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Free energy of random bond Ising model is analysed by high-temperature expansion in self-
avoiding walk approximation. Conditions of instability of the paramagnetic state are determined
through the convergence criterion of the random high-temperature series. Critical concentrations
for the loss of the long-range magnetic order are determined for different 2d and 3d lattices.

MeTogaMu BRICORKOTEMIIEPATYPHBIX PA3T0oRenii B puOIAen nyTeit 6es nepecederii
HCCTCAYeTes1 ¢BOOOTHAA dIepTHsI Mojtenn Vsnara co ciayiaifHbiMi 0OMCHHBIMI CBHABAMMN,
Mz omnpegefenus IOPOroB CXOMMMOCTH  CIVYANHHNLIX  BLICOKOTEMIIEPATYPHLIX PAIOB
Haiijiennl  yCJI0BMA  HeyCTOMYUBOCTH MapaMarimuTHoro CcocTodans. JLIa pasamginx
,[IJ}'}]C[JUle n '1'[)(:‘){1\10]3HBIX pC]]I(‘TOI\‘ OHpeleJeHbl RPUTHHCCHRHC KOHICHTPAILN, [];)II
ROTOPLIX MPOMCXOINT PaspyIIeHHe TadbHero MariuTiHoro HopsIKa.,

1. Introduetion

In recent years there has been considerable interest in the properties of disordered
magnetic systems [1], and in particular the random bond Tsing model was actively
studied [2 to 10]. We have the situation in mind of the Ising lattice with antiferro-
magnetic bonds distributed with concentration ¢, and ferromagnetic bonds — with
concentration 1 — c. In this model the important concept of frustration has been
formulated for the first time [2, 5, 7, 9]. One of the basic (and not yet completely
solved) problems in this model is the structure of its phase diagram [3 to 6, 8 to 10]
and, especially, the value of the critical concentration ¢} of the antiferromagnetic
bonds, at which ferromagnetism in the system disappears. These problems have been
analysed by different methods, from numerical simulation |3 to 5] and renormalization
group [4, 8] to relatively simple variants of molecular-field approximation for dis-
ordered systems [6, 10].

In this paper these problems are studied by a simple method based nupon the con-
vergence criterion of the high-temperature expansion for the Ising model in the self-
avoiding walk approximation, used previously for regular systems by Domb [11].
Our approach is based in part on the previous work by one of the authors | 12], where
the convergence of a similar random series had heen considered related to the problem
of electron localization in disordered systems. The main attractive feature of our
method is its simplicity, as well as the similarity of the obtained results, to those of
more refined approaches, This leads us to believe in a rather high accuracy of these
results. At the same time we are able to analyse some of more general cases than
those considered before by different authors,

1) 8. Kovalevskii str. 18, GSP-170. Sverdlovsk 620219, USSR.
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2, High-Temperature Expansion for the Iree Energy
in the Self-Aveiding Walk Approximation

Consider an Ising lattice deseribed by the Hamiltonian

H=— }‘ rj,‘J.'O'{O'I,‘, (])
i

where the exchange interaction J;; of the nearest neighbours takes random values,

o; = +1 is an Ising spin. The distribution function of exchange interactions is

factorized over the bonds on the lattice,
P :1% P(Jy) (2)
Tl

where

P(Jy) =c8(Jy — Jg) + (1 — ) 8(Jy; — J4) . (3)

Here J, > 0 is the “ferromagnetic” exchange integral, J5 <0 is the “antiferromag-
netic” exchange integral, 0 = ¢ < 1 is the concentration of antlfmromagnctm bonds.

The partition function of the system can be represented as usual in the following
form [13]:

Z{By = 3 [exp 3, Kioio)] =
{6} iy

= ¥ [T (cosh K;;) (1 + wyo.04)] , (4)
{o} R

where wij = tanh K;j, K;; = fJ;, f = 1/T, T is the temperature. High-temperature
expansion is the expansion in powers of w;;. The coefficient of the N -ih power of w;

consists of all possible products of N pairs of 0,0;. Because of 5‘ =0y Vot =
{cr‘

2_‘ 1 = 1, this coefficient can be represented by a closed po]ygon on the lattice

[]3] (Fig. 1). Every bond on the graph represents a factor tanh Kj; and each bond
appears only once. At each vertex of the graph only an even number of bonds can
meet.

