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The possibility of superconductivity is considered for a strongly disordered 
metal approaching the Anderson transition. A microscopic derivation of the 
coefficients of the Ginzburg-Landau expansion is given for a system in the 
vicinity of the mobility edge. The localization transition is described within the 
framework of the self-consistent theory of localization. The superconducting 
response persists in the localization region. The appropriate change in the 
behavior of the upper critical field Hc2 is considered for the localization region. 
The Coulomb repulsion grows as the Fermi level approaches the mobility edge, 
leading to a degradation of the superconducting To. However, under rather 
rigid conditions superconductivity is possible both at the nlobility edge and in 
a narrow region below the mobility edge, i.e., in an Anderson insulator. Finally, 
experimental data for superconducting molybdenum sulfides irradiated by fast 
neutrons are discussed. 

1. INTRODUCTION 

The concept of localization forms the basis of the modern theory of 
electrons in strongly disordered systems. 1,2 Sufficiently strong disorder intro- 
duced into an ideal metallic system leads to the localization of electronic 
states in the vicinity of  the Fermi level (Anderson transition)) The electronic 
density of states at the Fermi level remains finite, but because of spatial 
localization of the electronic wave functions, dc electrical conductivity at 
zero temperature is impossible, i.e., the system becomes an insulator. At 
the same time if there exists an attraction of electrons in the vicinity of the 
Fermi level, the metallic system becomes superconducting at low tem- 
peratures.* So the problem arises of the interplay of  these two types of 
transitions, leading to essentially different ground states of the system 
(insulator versus superconductor). This question is also important from an 
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experimental point of view due to a strong dependence of the superconduct- 
ing properties of  some compounds on the degree of the structural disorder, 
which can be changed greatly by fast neutron irradiation. 

The influence of localization on superconductivity has been dealt with 
in a number of recent theoretical papers. 5-j3 Attention was paid particularly 
to the study of localization corrections in two-dimensional superconduc- 
tors. 6-1° However, the possibility of superconductivity in the vicinity of a 
real Anderson transition was not studied. In this paper we address the 
problem of  superconductivity in a three-dimensional metal undergoing an 
Anderson transition. From the experimental point of view we consider a 
rather exotic situation. In fact in most metals the Anderson transition is 
not realized even for the fully amorphous state. This is due to the rather 
high values of  the typical Fermi energy EF. Possible candidates are metals 
with low values of  EF (semimetals, narrow-band conductors) and also 
quasi-one-dimensional and quasi-two-dimensional conductors. 

In the first part of the paper we treat the problem in the framework of 
the BCS model, 4 which assumes the existence of  an attractive interaction 
between electrons near the Fermi level. For this model a statement can be 
proved (Anderson theorem) 14 that claims the unimportant influence of 
structural disorder on the superconducting transition temperature To. The 
arguments used in this proof  are, in fact, independent of  whether the 
electronic states are localized or not. 6'8'1~ However a question arises about 
the physical meaning of  Tc in the localization region, as to whether below 
this temperature the system still has the Meissner response to an external 
magnetic field and can sustain a persistent current. This problem can be 
solved by the derivation of  the Ginzburg-Landau (GL) equations for the 
system in the vicinity of  the Anderson transition. We shall demonstrate that 
superconductivity persists for T < To, i.e., an Anderson insulator-supercon- 
ductor transition is possible. On the basis of the GL equations, we study 
the behavior of  the upper critical field H~2 in the region of  the Anderson 
transition. 

To justify the applicability of the BCS model we must show that the 
electron-phonon mechanism of electron-electron attraction may dominate 
over Coulomb repulsion even in the localization region. In a recent paper 
Anderson et  aL ~2 demonstrate that the diffusive nature of  electron motion 
in a disordered system leads to the growth of an effective repulsion of 
electrons forming Cooper pairs and to the appropriate suppression of Tc 
with disorder. We shall show, however, that under rather rigid conditions 
the value of  Tc remains finite both at the mobility edge and in some narrow 
region below the mobility edge (Anderson insulator), although it is the 
growth of the Coulomb repulsion that leads to the destruction of supercon- 
ductivity in the insulator phase at some critical disorder. 
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Finally, we discuss some experiments on superconductors irradiated 
by fast neutrons, which give some evidence on the possible realization of 
our theoretical estimates in real systems. 

2. GINZBURG-LANDAU EQUATIONS 

2.1. General Relations 

Consider the electrons in a disordered system, assuming the existence 
of  an effective electron-electron attraction g, in an energy region of  the 
order of 2~OD around the Fermi level (~0D is the Debye frequency). To study 
the problem of superconductivity in such a system we must not only discuss 
the value of  To, but also consider the response to an external vector potential 
A. 

In the general case, the study of response functions for a superconduct- 
ing system with localized one-electron states presents a rather difficult 
problem. However, near Tc the problem simplifies, and in fact we must 
only show that the free energy density for our system can be represented 
by the standard GL form 15'16 

F=F,+AIAIZ+~BIAI4+ C (0 2ieA~A 2 
\~r  - hc-c ] (1) 

where F, is the free energy density for the normal state and A is the 
superconducting order parameter. Now the problem reduces to the micro- 
scopic derivation of the coefficients A, B, and C in (1), taking into account 
the possibility of electron localization in the disordered system, thus gen- 
eralizing the results of G o r k o v  15"16 for "dir ty" superconductors. In the 
following we use the system of  units h = l, restoring the value of  h only in 
some final expressions. 

Within the BCS model the coefficients A and B in fact do not change 
in comparison with the ordinary theory of "dir ty" superconductors, even 
as we approach the mobility edge, so long as the Anderson theorem can 
be applied. Below we shall determine the appropriate conditions. Less trivial 
is the behavior of  the coefficients C, which in fact determines the supercon- 
ducting response. In the limit of ordinary "dir ty" superconductors it is 
proportional to the diffusion coefficient of electrons, i.e., to the conductivity 
at T = 0. As we approach the mobility edge this conductivity goes to zero. 
However, we shall show that in the region of the Anderson transition C 
remains finite even in the region of localized states. 

