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We analyze non – Fermi liquid (NFL) behavior of fluctuating gap model (FGM) of pseudogap
behavior in both 1D and 2D. We discuss in detail quasiparticle renormalization (Z – factor), demon-
strating a kind of “marginal” Fermi liquid or Luttinger liquid behavior and topological stability of
the “bare” Fermi surface (Luttinger theorem). In 2D case we discuss effective picture of Fermi
surface “destruction” both in “hot spots” model of dielectric (AFM, CDW) pseudogap fluctuations,
as well as for qualitatively different case of superconducting d - wave fluctuations, reflecting NFL
spectral density behavior and similar to that observed in ARPES experiments on copper oxides.
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I. INTRODUCTION

Pseudogap formation in the electronic spectrum of un-
derdoped copper oxides is especially striking anomaly of
the normal state of high temperature superconductors1.
Discussions on the nature of the pseudogap state continue
within two main “scenarios” – that of superconducting
fluctuations, leading to Cooper pair formation above Tc,
or that of another order parameter fluctuations, in fact
competing with superconductivity.

We believe that the preferable “scenario” for pseudo-
gap formation is most likely based on the model of strong
scattering of the charge carriers by short–ranged antifer-
romagnetic (AFM, SDW) spin fluctuations1. In momen-
tum representation this scattering transfers momenta of
the order of Q = (π

a , π
a ) (a — lattice constant of two di-

mensional lattice). This leads to the formation of struc-
tures in the one-particle spectrum, which are precursors
of the changes in the spectra due to long–range AFM
order (period doubling).

Within this spin–fluctuation scenario a simplified
model of the pseudogap state was studied1–3 under the
assumption that the scattering by dynamic spin fluctu-
ations can be reduced for high enough temperatures to
a static Gaussian random field (quenched disorder) of
pseudogap fluctuations. These fluctuations are defined
by a characteristic scattering vector from the vicinity of
Q, with a width determined by the inverse correlation
length of short–range order κ = ξ−1. Actually, a simi-
lar model (formalism) can be applied also to the case of
pseudogaps of superconducting nature3.

These models originated from earlier one – dimensional
model of pseudogap behavior4,5, the so called fluctuating
gap model (FGM), which is exactly solvable in the as-
ymptotic limit of large correlation lengths of pseudogap
fluctuations κ = ξ−1 → 04, and “nearly exactly” solv-
able case of finite κ, where we can take into account all
Feynman diagrams of perturbation series, though using
an approximate Ansatz for higher – order contributions5.

Non – Fermi liquid behavior of FGM model was dis-
cussed already in the case of 1D4,6–8, as well as in 2D1–3.
However, some interesting aspects of this model are still

under discussion9. Below we shall analyze different as-
pects of this anomalous behavior both in 1D and 2D
versions, mainly for the case of AFM (SDW) or CDW
pseudgap fluctuations, and also, more brielfly for the case
of superconducting fluctuations, demonstrating a kind of
“marginal” Fermi liquid behavior and qualitative picture
of Fermi surface “destruction” and formation of “Fermi
arcs” in 2D, similar to that observed in ARPES experi-
ments on copper oxides.

II. POSSIBLE TYPES OF GREEN’S FUNCTION

RENORMALIZATION.

Let us start with some qualitative discussion of pos-
sible manifestations of NFL behavior. Green’s function
of interacting system of electrons is expressed via Dyson
equation (in Matsubara representation, εn = (2n+1)πT ,
ξp = vF (p − pF )) as1:

G(εn, ξp) =
1

iεn − ξp − Σ(εn, ξp)
(1)

In the following, we shall use rather unusual definition
of renormalization (“residue”) Z - factor, introducing it
via9:

G(εn, ξp) = Z(εn, ξp)G0(εn, ξp) =
Z(εn, ξp)

iεn − ξp
(2)

or

Z(εn, ξp) =
iεn − ξp

iεn − ξp − Σ(εn, ξp)
= (iεn − ξp)G(εn, ξp)

(3)
Note that Z(εn, ξp) is in general complex and actually
determines full renormalization of free – electron Green’s
function G0(εn, ξp) due to interactions. At the same

1 Despite our use of Matsubara representation, below we consider
εn as continuous variable.
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time, it is in some sense similar to standard residue renor-
malization factor used in Fermi liquid theory.

Let us consider possible alternatives for Z(εn, ξp) be-
havior.

A. Fermi liquid behavior.

In normal Fermi liquid we can perform the usual ex-
pansion (close to Fermi level and in obvious notations),
assuming the absence of any singularities in Σ(εn, p):

Σ(εn, ξp) ≈ Σ(0, 0)+iεn
∂Σ(εn, ξp)

∂(iεn)

∣

∣

∣

∣

0

+ξp
∂Σ(εn, ξp)

∂ξp

∣

∣

∣

∣

0

+· · ·

(4)
In the absence of static impurity scattering Σ(0, 0) is real
and just renormalizes the chemical potential. Then we
can rewrite (1) as:

G(ε) =
1

iεn

{

1 − ∂Σ

∂(iεn)

}

0

− ξp

{

1 +
∂Σ

∂ξp

}

0

≡ Z̃

iεn − ξ̃p

(5)
where we have introduced the usual renormalized residue
at the pole:

Z̃ =
1

1 − ∂Σ

∂(iεn)

∣

∣

∣

∣

0

; Z̃−1 = 1 − ∂Σ

∂(iεn)

∣

∣

∣

∣

0

(6)

and spectrum of quasiparicles:

ξ̃p = Z̃

(

1 +
∂Σ

∂ξp

)

0

ξp (7)

The usual analytic continuation to real frequencies gives
now the standard expressions of normal Fermi liquid
theory10,11 with real 0 < Z̃ < 1, conserving the quasi-
particle pole of the Green’s function.

