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a b s t r a c t

We discuss interaction of strongly correlated electrons (described within the Hubbard model solved by

dynamical mean-field theory (DMFT)) with Debye and Einstein phonons using recently developed

DMFTþS computational scheme. Electron–phonon interaction (EPI) is analyzed in adiabatic approxima-

tion (assuming the validity of Migdal theorem), allowing the neglect of EPI vertex corrections. This

approach is valid for EPI coupling constant loeF=oph � 10, where eF is Fermi energy and oph is Debye or

Einstein frequency. For moderate values of l only small changes in the electronic density of states are

observed in DMFTþS approximation for both weakly and strongly correlated metallic regimes.

Metal–insulator (Mott) transition due to the increase of Hubbard interaction U is slightly inhibited by

EPI. Our main aim is to discuss the interplay of ‘‘kinks’’ in electronic dispersion due to EPI and recently

discovered kinks of electronic origin. For the certain region of model parameters coexistence of phonon

‘‘kinks’’ in electronic dispersion with purely electronic ‘‘kinks’’ is readily observed and we formulate some

simple criteria of such coexistence. However, for most general combinations of model parameters phonon

‘‘kinks’’ make electronic ‘‘kinks’’ hardly observable. In the general case an increase of Hubbard interaction

U rapidly suppresses the slope of electronic dispersion within the phonon ‘‘kink.’’ These results are

important for deeper understanding of the shape and evolution of electronic dispersions in strongly

correlated systems such as copper oxides, where different kinds of ‘‘kinks’’ were recently observed in

ARPES experiments.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the interplay of strong electronic correlations with
electron–phonon interaction is of central importance in the physics of
highly correlated systems. Actually there is rather long history of such
studies, e.g. one of the most popular models for electron–phonon
interaction (EPI) in strongly correlated systems is the so-called
Hubbard–Holstein model (HHM). The Hubbard model [1] itself
describes local Coulomb interaction of electrons on a lattice including
e.g. Mott–Hubbard metal–insulator transition. On the other hand
Holstein model contains local linear displacement-to-density inter-
action of conducting electrons with local (Einstein) phonon modes [2].

Active investigations of the properties of the HHM were under-
taken in the framework of dynamical mean-field theory (DMFT) [3],
which is a non-perturbative approach with respect to interaction
parameters of the Hubbard model. Among many others one should
mention DMFT solution of HHM for the case where impurity solver
used was the numerical renormalization group (NRG) [4]. The
mapping of HHM to Anderson–Holstein impurity was first

performed by Hewson and Mayer [5]. It was shown that using
NRG one can compute in a numerically exact manner total
electron–phonon contribution to the self-energy of the problem,
thus making solution of the HHM non-perturbative also with
respect to electron–phonon coupling strength.

However, up to now there are apparently no studies of strongly
correlated electrons interacting with Debye phonons. It is even
more surprising in view of the widely discussed physics of kinks in
electronic dispersion observed in ARPES experiments 40–70 meV
below the Fermi level of high-temperature superconductors [6],
which are often attributed to EPI [7]. To our knowledge problem of
kink formation on electronic dispersion caused by EPI in strongly
correlated systems was briefly discussed within HHM in papers by
Hague [9] and Koller et al. [8].

In this paper we consider the influence of Debye or Einstein
phonons on the weakly and strongly correlated electrons within
our recently developed DMFTþS approach, studying electron
dispersion and density of states (DOS), in particular close to
Mott–Hubbard metal–insulator transition. We analyze in details
how EPI affects electronic dispersions in correlated metal and
discuss the interplay of recently discovered kinks of purely
electronic nature in electronic dispersion [10] and usual phonon
kinks in the electronic spectra.
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2. DMFTþR computational details

The major assumption of our DMFTþS approach is that the
lattice and time Fourier transform of the single-particle Green
function can be written as

