by dynamic
spin fluctuations can be reduced for high enough tem-
peratures to static Gaussian random field (quenched
disorder) of pseudogap fluctuations. These fluctua-
tions are defined by a characteristic scattering vector
from the vicinity of Q, with a width determined by
the inverse correlation length of short-range order
� �� �1.

Undoped cuprates are antiferromagnetic Mott insu-
lators withU W�� (U is the value of local Coulomb
interaction, W is the bandwidth of noninteracting
band), so that correlation effects are actually very im-
portant. It is thus clear that the electronic properties
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of underdoped (and probably also optimally doped)
cuprates are governed by strong electronic correla-
tions too, so that these systems are typical strongly
correlated metals. Two types of correlated metals can
be distinguished: (i) the doped Mott insulator and
(ii) the bandwidth-controlled correlated metalW U� .

A state-of-the-art tool to describe such correlated
systems is the dynamical mean-field theory (DMFT)
[6–10]. The characteristic features of correlated sys-
tems within the DMFT are the formation of incoher-
ent structures, the so-called Hubbard bands, split by
the Coulomb interactionU, and a quasiparticle (con-
duction) band near the Fermi level dynamically gener-
ated by the local correlations [6–10].

Unfortunately, the DMFT is not useful to the
study the «antiferromagnetic» scenario of pseudogap
formation in strongly correlated metals. This is due to
the basic approximation of the DMFT, which amounts
to the complete neglect of nonlocal dynamical correla-
tion effects. The aim of the present paper is to describe
the main results of a semiphenomenological approach,
formulated by us recently to overcome this difficulty
[11].

The paper is organized as follows. In Sec. 2 we pre-
sent a formulation of the self-consistent generalization
we call DMFT + � k which includes short-ranged
(nonlocal) correlations. Section 3 describes the con-
struction of the k-dependent self-energy, and some
computational details are presented in Sec. 4.1. Re-
sults and a discussion are given in the Secs. 4 and 5.

2. Introducing length scale into DMFT:
DMFT + � k approach

A basic shortcoming of traditional DMFT approach
[6–10] is the neglect of momentum dependence of
electron self-energy. This approximation in principle
allows for an exact solution of correlated electron sys-
tems (in infinite dimensions) fully preserving the lo-
cal part of the dynamics introduced by electronic cor-
relations. To include nonlocal effects, while remaining
within the usual «impurity analogy» of DMFT, we
propose the following procedure. To be definite, let us
consider a standard one-band Hubbard model. The
extension to multi-orbital or multi-band models is
straightforward. The major assumption of our ap-
proach is that the lattice and Matsubara «time» Fou-
rier transform of the single-particle Green function
can be written as:
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where �( )i� is the local contribution to the self-ener-
gy, surviving in the DMFT, while � k( )i� is some mo-
mentum-dependent part. We suppose that this last
contribution is due to either electron interactions
with some «additional» collective modes or order
parameter fluctuations, or may be due to similar
nonlocal contributions within the Hubbard model it-
self. To avoid possible confusion we must stress that
� k( )i� can also contain local (momentum-independ-
ent) contribution which obviously vanishes in the
limit of infinite dimensionality d  � and is not
taken into account within the standard DMFT. Due
to this fact there is no double counting of diagrams
problem within our approach for the Hubbard model.
This question does not arise at all if we consider
� k( )i� appearing due to some «additional» interac-
tion. More important is that the assumed additive
form of self-energy � �( ) ( )i i� �� k implicitly corre-
sponds to neglect of possible interference of these lo-
cal (DMFT) and nonlocal contributions.

The self-consistency equations of our generalized
DMFT + � k approach are formulated as follows [11]:

1. Start with some initial guess of local self-energy
�( )i� , e.g., �( )i� � 0.

2. Construct � k( )i� within some (approximate)
scheme, taking into account interactions with collec-
tive modes or order parameter fluctuations which in
general can depend on �( )i� and 	.

