
Abstract. This review discusses the generalization of dynamical
mean-field theory (DMFT) for strongly correlated electronic
systems to include additional interactions necessary for the
correct description of physical effects in such systems. Specifi-
cally, the additional interactions include: (1) the interaction of
electrons with antiferromagnetic (or charge) order-parameter
fluctuations in high-temperature superconductors leading to the
formation of a pseudogap state; (2) scattering on static disorder
and its role in the general picture of the Anderson±Hubbard
metal±insulator transition, and (3) electron±phonon interaction
and the features of electronic spectra in strongly correlated
systems. The proposed DMFT+R approach incorporates the
above interactions by introducing into the general DMFT mod-
el an additional (generally momentum-dependent) self-energyR
which is calculated in a self-consistent way without violating the
general structure of the DMFT iteration cycle. The paper
formulates a general calculational scheme for both one-parti-

cle (spectral functions and densities of states) and two-particle
(optical conductivity) properties. The problem of pseudogap
formation is examined, including Fermi arc formation and
partial destruction of the Fermi surface, as are the metal±
insulator transition in the disordered Anderson±Hubbard
model, and the general picture of kink formation in the
electronic spectra of strongly correlated systems. A general-
ization of the DMFT+R approach to realistic materials with
strong electron±electron correlations is presented based on
the LDA+DMFT method. The general model of the
LDA+DMFT method is reviewed, as are some of its applica-
tions to real systems. The generalized LDA+DMFT+R

approach is employed to calculate pseudogap states in elec-
tron- and hole-doped HTSC cuprates. Comparisons with
angle-resolved photoemission spectroscopy (ARPES) results
are presented.

1. Introduction

Strongly correlated electronic systems (SCSs), which are
mainly realized in a number of compounds of transition or
rare-earth elements with partially filled 3d, 4f, and 5f shells,
have for more than half a century been attracting great
interest of scientists because of their unusual physical proper-
ties and difficulties in their theoretical description. The
question of metal±insulator phase transition observed in
many transition metal oxides, heavy fermions systems with a
great variety of different phase transitions and related
phenomena, manganites with giant magnetoresistanceÐall
these systems have become the focus for both experimental-
ists and theorists. Perhaps the most significant development
in this area was the discovery of high-temperature super-
conductivity in copper oxides, which provoked a new wave of
interest in the synthesis and description of such systems.
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As already stressed above, the diversity of physical
phenomena in all these compounds is due to partially filled
3d, 4f, and 5f electron shells. The strong interaction of
electrons emerged from narrow bands belonging to these
orbitals with each other or with itinerant electrons of outer
shells is basically responsible for the unique properties of these
systems. The early qualitative ideas formulated by Mott [1]
have been further developed in many theoretical studies to
follow, forming a new area of themodern theory of condensed
matter. There are now thousands of such papers and many
new reviews and monographs are regularly published [2].

Of course, nowadays, a single review cannot cover all this
area of research and the aim of the authors is rather modest.
The subject of this work concerns a description of a number of
theoretical approaches formulated during recent years to
account for some additional interactions which are impor-
tant for the consistent description of strongly correlated
systems. Here, we are speaking not only about `external'
perturbations due to the interaction of correlated electrons
with bosonic excitations, such as phonons, spin fluctuations,
or scattering of electrons by disorder, but also about
attempts to improve the most developed and widely used
theoretical approaches, such as dynamical mean-field theory
(DMFT) [3±6].

These tasks are closely related to a variety of topical
problems under active study at present, such as the nature of
the pseudogap state of high-Tc cuprates, the evolution of their
Fermi surfaces upon doping, with the formation of so-called
`Fermi arcs' observed in ARPES experiments, the problem of
the formation of kinks in the electronic spectrum, and the
general problem of metal±insulator transition in disordered
systems due to the mutual interference of strong correlations
and Anderson localization. In this review, we deal to some
extent with all of these problems.

During recent years, the general theory of strongly
correlated systems based on DMFT has practically merged
with the so-called ab initio approaches to calculating electro-
nic spectra of real solids (LDA+DMFT approach), with a
significant success already achieved [2, 7]. To this end, we
devote some attention in our review to the first attempts to
generalize these approaches in an effort of accounting for the
above-mentioned physical effects.

2. Strongly correlated systems and dynamical
mean-field theory (DMFT)

2.1 The Hubbard model and the basics of DMFT
Starting with the pioneering works of Hubbard [8±13] in the
early 1960s, the simplest model permitting the description of
strongly correlated systems is the so-called Hubbard model.
The one-band Hubbard model Hamiltonian is written down
as

H � ÿt
X
hi ji s

c
y
iscjs �U

X
i

ni"ni# ; �1�

where t > 0 is the nearest neighbors hopping amplitude, U is
the single-site repulsion, nis � c

y
iscis is the particle number

operator at the site, and cis (c
y
is) is the annihilation (creation)

electron operator for spin s. The model has only two
competing energy parameters: parameter t defines the kinetic
energy of an electron and facilitates intersite hoppings
(delocalization), while parameter U defines potential energy

and favors electron localization at a lattice site. Energy bands
formed by 3d, 4f, and 5f orbitals are rather narrow; thus, quite
often kinetic and potential energy are of the same order of
magnitude (t � U ). In this case, there is no small parameter in
the model and it is impossible to build any kind of
perturbation theory. This fact alone leads to all the difficul-
ties in describing SCSs, even for such an oversimplified
model.

Almost for 30 years there were no satisfactory approaches
to analyzing SCSs. It seemed that the theory of these systems
would forever remain fragmentary and semiquantitative. The
breakthrough came in 1989 in the work by Metzner and
Vollhardt [14], who suggested formal consideration of the
system of interacting electrons in the space of large dimension
d!1 (or in a lattice with large coordination number
z!1).1

Employing this limit, it is possible to neglect spatial
fluctuations in the systems, while the full local dynamics are
preserved. InRef. [14], it was shown that in the limit of infinite
spatial dimensions (or more precisely of infinite coordination
number) the main role is played only by local contributions to
the self-energy part of the full interacting Green function. All
nonlocal contributions are proportional to 1=

���
z
p � 1=

���
d
p

and can be dropped. In this limit, therefore, electron self-
energy does not depend on momentum k, and is a function of
frequency only [real (o) or Matsubara (on, n � 0;�1; . . .)]: 2

Ss�k;o� � Ss�o� : �2�

This statement represents the main simplification appearing
in the limit of d!1 [3, 5±7].

In Fig. 1, we show the `skeleton' diagrams of DMFT self-
energy S. Wavy lines indicate local (Hubbard) Coulomb
interaction U, whereas full lines fit local Green functions Gii.
Strictly speaking, not only is the self-energy local in the limit
of d!1, but also in each vertex of the `skeleton' diagram
only one particular site enters, e.g. the i-th one, as shown in
Fig. 1. Thus, this self-energy is a functional of interacting
local Green functionGii; s: Sii; s � F �Gii; s�. Generally, it is not
yet sufficient for our problem to become fully local, since
interacting Green function Gi j; s is still nonlocal. A question
then arises of whether it is possible to choose a purely local
noninteracting (U � 0) problem (even with complex
dynamics) yielding completely equivalent self-energy.
Surely, it can be done! Let Gs�o� be the `bare' dynamical
Green function of such a local problem without Coulomb
interaction U, while Gds�o� and Sds�o� are corresponding
interacting Green function and self-energy. If one can ensure

1 For a hypercubic lattice z � 2d, and these two limits practically coincide.

However, z could be quite large even for three-dimensional lattices, for

example, in a body-centered lattice with z � 8, and for a face-centered

lattice with z � 12. To this end, it is more correct to speak about the limit

of large z.
2 Large coordination numbers allow one to apply this approximation

rather successfully even for rather small d.

i
+ + +

U
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iiiii
. . . = F�Gii�

Figure 1. `Skeleton' diagrams of local self-energy S in DMFT.
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the equality Gds�o� � Gii; s�o�, then corresponding self-
energies are also equivalent, because the structure of dia-
grams for the weak-coupling (low U) perturbation theory is
totally preserved, which means that the self-energy of the
local problem is defined by the same functionalSds � F �Gds�.
But Gs, Gds, and Sds are connected through the Dyson
equation which immediately gives us the bare dynamical
Green function of the local problem:

Gÿ1s �o� � Ss�o� � Gÿ1ii; s�o� : �3�

Thus, the lattice Hubbardmodel in the limit of d!1 exactly
maps onto the purely local dynamical problem. Physically, it
corresponds (as shown in Fig. 2) to the problem of interacting
electrons on a single `Anderson impurity' in a `bath', and
interaction with the bath is contained in dynamical mean-
field G�o�. Quite often, in analogy with the internal magnetic
field of molecular field theory inmagnetism, this field is called
the `Weiss field'. This explains the name of such an
approachÐdynamical mean-field theory

Such a purely dynamical problem is still quite compli-
cated. However, the problem is equivalent to a single-
impurity Anderson model (SIAM) [15]. The latter model can
be studied in detail by a number of different methods, and its
physical nature is now well understood. For this model there
are well-developed approximate analytical methods such as
the iterative perturbation theory (IPT) [5] and noncrossing
approximation (NCA) [16, 17], but most remarkable is the
possibility of solving this model by exact numerical methods
like quantum Monte Carlo (QMC) [18±22] or numerical
renormalization group (NRG) [23, 24]. The solution to an
effective SIAM employing any of these methods, usually
called an `impurity solver' (IS), completes the general outline
of the DMFT approach.

Apparently, today DMFT is the most elaborate and
reliable theoretical method for describing SCSs. In its frame-
work, the so-called three-peak structure of the density of
states (DOS) in SCSs was obtained for the first time [5],
consisting of the narrow central (quasiparticle) peak on the
Fermi level, and two wide maxima corresponding to upper
and lower Hubbard bands. Also, the reliable theoretical
description of Mott±Hubbard metal±insulator transition
was obtained. In Fig. 3, we display DMFT (NRG) densities
of states for the half-filled Hubbard model with a semielliptic
bare density of states with bandwidth 2D. As correlation
strength U grows, the density of states demonstrates the

formation of a characteristic three-peak structure, and a
further increase in U leads to a collapse of the quasiparticle
peak at U=2D � 1:5, leading to metal±insulator transition.

It turned out that within DMFT it is also possible to
investigate some two-particle properties. In particular, it is
quite easy to obtain dynamic optical conductivity [4, 5].
During recent years, the DMFT approach has been general-
ized to describe realistic SCSs bymerging it with ab initio one-
electron density functional theory in a local density approx-
imation (DFT/LDA), leading to the combined computa-
tional LDA+DMFT scheme [25±31], which will be
described later.

Despite all the obvious advantages of LDA+DMFT, this
approach has a number of shortcomings. Namely, as we
stressed above, all nonlocal correlations are completely
neglected. A number of cluster generalizations of DMFT
[32, 33] were proposed recently to overcome this drawback.
However, all these methods require significant computing
resources and are rather restricted in cluster size and with
respect to their generalization to the multiorbital case. Also,
in these approaches it is quite difficult to investigate two-
particle properties. To overcome these difficulties, we have
proposed recently [35±37] a new generalization of the
conventional DMFT, allowing the consideration of non-
local correlations or additional (with respect to the Hub-
bard) interactions (in principle, of any kind), remaining
within a single-impurity DMFT picture and preserving a
self-consistent set of DMFT equations.

2.2 Generalized DMFT+R approach
The main idea of the new approach consists in using the
DMFT solution exact in the limit of d!1 as a `high-energy'
zeroth order approximation describing electronic spectra on a
sufficiently large energy scale on the order of the bandwidth
or U value, while low-energy scale details caused by nonlocal
effects or by effects of interaction of correlated electrons with
different collective modes (e.g. phonons or spin fluctuations)
are to be taken into account within some kind of perturbation
theory, conserving, as far as possible, the general structure of
DMFT equations. Actually, such a scenario can be realized in
a rather simple way [35±37].

To be more specific, we shall consider in the following the
standard one-band Hubbard model. Its generalizations for
themultiorbital ormultiband case are also possible. Themain
assumption of our approach is that the Matsubara lattice

G�o�

Gd�o�

U

i

Figure 2. Within the DMFT, the Hubbard lattice model maps onto

interacting electrons at a single site (`impurity') surrounded by the

fermionic bath, which defines, in turn, dynamical (Weiss) mean field

G�o�.
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Figure 3. DMFT (NRG) densities of states at half-filling obtained for a

semielliptic `bare' density of states for different values of U.
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one-particle Green function is chosen as

Gk�io� � 1

io� mÿ e�k� ÿ S�io� ÿ Sk�io� ; �4�
o � pT�2n� 1� ;

where m is the chemical potential, S�io� is the local DMFT
type self-energy due to Hubbard interaction, Sk�io� is some
`external' (generally nonlocal, momentum-dependent) self-
energy, T is the temperature, and n � 0; �1; . . .. This last
contribution can arise from the interaction of correlated
electrons with some `additional' collective modes or order
parameter fluctuations appearing in the Hubbard model
itself, or from any other interactions (fluctuations) external
with respect to the standard Hubbard model. For example,
these can be phonons or scattering by impurities, when it is
actually local (momentum-independent).

In should be emphasized that Sk�io� can contain a local
(momentum-independent) contribution, even if the self-
energy is considered in the framework of the Hubbard model
itself. However, this contribution disappears in the limit of
infinite spatial dimensions d!1 and is not accounted for
within the conventional DMFT, so that within our approach
we do not encounter any double counting problem, even in
this case. This question does not arise at all for self-energy
Sk�io� caused by external interactions.

More important is that our assumption about the additive
form of self-energy S�io� � Sk�io� implicitly corresponds to
the neglect of interference between the local (DMFT) and
nonlocal contributions. In Fig. 4, typical skeleton diagrams
for the self-energy of the DMFT+S approach are given. The
first two terms (1, 2) are local DMFT self-energy diagrams;
the two diagrams (3, 4) in the middle stand for contributions
to the nonlocal part of self-energy from additional interac-
tions with collective modes or order parameter fluctuations,
and the last diagram (5) is an example with the interference
between the local and nonlocal parts neglected. Indeed, once
we neglect such interference (i.e., diagram 5), the total self-
energy is defined as a simple sum of these two contributions
(1±4) shown in Fig. 4. Two diagrams (3, 4) in Fig. 4 provide an
example of skeleton diagrams for nonlocal self-energy, where
the solid line is theGreen functionGk (4), and the dashed lines
correspond to an additional interaction with collective modes
or order parameter fluctuations.

As a consequence, the diagrammatic structure of the local
self-energy remains identical to that of the standard DMFT,
and we arrive at the following self-consistent set of equations
of the generalized DMFT+S approach [35±37], which is
solved applying the following iterative procedure:

(1) Start from some initial guess for the local self-energy
S�io�, for instance, S�io� � 0.

(2) Calculate nonlocal self-energy Sk�io� in the frame-
work of some (approximate) scheme taking into account the
interaction of correlated electrons with collective modes or

order parameter fluctuations, which, in general, can depend
on S�io� and m.

(3) Calculate the local Green function

Gii�io� � 1

N

X
k

1

io� mÿ e�k� ÿ S�io� ÿ Sk�io� : �5�

(4) Define the `Weiss field' as

Gÿ10 �io� � S�io� � Gÿ1ii �io� : �6�

(5) Using some `impurity solver', calculate the single-
particle Green function of an effective single-impurity
Anderson model, i.e. compute the following integral over
Grassmann variables c

y
is and cis:

Gd�tÿ t 0�� 1

Zeff

�
Dc
y
isDciscis�t� c yis�t 0� exp �ÿSeff�; �7�

where an effective action for the fixed site (`Anderson
impurity') i has the form

Seff � ÿ
� b

0

dt1

� b

0

dt2 cis�t1� Gÿ10 �t1 ÿ t2� c yis�t2�

�
� b

0

dtUni"�t� ni#�t� ; �8�

with the `partition function' Zeff �
�
Dc
y
isDcis � exp �ÿSeff�,

and the upper limit of integration b � Tÿ1.
(6) Define new local self-energy as

S�io� � Gÿ10 �io� ÿ Gÿ1d �io� : �9�

(7) Using last self-energy as an initial one in step 1,
continue the loop procedure until it converges to

Gii�io� � Gd�io� �10�

with a given accuracy.
At the end, we obtain the final Green function in the form

of Eqn (4), where S�io� and Sk�io� are self-energies coming
out of our iterative procedure.

The success of such an approach (as well as its main
drawback) is connected with an additive form of total self-
energy (neglect of the interference between different contribu-
tions) in Eqn (4). This allows one to preserve the self-
consistent set of equations derived in the standard DMFT.
However, there are two significant distinctions from the
conventional DMFT. First of all, the local Green function
of an effective single-impurity problem takes the form of
Eqn (5) at each step of the DMFT procedure. Second, during
each DMFT iteration, external self-energy Sk�io� is recalcu-
lated within some (approximate) framework, taking into
account, for instance, the interaction with collective modes
(phonons, magnons, etc.) or with fluctuations of some order

++ + ++ +. . . . . .

