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It is necessary to overcome mysticism with respect to technics...

Chairman Mao Zedong

Oh? The man works and doesn’t tell his assistant what he is doing...?
He will never give that seminar.

W. Pauli to R.P. Feynman

v
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Preface

At the end of the fifties and in early sixties of the last century there
was a kind of “revolution” in the theory of condensed matter (at that
time called mostly the theory of solid state and quantum liquids) which
was due to the use of methods, developed a decade earlier in quantum
field theory, mainly the method of Feynman diagrams. Since that time
diagrammatic methods became the foundation of this section of theo-
retical physics, and the knowledge of these is absolutely necessary for
any professional working in this field.

A number of good books are devoted to a rather detailed exposition
of the general aspects of these methods, such as the introduction of
diagrammatic formalism for different types of interactions [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963); Lifshits E.M., Pitaevskii
L.P. (1980)]. Of course, most of these books contain also the discus-
sion of some specific applications of these methods to concrete physical
problems. At the same time, up to now there are almost no books,
where the reader can find the detailed description of calculations and
methodical “know how” for specific problems, at the beginner level (like
graduate or postgraduate students).1 During the last decades a great
number of problems were solved (or analyzed) using Feynman diagram
technique and the results are scattered in the numerous original papers,
reviews and books.

1The author knows only one such attempt [Levitov L.S., Shitov A.V. (2003)], which
remained unpublished for a long time, and finally was published only in Russian. A
comprehensive review of the applications of field theory methods to different problems
of solid state theory and the theory of quantum liquids is contained in [Mahan G.D.
(1981)], but it is in fact a review for a professional, not a textbook.

vii
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The aim of these lectures is precisely the demonstration of the power
of diagram technique as applied to the solution of different problems of
condensed matter theory, most of which a long time ago became a kind
of “gold reserve” of this theory, while different concepts and method-
ical developments constitute a part of a working “folklore” of modern
theorists. Our choice of problems is based both on their importance
and personal interests of the author. Some of these problems are not
“finally” solved up to now, so that further development of the results
of almost any section of this book may be the starting point of a seri-
ous theoretical study. Actually, we limit ourselves only to the selected
problems of electronic theory of solids, dropping any discussion of Bose-
liquids, most problems of the theory of magnetism, as well as the theory
of critical phenomena, where diagrammatic methods are also quite im-
portant. It should be clearly understood that the material discussed in
every chapter of this book can be a part of a separate lecture course,
and we do not pretend to give a self-contained review of any of these
parts of the modern theory.

It is obvious, that the application of quantum field theory methods to
the theory of condensed matter is not limited to diagrammatic methods
only. In particular, there was a great temptation to pay some atten-
tion to the functional integrals or renormalization group. But finally a
decision was made to limit discussion only to diagrammatic approaches
and problems, which can be solved within more or less standard per-
turbation theory, dropping almost all modern aspects of the theory of
strongly correlated systems. This was due to a wish to make these lec-
tures more or less “compact”, as well as to demonstrate the “richness”
of results, which can be obtained in this way.

To understand these lectures it is necessary to know the basic no-
tions of Feynman diagram technique, approximately within the limits
of chapters II and III of the notorious “AGD” book [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)], where anybody can find a pre-
sentation, which remains unsurpassed up to now.2

2In fact the material presented in this book was used by the author as a second part of
the lecture course, taught at the Ural State University in Ekaterinburg. The first part
of this course is actually based on these chapters of “AGD”.
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Preface ix

The author is grateful to Dr. K.K. Phua of World Scientific for the
invitation to publish an English version of this book. This new edition
is revised and expanded by introduction of some additional material in
Chapters 3, 4 and 5.

M.V. Sadovskii, Ekaterinburg, 2019

Note to the Reader:
The parts of the main text in smaller font represent either some
technical remarks or some material that requires a slightly
higher theoretical background.
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Chapter 1

Introduction

The concept of quasiparticles is of major importance in the theory of
condensed matter. This concept can be rigorously justified within the
Green’s function formalism, which a long time ago became the main
working tool of all modern approaches to many particle systems. The
method of Green’s functions allows to formulate criteria for the ex-
istence of quasiparticles in specific models of interacting particles, as
well as constitutes the universal method of practical calculations of
arbitrary physical properties of many particle systems with the ac-
count of different types of interactions. This method originated in
quantum field theory, where quite effective and convenient approach,
based on the use of Feynman diagrams appeared for the first time.
The following transfer of these methods to the theory of many parti-
cle systems, in fact, lead to the formulation of the modern theory of
condensed matter [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963); Lifshits E.M., Pitaevskii L.P. (1980)].

In this lecture course we do not present step by step derivation of
the Green’s function formalism itself, our aim is to teach how to use
this method for solution of concrete physical problems. It is assumed
that the basic principles of construction of Feynman diagrams for dif-
ferent types of interactions are already known, both for the case of zero
temperature T = 0, as well as for finite temperatures (Matsubara for-
malism) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]. The
structure of the course is clear from the Contents. Separate chapters
are devoted to the analysis of different types of interactions, which are
studied within the electronic theory of the solid state, and also to a

1



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 2

2 Diagrammatics

number of major electronic instabilities (phase transitions). At first, in
each chapter we formulate the rules of diagram technique, appropriate
for the interaction under study, then we analyze different problems, in
most cases presenting all the details of calculations, or at least giving all
the information necessary to reproduce the results. Practically every-
where in these lectures we tried to adhere to the rules and major nota-
tions used in “AGD” book [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)], though due to rather “informal” style of our presentation,
we can not guarantee the absence of some “randomness” in notations
between different sections. In fact, each chapter can be used as the
introduction to the problems of the appropriate part of the solid state
theory. In this sense the chapters can be read independently of each
other, but it should be noted that all the problems under discussion
has much in common and are, in fact, deeply connected to each other.
Bibliography is in no sense complete, we quote only the sources, from
which we have taken the material used in our presentation, limiting
ourselves mainly to textbooks or reviews. Accordingly, there are prac-
tically no references to original papers and no discussion of priorities,
in most important cases we just quote the name of the author (with an
approximate year, when the result was obtained). Some of the material
of these lectures is based on personal exercises by the author, no specific
references are given in most of such cases.