3. Calculate the local Green function
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4. Define the «Weiss field»

G0
1 1� �� �( ) ( ) ( ).i i G iii� � �� (3)

5. Using some «impurity solver» to calculate the
single-particle Green function for the effective Ander-
son impurity problem, defined by Grassmanian inte-
gral
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with effective action for a fixed site («impurity») i

S d d c c

d

i ieff � � � �

�

� �

�

� �

0

1

0

2 1 0
1

1 2 2

0

� �

� �

�

� � � � � �( ) ( ) ( )G

� � �Un ni i� �( ) ( ) , (5)

Z Dc Dc Si ieff eff� �� �
� � exp ( ), and � � �T 1. This

step produces a new set of values G id
�1( )� .
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6. Define a new local self-energy

�( ) ( ) ( )i i G i� � �� �� �G0
1

0
1 . (6)

7. Using this self-energy as «initial» one in step 1,
continue the procedure until (and if) convergency is
reached to obtain

G i G iii d( ) ( )� �� . (7)

Eventually, we get the desired Green function in the
form of (1), where �( )i� and � k( )i� are those appear-
ing at the end of our iteration procedure.

3. Construction of k-dependent self-energy

For the momentum-dependent part of the sin-
gle-particle self-energy we concentrate on the effects
of scattering of electrons from collective short-range
SDW-like antiferromagnetic spin (or CDW-like
charge) fluctuations. To calculate � k( )i� for an elec-
tron moving in the quenched random field of (static)
Gaussian spin (or charge) fluctuations with dominant
scattering momentum transfers from the vicinity of
some characteristic vector Q («hot spots» model [2]),
we use a slightly generalized version of the recursion
procedure proposed in Refs. 4, 5, 12 which takes into
account all Feynman diagrams describing the scatter-
ing of electrons by this random field. This becomes
possible due to a remarkable property of our simpli-
fied version of «hot spots» model that the contribu-
tion of an arbitrary diagram with intersecting inter-
action lines is actually equal to the contribution of
some diagram of the same order without intersections
of these lines [5,12]. Thus, in fact we can limit our-
selves to consideration of only diagrams without inter-
secting interaction lines, taking the contribution of di-
agrams with intersections into account with the help
of additional combinatorial factors, which are attrib-
uted to «initial» vertices or just interaction lines [12].
As a result we obtain the following recursion relation
(continuous fraction representation [12]) for the de-
sired self-energy:
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The quantity � characterizes the energy scale and
� �� �1 is the inverse correlation length of short range
SDW (CDW) fluctuations, 
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derivatives of the «bare» electronic energy dispersion

( )k . Finally, s n( ) represents a combinatorial factor
with

s n n( ) � (10)

for the case of commensurate charge (CDW type)
fluctuations with Q � ( , )� �/ /a a [12]. For incom-
mensurate CDW fluctuations [12] one finds

s n

n
n

n
n

( )
,

.
�

��

�
�

�
�

1
2

2

for odd

for even

(11)

If we take into account the (Heisenberg) spin struc-
ture of interaction with spin fluctuations in «nearly
antiferromagnetic Fermi liquid» (spin-fermion (SF)
model Ref. 4), the combinatorics of diagrams becomes
more complicated. Spin-conserving scattering pro-
cesses obeys commensurate combinatorics, while
spin-flip scattering is described by diagrams of incom-
mensurate type («charged» random field in terms of
Ref. 4). In this model the recursion relation for the
single-particle Green function is again given by (9),
but the combinatorial factor s n( ) now acquires the
following form [4]:

s n

n
n

n
n

( )
,

.
�

��

�
�

�
�

2
3

3

for odd

for even

(12)

Obviously, with this procedure we introduce an im-
portant length scale � not present in standard DMFT.
Physically this scale mimics the effect of short-range
(SDW or CDW) correlations within fermionic
«bath» surrounding the effective Anderson impurity.
We expect that such a length-scale dependence will
lead to a competition between local and nonlocal
physics.

An important aspect of the theory is that both pa-
rameters � and � can in principle be calculated from
the microscopic model at hand. For example, using the
two-particle self-consistent approach of Ref. 13 with
the approximations introduced in Refs. 4, 5, one can
derive [11] within the standard Hubbard model the
following microscopic expression for �:
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where we consider only scattering from antiferro-
magnetic spin fluctuations. Different local quantities
here — spin fluctuation � �S i

2 , density n and double
occupancy � �� �n ni i — can easily be calculated
within the standard DMFT [9]. We performed such
calculations [11] for wide range of U and filling fac-
tors n using quantum Monte Carlo (QMC) [15].
From these calculations we can see that the values of
� lie in the interval of � � ( .0 5–2 0. )t and change
rather smoothly with n andU.

Microscopic expressions for the correlation length
� �� �1 can also be derived within the two-particle
self-consistent approach [13]. However, we expect
those results for � to be less reliable, because this ap-
proach is valid only for relatively small (or medium)
values of U t/ and for purely two-dimensional case
(while real systems are quasi-two-dimensional).