1 2

3 4

5

i

i

ii

i i

Figure 4. Typical skeleton self-energy diagrams of the DMFT+S approach.
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parameter. To define nonlocal contribution Sk�io�, it is
convenient to introduce the function

G0k�io� � 1

Gÿ1k �io� � Sk�io� �
1

io� mÿ e�k� ÿ S�io� �11�

which plays the role of the bare Green function in building
the perturbation theory with an external interaction as an
expansion parameter. The choice of the bare Green
function in the form of Eqn (11) guarantees that Green
function `dressed' by such an interaction, Gÿ1k �io� �
Gÿ10k �io� ÿ Sk�io�, entering the skeleton diagrams for
Sk�io�, coincides exactly with the full Green functionGk�io�.

A remarkable feature of our approach is the possibility of
its generalization to evaluate some two-particle properties,
e.g. optical conductivity [38, 39]. The conductivity of a system
is expressed via retarded density±density response function
wR�o; q� [40±42]:

s�o� � ÿ lim
q!0

ie 2o
q 2

wR�o; q� ; �12�

where e is electron charge. This response function is defined
by analytical continuation to real frequencies of the full
polarization loop in Matsubara representation [40, 41]. Note
that conductivity is completely defined by the first derivative
of this response function with respect to q 2 in the limit of
q! 0. This circumstance, as well as the neglect of inter-
ference between the local Hubbard and external interactions
in the DMFT+S approach and the locality of irreducible
vertices of the Hubbard interaction, allow one to perform a
partial resummation of diagrams relevant for finding con-
ductivity, making use of an exact (in the limit of q! 0) Ward
identity. In the end, the real part of optical conductivity in the
DMFT+S approach has the form [38, 39]

Re s�o� � e 2o
2p

�1
ÿ1

de
�
f �eÿ� ÿ f �e��

�
�Re

�
f 0RA
e �o�

�
1ÿ SR�e�� ÿ SA�eÿ�

o

�2
ÿ f 0RR

e �o�
�
1ÿ SR�e�� ÿ SR�eÿ�

o

�2�
; �13�

where

f 0RR�RA�
e �o� � lim

q!0

F 0RR�RA�
e �o; q� ÿ F 0RR�RA�

e �o; 0�
q 2

�14�

and we introduced two-particle Green functions in the
following form

F 0RR�RA�
e �o; q� �

X
k

GR�e�; k��GR�A��eÿ; kÿ�

� GRR�RA��eÿ; kÿ; e�; k�� ; �15�
which are diagrammatically represented in Fig. 5 (k��k�q=2,
and e� � e� o=2). Vertices GRR�RA��eÿ; kÿ; e�; k�� contain
all vertex corrections from external interactions (order
parameter fluctuations, impurities, phonons, etc.) but do not
contain vertex corrections from the Hubbard interaction.

Thus, one achieves a significant simplification of the
problem. To calculate optical conductivity within the
DMFT+S approach, we have only to solve the single-
particle problem of obtaining the local self-energy S�e��
with the help of the DMFT+S procedure described above,

while a nontrivial contribution from nonlocal correlations or
external perturbations enters via `blocks' (14) which can be
calculated in a suitable approximation accounting only for
external interaction, with bare Green functions (11) contain-
ing the local self-energy from the DMFT+S procedure. In
fact, Eqn (13) also provides an effective algorithm to compute
optical conductivity in the framework of the conventional
DMFT (neglecting all external nonlocal correlations). In this
case, functions (14) could be easily found from the simple
loop diagram defined by two Green functions and free scalar
vertices. To get optical conductivity, there is actually no need
to calculate vertex corrections in the framework of DMFT
itself, as was first demonstrated for the loop with vector
vertices in Refs [4, 5].

In what follows (see Sections 3 and 4), we shall discuss in
detail some applications of the generalized DMFT+S
approach to the solution of concrete physical problems.

2.3 Some other generalizations of DMFT
To date, a number of different theoretical approaches have
been suggested to account for nonlocal effects within general-
izations of DMFT. Here, we restrict ourselves to a brief
review of some of these approaches.

First of all, we shall refer to the cluster methods already
mentioned in Section 2.1. Instead of an isolated Anderson
impurity, one can consider some cluster containing several
such impurities, treating single-site correlations within
DMFT, while considering intersite correlations with the aid
of some other methods. This is the basic idea of the so-called
cluster DMFT methods [5, 43±45].

A drawback of such approaches lies in the various
treatment of nonlocal correlations inside a cluster and
between clusters, though from the physical point of view
(for example, because of translational invariance) they should
be identical. To overcome this difficulty, it was proposed to
average self-consistent `cluster' self-energy over pairs of sites
connected by translation vectors [43, 44]. Unfortunately, such
an averaging procedure does not work well within the self-
consistent DMFT cycle, since it breaks down the analytical
properties of the Green function.

In some sense, the alternative approach referred to as the
dynamical cluster approximation (DCA) was proposed in
Refs [45±50]. This approach conserves translational invar-
iance and ensures the physical behavior of the Green
function. Within DCA, the Brillouin zone is divided into
several cells with their centers defined by appropriate K
vectors. At the same time, self-energy is assumed to be
constant in each cell, Sk�o� � SK�o�, but these constants
differ for different K. On going over to a direct space, a
difference between DCA and cluster DMFT lies in the fact
that a DMFT-cluster in DCA satisfies periodic boundary

eÿkÿ

e�k�

R(A)

R

F 0RR�RA�
e �qo� � GRR�RA�

Figure 5.Diagrammatic representation of F 0RA
e �o; q� and F 0RR

e �o; q�.
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conditions, instead of open boundary conditions, as in the
cluster DMFT.

The choice of a particular clustermethod is dictated by the
physical problem under consideration. Naturally, the com-
mon drawback of cluster approaches deals with essentially
more computational resources than in the standard DMFT,
which is connected with the solution of the appropriate
cluster problem. Nevertheless, a number of successes have
been achieved in this path. Cluster DMFT generalizations
were applied to different models, as well as to studies of some
realistic systems. A detailed review of this work can be found
in Ref. [32].

Recently, a number of diagrammatic DMFT general-
izations have been proposed, shooting for a more or less
consistent construction of the perturbation theory with the
inverse powers of spatial dimensionality as an expansion
parameter, and with the standard DMFT used as the zero-
order approximation.Wemention in this connection Ref. [51]
and the so-called dynamical vertex approximation (DGA)
developed in Ref. [52]. Most promising in this respect seems
to be the dual fermion approach formulated in Refs [53, 54],
which puts in a claim on a consistent realization of such
perturbation theory.Unfortunately, thus far only some simple
model problems have been solved by applying these methods,
while realistic systems have not yet been considered at all.

3. Application of generalized
DMFT+R approach to model problems

3.1 Strongly correlated systems in the pseudogap state
3.1.1 Pseudogap fluctuations. A striking example of strongly
correlated systems is provided by high-Tc cuprates. Parent
stoichiometric cuprate compounds are antiferromagnetic
(AFM) insulators with a well-developed optical gap and
antiferromagnetism due to spin ordering on copper ions
with a N�eel temperature on the order of hundreds of kelvins.
This insulating state is rapidly destroyed by the introduction
of rather few doping impurities. Thus, these systems can be
classified as doped Mott insulators with strong electronic
correlations.

Among the many anomalies of the normal phase of high-
temperature superconductors, observations of a pseudogap
in the electronic spectra of underdoped cuprates are especially
noteworthy [55, 56]. Despite continuing discussions about the
physical nature of the pseudogap, the most preferable
scenario of pseudogap formation from our point of view is
that due to strong scattering of charge carriers on antiferro-
magnetic spin density wave (SDW) short-range order fluctua-
tions [56, 57]. In the momentum representation, this scatter-
ing is characterized by momentum transfer on the order of
Q � �p=a; p=a� (a is the two-dimensional lattice constant).
This leads to the formation of certain features in the single-
particle spectrum, which are precursors of changes in the
spectra due to the appearance of AFM long-range order
(period doubling). As a result, we end up with a non-Fermi
liquid behavior (dielectrization) of the spectral density in the
vicinity of so-called `hot-spots' on the Fermi surface,
appearing at intersections of the Fermi surface with the
borders of the AFM Brillouin zone [56].

In the framework of this spin-fluctuation scenario, a
simplified model of the pseudogap state was studied in
Refs [56, 58±60]. This model is based on the assumption
that, for high enough temperatures, the dynamics of spin

fluctuations can be neglected, and one can consider instead
the scattering of charge carriers by a static Gaussian random
field (quenched disorder) of pseudogap fluctuations (AFM
short-range order fluctuations). Scattering intensity on
fluctuations is characterized by a narrow peak near scatter-
ing vectors on the order of Q with a width defined by inverse
correlation length k � xÿ1 and corresponding energy scale D
(on the order of pseudogap crossover temperature T �).

For momentum-dependent self-energy, therefore, we
shall concentrate on the case of electron scattering by such
(SDW-like) antiferromagnetic spin fluctuations [a similar
consideration also works fine for charge density wave
(CDW-like) fluctuations] with short-range order. To calcu-
late Sk�io� for the case of electrons propagating in a
quenched random field of Gaussian spin (or charge) fluctua-
tions with a dominating scatteringmomentum in proximity to
characteristic vectorQ (`hot-spot' model [56]), we shall apply
the generalized version of the recurrent procedure proposed
in Refs [58±61], allowing us to take into account all Feynman
diagrams describing the scattering of electrons by this
random field. This becomes possible because of a remarkable
property of the simplified hot-spot model: the contribution
from an arbitrary diagram with crossing interaction lines is
equal to the contribution of some diagram of the same order
without crossing those lines [61]. Thereby, we can restrict
ourselves to the consideration of noncrossing diagrams only
and take into account other diagrams by combinatorial
prefactors attributed to interaction lines [60, 61]. Eventually,
we arrive at the following recurrent relation for the self-
energy (continuous fraction representation [60, 61]):

Sn�io; k��D2 s�n�
io� mÿS�io� ÿ en�k� � invnkÿ Sn�1�io; k� :

�16�
Here, the term Sn�io; k� of the recurrent procedure contains
all diagrammatic contributions with the number of interac-
tion lines 5 n. The recurrent procedure for Sn�io; k�
converges rather fast: we can put Sn�io; k� equal to zero for
large enough n and, performing straightforward computa-
tions, obtain the desired physical self-energy at n � 1 [60],
which can be subsequently used in the DMFT+S computa-
tional scheme:

Sk�io� � Sn�1�io; k� : �17�
Parameter D entering formula (16) characterizes the energy
scale (width) of the pseudogap, k � xÿ1 is the inverse
correlation length of SDW (CDW) fluctuations, en�k� �
e�k�Q� and vn�jvxk�Qj � jv yk�Qj for odd n, and en�k��e�k�
and vn � jv x

k j � jv y
k j for even n, where velocity projections vxk

and v y
k are defined by the usual derivatives of the bare electron

dispersion e�k� with respect to corresponding momentum
components. Finally, s�n� are combinatorial prefactors
defining the number of coinciding diagrams:

s�n� � n ; �18�
for the case of commensurate charge (CDW type) fluctua-
tions with Q � �p=a; p=a� [61]. For incommensurate CDW
fluctuations [61] (when Q is not related to the lattice period),
we get

s�n� �
n� 1

2
for odd n ;

n

2
for even n :

8><>: �19�
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If we want to take into account the spin (Heisenberg)
structure of interaction with spin fluctuations for a nearly
antiferromagnetic Fermi liquid (spin±fermionmodel [58, 59]),
the diagram combinatorics become more complicated.
Scattering processes preserving spin projection are con-
trolled by commensurate combinatorics, while spin flip
scattering is described by incommensurate diagrams
(`charged' random field, according to Refs [58, 59]). In this
model, the recurrent procedure (16) for a single-particle
Green function remains the same, but with other combinator-
ial prefactors s�n� [58, 59]:

s�n� �
n� 2

3
for odd n ;

n

3
for even n :

8>><>>: �20�

Obviously, this procedure introduces an important length
scale x, missed in standard DMFT. Physically, this length
scale reflects the influence of short-range order fluctuations
(SDW or CDW) on an electronic bath surrounding the
effective Anderson impurity in DMFT.

After obtaining the self-consistent solution of DMFT+S
set of equations (5) ± (10) allowing also for nonlocal fluctua-
tions, one can calculate the spectral density A�o; k�:

A�o; k� � ÿ 1

p
Im

1

o� mÿ e�k� ÿ S�o� ÿ Sk�o� ; �21�

where S�o�, Sk�o�, and chemical potential m have already
been computed in a self-consistent way. The density of states
can be found by integration of formula (21) over the Brillouin
zone.

An analogous approach can also be developed to
determine two-particle vertices. The basic idea employed
here is the possibility of obtaining an arbitrary vertex
diagram by introducing the `external field' line into the
corresponding self-energy diagram [62±64]. In the model
under consideration, we can again restrict ourselves to non-
crossing diagrams, while the contribution from all other
diagrams can be accounted for by combinatorial prefactors
s�n� attributed to interaction lines [58±61]. Thus, all vertex
diagrams are generated by the simple ladder diagrams with
additional s�n� prefactors linked to corresponding interaction
lines [63, 64] (see also monograph [42]). Then, we obtain the
following system of recurrent relations for the vertex
GRA�eÿ; kÿ; e�; k�� [64], where the contribution of local
DMFT self-energy (obtained within the DMFT+S proce-
dure) is already included:

GRA
nÿ1�eÿ; kÿ; e�; k���1�D2s�n�GA

n �eÿ; kÿ�GR
n �e�; k��

�
n
1� 2ivnkk

�
oÿ en�k�� � en�kÿ� ÿ SR�e��

� SA�eÿ� ÿ SR
n�1�e�; k�� � SA

n�1�eÿ; kÿ�
�ÿ1o

� GRA
n �eÿ; kÿ; e�; k�� ; �22�

where

GR;A
n �e�; k��
� 1

e� ÿ en�k�� � invnkÿ SR;A�e�� ÿ SR;A
n�1 �e�; k��

: �23�

`Physical' vertex GRA�eÿ; kÿ; e�; k�� is defined as
GRA
n�0�eÿ; kÿ; e�; k��. Recurrent procedure (22) accounts for

all diagrams of perturbation theory for the vertex part. In the
limit of k! 0 �x!1�, formula (22) can be reduced to a
series investigated in Ref. [62] (see also Refs [58, 59]), which
can be exactly summed in analytical form. The standard
ladder approximation is reproduced if all combinatorial
factors s�n� in formula (22) are made equal to unity for all n
[63]. The recurrent procedure for GRR�eÿ; kÿ; e�; k�� differs
from that in formula (22) by the evident change ofA! R and
by replacing the whole expression in curly brackets on the
r.h.s. of Eqn (22) by unity.

Equations (4), (16), and (22), along with (13) and (14),
describe the complete self-consistent procedure of calculating
optical conductivity in ourmodel within the framework of the
DMFT+S approach.

An important aspect of our theory is the possibility of the
microscopic calculation of both effective parameters D and x.
For example, applying the two-particle self-consistent theory
of Ref. [65], together with approximations introduced in
Refs [58±60] for the two-dimensional Hubbard model, we
derived a microscopic expression for D [35], which can be
calculated within the standard DMFT. It can be shown, in
particular, that for a wide range of hole doping the pseudogap
amplitude D varies in the interval from t to 2t (t is the nearest
neighbor hopping integral).

3.1.2 Basic electronic properties in the pseudogap state. Let us
discuss results for the standard single-band Hubbard model
on a square lattice with electron dispersion

e�k� � ÿ2t�cos kxa� cos kya� ÿ 4t 0 cos kxa cos kya ; �24�

where t and t 0 stand for the nearest and next-to-nearest
hopping integrals.

The energy scale in the following is defined by the nearest
neighbor hopping integral t, and the length scale by the lattice
constant a. The numerical renormalization group (NRG) was
used as the impurity solver [23, 24]. Detailed computational
results on the single-particle properties demonstrating pseu-
dogap anomalies can be found in Refs [35±37], and on optical
conductivity in Ref. [38]. Here, we only discuss the most
typical results correspondingmostly to the case of t0=t � ÿ0:4
(characteristic for cuprates) and band filling n � 0:8 (hole
doping).

Density of states and spectral function. Let us start with
results obtained within the generalized DMFT+S approach
for the densities of states (DOSs) corresponding to rather
weak (compared with bandwidth) Coulomb interaction
U � 4t. A characteristic feature of the strongly correlated
metallic state is the coexistence of lower and upper Hubbard
subbands split by Coulomb interaction U with the quasipar-
ticle peak at the Fermi level [4, 5]. Because the unperturbed
DOS for the square lattice has Van Hove singularity near the
Fermi level, in general the peak on the Fermi level cannot be
treated simply as a quasiparticle one. Actually, there are two
contributions to this peak: (i) from a quasiparticle peak
appearing in strongly correlated metals due to many-body
effects, and (ii) from the smoothed Van Hove singularity of
unperturbed DOS.3

3 With an increase in Coulomb repulsion, the Van Hove singularity

gradually transforms into a quasiparticle peak at U � �6ÿ8�t.
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On the left side of Fig. 6, we show DMFT+SDOSs with
n � 0:8 for the case of t 0=t � ÿ0:4 (left panel) and t 0 � 0
(right panel) for two different temperaturesT � 0:356t (lower
panel) and T � 0:088t (upper panel). Black solid curves were
obtained in the absence of fluctuations. The other curves in
Fig. 6 present results for DOSs with nonlocal fluctuations
with amplitude D � 2t. For all parameter sets, we see that the
introduction of nonlocal fluctuations leads to pseudogap
formation on a quasiparticle peak. The width of the
pseudogap (energy interval between corresponding peaks in
the DOSs) is on the order of 2D. A decrease in the value of D
from 2t to t gives a pseudogap width that is half the size and
makes it less deep. A more pronounced pseudogap is found
for spin-fermion-model combinatorial prefactors [see for-
mula (20)], as compared with the case of commensurate
charge fluctuations [combinatorial prefactors (19)]. The
influence of the correlation length value corresponds to
general expectations. A decrease in correlation length, or an
increase from xÿ1 � 0:1 to xÿ1 � 0:5 for inverse correlation
length, slightly smears the pseudogap. The rise in temperature
from T � 0:088t to T � 0:356t leads to general broadening of
DOS structures. One should note that DMFT+S results at
U � 4t (which is less than the bandwidthW) are qualitatively
similar to the results obtained earlier in the absence of the
Hubbard interaction [58±60].

