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Optical conductivity in the ‘‘hot spots’’ model
of the pseudogap state
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Abstract

We consider a two-dimensional model of the pseudogap state, based on the scenario of strong electron scattering by

fluctuations of ‘‘dielectric’’ (AFM, CDW) short-range order, dominating within the regions around ‘‘hot spots’’ on the

Fermi surface. A system of recurrence equations is constructed both for one-particle Green’s function and vertex part,

describing electron interaction with an external field, which takes into account all Feynman graphs for electron scat-

tering these (Gaussian) fluctuations. The results of detailed calculations of optical conductivity are presented for dif-

ferent geometries (topologies) of the Fermi surface, demonstrating both the effects of pseudogap formation and

localization effects.
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In the model of ‘‘nearly antiferromagnetic’’ Fermi-

liquid, which is actively used to explain the microscopic

nature of HTSC, effective electron interaction with spin-

fluctuations of AFM short-range order is usually de-

scribed by the dynamic spin susceptibility having a sharp

maximum at the wave vector Q ¼ ðp=a; p=aÞ of anti-

ferromagnetic ordering in dielectric phase, and charac-

terized by correlation length n an frequency xsf of spin

fluctuations. Strong scattering by fluctuations with

q � Q leads to two ‘‘types’’ of quasiparticles––‘‘hot’’ one

with momenta in the vicinity of ‘‘hot spots’’ on the

Fermi surface and ‘‘cold’’ with momenta around the

parts of the Fermi surface around Brillouin zone diag-

onals [1,2]. For high enough temperatures pT � xsf we
* Corresponding author. Fax: +3432-678794.

E-mail address: sadovski@iep.uran.ru (M.V. Sadovskii).
1 This work was supported in part by the grant no. 02-02-

16031 from the RFBR as well as by the RAS Programs

‘‘Quantum macrophysics’’ and ‘‘Strongly correlated electrons in

semiconductors, metals, superconductors and magnetic materi-

als’’.

0921-4534/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.physc.2004.03.019
can neglect the spin dynamics [2], and use the static

approximation. We assume the usual spectrum of free

(‘‘bare’’) quasiparticles [2],

np ¼ �2tðcos pxaþ cos pyaÞ � 4t0 cos pxa cos pya� l ð1Þ

characterized by t––the transfer integral between nearest

neighbors, and t0––the transfer integral for second

nearest neighbors on the square lattice, and different

values of the chemical potential l.
In Ref. [3] we have performed a detailed analysis of

higher-order contributions for electron self-energy and

obtained ‘‘nearly’’ exact recursion relation for the one-

electron Green’s function [5]), giving an effective algo-

rithm for numerical computations and taking into ac-

count all Feynman diagrams of perturbation series over

an effective interaction with spin fluctuations, charac-

terized by an effective amplitude (energy) D, determining

the pseudogap width. Our solution for one-particle

Green’s function is exact in the limit of n ! 1 [4,2]. It is

also exact in a trivial limit of n ! 0. For all intermediate

values of n it gives apparently very good interpolation,

being practically exact for certain geometries of the

Fermi surface [3].
ed.
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Fig. 2. Real part of optical conductivity in spin-fermion model
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To calculate optical conductivity we need the

knowledge of the vertex part, describing electromagnetic

response of the system. This vertex can be determined

using the method suggested for the similar one-dimen-

sional problem in Ref. [6]. Details of this recursion

procedure which also takes into account all perturbation

theory diagrams (with different diagram combinator-

ics––commensurate [3], spin-fermion [2] or standard

ladder [6,7]) for two-dimensional case can be found in

Ref. [7].

Optical conductivity and some other characteristics

of the model were computed using standard expressions

via Green’s functions and vertex [8] for different values

of parameters, determining the ‘‘bare’’ quasiparticle

spectrum and for fixed value of D ¼ t. Some of our re-

sults [7] are presented in Figs. 1 and 2, where conduc-

tivity is measured in units of the universal conductivity

in two-dimensions r0 ¼ e2

�h ¼ 2:5� 10�4 X�1 and the

density of states––in units of 1=ta2. Typical picture is

that of rather wide maximum of RerðxÞ for x � 2D, due

to absorption through pseudogap and localization

maximum at small frequencies (disappearing in ‘‘ladder’’

approximation). It should be noted that maximum due

to pseudogap absorption remains even in case of only

slight manifestation of the pseudogap in the density of
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Fig. 1. Real part of optical conductivity for t0=t ¼ �0:4 and

l=t ¼ 0 for a=n ¼ 0:1 and different combinatorics of diagrams:

1––spin-fermion combinatorics; 2––commensurate case. Da-

shed line––‘‘ladder’’ approximation. At the insert-correspond-

ing densities of states.

for t0=t ¼ �0:4 and l=t ¼ �1:3 (typical for high-temperatures

superconductors) and different values of correlation length a=n:
0.05–1; 0.1–2; 0.2–3. Inelastic dephasing rate c=t ¼ 0:005.
states. Introduction of additional dephasing scattering

rate c due to inelastic processes leads to the appearance

of narrow Drude-like peak at small frequencies as

shown in Fig. 2. These results are somehow similar to

those obtained in earlier simplified approach [9]. Note

that the qualitative behavior of optical conductivity

observed in Ref. [10] for NdCeCuO is in complete

agreement with results shown in Fig. 2.
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