Thus, in the following we will consider both � and
especially � as some phenomenological parameters to
be determined from experiments. This makes our ap-
proach somehow similar in the spirit to Landau ap-
proach to Fermi liquids.

Our construction can be further generalized to in-
clude other types of interactions. Thus scattering by
random impurities with pointlike potential V is easily
taken into account in self-consistent Born approxima-
tion [14]. Then, in comparison with impurity-free
case, we have just a substitution (renormalization):
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If we do not perform fully self-consistent calculations
of impurity self-energy, in the simplest approxima-
tion we just have:
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where � ��� V N2
0 0( ) is the standard Born impurity

scattering rate (N0 0( ) is the density of states of
«free» electrons at the Fermi level).

4. Results and discussion

4.1. Computation details

In the following, we discuss results for a standard
one-band Hubbard model on a square lattice. With
nearest (t) and next nearest (t�) neighbor hopping
integrals the dispersion reads


( ) (cos cos ) cos cosk � � � � �2 4t k a k a t k a k ax y x y ,

(18)

where a is the lattice constant. The correlations are
introduced by a repulsive local two-particle interac-
tion U. We choose as energy scale the nearest neigh-
bor hopping integral t and as length scale the lattice
constant a.

For a square lattice the «bare» bandwidth is
W t� 8 . To study a strongly correlated metallic state
obtained as doped Mott insulator we use U t� 40 as
value for the Coulomb interaction and a filling n � 0 8.
(hole doping). The correlated metal in the case of
W U� is considered for the case ofU t� 4 and filling
factor n � 0 8. (hole doping). For � we have choosen
rather typical values between � � 01. t and � � 2t (ac-
tually as approximate limiting values obtained from
(13) via QMC calculations in Ref. 11) and for the cor-
relation length we considered mainly � � 2a and
� � 10a (being motivated mainly by experimental data
for cuprates [2,4]).

The DMFT maps the lattice problem onto an effec-
tive, self-consistent impurity defined by Eqs. (4), (5).
In our work we employed as «impurity solvers» two
reliable numerically exact methods — quantum Mon-
te Carlo [15] and numerical renormalization group
(NRG) [17,18]. Calculations were done both for t� � 0
and t t�/ = –0.4 (more or less typical for cuprates) at
two different temperatures T t� 0 088. and T t� 0 356.
(for NRG computations). QMC computations of dou-
ble occupancies as functions of filling were done at
temperatures T t� 01. and T t� 0 4. .

Below we present results only for most typical
dependences and parameters, more details can be
found in Ref. 11.

4.2. Generalized DMFT + � k approach: densities of
states

Let us start the discussion of results obtained
within our generalized DMFT + � k approach with the
densities of states (DOSs) for the case of small (rela-
tive to bandwidth) Coulomb interaction U t� 4 with
and without pseudogap fluctuations. As already dis-
cussed in the Introduction, the characteristic feature
of the strongly correlated metallic state is the coexis-
tence of lower and upper Hubbard bands split by the
value of U with a quasiparticle peak at the Fermi
level. Since at half-filling the bare DOS of the square
lattice has a Van Hove singularity at the Fermi level
( )t� � 0 or close to it (in case of t t� � �/ 0 4. ) one cannot
treat a peak on the Fermi level simply as a quasi-
particle peak. In fact, there are two contributions to
this peak from (i) the quasiparticle peak appearing in
strongly correlated metals due to many-body effects
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and (ii) the smoothed Van Hove singularity from the
bare DOS. In Fig. 1 we show the corresponding
DMFT(NRG) DOSs without pseudogap fluctuations
as black lines for n � 0 8. for both bare dispersions
t t� � �/ 0 4. (left panels) and for t� � 0 (right panels)
for two different temperatures T t� 0 356. (middle pan-
els) and T t� 0 088. (upper and lower panels). The re-
maining curves in Fig. 1 represent results for the
DOSs with nonlocal fluctuations switched on. For all
sets of parameters one can see that the introduction of
nonlocal fluctuations into the calculation leads to the
formation of pseudogap within the quasiparticle peak.