Let us consider now the case of a doped Mott insulator
with aHubbard interaction value ofU � 40t, t 0=t � ÿ0:4 and
band filling n � 0:8 (right side of Fig. 6e). A characteristic
feature of the DOSs for such strongly correlated metals is the
strong splitting of the lower and upper Hubbard bands, with
the Fermi level falling within the lower Hubbard band (the
case of hole doping). In the absence of nonlocal fluctuations,
the quasiparticle peak is again formed on the Fermi level.
However, the upper Hubbard band resides now quite far
away to the right and does not touch the quasiparticle peak
(as it does for weak Coulomb interaction).

For strong enough nonlocal fluctuations with D � 2t, the
pseudogap appears in the middle of the quasiparticle peak,

and the lower Hubbard band is slightly broadened by
fluctuation effects. Qualitatively, pseudogap anomaly beha-
vior reminds us of that described above for the case of
U � 4tÐa decrease in x smears the pseudogap and makes it
less pronounced, and a decrease in D from D � 2t to D � t
narrows the pseudogap and makes it more shallow (see
Ref. [35]). Let us also notice that, for the doped Mott
insulator, pseudogap is more evident for spin SDW-like
fluctuations than for charge CDW-like ones.

Nevertheless, there are quite appreciable distinctions in
contrast to the U � 4t case. For example, the width of the
pseudogap in the DOS is found to be essentially smaller than
2D, which is connected, in our opinion, with noticeable
narrowing of the quasiparticle peak itself caused by local
correlations.

In Fig. 7, we show spectral densities A�o; k�, calculated
within the DMFT+S approach, along high-symmetry
directions of the first Brillouin zone: G�0; 0�ÿX�p; 0�±
M�p; p�ÿG�0; 0�. In fact, this figure displays the quasiparti-
cle band of a many-body systemÐpositions of maxima of
spectral densities specify quasiparticle dispersion, while their
width defines quasiparticle damping. Also, we clearly observe
the partial reconstruction (`destruction') of this band by
pseudogap fluctuations. One can see a characteristic double-
peak pseudogap structure in proximity to the X-point of the
Brillouin zone. In the middle of the MÿG direction (the so-
called `nodal' point), one can observe the emergence of the
pseudogap, i.e. the presence of `memory' of the AFM gap,
which has a maximum here in the case of AFM long-range
order. Generally speaking, changing the filling leads to a
common shift of spectral functions with respect to the Fermi
level.

Fermi surface `destruction'. Within conventional DMFT,
the Fermi surface is not renormalized by interaction, i.e. it
remains the same as for bare quasiparticles [3]. However, in
the case of nontrivial momentum dependence of self-energy,
substantial renormalization of the Fermi surface may occur
due to pseudogap formation [58, 59]. There are several ways
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to define the Fermi surface for strongly correlated systems.
Below, we shall exploit the intensity map of the spectral
function (spectral density) (21) at o � 0, which is often called
the Fermi surface map. Such a map is directly measured in
ARPES experiments, and positions of its intensity maxima
specify the Fermi surface in the sense of the usual Fermi-
liquid theory, where quasiparticle damping becomes negligi-
bly small.

On the left side of Fig. 8, these maps are displayed for
strongly correlated metal with U � 4t. This contour plot of
the spectral function clearly demonstrates the `destruction' of
the Fermi surface in the `hot-spots', attended with the

formation of the `Fermi arcs' upon D growth, similar to that
observed in the pioneer work of Ding et al. [66], which was
later confirmed in a large number of other studies. One should
note that qualitatively analogous behavior is also evidenced
in the absence of local electron correlations (U � 0) [36, 67].
The role of finite U values adds up to a decrease in spectral
function intensity when compared with the case ofU � 0 and
leads to additional `smearing', making hot-spots less visible.
Destruction of the Fermi surface starts in the vicinity of hot
spots for small D, but practically simultaneously it disappears
in the whole antinodal region [near points X(p,0), Y(0,p)] of
the Brillouin zone, while only `Fermi arcs' in the nodal region
remain, with the shape close to the bare Fermi surface. Those
results naturally explain why in ARPES experiments the
clear hot spots behavior is rather rarely observed [68]. The
question of the possibility of observing hot spots will be
elucidated in more detail in Section 4.4 below, devoted to the
LDA+DMFT+S description of realistic cuprates.

In the case of a dopedMott insulator withU � 40t, shown
in Fig. 8b, we see that the Fermi surface is rather ill-defined
for all values of D. The profile of the spectral function is
significantly more smeared for the smaller values of U,
reflecting the important role of local correlations.

For comparison, we also show in Fig. 8 the renormalized
Fermi surfaces obtained in this model by formal solution of
equation (25) 4

oÿ e�k� � mÿReS�o� ÿReSk�o� � 0 �25�

ato � 0, used, for example, in the studies [58, 59]. Obviously,
this definition gives a Fermi surface close to the one obtained
from the intensity map for small D, but does not account for
its significant damping essential for large D. For large
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4 This definition is used in the standard Fermi-liquid theory. In fact, in our

particular case the influence of nonlocal pseudogap fluctuations leads to

qualitative changes in the simple Fermi-liquid picture. Herewith, we leave

aside the question of whether the Fermi-liquid theory is applicable on such

a defined Fermi surface or not, as well in the limit T! 0, since the static

approximation used is by construction the high-temperature oneÐshort-

range order AFM fluctuations can be considered as quasistatic only if

T4oSF, where oSF is the characteristic frequency of spin fluctuations

[58±60].
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pseudogap amplitudes, this definition of the Fermi surface is
qualitatively adequate for the true behavior, resulting from
spectral function analysis, only in the nodal region. It is the
contour plot of the spectral function (at o � 0) that gives the
most complete and natural representation of the Fermi
surface for systems with strong correlations and nonlocal
fluctuations of some order parameter, which are present in a
wide region of the phase diagram of high-Tc cuprate type
systems because of their lessened dimensionality. Results
obtained in a such an approach directly correspond to
ARPES experiments, where exactly this definition of the
Fermi surface is most conventional.

Optical conductivity. Let us set about discussing
DMFT+S results for optical conductivity in the pseudogap
state. In the left panel of Fig. 9, we giveDMFT+S results for
the real part of optical conductivity in the case of strongly
correlated metal (U � 4t) for different pseudogap ampli-
tudes. We clearly observe the formation of a typical
pseudogap anomaly on the `shoulder' of the Drude peak,
and, as would be expected, it grows as D increases. This
behavior is rather similar to the `mid-infrared feature' which
is evidenced in the optical conductivity of cuprate super-
conductors [69, 70]. The rise in temperature and decrease in
fluctuation correlation length smear the pseudogap, making
this anomaly less pronounced [38].

The right panel of Fig. 9 demonstrates DMFT+S optical
conductivity of a doped Mott insulator (U � 40t) for several
values of the pseudogap amplitude. We see that the frequency
range, where the pseudogap anomaly manifests itself, gets
narrower with the growth in local correlation strength, and
for large U values pseudogap anomalies are strongly
suppressed. Pseudogap fluctuations lead to noticeable
changes in optical conductivity only for relatively low
frequencies of order D. For higher frequencies (e.g. on the
order ofU, where transitions to the upperHubbard band take
place), pseudogap effects do not show themselves (see also
inset to the right panel of Fig. 9). For low frequencies, we
observe suppression of the Drude peak with a rather weak
anomaly near o � D, which disappears for small D or for
short correlation lengths.

3.2 Mott±Anderson transition in disordered systems
The importance of accounting for both electron interactions
and disorder effects in condensed matter research is well

known [71, 7]. Coulomb interactions and disorder are two
driving forces leading to metal±insulator transitions, con-
nected with localization and delocalization of charge carriers.
In particular, the Mott±Hubbard transition is caused by
electron repulsion [1, 73], while the Anderson metal±insula-
tor transition is related to the scattering of noninteracting
particles by impurities [74]. It is well known that a subtle
competition between disorder and interaction effects has
many manifestations [71, 72, 75, 76]. This problem is most
relevant in the case of strong disorder and strong electron
correlations, determining the physical mechanisms of the
Mott±Anderson metal±insulator transition [71, 72].

One of the main models allowing for the account of both
electronic correlations (leading to the Mott metal±insulator
transition [1, 73]) and strong disorder effects (leading to the
Anderson metal±insulator transition) is the Anderson±
Hubbard model [39, 77±82].

In Refs [77±79], the three-dimensional Anderson±Hub-
bard model was investigated in the framework of dynamical
mean-field theory [3±5, 14]. The influence of local disorder
was taken into account through averaged densities of states
[83, 84] within the well-known coherent potential approxima-
tion (CPA) which does not describe Anderson localization.
To overcome this difficulty, Dobrosavljevi�c and Kotliar [77]
have proposed a version of DMFT where the self-consistent
solution of stochastic DMFT equations for an ensemble of
systems with given realizations of disorder was used to
calculate the averaged logarithmic (geometric mean) density
of states, which gives information on critical disorder for the
Anderson transition. This approach was further developed in
Refs [78, 89], where a highly nontrivial phase diagram of the
three-dimensional paramagnetic Anderson±Hubbard model
[79] was obtained, containing a correlated metal phase, a
Mott insulating phase, and a correlated Anderson insulator
phase. The main problem of the approach worked out in
Refs [77±79] is the impossibility of direct computation of
measurable physical properties, such as conductivity which
actually defines the metal±insulator transition.

At the same time, there exists the well-developed self-
consistent theory of Anderson localization, based on the
solution of equations for the generalized diffusion coeffi-
cient. The efficiency of this approach in the absence of
interactions has been known for a long time [40±42, 56, 85±
87]; certain attempts to include interaction effects in this
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approach were undertaken with some promising results in
Refs [86, 88, 89]. However, up to now this approach has not
been extended to the modern theory of strongly correlated
systems. Such an investigation was performed for the first
time in Ref. [39] for three-dimensional systems, and later for
the two-dimensional case [90].

Let us consider the disordered paramagnetic Anderson±
Hubbard model at (mostly) half-filling for arbitrary interac-
tion strength and disorder. Obviously, this model contains
both Mott±Hubbard and Anderson metal±insulator transi-
tions. The Hamiltonian of the model is given by

H � ÿt
X
hi ji s

a
y
isajs �

X
is

Ei nis �U
X
i

ni" ni# ; �26�

where t > 0 is the nearest neighbor hopping amplitude, while
U is on-site Hubbard repulsion, nis � a

y
isais is the particle

number operator on site, and ais (a
y
is) is the annihilation

(creation) operator of electrons on site i with spin s. Local
energies Ei are assumed to be random and independent on
different lattice sites. To simplify the diagram technique
hereinafter, we assume the Gaussian distribution for Ei:

P�Ei� � 1������
2p
p

D
exp

�
ÿ E 2i
2D2

�
: �27�

Parameter D here is the measure of disorder. Such a Gaussian
random field (`white noise') of energy levels Ei at different
lattice sites is equivalent to impurity scattering and can be
described by the standard diagram technique for the averaged
Green functions [42].

Self-energySp�ie� brought about by scattering on disorder
may be evaluated in the simple one-loop approximation
neglecting `crossing' diagrams (i.e. in the self-consistent
Born approximation) [42], which gives for Gaussian disorder
(27) the following result

Sp�ie� � D2
X
p

G�ie; p� � Simp�ie� ; �28�

so that our `external' self-energy turns out to be independent
of pmomentum (i.e., local).

To analyze optical conductivity, we shall apply the general
DMFT+S expression (13). The most important block
F 0RA

e �o; q� can be evaluated using the ideology of self-
consistent theory of localization [40±42, 56, 85±87], with
some generalizations accounting for the role of Hubbard
interaction via the DMFT+S approach [39, 90]. The main
distinction from the standard derivation of the equations of
self-consistent theory of localization is the use of Green
functions (4) containing a local contribution to self-energy
from the Hubbard interaction.

Following the standard derivation [40±42, 56, 85±87], we
obtain a diffusion-like (for small o and q) contribution to
F0RA

e �o; q�, which takes the form

F 0RA
e �~o; q� � 2piN�e�

~o� iD�o� q 2
; �29�

where D�o� is the generalized diffusion coefficient, and an
important difference from the single-particle case is contained
in the term

~o � e� ÿ eÿ ÿ SR�e�� � SA�eÿ�
� oÿ SR�e�� � SA�eÿ� � oÿ DSRA�o� ; �30�

which substitutes for the usual o term in the denominator of
the standard expression for F 0RA

e �o; q�. From general
considerations, it is clear that in the metallic phase as o! 0
we have DSRA�o � 0� � 2i ImS�e� � maxfT 2; e 2g, which
reflects the Fermi-liquid behavior in DMFT (which is not
violated by elastic impurity scattering). For finiteT, it leads to
the usual phase decoherence caused by (inelastic) electron±
electron scattering [71, 72, 75, 76].

Equation (13) then takes the form

Re s�o� � e 2o
2p

�1
ÿ1

de
ÿ
f �eÿ� ÿ f �e��

�
�Re

�
2pN�e�D�o�

o 2
ÿ f 0RR

e �o�
�
1ÿ DSRR�o�

o

�2�
; �31�

where the second term in square brackets can, in fact, be
neglected for small o, while, if needed to describe a wide
frequency range, it can be calculated using formula (14) with
F0RR

e �o; q� taken in the usual ladder approximation.
Next, following the standard framework of the self-

consistent theory of localization [40±42, 56, 85±87], we get
the closed self-consistent equation for the generalized diffu-
sion coefficient

D�o� � i
hvi2
d

�
~oÿ DSRA

imp�o�

� D 4
X
p

�DGp� 2
X
q

1

~o� iD�o� q 2

�ÿ1
; �32�

where d is the spatial dimensionality, DGp � GR�e�; p�ÿ
GA�eÿ; p�, DSRA

imp�o� � SR
imp�e�� ÿ SA

imp�eÿ�, and average
velocity hvi, which can be well approximated just by the
Fermi velocity, is given by the following expression

hvi �
P

p jvpjDGpP
p DGp

; �33�

where vp � qE�p�=qp. Equation (32) should be solved jointly
with following the self-consistent DMFT+S procedure (5)±
(10), (28). In fact, this equation is a transcendental one and
can be easily solved by iterations for each ~o value.

In accordance with the usual applicability limit of the
diffusion approximation, summation over q in Eqn (32)
should be restricted to [42, 86]

q < k0 � min flÿ1; pFg ; �34�

where l � hvi=2g is an elastic mean free path, g is the Born
scattering frequency by impurities, and pF is the Fermi
momentum. It is well known that in the two-dimensional
case Anderson localization occurs at any infinitely weak
disorder. However, the localization radius in this case is
exponentially large, and the sample size begins to play a
significant part. Sample size L can be introduced into the self-
consistent theory of localization by cutting off the integration
of the diffusion pole at small q [40, 41, 85], i.e. at

q � kL � 1

L
: �35�

When o! 0 [and obviously ~o! 0 on the Fermi surface
(e � 0)], in the Anderson insulator phase one gets a
localization behavior of the generalized diffusion coeffi-
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cient [40±42, 85]:

D�o� � ÿi~oR 2
loc : �36�

After substituting formula (36) into equation (32), one
obtains an equation defining localization radius Rloc:

R 2
loc � ÿ

hvi2
dD 4

�X
p

�DGp�2
X
q

1

1� R 2
locq

2

�ÿ1
: �37�

3.2.1 Three-dimensional systems. Below, we present the most
interesting results for the three-dimensional Anderson±
Hubbard model at half-filling on a cubic lattice with a
model semielliptic bare density of states with the bandwidth
W � 2D:

N0�e� � 2

pD 2

�����������������
D 2 ÿ e 2
p

: �38�

The density of states is always given in units of the number of
states per energy interval for a unit cell of the volume a 3 (a is
the lattice constant) and for one spin projection. Conductiv-
ities are given in natural units of e 2=�ha. For more detailed
numerical results (also accounting for deviations from half-
filling), we refer the reader to paper [39].

Evolution of the density of states. Within the standard
DMFT approach, the Hubbard model density of states at
half-filling has a typical three-peak structure [4, 5, 91, 92] with
a narrow quasiparticle band (central peak) at the Fermi level
andwide upper and lowerHubbard bands situated at energies
e � �U=2. As U grows, the quasiparticle band narrows
within the metallic phase and disappears at the Mott±
Hubbard metal±insulator transition at critical interaction
Uc2 � 1:5W. With a further increase in U, the insulating gap
opens at the Fermi level.