The main idea of diagrammatic approach in the theory of con-
densed matter reduces in fact to the summation of an infinite se-
ries of Feynman diagrams for the single-particle or many-particle (in
most cases two-particle) Green’s functions (and (or) appropriate ver-
tex parts, describing multi-particle interactions). Usually it is pos-
sible to perform a certain partial summation of some classes (types)
of diagrams of perturbation series, which are “dominating” over some
physical parameter (e.g. dimensionless coupling constant, density of
particles, or some other combination of parameters, characteristic
for the problem under discussion). In most cases, such dominating
classes of diagrams were determined already during the initial stages
of the development of diagrammatic approaches to different kinds of
interactions [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)], and we shall consider a number
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of such typical cases and physical results obtained. In some (very)
rare cases and for (mostly) oversimplified model cases, it is possible to
perform a complete summation of all Feynman diagrams. These cases
(problems) are much less known, but mostly are quite important and
instructive. We shall consider a number of such problems, both to illus-
trate technical aspects and also to analyze nontrivial conclusions, such
as the “destruction” of the concept of quasiparticles itself, which being
quite useful certainly has its limits. Here we shall move closer to most
modern aspects of the theory.

Practically everywhere in these lectures we use the natural units
with ~ = c = 1, “restoring” ~ and c only in some final expressions and
estimates. Boltzmann’s constant is always taken as kB = 1.

1.1 Quasiparticles and Green’s functions

Though we shall not be presenting any systematic derivation of dia-
grammatic approach to many-particle systems, let us start with some
short introduction of some elementary concepts and definitions, just for
coherence of presentation and to remind a reader basic physical ideas
behind the application of Green’s functions in condensed matter theory.

Consider first the case of temperature T = 0, i.e. the system at
its ground state. Let us start from the elementary problem of a single
quantum particle moving in some time-independent external potential
(or field), and described by the usual (time-dependent) Schroedinger
equation with appropriate Hamiltonian H :

i
∂ψ(r, t)

∂t
−Hψ(r, t) = 0 (1.1)

Instead of solving this equation directly (with some initial condition
for the wave-function) we introduce the Schroedinger-like equation for
the Green’s function G(r, t; r′, t′), depending on two values of time and
coordinate:

i
∂G

∂t
−HG = iδ(r− r′)δ(t− t′) (1.2)

with initial condition G(r, t + 0; r′, t) = δ(r− r′). Physically, Green’s
function represents the probability amplitude for a particle transition
from (initial) point r′ at the moment of time t′ to the some point r at
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the moment t. Squared modulus of this amplitude gives the probability
of such transition. This is easily checked expressing ψ-function at the
moment t+ τ via ψ-function at the moment t as:

ψ(r, t+ τ) =

∫
dr′G(r, t+ τ ; r′t)ψ(r′, t) (1.3)

It is easily seen that this expression for ψ(r, t + τ) satisfies the
Schroedinger equation (1.1), and for τ → 0 it coincides with ψ(r, t)

due to the initial condition G(r, t+ 0; r′, t) = δ(r− r′). Obviously, we
have to assume G = 0 for τ < 0 to guarantee causality.

Let us now introduce some set of eigenfunctions of the stationary
Schroedinger equation:

Hφλ(r) = ελφλ(r) (1.4)
Depending on the problem at hand, the quantum numbers λ can have
different physical meaning. If our problem (Hamiltonian) is translation
invariant λ → p, e.g. the momentum of a free particle, for the system
in an external magnetic field λ represents the set of Landau quantum
numbers, for a particle moving in some arbitrary (or random) potential,
these may be some (in general unknown to us) quantum numbers of the
states diagonalizing the Hamiltonian.

Consider the simple case of a particle moving in some potential:

H =
p2

2m
+ V (r) (1.5)

Any solution of the Schroedinger equation (1.1) can be expanded using
the complete system of eigenfunctions of (1.4):

ψ(r, t) =
∑
λ

cλ(t)φλ(r) (1.6)

Then we can write (1.3) as an equation for the coefficients of this ex-
pansion:

cλ(t+ τ) =
∑
λ′

Gλλ′(τ)cλ′(t) (1.7)

and obtain:

Gλλ′(τ) =

∫
d3rd3r′G(r, r′τ)φ⋆

λ(r)φλ′(r′) (1.8)

— the Green’s function in the representation of quantum numbers
λ. As φλ is an exact stationary state of the (time-independent)
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Hamiltonian H , there are no transitions to another states, so that
cλ(t+ τ) = e−iελτcλ(t), i.e.

