Original Papers

phys. stat. sol. (b) 109, 449 (1982)
Subject classification: 18.1; 18.2; 18.4

Institute for Metal Physies, Academy of Sciences of the USSR,
Ural Scientifie Centre, Sverdlovsk®)

Random Site Ising Model

in Self-Avoiding Walk Approximation
By

M. V. MEpvEDEV and M. V. SADOVSKIL

The free energy of random site Ising model with competing exchange interactions of nearest
neighbours is studied with the use of high-temperature expansions in the self-avoiding walk
approximation. Conditions for the instability of the paramagnetic state are determined by the
convergence criterion of the random high-temperature series. The possibility of a concentration
interval with the absence of the long-range magnetic order is studied for different 2d and 3d
lattices.

MeToaMil BLICOKOTEMIICPATYPHBIX PasJorkenuil B NpudIReHnN nyTeil 6es nepecevenmii
ueeaenyercs cgoboauan sueprud Moaean Manura co cayuailHbiMim y3aaMil 1 KOHWKY PH-
pyIommMn  0OMEHHBIME  B3auModeiictsuavu  dumskaiimmix  cocegeii. VI3 onpejenedus
MOPOroB  CXOAUMOCTH  CAVUANHBIX  BBHICOKOTEMIIEPATYPHLIX PAJOB HalijleHbl VCI0BHI
HEYCTOIMUHBOCTH  1IAPAMATHUTHOTO COCTOANMA. LA pPasiauublX [IBYMEDPILIX H Tpex-
MEPHBIX PEIIeTOR HCCIAeAYeTCH BO3MOMHOCTL HOABACHIA KOHIEUTPAITHOHHOTO UHTEp-
Badd, B KOTOPOM OTCYTCTBYET JaldbHUIl MArinuTHLl MOPAToK.

F. Introduction

The random bond Ising model was extensively studied in recent years in connection
with the spin-glass problem [1]. The attention to this model has grown considerahly
since the introduction of the frustration concept, which stresses the importance of
the nontrivial disorder in such a system. At present it is generally accepted that for
the temperature 7' — 0 on the phase diagram of such a model there exists a region of
long- ange ferromagnetic order for small concentrations of antiferromagnetic bond\a
and a region of long-range antiferromagnetic order for large concentrations of such
bonds, with a region of spin-glass phase for the intermediate range of concentrations.
The existence of the spin-glass phase for 7' == 0 is still not clear and there are ditferent
opinions concerning this problem in the literature [3,4]. Note, however, that the
problem of determination of eritical concentrations of ferromagnetic and antiferro-
magnetic bonds, separating the regions with long-range magnetic order from cach
other, or from a region with the absence of such order (irrespective of whether it is the
region of the spin-glass phase, or of some unusnal paramagnetic state with anomalously
slow relaxation of spins), is of considerable interest by itself. This problem in. the
random bond model was analysed (both for 7" = 0, and for 7" ==0) by different
approaches, beginning with the relatively simple variants of random mean-tield
theory, up to the methods of renormalization group and numerical simulations (for
references see [5]). In a previous paper we have studied the free-energy of the random
bond Ising model using the high-temperature expansions in the so-called self-avoiding
walk approximation. This approximation while being very simple has demonstrated

1) 8. Kovalevskii str. 18, GSP-170, Sverdlovsk 62('):219, USSR.
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Fig. 1. Different distributions of A-atoms (circles) and B-atoms (crosses) over the corners of the

plaquette and the appropriate frustration functions. Solid lines denote Iax, wavy lines Iap, and

dashed lines Inp

a rather high accuracy for the regular Ising model [6]. The analysis of the convergence
criterion of the high-temperature expansion has shown the existence of critical con-
centrations ¢& and ¢% (analytical expressions have been found for ¢ 1), at which cusps
in the concentration dependences of the lines of Curie and Néel points have been
obtained. These concentrations have been identified with the eritical concentrations
for the instability of long-range magnetic order, and their values for different lattices
have been found to be very close to the results of much more refined methods [7].

