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The Hartree-Fock corrections to the density of states and to the thermodynamic quantities near 
the mobility threshold, necessitated by the interaction between the electrons, are calculated with- 
in the framework of the formalism of exact eigenfunctions. Principal attention is paid to the 
region of localized states. The "localization" corrections directly connected with the electron- 
return probability are found. Using a self-consistent localization theory, the known results of 
Aronov and Al'tshuler are generalized to include the case of an insulator. The localization contri- 
bution to the polarization operator, corresponding to a non-ergodic behavior of the system and 
leading to a difference between the isothermal and adiabatic resposes, is considered. It is shown 
that the static isothermal dielectric constant has a metallic behavior and corresponds to a finite 
screening radius also in the dielectric "phase," whereas both the high-frequency and the adiabatic 
responses are described by expressions that are typical for dielectrics. 

1. INTRODUCTION 

In the theoretical study of electron localization in disor- 
dered systems, which is attracting so much attention of late, 
interelectron-interaction effects are usually disregarded.' 
Yet it is known that an important role is played by these 
effects both in metals with small impurity and for 
electrons in strongly localized  state^.^.^ In a number of re- 
cent approaches"" to metal-insulator transitions in disor- 
dered systems attempts are made to take the influence of 
interelectron interaction into account. All these studies deal 
only with the metallic (or quasimetallic in the case of two- 
dimensional systems) "phase" in the vicinity of the Ander- 
son (or Mott) transition, and the insulator phase is disregard- 
ed. The role of interelectron interactions for localized 
electrons was considered, besides the already mentioned 
Refs. 4 and 5, only in various attempts to develop a theory 
for Fermi g la~ses . '~* '~  All these studies demonstrate the im- 
portant, if not decisive, role of correlations in the description 
of metal-insulator transitions in disordered systems. At the 
same time, the results of these studies are highly contradic- 
tory and the problem is still far from completely solved. 
There is even no clear answer to such a fundamental ques- 
tion as the possible existence of localization itself in systems 
with interaction. The situation is aggravated by the known 
difficulties1 that arise in the theoretical description of the 
Anderson transition even in the one-electron application. 

This being the situation, it makes sense to analyze first 
the case of weak interaction for strong disorder, as an at- 
tempt to determine which physical processes are particular- 
ly strongly influenced by the correlation. The present paper 
is devoted to the first-order perturbation-theory corrections 
to the density of states and to certain other characteristics of 
the system in the vicinity of the Anderson transition; princi- 
pal attention will be paid to the region of localized state. In 
this sense, an attempt is made here to extend and generalize 
the known results of Aronov and Al'tshuler2 for the metallic 
phase to include also the insulator state. We shall employ 
mainly the method proposed in Ref. 14 to derive the main 

results of Ref. 2. We shall regard the Anderson single-elec- 
tron problem as solved, and for many actual calculations we 
shall use the self-consistent localization theory in the variant 
proposed by Vollhardt and Wolfle,' which comprises appar- 
ently a qualitatively correct interpolation analysis scheme 
that permits a description of the entire region of the transi- 
tion from a metallic into a localized phase.'"18 

2. GENERAL RELATIONS 

Regarding the single-electron problem as solved, we in- 
troduce a complete orthonormalized system of exact wave 
functions p,(r) and the corresponding eigenvalues of the 
electron energy in the random field of a disordered system. 
These functions and energies can correspond to both local- 
ized and delocalized states. We consider the single-electron 
causal Green's function in the representation of these exact 
eigenfuctions, particularly its diagonal matrix element 

G,,(E) =(vI (E-H+i6 sign 8)-'IY),  (1) 

where H is the total Hamiltonian that takes the interelectron 
interaction into account and E is the energy reckoned from 
the Fermi level. The influence of the interaction is taken into 
account by introducing a corresponding self-energy part 
2,, (E) (Refs. 12-14). 