For n � 0 8. (Fig. 1) the picture of DOS is slightly
asymmetric. The width of the pseudogap (the distance
between peaks closest to Fermi level) appears to be of
the order of � 2�. We have checked that decreasing
the value of � from 2t to t leads to a pseudogap that is
correspondingly twice smaller and in addition more
shallow. When one uses the combinatorial factors cor-
responding to the spin-fermion model (Eq. (12)), the
pseudogap becomes more pronounced than in the case
of commensurate charge fluctuations (combinatorial
factors of Eq. (11)). The influence of the correlation
length � is also as expected. Changing � �1 from
� � �1 01. to � � �1 0 5. , i.e., decreasing the range of
the nonlocal fluctuations, slightly washes out the
pseudogap. Also, increasing the temperature from

T t� 0 088. to T t� 0 356. leads to a general broadening
of the structures in the DOSs. Noteworthy is the fact
that for t t� � �/ 0 4. and � � �1 0 5. the pseudogap has al-
most disappeared for the temperatures studied here.
Also very remarkable point is the similarity of the re-
sults obtained with the generalized DMFT + � k ap-
proach with U t� 4 (smaller than the bandwidth W)
to those obtained earlier without Hubbard-like Cou-
lomb interactions [4,5].

Let us now consider the case of a doped Mott in-
sulator (Fig. 2). The model parameters are again
taken as t t� � �/ 0 4. with filling factor of n � 0 8. , but
the Coulomb interaction strength is set to U t� 40 .
Characteristic features of the DOS for such a strongly
correlated metal are a strong separation of lower and
upper Hubbard bands and a Fermi level crossing by
the lower Hubbard band (for non-half-filled case).
Without nonlocal fluctuations the quasiparticle peak
is again formed at the Fermi level, but now the upper
Hubbard band is far to the right and does not touch
the quasiparticle peak (as it was for the case of small
Coulomb interactions).

Pseudogap appears close to the middle of quasi-
particle peak. In addition we observe that the lower
Hubbard band is slightly broadened by fluctuation ef-
fects. Qualitative behavior of the pseudogap anoma-
lies is similar to those described above for the case of
U t� 4 , e.g., a decrease of � makes the pseudogap less
pronounced, while reducing � from � � 2t to � � t
narrows of the pseudogap and also makes it more shal-
low. Note that for the doped Mott-insulator the
pseudogap is remarkably more pronounced for the
SDW-like fluctuations than for CDW-like fluctua-
tions.

There are, however, quite clear differences to the
case ofU t� 4 . For example, the width of the pseudo-
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gap appears to be much smaller than 2�, which we at-
tribute to the fact that the quasiparticle peak itself is
actually rather narrow in the case of doped Mott insu-
lator.

Random impurity scattering, in general case leads
to the filling of the pseudogap with the growth of im-
purity scattering rate both for correlated metal and
doped Mott insulator. As a typical example, in Fig. 3
we show results of our calculations for the case of
doped Mott insulator. These were obtained via non-
self-consistent procedure (using (16), (17), as full
self-consistent procedure leads only to rather insignifi-
cant quantitative changes.

4.3. Generalized DMFT + � k approach: spectral
functions A( , )� k

In the previous subsection we discussed the den-
sities of states obtained self-consistently by the
DMFT + � k approach. Once we get a self-consistent
solution of the DMFT + � k equations with nonlocal
fluctuations we can, of course, also compute the spec-
tral functions A( , )� k

A( , )
( ) ( ) ( )

�
� � 	 
 � �

k
k k

� �
� � � �

1 1
Im

� �
, (19)

where self-energy �( )� and chemical potential 	 are
calculated self-consistently as described in Sec. 2. To
plot A( , )� k we choose k-points along the «bare»
Fermi surfaces for different types of lattice spectra
and fillings. In Fig. 4 one can see corresponding
shapes of these «bare» Fermi surfaces (presented are
only 1 8/ -th parts of the Fermi surfaces within the
first quadrant of the Brillouin zone).