In the special case of ξp = 0, i.e. at the Fermi surface
which is not renormalized by interactions (according to
Landau hypothesis and Luttinger theorem), we have:

G(εn, ξp) =
Z̃

iεn
(8)

i.e. Z̃ just coincides with the limit of Z(εn → 0, ξp = 0)
as defined by (2), (3), and we have the usual pole, as
εn → 0. Similarly, for εn = 0, we have Z(εn = 0, ξp →
0) ∼ Z̃.

In general this behavior is conserved not only for the
case of Σ(εn, ξp) possessing regular expansion at small
εn and ξp, but also for Σ(εn, ξp) ∼ Max(εα

n , ξα
p ) with any

α ≥ 1.

B. Impure Fermi liquid.

In case of small concentration of random static impuri-
ties we have Σ(εn → 0, ξp → 0) → const, with ReΣ(0, 0)

giving again the shift of the chemical potential, while
ImΣ(0, 0) ∼ γ, where γ is impurity scattering rate. For
the Green’s function we have:

G(εn, ξp) =
Z̃

iεn − ξ̃p + iγ εn

|εn|

(9)

so that renormalization factor defined by (3) is given by:

Z(εn, ξp) = Z̃
iεn − ξp

iεn − ξ̃p + iγ εn

|εn|

(10)

For ξp = 0 we just have:

Z(εn, ξp = 0) = Z̃
iεn

iεn + iγ εn

|εn|

∼

∼ |εn|
γ

→ 0 for |εn| → 0 (11)

while for |εn| � |ξp|:

Z(εn → 0, ξp) = Z̃
ξp

ξp − iγ εn

|εn|

∼

∼ i
ξp

γ
signεn → 0 for ξp → 0 (12)

i.e. impurity scattering leads to Z - factor being zero at
the Fermi surface, just removing the usual Fermi liquid
pole singularity and producing a finite discontinuity of the
Green’s function at εn = 0. This behavior is due to the
loss of translational invariance of the Fermi liquid theory
(momentum conservation) because of impurities. In fact,
Green’s function (9) is obtained after the averaging over
impurity position, which formally restores translational
invariance, leading to a kind of (trivial) non – Fermi liq-
uid (NFL) behavior. Note, that this behavior is observed
for |εn|, |ξp| � γ, while in the opposite limit we obviously

have finite Z(ε,ξp) ∼ Z̃.

C. Superconductors, Peierls and excitonic

insulators.

Consider now the case of s - wave superconductor.
Normal Gorkov Green’s function is given by:

G(εn, ξp) =
iεn + ξp

(iεn)2 − ξ2
p − |∆|2 (13)

where ∆ is superconducting gap. The same form normal
Green’s function takes also in excitonic or Peierls insu-
lator, where ∆ denotes appropriate insulating gap in the
spectrum11. Then:

Z(εn, ξp) =
(iεn)2 − (ξp)

2

(iεn)2 − ξ2
p − |∆|2 ∼

∼
Max(ε2

n, ξ2
p)

|∆|2 → 0 for εn, ξp → 0 (14)
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i.e. we have NFL behavior with pole of the Green’s func-
tion at the Fermi surface replaced by zero, due to Fermi
surface being “closed” by superconducting (or insulating)
gap.

Again, Fermi liquid type behavior with finite Z - factor
is “restored” for |εn|, |ξp| � |∆|.

However, the complete description of superconducting
(excitonic, Peierls) phase is achieved only after the in-
troduction also of anomalous Gorkov function. Excita-
tion spectrum on both sides of the phase transition is
determined by different Green’s functions with different
topological properties9.

D. Non – Fermi liquid behavior due to interactions.

Non – Fermi liquid behavior of Green’s function due to
interactions may appear also in case of singular behavior
of Σ(εn, ξp) → ∞ for εn → 0 and ξp → 0, e.g. power
– like divergence2 of Σ(εn, ξp) ∼ Max(ε−α

n , ξ−α
p ) with

α > 0. Obviously, in this case we have Z(εn → 0, ξp →
0) → 0, and we again have zero of the Green’s function
at the Fermi surface.

Another possibility is singular behavior of derivatives
of self - energy in (4), e.g. in case of Σ(εn, ξp) ∼
Max(εα

n, ξα
p ) with 0 < α < 1, leading to weaker than the

usual pole singularity of Green’s function at the Fermi
surface.

Both types of behavior are realized within Tomonaga –
Luttinger model in one – dimension12, where asymptotic
behavior of G(iεn, ξp) in the region of small ξp ∼ εn can
be expressed as:

G(εn ∼ ξp) ∼
1

ε1−2α′

n

(15)

with α′ < 1/2. For α′ > 1/2:

G(εn ∼ ξp) ∼ A + Bε2α′−1
n (16)

For 3/2 > α′ > 1:

G(εn ∼ ξp) ∼ A + Bεn + Cε2α′−1
n , etc. (17)

with the value of α′ determined by the strength of inter-
action.

