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We derive Ginzburg – Landau (GL) expansion in disordered attractive Hubbard model within the
combined Nozieres – Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the case
of homogeneous expansion, we analyze disorder dependence of GL expansion coefficients on disorder
for the wide range of attractive potentials U , from weak BCS coupling region to the strong coupling
limit, where superconductivity is described by Bose – Einstein condensation (BEC) of preformed
Cooper pairs. We show, that for the case of semi – elliptic “bare” density of states of conduction
band, disorder influence on GL coefficients A and B before quadratic and fourth – order terms of
the order parameter, as well as on the specific heat discontinuity at superconducting transition, is of
universal nature at any strength of attractive interaction and is related only to the general widening
of the conduction band by disorder. In general, disorder growth increases the values of coefficients A
and B, leading either to the suppression of specific heat discontinuity (in the weak coupling limit),
or to its significant growth (in the strong coupling region). However, this behavior actually confirms
the validity of the generalized Anderson theorem, as disorder dependence of superconducting critical
temperature Tc, is also controlled only by disorder widening of conduction band (density of states).

I. INTRODUCTION

The problem of superconductivity in BCS — BEC
crossover region (and up to the strong coupling limit) has
a long history, starting with early works by Leggett and
Nozieres and Schmitt-Rink [1, 2]. Probably the simplest
model to study this crossover is Hubbard model with at-
tractive interaction. The most successive approach to
the studies of Hubbard model (both repulsive and at-
tractive) is the dynamical mean field theory (DMFT)
[3–5]. Attractive Hubbard model was already studied
within DMFT in a number of papers [6–10]. However,
up to now there are only few works, where disorder ef-
fects were taken into account, either in normal or super-
conducting phases of this model. Qualitative analysis of
disorder effects upon critical temperature Tc in BCS —
BEC crossover region was presented in Ref. [11], which
claimed the validity of Anderson theorem in this region
for the case of s-wave pairing. Diagrammatic analysis of
disorder effects on Tc and the properties of the normal
state in crossover region was recently presented in Ref.
[12].

We have developed the generalized DMFT+Σ ap-
proach to Hubbard model [13–16], which is quite conve-
nient for the account of different “external” interactions,
e.g. such as disorder scattering [17, 18]. This approach
is also well suited to the studies of two–particle prop-
erties, such as dynamic (optical) conductivity [17, 19].
In a recent paper [10] we used this approach to ana-
lyze the single–particle properties of the normal phase
and optical conductivity in attractive Hubbard model.
Further on the DMFT+Σ approximation was combined
with Nozieres – Schmitt-Rink approach to study the in-
fluence of disorder on superconducting critical temper-
ature Tc in BCS – BEC crossover and strong coupling

region [20, 21], demonstrating the validity of the gener-
alized Anderson theorem. Disorder effects upon Tc are
essentially due only the general widening of the conduc-
tion band by random scattering. This was demonstrated
exactly (for the whole range of attractive interactions)
in the case of semi – elliptic density of states of conduc-
tion band (three-dimensional case) at any disorder level
and becomes also valid in the case of flat band (two-
dimensional case) in the limit of strong enough disorder.

Ginzburg – Landau (GL) expansion in the region of
BCS – BEC crossover was derived in a number of previous
papers [22–24], however no effects of disorder scattering
on GL – expansion coefficients was considered. Here we
derive the microscopic coefficients of (homogeneous) GL
– expansion for the attractive Hubbard model and study
disorder effects on these coefficients including the BCS
– BEC and strong coupling regions, as well as upon the
specific heat discontinuity at superconducting transition,
demonstrating certain universality of disorder behavior
of these characteristics..