G,,(E) = [E-6,-&(E)] -', Xv(e)  =AV(&)  f i r , ( & )  sign 8 .  (2) 

Following the standard p r ~ c e d u r e ' ~ . ' ~  we introduced 
the renormalized energy 2, as the solution of the equation 

cv-ev-Av ( s ~ )  =0, (3) 

and represent (2) at E -2, in the form 

G,,(E) =ZV [E-~,+iy ,  sign &I-', (4) 

where 

We introduce 14 the self-energy part 3, (E) averaged 
over some equal-energy surface E = E, and over the config- 
uration of the disordered-system random field that defines 
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the single-electron problem: 

X E ( ~ ) = A E ( ~ ) + i P E ( ~ )  = N o - l ( E )  (z 6 ( E - E . ) L ( E )  ) . 
where the angle brackets denote the aforementioned config- 
uration averaging and NO(E ) is the single-electron (averaged) 
density of states. 

We shall be interested in the single-electron density of 
states with account taken of the interaction; we define this 
state in the usual fashion 

N  ( E )  =-n-I ( z Irn GVvR(E)  ) 
Assuming the corrections for the interaction to be small, 
y, (E, -Z,, it is easy to verify that in first-order approxima- 
tion 

6N ( E )  N  ( E )  - No ( E )  -- - . 0 -  
a a E ( ~ V )  + a a ~ ( ' . ) .  (8) 

No ( E )  No ( E )  d E a s ,  

For reasons explained below we shall call the quantity 

the correction to the thermodynamic density of states. This 
density of states was first introduced in Ref. 14 (see also Ref. 
8). 

3. CORRECTIONS FOR INTERACTION: CONTRIBUTION 
FROM LOCALIZATION 

We shall consider hereafter a model problem in which 
the interelectron interaction is described by a static repelling 
potential with a finite effective radius: 

xx 9; (r') v; ( r )  u  (r-r') v,,, ( r )  vv* ( r f )  a*+av+a~~av'- 

,,Y$'V' 

(10) 
An examination of the Hartree and Fock diagrams (Fig. 1) 
yields then 

xwF = - j dr j dr' u  (r-r') fvq; ( r f )  rp/ ( r )  T J # ( ~ )  rpv(rr) 7 

V (11) 

where f, = f (E, ) is the Fermi distribution function. We have 
accordingly from the definition (6)  

FIG. 1. 

where we have introduced the following spectral densities: 

The spectral density (13b) was first considered by Berzinskii 
and Gor'kov20 in connection with a general localization cri- 
terion formulated in it. The gist of this criterion is that at 
energies E < Ec (where Ec is the mobility threshold), i.e., in 
the region of the localized states, these spectral densities ac- 
quire a contribution that is a 6 function of o: 

where the quantity 

is connected2' with the probability of the electron returning 
to the initial point, so that the Berezinskii-Gor'kov localiza- 
tion criterion is equivalent to the known Economou-Cohen 
criterion.22 The validity of (14a) can be verified directly by 
repeating the arguments of Ref. 20. 

Substituting (14) in (12) we obtain the following contri- 
butions toT,, which is due to the onset of localized states in 
the system: 

where we have transformed in the last equation to the Four- 
ier representation (d is the dimensionality of space). For a 
point interaction v(r - r') = v06(r - r') we have 

- H  F 
4 iOc=+(E) v O J  .I a E ( p )  - + f  ( E )  u J E ,  

where A ,  is proportional21 to the total probability of the 
electron returning to the initial point after an infinite time. 
We note that for a point interaction, by virtue of a property 
obvious from (13) 

< ( p E  ( r ) p E r '  ( r )  > ) H , ( ( , ~ E ( r )  PE' ( r )  ))' (I8) 

the "regular" contributions to 5 and 3 due topzFin (14) 
are equal (and of opposite sign). 

For zero-spin fermions, the Hartree and the Fock con- 
tributions (17) cancel each other. It can be easily seen from 
(16) this cancellation does not depend on the interaction ra- 
dius. When the spin is taken into account the Hartree contri- 
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bution acquires an "extra" factor 2 connected with the sum- 
mation over the spin in the electron loop of Fig. la. This 
results in a nonzero localization contribution: 

- H + F -  H + F -  
l o = - H E  loc -J(E)  VOAE. (19) 

We write down for the sake of argument the equations for the 
point interaction. We recognize that the main energy depen- 
dence in (19) is determined by a Fermi function that varies 
strongly near the Fermi energy E,. The quantity AE at 
E z E ,  can be regarded as a constant (a smooth function of 
E ). This assumption can, generally speaking, turn out to be 
correct near the mobility threshold, when A, vanishes. The 
corresponding "critical exponent" is not known exactly, but 
it can be concluded from the available estimates2' that aAE / 
a E 4  also as E+Ec. We then obtain from (9) and (19) 

FIG. 2. 