Special case is the so called “marginal” Fermi liquid
behavior assumed13 for interpretation of electronic prop-
erties of CuO2 planes of copper oxides. This is given
by:

Σ(εn, ξp) ∼ λiεn ln
Max(εn, ξp)

ωc
(18)

2 Additional logarithmic divergence can also be present here!

where λ is some dimensionless interaction constant, and
ωc is characteristic cut – off frequency. If we formally use
(6) at finite εn, we obtain:

Z̃(εn, ξp) ∼
1

1 − λ ln
Max(εn, ξp)

ωc

(19)

In this case “residue at the pole” of the Green’s func-
tion (Z-factor) 3 goes to zero at the Fermi surface it-
self, and again quasiparticles are just not defined there
at all! However, everywhere outside a narrow (logarith-
mic) region close to the Fermi surface we have more or
less “usual” quasiparticle contribution — quasiparticles
(close to the Fermi surface) are just “marginally” defined.
At present there are no generally accepted microscopic
models of “marginal” Fermi liquid behavior in two – di-
mensions.

III. FLUCTUATING GAP MODEL.

Physical nature of FGM was extensively discussed in
the literature1–8,11. It is based on the picture of an elec-
tron propagating in the (static!) Gaussian random field
of (pseudogap) fluctuations, leading to scattering with
characteristic momentum transfer from close vicinity of
some fixed scattering vector Q. These fluctuations are
described by two basic parameters: amplitude ∆ and cor-
relation length (of short – range order) ξ−1, determining
effective width κ = ξ−1 of scattering vector distribution.

In one – dimension, the typical choice of scatter-
ing vector is Q = 2pF (fluctuation region of Peierls
transition)4,5, while in two – dimensions we usually
mean the so called “hot spots” model with Q =
(π/a, π/a)2,3. These models assume “dielectric” (CDW,
SDW) nature of pseudogap fluctuations, but essentially
the same formalism can be used in case of superconduct-
ing fluctuations3.

The case of superconducting (s - wave) pseudogap fluc-
tuations in higher dimensions is described actually by the
same one – dimensional version of FGM3,4,9.

Attractive property of models under discussion is the
possibility of an exact solution achieved by the complete
summation of the whole Feynman diagram series in the
asymptotic limit of large correlation lengths ξ → ∞4,6.
In case of finite correlation lengths we can also perform
summation of all Feynman diagrams for single – elec-
tron Green’s function, using an approximate Ansatz for
higher order contributions both in one dimension5 and in
two dimensions2,3. Similar methods of diagram summa-
tion can be also applied in calculations of two – particles
Green’s functions (vertex parts)2–4,7,11,14.

3 Note that (19), strictly speaking, can not give correct definition
of the “residue”, as standard expression (6) is defined only at
the Fermi surface itself, where (19) just does not exist. Thus in
what follows we prefer rather unusual definition given in (2).
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Our aim will be to demonstrate that nearly all aspects
of NFL behavior discussed above can be nicely demon-
strated within different variants of FGM.

A. One – dimension.

We shall limit ourselves here only to the case of in-
commensurate pseudogap (CDW) fluctuations4,5. Com-
mensurate case5,6 can be analyzed in a similar way. Note
that the same expressions apply also for the case of su-
perconducting (s - wave) fluctuations in all dimensions.

In the limit of infinite correlation length of pseudogap
fluctuations we have the following exact solution for a
single – electron Green’s function4,11:

G(εn, ξp) =

∫ ∞

0

dζe−ζ iεn + ξp

(iεn)2 − ξ2
p − ζ∆2

=

=
iεn + ξp

∆2
exp

(

ε2
n + ξ2

p

∆2

)

Ei

(

ε2
n + ξ2

p

∆2

)

≈

≈ iεn + ξp

∆2
ln

(

γ′ ε
2
n + ξ2

p

∆2

)

for εn → 0, ξp → 0 (20)

where Ei(−x) denotes integral exponential function and
we used the asymptotic behavior Ei(−x) ∼ ln(γ ′x) for
x → 0 (ln γ′ = 0.577 – Euler constant). Then, using (3)
we immediately obtain:

Z(εn ∼ ξp) = −
ε2

n + ξ2
p

∆2
ln

(

γ′
ε2

n + ξ2
p

∆2

)

→

→ 0 for εn → 0, ξp → 0 (21)

Precisely the same result is obtained if we define for finite
εn, ξp:

Z̃(εn, ξp) =
1

1 − ∂Σ(εn, ξp)

∂(iεn)

(22)

similar to (6). Note that due to |εn| � ∆, |ξp| � ∆ we
obviously have Z > 0, but the usual pole of the Green’s
function at the Fermi surface (“point”) of the “normal”
system is transformed here to zero due to pseudogap fluc-
tuations. Because of topological stability9, the singular-
ity of the Green’s function at the Fermi surface is not
destroyed: zero is also a singularity (with the same topo-
logical charge) as pole. But actually FGM gives an ex-
plicit example of a kind of Luttinger or “marginal” Fermi
liquid with very strong renormalization of singularity at
the Fermi surface.

Consider self – energy corresponding to Green’s func-
tions (20):

Σ(εn, ξp) = iεn − ξp −
[
∫ ∞

0

dζe−ζ iεn + ξp

(iεn)2 − ξ2
p − ζ∆2

]−1

(23)

so that taking, for brevity, ξp = 0 and εn → 0 we get:

Σ(εn → 0, ξp = 0) =
1

iεn

[
∫ ∞

0

dζe−ζ 1

ε2
n + ζ∆2

]−1

≈

≈ −∆2

iεn

1

ln

(

γ′ ε2
n

∆2

) → ∞ (24)

i.e. the divergence of the type discussed above.