In the following we concentrate mainly on the case
U t� 4 and filling n � 0 8. (Fermi surface of Fig. 4,a).
The corresponding spectral functions A( , )� k are de-

picted in Fig. 5. When t t� � �/ 0 4. (upper row), the
spectral function close to the Brillouin zone diagonal
(point B) has the typical Fermi-liquid behavior, con-
sisting of a rather sharp peak close to the Fermi level.
In the case of SDW-like fluctuations this peak is
shifted down in energy by about �0 5. t (left upper cor-
ner). In the vicinity of the «hot spot» the shape of
A( , )� k is completely modified. Now A( , )� k becomes
double-peaked and non-Fermi-liquid-like. Directly at
the «hot spot», A( , )� k for SDW-like fluctuations has
two equally intensive peaks situated symmetrically
around the Fermi level and split from each other by
� 15. � Refs. 4, 5. For commensurate CDW-like fluc-

tuations the spectral function in the «hot-spot» region
has one broad peak centered at the Fermi level with
width � �. Such a merging of the two peaks at the
«hot spot» for commensurate fluctuations was previ-
ously observed in Ref. 5. However close to point A
this type of fluctuations also produces a double-peak
structure in the spectral function.

In the lower panel of Fig. 5 we show spectral func-
tions hole doping (n � 0 8. ) and the case of t� � 0 (Fermi
surface from Fig. 4,b). Since the Fermi surface now is
everywhere close to the antiferromagnetic zone bound-
ary, the pseudogap anomalies are rather strong and al-
most nondispersive along the Fermi surface.

For the case of a doped Mott insulator (U t� 40 ,
n � 0 8. ), the spectral functions obtained by the
DMFT + � k approach are presented in Fig. 6. Quali-
tatively, the shapes of these spectral functions are sim-
ilar to those shown on Fig. 5. As was pointed out
above, the strong Coulomb correlations lead to a nar-
rowing of the quasiparticle peak and a corresponding
decrease of the pseudogap width. One should also note
that in contrast to U t� 4 the spectral functions are
now less intensive, because part of the spectral weight
is transferred to the upper Hubbard band.
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Using another quite common choice of k-points we
can compute A( , )� k along high-symmetry directions in
the first Brillouin zone: �( , )0 0 –X( , )� 0 –M( , )� � –�( , )0 0 .
The spectral functions for these k-points are shown in
Fig. 7 for the case of SDW-like fluctuations and
U t� 4 . For all sets of parameters one can see a charac-
teristic double-peak pseudogap structure close to the
X point. In the middle of M–� direction (so-called
«nodal» point) one can see the reminiscence of AFM
gap which has its biggest value here in case of perfect
antiferromagnetic ordering. Also in the nodal point
«kink»-like behavior is observed caused by interac-
tions between correlated electrons with pseudogap
fluctuations. A change of the filling leads mainly to a
rigid shift of spectral functions with respect to the
Fermi level. For the case ofU t� 40 spectral densities
demonstrate rather similar behavior [11].

With the spectral functions we are now in a posi-
tion to calculate angle resolved photoemission spectra
(ARPES), which is the most direct experimental way

to observe pseudogap in real compounds. For that pur-
pose, we only need to multiply our results for the
spectral functions with the Fermi function at appro-
priate temperature. Typical example of the resulting
DMFT + � k ARPES spectra are presented in Fig. 8.
One should note that for t t� � �/ 0 4. (upper panel of
Fig. 8) as k goes from point «A» to point «B» the peak
situated slightly below the Fermi level changes its po-
sition and moves down in energy. Simultaneously it
becomes more broad and less intensive. The dotted
line guides the motion of the peak maximum. Such be-
havior of the peak in the ARPES is rather reminiscent
of those observed experimentally in underdoped cup-
rates [2,4,19].

4.4. «Destruction» of the Fermi surface

Within the standard DMFT approach Fermi sur-
face is not renormalized by interactions and just coin-
cides with that of the «bare» quasiparticles [7]. How-
ever, in the case of nontrivial momentum dependence
of electron self-energy, important renormalization of
the Fermi surface appears due to pseudogap formation
[4]. There are a number of ways to define Fermi sur-
face in strongly correlated system with pseudogap
fluctuations. In the following we are using intensity
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plots (within the Brillouin zone) of the spectral den-
sity (19) taken at� � 0. These are readily measured by
ARPES and appropriate peak positions define the
Fermi surface in the usual Fermi liquid case.

