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Abstract Using the generalized DMFT+� approach, we
have studied disorder influence on the density of states,
optical conductivity of the normal phase, superconducting
transition temperature, and Ginzburg–Landau coefficients
in the attractive Hubbard model. The wide range of attrac-
tive potentials U was studied—from the weak coupling
region, where both the instability of the normal phase and
superconductivity are well described by the BCS model,
to the strong coupling region, where superconducting tran-
sition is due to the Bose–Einstein condensation (BEC) of
preformed Cooper pairs. For semi-elliptic “bare” density
of states of conduction band, the disorder influence on all
single-particle properties (e.g., density of states) is univer-
sal for arbitrary strength of electronic correlations and is
due only to the general disorder widening of conduction
band. Using the combination of DMFT+� and Nozieres–
Schmitt-Rink approximations, we have studied the disorder
influence upon superconducting transition temperature Tc

for the range of characteristic values of U and disorder
including the BCS-BEC crossover region. Disorder can
either suppress Tc (in the weak coupling region) or signifi-
cantly increase Tc (in strong coupling region). However, in
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all cases, the generalized Anderson theorem is valid and all
changes of superconducting critical temperature are essen-
tially due only to the general disorder widening of the
conduction band.

Keywords Attractive Hubbard model · BCS-BEC
crossover · Anderson theorem

The problem of strong coupling superconductivity was
studied for a long time, starting with pioneering papers by
Eagles and Leggett [1, 2]. Significant progress here was
achieved by Nozieres and Schmitt-Rink [3], who suggested
an effective method to study the transition temperature
crossover from weak coupling BCS-like behavior towards
Bose–Einstein condensation (BEC) scenario in the strong
coupling region. One of the simplest models allowing the
study of BCS-BEC crossover is the Hubbard model with
attractive on site interaction. The most successive approach
to the solution of Hubbard model, both in the case of repul-
sive interaction and for the studies of BCS-BEC crossover
in case of attraction, is the dynamical mean field the-
ory (DMFT) [4–6]. Attractive Hubbard model was studied
within DMFT in a number of recent papers [7–11]. How-
ever, up to now there are only few studies of disorder
influence on the properties of normal and superconducting
phases in this model, especially in the region of BCS-BEC
crossover.

In recent years, we have developed the so called general-
ized DMFT+� approach [12–18], which is very convenient
for the inclusion of different additional interactions into
the Hubbard model. This approach is also well suited to
analyze two-particle properties, such as optical (dynamic)
conductivity [16, 18]. Here, we shall concentrate on the
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discussion of disorder effects in the attractive Hubbard
model.

The Hamiltonian of disordered Hubbard model can be
written as:

H = −t
∑

〈ij 〉σ
a
†
iσ ajσ +

∑

iσ

εiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is the transfer integral between nearest sites of
the lattice, U is the on site interaction (in the case of attrac-
tion U < 0), niσ = a

†
iσ aiσ is the operator of the number

of electrons on the lattice site i, and aiσ (a†iσ ) is the anni-
hilation (creation) operator for electron with spin σ on site
i. The local energy levels εi are assumed to be indepen-
dent random variables at different lattice sites with Gaussian
distribution:

P(εi) = 1√
2π�

exp

(
− ε2i

2�2

)
(2)

Parameter � represents here is the measure of disorder and
this Gaussian random field (with “white noise” correlation
on different lattice sites) generates the “impurity” scattering
leading to the standard diagram technique for the calculation
of the ensemble averaged Green’s functions [19, 20].

Generalized DMFT+� approach [12–15] extends the
standard DMFT [4–6] introducing an additional self-energy
�p(ε) (in general case momentum dependent), which is
due to some interaction mechanism outside the DMFT. It
gives an effective procedure to calculate both single- and
two-particle properties [16, 18]. The single-particle Green’s
function is then written in the following form:

G(ε,p) = 1

ε + μ − ε(p) − �(ε) − �p(ε)
, (3)

where ε(p) is the “bare” electronic dispersion, while
the total self-energy completely neglects the interference
between the Hubbard and additional interaction and is
given by the additive sum of the local self-energy �(ε) of
DMFT and “external” self-energy�p(ε). This conserves the
standard structure of DMFT equations [4–6].