In case of finite correlation lengths ξ = κ−1 of pseudo-
gap fluctuations we have to use continuous fraction rep-
resentation of single – electron Green’s function derived
in Ref.5 to obtain renormalization factor as (εn > 0):

Z(εn, ξp) =

=
iεn − ξp

iεn − ξp −

∆2

iεn + ξp + ivF κ −

∆2

iεn − ξp + 2ivF κ −

2∆2

iεn + ξp + 3ivF κ − ...

(25)

which can be studied numerically.

In Fig. 1 we show typical dependences of renormaliza-
tion factor Z(εn, ξp). In all cases it goes to zero at the
(“bare”) Fermi surface and pole of Green’s function dis-
appears. Essentially, this strong renormalization starts
on the scale of pseudogap width, i.e. for |εn| < ∆ and
|ξp| < ∆, reflecting non – Fermi liquid behavior due to
pseudogap fluctuations.

FIG. 1: Typical dependencies of Z(εn, ξp) – factor in one
– dimensional FGM with finite correlation lengths: depen-
dences of Z(εn = 0, ξp) and Z(εn, ξp = 0) on εn and ξp for
vF κ/∆ = 0.1. At the insert: dependences of ReZ(εn = 0, ξp)
on ξp for different values of κ (in units of ∆

vF
). Both εn and

ξp are given in units of ∆.

However, the role of finite correlation lengths ξ (finite
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κ) is qualitatively similar to static impurity scattering4

and more detailed calculation shows, that the behavior
of Z - factor at small εn � vF κ and |ξp| � vF κ (with
εn > 0) is as follows:

Z(εn, ξp) ≈ α
(vF κ

∆

)

(

εn + iξp

∆

)

→

→ 0 for εn → 0, ξp → 0, (26)

with α(vF κ/∆) → 0 for κ → 0, as seen from Fig. 2. In
terms of Green’s function this behavior corresponds to:

G(εn, ξp) ≈
1

∆
α
(vF κ

∆

) εn + iξp

iεn − ξp
= −i

1

∆
α
(vF κ

∆

)

(27)

Thus, for finite κ, there is no zero of Green’s function for
εn = 0 and ξp = 0, it remains finite as in impure system.

FIG. 2: Dependence of α
�

vF κ

∆ � on inverse correlation length.

Vanishing of renormalization factor Z(εn, ξp) at the
“bare” Fermi surface is in correspondence with general
topological stability arguments9 – in the absence of sta-
tic impurity – like scattering the pole singularity of the
Green’s function is replaced by zero. In the presence of
this additional scattering this zero is replaced by finite
discontinuity, i.e. singularity still persists.

B. “Hot spots” model in two – dimensions.

In two dimensions we introduce the so called “hot
spots” model. Consider typical Fermi surface of electrons
moving in the CuO2 plane of copper oxides as shown in

4 This is due to our approximation of the static nature of pseudo-
gap fluctuations.

Fig. 3. If we neglect fine details, the observed (e.g. in
ARPES experiments) Fermi surface (and also the spec-
trum of elementary excitations) in CuO2 plane, in the
first approximation are described by the usual tight –
binding model:

ε(p) = −2t(cospxa + cos pya) − 4t′ cos pxa cos pya (28)

where t is the nearest neighbor transfer integral, while t′

is the transfer integral between second – nearest neigh-
bors, a is the square lattice constant.

FIG. 3: Fermi surface in the Brillouin zone and “hot spots”
model. Magnetic zone appears e.g. in the presence of anti-
ferromagnetic long – range order. “Hot spots” correspond to
intersections of its borders with Fermi surface and are con-
nected by the scattering vector of the order of Q = ( π

a
, π

a
).

Phase transition to antiferromagnetic (SDW) state in-
duces lattice period doubling and leads to the appearance
of “antiferromagnetic” Brillouin zone in inverse space as
is also shown in Fig. 3. If the spectrum of carriers is
given by (28) with t′ = 0 and we consider the half –
filled case, Fermi surface becomes just a square coincid-
ing with the borders of antiferromagnetic zone and we
have a complete “nesting” — flat parts of the Fermi sur-
face match each other after the translation by vector of
antiferromagnetic ordering Q = (±π/a,±π/a). In this
case and for T = 0 the electronic spectrum is unstable,
energy gap appears everywhere on the Fermi surface and
the system becomes insulator, due to the formation of
antiferromagnetic spin density wave (SDW)5. In the case
of the Fermi surface shown in Fig.3 the appearance of
antiferromagnetic long - range order, in accordance with
general rules of the band theory, leads to the appearance
of discontinuities of isoenergetic surfaces (e.g. Fermi sur-
face) at crossing points with borders of new (magnetic)
Brillouin zone due to gap opening at points connected by
vector Q.

5 Analogous dielectrization is realized also in the case of the for-
mation of the similar charge density wave (CDW).



6

In the most part of underdoped region of cuprate phase
diagram antiferromagnetic long – range order is absent,
however, a number of experiments support the existence
of well developed fluctuations of antiferromagnetic short
– range order which scatter electrons with characteris-
tic momentum transfer of the order of Q. Similar ef-
fects may appear due CDW fluctuations. These pseudo-
gap fluctuations are again considered to be static and
Gaussian, and characterized by two parameters: ampli-
tude ∆ and correlation length ξ = κ−11. In this case
we can obtain rather complete solution for single – elec-
tron Green’s function via summation of all Feynman di-
agrams of perturbation series, describing scattering by
these fluctuations1–3. This solution is again exact in the
limit of ξ → ∞2, and apparently very close to an exact
one in case of finite ξ15. Generalizations of this approach
for two – particle properties (vertex – parts) are also quite
feasible.