Considering the Hartree-Fock corrections to the ther- 
modynamic potential, which are determined by the plots of 
Fig. 2, we obtain by direct calculation 

m 

( t in, , )= I ~ E / ( E )  N . ( E ) E : + ~ .  (24) 
-m 

After integrating by parts we have 

am) - m 

H + F  (El l,,c=->z A l o c ~ o E F  ( )  . (20) (25) 

The singular (localization) contribution (20) is cancelled in Comparision of (25) and of the known expression for the 

the total density of states defined in (7) by the second term of thermodynamic potential of free fermions: 
00 

(8): 61s-T  EN ( E )  ln(l+r-E") (26) 
a + I - - 

-AE l o c  
d E, explains the use of the term "thermodynamic density of 

1 states" in connection with the definition (9). The singular =--(Ej d r j  dr' 
No (El  (localization) part of the thermodynamic potential is given 

by 
a f v  a /  (El  

Xv(r-r l ) -6  (E-ev)  i cpv(r) I' 1 cp.(rf) 1 ' )  =u0AEF - 661,..= dr j drf v (r-r') AE (r-r') No ( E )  f ( E )  dE - 

de, dE . 

We shall see nevertheless that the thermodynamic density of 
states (9) governs the behavior of a number of thermodynam- 
ic quantities, and retains the localization contribution (20). 

To understand better the physical meaning of the local- 
ization contribution to 5 f + F ,  we note that in fact we are 
dealing here with allowance for the interaction of electrons 
that are in one and the same quantum state Y. It can be seen 
that in the case of diagrams a and b of Fig. 1 the contribu- 
tions from the interaction of electrons with equal spin pro- 
jections (shown by arrows in Fig. 1) cancel out completely, 
and 2 determined by the interaction of two electrons 
with opposite spins, which are in a state Y, i.e., by an effective 
interaction of the Hubbard type: 

The corresponding contributions to the entropy and to the 
heat capacity are 

C,,, is connected with a small (-dAE/dE ) correction to the 
thermodynamic potential. The corresponding correction to 
the density of states in (20) was neglected. The localization 
correction to the correlation contribution to the compress- 
ibility is also small: 

YO 

d 
m a2 

l o . - - ~ o J  ~ E A E N o ( E ) , ~  ( E )  
where n, is the operator of the number of electrons in a state - - a~ 
Y and with a spin (T. Using the simplest estimate of A, (Ref. d 
21) we have (E, <Ec )  =vo-{NO ~ E F  ( E F ) A E = ) .  (30) 

Thus, the singular contribution (20) to the thermody- 
(23) namic density of states does not lead to any contradiction 

whatever with the third law of thermodynamics. The finite 
where R ,,, (E ) is the localization radius of the electronic contribution to the entropy as T 4  (28) is obviously due to 
states with energy E. Comparing the results with Mott's the existence of "free" spins in the Mott strip. 
known qualitative reasoning,23 we see that 2 gf coincides 
with the width of the narrow band of "singly occupied" elec- 4. REGULAR CONTR'BUT'ONS 

tronic states produced below the Fermi level in the localiza- Up to now our analysis was quite general. We must now 
tion region. assume a certain specific one-electron model for the Ander- 
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son transition. We are principally interested in the contribu- 
tions made to the density of states by the "regular" terms in 
the spectral densities (14). We confine ourselves only to the 
Fock contribution to (12) since, as noted in Refs. 3, 14, and 
24, the Hartree contribution is small in terms of the param- 
eter 

wherep, is the Fermi momentum and the integration is over 
a solid angle on the Fermi surface. It is easily seen that F <  1 
if the interaction potential decreases over a length exceeding 
the reciprocal Fermi momentum. It can be verified25 that the 
estimate (3 1) remains in force also for the regular contribu- 
tion to (12) in the localized phase. For a point interaction, as 
is clear from (18), the Hartree contribution is double (when 
the spin is taken into account) the Fock contribution, so that 
the results that follow must simply be taken with the sign 
reversed. 

