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A onedimensional system of electrons is considered, in a Gaussian random field with a correlator whose 
form (in the momentum representation) is a Lorentzian with its center at Q = 2p,. This can be 
considered as a Gaussian model of the Peierls transition in the fluctuation region. An exact summation of 
all Feynman diagrams is carried out, and a representation of the averaged one-electron Green's function 
as a continued fraction is obtained. A density of states with a characteristic pseudogap is found. It is 
shown that when the correlation range of the short-range order is decreased there is a gradual filling in 
of the pseudogap and a transition to a "metallic" state. 

PACS numbers: 71.20. + c ,  71.30. + h, 71.25.C~ 

INTRODUCTION 

There i s  a limited number of models of the electronic 
structure of one-dimensional disordered systems that 
admit of exact solution.' Interest in such models i s  due 
both to the general problem of studying the electronic 
properties of disordered systems and to questions of 
the physics of quasi-one-dimensional systems, the 
majority of which display some sor t  o r  other of proper- 
t ies associated with their disorder. In the last few 
years several important new results have beenobtained, 
casting considerable light on the situation of an elec- 
tron in a one-dimensional random field.2-4 This work 
is also mostly characterized by the use of specific 
methods of solution, specially adapted to the solution 
of one-dimensional problems, and a s  a rule not capable 
of further generalization because they a r e  s o  cumber- 
some. Only in a very few cases is it possible to obtain 
an exact solution of a problem about the electron in a 
one-dimensional random field by means of standard 
methods of present-day many-particle theory.5 

One model of this sor t  was proposed some time ago 
by the present writer (see Ref. 6). In the framework 
of this model i t  could be shown now the scattering of 
the electron by a random field with a definite type of 
short-range order leads to the formation of a peculiar 
"band structure" of the energy spectrum, which ap- 
pears in the form of a characteristic pseudogap in the 
density of electronic states, in the absence of any sort  
of long-range order. It was also possible to consider 
high-frequency conductivity and optical absorption in 
terms of the pseudogap. This model was used to de- 
scribe the fluctuation region of quasi-one-dimensional 
systems that undergo a Peierls  t r a n ~ i t i o n , ~  with the 
result that the predictions of this model a re  in good 
quantitative agreement with optical experiments on 
KCP and TTF-TCNQ,' a t  least a t  sufficiently high 
temperatures. 

A form of this model was considered in  Ref. 9 a s  an 
extension7 to the fluctuation region of a commensurable 
Peierls transition. The exact was obtained 
in the limit of large range of the close-order correla- 
tion, and qualitative cri teria were indicated for the 
applicability of this treatment for a finite correlation 

length. In the present paper an exact solution for the 
one-electron Green's function is obtained in the form 
of a continued fraction, and also for the density of 
electron states, for arbitrary values of the correla- 
tion length for shortrange order; this permits us to 
trace a smooth transition to the "metallic" state 
(pseudogap filled in) as the correlation length is de- 
creased and to  justify the qualitative cri teria given 
earlier7 for the use of the asymptotic form for large 
correlation lengths. 

1. FORMULATION OF THE MODEL AND ANALYSIS 
OF THE FEYNMAN DIAGRAMS 

We consider an electron in a Gaussian random field 
~ ( x )  with the correlation function 

<A (z) A (2') ) =Aa exp[- 1 x-2'1 E-']cos 2p,(z-z'), (1) 

where A' gives the mean square fluctuation of the field, 
[ is the correlation length (close-order correlation 
range), and p, in the Fermi momentum of the elec- 
trons. This is precisely the correlator that is obtained 
for the fluctuations of the order parameter in the one- 
dimensional Ginzburg-Landau model for the Peierls 
transition," and therefore we shall speak of it in con- 
crete terms a s  a Peierls  system in the fluctuation reg- 
ion. 