We present in Fig. 10 our results for DMFT+S densities
of states for a typical strongly correlated metal with
U � 2:5D � 1:25W, in the absence of disorder and for
different values of disorder D, including strong enough
disorder transforming a correlated metal into a correlated
Anderson insulator (see also below the discussion concerning
optical conductivity). As one would expect, disorder leads to
typical broadening and suppression of the density of states.

More unexpected is the result obtained for U � 4:5D �
2:25W, typical for Mott insulators and shown in the right
panel of Fig. 10. Here we observe restoration of the central

peak (quasiparticle band) in the DOS with an increase in
disorder, transforming the Mott insulator into a correlated
metal or into a correlated Anderson insulator. Similar DOS
behavior was also reported in Ref. [79].

The physical origin of such quite unexpected central peak
restoration is pretty clear. The control parameter of metal±
insulator transition in DMFT is the ratio of Hubbard
interaction U to bare bandwidth W � 2D. With disorder
coming into play (in the absence of Hubbard interaction),
new effective bandwidth Weff appears and grows with
increasing disorder. A semielliptic form of the DOS with
well-defined band edges in the self-consistent Born approx-
imation (28) is preserved. This all leads to diminishing the
ratio U=Weff, which in turn causes restoration of the
quasiparticle band. This issue is discussed in more detail
below, when considering the phase diagram of the Ander-
son±Hubbard model.

In the absence of disorder, a characteristic feature of the
Mott±Hubbard metal±insulator transition is hysteresis DOS
behavior appearing with a decrease in U starting from the
insulating phase [5, 91, 92]. The Mott insulating phase is
conserved (metastable) down to rather small U values
`wedging' deep in the correlated metal phase. The metallic
phase is restored only at about Uc1 � 1:0W. Corresponding
interval Uc1 < U < Uc2 is typically considered a coexistence
region of the metallic and Mott insulating phases, where,
from a thermodynamic point of view, the metallic phase is
more stable [5, 91±93]. Such hysteresis DOS behavior (see
Ref. [39]) is also observed in the presence of disorder and will
be described below during the discussion of the phase
diagram of the Anderson±Hubbard model.

Optical conductivity: Mott±Hubbard and Anderson transi-
tions. Without disorder, our calculations reproduce conven-
tional DMFT results [4, 5], where optical conductivity is
characterized by the usual Drude peak at low frequencies and
a wide maximum at about o � U, which corresponds to
optical transitions to the upper Hubbard band. As U grows,
the Drude peak diminishes and disappears at the Mott
transition, when only the contribution from transitions
through theMott±Hubbard gap remains valid. The introduc-
tion of disorder leads to a qualitative change in the frequency
dependence of optical conductivity.

In the left panel of Fig. 11, we depict the real part of
optical conductivity of theAnderson±Hubbardmodel at half-
filling for different disorder levels D andU � 2:5D typical for
correlated metal. Then, transitions to the upper Hubbard
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Figure 10. Anderson±Hubbard model density of states at half-filling for various disorder levels D [39]: (a) correlated metal with U � 2:5D, and (b) Mott

insulator with U � 4:5D.
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bands at energies o � U are almost unobservable. However,
it is clearly visible that the metallic Drude peak typically
centered at zero frequency is broadened and suppressed by
disorder, gradually transforming into a peak at a finite
frequency because of Anderson localization effects. The
Anderson transition takes place at Dc � 0:74D � 0:37W
(corresponding to curve 3 in all figures here and also in
Fig. 10 for the DOS). Notice that this value depends on the
cutoff (34) which is defined up to the coefficient of the order of
unity [42, 86]. Naive expectations can bring us to the
conclusion that the narrow quasiparticle band at the Fermi
level, being formed in a strongly correlated metal, may be
localizedmuchmore easily than the normal conduction band.
However, we see that these expectations are wrong and the
band localizes only at rather large disorder,Dc � D, similar to
that for the conduction band with a width of�W. The latter
agrees with the known analysis of localization in the two-
band model [94].

In the DMFT+S approach, critical disorder Dc does not
depend on U, as interaction effects enter Eqn (32) only
through DSRA�o� ! 0 as o! 0 (for T � 0, e � 0), and the
influence of interaction ato � 0 disappears. In fact, this is the
main shortcoming of the DMFT+S approach originating
from the neglect of the interference effects between interaction
and impurity scattering. Significant role of these interference
effects has been known for a long time [71, 72, 75, 76]. On the
other hand, the neglect of these effects allows performing the
reasonable physical interpolation between twomain limitsÐ
that of the Anderson transition because of disorder, and
Mott±Hubbard transition because of strong correlations.
Thus, one can consider this approximation as a reasonable
first step to a future complete theory of metal±insulator
transitions in strongly correlated disordered systems.

In Fig. 11b, we show the real part of optical conductivity
of a Mott±Hubbard insulator with U � 4:5D at different
disorder levels D. In the inset to this figure we show low-
frequency data demonstrating different types of conductivity
behavior, especially close to the Anderson transition and
within the Mott insulating phase. In the main part of the
figure, the contribution to conductivity from transitions to
the upper Hubbard band at about o � U is distinctly seen.
Disorder growth results in an origin of finite conductivity for

the frequency range inside the Mott±Hubbard gap, which
correlates with the restoration of the quasiparticle band in the
DOS within the gap, as shown in Fig. 10b. This conductivity
for D < Dc is metallic (finite in the static limit o � 0), and for
D > Dc at low frequencies we get Re s�o� � o 2, which is
typical for an Anderson insulator [40±42, 56, 85±87].

The appearance of a peak in Re s�o� at low finite
frequencies even in the metallic phase is a bit unusual. This
happens because of the importance of localization effects. In
the ladder approximation for F0RA

e �o; q�, which neglects all
localization corrections, we obtain the usual Drude peak at
o � 0 [39], while the inclusion of localization effects shifts the
peak in Re s�o� to low (but finite) frequencies. As is well
known [1], the metallic state is defined by finite static (o � 0)
conductivity at zero temperature.

Above, we only presented conductivity data obtained
when there is an increase in U from values typical to metallic
phase to those forMott insulating phase. AsU decreases from
values common to the Mott insulating phase, we observe the
hysteresis of conductivity in the phase coexistence region
defined (in the absence of disorder) by inequality
Uc1 < U < Uc2. A hysteresis of conductivity also shows itself
in the coexistence region in the presence of disorder. Details of
this behavior of optical conductivity can be found in Ref. [39].

Phase diagram of Anderson±Hubbard model at half-filling.
The phase diagram of the Anderson±Hubbard model at half-
filling was studied in Ref. [79], using direct DMFT calcula-
tions for the lattice with a finite number of sites with random
realizations of energies Ei in Hamiltonian (26) and subsequent
averaging over these realizations to get an averaged DOS and
geometrically mean local DOS which allows one to define
critical disorder for transition into the Anderson insulator
phase. Below, we present our results on the Anderson±
Hubbard paramagnetic phase diagram with half-filling,
obtained from the DOS and optical conductivity calcula-
tions within the DMFT+S approach. It should be empha-
sized that conductivity analysis is the most direct way to
distinguish metallic and insulating phases [1].

A �D;U� phase diagram calculated at zero temperature in
the disorder±correlation plane is shown in Fig. 12a. Anderson
transition line Dc � 0:37W � 0:74D is defined as a disorder
strength for which static conductivity becomes zero at T � 0.
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Figure 11.Real part of optical conductivity in theAnderson±Hubbardmodel at half-filling for different disorder levelsD [39]. (a) Typical correlatedmetal
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The Mott±Hubbard transition can be detected from the
central (quasiparticle) peak disappearance in the DOS or
from optical conductivity behavior based on observations of
gap closing in the insulating phase or from static conductivity
disappearance in the metallic phase.

We have already noticed that the DMFT+S approxima-
tion gives a universal (U-independent) strength of critical
disorder Dc because of the neglect of interference between
disorder scattering and Hubbard interaction. This leads to
differences between the phase diagram of Fig. 12 and the one
obtained in Ref. [79]. At the same time, the influence of
disorder scattering on theMott±Hubbard transition turns out
to be highly nontrivial and qualitatively coincides overall with
the results of Ref. [79]. The main distinction lies in the
conservation of Hubbard bands in our results, even in the
limit of high enough disorder, while in Ref. [79] they just
disappear. Moreover, the phase coexistence region in Fig. 12
slowly widens with a disorder growth, instead of vanishing at
some `critical' point, as in the phase diagram of Ref. [79].
Coexistence region boundaries, which are defined by Mott
insulating phase boundaries, obtained with an increase or
decrease inU and represented by curvesUc1�D� andUc2�D� in
Fig. 12, can be obtained from the simple equation

Uc1; c2�D�
Weff

� Uc1; c2

W
; �39�

where the effective bandwidth in the presence of disorder was
calculated at U � 0 within the self-consistent Born approx-
imation (28):

Weff �W

����������������������
1� 16

D 2

W 2

s
: �40�

Thus, the boundaries of the phase coexistence region, which
also define theMott insulating phase boundaries, are given by

Uc1; c2�D� � Uc1; c2

����������������������
1� 16

D 2

W 2

s
: �41�

Appropriate curves are plotted in Fig. 12 with dotted and
solid lines. Phase transition points detected from the disap-
pearance of a quasiparticle peak, as well as points following
from qualitative changes in conductivity behavior, are shown
in Fig. 12a by different symbols. These symbols demonstrate
very good agreement with analytical results, supporting the
choice of ratio (39) as a control parameter of Mott transition
in the presence of disorder.

In Fig. 12b, we display the temperature dependence of
Mott insulating phase boundaries Uc2�D� (squares) and the
phase coexistence region Uc1�D� (circles).5 It is well known
that in `pure' DMFTwithout disorder, the coexistence region
narrows with temperature growth and vanishes at some
critical temperature Tc. In the DMFT+S approach, the
disorder strengthening at zero temperature widens the
coexistence region, and this behavior remains for finite
temperatures. It is also seen that disorder growth leads to a
practically linear growth (solid black line) in this critical
temperature. Noteworthy also is the very weak temperature
dependence of the coexistence region boundary Uc1�D�.

3.2.2 Two-dimensional systems. According to the scaling
theory of localization [95], the metallic state in two-dimen-
sional (2D) systems does not exists: electrons are localized
already at any infinitely weak disorder. Despite the fact that
this prediction for 2D systems was made for noninteracting
particles, later it was found that the weak interaction among
electrons in the simplest case also favors localization [96]. In
the early 1980s, experiments done on different 2D systems
[97±99] mostly confirmed these predictions. Later on, how-
ever, some theoretical studies [75, 76] pointed out that in
general this point of view is incorrect, since in the limits of
weak disorder and large enough interaction 2D systems can
have finite conductivity at zero temperature. The experi-
mental discovery of metal±insulator transition in 2D weakly
disordered systems at low carrier concentration, absent in the
single-particle theory, stimulated a new field of theoretical

0

0.1

0.2

0.3
0.4

0.5

3.0
3.5

2.5
2.0

1.5
1.0

0.5
0

0.01

0.02

0.03

D=
2D

U=2D

T
=2
D

b

0.50

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Dc

D
=2
D

U=2D

Uc2�D�
Uc1�D�

Mott insulator

Correlated
Anderson insulator

Correlated metal

a

DOS

DOS
Conductivity

Conductivity

Figure 12. Phase diagram of the paramagnetic Anderson±Hubbard model. (a) Zero-temperature case [39]. Continuous curves Uc1;c2�D� are Mott

insulating phase boundaries obtained from analytical estimate of Eqn (41); different symbols represent results for these boundaries obtained from

calculations from the DOS and optical conductivity. Line of Anderson transition is given by Dc � 0:37. (b) Boundaries of Mott insulating phase and

phase coexistence region at various temperatures. Points are obtained fromDOS calculations. Solid black curve is a linear fit [Tc=2D � 0:02�1� D=2D)]

to the Tc points, where the coexistence region disappears.

5 These results for different temperatures were calculated byNAKuleeva.
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studies (see the introduction to this field in review papers [100,
101]).

In the DMFT+S approximation, as we shall see, the
localization radius defined by Eqn (37) for infinite 2D system
(L!1) remains finite (even if exponentially large) for any
infinitely weak disorder, signalling the absence of Anderson
transition in such a system, similarly to the case of the
conventional single-particle theory. However, as we shall
demonstrate below, the localization radius in finite-sized
systems diverges at some critical disorder which is defined
by the characteristic size L of the system. Qualitatively, this
critical disorder is determined by the condition that the
localization radius of infinitely large system become compar-
able to characteristic sample size: RL!1

loc � L. Thus, Ander-
son transition in finite two-dimensional systems in fact exists,
as does the metallic phase for a disorder strength below some
critical value. In the following, by `correlated metal' phase we
imply precisely such a phase for finite 2D systems.

Below, we discuss the most relevant results of the
DMFT+S computations for the 2D Anderson±Hubbard
model at half-filling on a square lattice with model rectan-
gular bare density of states with the bandwidthW � 2D:

N0�e� �
1

2D
; jej4D;

0 ; jej > D,

8<: �42�

which qualitatively corresponds precisely to a 2D case.
Density of states and optical conductivity. Calculations

demonstrated that the qualitative behavior of the density of
states in 2D systems is completely analogous to that discussed
above in the three-dimensional case. Some quantitative
distinctions are due to the different model of the bare density
of states (42), leading in particular to a larger (than in the
three-dimensional case) critical Hubbard interaction
Uc2 � 1:83W, corresponding to Mott metal±insulator transi-
tion in the absence of disorder, and Uc1 � 1:42W, bounding
from below the region of coexistence of metallic and
insulating phases. Similar to the three-dimensional model
for U > Uc2 (i.e. for a Mott insulator without disorder), an
increase in disorder strength leads to restoration of the

quasiparticle peak in the density of states. However, in this
case such a behavior does not signal in general the transition
to a correlated metal stateÐat least for infinitely large
systems, we are dealing here with the correlated Anderson
insulator.

Optical conductivity behavior in a wide frequency range is
also qualitatively quite similar to that in the three-dimen-
sional model. But for the infinite 2D model, zero-frequency
conductivity always disappears (in the zero-temperature
limit) and, in contrast to the d � 3 case [39], even at very
weak disorder the peak in optical conductivity lies at a finite
frequency. In the ladder approximation which does not
contain localization corrections, the usual Drude peak is
observed at zero frequency, and conductivity at o � 0 is
finite.

More details concerning the results for the DOS and
optical conductivity in the 2Dmodel can be found inRef. [90].

Localization radius and phase diagram of the 2DAnderson±
Hubbard model at half-filling. In Fig. 13a, we illustrate the
dependence of conductivity on disorder D at a finite but quite
low frequency o � 0:00005D. Circles mark the results of
ladder approximation, and triangles match the self-consis-
tent theory of localization. Curve 3, qualitatively coinciding
with the ladder approximation, was obtained from the
classical Drude expression

s�o� � s�0� g 2

g 2 � o 2
; �43�

where static conductivity s�0��e 2N�0�D0 ��e 2=�h� eF=�2pg�,
N�0� is the density of states at the Fermi level, and D0 is the
Drude diffusion coefficient. The impurity scattering rate was
taken as g � pN�0�D 2 � �p=2D�D 2. A significant contribu-
tion from localization corrections to conductivity at a finite
frequency (a noticeable distinction of curve 2 from 1 and 3
curves) appears only when the conductivity reaches values on
the order of minimal metallic conductivity s0 � e 2=�h
(whereon the conductivity is normalized in the figures). One
should note that exactly in this range of disorder, as we shall
see below, Anderson metal±insulator transition takes place
(the localization radius diverges) in 2D systems of reasonable
finite sizes.
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Also in Fig. 13a, we demonstrate the dependences of the
localization radius logarithm following from expression (37)
(right scale) as a function of disorder strength: curve 1 is for
an infinite sample, curves 2 and 3 are for finite-sized samples
with L � 108a and L � 105a, respectively. It is seen that the
localization radius grows exponentially as disorder dimin-
ishes and remains finite in the infinite 2D system, where
Anderson transition is absent. On the contrary, the localiza-
tion radius for finite systems diverges at critical disorder
determined by system size, demonstrating the existence of an
effective Anderson transition. As can be seen fromFig. 13, the
critical disorder is qualitatively deéned by the condition that
the localization radius of inénite system become comparable
to the characteristic sample size RL!1

loc � L. It should be
noted that the localization radius barely depends onU within
our approach (in contrast, for example, to paper [81]), which
leads to the independence of critical disorder of correlation
strengthU in 2D énite-sized systems. An analogous situation
is also realized in three-dimensional systems [39]. In general, it
is, of course, a drawback to our approximations.

Also in Fig. 13a, we plot the dependence of static
conductivity on disorder strength in finite samples with sizes
L � 108a andL � 105a (curves 4 and 5, respectively). In finite-
sized systems with weak disorder, static conductivity is not
zero (metal) and gradually falls with an increase in disorder
strength. It becomes zero at critical disorder, where the
localization radius also diverges in the sample of correspond-
ing size. The static conductivity of finite-sized samples within
our approximation barely depends on correlation strengthU.
A significant difference between static conductivity and
conductivity at low finite frequency, observed in Fig. 13, is
related to the above-mentioned exponential smallness of
the frequency range with the localization behavior of
conductivity.