II. DISORDERED HUBBARD MODEL IN
DMFT+Σ APPROACH

We consider the disordered attractive Hubbard model
with Hamiltonian:

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ − U
∑

i

ni↑ni↓, (1)

where t > 0 is transfer integral between the nearest neigh-

bors and U is onsite Hubbard attraction , niσ = a†iσaiσ is

electron number operator at site i, aiσ (a†iσ) is annihila-
tion (creation) operator of an electron with spin σ. Local
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energy levels ǫi are assumed to be independent random
variables on different lattice sites. We assume the Gaus-
sian distribution of ǫi at each site for the validity of the
standard “impurity” scattering diagram technique [25]:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

(2)

Here ∆ is the measure of disorder scattering.
The generalized DMFT+Σ approach [13–16] supplies

the standard DMFT [3–5] with an additional “external”
self-energy (in general case momentum dependent) due
to any interaction outside the DMFT, which provides
an effective method to calculate both single and two –
particle properties [17, 19]. The additive form of the to-
tal self-energy conserves the structure of self – consistent
equations of DMFT [3–5]. The “external” self-energy is
recalculated at each step of the standard DMFT itera-
tion scheme, using some approximations, corresponding
to the form of an additional interaction, while the local
Green’s function (central for DMFT) is also “dressed” by
additional interaction.

For disordered Hubbard model we take the “external”
self-energy entering DMFT+Σ cycle in the simplest form
of self – consistent Born approximation, neglecting the
“crossing” diagrams due to disorder scattering:

Σ̃(ε) = ∆2
∑

p

G(ε,p), (3)

where G(ε,p) is the complete single – particle Green’s
function.

To solve the effective Anderson impurity model of
DMFT here we used the effective algorithm of numer-
ical renormalization group (NRG) [26].

In the following, we consider the model of the “bare”
conduction band with semi – elliptic density of states (per
unit cell and spin projection):

N0(ε) =
2

πD2

√

D2 − ε2 (4)

where D determines the half – width of conduction band.
This is a good approximation for the three – dimensional
case.

In Ref. [21] we have shown analytically, that in
DMFT+Σ approach, within these approximations, all
the disorder influence upon single – particle properties
is reduced to the simple effect of band widening by dis-
order scattering, so that D → Deff , where Deff is the
effective band half – width in the presence of disorder (in
the absence of correlations, i.e. for U = 0):

Deff = D

√

1 + 4
∆2

D2
. (5)

and conduction band density of states (in the absence of
U) “dressed” by disorder is given by:

Ñ0(ε) =
2

πD2
eff

√

D2
eff − ε2 (6)

conserving its semi – elliptic form.

For other models of the “bare” conduction band den-
sity of states, besides band widening, disorder scattering
changes the form of the density of states, so that the com-
plete universality of disorder influence of single – particle
properties, strictly speaking, is absent. However, in the
limit of strong enough disorder the “bare” band density
effectively becomes elliptic for any reasonable model, so
that universality is restored [21].

All calculation below were performed for the quarter –
filled band (n=0.5 per lattice site).

III. GINZBURG – LANDAU EXPANSION

The critical temperature of superconducting transition
Tc in attractive Hubbard model was analyzed using direct
DMFT calculations a number of papers [6, 7, 9]. In Ref.
[10] we have determined Tc from instability condition of
the normal phase (instability of DMFT iteration proce-
dure). The results obtained in this way were in good
agreement with the results of Refs. [6, 7, 9]. Addition-
ally, in Ref. [10] we calculated Tc using the approximate
Nozieres – Schmitt–Rink approach in combination with
DMFT (used to calculate the chemical potential of the
system), demonstrating that being much less time con-
suming, it provides semi – quantitative description Tc

behavior in BCS – BEC crossover region, in good agree-
ment with direct DMFT calculations. In Refs. [20, 21]
the combined Nozieres – Schmitt-Rink approach was used
to study the detailed dependence of Tc on disorder. Be-
low we shall use this combined approach to derive GL
– expansion including the disorder dependence of GL –
expansion coefficients.