GpðeÞ ¼
1

eþm�eðpÞ�SðeÞ�SpðeÞ
ð1Þ

where eðpÞ is the bare electron dispersion,SðeÞ is the local self-energy
of DMFT, while SpðeÞ is some ‘‘external’’ (in general case momentum
dependent) self-energy. Advantage of our generalized approach is the
additive form of the self-energy (neglect of interference) in
Eq. (1) [11–13]. It allows one to keep the set of self-consistent
equations of standard DMFT [3]. However, there are two distinctions.
First, on each DMFT iterations we recalculate corresponding ‘‘exter-
nal’’ self-energy Spðm,e,½SðeÞ�Þ within some (approximate) scheme,
taking into account interactions e.g. with collective modes (phonons,
magnons etc.) or some order parameter fluctuations. Second, the local
Green’s function of effective impurity problem is defined as

GiiðeÞ ¼
1

N

X
p

1

eþm�eðpÞ�SðeÞ�SpðeÞ
, ð2Þ

at each step of the standard DMFT procedure.
Eventually, we get the desired Green function in the form of (1),

where SðeÞ and SpðeÞ are those appearing at the end of our iteration
procedure.

To treat electron–phonon interaction for strongly correlated
system we just introduce SpðeÞ ¼Sphðe,pÞ due to electron–phonon
interaction within the usual Fröhlich model. To solve single
impurity Anderson problem we use NRG [4]. All calculations are
done at nearly zero temperature and at half filling. For ‘‘bare’’
electrons we assume semielliptic DOS with half-bandwidth D.

According to the Migdal theorem in adiabatic approximation [14]
we can restrict ourselves with the simplest first order contribution to
Sphðe,pÞ, neglecting vertex corrections due electron–phonon cou-
pling which are small over adiabatic parameter ðoD,o0Þ=eF 51 [14]:

Sphðe,pÞ ¼ ig2
X
o,k

o2
0ðkÞ

o2�o2
0ðkÞþ id

�
1

eþoþm�eðpþkÞ�SðeþoÞ�Sphðeþo,pþkÞ
ð3Þ

where g is the usual electron–phonon interaction constant, o0ðkÞ is
phonon dispersion, which in our case is taken as in the standard
Debye or Einstein model

o0ðkÞ ¼
uk, ko

oD

u
o0, kok0

8<
: : ð4Þ

Here u is the sound velocity, oD and o0 are Debye and Einstein
frequencies with cut-off k0 of the order of Fermi momentum pF.

Actually Sphðe,pÞ defined by Eq. (3) has weak momentum
dependence which we can omit and continue only with significant
frequency dependence. For Debye spectrum of phonons Eq. (3) can
be rewritten as (cf. similar analysis in Ref. [18])

SphðeÞ ¼
�ig2

4o2
c

Z þ1
�1

do
2p o2

Dþo
2ln

o2
D�o2

o2

����
����

�

þ ipo2yðo2
D�o

2Þ

�
IðeþoÞ ð5Þ

with a characteristic frequency oc ¼ pF u of the order of oD, while
for Einstein spectrum:

SphðeÞ ¼
ig2k2

0

16pp2
F

�
�ipðIðeþo0Þþ Iðe�o0ÞÞþ

Z 1
0

do
o
ðIðeþo0þoÞ

þ Iðe�o0�oÞ�Iðeþo0�oÞ�Iðe�o0þoÞÞ
�

ð6Þ

with

IðeÞ ¼
Z þD

�D
dx

N0ðxÞ
Ee�x

: ð7Þ

where Ee ¼ e�SðeÞ�SphðeÞ. For the case of semielliptic non-inter-
acting DOS N0ðeÞ with half-bandwidth D we get

IðeÞ ¼ 2

D2
ðEe�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e�D2

q
Þ, ð8Þ

It is convenient to introduce the dimensionless electron–phonon
coupling constant as [18]

lD ¼ g2N0ðeF Þ
o2

D

4o2
c

, lE ¼ g2N0ðeF Þ
k2

0

4p2
F

: ð9Þ

To simplify our analysis we shall not perform fully self-consistent
calculations neglecting phonon renormalization due to EPI
[18], assuming that the phonon spectrum (4) is fixed by the
experiment.