To determine the coefficients of the GL expansion it is sufficient to 
study the two-particle Green's functions for the normal system. 15 We intro- 
duce two-particle Matsubara Green's functions for electrons in the normal 
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system in the momentum representation'7-19: 

f fT(q~omen)- -  1 f d3p I d3p' 
2,~i ~ (2~>  ~ 

x < G ( p + p "  - ~o + ,or~) O ( - p ' ~  - p_ - ~ )> 
(2) 

l f d 3 p f d 3 P  ' 
~(q~°me.)=-2~.--- ~ - ~ 3  (27r)3 

x(G(p+p" - en + ~om) O(p'_p_ - en)> 

where the angular brackets denote averaging over the random configurations 
of the disordered system, p±=p-+-½q, e , , = ( 2 n + l ) ~ T ,  and w,,=27rmT. 
Graphically these functions are represented (for o)m = 2en) in Fig. 1, where 
shaded blocks denote the exact vertex parts in the standard impurity diagram 
technique. 

Then for the coefficients A, B, and C we get 935A6 

1 
A = - + 2 ~ - i T Y  0(q=0 ,  wm = 2 G )  (3) 

g e. 

32 
C = icrT Y~ ~ 0(qw~ = 2e~)lq= 0 (4) 

en 

We see that the superconducting properties are determined by the function 
0 describing the propagation of two electrons. At the same time the function 
~b describes the kinetic properties of the normal state and the localization 
transition. In the case of time-reversal invariance, i.e., in the absence of 
external magnetic field and magnetic impurities, we have '8''9 

~b(qwm) = ~b(qoJm) (5) 

and our problem reduces to the calculation of ~b(q~om). 

-P-- -G -,9_ -G -p-'-& -P--& 

Ti ÷ 

P__ -G p_-E~ P-'-G P_-G 

Fig. l. Diagrammatic  representation for ,p and qS. Shaded blocks 
denote the exact vertexes of  the impurity diagram technique. There 
is no summat ion over e. in the loops. 
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Fig. 2. Anderson transition showing the density of states 
in the conduction band. States with E < E c are localized. 
(a) Metallic phase (Ev> Ec); (b) insulator phase (EF< Ec). 

For a disordered system the electronic states of the conduction band 
are localized near the band edge up to an energy Ec (the mobility edge). 
As the disorder grows, the value of Ec moves upward and can pass the 
Fermi level EF (see Fig. 2). Thus we have an Anderson transition. As a 
one-electron model of this transition we take G6tze's self-consistent theory 
of localization in the form proposed by Vollhardt and Wolfle.  17-21 The main 
attraction of  this theory is the practical possibility of  performing calculations 
for the whole range of parameters of the system, from "good"  metal to 
Anderson insulator. For small q and wm we have 

N ( EF) 
~b(qtom) - ilo)ml+il~(io)ml)q 2 (6) 

where the generalized diffusion coefficient at the Fermi level /)(o)m) is 
determined by the self-consistency equation 17'18 

ff)(wm-----)D° 7rNZ(EF)i _r d3q - 1 ~ 3  ~b (qwm) (7) 

Here N(EF) is the electronic density of states at the Fermi level in a 
disordered system, D0= 1 2 ~vvr is the "bare" diffusion coefficient, r is the 
mean free time in the Born approximation, and VF is the Fermi velocity. 
For a model of pointlike random scatterers with scattering amplitude V 
and spatial density p we have 1/r=27rpV2N(EF). In the following the 
"bare" mean free time r and the appropriate mean free path l = VFr will 
characterize the degree of disorder. In the localization region these para- 
meters obviously do not have the same simple meaning, which is clear in 
the metallic state. 

For the three-dimensional case (7) reduces to ~8"21 

D(wm) t A 7r A[  Do -]1/2 
- .  ~ I o m r  (8) 

Do A< 7 XcLD(<,,=) J 
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where A = (27rEFr) -I and Ac is the value of A for E F = E c. The solution of 
(8) can be written approximately as 

1)( o)m) ~ Max [ D o),. + ~-~W2o/ v~ , Do( wmr) l/3 ] (9) 

where 

D = Do(kFR,) -~ (10) 

is the renormalized diffusion coefficient, while the characteristic frequency 
~Oo is 

Yl 2 n - 2 .  09~=~VFI~I, EF<E c (insulator) 
[0 ;  EF>-Ec (metal) (11) 

Here R~ is the correlation length for the Anderson transition. 1'18'2° For EF 
near Ec we have 

=-~F - ~ - ~  1 EF-E~-~ (12) 
Rt 1 kF Ec 

where v is the critical exponent. In the self-consistent theory, for the 
three-dimensional case v = 1 ; however, experimentally the value may differ. 
The frequency OJo is in many respects similar to an order parameter  in the 
usual theory of  phase transitions. It becomes nonzero in the localized phase 
and determines the insulator nature of  the electromagnetic response, e.g., 
the dielectric function.IV-2°'31 In principle it is a measurable characteristic 
of  the localized phase and gives information on R~ [see (11)] in the insulator 
region in the same manner  as tr defines it in the metal region (see below). 

The position of the mobility edge in the conduction band for free 
electrons in the model of  pointlike scatterers is determined by the estimate 2° 

9 
E c = - - m 3 ( p V 2 )  2 = E F ( E F T )  -2  

2"/7"4 Ev= Ec 
(13) 

At the mobility edge (EF = Ec) we have EFt = 3/2rr or kvl = 3/7r. With the 
growth of disorder, i.e., of  the value of pV 2, r diminishes and Rz grows in 
the metallic region (EF> Ec), while the renormalized diffusion coefficient 
(and conductivity) drops to zero at the transition at EF = Ec, where R~ = oo. 
With further growth of disorder we enter the localization region, where Rt 
determines the localization length of an electron. Here Rt drops as Ev moves 
deep into the localization region, while ~o0 grows, similarly to the growth 
of an order parameter  in the condensed phase in the theory of phase 
transitions. 
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Note that the equations of  the self-consistent theory of localization are 
derived with the essential use of  perturbation theory over the parameter  
(EFt)  -1. Actually, as we have seen above, this parameter  is not small at the 
mobility edge, and the self-consistent theory in fact has no controllable 
small parameter.  2° 