It must be noted that our assumption that the random 
field ~ ( x )  i s  Gaussian obviously does not apply to real  
Peierls  systems, a t  least for sufficiently low tem- 
peratures T<< Tpo, where T,, i s  the temperature of the 
Peierls  transition in the self-consistent field approxi- 
mation." We a r e  considering the Gaussian model of a 
Peierls  system [with the exact correlator (I)] because 
it admits of an  exact solution, derived below, and also 
because it i s  evidently not so very far from reality in 
the region T - T,,. 

The correlation length will be regarded a s  a parame- 
t e r  of the theory, just a s  the quantity A~ is. Finding 
them requires a complete microscopic theory of the 
Peierls  transition. The model under consideration can 
also be derived in a certain variant of the static ap- 
proximation of the dynamic theory of the Peierls  transi- 
tion,6v9 (the assumptionthat there i s  a clearly expressed 
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central peak in the dynamic structure factor of the 
lattice which i s  undergoing the Peierls  transition). The 
model can also have a bearing on the properties of 
liquid semiconductors.e 

The Fourier transform of (1) (the static structure 
factor) is of the form 

where u =[-I .  The simplest proper-energy part of the 
one-electron Green's function is given by (P is the mo- 
mentum of the electron) 

and is shown graphically in Fig. I, a,  where the wavy 
line corresponds to the formula (2) and the solid line 
is the free Green's function of the electron. Here 5, 
is the energy of f r ee  electrons, measured from the 
Fermi level, and E, = (2n + 1)nT. 

We shall deal in  the most detail with the case  of al- 
most f ree  electrons: 

where m is the mass of the electron, v, is the Fermi 
velocity, and p i s  the chemical potential. Further- 
more 2p, is in general considered to be incom- 
mensurable with the period of the initial lattice. 

Besides this, we shall consider the selectedg case of 
the spectrum in the strong coupling approximation 

where a  i s  the initial lattice period, setting @, = n/a,  
which corresponds to a half-filled band with doubled 
period, i.e., to the case of limiting commensurability, 
when the Peierls  order parameter becomes real. 

From Eqsi (2) and (3) we get (we shall consider the 
initial momentum of the electron P, +P,) 

where we have used the fact that for a one-dimensional 
system (p-,p, = - tp. The expression (6), which corres- 
ponds to the simplest diagram, Fig. 1, a ,  was taken 
as the basis of the analysis conducted in the paper of 
Lee, Rice, and Anderson.l0 In Refs. 6 and 7 a l l  dia- 
grams of the Gaussian model of the Peierls  transition 
were summed in the asymptotic case u - 0, which, a s  
can be seen from Eq. (6), is justified when the in- 
equality 

is satisfied. This imposes a limitation on the descrip- 
tion of the immediate neighborhood of the Fermi level. 

FIG. 1. 

Our problem is now to sum a l l  of the graphs of the 
Gaussian model for finite x .  

As was stated earlier,' in each order  of perturbation 
theory the contribution of one order is given by dia- 
grams with a sequence of successive vertices with in- 
coming o r  outgoing interaction lines transmitting a 
momentum Q --i2pF. Diagrams of the type of Fig. 1, b 
a r e  small  of the order of the parameter [,/E, (E, is the 
Fermi  energy), and can be dropped. Thereforeinorder 
2n (2n is the number of vertices) we need include only 
n! diagrams. Figure 2 shows all essential diagrams 
of sixth order. Let us consider the contribution of the 
diagram 2, d. After elementary calculations we find 
that the quantity corresponding to Fig. 2, d is 

The contributions for the other diagrams of Fig. 2 a r e  
entirely analogous; the numbers over the electron 
lines in Fig. 2 indicate how many t imes ivFu occurs 
in the corresponding denominator. We note that the 
contribution of the "crossed" diagram Fig. 2, d i s  
equal to that of the diagram without crossing of the 
interaction lines, Fig. 2, e. We emphasize that the 
simplicity of the expressions for the contributions of 
the various diagrams is due to the choice of the struc- 
tu re  factor S(Q) in the Lorentzian form (2). 

