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This paper is devoted to a study of the general localization criterion in the field theory of an 
electron in a random field. We show the equivalence of the Economou-Cohen and the Berezinskii- 
Gor'kov localization criteria. The general localization criterion is formulated as the requirement 
of the existence of a pole contribution in the two-particle Green function with a factorizable 
residue (in momentum space). We search for a solution of this kind on the basis of a study of the 
homogeneous Bethe-Salpeter equation and in the framework of the instanton approach. We show 
that the Bethe-Salpeter equation determines the point where the "normal" (metallic) phase be- 
comes unstable. The instanton approach describes the energy region corresponding to the local- 
ized phase. In both approaches the critical energy for which the transition occurs (mobility 
threshold) falls in the "Ginzburg critical region" which goes substantially beyond the framework 
of the approximations used. Both approaches follow naturally from an effective action formalism, 
but they reflect different mechanisms for the instability of the normal phase. 

PACS numbers: 1 1.1O.St 

1. INTRODUCTION N ( E )  = (z .pv(r)rpV*(r)6(E-~.)) 
The obvious analogy which exists between the pheno- V 

menon of the localization of electrons in disordered systems 
(Anderson transition) and the usual phase transitions has led 
to many attempts to construct a field theory for an electron 
in a random field (see the review' and Refs. 2 to 5). The 
results of these papers are rather contradictory and the gen- 
eral picture of the transition is still not at all clear. In particu- 
lar, this is true of the problem of the possibility of describing 
the localization on the basis of some kind of order-parameter 
representation. 

The problem of how the localization manifests itself in 
the basic quantities with which the theory operates, such as 
the ~ r e e '  function, has also not been studied sufficiently. 
This makes the final solution of the problem much more 
difficult. It is, for example, clear that the problem of the 
realization of the localization effect itself is, in general, dif- 
ferent from the problem of the behavior of the conductivity 
near the mobility threshold, the solution of which may turn 
out ot be much more complex. The present paper is devoted 
to an analysis of the general criterion for localization and to 
some attempts to look for the corresponding solutions from 
the basic equations of the theory of an electron in a random 

is the electron density of states averaged over the configura- 
tions of the random potential: p,(r) and E, are the exact 
wavefunctions and energy levels of the electron in the field of 
the impurities, Y is a set of quantum numbers characterizing 
these states, E is the energy of the electron, and o is an arbi- 
trary frequency. 

According to the localization criterion proposed in Ref. 
6 there arises in the range of energies E corresponding to 
localized states a contribution which has a 6-shape: 

((pE (r) pE+o (r') )) =As(r-r') 6 (cu) +plE (r-r', m) , (3) 
or, in the momentum representation, 

((p~p~+o))q=AE(q) 6 ( 0 )  +plE(qO). (4) 

The second term in (3) or (4) is regular in w.  In the region of 
delocalized states AE(r - r') = AE(q) = 0. 

As the quantities AE(q) or AE(r - r') signal the appear- 
ance of localized states it is useful to change to their defini- 
tion in the standard formalism (Green functions). Introduc- 
ing retarded and advanced averaged Green functions for the 
electron 

field. GR,A (rr'E) = (9" (r) 9"' (r') l (E-E,* i6) ) $I (5) 
2. EQUIVALENCE OF ECONOMOU-COHEN AND 
BEREZINSKI~-GOR'KOV LOCALIZATION CRITERIA and using the definition (1) we get immediately 

We consider noninteracting electrons moving in the 1 
field of impurities which are randomly distributed (in a d- < P E ( ~ )  PE+U (r') ))= - (Im GXoA ( r r ' ~ + a )  Im GRrA ( r ' r ~ )  > 

n Z N  (E) 
dimensional space). Following Berezinskii and ~ o r ' k o v ~  we 
define the spectral density: - - 1 

2n2N (E)  
Re { ( G R  (rrlE+o)  G A  (r'rE) ) 

. , (xTv+ (r) q v e  (r) qv,. (r') 9" (r') <pE (r) P E + ~  (r') ))= - 
N ( E )  w, -(GRnA (rrfE+a) GR,A (rrrE) )), 

(6) 
(1) 

or, in momentum space, 
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where, for simplicity, we have introduced the notation7 

z tGR(p,p+'E+o) GA(p-'p-E) ), (8) q 5 R A  ( E o q )  =- - 
2xi 

PP' 

where p,  = p + q/2. The quantities (ZyZR (Ewq) or 
W A  (Ewq) are defined similarly. One sees easily7.' that as 
q-0,w-0 the quantities DRR and vA behave regularly. It 
is clear that the singular contribution to (4) corresponding to 
the appearance of localized states can arise only from the 
first term in (8). One sees easily that 