Gλλ′(τ) = Gλ(τ)δλλ′ = e−iελτθ(τ) (1.9)

where θ(τ) = 1 for τ ≥ 0 and θ(τ) = 0 for τ < 0. Consider now the
Fourier transform:1

Gλ(ε) =
1

i

∫ ∞

−∞
dτeiετGλ(τ) (1.10)

Gλ(τ) = i

∫ ∞

−∞

dε

2π
e−iετGλ(ε) (1.11)

Then, after elementary integration we get:

Gλ(ε) =
1

ε− ελ + iδ
, δ → +0 (1.12)

The sign of δ → 0 is chosen to guarantee Gλ(τ) = 0 for τ < 0. In fact
we have:

Gλ(τ) = i

∫ ∞

−∞

dε

2π

e−iετ

ε− ελ + iδ

=

{
e−iελτ for τ > 0

0 for τ < 0
(1.13)

To convince yourself note, that the integrand here has a pole at ε =

ελ − iδ. Then for τ > 0 we can close the integration contour in the
lower half-plane of complex variable ε (as the factor e−iετ guarantees
the exponential damping of the integrand at the semicircle at infinity
in the lower half-plane), then the pole of the integrand is inside the
contour of integration and using Cauchy theorem we obtain the result
given in Eq. (1.13). For τ < 0, to guarantee the zero contribution from
the semicircle, we have to close integration contour in the upper half-
plane of ε. Then there is no pole inside the contour and the integral
reduces to zero.
1Note the additional factor i which we introduced in (1.10), (1.11) and below in (1.19)

which guarantees correspondence with standard notations of “AGD”. Usually this fac-
tor is just added in the definition of Green’s function [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)].
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In a mixed (r, ε) representation we obtain:
G(r, r′, ε) =

∑
λ,λ′

Gλλ′(ε)φλ(r)φ
⋆
λ′(r′)

=
∑
λ

φλ(r)φ
⋆
λ(r

′)

ε− ελ + iδ
(1.14)

Here the sum over λ includes summation over all bound states and
integration over the continuous part of the spectrum. We can see
that G(r, r′, ε) possesses poles at the values of ε equal to ελ, i.e. at
the energies of bound states, and the cut (continuum of the poles) on
the part of the real axis of ε, corresponding to the continuous part
of the spectrum.

Consider now the many-particle system. Let us limit discussion only
to the case of (many) Fermions. Similar analysis can be given for the
system of Bose particles, but we skip it referring the reader to the gen-
eral courses [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)]. Consider first the case of non-
interacting Fermions (Fermi-gas). Elementary excitations in this case
are pairs of excited particles (above the Fermi surface) and holes (below
the Fermi surface).

Let us determine Green’s function for a particle excitation Gλλ′(τ),
i.e. the transition amplitude of a particle from some state λ to a state λ′

(for the case of non-interacting Fermions). We have to take into account
limitations due to Pauli principle, i.e. exclude transitions to occupied
states. This can be achieved by an additional factor (1 − nλ) in the
definition of the Green’s function, where

nλ =

{
1 for ελ ≤ εF
0 for ελ > εF

(1.15)

is just the particle number in a state λ (Fermi distribution for T = 0).
Thus we obtain:

G+
λλ′(τ) = (1− nλ)δλλ′

{
e−iελτ for τ > 0

0 for τ < 0
(1.16)

Let us now find similar expression for holes. As the number of available
states for holes at the state λ is just nλ, we get:

G−
λλ′(τ) = nλδλλ′

{
eiελτ for τ > 0

0 for τ < 0
(1.17)
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where we have taken into account also that the hole energy (with respect
to the Fermi level) is opposite in sign to the particle energy.

It is convenient to introduce Green’s function Gλ(τ), defined both
for τ > 0 and τ < 0:

Gλ(τ) =

{
G+

λ (τ) for τ > 0

−G−
λ (−τ) for τ < 0

(1.18)

Fourier transform of this function is easily calculated as:

Gλ(ε) = −i(1− nλ)

∫ ∞

0

dτe−iελτ+iετ + inλ

∫ 0

−∞
dτeiελτ+iετ

=
1− nλ

ε− ελ + iδ
+

nλ

ε− ελ − iδ
(1.19)

where it is necessary to introduce δ → +0 to guarantee convergence. It
is convenient to rewrite this expression as:

Gλ(ε) =
1

ε− ελ + iδsignελ

=

{
1

ε−ελ+iδ
for ελ > εF

1
ε−ελ−iδ

for ελ < εF
(1.20)

where we have introduced sign-function: sign(x) = 1 for x > 0 and
sign(x) = −1 for x < 0. Note that the Fourier transform of this
Green’s function has a pole at ε equal to a particle (hole) energy.

Consider now the system of interacting Fermions. Single-particle
Green’s function in a system of interacting Fermions can be defined as:

G+(rt; r′t′)t>t′ =< 0|ψ̂(rt)ψ̂+(r′t′)|0 > (1.21)
where |0 > is an exact ground state (“vacuum”) of our system, corre-
sponding to the filled Fermi-sphere, ψ̂(rt) is second quantized operator
of a Fermi field in Heisenberg representation [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]:

ψ̂(rt) = eiHtψ̂(r)e−iHt (1.22)
with H — the Hamiltonian of our many-particle (interacting) system.
Operator ψ̂(r) can be expressed in a standard way via annihilation
operators aλ of a particle in λ-states (while ψ̂+ is similarly expressed
via creation operators a+λ ):

ψ̂(r) =
∑
λ

aλφλ(r) (1.23)
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Eq. (1.21) obviously gives us the transition amplitude for a particle
propagating from (r′t′) to (rt).