As an effective Anderson impurity solver in our DMFT
calculations, we have used here the numerical renormaliza-
tion group (NRG) [21], which allows to perform calcula-
tions at pretty low temperatures.

For the self-energy due to disorder scattering produced
by the Hamiltonian (1), we use the simplest self-consistent
Born approximation neglecting the diagrams with “inter-
secting” interaction lines:

�p(ε) → �2
∑

p

G(ε,p), (4)

where G(ε,p) is the single-particle Green’s function (3).
In the following, we shall consider the three-dimensional

system with the “bare” semi-elliptic density of states (per

unit cell and one spin projection), with the total bandwidth
2D, which is given by:

N0(ε) = 2

πD2

√
D2 − ε2. (5)

In this case, one can directly demonstrate that in DMFT+�

approximation disorder influence upon single-particle prop-
erties of disordered Hubbard model (both repulsive and
attractive) is completely described by effects of general
band widening by disorder scattering. Actually, in the sys-
tem of self-consistent DMFT+� equations [13, 15, 16],
both the “bare” band spectrum and disorder scattering enter
only at the stage of calculations of the local Green’s func-
tion:

Gii =
∑

p

G(ε,p), (6)

where the full Green’s function G(ε,p) is determined by
(3), while the self-energy due to disorder, in the self-
consistent Born approximation, is given by (4). Then, the
local Green’s function takes the following form:

Gii =
∫ D

−D

dε′ N0(ε
′)

ε + μ − ε′ − �(ε) − �2Gii

. (7)

In the case of semi-elliptic density of states (5), this inte-
gral can be calculated in analytic form and the local Green’s
function can be written as [22]:

Gii =
∫ Deff

−Deff

dε′ Ñ0(ε
′)

ε + μ − ε′ − �(ε)
, (8)

where we have introduced Deff, an effective half-width of
the band (in the absence of electronic correlations, i.e., for
U = 0) widened by disorder scattering:

Deff = D

√

1 + 4
�2

D2
(9)

and

Ñ0(ε) = 2

πD2
eff

√
D2

eff − ε2 (10)

represents the density of states in the absence of interaction
U widened by disorder. The density of states in the presence
of disorder remains semi-elliptic, so that all effects of dis-
order scattering on single-particle properties of disordered
Hubbard model in DMFT+� approximation are reduced
only to disorder widening of conduction band, i.e., to the
replacement D → Deff.

As we noted above, DMFT+� approach is also well
suited to analyze the optical (dynamic) conductivity [16,
18], though in this case the disorder influence cannot be
reduced to this simple replacement.

Below, we discuss the typical case of quarter-filled band
(n = 0.5). In Fig. 1, we present the evolution of the density
of states and optical conductivity with changing disorder.
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Fig. 1 Evolution of the density
of states (left panels) and optical
conductivity (right panels) with
disorder for different values of
U (|U |/2D = 0.8 (a and b);
|U |/2D = 1 (c and d);
|U |/2D = 1.6 (e and f))

At relatively weak attraction (|U |/2D = 0.8, Fig. 1a),
the growth of disorder just widens the density of states.
Disorder effectively masks peculiarities of the density of
states due to correlation effects. In particular, quasiparti-
cle peak and the “wings” due to upper and lower Hubbard
bands present in Fig. 1a in the absence of disorder com-
pletely vanish at strong enough disorder. The evolution of
optical conductivity with the growth of disorder �, shown
in Fig. 1b, is in general agreement with the evolution of
density of states. Weak enough disordering (curves 1 and
2 in Fig. 1b), leads to some growth of static conductiv-
ity, which is connected with the suppression of correlation
effects at the Fermi level (curves 1–3 in Fig. 1a. Further
growth of disorder leads to significant widening of the band