In eighth order there a r e  in  a l l  4! = 24 essential 
diagrams; all  of the irreducible diagrams a r e  shown 
in Fig. 3. The corresponding contributions a r e  easily 
found and a r e  analogous in form, and the use of the 
numbers over the electron lines i s  as in Fig. 3. Fur- 
thermore, again there a r e  quite a number of equalities 
amongthediagrams: a = b = c = d ;  e = f = g = h ;  i = j ;  k = 1 .  

The general rules for writing out the expression cor- 
responding to an arbitrary diagram a r e  now clear. The 
contribution of any diagram is determined by the a r -  
rangement of the initial and final vertices (in Fig. 3 
they a r e  marked with the letters I and F). In each elec- 
tron line following a vertex of type I a term iv,x is 
added in the denominator, and in an electron line fol- 

FIG. 2. 
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FIG. 3. 

lowing a vertex of type F, such a term is subtracted. 
In this connection, the sense (direction) of the inter- 
action lines is immaterial. 

These rules hold also for the treatment of the prob- 
lem with spectrum (5) in the strong-coupling approxi- 
mation for the half-filled band. Here, however, we 
must include also diagrams of the type of Fig. 1, b, in 
which the interaction lines do not have to be arranged 
in succession according to the directions of motion of 
the transferred momentum, since with the spectrum 
(5) the points p,  p + 2p,, and p - 2p, a r e  equivalent (with 
2p, = n/a),' i.e., al l  possible diagrams. Then in order 
2n there a r e  in a l l  (2n - I)!! = (2n - 1)!/2"-'(n - I)! dia- 
grams, and also the contribution of each interaction 
line i s  multiplied by 2.' The rule about the appearance 
of terms iv,n in denominators of Green's functions i s  
the same a s  before. 

We then follow a method proposed (for a different 
problem) by Elyutin.13 From the foregoing it i s  easy 
to see that the contribution of any diagram is deter- 
mined by the arrangement of initial and final vertices. 
Furthermore any diagram with intersecting interaction 
lines can be uniquely represented by a diagram without 
any intersections, since any diagram with intersections 
i s  equivalent to some diagram without any. The recipe 
for the construction of the coiresponding diagram 
without intersections (for a given arrangement of I and 
F vertices) is: Counting from the left, the first  final 
vertex must be connected with an  interaction line to the 
nearest initial vertex on i t s  left, and SO on for the r e -  
maining vertices not s o  far  connected with interaction 
lines. Thus, for example, the diagrams of Fig. 3, b, 
c, d reduce to the form of Fig. 3, a ,  the diagrams Fig. 
3, e, f reduce to the form of Fig. 3, g, and so  on. For 
a fixed distribution of initial vertices in a problem with 
the electron spectrum (4) the final vertices can be 
chosen only from points of opposite parity, but for a 
problem with the spectrum (5) the final vertices can be 
chosen also from points of the same parity a s  the 
initial ones. The numbers put with the electron lines 
in Figs. 2 and 3 can be transferred to the vertices, by 

assigning to a vertex the number of terms iv,x in the 
denominator corresponding to the line proceeding after 
that vertex. The general rule is1': To an initial vertex 
is assigned the number Nn=Nn-, +1, where Nn-, is the 
number assigned to the nearest vertex on the left. To 
a final vertex is assigned the number Nn - 1. Also 
N,=O, and n is the order number of a vertex. 

Let us introduce 

for a problem with the spectrum (4) and 

for a problem with the spectrum (5). Then i t  can be 
verified that the number of irreducible self-energy 
diagrams which a r e  equal to a given diagram without 
intersections of interaction lines i s  equal to the product 
of the qtiantities u(Nn) for all initial vertices of that 
diagram.'' Accordingly, we can conduct all further 
arguments in terms of diagrams without intersections 
of interaction lines by applying to all initial vertices 
the appropriate factors v(N,,,). 