We shall write GL – expansion for the difference of
free energies of superconducting and normal phases in
the standard form:

Fs − Fn = A|∆q|2 + q2C|∆q|2 +
B

2
|∆q|4, (7)

where ∆q is the spatial Fourier component of the am-
plitude of superconducting order parameter. Microscop-
ically, this expansion is determined by diagrams of the
loop – expansion for the free energy of an electron in the
“external field” of (static) superconducting order parame-
ter fluctuations with small wave vector q , shown in Fig.1
(where fluctuations are represented by dashed lines) [25].
Below we limit ourselves to the case of homogeneous ex-
pansion with q = 0 and calculations of its coefficients A
and B, leaving the (much more complicated) analysis of
the general inhomogeneous case of finite q and calcula-
tions of coefficient C in (7) for the future work.

Within Nozieres – Schmitt-Rink approach [2] we use
the weak coupling approximation to calculate loop – di-
agrams with two and four Cooper vertices shown in Fig.
1, dropping all corrections due to Hubbard U , while in-
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FIG. 1: Diagrammatic representation of Ginzburg – Landau
expansion.

cluding “dressing” by disorder scattering1. However, the
chemical potential, which essentially depends on the cou-
pling strength U and determines the condition of BEC
in the strong coupling region, is calculated via the full
DMFT+Σ procedure.

Coefficient A before the square of the order parameter
in GL – expansion is given by diagrams of Fig. 1(a) with
q = 0 [25]:

A(T ) = χ0(q = 0, T )− χ0(q = 0, Tc), (8)

where

χ0(q = 0, T ) = −T
∑

n

∑

pp′

Φpp′(εn) (9)

is the two – particle loop in Cooper channel “dressed”
only by disorder scattering, while Φpp′(εn) is disorder
averaged two – particle Green’s function in Cooper chan-
nel (εn = πT (2n + 1) is corresponding Matsubara fre-
quency). Subtraction of the second diagram in Fig. 1(a),
i.e. that of χ0(q = 0, Tc) in (8), guarantees the validity
of A(T = Tc) = 0, which is necessarily so in any kind of
Landau expansion [25].

To obtain
∑

pp′ Φpp′(εn) we use an exact Ward iden-

tity, derived in Ref. [19]:

G(εn,p)−G(−εn,−p) =

= −
∑

p′

Φpp′(εn)(G
−1
0 (εn,p

′)−G−1
0 (−εn,−p

′)), (10)

Here G(εn,p) is disorder averaged (but not “dressed” by
Hubbard interaction!) single – particle Green’s function.

1 In the absence of disorder this approach just coincides with that
used in Refs. [22–24], using Hubbard – Stratonovich transforma-
tion in the functional integral over fluctuations of superconduct-
ing order parameter.

Using the symmetry ε(p) = ε(−p) and G(εn,−p) =
G(εn,p), we obtain from the Ward identity (10):

∑

pp′

Φpp′(εn) = −
∑

p G(εn,p)−
∑

pG(−εn,p)

2iεn
, (11)

so that for Cooper susceptibility (9) we get:

χ0(q = 0, T ) =

= T
∑

n

∑

pG(εn,p)−
∑

p G(−εn,p)

2iεn
=

= T
∑

n

∑

pG(εn,p)

iεn
. (12)

Performing now the standard summation over Matsubara
frequencies [25], we obtain:

χ0(q = 0, T ) =

=
1

4πi

∫ ∞

−∞

dε

∑

p GR(ε,p)−∑p GA(ε,p)

ε
th

ε

2T
=

= −
∫ ∞

−∞

dε
Ñ(ε)

2ε
th

ε

2T
, (13)

where Ñ(ε) is the “bare” (U = 0) density of states,
“dressed” by disorder scattering, which in the case of semi
– elliptic band takes the form (6). In Eq. (13) the origin
of ε is at the chemical potential. Replacing ε → ε − µ
to move the origin of energy to the center of conduction
band, we finally write:

χ0(q = 0, T ) = −
∫ ∞

−∞

dε
Ñ(ε)

2(ε− µ)
th

ε− µ

2T
, (14)

Cooper instability of the normal phase, determining su-
perconducting transition temperature Tc, is written as:

1 = −Uχ0(q = 0, Tc) (15)

Then, to determine the critical temperature we obtain
the following equation:

1 =
U

2

∫ ∞

−∞

dεÑ0(ε)
th ε−µ

2Tc

ε− µ
, (16)

Using (15) to determine χ0(q = 0, Tc) and (14) for χ0(q =
0, T ), we obtain the coefficient A (8):

A(T ) =
1

U
−
∫ ∞

−∞

dεÑ0(ε)
th ε−µ

2T

2(ε− µ)
. (17)

The chemical potential for different values of U and ∆
is to be determined here from direct DMFT+Σ calcu-
lations, i.e. from the standard equation for the total
number of electrons (band filling), defined by Green’s
function obtained in DMFT+Σ approximation. This al-
lows us to find both Tc and GL – expansion coefficients
in the wide range of parameters of the model, including
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the BCS – BEC crossover region and the limit of strong
coupling, for different disorder levels. Actually, this is the
essence of Nozieres – Schmitt-Rink approximation — in
the weak coupling region transition temperature is con-
trolled by the equation for Cooper instability, while in
the strong coupling limit it is defined as the temperature
of Bose condensation, which is controlled by the equation
for chemical potential. The joint solution of Eqs. (16)
and (17) with DMFT+Σ equation for chemical potential
provides the correct interpolation for Tc and GL – coef-
ficient A from weak coupling region via the BCS – BEC
crossover towards the strong coupling.

For T → Tc the coefficient A(T ) is written as:

A(T ) ≡ a(T − Tc). (18)

where in case of temperature independent chemical po-
tential

a =
1

4T 2
c

∫ ∞

−∞

dεÑ0(ε)
1

ch2 ε−µ
2Tc

. (19)

In BCS approximation with conduction band of infinite
width with constant density of states Ñ0(0) we obtain

from (19) the standard result a = Ñ0(0)
Tc

[25]. However, in
BCS – BEC crossover region temperature dependence of
µ is essential and we have to use the general expression
(17) in conjunction with equation for µ to calculate a.
At the same time, from Eq. (17) it is clear that disorder
scattering influences a only through the changes of the
density of states Ñ0(ε) and chemical potential µ, which
is the typical single – particle property. Thus, in the case
of semi – elliptic “bare” conduction band the dependence
of a on disorder is due only to the band widening by dis-
order replacing D → Deff . Thus, in the presence of dis-
order we expect the universal dependence of a(2Deff )

2

on U/2Deff (all energies are to be normalized by the
effective bandwidth 2Deff), which will be confirmed by
the results of direct numerical computations in the next
Section (cf. Fig. 4(a)).

Coefficient B is determined by “square” diagram with
four Cooper vertices with q = 0, “dressed” in arbitrary
way by disorder scattering, which is shown in Fig. 1(b)
[25]:

B =
1

2
T
∑

n

∑

p1p2p3p4

< G(iεn;p1,p2)G(−iεn;−p2,−p3)

G(iεn;p3,p4)G(−iεn;−p4,−p1) >,

(20)

where < · · · > denotes averaging over disorder, while
G(iεn;p1,p2) (and other similar expressions) represent
exact single – particle Green’s functions for the fixed con-
figuration of the random potential. Performing standard
summation over Matsubara frequencies, we obtain:

B =
1

2

∫ ∞

−∞

dε

2πi
th

ε

2T

∑

p1p2p3p4

< GR(ε;p1,p2)

GA(−ε;−p2,−p3)G
R(ε;p3,p4)G

A(−ε;−p4,−p1) > .

(21)

Due to zero value of momentum q = 0 in Cooper vertices
and the static nature of disorder scattering, we can now
use certain generalization of the Ward identity (10) to
get (at T = Tc):

B =

∫ ∞

−∞

dε

4ε3

(

th
ε

2Tc

− ε/2Tc

ch2 ε
2Tc

)

Ñ0(ε) (22)

Detailed derivation is presented in Appendix A. In BCS
approximation, using the conduction band of infinite
width with constant density of states Ñ0(0), we im-
mediately obtain from Eq. (22) the standard result:

B = 7ζ(3)
8π2T 2

c

Ñ0(0) [25].