As shown in Ref. 21, the connection between the Four- 
ier transform of the spectral density (14b) and the two-parti- 
cle Green's function of the one-electron problem is 

((psp.+. )) qF = -L-- Im { c D R A  ( E o q )  
nNo  ( E l  

where 

A similar representation can also be written for (14a). At 
small w and q, the function e R ( E m q ) ,  in contrast to 
PA (Ewq), is regular.15 We shall therefore neglect its contri- 
bution to the spectral density and assume it does not lead to a 
substantial renormalization of the density of states. As the 
one-electron model of the Anderson transition we employ 
the self-consistent localization theory in the form proposed 
by Vollhardt and W~lf le . '~ - '~  In this theory 

and the relaxation kernel M is determined as q -+ 0 by the 
following self-consistent equation 

(35) 
where 

is a generalized diffusion coefficient, r0 is the Born free-path 
time, and m is the electron mass. The solution of (35) is 

where 
oo"EF)=- lim o M Z F ( a ) > O  

0-0 

for E, < E,, i.e., below the mobility threshold whose loca- 
tion is defined by the equation w;(E,) = 0. From (32) and 

(34) we easily obtain 

where 

where R kc (E,) = 2E,/dmwi is the square of the localiza- 
tion radius and DEF = (2E,/dm)rEF is the renormalized dif- 
fusion coefficient. From (12) and (38) we obtain for the regu- 
lar contribuiton 3 at T = 0: 

For the correction to the density of states we obtain corre- 
spondingly 

a -F 6 N  ( E )  - 
N O  ( E F )  aE ZE  reg 

Assuming now for simplicity the point-interaction model 
and recalling that up to now the energy E was reckoned from 
the Fermi energy EF, we get for 2 < d < 4 

where S, = [2d - ' T'''~ r (d /2)]-'. The characteristic 
energy E is connected here with the choice of the cutoff pa- 
rameter on the upper limit of the integral with respect to q in 
(41). This cutoff is necessary because the "diffusion" approx- 
imation is not valid for the integrand and at large momenta. 
In accord with the consideration of the analogous cutoff in 
the integral of (35), which was carried out in Refs. 15 and 17, 
we choose a cutoff parameter equal to the Fermi momentum, 
so that 

E=DE pnZ. (43) 

An alternative is the choice of a cutoff parameter equal to the 
reciprocal 1 -' of the Born mean free path,I6 but near the 
mobility threshold we have I - ' -p,, so that the two choices 
are equivalent. According to Lee's scaling reasoning,* near 
the mobility threshold, when R ,,, (EF)FI, p, , the cutoff 
parameter is proportional to R and E-w;(EF)rEF. This 
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choice, however, contradicts the self-consistent localization 
theory on which our calculations are based. In fact, use of 
cutoff at momenta on the order ofp, or 1 - ' in the basic self- 
consistency equation (35) yields the usual  result^'^-'^ that 
agree with the scaling picture of the Anderson transi- 
tion.15+16 On the other hand, using in (35) cutoff in the sense 
of Ref. 8 does not lead to equations in closed form. It must be 
emphasized, however, that in the self-consistent theory we 
still have the unsolved problem of determining the q depen- 
dence of the parameters w;(EF) and DEF or rEF at large q, 
since Eq. (35) is derived in the limit as q -+ 0 .  

The estimate (50) is valid if the following condition 

is satisfied. For the special case d = 2 we obtain in place of 
(42) 
6N ( E )  - 
N O  (EF)  

At w:(EF) = 0 ,  i.e., in the metallic phase, Eqs. (42) and (44) 
agree with the usual results of Aronov and ~ l ' t s h u l e r . ~ , ~  It 
can be seen that at IE - EF I)w;(EF)rEF the metallic-phase 
kink in the density of the states at the Fermi level become 
smoothed out and is replaced by a smooth minimum. This 
conclusion, as can be easily verified, remains in force regard- 
less of the cutoff used in the integral (41). A diagrammatic 
analysis in Ref. 25 has shown that (42) yields the main cor- 
rection to the density of states everywhere except in an ex- 
ponentially small vicinity of the Fermi surface, where an 
additional nonzero logarithmic contribution appears in the 
dielectric state. 