Let us consider now the phase diagram of the 2D
paramagnetic Anderson±Hubbard model at half-filling,
obtained from DMFT+S calculated densities of states and
from the analysis of localization radius behavior in finite-
sized 2D systems. Such a phase diagram drawn in coordinates
disorder (D)Ð correlation strength (U) is shown in the right
part of Fig. 16.

The hatched stripe corresponds to the region of effective
`metal'±Anderson insulator transition. The boundaries of this
region are determined by divergence of localization radius in
finite samples with characteristic sizes L � 105a (upper
boundary) and L � 108a (lower boundary) (see Fig. 13a). It
should be emphasized that a further increase in the system
size, e.g. tenfold, up to L � 109a, leads only to a quite
insignificant drop in critical disorder. In other words, it
slightly shifts down the lower boundary of the hatched stripe
(Fig. 13b) Ð characteristic region of an effective Anderson
transition in finite-sized systems.

Curve Uc2�D� computed from the density of states
behavior defines the boundary of the Mott transition. The
transition criteria are the disappearance of the central
quasiparticle peak in the density of states N�e� together with
gap opening on the Fermi level. Similarly to the three-
dimensional model, a decrease in U starting from the
insulating phase leads to the Mott transition at U �
Uc1�D� < Uc2�D� and a phase coexistence (hysteresis) region
is observed in the phase diagram between curves Uc1�D� and
Uc2�D� (Fig. 13b). In analogywith the three-dimensional case,
we can guess that the ratio Uc1; c2�D�=Weff�D� between
Hubbard interaction and effective bandwidth controls the

Mott metal±insulator transition and is a universal constant
which does not depend on disorder, and obtain qualitative
dependence U �c2�D� for the 2D model, which is fitted by the
dotted curve in Fig. 13b. It is seen that, in contrast to the d � 3
case [39], the Uc2�D� dependence obtained from straightfor-
ward calculations of densities of states significantly differs
from the qualitative U �c2�D� dependence. Apparently, it is
related to the important change in the density-of-states
lineshape (at U � 0) as disorder D grows, which is absent for
the semielliptic band in the d � 3 case.

3.3 Singularities of electron dispersion in strongly
correlated systems in DMFT and DMFT+R approaches
3.3.1 Cusps (`kinks') in electronic spectra. The electronic
properties of crystalline solids are determined by single-
particle and collective excitations of electron subsystem and
their interactions with each other. These excitations are
characterized by energy E and quasimomentum k, which are
related to each other via dispersion (spectrum) Ek. Interaction
between single-particle and collective modes can result in
noticeable bends (cusps) of dispersion Ek Ðso-called `kinks'.
The lineshape and energy position of these features character-
ize interactions in the many-body system. For example, kinks
in the electronic dispersions experimentally found by ARPES
in copper oxides, with energies 40±70 meV below the Fermi
level, are evidence of electron±phonon [102±108] or electron±
magnon (spin-fluctuation) interactions [109, 110].

At the same time, ARPES experiments detect kinks in
electron dispersion for a number of different systems at
essentially higher energies (up to 800 meV) [111±113]. The
physical nature of these kinks remains unknown. Among
other attempts to find an explanation for these electronic
spectra anomalies, a novel purely electronic mechanism of
kink formation was proposed by Byczuk et al. [114]. This
mechanism is applicable to strongly correlated metals, where
the spectral function contains well-developed Hubbard
subbands, together with a central quasiparticle peak as, for
example, in transition metal oxides. The energy location of
these kinks apparently determines the range of applicability
of the conventional Landau Fermi-liquid theory.

As is well known [115], interaction generally results in a
finite lifetime of excitations in the system, so that Ek becomes
a complex function. For electron systems with Coulomb
interaction, the Landau Fermi-liquid theory proves the
existence of weakly damped fermionic quasiparticles for low
enough temperatures and in the narrow energy interval
around the Fermi surface [115]. Beyond the Fermi-liquid
mode, the concept of quasiparticles with well-defined disper-
sion is not, strictly speaking, applicable, since the quasiparti-
cle lifetime is too short. However, ARPES experiments in
recent years have convincingly shown the existence of
essentially k-dependent (though with rather broad maxima)
single-particle spectral function quite far from the Fermi
level, despite the fact that one cannot speak about well-
defined quasiparticles at these energies. In this case, we
understand as particle dispersion precisely this k-dependence
of spectral function maxima, which replaces the usual notion
of a quasiparticle spectrum.

3.3.2 Kinks of purely electronic nature.Let us consider inmore
detail a new mechanism of kink formation in the electronic
dispersion of strongly correlated systems, which does not
assume an interaction of electrons with phonons or other
excitations [114]. In order to understand the nature of this
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mechanism, we shall examine at the beginning a weakly
correlated system described by standard Fermi-liquid the-
ory. Because of the large enough quasiparticle lifetime close
to the Fermi level and the weakness of correlations, in the first
approximation interaction leads to a simple renormalization
of initial dispersion of (noninteracting) quasiparticles Ek,
which is replaced by Ek � ZFLEk, where ZFL is the Fermi-
liquid electron mass renormalization coefficient. This
changes the slope of dispersion in the vicinity of the Fermi
level, in contrast to a bare one. However, if we consider an
electron with energy far away from the Fermi level, for weak
interaction one can expect that its dispersion barely changes:
Ek � Ek, though the damping here can already be pretty large.
In this sense, one can say that electron±electron interaction by
itself can result in the formation of bends (kinks) in the
generalized dispersion (of the spectral function), and the
position of such a kink on the energy scale is defined namely
as energy, where a simple Fermi-liquid picture becomes
inapplicable. However, in weakly correlated metals ZFL91,
so that the slope of Ek will change insignificantly, making
such kinks hard to observe.

This picture may be distinctly different from that in
strongly correlated systems where ZFL can be much less
than unity, thus making kinks more pronounced. Strong
correlation interactions give rise to strong spectral weight
redistribution within the single-particle spectral function due
to the formation of Hubbard subbands. Moreover, as is well
known, in strongly correlated metals there is also a quasipar-
ticle peak which appears in proximity to the Fermi level,
between Hubbard subbands. Below, it will be shown that
`usual' Fermi-liquid quasiparticles exist in such systems only
in a very narrow vicinity of the Fermi level, while beyond the
Fermi-liquid mode (but still `inside' the quasiparticle peak)
there exists some intermediate mode with dispersion
Ek � ZCPEk, where renormalization factor ZCP is determined
by the central peak spectral weight and its value essentially
differs from ZFL. At these intermediate energies, which are
much smaller than the interaction energy, electrons or holes
strongly interact, and their dispersion differs from both the
Fermi-liquid one and the one for noninteracting quasiparti-
cles. In this energy range, we can speak about an `inter-
mediately' correlated situation, where ZFL < ZCP < 1. Con-
sequently, at some energies�o? inside the quasiparticle peak,
a transition from renormalization coefficient ZFL to ZCP

takes place. That leads to an emergence of kinks in electronic
dispersion, and the energy positions of these kinks are directly
related to energy boundaries of the domain of applicability of
the usual Fermi-liquid theory. Let us emphasize that this
mechanism gives rise to kink formation without any addi-
tional interactions with phonons or other collective modes.
The only necessary condition for such kink formation is the
presence of strong electron±electron correlations in the
system.

For a microscopic description of electronic kinks, let us
consider the Hubbard model which will be analyzed in the
framework of standard DMFT, using the numerical renor-
malization group (NRG) to solve the effective Anderson
single-impurity problem. For simplicity, we consider the
single-band Hubbard model at half-filling. The strongly
correlated mode in the Hubbard model occurs when the
interaction strength becomes on the order of bare band-
width: U �W. Consider as an example the computed results
given in Fig. 14. It is clearly visible that dispersionmoves from
the Fermi-liquidmode (line 1 in Fig. 14) to intermediate mode

described above (line 2 in Fig. 14) with the formation of well-
defined cusps in dispersion (kinks) at energies �o? �
�0:03 eV. In some of the high-symmetry directions (e.g.
around the X-point; see Fig. 14), the dispersion has quite a
small slope in proximity to the Fermi level, making the kinks
less pronounced.

Let us have a look at this situation from the point of view
of single-particle Green function behavior. From general
considerations it is clear that any cusps of dispersion caused
by interaction appear because of the corresponding behavior
of the self-energy or, more precisely, that of ReSk�o�. In the
majority of real physical systems, k-dependence of self-
energy, apparently, is less important than o-dependence
and, thus, omitting k-dependence of self-energy, Sk�o� �
S�o�, is, more or less, a good approximation. In the frame-
work of DMFT, this statement is exact. The self-consistent
expression for the self-energy of the Hubbard model within
DMFT can be written out as

S�o� � o� mÿ 1

G�o� ÿ D
ÿ
G�o�� ; �44�

where G�o� � �1=N� Pk G�k;o� is the local (averaged over
k) Green function, and D�G� is the frequency-dependent
hybridization function expressed via G�o�.6 The hybridiza-
tion function describes quantum-mechanical coupling
between an electron at a given site and other sites of the
system.

In Fig. 15a, we plotted the frequency dependence of the
spectral function (DOS) A�o� � ÿImG�o�=p calculated for
the same model parameters as in Fig. 14 and demonstrating a
typical three-peak structure. Corresponding real parts of the

log (A�k;o� [eVÿ1])

0.4 0.6
k� ���3p p=a�

1

2

2

G X GM R

ÿ0.2

ÿ0.1

0

0.1

0.2

E
n
er
gy

,e
V

ÿo?

o?

1

2

ÿ0.05

ÿ0.10

0.10

0.05

E
n
er
gy

,e
V

0

4ÿ 2 ÿ1.5 ÿ1.0 ÿ0.5 0 0.5 5 1

Figure 14.Cusps (kinks) in electronic dispersion Ek for strongly correlated

systems. The logarithm of the DMFT spectral function A�k;o� is
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on a cubic lattice. The Hubbard interaction is U � 3:5 eV, bandwidth

W � 3:64 eV, band filling n � 1, calculated value of Fermi-liquid renor-

malization ZFL � 0:086, and temperature T � 5 K. Close to the Fermi

level, the maxima of A�k;o� (white dots) correspond to renormalized

dispersion Ek � ZFLEk (line 1). For energies joj > o? spectral function

A�k;o� keeps its shape but with different renormalization Ek � ZCPEkÿ
c sgn�Ek� (line 2). Values of o? � 0:03 eV, ZCP � 0:135, and c � 0:01 eV

are calculated in Ref. [114] from the values ofZFL and Ek corresponding to
the black line. The inset on the right shows in detail part of dispersion in

the G-R direction, marked out with a white rectangle; kinks (cusps in

dispersion) at energies�o? are pointed by arrows. Black lines display bare

(noninteracting) quasiparticle spectra.

6 In DMFT, D�G� is defined by G�o� � G0�o� mÿ S�o��, i.e. G0�D�G��
1=G� � G, where G0�o� is a noninteracting local Green function.
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local Green function G�o� and self-energy S�o� are shown in
Fig. 15b and Fig. 15c, respectively.

Kinks in ReS�o� are directly related to the three-peak
structure of integrated spectral function (DOS) A�o� (its
minima are located at energies �O) and define some new,
quite small energy scale. To this end, Re �G�o�� should have
maxima and minima on the energy interval �omax, i.e.
inside the central peak (Fig. 15b). In turn, this directly
leads to kink formation in ReS�o�. Self-energy S�o�
comprises two contributions: o� mÿ 1=G�o�, and
ÿD�G�o��. Expression Re �o� mÿ 1=G�o�� is linear within
a quite large energy range joj < O (Fig. 15d), while the
quantity ÿRe �D�G�o��� is proportional to ÿRe �G�o��, at
least in the first order of corresponding momenta expansion,
only on the small energy interval joj < omax. The sumof these
two contributions gives rise to cusps in the real part of self-
energy at energies �o?, where o? � �

���
2
p ÿ 1�omax. At these

energies, Re �G�o�� has maximal curvature (these points are
marked by circles in Fig. 15c). Thus, the Fermi-liquid mode,
where the slope of the real part of self-energy at the Fermi
level is described by qReS�o�=qo � 1ÿ 1=ZFL, exists only

within a narrow part of the central peak, namely on the energy
interval joj < o?. At higher (intermediate) energies, the slope
of ReS�o� will be given by the expression qReS�o�=qo �
1ÿ 1=ZCP. As a result, effective dispersion Ek will demon-
strate kinks at energies �o?.

This analysis also helps to understand why outside Fermi-
liquid region Ek exhibits another value of renormalization of
noninteracting electronic dispersion, given by ZCP with small
offset c. This behavior is determined by the magnitude of the
main contributiono� mÿ 1=G�o� to self-energy for energies
o? < joj < O, i.e. within the central peak of the DOS.
Quantities o?, ZCP, and c can be expressed via ZFL and
characteristics of the noninteracting electron density of states.
One can derive the expression for o? � ZFL�

���
2
p ÿ 1�D,

where D is the half-width of the bare band (see details in
paper [114]). If correlations are weak so thatZFL91, the kink
positions in Ek practically coincide with the edges of the bare
electron band, which makes them almost unobservable. On
the other hand, kink energy o?=D / ZFL in the strongly
correlated mode (ZFL 5 1) approaches the Fermi level inside
the central peak whose width diminishes as O=D / ���������

ZFL

p
with an increase in correlation strength [118].

These purely electronic kinks were first revealed in
LDA+DMFT calculations for the SrVO3 system [116]. The
definition of energy scale o? contains only parameters of the
initial band structure, which can be obtained (for realistic
systems) via band structure calculations, together with Fermi-
liquid mass renormalization ZFL � 1=�1ÿ qReS�0�=qo� �
m=m �, which can be experimentally determined from specific
heat or spin susceptibility measurements. Notably, in
Ref. [117] it was shown that kinks of an electronic nature
can cause corresponding cusps in the linear (in temperature)
term of electronic specific heat of strongly correlated metals,
which was, apparently, observed in the LiV2O4 heavy-
fermion system.

3.3.3 Role of electron±phonon interaction. The material in the
previous section inevitably brings us to the question about the
relationship and mutual influence of kinks of an electronic
nature and the `usual' kinks in the electronic dispersion,
induced by electron±phonon interaction. This is related to a
more general problem of interference between strong electro-
nic correlations and electron±phonon interactions. In fact,
the history of such investigations is relatively long, and one of
the most popular models of electron±phonon interaction in
strongly correlated systems is the Hubbard±Holstein model.
TheHubbardmodel describes local Coulomb interaction on a
lattice [8±13]. On the other hand, theHolsteinmodel describes
the linear interaction of conduction electrons with local
(Einstein) phonon modes [119]. Studies of the Hubbard±
Holstein model were performed in the framework of conven-
tional DMFT [5], in particular with the use of the numerical
renormalization group (NRG) [24] as an `impurity solver'.
Reducing the Hubbard±Holstein model to the Anderson±
Holstein impurity problem was first performed by Hewson
and Mayer [120]. These authors showed that by using NRG
one can calculate the total electron±phonon contribution to
self-energy, thus achieving a nonperturbative solution to the
Hubbard±Holstein model, not only with respect to Hubbard
interaction, but also with respect to electron±phonon inter-
action. It is worthy of note that the general structure of self-
consistent DMFT equations in this approach is preserved.

Until recently, however, there had been no studies of
strongly correlated electrons interacting with Debye pho-
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nons, which is quite surprising in view of the rather wide
discussion of the physics of kinks in electronic dispersion
observed in ARPES experiments in high-Tc superconducting
oxides [104]. The origin of these kinks is typically attributed to
electron±phonon interaction [105]. The problem of kink
formation in electronic dispersion caused by electron±
phonon interaction in strongly correlated systems was briefly
discussed in the framework of the Hubbard±Holstein model
in papers [121, 122]. In this section, we overview DMFT+S
results for the Hubbard model, adding interaction with
Debye phonons under the assumption of the validity of the
Migdal theorem (adiabatic approximation). This approxima-
tion is reasonable for electron±phonon coupling constant
l < EF=oD � 10, where EF is the Fermi energy, and oD is
the Debye frequency.

To consider electron±phonon interaction in a strongly
correlated system, we introduce self-energy Sk�e� � Sph�e; k�
appearing in the usual Fr�ohlich model. According to the
Migdal theorem, we can restrict ourselves in the adiabatic
approximation to the simplest first-order contribution to
Sph�e; k�. The main advantage of the adiabatic approxima-
tion is the possibility of neglecting any vertex corrections
from electron±phonon interaction, which are small in regard
to adiabatic parameter oD=EF 5 1 [123].

In fact, Sph�e; k� in this approximation exhibits only weak
momentum dependence, which can be neglected, and we have
to account only for the essential frequency dependence.
Direct calculations (see, e.g., monograph [42]) in the case of
the Debye phonon spectra o0�k� � ujkj for jkj < oD=u,
where u is the speed of sound, give

Sph�e� � ÿig
2

4o 2
c

� �1
ÿ1

do
2p

�
�
o 2

D�o 2 ln

����o 2
D ÿ o 2

o 2

����� ipo 2y�o 2
D ÿ o 2�

�
I�e� o�; �45�

where g is the usual electron±phonon interaction constant,
and

I�E� �
� �D
ÿD

dx
N0�x�
Ee ÿ x

;

Ee � eÿ S�e� ÿ Sph�e�, and oc � pFu is the characteristic
frequency of order the Debye one. In the case of semielliptic
bare DOS N0�e� with half-width D, one obtains I�E� �
�2=D 2� �Ee ÿ

������������������
E 2
e ÿD 2

p �. It is convenient to introduce a
dimensionless electron±phonon coupling constant which for
this model can be written as [42]

l � g 2N0�eF� o 2
D

4o 2
c

: �46�

To simplify calculations, we neglect renormalization of
phonons because of electron±phonon interaction [42], assum-
ing from here on that the phonon spectrum is fixed by
experiment.