Similar expression can be written for propagating hole:

G−(rt; r′t′)t>t′ =< 0|ψ̂+(rt)ψ̂(r′t′)|0 > (1.24)

where it is taken into account that annihilation of a particle in a given
point is equivalent to creation of a hole.

Both expressions (1.21) and (1.24) are defined for t > t′. It is conve-
nient to can write down a single expression, which for t > t′ describes
propagating particle, while for t < t′ – propagating hole (similarly to
Eq. (1.18)):

G(rt; r′t′) =

{
G+(rt; r′t′) for t > t′

−G−(r′t′; rt) for t < t′
(1.25)

Another way to write this is:2

G(x, x′) =< 0|T ψ̂(x)ψ̂+(x′)|0 > (1.26)

where we have denoted x = (rt), and the symbol of T -ordering means
that all the operators standing to the right of T are placed in order over
time arguments, with those corresponding to later moments standing
to the left from those corresponding to earlier times, with the account
of a sign change due to permutations of Fermion operators (necessary
to place operators in the “right” order in time arguments). Formal
definition of T -ordering taken from the quantum field theory is given
by:

T {F1(t1)F2(t2)} =

{
F1(t1)F2(t2) for t1 > t2
−F2(t2)F1(t1) for t1 < t2

(1.27)

for Fermion operators and

T {B1(t1)B2(t2)} =

{
B1(t1)B2(t2) for t1 > t2
B2(t2)B1(t1) for t1 < t2

(1.28)

2Standard definition of “AGD” differs by an additional factor of −i, which we have
taken into account in Fourier transforms above.
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for Boson operators. Green’s function defined by Eq. (1.26) is usually
called Feynman or causal (T -ordered).3

If we deal with an infinite homogeneous (translation invariant) sys-
tem we haveG(rt; r′t′) = G(r− r′, t−t′) and it is convenient to perform
Fourier transformation both in t− t′ and r− r′:

G(pτ) =

∫
d3rG(rτ)e−ipr (1.29)

where

G(pτ) =

{
< 0|ape−iHτa+p |0 > eiE0τ τ > 0

− < 0|a+p eiHτap|0 > e−iE0τ τ < 0
(1.30)

where E0 is the ground state energy (in our case just equal to Fermi
energy EF ).

Quasiparticles can be a viable concept if the single-particle Green’s
function of a system under consideration can be expressed as (τ > 0):

G(pτ) ≈ Ze−iξ(p)τ−γ(p)τ + ... and γ(p) ≪ ξ(p) (1.31)

where ξ(p) = ε(p) − EF , i.e. it contains a contribution of the form
similar to that of the Green’s function of the free (non-interacting) Fermi
gas. Eq. (1.31) means the presence (with amplitude Z in the ground
state |0 >) of a wave-packet, corresponding to a quasiparticle with
energy ξ(p) and damping γ(p). We have to require that γ(p) ≪ ξ(p),
i.e. the weakness of damping to make quasiparticles “well defined”.4
In a similar way, for τ < 0 we can define the Green’s function for
a quasihole. Finally, in a system with well defined quasiparticles the
3Note that this definition does not coincide with that of the so-called two-time Green’s

function introduced by Bogoliubov and Tyablikov and used in the theory of linear re-
sponse [Zubarev D.N. (1974)], even if we go there to the limit of zero temperature. The
advantage of introducing Feynman’s functions is in the availability of diagram technique,
giving the universal method to calculate these Green’s functions via perturbation the-
ory. There is no (convenient) diagram technique for Green’s functions of Bogoliubov
and Tyablikov. There are a number of exact relations and methods, allowing to ex-
press the Green’s functions of linear response theory via Feynman’s functions for T = 0

and appropriate generalizations for the case of finite temperatures (Matsubara formal-
ism) which we shall use below [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)].
4This condition, as we shall see below, is satisfied in Landau theory of Fermi liquids,

where close to the Fermi surface we have: ξ(p) ≈ vF (|p−pF |), while γ(p) ∼ (|p|−pF )2

(vF is Fermi velocity).
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Fourier transform of the Green’s function (1.26) can be written as:

G(pε) = Z

{
1− np

ε− ξ(p) + iγ(p)
+

np

ε− ξ(p)− iγ(p)

}
+Greg(pε)

=
Z

ε− ξ(p) + iγ(p)sign(p− pF )
+Greg(pε) (1.32)

We see that the poles of this expression define the quasiparticle spec-
trum and damping. This is a general property of Green’s functions,
allowing to determine the quasiparticle spectrum in many-particle sys-
tem. The value of Greg in (1.32) is determined by the contribution
of many-particle excitations, and in most cases is of no special impor-
tance. However, in systems with strong correlations (interactions) we
may meet with situation, when there is actually no quasiparticle poles
in the Green’s function, so that there is no single-particle excitations at
all and everything is actually determined by Greg, making the studies
of the properties of such systems much more complicated.