In this paper we shall congider the random site Ising model in which the spins @,
and o are placed at the lattice sites with probabilities ¢y = 1 —¢ and ¢y = ¢ and
coupled via the three types of exchange interactions of nearest neighbours 74,
Iy — Ina, and Typ. For the appropriate choice of the signs of these interactions this
model is also an example of a model with nontrivial magnetic disorder, analogous to
the random bond case [1,2]. Let us consider a square plaquette (an elementary
closed path on the square or simple cubic lattice) and calculate the frustration function
@, (2], i.e. the product of exchange interactions around the plaquette, for different
distributions of atoms of A and B types at the corners of the plaquette. According to
[2] nontrivial disorder in a magnetic system (which cannot be gauged away by a local
gauge transformation) appears when for some configuration we get @, < 0. From
Fig. 1 we can see that @, < 0 occurs only for the configurations like in Fig. 1d with
two B-atoms being nearest neighbours, if we choose opposite signs of 44 >0 and
I < 0. Thus we conclude that the nontrivial disorder in the random site Tsing model
appears only for Jy4 7> 0, Lap =0, Ipp < 0orfor Tyy < 0, Iyp = 0and Iy > 0.2)

The problem of the appearance of the spin-glass phase was for the first time con-
sidered for the random site Tsing model with 744 => 0, Tag <70, Tgn < 0 in [8] in the
mean-tield approximation for 7' = 0 and later in [9] for all temperatures. It was
shown that for 7' = 0 the spin-glass phase appears in honeycomb and square lattices,
but does not appear in s.c. and b.c.c. lattices [8]. Below we study the conditions of
stability for the paramagnetic state in this system using high-temperature expansion
methods analogous to those used previously for the random bond model [5].

2) We consider only the lattices with an even number of sides of the elementary plaguette, i.e.
we are not dealing with triangular and f.c.c. lattices.
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2. High-Temperature Series for the Free Energy and Convergence Condition

The Hamiltonian for the random site Ising model is

H=— 2 Iﬁ? E PaiPyj0ni0yj » (1)

oy

where x, y = A, B denote the types of atoms, a,; = + 1 are Ising spins, and we choose
Ly s U Iyn = Iny = 0, Iy < 0. The projection operators p,; are

1 if the lattice site 7 is oceupied by an x-type atom, )
T . . p-
Pas 0 in the opposite case,
and their properties are defined by
Z Pai = 1y }7:: = Pai (”L =1, 2! ) s PAiVpi — 0 ’
h (3)

Paide = Cxs Puilyide = Caly (1 7).

Here (...». denotes the concentration averaging and ¢, the concentration of x- type
atoms.
The partition function for the Hamiltonian (1) Z{f} is reduced to a standard form
[10]
Z{f} = [ cosh K; & {n (1 + 3 qa,;a;ju.-}‘;')}, (4)
i {o} Wi oy

where
cosh K;; = cosh (Z Px;)')y_,'K""") = Y PuiDy; cosh Kov |
ay

Lo

w;] = tanh (PaiPyi ) = paip,; tanh Ko7 = pp 0y (5)
Koy = Bl

Caleulating ¥ in (4) one can see that due to ¥ 0, = 0, 3 02, = 1 (X is normalized
(@ {a} {0} @
by division over 2N, where N, is the total number of lattice sites [107) the different
contributions to Z{#} can be represented by the closed paths on the lattice, hoth con-
nected and unconnected.
Consider, for example, ¥ over the product of ¥ g0, around the plaquette

{o} xy

defined by the sites /7417, L.:;]H}Z (3) we get
Z} (03i0,iPailyi) = X (0%iPai) Ony = Paidsy - (6)
{a

{5}
Then

- xy o
l, (Z O“MijJ;tL‘;j‘ Z U(};IU,@;NT”) =
{a} \ay L

= 3wy wik wi v wy™ = Spay (WiWnaty) . (7)

XX Np Ny

Thus, each bond ij on the lattice is represented by the single matrix w;; and at each
lattice site an even number of bonds must Hl(—)‘tt The contribution to Z{f} from a given
graph is equal to a Spy,, of the producf of w;; over a closed path. It is easy to convince
oneself that in the lowest orders in % most of these graphs are just closed self- -avoiding
walks (SAW) on the lattice.
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The logarithm of the partition funetion,