We present actual relations that are obtained in the self- 
consistent localization theory. At 2 < d < 4 and EF 5 E, the 
solution of Eq. (35) produces in the dielectric phase (we omit 
some inessential constants)17 

whereA = (2n-EFr0)-' is the dimensionless constant of per- 
turbation theory in scattering by a disorder, and 
Y = (d - 2)-I is the critical exponent of the localization ra- 
dius. The mobility threshold in the model of point scatterers 
randomly distributed in space at a density p and with a scat- 
tering amplitude V (Ref. 17) is 

Where E, is the "strong-coupling" energy.lp2 At EF -Esc 
we have A- 1 ,  and perturbation theory no longer holds. 
From (46)-(48) at EF 5 Ec we have 

It can be seen that satisfaction of the condition (44) entails no 
difficulty. For the correction to the density of states on the 
Fermi level (IE - EF I ( c o ; ( E ~ ) T ~ ~ )  we obtain from (42) and 
(50)-(52) as EF + E, 

GN(Ea) 4 4  --- u0mdf'~;f"-'  {I- [ p F R L o c  (En) Id-') 
No(En) d-2 

(53) 
The divergence of the correction as EF --+Ec, which follows 
from the last equality in (53) (a similar divergence occurs also 
in the metallic phase) indicates that our analysis cannot be 
used in the immediate vicinity of the mobility threshold. Our 
estimates are meaningful so long as 16N ( E  )/NoI ( 1 .  The di- 
vergence becomes logarithmic if the cutoff in (41) is in accord 
with the scheme of Ref. 8, in analogy with the corresponding 
result obtained there for the metallic region. 

The corrections obtained above to the density of states 
can be found from the following qualitative arguments. Con- 
sider the interaction between an electron in a state v with 
energy E, on the one hand, and an electron in a state with 
energy EF,  on the other. The relative correction to its wave 
function is then in first-order perturbation theory 

where t = 0 is the instant when the interaction is turned on. 
After a time t the electron diffuses within the confines of the 
volume ( D E F ) d / 2 .  We estimate the matrix element of the in- 
teraction for short-range repulsion at uO(DEFt ) d /2  . Then 

tm1n 

It is natural to determine t,, here from the condition for the 
applicability of the diffusion approximation: - 
(DEFtmin ) 1 1 2 - P F -  , i.e., tmin - ( D E ~ : ) l  - E - I .  The time 
t,,, is determined by two factors. First, the matrix element 
of the interaction vanishes at times t > lE - EF I because of 
the of the temporal oscillations of the wave functions. Sec- 
ond, in the region of the localized states the interaction elec- 
trons cannot move apart by more than R , , ,(EF), and the 
diffusion approximation is valid so long as 
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t 5 R (EF)DEF - (airE,)-'. Therefore t,,, -min 
( IE - EF I -', (W;T~,)- '1. Then, assuming that 6N (E )/ 
N0-6p,/p,, we obtain directly (42). Of course, these esti- 
mates are only purely explanatory. 

The results provide a simple explanation of the analysis 
of Aronov and Al ' t~huler~ .~  on the dielectric side of the An- 
derson transition. The approximations used do not contain's 
Coulomb gap,4.5 primarily because of the short-range char- 
acter of the interaction, and also perhaps because the model 
is crude and is based only on allowance for Hartree-Fock 
corrections. 

5. POLARIZATION OPERATOR 

We consider in this section, from a general viewpoint, 
how the localization affects the behavior of the polarization 
operator, i.e., actually the question of the character of the 
screening of the electric field in a Fermi glass. 

Using again the representation of exact eigenfunctions 
of the one-electron problem, we have for the Fourier trans- 
form of the polarization operator of non-interacting elec- 
trons 

fit-fv 

8,-t,+o+i6 sign o 
LV 

PP' 

m oo 

f ( E ) - f  (E+Q)  N~ ( E )  (pzpE+o>qF = J d ~  J ~ Q . +  
o+Y6 sign o 

- m  - m  

in the zero-temperature formalism and 

in the Matsubara technique (a, = 2 ~ m T ) .  Substituting the 
singular part of (14b) in (56), we obtain 

nl. , (qo)  =0, 
and a nonzero contribution comes only from the regular part 
of (l4b): 

- 0s 
( E + Q )  

No ( E )  (qS1). (58) o+i6 sign w  

The situation in the Matsubara technique is different: 

so that 

Taking into account the explicit form of the regular part of 
the spectral density, which arises in the self-consistent the- 
ory (38), we can obtain 