I 
A, ( q )  = lim - 6  Im P A ( E o + i 6 q )  l o - o  

6-0 N ( E )  

- - 1 
lim 6 z  Re<GR (p,p+rE+id)  G A  (p-'p-E-i8) ), 

2 n N ( E )  6 - 0  
P P '  (9) 

or, in the coordinate representation, 

AE (r-r') = Lim 8< IG(rrtE+i6) 1'). 
2 n N ( E )  a+o 

(10) 

It is useful to introduce the quantity 

which is proportional to the averaged probability that an 
electron returns to the initial point in coordinate space after 
infinite time.9 Hence it is clear that the general Berezinskii- 
Gor'kov localization criterion6 is equivalent to the general- 
ized Economou-Cohen localization ~r i te r ion .~  

3. LOCALIZATION FROM THE BETHE-SALPETER EQUATION 

We consider the two-particle Green function 

It is well known that in the framework of perturbation the- 
ory it is determined by the Bethe-Salpeter integral equa- 
tion7v8 

,1  
GPn. (Eqw) =GR (E+wp+) G A  (Ep-)  { - - 6 (p-p')  2ni 

where GRsA(Ep) is the complete averaged retarded (ad- 
vanced) single-electron Green function, while the irreduci- 
ble vertex part U;,(qw) is determined by the sum of all 
graphs which cannot be cut along two lines-an advanced 
and a retarded one (see Fig. 1, where the dashed line indi- 
cates the "interaction" pV2, where p is the density of the 
impurities and V the Fourier transform of the potential of a 
single impurity, which for the sake of simplicity we assume 
to be a point impurity). 

We consider the problem of whether the solution of Eq. 
(13) can lead to a two-particle Green function containing 
singularities corresponding to localization. Starting from 

FIG. 1 

the results of the preceding section we assume that in the 
range of energies E where there exist localized states in the 
system, @,,, (Eqw) has the form with a pole 

g p q  (El  (El  
Gpp* ( E q o )  =- . + a,,, ( E q w ) ,  (14) 

o+i8 

w h e r e @ ~ ~ ' ( ~ ~ w )  is the regular part while the factorization of 
the residue at the pole (in momentum space) is assumed by 
analogy with the problem of bound states. We give a certain 
justification for this assumption in that follows. 

From (8) and (1 3) we get at once 

It then follows from (9) that 

One sees easily that x , , (E ) = x , , (E ). From the general 
property that6 A,(q = 0) = 1 there follows the normaliza- 
tion condition x,(E) = N ' 1 2 ( ~  ). For the return probability 
A, [Eq. (1 I)] we get 

The basic advantage of the localization criterion (14) 
formulated here is that when we substitude (14) into (13) the 
pole term dominates (as w 4 )  and we get the homogeneous 
Bethe-Salpeter equation for $: (E ): 

+P' (W = G ~ ( E P + )  ~ ' ( E p - ) z  DR. ( q w = O ) q p , q ( ~ ) .  (19) 
P' 

It appears that a study of such an equation is appreciably 
simpler than the solution of the general Eq. (13). Localiza- 
tion would correspond to the appearance of a nontrivial so- 
lution $;(E ) #O of Eq. (19) which would remain nonvanish- 
ing in the whole energy range E<E, where E, is th mobility 
threshold. However, it may turn out (and we show in what 
follows that this is, apparently, the case) that Eq. (19) only 
gives the threshold E, itself but does not describe the region 
E < E,. We assume therefore that Eq. (19) gives a relatively 
simple method for finding the instability threshold of the 
"normal" (metallic) state. 

It is obvious that an analysis of Eq. (19) in its general 
form is impossible. It is clear after the appearance of Refs. 
10, 11 that at least in the "quasi-metallic" range of two- 
dimensional systems localization effects are connected with 
the contribution of the "maximally interesting" graphs for 
u fp ,  (qw) (Fig. 2): 
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FIG. 2. 

where D f = E /mdy(E ) is the classical diffusion coefficient, 
y(E ) is the classical diffusion coefficient, y(E ) = V 'N (E ). 

