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Basic facts on the interplay of Anderson localization and superconductivity in
high-T, oxides are presented. The "minimal metallic conductivity" for the quasi-two-
dimensional case is enhanced owing to a small overlap of electronic states on the
ncarest neighbor conducting planes. This leads to a much stronger influence of localiza-
tion effects than in ordinary (three- dimensional) superconductors. From this point of
view high-temperature oxides are very close to the Anderson transition even for rather
weak disorder. Anomalies of the upper critical field are also analyzed as well as degra-
dation of T, under disordering, due to the enhanced Coulomb effects caused by the
disorder-induced decrease of localization length.

INTRODUCTION

The concept of Anderson localization [1] is basic for the modem theory of
clectrons in disordered systems [2-6]. According to this concept the introduction of
sufficiently large disorder transforms the initial metallic system to an insulator, because
of the transition from extended to spatially localized electronic states at the Fermi
level.

At the same time, since the classic BCS-paper [7], it is well known that even
the slightest attraction of electrons ncar the Fermi level leads to superconductivity,
which is relatively insensitive to disorder which conserves time-invariance (normal,
nonmagnetic impurities, etc.) [8,9].

Thus, an interesting problem arises of the possible interplay of the localization
transition and superconductivity in a strongly disordered metal. This problem is impor-
tant from both the theoretical point of view, because it is a question of the interplay of
apparently opposite kinds of ground states (insulator versus superconductor), as well as
the experimental point of view, because in many cases the superconducting transition is
observed close to the metal-insulator transition in highly disordered systems. It is spe-
cially important for high-T, oxides, which are close to the metal-insulator transition
from the very beginning.

The general picture of the interplay of Anderson localization and superconduc-
tivity was analyzed in several papers in recent years [10-17]. Here we present the basic
results applied especially to high-T, oxides, where many experimental results were also
obtained, mainly for the case of radiation-disordering by fast neutrons [18-21].

High-T,. oxides are quite appropriate for studying the interplay of localization
and superconductivity. First of all, the high values of T, are important in order to over-
come rather strong mechanisms of the degradation of T, after disordering [11].
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Secondly, the smallness of Cooper pairs in these materials is also very important,
because of the basic criteria of the possible coexistence of localization and supercon-
ductivity - the Cooper pairs must be smaller than the localization length in the insulat-
ing phase [10, 11]. These strict criteria are difficult to satisfy in ordinary superconduc-
tors. And finally the high-T, oxides are close to a metal-insulator transition probably of
the Mott-Hubbard type. The parent compounds such as La;CuO4 and YBa;Cu3Og are
antiferromagnetic insulators, but disorder effects are also quite important owing to
inherent disorder present in all real samples. These effects are manifested among other
things by the variable range hopping behavior of conductivity in these insulating
phases [22,23] as well as the remnants of it in disordered superconducting phases [19-
21L

Fast neutron irradiation is probably the purest method for investigating the
effects of disordering on physical properties of high-T, superconductors because of the
absence of any chemical effects in case of low temperature irradiation. The appropriate
growth of structural disorder leads to rather drastic changes in the behavior of both
single-crystalline and ceramic samples [18-21]:

(a) continuous metal-insulator transition at very slight disordering;

(b) rapid degradation of T,;

(c) apparent coexistence of hopping conductivity and superconductivity at intermediate
disorder and anomalous (exponential) growth of resistivity with defect concentration;
(d) approximate independence of the derivative of the upper critical field H.," on the
degree of disorder.

These anomalies were interpreted using the ideas of possible coexistence of
Anderson localization and superconductivity and in the following we present mainly
theoretical aspects of this problem for strongly anisotropic (quasi-two-dimensional)
high-T,. systems. For the extensive discussion of experimental data we refer to Refs.
18-21.

1. LOCALIZATION AND SUPERCONDUCTIVITY
- IN QUASI-TWO-DIMENSIONAL SYSTEMS.

All the known high-T, systems (with T.>30K) are strongly anisotropic, or
even quasi-two-dimensional conductors. For such systems it is natural to expect the
strong enhancement of localization effects due to the known role of spatial dimen-
sionality of d=2: in the purely two-dimensional case localization appears for infinitely
small disorder [3-6].