The expansion of Z{#} consists of all possible polygons (including unconnected
ones) constructed on the lattice by these rules. In the lowest orders in N most of these
graphs are just self-avoiding walks (SAW) on the lattice. (Cf. Fig. 1 a to ¢ for ¥ = 8.)

The logarithm of the partition sum (4),

InZ{f} = X Incosh K;; + In ¥ [] (1 -+ wyowa;) , (5)
<u) ’fJ‘ iy

can also be expressed as an expansion in powers of wy; [11]. This expansion consists
only of connected gmphs which can be represented by the closed paths on the lattice,
starting and ending in the given lattice site. However, in this case the graphs are not
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Fig. 1. Examples of graphs in the expansion of Z{f} for N =8
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so simple as in the case of the partition function. In particular, every bond can appear
several times, though again only an even number of bonds can meet at each vertex.
This graphs can be classified over the so-called eyclomatic number € = — p + 1
[11], where [ is the number of the lines in the graph (multiple bonds are calculated as
one), p is the number of vertices. The class corresponding to €' = 1 consists of graphs
topologically equivalent to the closed SAW’s (which can be traced several times,
however). Examples of such graphs are given in Fig. 2 a to c. In Fig. 2d we show the
graph with € = 2 (the so-called 0-topology [11]). Our approximation neglects all the
graphs with € > 1, thus we take into account only the graphs topologically equivalent
to the closed SAW’s.
Then we get

In Z{f} = mZ{B} — ¥ In cosh K;; =

T
)

1
— Z Z Z. \, Wi Wi ... Wy —

NooE ok

1 2 5 5 5 1 3 & 4

- O 2.2 2 5\ | 3

— 3 e X Y v WiWig v W - —5 VS ;. v Wi Wi oo Wi T wen
¥ i et ? N iyt

(6)

Here the products of wy, w, ... ete, are taken along all possible SAW’s Ty of N steps,

vz of N/2 steps (but with two bonds on each step) ete., starting and ending in the
i-th site. The structure of the expansion (6) is clear from (5) and the expansion of
In(1+ 2) =« — 1/2a2 4 1/32® — 1/4x* | ... The extra combinatorial factors /N
for the contribution of Iy, 2/ for the contribution of F&';-z, ete. are due to the fact
that the initial vertex 7 of {'% ean be chosen arbitrarily among N vertices of Iy,
among N/2 vertices for Iy, ete.

The instability of the paramagnetic phase is determined by the convergence cri-
terion of the high-temperature expansion (6) [11, 13]. In the regular case w;; = wjr =
— ... — w = tanh fJ and the problem reduces to the convergence criterion of the
series [11],

In Zj{ﬁ} = ¥ ayw¥ , (7)
¥
where
ay = p(N) — 5 p(N/2) + 4 p(V[3) + ..., (8)
. L.
p(H) = = Us,

and (7 is the number of the closed SAW’s of IV steps on the lattice, associated with
the given site. Tt is known [11, 14] that for N =1 Uy = N~ (b > 0), where  is

° a b C d

Tig. 2. Examples of graphs in the expansion of In Z{8}
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the so-called connectivity constant of the lattice. Then it is obvious that for N > 1
only the first term in (8) is relevant (because of p > p'/® > u'/# ) and the series in
(7) diverges if g = p tanh f.J = 1. The equality determines the critical temperature
[11]. The error of the SAW-approximation in regular case is = 3%, for the 3d lattices,
and = 109, for the 2d lattices [11].

3. Convergence Criterion of the Random High-Temperature Series

In a disordered system the high-temperature expansion (6) is a random series and its
convergence must be treated statistically. It is generally accepted [1] that this ex-
pansion must be averaged over (2) and (3) and considered as representing the ob-
servable free- energy of the system. However, first of all we shall consider the conver-
genee of the series (6) in the sense of convergence in probability, as it is done in
localization theory [15, 16]. Our analysis will be similar to that used in [12],