Our results [20] are shown in Fig. 9 for the case of
correlated metal with U t� 4 and in Fig. 10 for the
doped Mott insulator (U t� 40 ) (in both cases we as-
sume spin-fermion combinatorics). The qualitative be-
havior observed in Fig. 9 clearly demonstrates the
«destruction» of the well defined Fermi surface in the
strongly correlated metal with the growth of the
pseudogap amplitude �. Quite similar behavior was
first observed in pioneering paper by Norman et al.
[21] and in numerous later ARPES experiments. It is
seen, that «destruction» of the Fermi surface starts in
the vicinity of «hot spots» for small values of �, but
almost immediately it disappears in the whole
antinodal region of the Brillouin zone, while only
«Fermi arcs» remain in the nodal region very close to
the «bare» Fermi surface. These results give a natural
explanation of the observed behavior and also of the

fact that the existence of «hot spots» regions was ob-
served only in some rare cases [22].
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For the case of doped Mott insulator shown in
Fig. 10 we see that the Fermi surface is rather poorly
defined for all values of �, as the spectral density pro-
files are much more «blurred» than in the case of
smaller values ofU, reflecting important role of corre-
lations.

It is interesting to note that from Figs. 9, 10 it is
clearly seen that rather natural definition of the Fermi
surface as defined by the solution of the equation

� 
 	 � �� � � � �( ) ( ) ( )k kRe Re� � 0 (20)

for � � 0, used, e.g., in Ref. 4 is inadequate for
strongly correlated systems with finite U and non-
local interactions (pseudogap fluctuations).

5. Conclusion

To summarize, we propose a generalized DMFT +
� � k approach, which is meant to take into account
the important effects due to nonlocal correlations in a
systematic, but to some extent phenomenological fa-
shion. The main idea of this extension is to stay within
a usual effective Anderson impurity analogy, and in-
troduce length scale dependence due to nonlocal corre-
lation via the effective medium («bath») appearing
in the standard DMFT. This becomes possible by
incorporating scattering processes of fermions in
the «bath» from nonlocal collective SDW-like anti-
ferromagnetic spin (or CDW-like charge) fluctua-
tions. Such a generalization of the DMFT allows one
to overcome the well-known shortcoming of k-inde-
pendence of self-energy of the standard DMFT. It in
turn opens the possibility to access the physics of
low-dimensional strongly correlated systems, where

different types of spatial fluctuations (e.g., of some
order parameter), become important. However, we
must stress that our procedure in no way introduces
any kind of systematic 1/d-expansion, being only
a qualitative method to include length scale into
DMFT.

In our present study we addressed the problem of
pseudogap formation in the strongly correlated metal-
lic state. We showed evidence that the pseudogap ap-
pears at the Fermi level within the quasiparticle peak,
introducing a new small energy scale of the order of �
in the DOSs and spectral functions A( , )� k and signi-
ficant renormalization of the Fermi surface.

Let us stress, that our generalization of DMFT
leads to nontrivial and in our opinion physically sensi-
ble k-dependence of spectral functions. Similar results
were obtained in recent years using the cluster
mean-field theories [23]. The major advantage of our
approach over these theories is, that we stay in an ef-
fective single-impurity picture. This means that our
approach is computationally much less expensive and
therefore also easily generalizable for the account of
additional interactions .

6. Acknowledgments

We are grateful to Th. Pruschke for providing us
with his NRG code and helpful discussions. This work
was supported in part by RFBR grants 05-02-16301,
05-02-17244, and programs of the Presidium of the
Russian Academy of Sciences (RAS) «Quantum
macrophysics» and of the Division of Physical Sci-
ences of the RAS «Strongly correlated electrons in
semiconductors, metals, superconductors and mag-
netic materials». I.N. acknowledges support from the
Dynasty Foundation and International Centre for
Fundamental Physics in Moscow program for young
scientists 2005 and Russian Science Support Founda-
tion program for young PhD of the Russian Academy
of Sciences 2005.

1. T. Timusk and B. Statt, Rep. Progr. Phys. 62, 61
(1999).

2. M.V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001)
[Physics-Uspekhi 44, 515 (2001)].

3. D. Pines, ArXiv: cond-mat/0404151.
4. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev.

B60, 667 (1999).
5. E.Z. Kuchinskii and M.V. Sadovskii, Zh. Eksp. Teor.

Fiz. 115, 1765 (1999) [JETP 88, 347 (1999)].
6. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62,

324 (1989).
7. D. Vollhardt, in: Correlated Electron Systems, V.J.

Emery (ed.), World Scientific, Singapore (1993),
p. 57.