In the metallic range Eq. (19) then takes the form 

where il (E ) = 2dmy2(E )p V2/E. After changing to dimen- 
sionless variables p - t ~ / ( 2 m E ) " ~  we write Eq. (19) in the 
symmetrized from 

B-.. ( E )  =AE J d d p f K q E  ( p ,  p') hvq ( B )  , (22) 

where 

$ - p q  ( E l  =Rq-'" (PI $ - p q  ( E )  

Rq ( p )  = [ l -  (p-i12q)Z+iyIE] -' [ I -  ( p+1 /2q )2 - i y IE]  -', 
&=4 ( 2 n )  dm2 ( 2 m E )  d'2-3h ( E )  , 

(23) 
while 

1 
KqE ( p ,  p') =Rqm" ( p )  R,'" ( -p ' )  - 

Ip-p'lZ 
(24) 

is a positive-type'2 symmetric (Hermitean) kernel satisfying 
the inequality 

KqE (P, P') <Ezly2 I P-P' 1 ' .  (25) 

Hence it is clear that for 2 < d < 4 the equation considered is 
an integral equation with a kernel with a weak singularityI2 
and certainly possesses a finite (or denumerable) eigenvalue 
spectrum lying on a section of the real axis with a length 
determined by the norm of the integral operator. From Enz's 
theoremI2 it follows that the first eigenvalue of this kernel is 
positive and simple while the corresponding eigenfunction is 
everywhere positive definite. Using the boundedness of the 
integral operator one checks easily that the equation consid- 
ered does not have any trivial solutions when 

i.e., when 

whereAd =21-d/2 P - d / 2  d /r (d /2) and where we have in- 
troduced the characteristic energy 

E = , , , d / ( i - d )  2 2 / ( 1 - d )  
I E  ( p V )  . (28) 

Hence it is clear that ford = 3 the corresponding threshold 
energy falls in the "strong coupling" region E, = m3(p V 2)2, 
where the selection we made of diagrams is, generally speak- 
ing,  invalid'^'^ and one needs to take all diagrams of the per- 
turbation theory into account. As d-2 the range of energies 
for which there is no solution "takes off" to infinity which 
means that in that case the mobility threshold E,+co. In 
our opinion this result is a rather exact proof of the ideas of a 
total localization when d = 2 (Ref. 10). At the same time one 
sees easily that inequality (27) gives the analogue of the 
"Ginzburg critical region"'.L3 in which higher orders of the 
perturbation theory are important. Therefore, as d+2 sim- 
ple peturbaion theory becomes inapplicable for all energies. 

4. LOCALIZATION AND INSTANTONS 

In view of the fact that when we describe the region of 
the localized states itself the approach given above, which is 
based upon the homogeneous Bethe-Salpeter equation, is, 
apparently, insufficient, we turn to an alternative approach 
which enables us to obtain a two-particle Green function of 
the form (14) in the whole energy range. It is well 
knownl.14.'5 that the localization phenomenon is closely 

connected with the appearnace (in the appropriate energy 
range) of nonlinear solutions with a finite action (instantons) 
of the classical equations of an effective field theory which is 
associated with the problem of an electron in a random 
field.' We consider in detail the contribution of such solu- 
tions to the two-particle Green function. 

To evaluate the two-particle electron Green function in 
a random field we can introduce' the following effective La- 
grangian: 

where at the end of the calculations one understands that one 
must take the limit n 4 ,  rn-0. Using the qualitative analy- 
sis of the classical field equations following from a Lagran- 
gian~4.~5 one can check that when E < 0, E + w > 0 these 

equations have a spherically symmetric instanton solution of 
the form 

pic' ((r =pel ( r )  ei, @tl ( r )  =O, (30) 

2lEl 
p ( r )  = ( - )  , r= (2rnlEI )-'"t, 

pV2 (31) 

wherex,, (t ) a t ( I  exp( - t )when t ( l , ~ : ~  (0) = 0. In (30) 
e, is the unit (m-component) isotopic vector of the field p. 

Considering in the corresponding functional integral 
contribution connected with the Gaussian fluctuations 
around classical solution (30) we get 
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where S [p,, ] oc m -d'21E 1 2 d ' 2 / p ~ 2  is the classical action 
on the instaton, 

is the Jacobian of the change to integration over the collec- 
tive variables R, (center of the instanton) and e (direction in 
isotopic space), So[@, p ] is the action describing the Gaus- 
sian fluctuations in the vicinity of the instanton solution (p 
denotes now the deviation from p,,) 

so[$, q l - I  d d r { 9 0 ( @ ) + ~ ~ ( q ) ) ,  (34) 

9 )  = ( M - - i  (36) 
d j  

where 

The tilde above the symbol for the functional integration 
over p indicates that the zero eigenvalues of the operators 
ML and M, ( the "zero modes") which are taken into ac- 
count through the integration over the collective variables 
R, and e must be excluded. 