Why do we need Green’s functions at all? First they give us the
general method to study the spectrum of excitations in many-particle
(interacting) systems. It happens also, that the knowledge of Green’s
functions allows to calculate ground state (T = 0) averages of arbi-
trary physical characteristics of many-particle systems. Let us consider
simple examples. Using the introduced single-particle Green’s function
we may calculate the ground state averages of operators which can be
written as a sum of single-particle contributions (one-particle operators)
[Bogoliubov N.N. (1991a); Sadovskii M.V. (2019a)]:

Â =
∑
i

Âi(xi,pi) (1.33)

where xi represents e.g. both spatial and spin variables, while pi are
the momenta (operators!) of separate particles of our system. Typical
examples are:

n(r) =
∑
i

δ(r− ri) (1.34)

— operator of the particle density at the point r,

j(r) =
e

m

∑
i

piδ(r− ri) (1.35)

— current density at r etc.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 11

Introduction 11

Operator Â in second quantized form can be written as:

Â =

∫
dxψ+(x)A(x,p)ψ(x) (1.36)

Consider Green’s function (1.25), (1.26) at t = t′ − 0:

G(x, x′, τ)|τ→−0 = − < 0|ψ+(x′)ψ(x)|0 > (1.37)

Then the average value of Â in the ground state can be written as:

< A >=

∫
dxA(x,p)G(x, x′, τ = −0)|x=x′ = −SpAG|τ=−0 (1.38)

Thus, the value of G|τ=−0 up to a sign coincides with single-particle
density matrix at T = 0:

ρ(x′, x) =< 0|ψ+(x′)ψ(x)|0 >= −G|τ=−0 (1.39)

To determine the average values of two-particle operators:

B̂ =
∑
ik

Bik(xipi;xkpk) (1.40)

we have to calculate two-particle Green’s function, defined usually as:

G2(1, 2; 3, 4) =< 0|Tψ(1)ψ(2)ψ+(3)ψ+(4)|0 > (1.41)

etc. Thus, the problem of finding the average values of multi-particle
operators, requires the knowledge of appropriate density matrices [Bo-
goliubov N.N. (1991a)], which can be expressed via corresponding multi-
particle Green’s functions.

1.2 Diagram technique. Dyson equation

Feynman diagrams give an elegant graphical representation of arbi-
trary contributions to perturbation series for Green’s functions. The
standard way to obtain specific diagram rules for a given interacting
system reduces to the study of (scattering) S-matrix perturbation ex-
pansion and the use of the Wick’s theorem [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)].
Typical graphic elements of any diagram technique are Green’s func-
tions lines and interaction vertices, which are combined into Feynman
diagrams of a certain “topology”, depending on the nature of interac-
tion under consideration. Below we shall formulate these rules explicitly
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[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)] for different
kinds of interactions, which will be studied in these lectures.

Wonderful aspect of Feynman diagram technique is the possibil-
ity to perform graphical summation of infinite (sub)series of diagrams.
Consider the simplest (and actually most important!) example of
such summation, leading to the derivation of the so-called Dyson’s
equation [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)]. Let us denote an exact Green’s
function by a “fat” (or “dressed” line), and a free-particle Green’s func-
tion via “thin” line. Full transition amplitude (Green’s function) of a
transition from point 2 to point 1 is obviously equal to the sum of all
possible transition amplitudes, appearing at all orders of perturbation
theory, i.e. to the sum of all possible Feynman diagrams for the Green’s
function. Let us classify diagrams in the following way. First of all sep-
arate the only graph (line), corresponding to the propagation of a free
particle. The remaining diagrams has the following form: up to some
point the particle is propagating freely, then some scattering occurs,
resulting in creation and annihilation of a number of particles and holes
(or the particle is just scattered by the other particles, belonging to the
Fermi “sea”, below the Fermi level), then again we have a freely prop-
agating particle, then scattering processes (interactions) are repeated
etc. Let us denote as Σ the sum of all diagrams, which can not be
separated in two parts by cutting a single Fermion line, this “block” Σ

is called the irreducible self-energy of a particle (Fermion). Now we can
easily convince ourselves that the full Green’s function is determined by
the Dyson equation, graphically shown in Fig. 1.1. In analytic form it
is an integral equation:

G(1, 2) = G0(1, 2) +

∫
dτ3dτ4G0(1, 3)Σ(3, 4)G(4, 2) (1.42)

Iterating this equation we obtain the full perturbation series for the
Green’s function. After Fourier transformation Dyson equation is re-
duced to the algebraic one:

G(pε) = G0(pε) +G0(pε)Σ(pε)G(pε), (1.43)
which is easily solved:

G(pε) =
1

ε− ε(p)− Σ(pε)
(1.44)
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Fig. 1.1 Diagrammatic derivation of the Dyson equation.

where we have taken into account the explicit form of G0(pε). It is clear
that the self-energy Σ(pε) represents in a compact form all changes
in a particle motion as a result of its interaction with other particles
of a system. In general case, self-energy is complex, i.e. consists of
real and imaginary parts (that is the reason why in (1.44) we have
dropped an infinitesimal imaginary term of the free particle iδsign(ε−
εF )). Solving Dyson equation in some approximation (or, in rare cases,
exactly) allows us to analyze the energy (excitation) spectrum of many-
particle interacting systems.