DE,? n k4 = K e g  ((la) = No ( E d  
+ ( E F )  rEF - io * 

(61) 
In the metallic phase ag(E,) = 0, and (61) reduces to the 
known expression for the polarization operator of a "dirty" 
meta1.2.3s7 in the localization region, recognizing that 

( E F  )7EF = D E ~ R  10, -' we 

IIreg(qO) (Ew) qZ [qZ+R;,Z, (EF) I-'. (62) 
Analogous calculations yield for the Matsubara polarization 
operator 

where the generalized diffusion coefficient is 

(64) 
The difference obtained in the behavior of the polarization 
operator at T = 0 and in the Matsubara technique, a differ- 
ence that manifests itself only at zero frequency (screening of 
the static field), is the consequence of the known difference 
between the static adiabatic and static isothermal responses 
in systems with non-ergodic beha~ior.~~. ' '  The latter leads to 
the appearance of a 6-function anomaly of the spectral den- 
sity at zero frequency, which in our case is a consequence of 
the Anderson localization-of a typically non-ergodic phen- 
omenon. The Matsubara response "senses" the nonergodi- 
city manife~tation,~~ whereas the response determined by 
the commutator Green's functions is insensitive to it. The 
polarization operator is connected with the electronic com- 
pressibility. For the static isothermal compressibility we 
have (cf. Ref. 27) 

xT (qO) =IT  (qom=O),  (65) 

whereas the adiabatic compressibility is 

X* (90)  = n , , , ( q ~ - f o ) .  (66) 

We get then from (58) and (59) 
X' ( Y O )  - x A  (qO) =No ( E r )  AEp ( q )  =No (EF) [ l + q Z ~ : o c  ( E F )  I-'. 

(67) 
The fact that AEF( q) determines the difference between the 
isothermal and adiabatic compressibilities was first noted in 
Refs. 28 and 29. This difference, naturally, appears only in 
the static response. From (59)-(62) we obtain for the static 
isothermal polarization operator 

IIT (qO) =n (q~rn=O)  = I T l 0 ,  (qO) +II,,,(qO) 
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Accordingly, for the static adiabatic dielectric constant we 
have 

4xe2 
E" ( q ~ + O ) = l  f -JIlep(qO) 

q2 

where xi = 4n-e2No(E,), whereas the static isothermal di- 
electric constant is 

4ne2 x D2 
~ ~ ( q O ) = l + - n ~ ( q o ) = l + - .  

q 2  q2 
(70) 

It is precisely the latter dielectric constant that agrees with a 
real experiment on the screening of a static external field.30 It 
can be seen from (70) that the Fermi-glass screens a static 
field." This fact was first noted qualitatively in Refs. 30 and 
3 1. At any arbitraily low temperture the hopping conduction 
over the localized states aligns the electrons in an Anderson 
dielectric in a way that ensures complete screening. The 
characteristic times are obviously determined here by the 
frequency w* - D hop q2, where D ,,, is the coefficient of dif- 
fusion due to the hopping conduction, and q- 1/L, where 
the length L is determined by the characteristic scale of the 
external-field inhomogeneities in the given experiment30s31 
(e.g., by the distance between the capacitor electrodes). It is 
precisely in the sense of the condition w < w* that one must 
understand the static character of the field (and of the re- 
sponse) in the formalism described above (in which hopping 
conduction is not taken explicitly into account). 

The divergence of the dielectric constant, observed in 
the approach to the metal-insulator transition in the known 
experiments on P-doped Si (Ref. 32) is probably due to the 
divergence of the localization radius R ,,, (E, --+ E, ) in (69). 
It would be quite interesting to attempt a measurement of 
the dielectric constant of this system in a static field. 

The authors thank D. I. Khomskii and M. I. Auslender 
for a discussion of a number of processes touched upon in 
this paper. 

"In the employed formalism it is possible also to demonstrate directly that 
the corrections to Il( go), which lead to singularities such as (42) in the 
density of states, are mutually cancelled out by the interaction. This agrees 
fully with the important circumstance noted in Refs. 8 and 9, viz., the 

screening radius is determined not by the density of state but by the quan- 
tity a N / a p  = I l ( q  --+ 0,0), where N is the total density of the electrons. 
This was not taken into account in Ref. 6. 
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