Exact electronic states ¢,(r) in a disordered system are defined by the solution
of the appropriate Schroedinger equation in a random field. These states may be both
extended or localized. Cooper pairing can be realized between the time-reversed
partners ¢,(r) and ¢y(r). For the case of the self-averaging superconducting order
parameter this problem was solved by Anderson [9] , who showed that for the given
value of pairing interaction, T, is essentially independent of the nature of these states:
either extended or localized. The only limitation for the latter case is due to the known
effects of the discrete level repulsion in the localization region [2,11]. It is clear that
Cooper pairing can be realized in the localized phase only for the electrons with the
centers of localization within the volume of the characteristic size determined by Ry, -
the localization length, because only such electrons have overlapping wave functions
and can interact with each other. However, these states are split in energy on the scale
of the order of [N (E;:)R?oC "', where N (Ef) is the density of states at the Fermi level.



Obviously, to observe superconductivity we must demand that this splitting be smaller
than the value of the superconducting energy gap at T=0:

A, T, > [NEpRRLI!, (1

or for strongly anisotropic high-T, systems:
A, T, > [N (Ep)RfcREcRE] @)

where we introduced the appropriate values of localization lengths along the axes of an
orthorhombic lattice. This inequality is equivalent to the condition of rather large local-
ization lengths [10,11], e.g. for an isotropic case:

Rioe > [INER)AIB =€t 1p])!? = (£pa?)!? 3)

where & =AiVr/T, is the coherence length of the BCS theory and pr=fi/a is the Fermi
momentum (g is the lattice spacing, Vg is the Fermi velocity). For high-T, oxides with
rather large values of A and small &, this condition can can be satisfied rather easily.
Actually the physical meaning of of it is very simple: Ry,. must be much larger than
the characteristic size of the Cooper pair in the strongly disordered system [10,11].

The main properties of a superconductor can be analyzed via the Ginzburg-
Landau theory, and to do this we must derive the GL-expansion coefficients for the
strongly disordered quasi-two-dimensional system near the localization transition [18].
As a one-electron model of the Anderson transition we use a self-consistent theory of
localization [3,5] for the quasi-two-dimensional case [24]. The electron motion in such
a system is determined by the two-particle Green's function with a characteristic diffu-
sion form: '

d(qw)=-N (Ep)/ {o+iDy(w)qf +iD (0)[1-¢(g )]} @)

where D) ,(w) are the longitudinal and transverse generalized diffusion coefficients
(with respect to conducting planes), ¢(q,)=cos(q,a,), and q;, are longitudinal and
transverse components of q, a, is the interplane distance in the quasi-two-dimensional
lattice. For simplicity we assume isotropic motion of electrons in the conducting plane.

The generalized diffusion coefficient can be determined from the self-
consistency equation [24]:

1 | d’q Dy, (w)

D =D}, (®) - ,
1(0) =P () = 8y ) ary Sio+Dy@)gt +D ,@)1-0@0)

)

where Df =V#1/2, DY =(wa,)*t are Drude-like diffusion coefficients, w is the inter-
plane transfer integral and 7 is the mean-free time in the conducting plane.
The mobility edge position on the energy axis is determined by:

E. =himtin Y2 H/wr) , A (6)

so that E. — o for w — 0 reflecting the complete localization for d =2 [3,6). For E =E,



the Drude conductivity in the plane is equal to the so called "minimal metallic conduc-
tivity” [2]:
1 e

2
ol =2e?D}(Ep=E,) = ?Hm(l”zﬁfwr) . )
.k

From that expression we can see that o for the quasi-two-dimensional system is
significantly enhanced in comparison to the Mott estimates for the isotropic case, due
to a logarithmic factor which grows with diminishing overlap of electronic states on
the nearest-neighbor planes. Thus for the strongly anisotropic (or quasi-two-
dimensional) systems, such as high-T, oxides, the value of "minimal metallic conduc-
tivity" may be larger than the usual estimates of (3-5)%10% ohm™'cm™, and actually
can exceed 10% ohm~'cm™! for typical values of o, /cy o< 10? and EpTe< 1. While there
is no rigorous definition of "minimal metallic conductivity" now, owing to the continu-
ous nature of the Anderson transition [3-6], it actually defines the scale of conductivity
near the metal-insulator transition caused by disorder. From these estimates it is clear
that most of the real samples of high-T, superconductors are quite close to the Ander-
son transition and even very slight disordering is sufficient [18-21] to transform them
to the Anderson insulators.