InZ{f}=InZ{f}/X Incosh K;; =In > |] (l + 3 G‘,_.“'(T:J_'it(f.?j‘), (8)
(g {a} <>

gy

can also be represented graphically as an expansion over ;. Only connected graphs
will contribute to this expansion and they can he represented by the closed paths on
a lattice, beginning and ending at a given site. Now every hond ij can be traced
several times (cf. the expansion of In (1 —x) =& — La? 4 ...) while still only an
even number of bonds can meet at a given vertex (site). If the bond j is traced n
times, we represent it by a factor wﬁ?’ — Paipyi(w?7)™. In the theory of high-temperature
expansions these graphs are classified over their cyclomatic number: € =1 — p 4 1
[11], where [ is the number of bonds on the lattice, p the number of vertices of the
graph. Our approximation consists in the neglect of all the graphs with € > I (cf.
[5]). As was shown by Domb [6], in a regular Ising model the use of only the ¢/ = 1
graphs to determine the temperature of a phase transition gives an error of the order
of 39, for 3d lattices and of the order of 109/, for 2d lattices, as compared to the exact
results. This is due to a dominating role of (' = 1 graphs in the high-temperature
series. Graphs with € > 1 apparently effectively compensate cach other. Combining
the terms with the same number of bond passages we get

= A s "
InZ{f} =3 3 ¥ = SPs) (WiWik - wy) —
odi % .

e
l & Lo ama@ o
gt X Z v SPiay (Wi Wig ... Wi ) +
& NOg ln-zxvi
1 s I e ~(3)A(3)  ~(3)
+5 g T % + Spw @D ... i) — (9)
O N i Iry-*

Here N is the number of lattice bonds (steps) of the closed SAW and the factor N7
takes into account the equivalence of contributions differing by the choice of the
initial site among N sites traced by the SAW "\, beginning at the i-th site of the
lattice.

Let us perform the concentration averaging of (9). For a SAW with N steps we gel

. ~ ~ —y .
(SPpay By oo W) = B {Paitt ™™ P, P 0N e W Pride =
oty 6 N—1
‘ : : AN .y
= N oARHeWHE ., Gy (DTILY = Spiay (diny) = 2 Alym (10)
Xy .. BN . i

s - 2 y . ¥
where dif) = c,w™” and we use pi; = Pai- In the last expression in (10) the snmmation

goes over the eigenvalues A1), of the matrix dy).
Analogously, it each step of the SAW Iy is traced » times, we get

; ~m) 9 N N
(Spisp B .. )5, = Spiay () =  Agom » (11)

where diy = cu(@ )" and 2y, is an eigenvalue of the matrix d,).
Tt is well known [6] that the number of the closed SAW’s of N steps on the lattice,
beginning and ending in a given site 7, behaves as

Uy=~N-'KY (N>1), (12)
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where & > 0 and K is the so-called connectivity constant of the lattice. Then we get

~ N 1 .~ 1

nZ{f}> = Z o lﬂ(nm —— A(;)w e 5 /\(‘3)”: — ] (13)
N i =

The series in (13) diverge if some of the eigenvalues 4,),, satisty the condition K A, —

= 1. Then it is clear that the divergence conditions of these series are determined

by EoM .

Det |1+ Kydyy = 0. (14)

Forn=1,¢4 =1, =0, and ¢y, =0, cy = 1 (14) gives the divergence conditions
for t]w regular Ising magnets (in SAW approximation),

1 — Kapdd = 0; I — K, |wBB =0. (15)

Note also that our analysis can be extended to the Heisenberg case with the classical
spin 8. In the regular case [6] it reduces to the replacement of w = tanh ({/7) by
w = L(I82/T), where L(x) = coth 2 — 2! is the Langevin function. For the random
site model this reduces to the replacement of w*» = tanh (£, /1) by w* = L(1,,8,8,/T)
in the formulae given above.

Finally, the analysis of the convergence of the averaged high-temperature series for

dnZ {f}>, reduces to the comparison of the solutions of two equations,

1 F Keywta T K wAD i
=0, 5
T KegwB 1 F Kequw'?| 1
|1 — Keop(wht —K e, (wAB)?
Al BA i i 'ms) 2 0, (27)
—Keg(wPd? 1 — Kep(w®®)?|

where w* equals either tanh (7,,/7) or L(1,,8.9,/1). We do not need to consider the
determinants with terms of the order (w“?)’*, (w**)* ete., because always [w™|® < |w*|,
(o)t < (w)? if 0 < |w*] <1 ete., ie. the respective series in (13) will diverge at
lower temperatures than those determined by (16) and (17).