and the drop of the density of states (curve 4 in Fig. 1a,b),
which leads to the drop of static conductivity. Finally, the
growth of disorder leads to Anderson localization which
takes place at �/2D = 0.37 for T = 0 [16]. How-
ever, here, we consider the case of high enough temperature
T/2D = 0.05, so that static conductivity (see curve 5
in Fig. 1b) always remains finite, though the localization
behavior is also clearly seen. At larger value of attractive
interaction |U |/2D = 1, the evolution of the density
of states and optical conductivity is more or less simi-
lar (Fig. 1c,d ). However, in the absence of disorder, we
observe here the Cooper pairing pseudogap in the density
of states, while disorder suppresses it, leading both to the
growth of the density of states at the Fermi level and related
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growth of static conductivity. Finally, at still larger attrac-
tion |U |/2D = 1.6 (Fig. 1e,f) in the absence of disorder,
there is the real Cooper pairing gap in the density of states.
This gap is also evident in optical conductivity. With growth
of disorder Cooper pairing gap both in the density of states
and conductivity becomes narrower (curves 2 and 3). Fur-
ther growth of disorder leads to complete suppression of
this gap and restoration of metallic state with finite den-
sity of states at the Fermi level and finite static conductivity.
This closure of Cooper gap is obviously related to the effec-
tive growth of the conduction bandwidth 2Deff, which leads
to the lowering of |U |/2Deff ratio, which actually controls
the formation of Cooper gap. The situation here is similar
to the closure of Mott gap by disorder in repulsive Hub-
bard model [16]. However, at large disorder (curve 5 in
Fig. 1f), we clearly observe localization behavior, so that
the growth of disorder at T = 0 will first lead to metallic
state (the closure of Cooper pairing gap), while the further
growth of disorder will induce Anderson metal-insulator
transition. Similar picture is observed for large positive U

at half-filling (n = 1) [16], where the growth of disorder
leads to Mott insulator-correlated metal-Anderson insulator
transition.

Cooper instability, determining Tc is related to diver-
gence of two-particle loop in the Cooper channel. In the
weak coupling limit, when superconductivity is due to the
appearance of Cooper pairs at Tc, disorder only slightly
influences superconductivity with s-wave pairing [23, 24].
This is the essence of the so called Anderson theorem, and
changes of Tc are due only to the relatively small changes of
the density of states at the Fermi level induced by disorder.

In the region of BCS-BEC crossover and in the strong
coupling region the Nozieres–Schmitt-Rink approach [3]
assumes that corrections due to strong pairing attraction
significantly change the chemical potential of the sys-
tem, while possible correction due to this interaction to
Cooper instability condition can be neglected, so that we can
always use the weak coupling (ladder) approximation. Then
the condition of Cooper instability in disordered Hubbard
model takes the form:

1 = −|U |χ0(q = 0, ωm = 0) (11)

where χ0(q = 0, ωm = 0) represents the two-particle
loop (susceptibility) in the Cooper channel “dressed” only
by disorder scattering (ωm = 2πmT are the usual Boson
Matsubara frequencies).

Using the exact Ward identity, derived in Ref. [18], after
the standard summation over Matsubara frequencies [19,
20], we get [22]:

χ0(q = 0, ωm = 0) = −
∫ ∞

−∞
dε

Ñ0(ε)

2ε
th

ε

2T
, (12)

where Ñ0(ε) is the density of states (U = 0), renormalized
by disorder scattering (10). In (12), the energy ε origin is
at the chemical potential. If the origin of energy is shifted
to the middle of conduction band, we have to replace ε →
ε − μ, and the condition of Cooper instability (11) leads to
the following equation for Tc:

1 = |U |
2

∫ ∞

−∞
dεÑ0(ε)

th
ε−μ
2Tc

ε − μ
, (13)

The chemical potential of the system at different values of
U and � now should be determined from DMFT+� cal-
culations, i.e., from the standard equation for the number
of electrons (band-filling), determined by Green’s function
given by (3), which allows us to find Tc for the wide range
of model parameters, including the BCS-BEC crossover
and strong coupling regions, as well as for different lev-
els of disorder. This is the gist of Nozieres–Schmitt-Rink
approximation—in the weak coupling region, supercon-
ducting transition temperature is controlled by the equation
for Cooper instability (13), while in the strong coupling
limit it is determined by the temperature of Bose–Einstein
condensation, which is controlled by chemical potential.
Then the joint solution of (13) and equation for the chem-
ical potential guarantees the correct interpolation for Tc

through the region of BCS-BEC crossover. In the absence
of disorder, this combination of Nozieres–Schmitt-Rink
approximation with DMFT produces the results for the crit-
ical temperature, which is almost quantitatively close [11]
to exact results, obtained by direct numerical DMFT cal-
culations [7, 8, 10, 11], but demands much less numerical
efforts.