2. THE ONE-ELECTRON GREEN'S FUNCTION 

Any diagram for an irreducible proper-energy part, 
when restructured according to the rules that have been 
formulated here, contains an all-surrounding inter- 
action line, i.e., reduces to the form shown in Fig. 4, 
a. This enables us to derive recurrence formulas for 
determining a proper-energy part, which a r e  the basis 
of Elyutin's method.I3 By the definition of a proper- 
energy part, we have the Dyson equation for the Green's 
function: 

G-'(e.Ep) =G,-'(emEp) -ZI(E*EP) 7 (10) 

where (see Fig. 4,a) 

and for Z , ( E , ~ ~ )  we have the expansion of Fig. 4, b in 
terms of diagrams without intersections of interaction 
lines, with the factors v(Nn) applied to their vertices. 
This expansion can be expressed in  the standard way 
in terms of the corresponding irreducible graphs: 

where Z,(&,5,) can be expressed a s  a sum of the i r -  

FIG. 4. 
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reducible graphs of Fig. 4, c: Here A' has a coefficient 2 owing to the necessity of in- 
cluding the two directions of interaction lines, as ex- 
plained earlier. 

For x = O  we can again use Eq. (19), and after simple 
calculations we get and s o  on. We have finally: 

Xk(e.EP) =A'Ga2(~n, (-1)'Ep-ikv1~)~(k)~r(e,f~), (15) 
B,(enEp) =Go-'(e., ( - 1 )  'EP-ikurx) (Go-'(e,, ( - 1 )  'Ep - iku~x)  

-&+I (E-EP) 1, (16) 

where (23) This is the fundamental recurrence formula. The 
Green's function is accordingly expressible in the form 
of a continued fraction: 

which agrees with the result obtained in Ref. 9. The 
appearance of the Gaussian distribution here is due to 
the fact that in this case we a re  dealing with a real  
Gaussian field of fluctuations. In the general case, 
H, f 0, we a r e  also obliged to use the continued-fraction 
representation (22) for the Green's function. 

'A 

ie, + & + iv,x - 2Aa 
ien - EP + "'Fx - ien+ $ + 3iv,x -. . . 

1 - A= - A" (k)  
e [o; - ,...I. %-b' i ~ n + & p + i v F x " ' " i ~ - ( - ~ ) k & p + ~ ~ v F ~  

3. THE DENSITY OF STATES 

For x = 0 we can use the well known representation of 
the incomplete l-' function as a continued fraction14: 

Let us proceed to the calculation of the density of 
electron states corresponding to  the Green's functions 
(17) and (22). For the problem with the spectrum (4) 
(incommensurable transition) we have 

m 

l'(a, z) = S dt e-tto-' = 
PtrX 

X z+ l - a  ' 
A 

and also the relation r(0, x) = - Ei(-x) to verify that 

where No is the density of states of free electrons at 
the Fermi leveL From the fundamental recurrence 
relation (17) we have: 

where the usual analytic continuation ic, - & * i6 is to be 
understood. Here 

Calculations of the density of states were made with 
a BBSM-6 computer; the convergence of the iteration 
procedure (26) was found to be very good. The results 
a r e  shown in Fig. 5, where the different curves of the 
density of states correspond to different values of the 
dimensionless parameter r = U,X/A = vF[-'/A. The 
curve with r = 0 corresponds to the case in which the 
density of states can be found analytically.' It can be 
seen that a s  the correlation length 5 decreases there is 
a gradual filling up of the pseudogap, i.e., a transition 
to a "metallic" state. For up[-' << A the approximation 
H, = O  works very well everywhere except in the range 

is the Rayleigh distribution15 which describes the uni- 
form fluctuations of a semiconducting slit over all 
space. The Rayleigh distribution ar ises  because in this 
case we have to do with a complex Qaussian field of 
 fluctuation^.'^ Accordingly, for n = 0  we get the result 
of Ref. 6. In the general case (x * 0) we cannot put the 
expression (18) in any cbsed  form, but the continued- 
fraction representation is convenient for numerical 
computation. 