For the metallic phase (EF >I Ec) the experimentally measurable static 
conductivity o- is determined by the renormalized diffusion coefficient and 
can be expressed as 

cr = 2e2  D N  ( EF)  = Cro/ k F R  l = cr o - cr c (14) 

where cro = 2 e 2 D o N ( E F )  is the usual Drude conductivity and crc is its value 
at the mobility edge ( E F  = Ec): cr c = e 2 k F / ~ 3 h .  T h e  last equality in (14) is 
valid for v = 1. We shall use this relation following from the self-consistent 
theory to simplify the analysis, although, as we have already stressed, the 
experimental value of ~, may be quite different and for cro = crc the relation 
(14) is replaced by 

In most experiments on the strongly disordered metals the typical scale 
for o- o is determined by the Ioffe-Regel limit22; the mean free path is of  the 
order of  a few interatomic distances and cr ~ O'o~ 103 f~-I cm- l . .  However,  
near the Anderson transition the value of o-o drops to o-c, which is obviously 
of  the order of  the minimum metallic conductivity due to Mott and Davis23: 
o-c ~ (2-5) x 102 1~ -1 cm -~. This is a characteristic conductivity scale for the 
continuous Anderson transit ion) Using (14), we can, in principle, relate 
o'0 to the experimental value of the conductivity o-: O'o = o-c + ~r. However,  
the value of ~c should be considered as an obvious fitting parameter,  to be 
determined from experimental dependences. 

An obvious limitation of our theory is the explicit neglect of  the effect 
of  the electron-electron interaction upon the metal- insulator  transition in 
the disordered system. We assume the validity of  the picture of  the Anderson 
transition 3 as described in the one-electron approximation.  However, it is 
known 31'32 that the electron interaction has an important  effect in the vicinity 
of  this transition. Within the framework of  the BSC model where the only 
interelectron interaction is an attraction in the vicinity of  the Fermi level, 

*The Ioffe-Regel conductivity region is characterized by a very low negative temperature 
coefficient of  resistivity and strictly speaking cannot be described by the usual Boltzmann- 
Drude theory. In most of  this paper we are concerned with still lower values of  the conductivity, 
of  the order of  try, typical of  the vicinity of the Anderson transition. However, it is possible 
that the actual behavior of  the system in the Ioffe-Regel region is intimately connected to 
localization. 
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described by the pairing constant g, we are free to assume the weakness of 
this interaction, i.e., gN(EF)<< 1, and neglect its influence upon the pair 
propagator &(q, win) completely. In a real system we apparently have to 
consider electron-phonon and Coulomb interactions and disorder on an 
equal footing (see below). Unfortunately, there is no complete theory of  
the metal-insulator transition in disordered systems. 

Thus we limit ourselves to the study of  the coexistence of localization 
and superconductivity in the framework of the BCS model in the weak 
coupling limit. 

2.2. Coefficients of the GL Expansion 

The details of the calculations leading to the final expressions for the 
GL coefficients A, B, and C are given in Appendix A. Here we quote only 
the results. The coefficients A and B, determining the transition temperature 
and the order parameter near To in complete accordance with the Anderson 
theorem, are described by the usual expressions for "dir ty" supercon- 
dnctors~5,~6: 

T T - T o  
J = N(EF) In -~  ~ N ( E F )  

(15) 

B - ~ 2 N ( E F ) "  T~ = 1.13co D e -l/x 
8~r~T~ 

where A = gN(EF). These expressions depend on disorder only through 
N(EF), but they are valid even below the mobility edge (EF< E~), i.e.,'in 
an Anderson insulator. 

Significant changes occur in the coefficient C of the gradient term of 
the GL expansion. Using (4)-(6) and (9), we find 

77" 
-~--~ N(  EF)D; 

N E Dol 2/3 

N(EF)R 2 In - - "  

Rt<(~off)l/3; EF>Ec 

.-~ N(EF)(~ol2)2/3; R 1 > (~012)'/3; EFX Ec (16) 

1.78D 

rrT~R~' 
Rt < (~012)1/3 ; E F <  Ec 

where ~o = O. l 8rE~ Tc is the superconducting coherence length. In the metal- 
lic region, as the Fermi energy EF approaches the mobility edge Ec, the 
characteristic length RI grows and the coefficient C diminishes as the 
renormalized diffusion coefficient D from (10) and is proportional to the 
metallic conductivity (14). However, in the vicinity of the mobility edge, 
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as o--~ 0, C diminishes more slowly and remains finite even for EF< Ec 
(Anderson insulator). With further lowering of Ev deep into the localization 
region, C is determined by the localization length Rt, which diminishes as 
EF moves apart from Ec. 

Our analysis of the insulator region (EF< Ec) is limited to the range 
of sufficiently large Ru such that 5 

[ N ( E v ) R ~ ] - '  << T~ (17) 

This is the condition of a large number of discrete energy levels within a 
sphere of radius RI in the energy interval To, which is the necessary condition 
for Cooper pairing of localized electrons. It is easy to see that (17) reduces 
to 

Rt >> [N(Ev)Tc]  -~/3 ~ (,~olk~) '/3 ~ (~o12)u3; EF< Ec (18) 

Thus the final asymptotics in (16) in fact has no region of applicability, 
and within the BCS model the condition of superconductivity in the insulator 
phase is given by (17) and (18). The meaning of these results is that the 
electron motion within a localization region of size R~ is sufficient to produce 
coherent Cooper pairs. 

For the superconducting correlation length ~(T) and the London 
penetration length AL we obtain, using (1) and (14)-(16) (cf. Ref. 16) 

I l or . Go or>or*( F> o) 

¢2(T) \ Tc ] [(~:0/~)2/3; or<or*(EF<>E~) (19) 

A L 2 = 327re2c-ZN(EF)A2~2(T)(1 - T~ T~) 

From (19) we can see that both ~2(T) and A L 2 initially drop proportionally 
to o-, while the disorder grows, but already in the metallic region, for 
Rt ~ (~o/2) 1/3, these quantities diminish more slowly than the conductivity. 
This change of behavior starts for 

o'<~-- or* ~- orc( kF¢o) -1/3 (20) 

which is the key quantity for the effect of localization on the superconducting 
coherence length. For typical values of ~:o~ 1001 and l ~ k F  1 we have 
or, <~ 102 f~-i cm-l,  i.e., the value of or* is smaller in general than the minimal 
metallic conductivity. However, it is again better to understand it as a 
parameter to be determined from experiments, showing the transition to a 
behavior different from the predictions of the usual theory of "dirty" 
superconductors. 