Equation (13) demonstrates that Cooper instability
depends on disorder only through the disorder dependence
of the density of states Ñ0(ε), which is the main state-
ment of Anderson theorem. Within Nozieres–Schmitt-Rink
approach, Eq. (13) is conserved also in the region of
strong coupling, when the critical temperature is deter-
mined by BEC condition for compact Cooper pairs. How-
ever, the chemical potential μ, entering (13), may signif-
icantly depend on disorder. In DMFT+� approximation,
this dependence of chemical potential (as well as any other
single-particle characteristic) in the model with semi-elliptic
density of states is only due to disorder widening of con-
duction band. In this sense, both in BCS-BEC crossover
region and in the strong coupling limit, a kind of gener-
alized Anderson theorem actually holds and (13) leads to
universal dependence of Tc on disorder, due to the change
of D → Deff. Such universality is fully confirmed by direct
numerical calculations of Tc in this model, performed in
Ref. [25].

In Fig. 2a, we present the dependence of Tc (normal-
ized by the critical temperature in the absence of disorder
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Fig. 2 Dependence of superconducting critical temperature on Hub-
bard attraction U for different disorder levels: a explicit results for
Tc normalized by its value Tc0 in the absence of disorder (� = 0)
on U/2D; b universal U dependence of Tc normalized by 2Deff on
U/2Deff (black curve corresponds to the case of � = 0)

Tc0 = Tc(� = 0)) on disorder for different values of pair-
ing interaction U . In the weak coupling limit (U/2D 

1), disorder slightly suppresses Tc (curve 1). At interme-
diate couplings (U/2D ∼ 1), weak disorder increases Tc,
while the further growth of disorder suppresses the crit-
ical temperature (curve 3). In the strong coupling region
(U/2D � 1), the growth of disorder leads to significant
increase of the critical temperature (curves 4 and 5). How-
ever, this rather complicated dependence of Tc on disorder is
actually completely determined simply by disorder widen-
ing of the initial (U = 0) conduction band, demonstrating
the validity of the generalized Anderson theorem for all val-
ues of U . This is illustrated in Fig. 2b, where the black
curve with octagons shows the dependence of the criti-
cal temperature Tc/2D on coupling strength U/2D in the
absence of disorder (� = 0). In the weak coupling region,
superconducting transition temperature is well described by

BCS model (in Fig. 2b, the dashed curve represents the
result of the solution of BCS model, with Tc determined by
(13), with chemical potential independent of U , and deter-
mined by quarter-filling of the “bare” band), while in the
strong coupling region the critical temperature is determined
by Bose–Einstein condensation of Cooper pairs and drops
∼ t2/U with the growth of U (inversely proportional to
the effective mass of the pair), passing through the maxi-
mum, at U/2Deff ∼ 1. The other symbols in Fig. 2b show
the results for Tc obtained by the combination of DMFT+�

and Nozieres–Schmitt-Rink approximations for the case of
semi-elliptic band. We can see that all data (expressed in
normalized units of U/2Deff and Tc/2Deff) ideally fit the
universal curve, obtained in the absence of disorder.