For the problem with the spectrum (5) and 2P, = a/a 
(limiting commensurable case, doubled period) we get 
in a similar way the recurrence relation (17) with 
v(k) given by Eq. (91, s o  that 

G (en&) 

fen- E p -  
2Aa 

ie, + + iv ,x  - 2 .  2A2 - - . "  FIG. 5. 
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of energies - up[-' around the Fermi level, which con- 
firms the qualitative conclusions of previous 
For large values r?  2 the difference between the re- 
sults of Lee, Rice, and Anderson," based on the use of 
only the one diagram of Fig. 1, a, and those of the 
present calculation done by including all graphs be- 
comes inappreciable. The main difference appears 
for small  r, when the approach of Ref. 10 predicts a 
transition to a density of states of the BCS type for r - 0 .  

Figure 6 shows the dependence of the density of 
states on the Fermi level (which governs, for example, 
the Pauli paramagnetic susceptibility) a s  a function of 
r. Curve 1 is our result, and curve 2 is the result of 
Ref. 10 (adjusted to our notation). It can be seen that 
the filling in of the pseudogap occurs more rapidly in 
our model; for r < 1.5 curve 1 can be approximated 
with the formula N(O)/N,- (0.541 * 0.013)rlh. 

In attempts to compare our results  with experiments 
on the Peierls  transition in KCP o r  TTF-TCNQ it  must 
be kept in mind that we have neglected a l l  nongaussian 
fluctuations, which may be important for T<< Tp0.l1 
This Gaussian model can be applied for T s  Tpo, o r  for 
KCP and TTF-TCNQ for T 2  200 K at any rate. From 
neutron diffraction and x-ray data i t   follow^'^^'^ that at 
these temperatures in KCP [ > 102a (a is the lattice 
constant), i.e., r a  spa/^[ < 0.1, which may explain the 
good agreement of the results obtained in Refs. 6 and 7 
for the optical absorption by the pseudogap with experi- 
ments on KCP (Ref. 18, see  also Ref. 8). There i s  no 
generally accepted theory of the correlation length for 
the Peierls transition. The experimental data do not 
contradict the results of Blunck,lg which indicate that 
t(300 K)z  1O2a, t(200 K)2 10Sa, i.e., r(300 K)s0.1, 
r(200 K)s 0.01. The nongaussian character of the fluc- 
tuations for T << T ,  evidently leads to a more sharply 
expressed pseudogap in the density of states," which 
can also be seen in the optical experiment.18 We note, 
however, that in the range of temperatures when a 
sharper gap i s  observed experimentally, evidently 
three-dimensional ordering effects a r e  already im- 
portant. 

For the extreme case  of commensurability [the spec- 
trum (5)) we have 

(27 
The iteration procedure is given by the formulas (26) 
with the substitution k-2k. Figure 7 shows the results 
of calculations of the density of states for the case 
W-rn (infinitely broad band) which is most simply 

U 5 FIG. 6. 

3 
J- 

E / A  
FIG. 7. 

compared with the f ree  electron case which we have 
considered. For finite values of W there is a charac- 
terist ic peak of the density of states a t  & =W,' owing to 
the smearing out of the singularity at the edge of the 
band of the one-dimensional metal. Furthermore, in 
the case W >> A the form of the density of states for 
& 2 A is practically not different from that obtained in 
the limit W - a, and this is precisely the region of most 
interest to us. Again i t  can be seen that as [ decreases 
there is a smooth transition to a metallic state. The 
density of states a t  the Fermi level a s  a function of r 
is shown for this problem as curve 3 in Fig. 6. 

Again it is easy to trace the transition to the case 0, 
for which the problem can be solved analyticallf; this 
approximation works well when the inequalities (7) a r e  
satisfied. For r <  3 curve 3 i s  approximated by the 
formula (0.546* 0.016)rlh. There is  a curious coinci- 
dence in the values of the constants' in the expressions 
for the density of states at the Fermi level a s  function 
of the parameter r in the two different problems. In 
the case now being considered (commensurable) the 
pseudogap in the density of states is less  sharply ex- 
pressed, and i t  is filled in much more rapidly a s  5 
decreases, than in the incommensurable case pre- 
viously considered, and the criterion for the applica- 
bility of the approximation r = 0  is more strictly quan- 
titative in this case, although qualitatively it is again 
expressed by the inequalities (7). 