We shall start again with an exact solution for ξ → ∞
(or κ = 0)2. First, let us introduce (normal) Green’s
function for SDW (CDW) state with long – range order
(see e.g.11):

G(εn, ξp) =
iεn − ξp−Q

(iεn − ξp)(iεn − ξp−Q) − W 2
(29)

where W denotes the amplitude of SDW (CDW) periodic
potential and ξp = ε(p) − µ. Then we can write down
appropriate Z - factor as:

Z(εn, ξp) =
(iεn − ξ1)(iεn − ξ2)

(iεn − ξ1)(iεn − ξ2) − W 2
(30)

where we have denoted for brevity: ξp = ξ1 and ξp−Q =
ξ2. In the following we shall be mainly interested in the
limit of εn → 0 and ξ1 → 0, i.e. on the approach to
the “bare” Fermi surface. Note that ξ2 = 0 defines the
so called “shadow” Fermi surface. We have ξ1 = ξ2 = 0
precisely at the “hot spots”. In the following it is conve-
nient to introduce a complex variable:

z = (iεn − ξ1)(iεn − ξ2) (31)

which becomes small for εn, ξ1, ξ2 → 0.

1. Incommensurate combinatorics.

In case of incommensurate (CDW) pseudogap fluc-
tuations, an exact solution for the Green’s function of
FGM in the limit of correlation length ξ → ∞ takes the
form similar to (20)1,2 and we get (averaging (30) with
Rayleigh distribution for W):

Z(z) =

∫ ∞

0

dW
2W

∆2
e−

W2

∆2
z

z − W 2
=

=

∫ ∞

0

dζ

∆2
e−

ζ

∆2
z

z − ζ
=

z

∆2
e−

z

∆2 Ei
( z

∆2

)

(32)

Then, for z → 0 we get:

Z(z → 0) ≈ z

∆2

[

ln
(

γ′ z

∆2

)

− iπ
]

(33)

At the “bare” Fermi surface we have ξ1 = 0 and in the
following we limit ourselves to εn > 0. Then, from (33)
we can easily find limiting behavior of Z(z). Just quoting
some results we have:

1. For εn � |ξ2|:

ReZ(εn � |ξ2|, ξ1 = 0) ≈ π

2

εn|ξ2|
∆2

(34)

i.e. “impure” – like linear behavior in εn.

2. For εn � |ξ2| (i.e. also at the “hot spot”, where
ξ2 = 0):

ReZ(εn � |ξ2|, ξ1 = 0) ≈ − ε2
n

∆2
ln

(

γ′ ε2
n

∆2

)

+
1

2

ξ2
2

∆2
(35)

i.e. (for ξ2 = 0) NFL behavior similar to one –
dimensional case.

Note that we always have ImZ = 0 for ξ2 = 0, i.e. at
the “shadow” Fermi surface and in particular at the “hot
spot” itself.

2. Spin – fermion combinatorics.

Consider now spin – fermion (Heisenberg) model for
pseudogap (SDW) fluctuations2. In this case we again
obtain FGM, but with gap distribution is different (from
Rayleigh distribution) and instead of (32) we have:

Z(z) =
2√
2π

∫ ∞

0

dW
W 2

(

∆2

3

)3/2
e
− W2

2(∆2
3 ) z

z − W 2
=

=
1√
2π

∫ ∞

0

dζ

√
ζ

(

∆2

3

)3/2
e
− ζ

2(∆2
3 ) ζ

z − ζ
=

=
Γ(3/2)√

2π

(−z)3/2

(

∆2

3

)3/2
exp

[

− z

2
(

∆2

3

)

]

Γ

(

−1

2
;− z

2
(

∆2

3

)

)

Thus, for z → 0 we obtain:

Z(z) ≈ 2Γ(3/2)√
π



− z

2
(

∆2

3

) + Γ(−1/2)

(

− z

2
(

∆2

3

)

)3/2




(36)
Then on “bare” Fermi surface (ξp = 0) we have:

Z(εn → 0, ξ2, ξ1 = 0) =

=
2Γ(3/2)√

π

[

−εn(εn + iξ2)

2
(

∆2

3

) +

+Γ(−1/2)

(

−εn(εn + iξ2)

2
(

∆2

3

)

)3/2


 (37)
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In particular, for ξ2 = 0 we have ImZ = 0 and:

Z(εn → 0, ξ2 = ξ1 = 0) = ReZ(εn → 0, ξ2 = ξ1 = 0) =

=
Γ(3/2)√

π

ε2
n

(

∆2

3

) (38)

so that we obtain quadratic NFL behavior of Z - factor.
Again let us present some results on limiting behavior:

1. For εn � |ξ2|:
ReZ(εn � |ξ2|, ξ1 = 0) =

=
2Γ(3/2)√

π





ε2
n

2
(

∆2

3

) +
√

2π

(

εn|ξ2|
2
(

∆2

3

)

)3/2


 (39)

i.e. NFL “zero” behavior.

2. For εn � |ξ2| (i.e. also at the “hot spot” where
ξ2 = 0):

ReZ(εn � ξ2, ξ1 = 0) =
Γ(3/2)√

π

ε2
n

(

∆2

3

) (40)

i.e. again NFL “zero” behavior.