First of all let us consider qualitatively the case of J, = —Jy and ¢ = 1/2 in (3).
Now only the terms with odd powers of w;; on the bonds in () are random (in mgn D
Consider the first series in (6). In the N-th order in wy; it consists of terms ~ p~, cor-
responding to the number of SAW’s T, and the sign of each of them is absolutely
random for ¢ = 1/2 (positive and negative bonds are equally probable). Then from
the obvious analogy with the one-dimensional Brownian motion it is clear, that the
modulus of this term for N 3> 1 is of the order of Iu:"’-r."‘_. where w = tanh fJ, =
= tanh g [J|. The limit of (,om ergence of the series is then determined by p'/2w = 1,
and this coincides by the way with the limit of convergence of the second (non-random)
series in (6): there are terms ~ /2, each contributing a factor of w®. Only the first
two terms in () are relevant due to p > p'/? > ul®, etc. Note, that the average of
the first term in (6) is exactly equal to zero for ¢ — 1/2, J, = |J4|, and the conver-
gence of the averaged high-temperature series is determined by the second term in
(G). We shall demonstrate that this is the general property of the high-temperature
series for the random hond Tsing model. The possibility of a singularity in the high-
temperature expansion for this model at p!?w = 1 for ¢ = 1/2, J, = —J; was first
noted by Domb [17] (see, however, [19]).

Consider now the general case of distribution (2) and (3). Let us analyse the modulus
of the N-th order term in the first series in (6). Obviously we have

In ZOWBY| = | X wi —*ra(—wg)" T = w0} [T (—a)" ¥ = wi Xy, (9

'y I's

where 7, is the number of negative bondson the path Iy, @ = wyfw,, wy = tanh £,
wy, = tanh f |/, The probability of #,, is given by the binomial distribution

N , :

> G0 - ,“I"" 1 — ¢ ”FA\'_
Psltry) = (L =0 (10)

Then it is easy to find
A—a) o)== (1 — ) ,
(—a)™ >y = (1 — ¢ + ea®)¥ (11)

and the dispersion of an isolated term in (9) is equal to

—a)y™" vy — (—a)"Toy2 = (1 — ¢ + ca?)¥ — (1 — ¢ — ca)?¥ . (12)
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Let us estimate the most probable value of |[Xy| by (X3>V2, The dispersion of the
sum of independent random variables equals the sum of dispersions of isolated terms
in the sum. Thus, supposing independence (for N = 1) of terms ~ u" in XV we get

(XF> — (X = p¥[(1 — ¢ + ca®)¥ — (1 — ¢ — ca)®¥]. (13)
Use now

(X y) = #N<(_a.)-n1}v> = H.\'(I — e — CrJ)N (14)
to get

(X3S = p (1 — ¢ + ca®)¥ — (1 — ¢ — ca)®¥] + p2¥(1 — ¢ — ea)?®¥ . (13)

Independence of contributions from the different paths /'y is crucial for our analysis.
Obviously some of ~ p? paths have some parts in common. We suppose, that this
leads to correlations negligible in the limit of N — co.

The convergence condition for the first series in (6) is given now by

wy lim (X3H12¥ <1 (16)

N—ooo

and the critical temperature is determined by the equation

wp \2Y wh\Y

. 2N - . B

wy lim ¥ |1l —¢ —c _B. +u¥((l—c+ec—]| —
Neseo wy wh

o \2N ) 112N
ﬁ(lcc”—y’) Pf =i 5 (17)
LL:A

In particular, for ¢ = wyfwy, = 1, i.e. |Jy| = J, = J, we have
w lm {p2¥(1 — 2¢)2¥ + p¥[1 — (1 — 22V} =1. (18)
N—o

From (18) we get

=1 (19)
or ¢f <7 ¢ < ¢k and

e |1 — 2¢| =1 (20)

fore < ¢F, ¢ > c¥, where the critical concentrations c’ﬁg are determined by the equation
u(l — 2¢)? = 1 and are

.k 1. 4 :
e =5 F —=- (21)
27 2y

Table 1

lattice  square honeycomb s.C. bicigs

I 2.6390 1.8484 4.6826 6.5288

" 2.4142 1.7321 4.5840 6.4032

cF 0.1782 0.1201 0.2665 0.3024

s 0.8218 0.8799

0.7335 0.6976
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T H Y Fig. 3. Phase diagram for the case of J, = |Jp|,
. F ferromagnetic region, AF antiferromagnetic re-
' / gion, SG spin-glass region (7)
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Note, that the result (19) simply means that in the concentration interval e¥ <o <o}

all terms =~ u¥ in X y are random in sign (with equal probability!).