3.3.4 Electronic and phonon kinks within the DMFT+R

approach. Let us focus on the most interesting DMFT+S
results obtained in this model, referring the reader for details
to Refs [124, 125]. Here, we present results addressing the
interaction of electrons with Debye phonons (the results for
Einstein phonons are analogous [125]).

A comparison of DMFT and DMFT+Sph densities of
states, with the latters involving electron±phonon interaction,
for strong (U=2D � 1:25) andweak (U=2D � 0:625)Hubbard
interactions is drawn in the upper and lower panels on the left
side of Fig. 16. The dimensionless constant l (46) exploited in
these calculations was chosen to be l � 0:8, and the Debye
frequency oD � 0:125D. In both cases, we observe some
spectral weight transfer caused by electron±phonon interac-
tion. At U=2D � 1:25 (Fig. 16a), we see a well-developed
three-peak structure typical for strongly correlatedmetals. On
the energy interval �oD around the Fermi level (which is
measured up to zero energy in all figures) there is practically
no difference in the shape of the quasiparticle peaks in the
DOS obtained within DMFT and DMFT+Sph approaches.
But beyond this interval, the DMFT+Sph quasiparticle peak
becomes significantly wider because of the partial transfer of
spectral weight from Hubbard bands. This broadening of the
quasiparticle peak in DMFT+Sph leads to a delay in the
metal±insulator transition, as we shall see later.

In the case of U=2D � 0:625 (see Fig. 16b), no clearly
distinguishable Hubbard bands are formed, and we observe
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only some side wings in the DOS. Redistribution of spectral
weight in Fig. 16b is not very dramatic, despite a qualitative
difference with theU=2D � 1:25 case (see Fig. 16a). Themain
distinction between DMFT and DMFT+Sph results occurs
here on the interval�oD, where the formation of a `cap' in the
DOS is evidenced, due to electron±phonon interaction. The
corresponding spectral weight `goes' over to the energies
around �U, where Hubbard bands start to form.

In Fig. 16c, we compare the behavior of densities of states
in DMFT without phonons and in DMFT+Sph for different
values of the U=2D parameter near the Mott±Hubbard
metal±insulator transition. At U=2D � 1:56, both standard
DMFT and DMFT+Sph yield an insulating solution.
However, there are some distinctions between these solu-
tions. In DMFT+Sph, the Hubbard bands are lower and
wider than in DMFT, since additional (electron±phonon)
interaction is included. With a decrease in U at U=2D � 1:51
and 1.47, we reveal that DMFT+Sph results correspond to
the metallic state (with a narrow quasiparticle peak at the
Fermi level), while DMFTwithout phonons still furnishes the
insulating solution. Only in proximity to U=2D � 1:43 do
bothDMFT andDMFT+Sph results forDOS correspond to
the metallic state. Thus, with an increase in U the finite
strength of electron±phonon interaction slightly delays the
Mott±Hubbard transition from the metallic to the insulating
phase. This result is analogous to the one obtained in the
Hubbard±Holstein model for weak electron±phonon cou-
pling [126±128].

Therefore, moderate electron±phonon interaction brings
to rather insignificant changes in the electron density of states
both in correlated metal and in theMott insulating state, only
slightly delaying transition from metal to insulator with a
growth in U.

Now we turn to the source of sharp slope changes of
electron dispersion (kinks). It is well known that, in general,
kinks are formed because of the interaction of electrons with
bosonic modes. In electron±phonon interaction, the typical
energy of the kink is around the Debye (or Einstein)
frequency. We have shown in Section 3.3.1 that in strongly
correlated metal, kinks of a purely electronic nature can
arise [114]. The energy of such a kink for a semielliptical

bare DOS is o � � ZFL�
���
2
p ÿ 1�D, where D is the half-width

of the bare band, and ZFL��1ÿqReS=qeje�EF
�ÿ1 is the

Fermi-liquid renormalization factor. Roughly speaking, o�

is defined by the half-width of the quasiparticle peak in the
DOS.

A kink of an electronic nature is quite smooth, and its
observation is rather difficult. DMFT+Sph calculations give
evidence that electronic kinks are hardly detectable against
the background of phonon kinks, and the fine tuning of
model parameters is necessary to pick them out. First of all, it
is necessary to guarantee that oD 5o� (in other cases,
smooth electronic kinks will be practically indiscernible
against kinks from electron±phonon interaction). For
U=2D � 1 and U � 3:5 eV, we have o� � 0.1D, while the
Debye frequency can be taken to be quite small, e.g. oD �
0.01D. In order tomake the phonon kink pronounced enough
at such a relatively low Debye frequency, one needs to
increase the electron±phonon coupling constant to l=2.0.

To demonstrate the possibility of the coexistence of both
types of kinks in the spectra, let us consider the energy
dispersion for a simple cubic lattice with nearest neighbors
hopping only. It is most convenient to discuss the high-
symmetry direction Gÿ �p; p; p� of the Brillouin zone [114].
In Fig. 17a, we show electronic dispersion along this direction
close to the Fermi level. The line with the diamonds is the
electronic spectrum of standard DMFT without phonons.
Lines with circles presentDMFT+Sph results. Electronic and
phonon kinks are marked by arrows. Generally, kinks in
electronic dispersion due to electron±phonon interaction
dominate for most typical model parameters, making purely
electronic kink observation predicted in paper [114] quite
difficult.

In conclusion, we give the picture of phonon kink
evolution in the electronic spectrum depending on the
strength of Hubbard interaction U. With an increase in the
U=2D ratio, Fermi velocity goes down and the kink position
on the momentum axis shifts farther away from pF, while the
kink energy remains about oD. This behavior follows from
direct DMFT+Sph calculations [124, 125] and is shown in the
right panel of Fig. 17. In the case of interaction with Einstein
phonons, the results are quite analogous [125].
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Figure 17. (a) Quasiparticle dispersion with kinks around the Fermi level, studied along Gÿ �p; p; p� high-symmetry direction in the Brillouin zone and

obtained from `bare' energy dispersion for the case of a simple cubic lattice with nearest neighbors hopping only: DMFT (curve with diamonds), and

DMFT+Sph (curve with circles) (l � 2, oD � 0:01D). (b) DMFT+Sph phonon kink evolution for different strengths of Hubbard interaction

U=2D � 0:5, 0.75, 1.0; l � 0:8, and oD � 0:1D [124].

344 E Z Kuchinskii, I A Nekrasov, M V Sadovskii Physics ±Uspekhi 55 (4)



4. Electronic structure of real strongly
correlated systems: LDA+DMFT
and LDA+DMFT+R

At present, the most advanced ab initio (i.e. ideally without
any fitting parameters) computational framework of electro-
nic spectra of realistic strongly correlated systems is the
LDA+DMFT method [2, 25]. The LDA band structure
calculated by this method is used to obtain a `noninteracting'
starting Hamiltonian, while strong electron correlations are
accounted afterwards within DMFT. In fact, the
LDA+DMFT computational scheme combines two scien-
tific areas: `realistic' band structure calculations and tradi-
tional model approaches, which were essentially separated
from each other before. Without DMFT, in just LDA there
is no way to describe strongly correlated systems, while
without LDA calculations, many-body methods cannot be
material-specific. Below, we briefly discuss the basics of
LDA+DMFT approach and its subsequent generalization
to LDA+DMFT+S methods.

4.1 Density functional theory (DFT).
Local density approximation (LDA)
In the Born±Oppenheimer adiabatic approximation [129],
neglecting relativistic effects, electronic properties in solid-
state physics are described by the Hamiltonian

Ĥ �
X
s

�
d3r Ĉ��r; s�

�
ÿ �h 2

2me
D� Vion�r�

�
Ĉ�r; s�

� 1

2

X
ss 0

�
d3r d3r 0 Ĉ��r; s� Ĉ��r 0; s 0�Vee�rÿ r 0�

� Ĉ�r 0; s 0� Ĉ�r; s� : �47�

Here, Ĉ��r; s� and Ĉ�r; s� are the respective creation and
annihilation operators of an electron with coordinate r and
spin s, D is the Laplace operator, me is the electron mass, e is
the electron charge, and

Vion�r��ÿe 2
X
i

Zi

jrÿ Rij ; Vee�rÿ r 0� � e 2

2

X
r6�r 0

1

jrÿ r 0j
�48�

denote a single-particle potential created by all ions i with
charge eZi located at given positions Ri, and electron±
electron interaction.

Although the `first principle' Hamiltonian (47) is easy to
write down, it is impossible to solve the corresponding
quantum-mechanical problem exactly. This is the reason to
make substantial physical approximations. In particular,
density functional theory (DFT) is based on the Hohen-
berg±Kohn theorem [130] (see also the review [131]), which
asserts that ground-state energy is the unique functional of
electron charge density, which is minimum for the equili-
brium electron density in the ground state:

E� r� � Ekin� r� � Eion� r� � EHartree� r� � Exc� r� ; �49�

where the Hartree energy EHartree� r���1=2�
�
d3r 0d3r�

Vee�rÿr 0� r�r 0� r�r� and the potential energy of ions
Eion� r� �

�
d3r Vion�r� r�r� can be directly expressed via

electron charge density. The term Ekin� r� denotes the kinetic
energy of electrons, and Exc� r� is an unknown, in general,

exchange-correlation term containing electron±electron
interaction energy unaccounted for in the Hartree term. In
fact, all complexities of the many-body problem are trans-
ferred into the computation of Exc� r�.

In practice, instead of minimization of E� r� over r,
minimization is usually performed over some set of ortho-
normal basis functions ji related to r through the expression

r�r� �
XN
i�1

��ji�r�
��2: �50�

Introducing arbitrary Lagrange parameters ei and requiring
the fulfillment of the equality

d
dji�r�

n
E� r� � ei

h
1ÿ

�
d3r
��ji�r�

��2io � 0 ; �51�

one gets Kohn±Shem equations [132, 133]�
ÿ �h 2

2me
D� Vion�r��

�
d3r 0Vee�rÿ r 0� r�r 0� � dExc� r�

dr�r�
�

� ji�r� � eiji�r� : �52�

Formally, this equation coincides with the stationary single-
particle Schr�odinger equation. Electron kinetic energy corre-
sponding to charge density of the ground state is now given by
the expression

Ekin� rmin� � ÿ
XN
i�1

�
ji

���� �h 2D
2me

����ji

�
; �53�

where ji are the self-consistent (spin-degenerate) solutions of
equations (50) and (52), corresponding to the smallest single-
particle energy Ei [134].

The most common way to calculate Exc� r� is to use the
local density approximation (LDA). It approximates the
functional Exc� r� by the local charge density functional

Exc� r� !
�
d3r r�r� ELDA

xc

ÿ
r�r�� : �54�

The explicit expression for ELDA
xc �r�r�� can be found in the

framework of different models, e.g. from a numerical analysis
of the `jellium' model (electron gas against a positive ionic
homogeneous background) [135].

In fact, LDA approximation corresponds to the replace-
ment of the Hamiltonian (47) by the expression

ĤLDA �
X
s

�
d3r Ĉ��r; s�

�
ÿ �h 2

2me
D� Vion�r�

�
�
d3r 0 r�r 0�Vee�rÿ r 0� � dELDA

xc � r�
dr�r�

�
Ĉ�r; s� : �55�

In practical calculations, electron field operators are
expanded in terms of a some set of atomic-like functions
(basis set) Film (i denotes lattice site, l is the orbital quantum
number, and m is the magnetic quantum number). In this
representation, one has

Ĉ��r; s� �
X
ilm

ĉ
sy
ilmFilm�r� ; �56�
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and the Hamiltonian (55) is rewritten as

ĤLDA�
X

ilm; jl 0m 0; s

�dilm; jl 0m 0eilm n̂ s
ilm � tilm; jl 0m 0 ĉ

sy
ilmĉ

s
jl 0m 0 �: �57�

Here n̂ s
ilm � ĉ

sy
ilmĉ

s
ilm is the electron density operator on a given

orbital, while matrix elements

tilm; jl 0m 0 �
�
Film

����ÿ �h 2D
2me
� Vion�r�

�
�
d3r 0r�r 0�Vee�rÿ r 0� � dELDA

xc � r�
dr�r�

����Fjl 0m 0

�
�58�

in case of ilm 6� jl 0m 0 define effective hopping integrals, and
single-particle eigenenergies eilm are given by corresponding
diagonal expressions in case of identical indices. At this point
purely analytical work ends and numerical calculations
follow within the chosen basis set, e.g. linearized muffin-tin
orbitals (LMTO). Specific expressions for matrix elements
(58) within the LMTO basis are presented in Refs [136, 137].

4.2 LDA+DMFT computational scheme
For strongly correlated materials, the onsite Coulomb
interaction between d- and f-electrons is of primary impor-
tance, since this contribution to interaction energy is the
largest one. The largest nonlocal contribution follows from
the density±density type interaction involving nearest neigh-
bors, where the main contribution comes from the Hartree
term (see Refs [138, 139] and [140]), which was already taken
into account in the LDA. Moreover, some part of the
exchange-correlation interactions are taken into account in
the LDA via effective single-electron potential
dELDA

xc � r�=dr�r�.
In order to take into consideration strong local Coulomb

interaction, one should supplement Hamiltonian (57) with
approximate local Coulomb matrix comprising the most
important parameters only [25]: onsite intraband Coulomb
repulsion U, exchange interaction J, and interorbital Cou-
lomb repulsion U 0 acting on different electronic orbitals of
the same site id, where an atom with a partially filled d-shell
resides (lÐorbital quantum number, mÐmagnetic quan-
tum number, and sÐspin index):

Ĥ � ĤLDA �U
X
m

X
i�id; l�ld

n̂ilm"n̂ilm#

�
X

i�id; l�ld

X
m6�m 0

X
ss 0
�U 0 ÿ dss 0J � n̂ilmsn̂ilm 0s 0

ÿ
X

i�id; l�ld

X
ms

DEdn̂ilms : �59�

Here, for simplicity, only density±density type interactions
are left, and so-called Kanamori parametrization is applied,
when for the same orbitals (m � m 0) the direct Coulomb
interaction is taken asU, while for different orbitals (m 6� m 0)
this interaction is replaced by U 0. Because of the rotational
invariance of the single-atom problem, one hasU 0 � Uÿ 2J,
and the exchange interaction parameter does not depend on
the orbital index and is equal to J.

Moreover, the last term involving the quantity DEd was
added to formula (59) (the so-called double-counting correc-
tion), which should correct for double counting of interaction
contributions, as some part of local Coulomb interaction has

already been included in ĤLDA. The general microscopic
expression for DEd via U and r is unknown. However, there
are several qualitative recipes to determine the value of DEd,
which are employed in different modern LDA+DMFT
calculations (a detailed discussion can be found in Refs [141,
142]). The simplest physical assumption lies in the fact that
the Coulomb interaction energy can be written down within
the DFT as

EDFT � 1

2
�Und�nd ÿ 1� ; �60�

where nd is the total number of electrons in the d-shell, and �U
is the average Coulomb interaction (here, we assume
averaging over all orbital pairs ms, m 0s 0 at a given site).
Thus, DEd is taken as

DEd � qEDFT

qnd
� �U

�
nd ÿ 1

2

�
: �61�

The interaction parameters U, J, and U 0 can be obtained
from the averaged Coulomb interaction �U and Hund
exchange parameter J. The averaged interaction �U is related
to the U and U 0 Coulomb parameters via the following
relation:

�U � U� �Norb ÿ 1�U 0 � �Norb ÿ 1��U 0 ÿ J �
2Norb ÿ 1

; �62�

where Norb is the number of interacting orbitals. Since U and
U 0 are not independent parameters, �U and J are sufficient for
determining U [29 ± 31, 143].

Different methods have been developed for microscopic
calculations of averaged Coulomb interaction, such as
constrained LDA (CLDA) [144] or constrained RPA
(CRPA) [145, 146]. Generalizations to calculating the Hund
exchange parameter also exist. Unfortunately, there are
rather large discrepancies between the values of parameters
obtained with these methods. Particularly, the quantity �U
appears to be strongly dependent on the basis set used (e.g. in
the problem of screening the long-range part of the Coulomb
interaction). It is clear that the introduction of all these
essentially model parameters takes us quite far away from
the `first principle' ideal, though it is the best one can do at the
moment to calculate the electronic band structure of solids
comprising transition metal atoms, where electron±electron
interactions play the crucial role. In that sense, it is probably
more correct to speak about `modeling' of the electronic
structure of such systems.