Again, replacing here ε → ε − µ, to move the origin
of energy to the middle of the conduction band, we can
write:

B =

∫ ∞

−∞

dε

4(ε− µ)3

(

th
ε− µ

2Tc

− (ε− µ)/2Tc

ch2 ε−µ
2Tc

)

Ñ0(ε)

(23)
It is seen, that disorder dependence of the coefficient
B (similarly to A) is also determined only by disor-

der widened density of states Ñ0(ε) and chemical po-
tential, so that in the case of semi – elliptic “bare” con-
duction band it is reduced to simple replacement D →
Deff , leading to universal dependence of B(2Deff )

3 on
U/2Deff , which is confirmed by the results of direct nu-
merical computations presented in the next Section and
shown in Fig.4b.

It should be stressed, that Eqs. (17) and (23) for GL –
coefficients A and B were obtained with the use of exact
Ward identities, and are thus valid also in the limit of
strong disorder (beyond Anderson localization).

Universal dependence on disorder, related to conduc-
tion band widening by disorder scattering, is also valid
for specific heat discontinuity at Tc, as it is completely
determined by coefficients a and B:

Cs(Tc)− Cn(Tc) = Tc

a2

B
(24)

Appropriate numerical results are also given in the next
Section (cf. Fig. 5(b)).

Coefficient C before the gradient term of GL – expan-
sion is determined essentially by two – particle character-
istics (due in particular to non – trivial q – dependence of
the vertex, which is obviously changed by disorder scat-
tering). In particular, the behavior of C is significantly
changed at Anderson transition [27], so that no univer-
sality of disorder dependence is expected in this case.

IV. MAIN RESULTS

Let us now discuss the main results of our numerical
calculations, directly demonstrating the universal depen-
dencies of GL – coefficients A and B and specific heat
discontinuity at Tc on disorder.
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FIG. 2: Universal dependence of superconducting critical
temperature on disorder for different values of Hubbard at-
traction.

In Fig. 2 we show the universal dependence of criti-
cal temperature Tc on Hubbard attraction U for differ-
ent levels of disorder, which was obtained and discussed
in detail in Refs. [20, 21]. Typical maximum of Tc at
U/2Deff ∼ 1 is characteristic of BCS – BEC crossover
region.

In Fig. 3 we present disorder dependencies of GL –
coefficients a (Fig. 3(a)) and B (Fig. 3(b)) for different
values of Hubbard attraction. We can see that a in gen-
eral increases with the growth of disorder. Only in the
limit of strong enough coupling U/2D > 1.4 (curves 4 and
5) in the region of weak disorder we observe weak sup-
pression of a by disorder scattering. Coefficient B pretty
fast grows with disorder in the region of weak coupling
(curve 1 in Fig. 3(b)), while in the region of strong cou-
pling this growth becomes more moderate (curves 4,5 in
Fig. 3(b), so that in this region the dependence of B on
disorder becomes almost independent of the value of U
(curves 4 and 5 practically coincide).

However, this rather complicated dependence of coef-
ficients a and B on disorder is determined solely by the
growth of effective conduction bandwidth with disorder-
ing given by Eq. (5). In Fig. 4 we show the universal
dependencies of GL – coefficients a (a) and B (b), nor-
malized by appropriate powers of effective bandwidth,
on the strength of Hubbard attraction. In the absence of
disorder (dashed line with squares) coefficients a and B
drop fast with the growth of U . Other symbols in Fig.
4 show the results of our calculations for different levels
of disorder. It is clearly seen, that all the data ideally fit
the universal curve, obtained in the absence of disorder.