1.3 Green’s functions at finite temperatures

Green’s functions formalism is almost directly generalized for the case
of finite temperatures T [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)]. To remind the reader the essence of this (Matsubara)
formalism we again restrict ourselves mainly to the case of Fermions.
So-called thermodynamic (or Matsubara) Green’s function is defined as:

G(p, τ2 − τ1) = −i < Tτap(τ2)a
+
p (τ1) > (1.45)

where we use “interaction” representation for operators in the following
form:

ap(τ) = e(H−µN)τape
−(H−µN)τ (1.46)

where Matsubara “time” 0 < τ1, τ2 < β = 1
T

and µ is the chemi-
cal potential, while angular brackets denote the averaging over grand
canonical Gibbs ensemble, which is conveniently written as:

< A >=
SpρA

Spρ
where ρ = e−β(H−µN) (1.47)

with Z = Spρ.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 14

14 Diagrammatics

The reason why Matsubara Green’s functions G can be expanded
in (almost) the same diagrammatic expansion, as quantum mechanical
Green’s functions G in the case of T = 0, is as follows. We have
seen that diagrammatic expansion for G directly follows from the time
dependent Schroedinger equation. Statistical operator ρ, written as in
(1.47), satisfies the so-called Bloch equation:

∂ρ

∂β
= −(H − µN)ρ (1.48)

as is easily checked just by differentiation. There is direct correspon-
dence between Schroedinger equation (1.1) and Bloch equation (1.48):

ψ ↔ ρ H ↔ H − µN it↔ β (1.49)

Thus, after the simple substitution of

H → H − µN it→ τ (1.50)

in the expressions of the previous section, we can obtain Matsubara
Green’s function formalism for G of almost the same form as in the case
of T = 0 for quantum mechanical G. Substitution H → H − µN leads
only to the appropriate change of the single particle energy by µ:

H0 − µN =
∑
p

(ε(p)− µ)a+pap (1.51)

Though Matsubara Green’s functions G depend on “imaginary time”
τ ,5 we may always return to the real time via substitution (in final
expressions) τ → it, or, strictly speaking, via analytical continuation of
Matsubara expressions from imaginary to real time axis.

Above we have already noted that the values of τ1 and τ2 in (1.45)
are limited to the interval from 0 to β. Accordingly, to perform Fourier
transformation over τ we have to introduce G periodically continued
on the interval from −∞ to ∞. Then we can write down the Fourier
expansion as:

G(pτ) = 1

β

∞∑
n=−∞

e−iωnτG(pωn) (1.52)

5The value τ was taken real, but Green’s function G can be obtained from G by a
substitution it→ τ , so that in thermodynamic formalism we are dealing with a transition
to t = −iτ , i.e. “imaginary time”.
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where summation is over discrete (Matsubara) frequencies ωn = πnT .
Then:

G(pωn) =
1

2

∫ β

−β

dτeiωnτG(pτ) (1.53)

“Time” difference τ = τ2−τ1 belongs to the interval (−β, β), as both τ1
and τ2 vary on the interval (0, β). The function G(pτ) periodically re-
produces itself on intervals (−β, β), (β, 3β), (3β, 5β), ..., (−3β,−β), ....
For the system consisting of Fermions, the even values of n drop out
from the series for G(pτ) due to “antiperiodic” boundary condition:

G(p, τ) = −G(p, τ + β) for τ < 0 (1.54)

Validity of this expression is checked using the property of the trace:
SpAB = SpBA. For τ ′ − τ > 0 we have:

G(p, τ − τ ′) =
i

Z
Spe−β(H−µN)a+p (τ

′)ap(τ)

=
i

Z
Spap(τ)e

−β(H−µN)a+p (τ
′)e

=
i

Z
Spe−β(H−µN)eβ(H−µN)ap(τ)e

−β(H−µN)a+p (τ
′)

=
i

Z
Spe−β(H−µN)ap(τ + β)a+p (τ

′) (1.55)

or

G(p, τ − τ ′) = −G(p, τ − τ ′ + β) (1.56)

which for τ ′ = 0 gives us (1.54). The minus sign appears here due
to anticommutation of Fermi operators. Substituting (1.54) into (1.52)
we see, that all contributions with even n are just zero. Thus for the
Fermion case we are always dealing with the odd Matsubara frequencies:

ωn =
(2n+ 1)π

β
= (2n+ 1)πT (1.57)

For Bosons, in a similar way, only contributions from even Matsubara
frequencies

ωn =
2nπ

β
= 2nπT (1.58)

survive in the Fourier series for the Green’s function.
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Returning to Eqs. (1.16), (1.17) and (1.18) for Green’s functions of
the free particles at T = 0, we can easily write down the free-particle
Matsubara Green’s function as:

G0(p, τ2−τ1) = −i{θ(τ2−τ1)(1−n(p))−θ(τ1−τ2)n(p)}e−(ε(p)−µ)(τ2−τ1)

(1.59)
where n(p) = [eβ(ε(p)−µ) + 1]−1 is the Fermi distribution for finite T .
Thus, the step functions entering the definition of G0 at T = 0 are
smeared by finite temperatures, leading to the simultaneous appearance
of both particles and holes in a state with a given p.

Substituting (1.59) into (1.53) we find:6

G0(pωn) =
i

iωn − ε(p) + µ
, ωn = (2n+ 1)πT (1.60)

With only the major change to discrete frequencies, Matsubara diagram
technique at finite T is practically identical with quantum mechanical
diagram technique at T = 0. The full Green’s function is determined
from Dyson equation:

G(pωn) =
i

iωn − ε(p) + µ− Σ(pωn)
, ωn = (2n+ 1)πT (1.61)

Let us stress, however, that Matsubara Green’s functions do not have
the meaning of any kind of “transition amplitudes” (propagators) of the
quantum (field) theory.

Calculating Matsubara Green’s functions we can, in principle, find
any thermodynamic characteristic of any many-particle system at equi-
librium. Description of general non-equilibrium processes can be based
on the more general formalism of Keldysh Green’s functions [Lifshits
E.M., Pitaevskii L.P. (1980)] and appropriate diagram technique. How-
ever, this formalism is outside the scope of our lectures.