In the general case of finite correlation lengths ξ = κ−1

we have to perform numerical analysis using the recur-
sion relations proposed in Refs.2,3. Again we use the basic
definition of Z - factor given in (3). To calculate self –
energy Σ(εn, ξp) of an electron moving in the quenched
random field of (static) Gaussian spin fluctuations with
dominant scattering momentum transfers from the vicin-
ity of characteristic vector Q, we use the following recur-
sion procedure2,3 which takes into account all Feynman
diagrams describing the scattering of electrons by this
random field. The desired self–energy is given by

Σ(εn, ξp) = Σk=1(εn, ξp) (41)

with ξp = ε(p) − µ (cf. (28)) and

Σk(εn, ξp) = ∆2 s(k)

iεn + µ − εk(p) + invkκ − Σk+1(εn, ξp)
.

(42)
The quantity ∆ again characterizes the energy scale of
pseudogap fluctuations and κ = ξ−1 is the inverse corre-
lation length of short range SDW fluctuations, εk(p) =
ε(p + Q) and vk = |vx

p+Q| + |vy
p+Q| for odd k while

εk(p) = ε(p) and vk = |vx
p|+|vy

p| for even k. The velocity
projections vx

p and vy
p are determined by usual momen-

tum derivatives of the “bare” electronic energy dispersion
ε(p) given by (28). Finally, s(k) represents a combinato-
rial factor with

s(k) = k (43)

for the case of commensurate charge (CDW type) fluctu-
ations with Q = (π/a, π/a)5. For incommensurate CDW
fluctuations5 one finds

s(k) =

{

k+1
2

for odd k
k
2

for even k.
(44)

For spin – fermion model of Ref.2, the combinatorics of
diagrams becomes more complicated. Spin - conserving
scattering processes obey commensurate combinatorics,
while spin - flip scattering is described by diagrams of
incommensurate type (“charged” random field in terms
of Ref.2). In this model the recursion relation for the
single-particle Green function is again given by (42), but
the combinatorial factor s(n) now acquires the following
form2:

s(k) =

{

k+2
3

for odd k
k
3

for even k.
(45)

Below we only present our results for spin – fermion com-
binatorics, as in other cases we obtain more or less similar
behavior of renormalization factors.

In Fig. 4 we show the results of numerical calculation
of ReZ(εn, ξp = 0) at different points taken at the “bare”
Fermi surface, shown at the insert. For comparison we
show data obtained in the limit of infinite correlation
length ξ → ∞ (or κ = 0 – exactly solvable case) and for
finite κa = 0.01 (i.e. ξ = 100a). It is clearly seen that in
both cases ReZ ∼ 1 at “nodal” point D, except at very
small values of εn, while in the vicinity of the “hot spot”
(points A and C), and also at the “hot spot” itself (point
B), ReZ becomes small in rather wide interval of εn < ∆.
This corresponds to more or less “Fermi liquid” behavior
for “nodal” region (vicinity of Brillouin zone diagonal),
with a kind of “marginal” Fermi liquid or Luttinger liquid
(NFL) behavior as we move to the vicinity of the “hot
spot”.

FIG. 4: Dependence of ReZ on εn (in units of t) at different
points Fermi surface (corresponding to t′ = −0.4t and µ =
−1.3t) in “hot spots” model (spin – fermion combinatorics
of diagrams) with correlation lengths ξ → ∞ (κ = 0) and
ξ−1a = κa = 0.01. Pseudogap amplitude ∆ = 0.1t. At the
insert we show the “bare” Fermi surface and points, where
calculations were done.

For completeness in Fig. 5 we show similar comparison
of dependences of ImZ on εn at the same characteristic
points on the Fermi surface and for the same parame-
ters as in Figs. 4. It is only important to stress once
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FIG. 5: Dependence of ImZ on εn (in units of transfer in-
tegral t) at different points Fermi surface (corresponding to
t′ = −0.4t and µ = −1.3t) in “hot spots” model with finite
correlation length ξ−1a = κa = 0.01 (spin – fermion combi-
natorics of diagrams). Pseudogap amplitude ∆ = 0.1t. At
the insert — the “bare” Fermi surface and points, where cal-
culations were done.

again, that only at the “hot spot” itself (point B) we
have ImZ = 0, so that Z becomes real, and shows de-
pendence on εn more or less equivalent to that proposed
for “marginal” Fermi liquids (or Luttinger liquids).

In all cases we observe vanishing of renormalization
factor Z(εn, ξp) at the “bare” Fermi surface. In the ab-
sence of static impurity – like scattering due to finite val-
ues of correlation length ξ = κ−1 the pole singularity of
the Green’s function is replaced by zero, reflecting topo-
logical stability of the “bare” Fermi surface (Luttinger
theorem)9. In the presence of this scattering, singular-
ity of the Green’s function at topologically stable “bare”
Fermi surface remains in the form of finite discontinuity.

C. Spectral density and Fermi surface

“destruction” in “hot spots” model.