1 in these equations we replace K, by Z — 1 (Z is the number of the nearest neigh-
bours), we get the equations determining the transition temperature in the so-called
constant coupling approximation, while the replacement of K. by Z and tanh « by «
(or L(wx) by x/3) gives the results of the mean-field approximation [12]. Note, however,
that here we get the conditions for the instability of the paramagnetic state without
any assumptions about the order parameters in the condensed phases, which is most
important for the possible spin-glass phase, where the Edwards-Anderson order par-
ameter is under suspicion at present.

3. Phase Diagrams for Different Lattices

Consider now (16) and (17) for some special cases. Choose first wA4 = [wAB| = |wPP| =

= w (l.e. Tyy = [Isp] = Ipp). Then from (16) we get the divergence conditions as
1 — Kg(cy — eg) wy — 2KZe cquf = 0, (18)
1+ Ke(ey — cp) wax — 2KZc,cquip = 0 (19)

and from (17) we get the divergence criterion independent of concentration,

1 — Kag = 0. (20)
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Table 1

lattice

honeycomb square et b.c.c.
K 1.8484 2.6390 1.6826 6.5288
K V2 1.3070 1.8661 3.3111 1.6166
88 1.3596 1.6245 2.1639 2.5552
,u 1.7321 2.4142 4.5840 6.4032
w2 1.2248 1.7071 3.2414 4.5278

Vo 1.3161 1.5538 2.1410 2.5305

The solutions of (18) and (19) coincide at the concentration ¢} = ¢} = ¢* = 0.5,
and

(w*)1= (wh) = (wfp)! = K2 . (21)

The values of (w*)~t = K /J2 and (w;)~! = K, are given in Table 1 for four different
lattices. The values of K are taken from [13] we also give the estimates using instead
of K. the constant p corresponding to the exact transition temperature for the regular
Ising model, defined by the equation 1 — uw = 0 [6]. The latter estimate allows to
get an exact matching of our results with the regular case for ¢ = 0 or ¢ = 1. We
hope this can be considered as a gualitative account of graphs with ¢ > 1.

From Table 1 it is clear that for the square, s.c., and b.c.c. lattices (w*)™ > (w4,
but for the honeycomb lattice (w;)=' > (w*)=1. This means that for the square, s.c.,
and b.c.c. lattices the line of instability of the paramagnetic state is determined by
(18) in the interval 0 < ¢ < 0.5 and by (19) in the interval 0.5 < ¢ < 1 (Fig. 2a). For
the honeycomb lattice this line is determined by (20) in the interval ¢f — 0471 <7 ¢ <
< ¢ = 0.529 if we use K. in our estimates (¢f = 0.445, ¢& — 0.555 if we use the
estimate via u), and for the intervals 0 < ¢ < ¢f and ¢f <7 ¢ <7 1 by (18) and (19),
respectively (Fig. 2b). The interval 0 <~ ¢ <7 ¢f obviously can be identified as a region
of transition from paramagnetic to ferromagnetic phase for the honeycomb lattice
(this region reduces to 0 <7 ¢ <7 ¢* for the other lattices). Analogously in the region
of ¢ < ¢< 1 (or ¢* < ¢ < 1) we suppose the transition to the antiferromagnetic

K
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Fig. 2. Qualitative behaviour of the instability lines for the paramagnetic state (P) as a function
of concentration ¢ of B-atoms for a) square, s.c., and b.c.c. lattices and b) for honeycomb lattice
for the case of wAA = |wAB| = |wBB| = w (i.e. Iya = |Ian| = |Ts|)
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A 0s Fig. 3. Fraction of frustrated plaquettes w;for the random
| bond model (1) as a function: of concentration of anti-
s B ferromagnetic bonds ¢, and for the random site model for
square, s.c., and b.e.c. lattices (2) and for the honeycomb
03 lattice (3), as a function of concentration ¢ of B-atoms.
The values of w; for ¢ > 0.5 are symmetric relative to the
0z point ¢ = 0.5
a1
1 L 4

[——

phase. Equation (20) after the appropriate replacements correspond to the condition
of spin-glass instability obtained in the mean-field approximation [12].