For the insulator phase the values of ~:2(T) and At:  remain finite, 
although they diminish further with I. The critical current for a thin supercon- 
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ducting plate is proportional to  AL2/sC(T), 16 and remains finite after tr 
becomes zero. 

Finally, we note that our results give evidence of localization destruction 
for electrons forming Cooper pairs. However, the character of the wave 
functions and kinetic properties for one-particle excitations below T~ are 
at present unknown. 

2.3. The Upper Critical Field 

Direct information about ~:2(T) can be obtained through measurements 
of the upper critical field He2,16 

He2 = ¢0/2~r~2(T) ; ¢o = 7rch/e (21) 

Using (19), we obtain a relation connecting o-, (dH~2/dT)rc, and the value 
of N(EF),  which can be determined through independent measurements of 
the electronic specific heat: 

f 8e 2 
cr(dHc2~ 1 "n'2-'-'~ ~b° ; o '>  or* (22a) 

N(EF)k aT /to | ~ b o _  ~ _ _ _ .  or* 
[2~- [N(EF)Tc] 1/3' o '<  (225) 

On the rhs of  (22a) only fundamental constants appear, and this relation 
is often used for the interpretation of measurements on irradiated supercon- 
ductors. 24'25 Using this relation, we can find values of N(EF) for different 
degrees of  disorder from the measured values of (dH~2/dT)T~ and conduc- 
tivity or. However,  near the metal-insulator transition, when o-~< o-*, this 
relation is already invalid and the described method of interpretation of  
measurements of  (drive~tiT)To simulates a fall of  N(EF) with o- according 
to (22b). In real systems this behavior was observed in Refs. 24 and 25 and 
we stress the importance of independent experiments to determine N(EF). 
According to preliminary data obtained by the authors of Ref. 24 via specific 
heat measurements, the value of N(EF) remains practically unchanged with 
the growth of  disorder. 

Here it is appropriate to note that our derivation of the coefficient C 
essentially used time-reversal invariance, as expressed by (5), which is 
correct in the absence of external magnetic field (and magnetic impurities). 
So our results are formally correct in the limit of an infinitesimal external 
field, which is sufficient for the demonstration of  the superconducting 
(Meissner) response and for the determination of  (dH¢2/dT)To, because 
He2-->0 for T o  T~ (see below). In a finite external field we must take into 
account the influence of  the magnetic field upon localization, which is 
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expressed by the violation of (5). This problem is far from being solved. 
However, if we neglect this influence, we can calculate the full dependence 
of the orbital upper critical field He2(T). This is determined by the equation 26 

z l n l c = T r r , ,  1~.l+~(21~°l)zrn/~0 le-.I (23) 

where /5(2e . )  is determined from Eq. (8). Introducing the parameter 

a = 1.23 1 +~-~(kF~%) -1/3 (24a) 

and calculating b., x, and S via the equations 

2n+l=b~(b . -a )2 ;  b .>a;  S =  ~ b~(2n+l)  -2 
n ~ O  

rr x/x (24b) 
[ ~ ]  - - + I n  3"56a3 =0  1+ In x+-~ l + x  

we obtain the characteristic parameters: 

r( a) = He2(0) _ 2a2x S 
T~ ( dHc2/ aT) rc 

(25) 

k(a)=-SN(EF)e2ck°\--~--] r~ 8 S  

These dependences are represented in Fig. 3. As we approach the mobility 
edge, r(a) grows from the standard value of 0.69 typical for "dirty" 
superconductors 26 to the value 1.24 in the localization region, i.e., for or << o-*. 
This growth of r(a) transforms the positive curvature in the dependence of 

f0 

05 

he2(T) = - He2( T)/ T~ ( dHc21 dT) Tc 

Fig. 3. Calculated dependences of r and k of Eqs. 
(25) on the ettective disorder parameter a [Eq. (24a)]. 
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[0 

&5 

de 

Fig. 4. Calculated dependence of hc2( T) = - H c 2  ( T)/ Tc(dHc2 / 
dT) rc on temperature T in the localization region, ~ << tr* (solid 
curve), and standard WHH dependence 26 for dirty supercon- 
ductors (dashed curve). 

on T observed for o- >> or* into a negative one in the region of  ~r ~< o'*. Figure 
4 shows hc2(T) in the localization region, i.e., for EF = Ec. 

N o w  we discuss the condit ions when it is possible to neglect the 
magnet ic  field dependence  o f  the diffusion coefficient /9(to,.). It is welt 
known that  a magnetic  field diminishes the localization corrections due to 
the "maximal ly  crossed diagrams ''27 and breaks the validity o f  Eq. (5). 19 
The relative change of  /~(to,,) and the difference between ~b and ~b is 
apparent ly  propor t ional  to L)(tom)H/tomCho, and near To, when tom - To, the 
change of  D(wm) is small over the parameter  HI)(Tc)/c~oTc. Thus, near Tc 
we can neglect the influence of  magnetic  field H~2 on diffusion due to 
[ (Tc-T)/T~[<< 1, and our  method of  calculation correctly determines the 
values o f  k(a). However,  possible magnet ic  field corrections to r(a) may 
be important .  For  T ~  0 the critical field He2 grows, suppressing the locali- 
zat ion corrections, and /~(to,,) grows, thus diminishing /-/ca. However,  
according to Coffey et al., 13 this growth of  /3(to,~) leads to the partial 
cancellation o f  the Cou lomb  contr ibution to the effective pairing constant  
g (see below). This effect was studied by the authors o f  Ref. 13 for the 
metallic region and o- > or*. However,  they did not take into account  the to 
dependence  o f  the effective diffusion coefficient, which becomes impor tant  
for o - -o r* .  Our  results show that the appropr ia te  changes o f  H~2 are not  
small, so that  taking account  o f  changes in g, as in Ref. 13, is not  sufficient 
for  the correct  determinat ion o f  H~2(0). Thus, the final value o f  the correct ion 
to our  estimate o f  r(a) is not  clear at present, and the difference between 
experimental  values and our  value o f  r(a) can give an estimate o f  the 
magnet ic  field influence on the diffusion coefficient /~(to,,), i.e., upon  
localization.* 