Matrix elements of the `noninteracting' Hamiltonian
H 0

LDA�k� in the reciprocal space can be calculated numeri-
cally at every point of the Brillouin zone, then the integrals
over the Brillouin zone are usually calculated with the
tetrahedron method [147]. In relatively simple band disper-
sions, where the analytical expression for H 0

LDA�k� depen-
dence on k can be written explicitly, the hopping integrals can
be found fromLDA by projecting on correspondingWannier
functions [148 ± 151]. Matrix elements of this Hamiltonian,
i.e. single-particle LDA energies without local Coulomb
interaction, can be written in the following way:ÿ

H 0
LDA�k�

�
qlm; q 0 l 0m 0 �

ÿ
HLDA�k�

�
qlm; q 0 l 0m 0

ÿ dqlm; q 0l 0m 0dql; qd ldDEdnd ; �63�

where q is the atomic index in the unit cell.
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The essence of the next step is to use in the DMFT or
DMFT+S loop (see Section 2.1) the local lattice Green
function (5) determined by the momentum-integrated Dys-
on's equation of the form

Gqlm; q 0l 0m 0 �o� � 1

VB

�
dk
�
odqlm; q 0l 0m 0

ÿ ÿH 0
LDA�k�

�
qlm; q 0l 0m 0 � dql; qd ldSqlm; q 0l 0m 0 �o�

�ÿ1
; �64�

where �. . .�ÿ1 denotes the inverse matrix with indices
n�� qlm�, n 0�� q 0l 0m 0�, while the integration is performed
over the Brillouin zone of the volume VB.

A significant simplification of computations can be
achieved for the case of cubic lattice symmetry, where the
crystal field strongly splits d-orbitals into threefold degen-
erate t2g states and twofold degenerate eg states nonmixed
with the former. In this special case, both the Green function
and the self-energy become diagonal with respect to orbital
and spin indices, thus reducing the problem, in fact, to single-
band. Then, the calculation of the local Green function of the
lattice problem can be performed as energy integration with
the use of unperturbed densities of states, which allows
avoiding tedious integration over the Brillouin zone in
expression (64) and writing

G�o� � G 0
ÿ
oÿ S�o�� � � dE

N 0�E�
oÿ S�o� ÿ E

: �65�

In this case, double-counting correction DEd reduces to an
immaterial shift of the chemical potential, and its particular
mathematical form is irrelevant altogether.

4.3 Examples of LDA+DMFT calculations
4.3.1 Cubic perovskites CaVO3 and SrVO3. In this section, we
consider examples of some LDA+DMFT calculations of
electronic band structure of realistic compounds with strong
enough electronic correlations. Transitionmetal oxides are an
ideal testing area to study electronic correlations in solids.
Among these materials, cubic perovskites have the simplest
crystal structure and, therefore, can be viewed as a starting
point for understanding the electronic properties of more
complex systems. Usually, 3d states in such materials form
comparatively narrow bands with the width W � 2ÿ3 eV,
leading to strong electron±electron Coulomb correlations.

The modern stage of experimental investigations of
spectral and transport properties of strongly correlated 3d1

transition metal oxides started from the work of Fujimori et
al. [152]. The authors, apparently for the first time, discovered
a strongly pronounced lower Hubbard band in photoemis-
sion spectra, which could not be explained by standard
methods of band structure calculations. In many earlier
studies [153 ± 156] devoted to the properties of the series of
Sr1ÿxCaxVO3 compounds with different values of x, rather
controversial results were reported. Whereas the thermody-
namic characteristics (the Sommerfeld coefficient, electrical
resistance, and magnetic susceptibility) appeared to be more
or less x-independent, spectroscopic measurement data
changed rather strongly as a system transformed from x�0
(SrVO3) to x�1 (CaVO3). These data indicated a transition
from a strongly correlatedmetal (SrVO3) to a practically ideal
insulator (CaVO3), with the concentration range x!1 in
Sr1ÿxCaxVO3 being the boundary of the Mott±Hubbard
transition.

An analysis of this problem was performed using high
penetration depth photoemission experiments by Maiti et
al. [157], and similar experiments with high-resolution
photoemission by Sekiyama et al. [158]. In particular, it was
shown in the last study that: (1) the surface preparation
technique is very important (the cleavage method is prefer-
able), and (2) the energy of an X-ray incident beam should be
high enough to provide the penetration depth of several unit
cells. At the same time, high instrumental resolution should
be guaranteed (about 100 meV in the work [158]). Such
an improvement in photoemission spectroscopy methods
led to the observation of almost identical spectra for
Sr�Ca�VO3 [157, 158], demonstrating agreement of spectro-
scopic and thermodynamic measurements. The results of
these experiments also agree with earlier 1s X-ray absorption
spectra (XAS) obtained by Inoue et al. [159], which differ only
for energies slightly above the Fermi level, in contrast, say, to
bremsstrahlung isochromat spectroscopy (BIS) data [156]. In
the framework of a single-band Hubbard model with a
neglect of orbital structure of vanadium 3d shell, Rozenberg
et al. [160] modelled Sr1ÿxCaxVO3 spectra obtained by high
penetration depth photoemission spectroscopy [157] using
adjustable parameters. Later on, it was demonstrated [158]
that the data from Ref. [157] contained quite a significant
surface contribution.

Below, we present results of LDA+DMFT(QMC)
calculations performed without any adjustable parameters,
both for the spectral function and density of electronic states
in cubic SrVO3 and in orthorhombic CaVO3 perovskites.
According to these, both systems in their ground states are
strongly correlated metals, which are quite far away from the
metal±insulator transition boundary. Despite the signifi-
cantly smaller V±O±V bond angle in CaVO3, the photoemis-
sion spectra of both systems are very similar and their
quasiparticle peaks are almost identical. The results obtained
agreed very well with modern high-resolution bulk sensitive
photoemission data mentioned above. In the spectral func-
tion of SrVO3, obtained from LDA+DMFT(QMC) calcula-
tions, kinks of a purely electronic nature at about 200 meV
were observed, and later these kinks were found experimen-
tally.

Results of LDA+DMFT calculations. First of all, from
the LDA-calculated band structure we extract single-electron
Hamiltonian Ĥ 0

LDA with the subtracted averaged Coulomb
interaction (to avoid its double counting) [25]. Supplementing
Ĥ 0

LDA with local Coulomb interaction between electrons, we
obtain Hamiltonian (59) for the material of interest. Since the
CaVO3 symmetry is close to cubic, it is possible to simplify the
calculations and use integration over band with the LDA
density of states N 0�E�, instead of integration over the
Brillouin zone. In Hamiltonian (59), local intraorbital and
interorbital repulsions and exchange interactions are taken
into account explicitly asU,U 0, and J. The strengths of these
interactions for SrVO3 were calculated by the constrained
LDA method [144] with eg states included in the screening
[161]. The obtained strength of average Coulomb interaction
is �U � 3:55 eV ( �U � U 0 for t2g orbitals [26, 143]) and
J � 1:0 eV. Intraorbital Coulomb repulsion U is fixed by
rotational invariance: U � U 0 � 2J � 5:55 eV. �U was not
calculated for CaVO3, since the standard procedure of
calculating Coulomb interaction parameters between two t2g
electrons screened by eg states is not applicable to the
distorted crystal structure, where the eg and t2g orbitals are
not separated by symmetry. On the other hand, it is known
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that changes in local Coulomb interaction are usually much
smaller than changes in density of states, which, as shown
above, are weakly dependent on V±O±V bond angle. This
means that �U for CaVO3 should be practically the same as for
SrVO3. Correspondingly, the values of �U � 3:55 eV and
J � 1:0 eV were used for both SrVO3 and CaVO3. These
values agree with other band structure calculations for
vanadium compounds [161] and with the experimental
data [162].

Further computations with Hamiltonian (59) were per-
formed in the framework of DMFT by the quantum Monte
Carlo (QMC) method [18 ± 22] as an impurity solver. In
QMC, the Green function was obtained for the imaginary
time (or at Matsubara frequencies) and then continued to the
real time (frequency) by the maximum entropy method [163].
In LDA+DMFT(QMC) spectra calculated for SrVO3 and
CaVO3 and shown in Fig. 18a, we observe manifestations of
correlation effects, such as formation of lower Hubbard
bands near ÿ2:0 eV and upper Hubbard bands at about
2:5 eV with well-developed quasiparticle peaks on the Fermi
level. Thus, both SrVO3 and CaVO3 constitute strongly
correlated metals. The difference in bare bandwidths (about
4%) is only responsible for a small additional spectral weight
transfer from the quasiparticle peak to Hubbard bands and
for slight changes in Hubbard band positions. Obviously,
both systems are not close to the Mott±Hubbard metal±
insulator transition. Many-body densities of states for both
systems (see Fig. 18) are rather alike but not identical. Indeed,
SrVO3 is a bit less correlated than CaVO3, in agreement with
the difference between their LDA bandwidths. The inset to
Fig. 18a gives evidence that temperature influence on the
spectrum is small for T9700 K.

In Fig. 18b, LDA+DMFT(QMC) spectra (calculated at
T � 300 K, then multiplied by the Fermi function at an
experimental temperature of 20 K and broadened with a
Gaussian 0.1 eV wide to mimic experimental resolution [158])
are compared with experimental photoemission data after
subtraction of oxygen and surface contributions. Notably,
the height and the width of these spectra are almost the same
in SrVO3 andCaVO3 (with a bit of difference above the Fermi
level). On the other hand, the positions of lower Hubbard
bands differ quite markedly. This variance might occur

because of subtraction of the (estimated) oxygen contribu-
tion which can delete part of the 3d spectral weight below
ÿ2 eV, or due to uncertainties in �U calculations.

In Fig. 18c we draw a comparison of calculated results
with XAS data. Finite lifetime effects for holes are taken into
account by broadening the theoretical spectra with a
Lorentzian 0.2 eV wide [164], then multiplication by the
inverse Fermi function (at T � 80 K), and further broad-
ening with a Gaussian exhibiting an experimental resolution
of 0.36 eV. The general agreement of weights and positions of
the quasiparticle band and upper Hubbard t2g band is good,
including tendencies associated with the transition from
SrVO3 to CaVO3 (Ca0:9Sr0:1VO3 in the experiment). For
CaVO3, the quasiparticle spectral peak weight is a bit less
than in the experiment. In contrast to single-band Hubbard
model calculations, LDA+DMFT approach accounts for
peculiarities of the concrete systems and reproduces the
strong asymmetry of the spectra close to the Fermi energy,
including relative weights and bandwidths. These results (see
Fig. 18) allow a different interpretation of XAS data than in
Ref. [159], where the maximum at 2:5 eV was associated with
the eg band and not with the upper Hubbard t2g band. Small
differences between quasiparticle peaks (see Fig. 18) lead to
various values of effective masses: m �=m0�2:1 for SrVO3,
and m �=m0 � 2:4 for CaVO3. These theoretical predictions
agree with m �=m0 � 2ÿ3 for SrVO3 and CaVO3 obtained
from deHaas±vanAlphen experiments and available thermo-
dynamic data [153 ± 155, 165]. Notice that the effective mass
for CaVO3, determined from optical experiments, is slightly
larger: m �=m0�3:9 [162].

4.3.2 Kinks in the SrVO3 spectral function. Let us consider in
more details LDA+DMFT(QMC) results obtained for
spectral function A�k;o� of SrVO3 in Ref. [116]. Owing to
ideal cubic lattice symmetry, the matrix of self-energy S�o� is
diagonal, and all diagonal elements are the same for all t2g
orbitals. The spectral function is defined by the imaginary
part of Green function ImG�k;o�, i.e. in fact by self-energy
S�o� on the real axis. This self-energy was calculated by
numerical solution of Dyson's equation for the known
interacting and bare Green functions, as described in the
Appendix to Ref. [151].
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Figure 18. (a) LDA+DMFT(QMC) spectra for SrVO3 (solid line) and CaVO3 (dashed line) at T � 300 K (inset: temperature influence on CaVO3

spectrum lineshape). (b, c) Comparison of calculated (without adjustable parameters) LDA+DMFT(QMC) spectra for SrVO3 (solid line) and CaVO3

(dashed line) with high-resolution bulk sensitive photoemission data (SrVO3Ðcircles, and CaVO3Ðsquares) [158] (b) and 1s-XAS spectra: (SrVO3Ð

diamonds, and Ca0.9Sr0.1VO3Ð triangles) [159] (c). Horizontal line indicates experimental background.
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In Fig. 19, this self-energy S�o� is plotted as a function of
real frequencies. It is essentially asymmetric with respect to
the Fermi level, as could be assumed from the asymmetry of
the LDA density of states and band filling equal to 1/6. At
energies o � �1:5 eV, the real part of self-energy has
extrema, corresponding to the transition region from the
quasiparticle peak to the lower and upper Hubbard bands.
Two extrema in the imaginary part of the self-energy,
coinciding with ReS�o� zeros, 7 determine the energy
positions of the lower and upper Hubbard bands (see
Fig. 18a).

The asymmetric quasiparticle peak in the density of states
is situated in the energy range fromÿ0:8 to 1:4 eV (Fig. 18a).
It is evident that imaginary part of self-energy, ImS�o�, is
sufficiently low at these energies, while its real part can be
roughly approximated with the dashed straight line drawn in
Fig. 19. The slope of this line determines quasiparticle mass
renormalization Z � m �=m � 1ÿ qReS�o�=qojo�0 � 1:9.
Such a Z value agrees with that obtained from primary
QMC data at Matsubara frequencies: m �=m �
1ÿ ImS�o0�=o0 � 2, where o0 is the `zeroth' Matsubara
frequency. This value of renormalization is in agreement
with the value of m �=m � 2:2 from the studies [166, 167], as
well as with the experimental estimate from ARPES data
[168].

In the inset to Fig. 19 it is seen that Fermi-liquid
behavior of self-energy [ImS�o� � ÿo 2, together with
ReS�o� � ÿo] is evidenced only on the interval from ÿ0:2
to 0.15 eV. The slope of ReS�o� in immediate proximity to
the Fermi level is steeper than in the wider energy interval (see
dashed straight line in Fig. 19). Thus, the Fermi-liquid mass
renormalization value is larger thanm �=m � 1:9 and is equal
tom �lowE=m � 3 (dotted straight line in the inset to Fig. 19). At
the edges of the Fermi-liquid mode, sharp bends in Re S�o�
at energies o � �0:25 eV are seen. As the border of the
Fermi-liquid mode we can consider energies whereat the
imaginary part of self-energy starts to differ from the

square-law dependence ImS�o� � ÿo2, which, in turn,
leads to real part of self-energy deviating from the linear
dependence Re S�o� � ÿo following from the Kramers±
Kronig relation. Deviation from the square behavior of
Im S at energies on the order of o � �0:25 eV immediately
gives rise to appearing cusps in Re S�o�.

If the self-energy on the real axis is known, one can
compute the spectral function A�k;o� and the quasiparticle
dispersion determined by the momentum dependence of its
maxima. In Fig. 20, we display the map of the spectral density
obtained for SrVO3 in Ref. [116]. In this multiband system
(with degenerate bands), further analysis is similar to that for
the single-band case of Section 3.3.2. White dots denote Enk

dispersion curves obtained from LDA+DMFT calculations
for SrVO3. In the narrow vicinity of the Fermi level, they
coincide with the LDA band structure Enk (lines 1) renorma-
lized with Fermi-liquid factor ZFL � 0:35, so that
Enk � ZFLEnk (lines 2). Outside the Fermi-liquid region,
dispersion curves correspond to the LDA band structure
with a different renormalization factor: Enk � ZCPEnk � c�
(lines 3), where ZCP � 0:64, c� � 0:086 eV, and
cÿ � 0:13 eV. Along high-symmetry G±M and G±R direc-
tions in the Brillouin zone, the transition between these two
modes leads to the formation of kinks in the effective
dispersions at energies o? � 0:22 eV and ÿo? � ÿ0:24 eV.
These kinks are marked with arrows in Fig. 20b, which
corresponds to the area surrounded by the white rectangle in
the main part of the figure. On the contour plot of spectral
function A�k;o�, it is seen that the spectral function in the
energy region sufficiently far away from the Fermi level keeps
an explicit k-dependence, despite a pretty large damping
value, replacing the traditional band structure picture for
systems with strong electron±electron correlations.

Kinks of an electronic nature were discovered in this
system in ARPES experiments [168] in the G±M direction at
energies on the order of 0.25 eV, which agrees quite well with
the above-given results of LDA+DMFT(QMC) calcula-
tions.

4.4 Electronic structure of copper oxides
in the pseudogap state: LDA+DMFT+R
The pseudogap stateÐ as already pointed out aboveÐ is
one of the main anomalies in the normal (nonsuperconduct-
ing) state of high-Tc cuprates, and it is thought that
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7 Here, we recall that the real part of Green function is connected with the

imaginary part of self-energy via the Kramers±Kronig relation [115].
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clarification of its physical nature is the key point to under-
standing the high-temperature superconductivity mechanism
[55, 56, 169]. The most powerful tool to investigate this state
in recent years has been angular-resolved photoemission
spectroscopy (ARPES). During the last ten years there has
been remarkable progress in this area related to significant
growth of ARPES resolution, both in energy and in
momentum spaces [170 ± 173]. The Fermi surface shape,
quasiparticle dispersion and damping, and even self-energy
profile can be directly restored from ARPES data [170 ± 173].
These allowed studying in detail formation of the pseudo-
gap, shadow bands, quite unusual phenomena of Fermi arc
formation, and interlayer hybridization effects (bilayer
splitting) in double-layer systems [170 ± 173], as well as
determining qualitative distinctions between electron- and
hole-doped cuprates [170 ± 173]. The purpose of the theory
is to explain all these peculiarities, and this problem is much
more complicated by the presence of rather strong electro-
nic correlations, typical for these systems and making
doubtful the standard band theory and Fermi-liquid
approach.