For the numerical estimates we use the constant ;¢ which is not the connectivity
constant of the lattice, as it should be done in the SAW approximation [11, 14], but
instead we use an “Ising constant™ u, which determines the exact critical tempera-
ture for the regular case by the relation pw = 1 [11]. This assures the matching with
the regular case for ¢ = 0:1, and we hope that such an approximation takes into
account qualitatively the role of graphs with cyclomatic number €' > 1, neglected
above. As was noted before (it can be seen also from Table 1, where [i denotes now the
connectivity constant), this leads to a rather small change of the results, diminishing
slightly the critical temperature. Critical concentrations ¢¥, determined for different
lattices are given in Table 1. We assume, that these concentrations correspond to the
loss of the long-range ferromagnetic and antiferromagnetic order in the system. The
phase diagram is shown in Fig. 3.

In the general case of w, == we obtain from (17)

pr2{(1 —e) wh + cwh}z =1 j (22)
for ¢f < ¢ < ci, and

WI(L — ¢) wy — cuy| = (23)
for ¢ < ¢f and ¢ > ¢, where the critical concentrations ¢f, are determined by the

roots of the equation

9 ;

- wy wy \*

l—c¢c+ece—=pull—c—c—] . (24)
Wi Wi

In Table 2 we give critical concentrations ¢, for different lattices and ratios w,/wy.
In Fig. 4 the phase diagram of the system for w, = wy, is shown.

Consider finally the case of wy — 0, wy == 0, i.e. the percolation limit. In this case
we obtain from (17)

(l —e)wy =1 (25)
for ¢ <7 ¢*, where
o= L= g L= g%, : (26)

For ¢ => ¢* the critical temperature is zero, thus ¢* = 1/u is the critical concentration
of the percolation transition, i.e. the critical concentration of the ferromagnetic bonds
for the appearance of the long-range ferromagnetic order. In Table 3 we give the
values of ¢* for the different lattices according to (26), as well as the exact critical
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Table 2

lattice square honeycomb 8.C. b.e.ie.

wy/wy =15 ¢ 0.1234 0.0810 0.1920 0.2214
0% 0.7595 0.8344 0.6517 0.6098

wpfwy = 2.0 eF 0.0912 0.0587 0.1465 0.1713
3 0.7135 0.8004 0.5928 0.5476

wpfwy = 2.5 of 0.0705 0.0446 0.1163 0.1375
o 0.6785 0.7743 0.5485 0.5008

wpfwy, = 3.0 cf 0.0562 0.0350 0.0950 0.1135
(/'?7k

0.6508 0.7536 0.5138 0.4646

concentrations for the bond percolation [14]. From these results one may estimate the
accuracy of our approach, but one must also remember that classical percolation is
relevant for T = 0, i.e. strictly speaking it cannot be analysed on the basis of high-
temperature expansions.

Our results up to now were obtained from the convergence in probability criterion
for the first series in (6) (which consists of terms of random signs). Now we show that
the same results follow also from the analysis of the convergence of the series for the

average of In Z{ﬁ},
= oy il
nZ{f}> = %: Z ¥ o Wi .. "'~Uii>1'fv =

i A
2

. Z\: )_‘ 2 V(au;jwfk e Whyrye + . (27)

L'yie

03| =

The averaging can be performed directly with the help of (10). Analogously to (11)
we get '

; wy Y2 ‘
<wﬁwﬂ, w;;}l,g_ = wﬁ ] — ¢ —@8 E » (28)
) A
2\ N/2
(1Y i o
22 2 B
<?.L';jlbjk ’Lt[[>1.:"”" — N-"}‘ (1 —c+c e ) .
oA A

Then the limit of convergence for the first series in (27) is

pl(l —e)wy —ecwp| =1 (29)
Wy
L
.*3 .
=1
1 L n:w
LV I Fig. 4. Phase diagram for the case of J 4 < |/3].
I 567 LA Notatiosn are the same as in Fig. 3. 1jw,, , =
! ; =(1/2) Vdpa + (1 — a?) £ (1 —a)l;a =wp/ws
c* £
1 2
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Table 3

lattice square honeycomb 8.8 b.eie.
e*= /g 0.4142 0.5773 0.2181 0.1561
c* [14] 0.5000 0.6527 0.2470 0.1780

and for the second series it is given by

Pl — ¢) wi + cwh }'/z.: 1 (30)
These coincide with (23) and (22), respectively. The convergence of the whole series
for {In Z{B}> is determined by (29) for ¢ < c¥f, ¢ > ¢¥, and by (30) for ¢¥ < ¢ < ¥,
where ¢fs are determined from the condition of equivalence of (29) and (30), which
coincides with (24). It is easy to see that the neglected terms of (27) (with triple and
other multiple bonds) are irrelevant, because the corresponding series converge it
(29) and (30) are satisfied.