Introducing the eigenfunctions and eigenvalues 

MLY kL=hkLYkL, MTYkT=hkTY kT, (38) 

we get easily 

where the normalized eigenfunction of the lowest level of the 
operator MT(A = 0, the "rotatonal" zero mode14.15) has 
the form 

YOT(r-RO) =lT-' [ q C l ] ~ f l  (r-RO). (40) 

As a result we get the singular contribution to the two-parti- 
cle Green function: 

X lT ' " [~c l  I ( I  Det' M,I ) -'" (Det' M,) 'la 

Here Det' ML and Det' MT do not contain contributions 
from the zero eigenvalues of the operators ML and M,. 
CardyI4 was the first to give an expression equivalent to (41) 
(for w = 0). Taking into account the sketchy nature of that 
paper we decided to perform rather detailed calculations. 
We note that the singular contribution turns out to be con- 
nected with the existence of a "zero" rotational mode, i.e., in 
fact with the symmetry of the system. One may thus expect 
that this contribution does not vanish even when we take 
into corrections to the Gaussian approximation. 

Taking now the explicit form of the density of states 
into account which in the energy range considered is deter- 
mined by a similar instanton c~ntr ibut ion '~. '~  we get at once 
from (lo), (1 I), and (41) 

which is valid up to dimensionless constants. For the return 
probability we get from this: A,  cc ( E  I d ' 2 .  

Changing to the momentum representation by using 

rq = J ddre-iqrcp.,z (r) , (43) 

we get 
I - 

A, (q) "nsX-a, (44) 

which reproduces (17). Introducing the Fourier transform of 
the instanton 

qqc'= jddre-iqrp.l (r) , (45) 

we see that 

and comparing this with (16) we get 

$pq (a -vpCi ( E )  qqC4 ( E )  . (47) 
The consideration given her is thus in fact a validation, in the 
framework of the instanton approach, of the above in (14), 
assumed form of the singular contribution to the two-parti- 
cle Green function corresponding to localization. The resi- 
due in the pole is then expressed in terms of instantons. The 
region of applicability of the instanton approach is roughly 
determined by the ~ondit ion ' . '~* '~ S [p,, ] ) 1 which leads to 
the requirement J E  J,Esc where Esc is defined in (28) (the 
necessary refinements will be given in what follows). 

5. EFFECTIVE-ACTION FORMALISM 

There arises the problem of the relation between the two 
approaches discussed above for finding the singular part of 
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the two-particle Green function. We show below that both It is convenient to use a matrix notation 
description methods naturally arise as a manifestation of, in 
general, different instabilities of the system in the framework = (  (Dt=(Qq). (49) 
of the effective action formalism for the component fields.I6 
For the system considered of the fields 0 and g, the effective 
action isI6 a functional r of the "classical" (average) values 

(50) 
- .  

of the fields and Vcl and of the corres~onding Green The Lagrangian (29) can be rewritten in compact form: 
functions which satisfies the variational principle: 

6r 
-= 6r 

0, -= 
6r 

0, .= 0. (48) P (r) =I/, Sp J d d r ' ~ + ~ o - l ~ - ' / , p ~ ' ( ~ p  mtQ)'. (5 1) 
6#=1 (r) 69,~ (r) 6G (r, r') 

According to Ref. 16 with an obvious generalization to the 
case of two fields we have 

I'(Qcl, G) =S ((D,,) -'IzTr In&-' 

where Tr and In are understood in the functional sense,I6 i.e., 
in  articular T; in,cludes all necessary integrations while 
In G = In Det G, G - ' is the reciprocal of the Green function 
matrix in the classical field: 

where 

The functional F (@,, ,2) satisfies the conditions 

69/60=' /? ,Y  (55) 

such that the equation 

is simply the Dyson equation while the matrix B consists of 
the irreducible self-energy parts with dressed internal l i n p  
One can get the formal scheme for calculation F (@,, ,G)  
easily by an appropriate generalization of the prescriptions 
of Ref. 16. 