Coefficients a and B determine specific heat discon-
tinuity at the critical temperature (24). As these coef-
ficients and Tc [20, 21] depend on disorder in universal
way due only to the growth of the effective bandwidth
(5), the same type of universal dependence is also valid
for specific heat discontinuity. In Fig. 5(a) we show the
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FIG. 3: Disorder dependence of GL – coefficients a (a) and
B (b), normalized by their values in the absence of disorder,
for different values of Hubbard attraction.

dependence of specific heat discontinuity dC ≡ Cs − Cn

on disorder for different values of Hubbard attraction U .
It is seen, that in the region of weak coupling (curve
1) specific heat discontinuity is suppressed by disorder-
ing, for intermediate couplings (curves 2,3) weak disorder
leads to the growth of specific heat discontinuity, while
the further growth of disorder suppresses this disconti-
nuity. In the region of strong coupling (curves 4,5) the
growth of disorder leads to significant growth of specific
heat discontinuity, which is mainly related to the similar
growth of Tc (cf. [20, 21]). However, this complicated
dependence of specific heat discontinuity on disorder is
again completely determined by the growth of the effec-
tive bandwidth (5). In Fig.5(b) we show the universal
dependence of specific heat discontinuity on U , normal-
ized by the bandwidth 2Deff . Black squares represent
data in the case of absence of disorder. Other symbols
in Fig. 5(b) show the data for different disorder levels.
It is seen again, that all the data precisely fit the uni-
versal dependence of specific heat discontinuity obtained
in the absence of disorder. Specific heat discontinuity
grows with the growth of U in the region of weak coupling
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FIG. 4: Universal dependence of GL – coefficients a (a) and
B (b) on Hubbard attraction for different values of disorder.

U/2Deff ≪ 1 and drops with the growth of U in the limit
of strong coupling U/2Deff ≫ 1. The maximum of spe-
cific heat discontinuity is observed at U/2Deff ≈ 0.55.
Actually, this dependence of specific heat discontinuity
qualitatively resembles the similar dependence of criti-
cal temperature, though the its maximum is reached at
smaller values of Hubbard attraction.

V. CONCLUSION

Using the combination of Nozieres – Schmitt-Rink ap-
proximation with the generalized DMFT+Σ approach we
have studied disorder influence upon coefficients A and
B determining the homogeneous Ginzburg — Landau ex-
pansion and specific heat discontinuity at superconduct-
ing transition in attractive Hubbard model.

We have demonstrated analytically, that in the case of
the “bare” conduction band with semi – elliptic density of
states disorder influence on GL – coefficients A and B and
specific heat discontinuity is universal and is controlled
only by the general conduction band (density of states)
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C
s-C

n
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(b)

FIG. 5: Dependence of specific heat discontinuity at critical
temperature dC ≡ Cs −Cn on disorder for different values of
Hubbard attraction U (a) and universal dependence of this
discontinuity on U for different values of disorder (b).

widening by disorder scattering and illustrated this con-
clusion with explicit numerical calculations, performed
for the wide range of attractive potentials U , from weak
coupling region where U/2Deff ≪ 1 and superconduct-
ing instability is described by the usual BCS approach,
up to the strong coupling region where U/2Deff ≫ 1
and superconducting transition is determined by Bose –
Einstein condensation of preformed Cooper pairs.

These results essentially prove the validity of the gener-
alized Anderson theorem in BCS – BEC crossover region
and in the limit of strong coupling not only for supercon-
ducting Tc [20, 21], but also for homogeneous Ginzburg
– Landau expansion, determining appropriate thermody-
namic effects, like specific heat discontinuity at transition
point.

This work is supported by RSF grant 14-12-00502.
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FIG. 6: Diagrams for coefficient B and derivation of the gen-
eralized Ward identity.

Appendix A: Coefficient B in the presence of
disorder

Coefficient B is determined by “square” diagram with
four Cooper vertices with q = 0, “dressed” by disorder
scattering, shown in Fig. 1(b). Corresponding analytic
expression was given above in Eq. (20). After the stan-
dard summation over Matsubara frequencies B is written
as in (21), i.e. is determined by the following combination
of four Green’s functions with real frequencies:

∑

p1p2p3p4

< GR(ε;p1,p2)G
A(−ε;−p2,−p3)

GR(ε;p3,p4)G
A(−ε;−p4,−p1) > . (A1)

where < · · · > denotes averaging over disorder and
GR(A)(ε;p1,p2) are the exact retarded (advanced) single
– particle Green’s functions for the fixed configuration of
disorder.