Let us return to (29) and perform the usual analytic
continuation to real frequencies: iεn → ε + iδ. Then we
obtain:

GR(ε, ξp) =
ε − ξ2

(ε + iδ − ξ1)(ε − ξ2 + iδ) − W 2
=

=
ε − ξ2

(ε − ξ1)(ε − ξ2) − W 2 + iδ(2ε − ξ1 − ξ2)
(46)

so that spectral density in the case of long – range
(CDW,SDW) order has the following form:

AW (ε, ξp) = − 1

π
ImGR(ε, ξp) =

= (ε − ξ2)δ[(ε − ξ1)(ε − ξ2) − W 2]sign(2ε− ξ1 − ξ2)

(47)

Accordingly, for FGM with correlation length ξ → ∞ we
have:

A(ε, ξp) =

∫ ∞

0

dWPW AW (ε, ξp) (48)

where PW is distribution function of gap fluctuations,
depending on combinatorics of diagrams and leading to
the following separate cases, already considered (or men-
tioned) above:

1. Incommensurate combinatorics.

In the case of incommensurate CDW – like pseudogap
fluctuations we have:

PW =
2W

∆2
e−

W2

∆2 (49)

– Rayleigh distribution4,11. Then, from (48) we obtain:

A(ε, ξp) =

=
ε − ξ2

∆2
e−

(ε−ξ1)(ε−ξ2)

∆2 ×
×θ[(ε − ξ1)(ε − ξ2)]sign(2ε − ξ1 − ξ2)

(50)

For ε = 0 we have:

A(ε = 0, ξp) =
ξ2

∆2
e−

ξ1ξ2
∆2 θ[ξ1ξ2]sign(ξ1 + ξ2) (51)

For ξ1 → ±0 we get:

A(ε = 0, ξp → ±0, ξ2) = ± ξ2

∆2
θ(±ξ2) (52)

so that within the Brillouin zone A(ε = 0, ξp) is nonzero
only in the space between “bare” Fermi surface and
“shadow” Fermi surface. This qualitative result is con-
firmed below, for all other combinatorics, for the case of
“pure” FGM with ξ−1 = κ = 0.

2. Commensurate combinatorics.

In the case of commensurate CDW – like pseudogap
fluctuations we have6:

PW =
1√
2π∆

e−
W2

2∆2 (53)
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– Gaussian distribution. Then, from (48) we obtain:

A(ε, ξp) =

=
1√
2π

ε − ξ2

∆
√

(ε − ξ1)(ε − ξ2)
e−

(ε−ξ1)(ε−ξ2)

2∆2 ×

×θ[(ε − ξ1)(ε − ξ2)]sign(2ε− ξ1 − ξ2) (54)

with the same qualitative conclusions as in incommensu-
rate case.

3. Spin – fermion combinatorics.

In the case of SDW – like pseudogap fluctuations of
(Heisenberg) spin – fermion model2 we have gap distrib-
ution:

PW =
2

π

W 2

(

∆2

3

)3/2
e
− W2

2(∆2
3 ) (55)

Then, from (48) we obtain:

A(ε, ξp) =

=
1√
2π

√

(ε − ξ1)(ε − ξ2)
(

∆2

3

)3/2
e
−

(ε−ξ1)(ε−ξ2)

2(∆2
3 ) ×

×θ[(ε − ξ1)(ε − ξ2)]sign(2ε− ξ1 − ξ2) (56)

again with the same qualitative conclusions as in incom-
mensurate case.

For the general case of finite correlation lengths ξ =
κ−1 spectral densities can be directly computed using
analytic continuation of recursion relations (41), (42) to
real frequencies2,3.

Actually, two – dimensional contour plots of A(ε =
0, ξp) (which are in direct correspondence with ARPES
intensity plots) can be used for “practical” definition of
renormalized Fermi surface and provide a qualitative pic-
ture of its evolution in FGM with the change model pa-
rameters6.

In Fig. 6 we show typical intensity plots of spectral
density A(ε = 0, ξp) in Brillouin zone for the “hot spots”
model both for the case of infinite correlation length
ξ−1 = κ = 0 and for finite (large!) correlation length
ξ−1a = κa = 0.01 (spin – fermion combinatorics of dia-
grams, in other cases behavior is quite similar) and for
different values of pseudogap amplitude ∆. We see that
these spectral density plots give rather beautiful quali-
tative picture of the “destruction” of the Fermi surface
in the vicinity of “hot spots” for small values of ∆, with
formation of typical “Fermi arcs” as ∆ grows, which is
qualitatively resembling typical ARPES data for copper
oxides16,17.

6 Note that for the free electrons A(ε = 0, ξp) = δ(ξp), so that
appropriate intensity plot directly reproduces the “bare” Fermi
surface.

FIG. 6: Intensity plots of spectral density A(ε = 0, ξp) in
Brillouin zone for the “hot spots” model (t′ = −0.4t and µ =
−1.3t) for the case of infinite correlation length ξ−1 = κ = 0
and for finite correlation length ξ−1a = κa = 0.01 (spin –
fermion combinatorics of diagrams) with different values of
pseudogap amplitude ∆. “Bare” Fermi surface is shown by
dashed line.

D. Superconducting d – wave fluctuations.

As we noted above, the case of superconducting s -
wave pseudogap fluctuations simply reduces to one – di-
mensional FGM. Much more interesting is the case of
superconducting d - wave fluctuations in 2D.

To obtain exact results for the case of infinite cor-
relation length ξ−1 = κ = 0 we have only to make
simple replacements in the above expressions for the
“hot spots” model with incommensurate combinatorics:
ξ2 → −ξ1 = −ξp and ∆ → ∆p, where ∆p defines the
amplitude of fluctuations with d - wave symmetry:

∆p =
1

2
∆ [cos(pxa) − cos(pya)] (57)

with ∆ now characterizing the energy scale of pseudogap
fluctuations.