6Here again we have an extra factor of i in comparison with standard notations of
“AGD”, which actually appeared in our Eq. (1.45).
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Chapter 2

Electron–Electron Interaction

2.1 Diagram rules

Consider the system of interacting (nonrelativistic) Fermions. In the fol-
lowing we speak mainly about electrons in a metal. Interaction Hamil-
tonian can be written as:

Hint =
1

2

∫
dr1dr2ψ

+
α (r1)ψ

+
β (r2)V (r1 − r2)ψβ(r2)ψα(r1) (2.1)

where V (r) — is the (static) interaction potential. ψ+
α (r), ψα(r) —

creation and annihilation operators of Fermions at the point r, α —
spin index.

General rules of diagram technique to calculate interaction correc-
tions to single-particle Green’s function in momentum representation
G(p) are given in [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]. Let us formulate the summary of these rules for the case of
zero temperature T = 0:

• Diagram of n-th order in interaction contains 2n vertices, 2n+1

full (electronic) lines and n wave-like (interaction) lines. To all
lines we attribute definite 4-momenta, conserving at the inter-
action vertices.

• Full line denotes Green’s function of a free electron (Fermion):

G0(p) =
δαβ

ε− ξ(p) + iδsignξ(p)
where δ → +0 (2.2)

where

ξ(p) =
p2

2m
− µ ≈ vF (|p| − pF ) (2.3)

17
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is the energy spectrum of free electrons, with energy calculated
from the Fermi level (chemical potential µ), pF and vF — are
Fermi momentum and velocity at the Fermi surface.

• Wave-like line denotes the Fourier transform of the potential
U(q).

• We must integrate over n independent momenta and frequencies
(4-momenta).

• Final expression is multiplied by (i)n(2π)−4n(2s + 1)F (−1)F ,
where F — is the number of closed Fermionic loops and s —
Fermion spin (for electrons s = 1/2, so that we always have
2s+ 1 = 2).

For the case of finite temperatures, in Matsubara formalism [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)], diagram rules for calcu-
lation of k-th order correction to G(εnp) are formulated as follows:

• Diagram of k-th order possesses 2k vertices, 2k + 1 full (elec-
tronic) lines and k wave-like (interaction) lines. To all lines
we attribute momenta and (Matsubara) frequencies, satisfying
conservation laws in each vertex. Frequencies at Bose lines are
always even (ωm = 2πmT ), while frequencies of Fermi lines are
odd (εn = (2n+ 1)πT ).

• We must integrate over all independent momenta and sum over
independent Matsubara frequencies.

• Each full line with momentum p and frequency εn denotes free
electron Green’s function in Matsubara representation:

G0(εnp) =
δαβ

iεn − ξ(p)
(2.4)

while each wave-like line with momentum q and frequency ωm

denotes V (q).
• Final expression is multiplied by (−1)k Tk

(2π)3k
(2s + 1)F (−1)F ,

where F again denotes the number of Fermion loops in a given
diagram, while s is Fermion (electron) spin.
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2.2 Electron gas with Coulomb interaction

If we try to perform direct calculations of interaction corrections to
the Green’s function of an electron in a normal metal using diagram
rules given above, we immediately discover that appropriate analytic
expressions just diverge due to the singularity of Coulomb interaction
at small momentum transfers q:

V (q) =
4πe2

q2
(2.5)

reflecting the long-range nature of Coulomb interaction. This problem
can be solved performing summation of an infinite series of diagrams,
describing the screening of Coulomb potential by free electrons.

Let us introduce an effective interaction (“dressed” wave-like line)
defined by diagrams shown in Fig. 2.1, where polarization operator is
determined via the sum of diagrams, shown in Fig. 2.2. It is important
to stress that an expansion shown on Fig. 2.2 contains no diagrams,

Fig. 2.1 Diagrammatic definition of an effective interaction.

Fig. 2.2 Diagrams for irreducible polarization operator.

Fig. 2.3 An example of reducible diagram.
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which can be “cut” through one interaction line, of the type shown in
Fig. 2.3, defining irreducible polarization operator. Thus, an expansion
shown in Fig. 2.1 is an analogue of Dyson equation. Analytically the
effective interaction can be written as:

V(qω) = V (q) + V (q)Π(qω)V(qω) (2.6)
Effective interaction V(qω) is in general dependent on frequency ω,
corresponding to the account of retardation effects due to characteristic
time of electron response to instantaneous Coulomb interaction.

Solving Eq. (2.6) we obtain:

V(qω) = V (q)

1− V (q)Π(qω)
≡ V (q)

ϵ(qω)
(2.7)

where we introduced dielectric function (permeability):
ϵ(qω) = 1− V (q)Π(qω) (2.8)

So-called random phase approximation (RPA)1 corresponds to the sim-
plest approximation of polarization operator by the loop of two free-
electron Green’s functions, as shown by the diagram of Fig. 2.4(a):2

Π0(qω) = −2i

∫
d4p

(2π)4
G0(p+ q)G0(p) (2.9)

Effective interaction is defined now by diagrams shown in Fig. 2.4(b).
Equation for the effective interaction can also be written in another
form, shown in Fig. 2.5(a), where we introduced reducible polarization
operator Π̃(qω), defined by diagrams of Fig. 2.5(b):

V = V + V Π̃V (2.10)
From Fig. 2.5(b) it is clear that:

Π̃ =
Π0

1− VΠ0

(2.11)

From (2.10) using (2.11) we get:

V = V (1 + Π̃V ) = V

(
1 +

Π0V

1− VΠ0

)
=

V

1− VΠ0

=
V

ϵ
(2.12)

1This term has purely historic meaning.
2Note that in many books and papers the definition of Π(qω) is taken with different

sign (e.g. see [Schrieffer J.R. (1964)]), here we use notations of [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]
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Fig. 2.4 Random phase approximation (RPA) for polarization operator and effective
(screened) Coulomb interaction.