In this section, we shall demonstrate that an account of
AFM short-range order fluctuations is, in principle, enough
for describing a number of ARPES experiments on real
systems. To this end, we make use of the LDA+DMFT+S
hybrid computational scheme [174 ± 179]. On the one hand,
this scheme inherits all the advantages of LDA+DMFT
approach [25 ± 31], i.e. the combination of single-electron
first-principle density functional theory in the local density
approximation (DFT/LDA) [132, 133, 180, 181] with dyna-
mical mean-field theory for strongly correlated electrons [3 ±
5, 7, 14]. On the other hand, such a hybrid scheme allows
considering nonlocal correlations by the introduction of
momentum-dependent self-energy, while the usual self-con-
sistent set of DMFT equations is preserved [35 ± 37]. To solve
effectively the single-impurity problem of DMFT in the
works described below, we employed the numerical renorma-
lization group (NRG) method [23, 24].

Such a computational scheme works very well in describ-
ing the electronic properties of high-Tc cuprates in the normal
(underdoped) state. First, all material-specific model para-
meters of a physically relevant Cu-3dx 2ÿy 2 orbital can be
obtained from LDA calculations. Second, stoichiometric
(nondoped) cuprates are antiferromagnetic Mott insulators
withU4W (U is the local Coulomb interaction, andW is the
conduction bandwidth), so that correlation effects in them are
very important. At finite doping level (at least up to optimal
doping), cuprates are typical strongly correlated metals, and
the DMFT stage of the computational scheme allows one to
account for strong electronic correlations. Finally, to study
the `antiferromagnetic scenario' of pseudogap formation, we
introduce into the standard LDA+DMFT scenario the k-
dependent self-energy Sk describing nonlocal correlations
induced by (quasi)static Heisenberg spin fluctuations of
AFM short-range order [58 ± 60].

In the framework of the LDA+DMFT+S approach, we
performed calculations for a series of high-temperature super-
conductors: hole-doped Bi2Sr2CaCu2O8ÿd (Bi2212) [174] and
La2ÿxSrxCuO4 (LSCO) [175], and also electron-doped
Nd2ÿxCexCuO4 (NCCO) [176, 177] and Pr2ÿxCexCuO4

(PCCO) [178]. LDA+DMFT+S calculated results for Fermi
surfaces and spectral functions can be compared with ARPES
data for quasiparticle bands and experimental Fermi surface
maps.

The crystal structures of Bi2212 [174], NCCO [176, 177],
and PCCO [178] have tetragonal symmetry with the space
group I4=mmm, while LSCO has a distorted orthorhombic
structure Bmab [175]. Crystallographic data employed in
LDA+DMFT+S calculations are presented in more detail
in Refs [174 ± 179].

It is well known that the physical properties of cuprates
are determined in many respects by the quasi-two-dimension-
ality of their electronic properties. From this point of view,
the main interest is focused on electronic states in the CuO2

plane, where we are dealing with partially filled antibonding
Cu-3dx 2ÿy 2 orbitals with dispersion crossing the Fermi level.
In the tight-binding approximation, this dispersion has the
following form

e�k� � ÿ2t�cos kxa� cos kya� ÿ 4t 0 cos kxa cos kya

ÿ 2t 00�cos 2kxa� cos 2kya�
ÿ 2t 000�cos kxa cos 2kya� cos 2kxa cos kya� : �66�

Here, t, t 0, t 00, t 000 are Cu±Cu transfer integrals in the first
four coordination spheres in the CuO2 plane, and a is the
lattice constant. The values of these effective transfer
integrals calculated in the framework of the linearized
muffin-tin orbitals (LMTO) method [136, 137] and subse-
quent use of Wannier functions obtained within the N-th-
order LMTO (NMTO) method of Refs [148±150] are listed
in Table 1. In what follows, we shall exploit the LDA-
calculated effective antibonding Cu-3dx 2ÿy 2 band as a `bare'
one in LDA+DMFT+S computations.

In double-layer systems, e.g. in Bi2212, hopping between
two neighboring planes is also important. In the tight-binding
approximation, an expression for the corresponding inter-
layer dispersion derived in Ref. [182] has the form

t?�k� � t?
4
�cos kxaÿ cos kya�2 : �67�

The values of t? are given in Table 1. Consideration of
interlayer hopping and `bilayer splitting' effects requires a
certain generalization of LDA+DMFT+S computational
scheme [174].

To perform DMFT calculations, one should also calcu-
late the strength of onsite Coulomb interaction. The values of
this interaction U for the effective Cu-3dx 2ÿy 2 orbital,
obtained within the constrained LDA method [144], are also
given in Table 1.

To account for AFM spin fluctuations, we employed the
two-dimensional model of the pseudogap state [58 ± 60],
generalized for DMFT+S calculations [35, 37]. Additional
external k-dependent self-energy Sk [35, 37] describes non-

Table 1. Calculated model energy parameters (in eV) and experimental
correlation length x.

Com-
pound

t t 0 t 00 t 000 t? U D x

Bi2212
NCCO
PCCO
LSCO

ÿ0.627
ÿ0.44
ÿ0.438
ÿ0.476

0.133
0.153
0.156
0.077

0.061
0.063
0.098
ÿ0.025

ÿ0.015
ÿ0.010

ì
ÿ0.015

0.083
ì
ì
ì

1.51
1.10
1.10
1.10

0.21
0.36
0.275
0.21

10a

50a

50a

10a

Note. First four Cu±Cu transfer integrals in the CuO2 plane are t, t
0, t 00,

and t 000; effective interlayer transfer integral is t?; local Coulomb

interaction is U, and pseudogap amplitude is D.
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local correlations caused by (quasi)static 8 AFM spin fluctua-
tions.

To specify Sk, it is necessary to know two important
parameters: the pseudogap amplitude D giving the energy
scale of fluctuating SDW, and the correlation length x. The
values of D were calculated as described in Refs [35, 37, 174].
The values of the correlation length were taken in accordance
with those produced in neutron scattering experiments for
NCCO [183, 184] and LSCO [185]. The values ofD and x used
for all systems under consideration are also listed in Table 1.
To solve effectively the Anderson single-impurity problem in
DMFT, we applied the numerical renormalization group
method ([23, 24]). The temperature in DMFT(NRG) calcula-
tions was chosen equal to 0.011 eV, and electron or hole
concentration (doping level) amounted to 15%.

LDA+DMFT+S calculations produced a clear picture
of hot spots behavior in the spectral function and on maps of
the Fermi surfaces for electron-doped systems [176 ± 178],
while for hole-doped systems only Fermi arcs arose [174, 175].

Figure 21 gives LDA+DMFT+S results for spectral
functions calculated along 1/8 of the bare Fermi surface, from
the nodal point on the diagonal of the Brillouin zone (upper
curve) to the antinodal point at the boundary of the zone
(lower curve). Results for Bi2212 are shown in the left panel of
the figure, and for NCCO in the right panel. For both
systems, quasiparticles are well defined in the nodal direc-
tionÐa sharp peak of the spectral function situated
practically on the Fermi level is clearly seen. As one moves
to the antinodal point, quasiparticle damping grows, reaching
a maximum at the hot spot (dark curve), and the peak of
spectral density moves away from the Fermi level. This
behavior is in complete agreement with the results of Refs
[186, 187] (for a comparison with experiment, see Refs [176,
177]). From the LDA+DMFT+S results given in Fig. 21, it
is directly seen that antinodal states in Bi2212 are formed by
the low-energy edge of the pseudogap,9 while inNCCOby the
high-energy edge. For Bi2212, we also observe bilayer

splitting of the quasiparticle peak, which is related to the
presence of two CuO2 planes in the unit cell.

The hot spots forNCCOare located closer to the Brillouin
zone diagonal [176, 177]. This can be seen from the dark lines
in Fig. 21, which correspond to the hot spots. Moreover, the
correlation length in NCCO is much larger than in Bi2212.
Thus, quasiparticles again are rather well defined for NCCO
(in contrast to Bi2212) in the antinodal direction. For Bi2212,
on the contrary, scattering near the Brillouin zone boundaries
is strong everywhere, and instead of hot spots we observe
quite strong `destruction' of the Fermi surface close to these
boundaries. Qualitatively the same picture is also observed in
LSCO.

LDA+DMFT+S Fermi surface maps in the quarter of
the Brillouin zone for Bi2212 are presented in Fig. 22a, and
for NCCO in Fig. 22b. In Bi2212, we observe strong
destruction of the Fermi surface by scattering on pseudogap
fluctuations in proximity to the Brillouin zone boundaries.10

In NCCO, in contrast, the Fermi surface is almost completely
restored close to the Brillouin zone boundaries. On the other
hand, the Fermi arc around the nodal direction in Bi2212 is
pronounced rather clearly, while in NCCO it is noticeably
smeared. This is another consequence of the fact that hot
spots in NCCO are located closer to the Brillouin zone
diagonal. A bit larger value of the pseudogap amplitude D
also favors the stronger smearing of Fermi arcs in NCCO.
Noteworthy also is the appearance of the shadow Fermi
surface which is much more intensive in NCCO.

Qualitatively the same Fermi surfaces were discovered
experimentally in real Bi [188] and Nd [186] systems (see
Fig. 22c, d). Thus, the distinction of Fermi surface maps for
these systems is related mainly to the distinction of the band
structure parameters for these materials. In particular, LDA
Fermi surfaces of NCCO are more bent, and hot spots appear
to be rather far from the Brillouin zone boundaries;
consequently, the Fermi surface in the vicinity of these
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8 The quasistatic approximation forAFM fluctuations necessarily restricts

this approach to rather high temperatures (and energies not very close to

the Fermi level) [58 ± 60]. Thus, we cannot in fact judge, for instance, the

nature of low-temperature (low-energy) damping, which is determined

entirely by dynamical (inelastic) scattering processes.
9 It is especially distinctly visible for the case of smaller correlation length

x � 5a considered in Ref. [174].
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10 Analogous behavior in entire accordance with ARPES results is also

realized in another hole-doped systemÐLSCO. The LDA+DMFT+S
calculations for this system were performed in Ref. [175].
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boundaries barely feels scattering by AFM fluctuations. In
Bi2212, the LDA Fermi surface comes in rather close to the
Brillouin zone boundaries in proximity to the (p=a, 0) point,
so that hot spots are also close to this point. Thus, they are
more `smeared' in Bi2212 by strong pseudogap scattering
near the (p=a, 0) point and are almost not observed. Hot spots
in NCCO are more vivid also because of the much larger
correlation length of fluctuations.

No less clear results were obtained in LDA+DMFT+S
calculations andARPES experiments for PCCO inRef. [178].
Figure 23 displays a PCCO Fermi surface map (panel (a)Ð
LDA+DMFT+S results, and panel (b)Ðexperimental
ARPES data). The Fermi surface is clearly distinguishable
here only near first Brillouin zone boundaries and around the
�p=a=2, p=a=2� point (Fermi arc). Again, as in NCCO, we
observe destruction of the Fermi surface in hot spots located
at the intersection of the Fermi surface and its AFM shadow
`replica'. This destruction of the Fermi surface is due to the
strong electron scattering by AFM spin (pseudogap) fluctua-
tions. The shadow Fermi surface becomes observable, as
happens in the case of AFM doubling of the lattice period.
However, since there is no long-range order in the under-
doped region in which we are interested, this shadow Fermi
surface is strongly eroded. The PCCO Fermi surface is very
similar to that observed in Nd2ÿxCexCuO4 (NCCO) com-
pound, which belongs to the same family of superconductors
[176, 177, 186].

Let us compare (see Fig. 24) theoretical (upper panel) and
experimental (lower panel) quasiparticle dispersions along
the most characteristic cuts of the Fermi surface shown in
Fig. 23. Theoretical data are multiplied by the Fermi function
at a temperature of 30 K and convoluted (in energy) with a
Gaussian distribution to simulate the experimental resolu-
tion.

Cut 1 crosses the quasiparticle and shadowFermi surfaces
near the Brillouin zone boundary. Correspondingly, it is
possible to detect here a fork-like structure formed by a
suppressed shadow band and much better defined by a
quasiparticle band. This structure corresponds to the origin
of formation of the Fermi surface cylinder around the (p=a, 0)
point. Cut 2 passes exactly through the hot spot. Here, we see
a strong suppression of the quasiparticle band near the Fermi
level. Finally, cut 3 crosses the Fermi arc and we can see a
fairly well-defined quasiparticle band. However, the low-
intensity shadow band is also present. In the case of the
presence of long-range AFM order and a full doubling of the
period, the Fermi surface and its shadow form a closed
`pocket' of the Fermi surface around the (p=2a, p=2a) point,

while in the present case a part of the pocket formed by the
shadow band is strongly smeared. One can see a good
agreement between calculated and experimental data. As
already noted, two-particle properties within the
LDA+DMFT+S framework can also be calculated [38],
which allowed investigating the optical conductivity of Bi and
Nd cuprates [176, 177], and also demonstrating significant
differences in the effects of pseudogap fluctuations. In
particular, we observe in the optical conductivity of NCCO,
in qualitative agreement with experiment [189], a character-
istic pseudogap dip and a smooth maximum due to absorp-
tion through the pseudogap at frequencies � 2D. However,
the characteristic pseudogap structure in optical conductivity
of Bi2212 hardly occurs, either in theory or in experiment
[190], which is related to sufficiently small values of D and the
fluctuation correlation length in this system.

Let us summarize some of our conclusions. For all the
systems studied, LDA+DMFT+S calculations give evi-
dence that Fermi-liquid behavior persists only rather far
away from hot spots (nodal direction), and destruction of
the Fermi surface is observed near the hot spots. This
destruction is due to strong scattering of correlated electrons
on short-range order AFM (pseudogap) fluctuations. A
comparison of ARPES data and LDA+DMFT+S calcu-
lated results points to the existence of quite distinct hot spots
in the behavior of both the spectral density and maps of the
Fermi surface in electron-doped systems, in contrast to hole-
doped systems, where we only observe a strong destruction of
the Fermi surface near the Brillouin zone boundaries and
Fermi arcs around its diagonals.

There are several reasons for this distinction: (1) hot spots
in electron-doped systems are located closer to the center of
the Brillouin zone; (2) the correlation length of AFM
fluctuations in electron-doped systems is longer, and (3) the
width of the pseudogap in electron-doped systems is also
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larger than in hole-doped ones. The experimental and
theoretical results discussed above clearly confirm the AFM
scenario of the formation of a pseudogap in both hole-doped
[174, 175] and electron-doped [176 ± 178] cuprates.

5. Conclusions

In this review, we discussed the DMFT+ S generalization of
the standard dynamical mean-field theory (DMFT), which
allows us to include nonlocal correlations or additional
(relative to the Hubbard one) interactions (theoretically of
any type), while remaining within the single-impurity picture
ofDMFT and retaining the same set of self-consistent DMFT
equations. The basic approximation of this method relies on
the neglect of interference contributions from DMFT dia-
grams and additional interactions included in the analysis.
Precisely this (strictly speaking not completely controllable)
approximation allows preserving the overall structure of
DMFT equations, which permits solving DMFT+S equa-
tions with the well-developed methods used in the standard
DMFT. It should be emphasized that the self-consistent
account of additional interactions at every step of the
DMFT loop leads to a rather complicated procedure
equivalent to the summation of infinite classes of diagrams.

The proposed approach proved to be versatile enough to
be applied to a number of problems in systems with strong
electron correlationsÐ from a semiphenomenological
account of nonlocal short-range order pseudogap fluctua-
tions to the self-consistent framework for the metal±insulator
transition in the disordered Anderson±Hubbard model and
account of the electron±phonon interaction effects in the
electronic spectra of strongly correlated systems. A salient
feature of the DMFT+S approach is the possibility of
studying, along with one-particle characteristics, the two-
particle properties, i.e., in principle, any kind of response
functions (optical conductivity, magnetic susceptibility,
charge screening, etc.). The universality of the method allows
one to hope for its successful application to solving a number
of future problems.

Discussing all the problems of interest, one should keep in
mind that similar in many respects physical results can also be
obtained with more sophisticated approaches, using these or
other methods of direct numerical simulation. For example,
similar results for the formation of the pseudogap in the
single-particle characteristics of the two-dimensional Hub-
bard model were obtained in the cluster generalizations of
DMFT [32, 33]. However, these methods exhibit specific
limitations (e.g. on cluster size) and are still not widely used
to calculate the two-particle properties, such as the general
response functions, notably, the optical conductivity. The
DMFT+S approach has obvious advantages here, asso-
ciated with saving computational resources: it requires a
significantly lower cost of computational time, and its
advantage in calculating the two-particle response functions
is quite obvious. This opens up additional opportunities for
the systematic comparison of various types of nonlocal
fluctuations or additional interactions and their influence on
the electronic properties of strongly correlated systems,
providing an intuitively clear path to the analysis of
experimental and theoretical results obtained via more
complicated methods.

The rather simple generalization of our computational
scheme enabled us also to formulate the generalized
LDA+DMFT+S approach allowing us to perform calcula-

tions of all the effects discussed above for real compounds of
transition metal elements with strong electronic correlations.
One can expect that these calculations will be useful in
analyzing and explaining new experimental findings.
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