In conclusion the writer expresses his deep gratitude 
to B. M. Letfulov for carrying out the numerical calcu- 
lations. He is also grateful to S. A. ~ r a z o v s k i i  and 
L. V. Keldysh for discussions and for their interest in 
this work. 
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Instability of cholesteric liquid crystals in an electric field 
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The field instability threshold (U,) and the deformation period (T,) have been calculated for four 
Grandjean bands (the layer thickness L of the cholesteric liquid crystal (CLC) was comparable with the 
helix pitch po) by numerical integration, starting out from the general equations of continual theory of 
CLC. The calculations were made in the case of initial planar and twist orientations of the director of the 
CLC at the substrate for domains with different directions. For Grandjean bands with large numbers 
(L>po) analytic formulas are proposed for the calculation of T, and Uc with account of the 
nonequilibrium pitch of the cholesteric helix. Detailed experimental investigation of the instability 
threshold and the deformation period for the cases mentioned above have shown excellent agreement of 
experimental results and theoretical calculations. 

PACS numbers: 61.30.Gd 

1. INTRODUCTION mations, respectively. 

A field (zero-current) instability is observed in the 
planar texture of a cholesteric liquid crystal (CLC) with 
positive dielectric anisotropy (A& =En - C, >O) at some 
threshold voltage U, upon application of an electric field 
parallel to the helix axis. This instability appears in 
the form of a spatially periodic deformation of the in- 
itial orientation of the director of the liquid crystal and 
is due to the destabilizing moment, which is propor- 
tional to E'AG' (E is the intensity of the electric field). 
In nematic liquid crystals (NLC) the threshold voltage 
of the analogous instability (Freedericsz transition') is 
determined by the formula 

The dependences U,m (~ /p , ) ' / '  and T,.o (p&)"' that 
follow from (2) and (3) have been verified experiment- 
ally.415 Formulas (2) and (3) were obtained, however, 
under the assumption that L >>Po and without account of 
the difference of the real (induced) helical pitch p ,  
which ar ises  a s  a result of the orienting influence of the 
walls of the vessel, from the equilibrium value Po, 
and therefore cannot be used directly for the estimation 
of the instability threshold in the case of a thickness of 
the CLC layer that is comparable with the helical pitch 
(L -0,). In the case L -Po, only the electrohydrodynam- 
ic instability has been investigated experimentally in 
detail.6 

U,=Zn (nK,,lAe) Ih, 

The purpose of the present work is a systematic 
where KI1 is the elastic modulus for a transverse flex- theoretical and experimental study of the field instabil- 
ure deformation; the wave vector of the deformation is ity of planar texture of CLC in the case of arbitrary 
equal to zero in this case. For  CLC the theoretical val- relations between the layer thickness L and the helical 
ue of the threshold U, and the period of the deformation pitch Po, with account of the real pitch and the boundary 
T0=2n/k (k is the wave vector of the deformation) were conditions. 
obtained by  elfr rich' and refined by ~ u r a u l t : ~  2. THEORETICAL CALCULATION 

8nS L 
U." - - (6KlXs , )  '"-, (2) Theoretical consideration of the field instability in 

Ae Po 
planar texture of CLC has been carried out under the 

3Kss 
T: = (-) " p ~ ;  (3) assumption of a rigid connection of the CLC molecules 

2Kz2 with the surface of the cell a t  the boundaries of the 
here L is the thickness of the CLC, p, is the equilibrium layer. Two cases a r e  considered: the directions of 
helical pitch, K , ,  and K z z  are  the elastic moduli for de- orientations of the molecules on the boundaries of the 
formations of longitudinal bending and torsional defor- surface a r e  parallel (planar orientation) o r  perpendic- 
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