Thus the convergence criterion for the dvemged high-temperature expansion leads
to exactly the same results as the convergence in the probability criterion. During the
averaging we were not using the assumption of statistical independence of different
paths 'y (for N > 1), and the result ohtained confirms the use of this assumption
in the analysis of the convergence in probability. The equivalence of both approaches
is based in fact on the following theorem [19]: a random series (with independent
terms) converges with probability equal to unity, if both the averaged series con-
verge, and the series the terms of which are equal to the dispersions of the terms of the
initial series.

4. Discussion

Consider now the physical meaning of the results obtained. Our analysis of the con-
vergence in probability allows one to give a very simple interpretation of these results
in terms of distribution of frustrations. Tt is well known [2, 5, 7, 9] that the model
under consideration possesses a local gauge invariance and the statistical mechanies
of the model should be expressed in terms of gauge invariant quantities. In our ap-
proach this is assured by the cloged character of the paths T'% on the lattice. Consider

for simplicity the case of J, = \]B\ on the square lattice. Then the product of w;;’s
along the path I'y (in the first series in (6)) is equal to
wiwi ... wy = w¥ sgn Sl g S = wN [ Dy, (31)
P

where [2, 7]
@;, — 8gn -],‘ij_;~J1-;JH (3.2)

ig the produet of J;’s around the elementary plaquette (@, = +1). The product of
@ s in (31) is taken over all the plaquettes inside the contour Of I's. Thus, its sign is
p()'-alt]VE or negative depending on whether there is an even or odd number of frustrated
(@, — —1) plaquettes inside /'y. As was noted above, for high cnough concentration
of negative (positive) bonds, greater than ¢f(e¥), the value of ] @, in (31) is equal to

g
+1 with the same probability. This means that in the concentration interval ¢} <
< ¢ < ¢¥anodd or an even number of frustrated plaquettes belong to the interior of
an arbitrary SAW I"y (N > 1) with the same probability. It is natural to assume that
in such a situation there is no long-range ferromagnetic or antiferromagnetic order,
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which leads to the interpretation of ¢¥, given above, In the previous considerations
[2, 5. 7, 9] different aspects of frustration distributions with the variance of ¢ had
been discussed, but the interpretation of the mstability of long-range order based
upon a stochastic parity of frustrated plaquettes inside a closed SAW on the lattice
has not been, apparently, given before.

On the basis of our results it seems possible to assume the existence of a spin-glass
state in the concentration region ¢¥ < ¢ < ¢%, but in fact our approximations are too
crude to solve this problem. The SAW-approximation has a tendency to overestimate
the critical temperature of the phase transition [11], and also the role of neglected
graphs is not very clear in this region (cf. [18]). Our method is based upon the high-
temperature expansion and is inapplicable for the discussion of the nature of con-
densed phases (below the phase-transition line in Fig. 3, 4).

The critical coneentrations ¢f» found above are in good agreement with the results
of other authors [3 to 6, 8]. Note, however, that in most of these papers only the
case of J, = Jy was considered for the simplest lattices. Our results coincide with
the results of molecular field approximation for the critical temperatures [6] if we
replace there the number of nearest neighbours z by the connectivity constant g and
the ratio J/T by tanh J|7', which is typical also for the regular Ising model [11].
However, our results are obtained without any assumptions about the nature of
condensed phases, such as an introduction of the Edwards-Anderson order parameter.
Note, that the critical concentrations determined above are related to the line of the
instability of the paramagnetic state (see Fig. 3, 4), they are naturally different from
the similar concentrations for 7' = 0 [6], which cannot be found from the high-tem-
perature expansion. We hope that the accuracy of our results is approximately the
same as for the SAW approximation in the regular case [T1].
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