I 

We first consider the "normal" phase in which 0,, 
= g,,, = 0 and only the Green functions G,, and G,, are 

nonvanishing. In that case (53) simplifies 

I? (8)  = ~ ( 8 )  -'lzTr In 8-'-'/,Tr {G,-~G- 1). (57) 

The matrix (54) reduces to (52). A stable system must 3tisfy 
the condition S 2r> 0 for any variations in @,, and G. We 
consider the stability against arbitrary variations of the 
Green functions in the "normal" phase. We show graphical- 
ly in Fig. 3 examples of variations of the self-energy parts 
when the Green functions are varied. Hence one finds, in 
particular, easily that 

etc., where U,&, is the irreducible vertex part in appropri- 
ate two-particle channel. The problem of the instability of 
the system with respect to variations SG,, is of interest to us. 
In a stable system 

Using SG,, = Gm +he,, G,, (see Fig. 3) in (59) and (58) we see 
that the stability threshold of the "normal" phase is given by 

FIG. 3. 
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the condition 

which is graphically represented in Fig. 4a. It is fairly ob- 
vious that when there appears a nontrivial solution of the 
homogeneous Bethe-Salpeter Eq. (19) the stability of the sys- 
tem is violated (Fig. 4b). 

The analysis given here shows that the appearance of a 
nontrivial solution of Eq. (19) gives in the general case the 

threshold for the stability of the "normal" phase where we 
are talking about stability with respect to variations SG,, . 
An expansion of the functional r (G ) from (57) in powers of 
SG,, a +ha, gives in principle a method to consider the cor- 
responding "condensed" phase while in that case +ha, plays 
the role of the order parameter. 

The first two Eqs. (48) are in fact a generalization of the 
classical field equations following from the Lagrangian (29), 
(5 1). The case when they acquire nontrivial solutions of the 
kind (30) is important for us. The matrix (54) then reduces to 

h 

and the simplest approximation for r(@+,,G) reduces to 
neglecting in (53) the contribution F (@,, ,G ). In that case 
(53) gives 

r ( q c r )  =S(q , l )  Tr In G++-l-li, Tr In,&-' 

and the equation S r  /Sp,, = 0 reduces to 

which is the generalized equation for instantons leading to 
the solution (30). Here T,(p,,) is the result of summing the 
single-loop corrections to the classical action. Considering 
in it the term of first order in p V2p f, we get 

where SE gives the single-loop "mass" renormalization in 
the original Lagrangian. Taking for E the already renormal- 
ized "mass" we shall assume that the "critical point" corre- 
sponds to E-+O so that in terms of the "bare mass" 

(65) 
which determines the (in the single-loop approximation) 
shifted band edge. Here p,  is the cut-off momentum, Sd 
- - 2 - 'd - ')r - d/2/r (d /2). Our definition of the shifted 

band edge differs from the one assumed in Ref. 17. For E we 
get the equation 
E=E,+hE=E,-Eo,-pVZ 

d - 1 

=E-Eoc+pVznmSd(-?mE)d~2-i {sin n (? - I )}  , 

The "Ginzburg criterion"  follow^'^ from the requirement 
that the simplest formula E-E, - E, be valid which 
means the equation for the renormalized electron "mass7' 
energy reckoned from the shifted band edge. This is just the 
meaning of the variable E in that paper and in Refs. 1, 14, 15. 
It is clear that the equation is satisfied when 

where Bd = 2 - d/2r' -d'2/r (d /2) while E,, is defined in 
(28). This inequality which determines the condition for the 
applicability of our approximation is equivalent, in particu- 
lar, to the inequality (27) obtained earlier. In the negative 
energy range it delimits the region beyond which the instan- 
ton approach is valid. 

From the effective action formalism there follows thus 
in a natural manner both the instability of the "normal" 
(metallic) phase which is connected with the appearance of a 
nontrivial solution of the homogeneous Bethe-Salpeter Eq. 
(19) and the instability of that phase connected with the ap- 
pearance of instanton solutions. In the framework of the ap- 
proximations used these two instabilities remain indepen- 
dent which may, in principle, indicate the existence of two 
kinds of electron localization. At the same time it is clear 
that the complete solution of the problem of the relation 
between the two instabilities requires one to go beyond the 
framework of the approximations used and to penetrate real- 
ly the "strong coupling" region. The effective action formal- 
ism gives, at least in principle, a convenient apparatus for a 
joint consideration of these instabilities. 
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