Universal dependence on disorder is also observed for the
coefficients of A and B of Ginzburg–Landau expansion:

Fs − Fn = A|�q|2 + q2C|�q|2 + B

2
|�q|4, (14)

where �q is the spatial Fourier component of the amplitude
of superconducting order parameter. Actually, these coeffi-
cients of homogeneous part of this expansion are related to
loop diagrams with Cooper-channel vertices with the sum
of incoming (outgoing) momenta q = 0. In particular, the
coefficient A is given by [19, 20]:

A(T ) = χ0(q = 0, T ) − χ0(q = 0, Tc), (15)

where χ0(q = 0, T ) is Cooper susceptibility (12) and sub-
traction of χ0(q = 0, Tc) guarantees the zero value of
A(T = Tc). Using (11) to determine χ0(q = 0, Tc), we get:

A(T ) = 1

|U | −
∫ ∞

−∞
dεÑ0(ε)

th
ε−μ
2T

2(ε − μ)
. (16)

so that the coefficient A(T ) reduces to zero for T → Tc and
is written as:

A(T ) = a(T − Tc). (17)

For the case of the “bare” band with semi-elliptic density of
states, the dependence of a on disorder is again related only
to the general widening of the band by disorder, i.e., is com-
pletely described by the replacement D → Deff. Thus, in
the presence of disorder, we obtain the universal dependence
of a on U (normalized by Deff).

Ginzburg–Landau coefficient B is determined by the
“loop” diagram with four Cooper vertices [19, 20]. After
rather complicated analysis [26], which is based on some
generalizations of Ward identity derived in Ref. [18], it can
be shown exactly, that B is given by:

B =
∫ ∞

−∞
dε

4(ε − μ)3

(
th

ε − μ

2T
− (ε − μ)/2T

ch2
ε−μ
2T

)
Ñ0(ε)

(18)
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Thus, the dependence of coefficient B on disorder, simi-
larly to A, is determined only by the density of states Ñ0(ε)

renormalized (widened) by disorder and the chemical poten-
tial μ. Then, in the case of semi-elliptic density of states,
the dependence of B on disorder is reduced to the simple
replacement D → Deff, so that in the presence of disorder
we obtain again the universal dependence of B on U .

It should be noted that (16) and (18) for coefficients A

and B were obtained using the exact Ward identities and
remain valid also in the limit of strong disorder (Anderson
localized phase), when both A and B depend on disorder
also only via the effective bandwidth Deff.

This universal dependence on disorder (due only to the
replacement D → Deff) is reflected in the specific heat dis-
continuity at the transition temperature, which is determined
by coefficients a and B:

Cs(Tc) − Cn(Tc) = Tc

a2

B
(19)

This universal behavior is illustrated in Fig. 3.
To determine the coefficient C of the gradient term of

Ginzburg–Landau expansion, we need the knowledge of
nontrivial of q-dependence of Cooper vertex [19, 20], which
is essentially changed by disorder scattering. In particular,
the behavior of coefficient C is qualitatively changed at
Anderson localization transition [23]. Thus, the coefficient
C is basically determined by two-particle characteristics of
the system and does not demonstrate the universal depen-
dence on disorder due only to changes of the effective
bandwidth.

In this paper, in the framework of DMFT+� gener-
alization of dynamical mean field theory [15], we have
studied disorder effects in BCS-BEC crossover region of
attractive Hubbard model. We performed extensive calcu-
lations of the densities of states and dynamic (optical)
conductivity for the wide range of interactions U and at
different disorder levels �. We have shown analytically
for the case of conduction band with semi-elliptic den-
sity of states (which is a good approximation for three-
dimensional case) in DMFT+� approximation disorder
influences all single-particle properties (e.g., density of
states) in a universal way—all changes of these properties
are due only to disorder widening of the conduction band.
Similar universal dependences on disorder are also reflected
in superconducting critical temperature and the coefficients
of homogeneous Ginzburg–Landau expansion for attrac-
tive Hubbard model, where the combination of DMFT+�

and Nozieres–Schmitt-Rink approximations demonstrates
the validity of the generalized Anderson theorem both in
BCS-BEC crossover and strong coupling regions.

Naturally, no universal dependences on disorder were
obtained for the two-particle properties like optical conduc-
tivity, where vertex corrections due to disorder scattering

Fig. 3 Dependence of specific heat discontinuity at critical temper-
ature dC ≡ Cs − Cn on disorder for different values of Hubbard
attraction U (a) and universal dependence of this discontinuity on U

for different values of disorder (b)

become very important, leading to new physics, like that of
Anderson transition.
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