Typical diagram for the fourth order of disorder scat-
tering (dashed lines) is shown in Fig. 6(a). Arbitrary
diagrams for such four – particle Green’s function can
be obtained from diagrams for single – particle Green’s
function of the same order of disorder scattering by arbi-
trary inserting three Cooper vertices into “bare” electron
Green’s functions, as shown in Fig. 6(a). Taking into
account the static nature of disorder scattering and zero
value of transferred momentum q = 0 in Cooper vertices,
we can evaluate (A1) using certain generalization of exact
Ward identity (10), derived in Ref. [19].

Let us take the diagram for single – particle Green’
function, shown in the left part of Fig. 6(b), and consider
certain configuration of momenta transferred by dashed
lines. Here we have nine “bare” electron Green’s functions
with momenta p1 · · ·p9. In the following we use short
notations:

Gi = GR
0 (ε;pi) G̃i = GA

0 (−ε;−pi), (A2)

where G
R(A)
0 (ε;p) = 1

ε−ε(p)±iδ
is the “bare” Green’s func-

tion. Insertion of Cooper vertex leads to the sign change

of momenta and frequencies (i.e. to the replacement
Gi ↔ G̃i) in all Green’s functions standing to the right
from the vertex. Let us assume, that the central of three
Cooper vertices was inserted in the fourth Green’s func-
tion, as shown in the right part of Fig. 6(b). Arbitrary
insertion of the first Cooper vertex into one of the first
four of Green’s functions leads to the following result:

G1G2G3G4 → G1G̃1G̃2G̃3G̃4 +G1G2G̃2G̃3G̃4 +

G1G2G3G̃3G̃4 +G1G2G3G4G̃4, (A3)

so that taking into account G−1
i − G̃−1

i = 2ε, we get:

G1G̃1G̃2G̃3G̃4
G−1

1 − G̃−1
1

2ε
+ · · ·

+G1G2G3G4G̃4
G−1

4 − G̃−1
4

2ε
=

=
G̃1G̃2G̃3G̃4 −G1G2G3G4

2ε
(A4)

Then G̃4G̃5G̃6G̃7G̃8G̃9 → G4G5G6G7G8G9 and after
all insertions of the last (third) Cooper vertex in one
of the six Green’s functions G4 · · ·G9, we again obtain:
G̃4G̃5G̃6G̃7G̃8G̃9−G4G5G6G7G8G9

2ε .
Thus we get:

< GR(ε)GA(−ε)GR(ε)GA(−ε) >=

=<
GA(−ε)−GR(ε)

2ε

GA(−ε)−GR(ε)

2ε
>=

=
1

4ε2
(< GA(−ε)GA(−ε) > + < GR(ε)GR(ε) > −

−2 < GR(ε)GA(−ε) >) =

=
1

4ε2

{

d

dε
(< GA(−ε) > − < GR(ε) >)−

−< GA(−ε) > − < GR(ε) >

ε

}

, (A5)

where we can evaluate two – particle Green’s functions
with q = 0 again using the analogue of the Ward identity
(10) for real frequencies. Using (A5) in (21) and making
in terms with < GA(−ε) > under the integral over ε the
replacement ε → −ε, we obtain the following expression
for coefficient B:

B =

∫ ∞

−∞

dε

2πi

th ε
2T

4ε2
×

×
(

d

dε
− 1

ε

)

(
∑

p

GA(ε,p)−
∑

p

GR(ε,p)) =

=

∫ ∞

−∞

dε
th ε

2T

4ε2

(

d

dε
− 1

ε

)

Ñ0(ε) =

=

∫ ∞

−∞

dε

4ε3

(

th
ε

2T
− ε/2T

ch2 ε
2T

)

Ñ0(ε) (A6)

which was used in the main part of the paper.
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