536 Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5

E.Z. Kuchinskii, I.A. Nekrasov, and M.V. Sadovskii

1.0 1.0

1.0 1.0

0.8 0.8

0.8 0.8

0.6 0.6

0.6 0.6

0.4 0.4

0.4 0.4

0.2 0.2

0.2 0.2

0 0

0 0

ky

ky

0 00.2 0.20.4 0.40.6 0.60.8 0.81.0 1.0
kx kx

= 0.2t

= t = 2t

= 0.4t

a b

c d

U = 40t

0
0.1
0.2
0.3
0.4

Fig. 10. «Destruction» of the Fermi surface obtained from
the DMFT(NRG) + �k calculations for U t� 40 and
n � 08. . Other parameters and notations are the same as in
Fig. 9.



8. Th. Pruschke, M. Jarrell, and J.K. Freericks, Adv.
Phys. 44, 187 (1995).

9. A. Georges, G. Kotliar, W. Krauth, and M.J. Ro-
zenberg, Rev. Mod. Phys. 68, 13 (1996).

10. G. Kotliar and D. Vollhardt, Physics Today 57, No. 3,
53 (2004).

11. M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, Th.
Prushke, and V.I. Anisimov, Phys. Rev. B72, 155105
(2005)

12. M.V. Sadovskii, Zh. Eksp. Teor. Fiz. 77, 2070 (1979)
[Sov. Phys. JETP 50, 989 (1979)].

13. Y.M. Vilk and A.-M.S. Tremblay, J. Phys. I France
7, 1309 (1997).

14. N.A. Kuleeva, E.Z. Kuchinskii, and M.V. Sadovskii,
Zh. Eksp. Teor. Fiz. 126, 1446 (2004) [JETP 99, 1264
(2004)].

15. J.E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521
(1986); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992);
M. Rozenberg, X.Y. Zhang, and G. Kotliar, Phys.
Rev. Lett. 69, 1236 (1992); A. Georges and W.
Krauth, Phys. Rev. Lett. 69, 1240 (1992); M. Jarrell
in: Numerical Methods for Lattice Quantum
Many-Body Problems, D. Scalapino (ed.), Addison
Wesley (1997). For review of QMC for DMFT see
Ref. [16].

16. K. Held, I.A. Nekrasov, N. Bl�mer, V.I. Anisimov,
and D. Vollhardt, Int. J. Mod. Phys. B15, 2611
(2001); K. Held, I.A. Nekrasov, G. Keller, V. Eyert,
N. Bl�mer, A.K. McMahan, R.T. Scalettar, T.
Pruschke, V.I. Anisimov, and D. Vollhardt, cond-
mat/0112079 (Published in: Quantum Simulations of

Complex Many-Body Systems: From Theory to Algo-
rithms, J. Grotendorst, D. Marks, and A. Muramatsu
(eds.), NIC Series Volume 10, NIC Directors,
Forschunszentrum J�lich (2002), p. 175.

17. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H.R.
Krishna-murthy, J.W. Wilkins, and K.G. Wilson,
Phys. Rev. B21, 1003 (1980); ibid. 21, 1044 (1980);
for a comprehensive introduction to the NRG see, e.g.,
A.C. Hewson, The Kondo Problem to Heavy Fermi-
ons, Cambridge University Press (1993).

18. R. Bulla, A.C. Hewson, and Th. Pruschke, J. Phys.:
Condens. Matter 10, 8365 (1998); R. Bulla, Phys.
Rev. Lett. 83, 136 (1999).

19. A. Kaminski, H.M. Fretwell, M.R. Norman, M. Ran-
deria, S. Rosenkranz, U. Chatterjee, J.C. Campuzano,
J. Mesot, T. Sato, T. Takahashi, T. Terashima, M. Ta-
kano, K. Kadowaki, Z.Z. Li, and H. Raffy, Phys. Rev.
B71, 014517 (2005).

20. E.Z. Kuchinskii, I.A. Nekrasov, and M.V. Sadovskii.
JETP Lett. 82, 198 (2005).

21. M.R. Norman, M. Randeria, J.C. Campuzano, T. Yo-
koya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Ka-
dowaki, P. Guptasarma, and D.G. Hinks, Nature 382,
51 (1996).

22. N.P. Armitage, D.H. Lu, C. Kim, A. Damascelli,
K.M. Shen, F. Ronning, D.L. Feng, P. Bogdanov, and
Z.-X. Shen, Phys. Rev. Lett. 87, 147003 (2001).

23. Th. Maier, M. Jarrell, Th. Pruschke, and M. Hettler,
Rev. Mod. Phys. 77, 1027 (2005); ArXiv: cond-
mat/0404055.

Pseudogaps: introducing the length scale into dynamical mean-field theory

Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5 537