Using the expressions for Dy, (w) from Ref. 24 we can derive the microscopic
expression for the coefficient of gradient term in the GL-cxpansion similar to Refs.
10-13:

Cyy=NEpEf, (8)

where for the coherence lengths &, , we have slightly different expressions depending
on the values of the dimensionless parameter wztIZnTch’, determining the crossover
from anisotropic to quasi-two-dimensional superconductor. For wlt/2nT i>1 we
have:

&} =(n/8T)DY | (Ep—E)IE =} I, ,(EF—E.)/E, ©)

where E0=HiVp/T,, E9=hwa,IT,, ly=Vpt, |,=wa, 1. Eq.(7) is valid for oy>a,
where:

o =ag&] TS Epw)™? (10)

and w21/2nT, A 1 is equivalent to ;= VE,EQ»@, i.e. the size of a Cooper pair is
larger than a,, and we have just the anisotropic superconductor.
" In the vicinity of the Anderson transition for oy <o

&2, =DQ, IEFTw)? 1= &) )2 (T2 Epw)™ . (1)

For the isotropic case, for w =Ey these expressions transform into that of Refs. 10,11,
where close to the Anderson transition we obtained (Cf. (3)):

E= (&I =(EaH)'?, (12)



which is valid for o< o’ with o™ given by:

o = (prto/ M =0 (T /Ep)'? (13)

where o, =e2pp/m°H? is the Mott estimate for "minimal metallic conductivity”. For the
case of w2t/2nT,<1 corresponding to the quasi-two-dimensional superconductor we

get:
Dll_L (EF-E.:) 7E2 1 1
T S 2 e S

for a>a’, where o is again determined by (10), and for a<o we obtain the same
expression as in (14) but with ﬁrst term replaced by (11). For high-T, oxides E,n =1,
T,=w, T,=0.1 Er and actually o’ =af, so that these systems are close to the Ander-
son transition also in their superconducting behavior. Also, it is clear that for most of

these systems we have apparently wit/2nT =1, ie. £, = F,fl =a,, so that they are
on the edge of quasi-two-dimensional behavior.

For the derivative of the upper critical field in the isotropic case we have
[10,11]:

(04 dHc2

N(EF)

. 8e?/mh g o> o (15)
0o/ 210t/ [N(Ep)T V3 a<o’

where ¢y =nchi/e is the magnetic flux quantum. The classic Gorkov relation [25] gwen
in the upper expression in (15) is invalid near the Anderson transition, where (a<0t )
the value of H.;’ becomes independent of conductivity and only slightly depends on
disorder via the appropriate behavior of N (Er) and T, diminished by the cubic root in
the lower expression in (15).

For an anisotropic (quasi-two-dimensional) case we have:

(dHg,/dT)g, = =—0o/(2nEFT,)

(dHL,/dT)r, =90/ 25, Te) (16)

with &, given above in (9)-(14) and the behavior is similar to that in (15). The most
important relation is given by:

LY 1(HEY =&/E, = Vpiwa, , a7

and we see that the anisotropy of H.," is actually determined by the anisotropy of the
Fermi velocity irrespective of the regime of superconductivity: from the "pure” limit,
through the usual "dirty" case, up to the vicinity of the Anderson transition.



2. SUMMARY OF EXPERIMENTS ON RADIATION DISORDERING IN
SINGLE-CRYSTALS OF HIGH-T, SUPERCONDUCTORS.

The experiments were performed [20,21] on a series of YBa,Cu;0_5 single-
crystals with the sizes of the order of 1x1x0.03mm® grown from the melt. Initial
values of T, were between 91 and 92K. Anisotropy of electrical resistivity p./pas at
T=300K varied between 40 and 150, and p, demonstrated semiconductor-like tempera-
ture behavior. Both p,, and p, were measured by the Montgomery method during irra-
diation by fast neutrons in the core of nuclear reactor at liquid nitrogen temperature. p,;
increases exponentially with fluence ¢ (i.e. defect concentration) starting from the smal-
lest doses, while p, grows slower, only for ¢>10'° cm™ both P and p,p grow with
the same rate. T, rapidly drops with ¢ and there is no superconductivity at T > 1.5K for
¢>6x10'® cm™2, Anisotropy p./pas at 80K drops rapidly to the value of order of =30
for ¢= 10" cm™ and then practically does not change. Structural neutronography has
shown that lattice changes under such doses of neutron irradiation are rather small [18-
Z11.

From the comparison of these results with earlier data obtained on ceramic
samples we may conclude that the exponential growth of electrical resistivity, which
was interpreted as a manifestation of hopping-like conduction [18,19] due to localiza-
tion, is an inherent property of high-T, superconductors.