3. Results and discussion

Let us start from comparison between pure DMFT and
DMFTþSph DOSes for strong ðU=2D¼ 1:25Þ and weak ðU=2D¼

0:625Þ Hubbard interaction presented in Fig. 1 on upper and low
panels correspondingly. Dimensionless EPI constant (9) used in
these calculations was lD ¼ lE ¼ 0:8, while Debye and Einstein
frequencies were taken to be oD ¼o0 ¼ 0:125D. In both cases we
observe some spectral weight redistribution due to EPI. For
U=2D¼ 1:25 (upper panel of Fig. 1) we see the well-developed
three peak structure typical for strongly correlated metals. In the
energy interval 7oD,o0 around the Fermi energy (which is taken
as zero energy at all figures below) there is almost no difference in
the DOS quasiparticle peak line shape obtained from pure DMFT
and DMFTþSph. However, outside this interval DMFTþSph qua-
siparticle peak becomes significantly broader with spectral weight
coming from Hubbard bands and it is more pronounced for the case
of Einstein phonons. This broadening of DMFTþSph quasiparticle
peak leads as we show below to inhibiting of metal to insulator
transition. In the case of U=2D¼ 0:625 there are no clear Hubbard
bands formed but only some ‘‘side wings’’ are observed. Spectral
weight redistribution on the lower panel of Fig. 1 is not dramatic,
though qualitatively different from the case of U=2D¼ 1:25.
Namely, main deviations between pure DMFT and DMFTþSph

happen in the interval 7oD, where one can observe kind of ‘‘cap’’
in DMFTþSph DOS. Corresponding spectral weight goes to the
energies around 7U, where Hubbard bands are supposed to form.
The lineshape of the ‘‘cap’’ is slightly different for the Debye and
Einstein phonons due to different behaviors of Sph (Eqs. (5) and
(7))at energies 7oD,o0. For Einstein phonons ImSph at these
energies sharply drops down to zero. This leads to sharp cusps of
DOS at 7o0 as shown at the insert in Fig. 1.

In Fig. 2 we compare the behavior of pure DMFT and DMFTþSph

DOSes for different U=2D values close to Mott–Hubbard metal–
insulator transition for the case of Debye phonon spectrum. For
U=2D¼ 1:56 both standard DMFT and DMFTþSph produce insulat-
ing solution. However, there is some difference between these
solutions. The DMFTþSph Hubbard bands are lower and broader
than DMFT ones because of additional interaction (EPI) included.
With decrease of U for U=2D¼ 1:51 and 1.47 we observe that
DMFTþSph results correspond to metallic state (with narrow
quasiparticle peak at the Fermi level), while conventional DMFT
still produces insulating solution. Only around U=2D¼ 1:43 both
DMFT and DMFTþSph results turn out to be metallic. Overall DOSes
lineshape is the same as discussed above. These results show that
with the increase of U finite EPI slightly inhibits Mott–Hubbard
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transition from metallic to insulating phase. For the case of Einstein
phonons the MIT is inhibited even stronger. This result is similar to
what was observed for the HHM in weak EPI regime [17,16,15]. For
more deep insight into these results on DOS we have also analyzed
the fine structure of corresponding self-energies SðeÞ and SphðeÞ.
Relevant details can be found in Ref. [19].

Now we address the issue of a sudden change of the slope of
electronic dispersion, the so-called kinks. It is well-known that
interaction of electrons with some bosonic mode always produces
such a kink. In the case of EPI typical kink energy is just the Debye
oD or Einsteino0 frequency. Kinks of purely electronic nature were

recently reported in Ref. [10]. The energy of purely electronic kink
as derived in Ref. [10] for semielliptic bare DOS is given by

o� ¼ ZFLð
ffiffiffi
2
p
�1ÞD, ð10Þ

where D is the half of the bare bandwidth of electrons and
ZFL ¼ ð1�@ReSÞ=@eje ¼ eF

Þ
�1 is Fermi liquid quasiparticle weight.

The rough estimate ofo� is given by the half-width of quasiparticle
peak of DOS at its half-height.