*Experimentally, dependences of hc2(T ) similar to that shown in Fig. 4 were observed by 
Tenhover et al. 28 for amorphous MoRe. However their data for k do not differ from the 
standard value 0.69 [in calculating k, they use the experimental values of or, (dHc2/dT)rr~ , 
and of the coefficient y in the temperature dependence of the electronic specific heat]. 
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3. COULOMB INTERACTION FOR STRONGLY 
DISORDERED SUPERCONDUCTORS 

3.1. Coulomb Kernel for the Gap Equation 

In the BCS model discussed above we have assumed the existence of  
an effective pairing interaction g in the energy region of the order of 2oJD 
around the Fermi level. However, in real systems the pairing interaction is 
determined by the interplay between the attraction due to electron-phonon 
coupling and Coulomb repulsion. 16 Clearly, for a strongly disordered system 
in the vicinity of the Anderson transition both interactions can change 
appreciably in comparison with a "pure"  system. 

It is well known that the Coulomb contribution to the effective pairing 
interaction is significantly weakened in comparison with the phonon contri- 
bution, due to the retarded nature of the electron-electron interaction via 
the exchange of virtual phonons. For the electron-phonon interaction the 
characteristic time is oJ~ I, while for the Coulomb interaction in a "pure"  
system it is of the order of Ev ~ because this is the time during which the 
electrons pass each other in the Cooper pair. Both interactions are practically 
pointlike due to screening. With the growth of  disorder an electron leaves 
the given region in space more slowly and this leads to an effective growth 
of Coulomb repulsion in the Cooper pair and to the corresponding lowering 
of To. This mechanism for the degradation of Tc with disorder was studied 
by Anderson et al. 12 using the scaling hypothesis. Below we shall consider 
this suppression of Tc within the self-consistent theory. In the metallic 
region our estimates are in qualitative agreement with Ref. 12, although 
quantitatively they are different. However, our analysis of Tc leads to the 
conclusion that superconductivity can survive in the localized phase if rather 
rigid conditions are satisfied. 

In a strongly disordered system we must consider the matrix element 
of  the screened Coulomb interaction v ( r - r ' )  over exact eigenfunctions 
q~(r) associated with exact eigenenergies e~ of an electron in the random 
field of this system: 

(~vlv(r-r')lv~)= f dr f dr' v(r-r')~0*(r')q~*(r)~,(r)~0~(r') (26) 

Averaging this matrix element over two isoenergetic surfaces EF and EF+ w 
and over the disorder, we obtain the Coulomb kernel for the superconducting 
gap equation in the following form: 

Kc(w) N(Ev) (p,v[v(r-r')lvtz)6(EF-e.) 6(EF+O~--e~) 

=fdrfdr'v(r-r')((pEF(r)p~F+,o(r'))) (27) 



102 L . N .  Bulaevskii and M. V. Sadovskii 

Here we have introduced Berezinskii-Gorkov spectral density29: 

((p~(r)p~+o,(r'))) = N(EF) ~*(r)~,(r)q~*(r ')~.(r ' )  

x 6(EF-- e~) ~(EFq- 60 -- eg) )  (28) 

which gives the complete information on the nature of the electronic states. 
In particular, in the localization region, i.e., for EF< Ec, this spectral density 
contains a singular 6(to) contribution29: 

((pzF(r)p~v+,o (r'))) = P ( r -  r') 6(to) + . . .  (29) 

where 

1 E e~)l~(r)l=l~(r')l 2) P(r-r') = N(EF)( ~ 8(EF-- (30) 

is the generalized inverse participation ratio connected with a finite probabil- 
ity of an electron returning to the initial point in an infinite time. s° 

Fourier transforming (27), we get 

Kc( tO)=f~v (q ) ( (p~Fp~F+,o ) )  q (31) 

Below we shall assume a pointlike interaction v(q) = Vo. For to << ~.-1 and 
q << 1-1 the Berezinskii-Gorkov spectral density posesses a diffusion contri- 
bution30: 

1 
((P~FPEF+~))~- ¢rN(EF) Im &r~(qto) (32) 

Within the self-consistent theory of localization 17-21 ~bRA(qto) is determined 
by an analytic continuation itom ~ to + i6 in (6). For the metallic region we 
have 

where 

N(EF) (33) 
~RA(qto) = to + i/~(to)q2 

~'\ Cro/ (34) 
Do(--ito'r)l/3; [to[ >> toc 

Without disorder (~--1 = 0) the diffusion contribution vanishes and the kernel 
Kc(to) must reduce to the ordinary Coulomb potential/~ = N(EF)vo. Thus 
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we use the approximate relation 

Kc(m) ~/.~ + K~(to) 

[ a3q 
K~(to) = 1.) 0 ,, ~--~((PEFOEF+aj)) q (35) 

reproducing the main difference between pure and disordered metals by 
the value K~(w). Using the above relations, we shall find Kc(tO) and solve 
the linearized gap equation for the order parameter A(to) to determine Tc 
and the conditions for the existence of superconductivity. 