The upper critical ficlds of YBa,;Cu;07_5 single-crystals were measured before
and after irradiation in the fields up to 5T. Temperature dependence of H., in the
disordered samples is essentially nonlinear in these ficlds, especially for samples with
low T.. (Hf;) as determined from the high-field region increases with disorder. To
obtain unambiguous results it is necessary to perform the measurements in high fields.
(H!,) drops in the beginning and then does not change or increases very slightly.
However, the anisotropy of H., decreases for any field as disorder grows and in the
samples with T, =10 K the ratio of (HL';;)’/(H%Z)’ is close to unity. These data showing
the absence of direct correlation of resistivity and H., behavior characteristic of "dirty"
superconductors (such as the Gorkov relation) can be interpreted as due to closeness to
the Anderson transition, or even as a consequence of superconductivity in the localized
(insulating) phase [18-21]. From the point of view expressed by (17) the experimen-
tally observed isotropization of slopes of H!;, and HE, under disordering is the man-
ifestation of the isotropization of Cooper pairs. The remanent anisotropy of resistivities
may be due to the anisotropy in the scattering mechanism, e.g. due to interplane
defects. This behavior shows that just before the destruction of superconductivity the
disordered high-T, oxides become essentially isotropic (from the point of view of their
superconducting properties) and we retumn to three-dimensional H,, behavior. It will be
of much interest also to try to observe the predicted H,,’e<T~'/3 behavior (Cf.(15)) as
superconductivity vanishes. Note however, that all this analysis assumes more or less
smooth disorder dependence of the density of states.

Hall effect data [20,21] obtained on irradiated ceramic samples of
YBa;Cu307_5 show that the temperature dependence of Hall concentration ny weak-
ens, remaining linear in the high temperature region as in initial samples. At low
T<100K ny practically does not change under disordering in sharp contrast with its
behavior in oxygen deficient samples. This constancy of ny for low T under disorder-
ing agrees well with the assumption that Anderson localization the main reason for
metal-insulator transition under disordering [26,27]. However we must stress that it is
difficult to explain the observed temperature dependence of ny. There is also no



unambiguous correlation between ny and T..
3. LOCALIZATION AND DEGRADATION OF T..

In the absence of any accepted microscopic theory for T, in high-T, oxides it
is rather difficult to discuss mechanisms for its degradation under disordering. Among
general reasons for a drop of T, apparently important for any BCS-like model of high-
temperature superconductivity we can mention:

(a) growth of Coulomb repulsion within Cooper pairs [11,28];

(b) growth of spin-scattering effects due to the appearance of disorder induced local
moments [18];

(c) incipient inhomogeneities due to "statistical fluctuations" near the Anderson transi-
tion [17].

Assuming that the experimentally observed exponential growth of resistivity is
directly connected with the Mott law for hopping conduction we have analyzed [18-20]
the fluence dependence of R, for radiationally disordered high-T, oxides. Using these
data for Ry, and estimating N (Ep)=5x10>® (ergcm)™ (for one electron per lattice cell
in the free-electron model) and A=5T, (as for extremely strong coupling regime of
superconductivity) we deduced that the inequality (1) determining the critical value of
Ry for the observation of superconductivity becomes invalid for ¢ > (5-7)x10"® cm™2.
This is in surprisingly good accord with experimental data on superconductivity des-
truction by fast neutron irradiation.

To analyze the R,,. dependence of T, in localized phase we used the exact
analysis of Ref. 11 for T, suppression due to the growth of Hubbard-like repulsion in a
single quantum state, which becomes important in Anderson insulator [2,29,5]. Owing
to the observed isotropization of superconducting propertics under disordering we con-
sider only three-dimensional isotropic case. According to Ref. 11 T, in a disordered
superconductor can be determined from the linearized gap equation:

A®)=A0(<w> — m)j

!

2

ot -0) [ 1Y K (-2 (18)

where A is the pairing interaction constant, <@> the characteristic frequency range,
where the pairing interaction is important,

K.(@) = [dr[dr V(e—r) << ppprso)>>pp, (19)

is the generalized Coulomb kemel, where:

<<p(Dp(X')>> = <E¢ DO (D0u )0y ()HE —,)S(E + 0 —g,)> (20)

N(E )

is the spectral density (averaged over disorder) defined by Berezinskii and Gorkov [30]
and V(r-r)=V,r-r) is the point-like interelectron interaction. The appearance of



Hubbard-like repulsion in a single (localized) quantum state is directly connected [5]
with the characteristic &®) -contribution to (18) within the localization region [30],
where we get:

K (®) = VoAERNw)+. . .; A(Ep)=Rix(Ep) . 1)

This singular contribution in (18) can be treated exactly and we obtain the following
equation for T, [11]:

1= ”0«.» doth (0/2T,) [0 +pA(Ep)/2N (Ep) th(@/2T )™ (22)

where L=N (Er)V . Approximately (22) reduces to:
In(T.,/T,) = W(1/2+p/[4T,N(ERRL D) — ¥(1/2) (23)

where T, is the initial value of T, before disordering, ‘¥'(x) is the digamma-function.
Assuming the hopping conduction described by the Mott law [2]:

p(D)=poexp(Q/M*;  0=2.1[NERRRK]™ . (24)

We may directly express T, via resistivity p(Tex) in localized phase of strongly disor-
dered superconductor [18,19] at temperature Tex > T, :

(T /T,) = W{1/2+0.013uT,, [In(p(T 1)/ po)l*} = ¥(1/2) . (25)

This expression gives a rather satisfactory fit to experimental data on T.(p) dependence
in high-T, superconductors disordered by radiation, assuming p=0.3-1.0 [18,19].
Though speculative in nature this explanation of T, degradation due to the growth of
Coulomb effects may be of some interest. '

Among other important data on high-T, oxides disordered by radiation, we
must also keep in mind the disorder - induced appearance of the Curie-Weiss contribu-
tion to magnetic susceptibility [18]. According to Mott [2,29] we may also try to con-
ncct this contribution with the appearance of single-occupied states in a narrow encrgy
region below the Fermi level, once again induced by the Hubbard-like Coulomb repul-
sion in a single (localized) quantum state. We may estimate the value p (in Bohr
magnetons) of the localized moment due to this mechanism as [5]:

p? = PR Qo , (26)

where again p=N (Ep)Vy is the dimensionless Coulomb potential, £, is the volume of
a unit cell. For large disorder ($=2x10"" cm™ ) we estimate [18] Rj, =8 A and for
p=1 we get p2=0.66 for YBa,Cu3O7_5, which is in precise agreement with experi-
mental value of 0.661 determined from Curie constant. However for smaller degrees of
disorder (fluences) p? estimated from (26) is considerably smaller than experimental
data. Here we must note that (26) is valid only for rather small values of Rj,. (deep in
the localized region), when we can neglect overlap of localized states, and that Curie
constants are determined in weakly disordered samples with considerably less accuracy



than in case of strong disorder owing to smaller values of the Curie-Weiss contribution
and the small interval of T where this contribution is observed (because of high-T, ). If
we estimate T, via (23) using Rj, determined from (26) and experimental data for
Curie constant, then even at ¢$=2x10'"® cm™ we obtain T, =15 K. This discrepancy
may be not so impressive taking into account the crude nature of our analysis as well
as other important contributions to Coulomb suppression of T, [11,28]. The question
remains however, if there is also additional suppression of T, by magnetic moments
themselves, or why do they have so little influence on supcrconductivity?

CONCLUSION

The extreme sensitivity of high-T,. oxides to disordering may have several
explanations, some among them based upon the idea of exotic types of pairing. How-
ever, here we presented another point of view: that this instability of T, can be
explained as due to Anderson localization. The quasi-two-dimensional nature of high-
T, oxides (with T, >30K) leads to significant enhancement of localization effects at
relatively weak disorder. This may help to realize rather exotic situation of supercon-
ducting transition in the system of localized states (Anderson insulator). High-T,
oxides are especially promising in this respect owing to the small size of the Cooper
pairs, so that there may be a wide region where the localization length is larger than
the Cooper pair. There is some serious evidence that such a situation is actually real-
ized in high-T, superconductors disordered by radiation, although much more work is
needed to confirm the specific predictions of the theory, as well as further theoretical
analysis of microscopic mechanisms of T, in highly-disordered systems. An important
theoretical problem for further studies concerns the role of "statistical fluctuations” in
quasi-two-dimensional systems. It was shown in Ref. 17 that these incipient inhomo-
geneities become important near the Anderson transition and roughly speaking lead to
rather substantial smearing of the superconducting transition, as actually is seen in the
experiments. We need further theoretical analysis of measurable characteristics such as
critical fields, specific heat, etc.

Especially important may be experiments on radiation disordering in isotropic
oxides like Ba;_.K,BiO;, where a different behavior can be expected: these oxides
may be more stable to disordering like A-15 or Chevrel phases.
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