Note that for the case of wa4 — [wPB| and |wAB| = pAd (le. Tan = |Ipn| == |14z|)
no variation of the ratio w*4/[wA¥| can change qualitatively this picture for the lattices
with square plaquettes (Fig. 3a) and for the honeycomb lattice (Fig. 3h).

Consider now the case of wA4 — |wAB| == |wPB| (le. T, — |Lan| == |Igs|). Let us
try to determine whether the change of 7y, while the condition of 7, — | Lag] is
conserved, can lead to the equivalence of convergence conditions following from
(16) and (17), for some concentration ¢* and some ratio of Lyn/|1ps]. In this case we
have to satisfy simultaneously the following equations:

(I — c*) wAd — ¢* |88 —
== [(:3(:%(1 — c*) wAA(wAA €1 I_wﬂﬂ‘) =0,

1— K (1 —c*) (wA4)2 + e*(wbB)2] 4 Kgc*(] — ¢*) [(wAd)2 (wBB)2 _ (w_-x.a);] ==

This system has the following solutions:

1 [ e
AR = — _[K? — Ko+ 2+ (K, — 2) (K. — ) (K2 + K. & 2)],
(w4) 2K‘§[ =2+ (K ) ( ) (G + )] (23)

[wBB] = [1 — (wA4)2]/(K, — 1) wAA |

It can be seen that for the honeycomb lattice (wA4)2 is complex which means the in-
compatibility of (16) and (17), so that the intermediate region cf < ¢ < c§ remains
for any ratio of 7y4/|fpyl. Similarly we find for the Ising case that for the ratios of
Laa/|Ipp| > 5.576 (4.699) for square lattice, Iy4/| | > 28.470 (26.768) for s.c., and
for Zya/[Ips| > 63.936 (61.422) for b.c.c. lattice, the intermediate (spin-glass ?) region
appears also for these lattices. (The numbers in parentheses above refer to the esti-
mates via constant ). From the above results we see that such situations for s.c. and
b.c.c. lattices are apparently unrealistic.
Analogous results can be obtained for the case of 7, = [Lan] = [Inpyl.

4. Diseussion

The above results for the random site model with competing exchange interactions
are significantly different from the analogous results obtained previously for the ran-
dom bond model [1, 2, 5, 7]. The main difference is the relative narrowness of the
intermediate (spin-glass ?) region for the honeycomb lattice as well as its appearance
in gquare, s.c., and b.c.c. lattices only for rather unrealistic values of exchange par-



456 M. V. MepveEDpEY and M. V. Sapovski: Random Site Ising Model

ameters. Obviously, this difference in behaviour of two models can be linked with
the difference in the concentration behaviour of the fraction of frustrated plaquettes
xpin hoth modela For the random bond model it is known [7] that af = 4e(1 — ¢) %
* (1 — ¢)®> + €2]. In the random site model iruslmtcd square plaquettes appear
only when two B-atoms are nearest neighbours, i.e. af; = 4c%(1 — ¢)2. For the honey-
comb lattice, the frustrated configurations appear only for some (not all!) _pa.[thLllaI
distributions of two, three, and four atoms around the plaguette, and w5 —
— 6e2(1 — )t + 12¢3 (l — ) + GeY(1 — r)~ — Ge2(1 — ¢)2. Then for the random site
modpl we get Max a3y = 0.25 and Max a3 = 0.375 for ¢ — 0.5. It is seen (cf. Fi ig. 3)
that the fraction of frustrated plaquettes is significantly lower in the random site
model, than in the random bond model (the honeycomb lattice is in a kind of inter-
mediate position). Also the “halfwidth™ of the maximum in the concentration depend-
ence of x; is considerably smaller for the random site model. Thus, while non-trivial
disorder is possible in the random site model, its influence upon the physical properties
of the system is considerably weaker as compared to the random bond case. Of course,
the above discussion cannot be applied to the crystals with f.c.c. (and triangular)
lattices,
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