3.2.  M e t a l l i c  R e g i o n  

From (32)-(34) we obtain* 

[ d3q ~ Vof 1 Io, I '/2 
K ~ ( w )  /)o 

, /  

/ _1 Io, I '/~ 
= votOlm3/2, Io, l<< o,c (36)  

2~" [~!(-- ;773;  Io, I >> o,o 

Here we have introduced the upper outoff at q of the order of/-1.31,32 Then 
we obtain the following approximate expression for the Coulomb kernel 
in the metallic region and near the mobility edge (see Figs. 5a and 5b): 

Kc(O) = I z O ( E v - I o l )  

/~; I,ol < mc (37a) 
/z tr 

+k-~/{~/(Io~lr)- ; 1 ' "  o,o < Io, I < ,/.--1 EF (37b) 

From (37) it can be readily seen that in the vicinity of the Anderson transition 
we obtain a considerable growth of the Coulomb repulsion due to diffusion 
renormalization, which was first considered by Altshuler and Aronov. 3z 

The situation with regard to the electron-phonon contribution to the 
pairing interaction is different. Diffusion renormalization of  the eleetron- 
phonon vertex does not appear, 33"34 because the appropriate corrections are 

*These expressions actually define the Fock correction to the electronic density of states 
- 8N(E)/N(EF) due to electron-electron interaction. 3~ In the region of "high" frequencies 
[tol >> toc they slightly modify the expressions of Ref. 31, where the to dependence of D(to) 
to~/3 was neglected. 
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Fig. 5. Coulomb kernel (a) in the metallic region, (b) at 
the mobility edge, (c) and in the insulator. 

cancelled when we take account of  impurity vibrations. Of  course, the value 
of the pairing interaction due to the e lect ron-phonon interaction in a 
disordered system does change in comparison with the pure case. However, 
this change is relatively unimportant.  12'33 Thus, following Ref. 12, we can 
assume that this interaction is described by some dimensionless parameter  
A, which is nonzero for the energies in an interval of  the order of  2wo 
around the Fermi level, and is weakly dependent on disorder. 

The transition temperature Tc is determined by the linearized gap 
equation, which we can take in the weak coupling form: 

do)' , ~ '  
A(to) = X0(tOD-- to) --W-7 A(~o ) t h 2 T  c 

-O(EF-'°) f~F d~" Kc(°°-°~')a('°')th ,o (38) 

Consider first the metallic region and toc >> O)D, which according to the 
estimate of  toc in (34) corresponds roughly to tr ~> trc for typical values of  
EF/tOD ~ 10 a, i.e., the system is not very close to the Anderson transition. 
We calculate the change in Tc due to a diffusion contribution in the Coulomb 
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kernel (37), using perturbation thzory with respect to K~(to): 

dw to 
6T~= &o Ao(w) th ~ o  Kc(w - w ' )  A0(~o' ) th 
Too to 

co 
2 to (39) X (~Tc0 I 0 d°) [ Ao(('° )] ( ch ~-~co) -2] -1 

where Ao(w) is the zeroth-order solution (the usual two-step solution ~6) of 
(38) for the ordinary Coulomb kernel Kc (w)=  ~O(EF--oo). Using (37a), 
we obtain 

6 T ~  tt 1 tr~ (40) 
T~o (A -/Xo*) 2 kvl cr 

where 

1 ) /z (41) 
To° = I'13tOD exp h--/~o* ' /z°* - 1 +/z In (EF/OJD) 

are the usual expressions for the critical temperature of the pure system 
and the standard Coulomb pseudopotential. 16 Actually the change of Tc 
given by (40) is equivalent to the change of tZo* by the value 

~/~* =/~o'2/o'(cr + o'c) (42) 

where we have used (14) and O'o=~c(kFl) to exlude the factor of (kFl) -~ 
in (40). According to (42), the Coulomb pseudopotential ~* grows as or 
drops and this dependence on o" here is stronger than in the similar 
expression of Ref. 12. This is due to our use of the expressions from the 
self-consistent theory of localization. The results of Ref. 12 can be obtained 
using another form of the generalized diffusion coefficient, equivalent to a 
scaling hypothesis on the q dependence introduced by Lee35:/)(w ~ 0, q) 
(Dol)q for qRi >> 1. The self-consistent theory gives another limit: /~(o~, q 
O) ~- (Dol)2/3(-iw) ~/3 at the mobility edge. Our expression for ~* allows a 
noticeable change of ~* for the conductivity region o-4 103 1~ -1 cm -1. Such 
a dependence can explain the typical drop of Tc in irradiated superconduc- 
tors as their resistivity in the normal state grows 24'2s in the Ioffe-Regel 
region. The expression for ~* of Ref. 12 can explain the experimental data 
only by assuming that the values of the conductivity scale an order of 
magnitude larger than the typical Ioffe-Regel value, for which there seems 
to be no valid theoretical foundation. 

Consider now the situation at the mobility edge itself, when o- = 0 and 
~oc = 0, and Kc(~o) is determined by the second expression in (37) for all 
frequencies below r -~ ~ E  F (see Fig. 5b). In this case, as is shown in 
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Appendix B, the Coulomb effect on Tc can again be represented by 
the effective Coulomb pseudopotential tz*. However, now we have (a  = 
const ~ 1 ) 

/.Z* ~ 0g/~ (OLD'/') - I / 3  (43) 

The value of Tc can remain finite at the mobility edge under rather rigid 
conditions: the parameters E v -  r -1 and/~ must be sufficiently small, while 
A must be close to unity. As a crude estimate we take A = 1,/z ~0.2,  and 
E F ~  103Tco . Apparently such a situation can be realized in some Chevrel 
phase superconductors 36 (see below). 

Using (42) and (43), we can write down a simple interpolation formula 
for the dependence of ~* on or: 

a~z(olDr) -1/3 - ~ *  
~,*(o-) = ~o* + 1 + (olD~)-1/30-(o- + O-c)/O-~ 

(44) 
OI D 

217~ F \ O'c ] 

This expression describes the smooth crossover from the region where there 
is a weak effect of  localization on Tc [Eq. (42)] to the vicinity of the Anderson 
transition [Eq. (43)] at Ol¢ ~ OlD. 

In Fig. 6 we compare the theoretical predictions of Eq. (44) with the 
experimental data for Tc obtained in Ref. 24 for SnMosS6. We have calcu- 
lated the dependence of  Tc on O- using the standard McMillan formula for 
T~, ~2 with/z*(o-) given by (44). Following Ref. 24, we take the preexponential 
factor in the McMillan formula to be equal to 125 K,/x* = 0.1, and A = 1.06. 
Then, for EF/OID=5, we get /z ~0.13. The theoretical curves in Fig. 6 are 
given for O-~ ~ 1500 ~-1 cm -~ and c~ ~ 1.5 and 2.0 in (44). Taking into account 
the crudeness of  our theory, the agreement is quite satisfactory. Further 
discussion will be given in Section 4. 

r, I 
t0, 

8 

6 

#. 