Then (31) reduces to z = −(ε2
n + ξ2

p) and for Z-factor
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we immediately obtain an expression, similar to (21):

Z(εn, ξp) =

= −
ε2

n + ξ2
p

∆2
p

exp

(

−
ε2

n + ξ2
p

∆2
p

)

Ei

(

−
ε2

n + ξ2
p

∆2
p

)

≈

≈ −
ε2

n + ξ2
p

∆2
p

ln

(

γ′
ε2

n + ξ2
p

∆2
p

)

→ 0

for εn → 0, ξp → 0 (58)

again replacing the pole singularity by zero at the “bare”
Fermi surface, except the “nodal” at the diagonal of the
Brillouin zone, where ∆p = 0 (cf. (57)).

Instead of (50), we get spectral density as:

A(ε, ξp) =
ε + ξp
∆2

p

e
−

ε2
−ξ2

p

∆2
p θ(ε2 − ξ2

p)signε (59)

which is nonzero only for |ξp| < ε. As a result, for ε = 0
we have A(ε = 0, ξp) = 0 for ∆p 6= 0, and it is different
from zero only at the intersection of Brillouin zone diag-
onal with “bare” Fermi surface, where ∆p given by (57)
is zero. At Fermi surface itself we have:

A(ε, ξp = 0) =
|ε|
∆2

p

e
− ε2

∆2
p (60)

with two maxima at ε = ±∆/
√

2.
Considering the general case of finite correlation

lengths ξ = κ−1 we again perform numerical analysis
using the recursion relations introduced for this problem
in Ref.3, using the basic definition of Z - factor given in
(3). To calculate self – energy Σ(εn, ξp) of an electron
scattered by static fluctuations of superconducting order
parameter with d - wave symmetry, we use the following
relation (similar to (42)), sligthly generalizing relations
derived in of Ref.3:

Σk(εn, ξp) =

=
∆2

ps(k)

iεn − (−1)kξp + ikκ(|vx
p| + |vy

p|) − Σk+1(εn, ξp)

(61)

where s(k) is defined in (44),
In Fig. 7 we show the results for ReZ(εn, ξp = 0)

again taken at different points of the “bare” Fermi sur-
face, shown at the insert. Correlation length is ξ = 100a
(κa = 0.01) and ∆ = 0.1t. It is clearly seen that ReZ = 1
precisely at the “nodal” point D (where ∆p = 0), but in
other point on the “bare” Fermi surface ReZ is strongly
renormalized in rather wide intervals of εn < |∆p|, going
to zero with εn → 0. Thus we again obtain a kind of
“marginal” Fermi liquid or Luttinger liquid (NFL), but
qualitatively different from the case of “hot spots” model.

In Fig. 8 we also show typical intensity plots of spec-
tral density A(ε = 0, ξp) in Brillouin zone for the case of
superconducting (d - wave) pseudogap fluctuations with

FIG. 7: Dependence of ReZ on εn (in units of t) at different
points Fermi surface (corresponding to t′ = −0.4t and µ =
−1.3t) in the model of superconducting (d - wave) pseudp-
gap fluctuations with correlation length ξ−1a = κa = 0.01.
Pseudogap amplitude ∆ = 0.1t. At the insert we show
the “bare” Fermi surface and points, where calculations were
done.

FIG. 8: Intensity plots of spectral density A(ε = 0, ξp) in
Brillouin zone (t′ = −0.4t and µ = −1.3t) for the case of
superconducting (d - wave) pseudogap fluctuations. Correla-
tion length ξ−1a = κa = 0.1 (spin – fermion combinatorics
of diagrams) for two different values of pseudogap amplitude
∆ = 0.3t and ∆ = t.

correlation length ξ−1a = κa = 0.1 and two different val-
ues of ∆. We see that these spectral density plots give
quite different picture of the “destruction” of the Fermi
surface in comparison with the case of “hot spots” model,
which also, in our opinion, differs significantly from most
results of ARPES measurements on copper oxides. Fermi
surface is sharply defined only in one point (at the diago-
nal of the Brillouin zone), where ∆p given by (57) is pre-
cisely zero, and there are no sharply defined Fermi arcs
formed close to this point. We observe only some more or
less wide “dragon – fly wings” formed around this point.
Note also the absence of any signs of “shadow” Fermi
surface.
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IV. CONCLUSION

We analyzed rather unusual (NFL) behavior of fluctu-
ating gap model (FGM) of pseudogap behavior in both
1D and 2D. We studied in detail quasiparticle renor-
malization (Z – factor) of the single – electron Green’s
function, demonstrating a kind of “marginal” Fermi liq-
uid or Luttinger liquid behavior (i.e. the absence of well
– defined quasiparticles close to the Fermi surface) and
also the topological stability of the “bare” Fermi surface
(Luttinger theorem). This reflects strong renormaliza-
tion effects leading to the replacement of the usual pole
singularity of the Green’s function in Fermi liquid by zero,
thus effectively replacing at the Fermi surface of poles by
Luttinger surface of zeroes20. In the presence of static
impurity – like scattering due to the effects of finite cor-
relation lengths of pseudogap fluctuations this singularity
is replaced by finite discontinuty.

In 2D case we discussed effective picture of Fermi sur-
face “destruction” both in “hot spots” model of dielectric

(AFM, CDW) pseudogap fluctuations, as well as for qual-
itatively different case of superconducting d - wave fluc-
tuations, reflecting NFL spectral density behavior and
similar to that observed in ARPES experiments on cop-
per oxides. Intensity plots obtained for the case of AFM
(CDW) fluctuations are, in our opinion, more resembling
ARPES intensity data obtained in experiments on copper
oxides. Note, that this effective picture was also directly
generalized for the case of strongly correlated metals or
doped Mott insulators18 using the so called DMFT +Σk

approach of Ref.19.
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