Our calculations clearly demonstrate that electronic kinks are
hardly observable on the background of phonon kinks and special
care should be taken to separate them by rather fine tuning of the
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parameters of our model. To clarify this situation we introduce an
additional characteristic of the kink—the shift of electron disper-
sion in momentum space dp at kink energy. From simple geometry
we estimate for phonon kinks

dpph ¼
ðoD,o0Þ

vF
lD,E ð11Þ

where vF is the bare Fermi velocity and lD,E was defined in Eq. (9).
For electronic kink the similar estimate is

dpe ¼
o�

v�F
1�

ZFL

Z0

� �
�
o�

v�F
le, ð12Þ

where Z0 is quasiparticle weight in the case of absence of electronic
kinks (the same as Zcp defined in Ref. [10]). Velocity vF* is the Fermi
velocity of initial dispersion, but it cannot be just a bare one. As was
reported in Ref. [10] electronic kinks can be observed only for
rather strong Hubbard interaction when three peak structure in the
DOS is well-developed and electronic dispersion is strongly renor-
malized by correlation effects. This renormalization is determined
by le defined in Eq. (11), which can be seen as kind of dimensionless
interaction constant. In the case when both slopes on the Fermi
level and out of 7o� energy interval are equal there will be no
electronic kink at all.

Now we can choose parameters of our model to make both kinks
simultaneously visible. First of all one should take care that
oD5o�. For U=2D¼ 1 with U ¼ 3:5 eV we get o� � 0:1D and a
reasonable value of Debye (or Einstein) frequency is oDðoro0Þ �

0.01D. To make phonon kink pronounced at such relatively low
Debye (or Einstein) frequency (cf. Eq. (11)) we have to increase EPI
constant and we take lD ¼ lE ¼ 2:0. To demonstrate coexistence of
both these types of kinks we plot the energy dispersion of simple
cubic lattice with nearest neighbors transfers only, along the high
symmetry direction G�ðp,p,pÞ [10]. In Fig. 3 we show dispersion
along this direction close to the Fermi level. The difference of
lineshapes of Debye and Einstein kinks is illustrated at the insert in
Fig. 3. As discussed above ‘‘Einstein’’ kink is more sharp.

Finally we address to the behavior of phonon kinks in electronic
spectrum as function of Hubbard interaction U. As U=2D ratio
grows Fermi velocity in Eq. (11) goes down, so that momentum

shift of kink position dp moves away from pF, while kink energy
remains at oD. This is confirmed by our direct DMFTþSph

calculations producing the overall picture of spectrum evolution
shown in Fig. 4.

4. Conclusion

This work is a first attempt to analyze strongly correlated
electrons, treated within DMFT approach to the Hubbard model,
interacting with either Debye or Einstein phonons. EPI was treated
within the simplest (Migdal theorem) approach in adiabatic
approximation, allowing the neglect of vertex corrections.
DMFTþSph approach allows us to use the standard momentum
space representation for phonon self-energy (3), while the general
structure of DMFT equations remains intact.
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Fig. 4. Quasiparticle dispersions around Fermi level with Debye phonon kinks
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U=2D¼ 0:5,0:75,1:0; lD ¼ 0:8, oD ¼ 0:1D.
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Mild EPI leads to rather insignificant changes of electron density
of states, both in correlated metal and in Mott-insulator state,
slightly inhibiting metal to insulator transition with increase of U.
However, kinks in the electronic dispersion due to EPI dominate for
the most typical values of the model parameters, making kinks of
purely electronic nature, predicted in Ref. [10], hardly observable.
Special care (fine tuning) of model parameters is needed to separate
these anomalies in electronic dispersion in strongly correlated
systems. We have also studied phonon kinks evolution with the
strength of electronic correlations demonstrating the significant
drop in the slope of electronic dispersion close to the Fermi level
with the growth of Hubbard interaction U. Quantitative difference
of results for the cases of Debye and Einstein phonon spectra was
observed both in DOS and kink behavior in electronic dispersion.
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