2- 

O O 

6 

Fig. 6. Transition temperature versus conduc- 
tivity. Compar ison of  theoretical curves with 
experimental data of  Ref. 24. See text for 
details. 
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3.3. Local izat ion Region 

Consider now the region of E F < Ec, i.e., an Anderson insulator. Accord- 
ing to (27) and (29), in this case the Coulomb kernel has a 8(to) contribution 
connected to electron repulsion in one quantum state [see (30) and Ref. 
31; see also Fig. 5c]: 

Klc(~O)= voPtS(to); P =  P(r-r')[r=,,~ R-[ 3 (45) 

This mechanism acts in addition to those considered above. Using (45) as 
a full Coulomb kernel, we can solve (38) exactly (Appendix B). Then we 
obtain an equation for Tc in the approximate form 

T* #zP 
l n - -~ -~s (~+4TcN(EF)  ) - f fs(1)  (46) 

where T* is taken as the critical temperature at the mobility edge, i.e., 
determined by (41) with ~o* replaced by (43). In this way we actually 
overestimate the influence of Coulomb repulsion in the localization region. 
We see that this extra repulsion acts upon the superconducting T~ as 
magnetic impurities 16 with an effective spin-flip time: 

1 / "&r = ¢rlxP/N(EF) ~ / z  / N(EF) R 3 (47) 

Superconductivity survives for ,/.~1 ~ 0.57 T*, i.e., for 

R, > [#z/ N(EF) T*] '/3 ~ (~ok72) '/3 ~ (~:o/2) ~/3 (48) 

where the last estimates are roughly valid for typical parameters and corre- 
spond to the condition (18). Thus the Coulomb repulsion of electrons in 
the one-quantum state, important in the localization region, 31 leads to a 
rapid destruction of superconductivity. The size of a possible coexistence 
region is roughly determined by (18) and (48). 

The Coulomb gap ef fec t s  37 a r e  unimportant here. The width of the 
Coulomb gap, according to Efros and Shklovskii, 37 is given by the estimate 

A C ~ (e2/K3/2)[N(EF)] U2 (49) 

where K is the dielectric function in the insulator region. Near the mobility 
edge, in the self-consistent theory we have 3~ 

K ~- 4¢re2N(EF) R 2 (50) 

Thus Ac~[N(EF)R3]  -1 and Ac<< T~ if the condition (18) is satisfied. So 
the Coulomb gap can be safely neglected in the "coexistence" region. 

This treatment again assumes that the electron-electron interaction is 
weak (/~<< 1) and can be described by the lowest order of perturbation 
theory. The influence of this interaction upon the metal-insulator transition, 



108 L . N .  Bulaevskii and M. V. Sadovskii 

i.e., on the spectral density (28), is neglected. 31 However, one has to keep 
in mind the possible importance of Coulomb interactions in a real system, 
although, as we have mentioned, a complete theory of the metal-insulator 
transition in disordered systems is still lacking. 

4. CONCLUSION 

An experimental investigation of the effects discussed in this paper 
seems possible by the study of "high-temperature" superconductors disor- 
dered by irradiation with fast neutrons. Among the numerous experiments 
of this kind, the most interesting appear to be some results on irradiated 
molybdenum sulfides (Chevrel phase superconductors). For these com- 
pounds high values of initial Too ~ 15 K are typical, as well as rather narrow 
energy bands. According to band-structure calculations, 36 the Fermi level 
in these compounds is very close to the upper edge of the conduction band, 
and characteristic values of EF are of the order of 103 K. These values 
seem to be ideal from the point of view of the above criteria. 

We remark upon the results of studies of irradiated SnM05S6 (Ref. 24) 
and PbI_xUxMo6S8. 25 Strong disordering of these compounds leads to a 
lowering of  Tc to values of the order of 1 K, with the corresponding growth 
of the residual resistance up to values of several units of 10 -3 ~Q-cm, in 
agreement with the estimates of  minimal metallic conductivity due to Mott 
and Davis. 23 The temperature coeffÉcient of resistance becomes negative at 
all temperatures and of quite a significant value. The observed resistance 
is greater than the values typical for most "dir ty" alloys from the Ioffe- 
Regal-Mooij region. 38 F r o m  the point of view of empirical criteria for 
localization, 23 these results seem very attractive. We have already noted that 
the investigated behavior of  (dHc2 / dT)Tc in these systems is also in qualita- 
tive agreement with theoretical predictions. 

Interestingly, the situation with regard to crc also seems satisfying (see 
Fig. 6). The value of crc ~ i 03 1-1-1 cm-l, although different from the estimates 
of minimal metallic conductivity, are more appropriate than the values of 
this parameter determined from similar fits in Ref. 12. It has already been 
noted 39 that the "critical region" in or during the metal-insulator transition 
in impurity bands is rather large experimentally. Accordingly, the values 
of o-c determined from these experiments are an order of magnitude larger 
than the Mott estimates for o-¢. This seems to be in accordance with our 
values of crc determined from the Tc dependence on ~r. In any event, one 
should not have expected good agreement between such a crude theory and 
experiment, and these data allow us to claim with some confidence that 
these compounds, irradiated with a sufficiently large fluence of fast neutrons, 
are really in the vicinity of the Anderson transition, while conserving 
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superconductivity. Of course, on the basis of  existing data we cannot claim 
that either of  these systems is actually in the state of an Anderson insulator. 
In these respects the accurate measurement of resistivity for very low 
temperatures in the normal state [i.e., for external magnetic fields greater 
than He2(0)] may be very important. 

Finally, we note that the strong anisotropy of electron motion and 
relatively narrow energy bands in recently discovered organic superconduc- 
tors 4° can lead to the possibility of Anderson localization in these systems 
for a weak disorder, i.e., for r -~ << EF, SO that the criteria for the coexistence 
of superconductivity and localization may greatly improve. 

A P P E N D I X  A 

Here we give some details of the derivation of the expressions (15) 
and (16) for the GL coefficients. Using (3), (5), and (6), we obtain 

"* 1 1 N(EF) In 1.13 toD A=I-2N(EF) ~o2n+I g Tc g -~-- = N(EF) In T (A1) 

where n*=  WD/2~rT has been introduced to cut off the logarithmic diver- 
gence, taking into account that electron attraction exists in the energy region 
of 2toD around the Fermi level. The generalized diffusion coefficient/~(to,,) 
does not contribute [due to q = 0 in (3)]. This is a reflection of the Anderson 
theoremS4: disorder influences Tc only through changes in the density of 
states N(EF).  

We shall calculate the coefficient B, neglecting the weak dependence 
on q. Then it is seen from Fig. 7 that the contribution of the diagrams in 
Figs. 7a and 7b is small in comparison with that of Fig. 7a. The "triangular" 
vertex can be found in the self-consistent theory of localization as described 
in Ref. 31. We have 

y(q = 0, to,, = 2e,) = 1 + 1/(2rle,]) (A2) 

where the first term takes account of "high" frequencies, while the next is 

z~ ,, J z~ J z~ 

(~) (6) (c) 

Fig. 7. Diagrams for calculating the coefficient B. 
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a diffusion contribution. Then, from Fig. 7a we get 

B~- N(E~)rE f~. a 6 "y4(~ = O, O.)ra = 2e.)GZ(e.~p)G2(-e.~p) 

= N ( E F ) T ~  Y. 1 7£'(3) N(EF) 
3 - -  2 n~O en  8"/r2T 

where 

(A3) 

[see (8)], we obtain 

E)(o~,,,) = D 
o),,, + 3 DwZo/ V~ 

gn ~n 

1 
7"rTN ( EF) D 

(2n + l y +  (2n + 1)3Do,~/2~rv~ 

N(e~)~ r 1 3 D o 2 ]  
3-~o 2 LO(2 + 4rcTv 2] - 0 ( 1 )  ] 

) , . 7 8 °  
D - 0 ~ N(EF)R~ In ~rTR~ (A6) = N(EF)R~ 0 +4~-rR~ 

where the approximate expression is valid for DR72>> 4~T. 
In the vicinity of the mobility edge, both for a metal and an insulator, 

we have 18'2~ 

E)( w,,,) ~- ( ~r / 2 )2/3 Do( wmr) '/3 = ( ~r / 2~/~ )2/3( Dol)2/3w ~3 

i e,, ~--1 
G( e,,~p) = ( ie,, - ~o + ~ ~-~[ ] (A4) 

is the usual approximation for the one-particle Green's function used in 
the self-consistent theory. ~8-21 Consider now calculations for C. Using 
(4)-(6), we find for the metallic region (EF> Ec), not very close to the 
mobility edge, when/)(~o.,)  = D, 

0 2 1 I 
C = - iTrTN(Ev)  ~ aq 2 2i[e.[ + iDq 2 q=o 

1 N ( E F ) D  y 1 7r N ( E F ) D  (A5) 
=TrTN(EF)DT.  ~ ~rT . ~ o ( 2 n + l )  z 8T 

Analogously, for an insulator (EF< Ec), but also not so close to the mobility 
edge, when 
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so that 

C =ETN(EF) E'-~D(21e.I) = ~  (DoI)2/3TN(EF) le, ls/3 
2 en 8 n 

l [ D o l ~  a'3 1 
=-6575\---~- / N( E,) .~o (2n + 1) ,/3 

1 [~X ID 1 \2/3 

Expression (A7) dominates over (A5) for 

o~  ro ~ D d /  R , L  ~ D~/~( l/ T,) ~/~ 

which defines the limits of  applicability given in (16). 

(A7) 

A P P E N D I X  B 

At the mobility edge o9~ = 0 and the Coulomb kernel in (38) is deter- 
mined mainly by the second term in (37b). Here we try to find a solution 
of (38) in the form 

a(o~) --- a, 0(o~-Io~1) + f(~o) (m)  

Then we get an integral equation for f(o)), 

f ( x ) = f i  A,F(x) - f i  dx 'g(x-x ' ) f (x ' )  th WDx' (B2) 
Jo 2To 

where 

F(x)  = I ]  dx 'g (x - x ' )~ , t h~TX '  
(B3) 

g(x)  = x-)/3; x = 0~/~oD; # = ~ (~o D ~)  - ; /3  

Here F(x)/ln (oJD/Tc) changes from 4.2 to 1 for x changing from 0 to 1, 
and for x >> 1 we get the asymptotic behavior F(x) = x -~/3 In (~OD/To). Using 
the small difference between (o9o/To) ~/3 and In (~oD/To) for any reasonable 
values of  o)t~ and Tc and the weak dependence of F(x) on x for 0 < x < 1, 
we come to the conclusion that the unknown function f(x) from (B2) is 
weakly x dependent for x < 1 and f ( x )  - x -1/3 for x >  1. Taking all this into 
account, we get the following equation for To: 

I =,~ In I l + ( ~ = # -  m) In (ooD/L)J 
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where 

;o 1 /31= In wD dx dX'xx'lx-x'[1/3th 2Tc°JD x th 2TcC°D X ' ~  1 

m=~/22/(l+f13/2); 1 <f i2<4.2;  3</33<3 
(B5) 

For/2 >> I we have/32 ~ 1 and/33 ~3.  Thus from (B4) we obtain an estimate 
/z* ~/3/2 with 0.5 </3 < 3 ; actually/3 ~ l for large values of/2. This is the 
result given as (43). 

Below the mobility edge (EF< Ec) we can solve (38) with the Coulomb 
kernel given in (45) exactly. The additional Coulomb effects considered 
above, connected with "regular" contributions to the spectral density (28),31 
can be taken into account with a simple substitution A -~ A* = A -/x*,  where 
/z* is given by (43). Actually, we can convince ourselves that such a 
procedure overestimates the Coulomb repulsion in the localization region. 
It is easily seen that the solution of (38) in this case can be written as 

a(~o) - 0(° 'D- I°~I)AI (B6) 
1 + [I~P/ZN(EF) to] th (to/2 To) 

where 

At = a *  f o  ~ dto k(w) 1 thto 2ToW (B7) 

giving the equation for Tc of the following form: 

~0 °D 1 = a*  do th (~0/2 T~) (B8)  
oJ + [p.PI2N( Ev)] th (w/2 T~) 

which reduces to (46) with rather good accuracy. 
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