Fig. 2.5 Effective interaction expressed via reducible polarization operator Π̃.

which coincides with (2.7), with dielectric function taken in RPA ap-
proximation. Expression (2.11) defines full polarization of the systems.

Similarly we can obtain RPA expression for magnetic susceptibility.
In this case we have to analyze the response of a system to infinitesimal
magnetic field, flipping electronic spin. Dropping technical details, we
just note that here it is sufficient to consider diagrams shown in Fig. 2.6
[Khomskii D.I. (2010); Levitov L.S., Shitov A.V. (2003)]. If we consider
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Fig. 2.6 Diagrams for magnetic susceptibility. ± denote spin projections.

popular model with (point-like) Hubbard interaction U of electrons, i.e.

Hint =
∑
i

Uni↑ni↓, (2.13)

where ni↑ and ni↓ are operators of electronic density at a given lattice
site i with opposite spin projections, these diagrams are easily summed
and we obtain [Khomskii D.I. (2010)]:

χ(qω) =
χ0(qω)

1 + UΠ0(qω)
(2.14)

where χ0(qω) is proportional to Π0(qω) defined by (2.9):

χ0(qω) = −1

4
g2µ2

BΠ0(qω) Π0(qω) = − 4

g2µ2
B

χ0(qω) (2.15)

where µB is the Bohr magneton and g is so-called g-factor (for free
electrons g = 2). Note the sign change in the denominator of (2.14) in
comparison with (2.8). This is due to the fact that during the derivation
of ϵ(qω) we have dealt with the response function of the density–density
type and summed electronic loops contributing extra factors of −1.
Here, calculating the linear response we sum “ladder” diagrams (cf.
Fig. (2.6)), while loops are prohibited due to spin conservation (lines of
particles and holes in Fig. (2.6) correspond to different spin projections).
However, both expressions for ϵ(qω) and χ(qω) are quite similar and
defined, in fact, by the same expression for Π0(qω) defined in (2.9).

2.3 Polarization operator of free electron gas at T = 0

Let us start now with calculation of Π0(qω), defined by Eq. (2.9).
Equivalently we can write it as:

Π0(qω) = −2i

∫
d3p

(2π)3

∫ ∞

−∞

dε

2π
G0(ε+p+)G0(ε−p−) (2.16)
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where ε± = ε ± ω
2
, p± = p ± 1

2
q. In the integral appearing here the

main contribution comes from the vicinity of the Fermi surface, thus for
q ≪ pF we may write |p±| = p± 1

2
q cos θ, with θ — an angle between

vectors p and q, and take:

G0(ε±p±) =
1

ε± − ξ±(p) + iδsignξ±(p)
(2.17)

where

ξ±(p) = ξ(p±) = ξ(p)± 1

2
vF q cos θ (2.18)

Integration over ε in (2.16) we can perform closing integration contour
in the upper half-plane of the complex variable ε and expanding the
product of two G0’s via simple fractions. The integral is different from
zero only if poles of both Green’s functions G0 are in different half-
planes. Finally we get:∫ ∞

−∞

dε

(ε+ ω
2
− ξ+ + iδsignξ+)(ε− ω

2
− ξ− + iδsignξ−)

=
2πi(n(ξ−)− n(ξ+))

ω − vF q cos θ + iδ(signξ+ − signξ−)
(2.19)

where:

n(ξ) =

{
1 for ξ ≤ 0

0 for ξ > 0
(2.20)

is the Fermi distribution at T = 0. As we are interested in small q, the
difference n(ξ−) − n(ξ+) is nonzero only in rather thin layer close to
the Fermi surface. Thus instead of performing full p-integration, we can
just integrate over the linearized spectrum ξ, using simple integration
rule: ∫

d3p

(2π)3
... ≈ νF

2

∫ ∞

−∞
dξ

∫ 1

−1

d(cos θ)... (2.21)

where

νF =
mpF
2π2~3

(2.22)

is the density of states at the Fermi level (for a single spin projection).
Depending on the sign of cos θ we have to consider two cases:
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(1) cos θ > 0 — so that (2.19) is nonzero for −vF q
2

cos θ < ξ <
vF q
2

cos θ, and n(ξ−)− n(ξ+) = 1;
(2) cos θ < 0 — in this case (2.19) is nonzero for vF q

2
cos θ < ξ <

−vF q
2

cos θ, and we have n(ξ−)− n(ξ+) = −1.

Now we have only to take the following integral over the angle θ:

Π0(qω) = νF

∫ 1

−1

d cos θ
vF q cos θ

ω − vF q cos θ + iδsignω
(2.23)

This integral is calculated directly using∫ 1

−1

xdx

x0 − x+ iδsignx0

= A+ iB (2.24)

A = −2 + x0 ln

∣∣∣∣x0 + 1

x0 − 1

∣∣∣∣ B =


0 for |x0| > 1

−πx0 for 0 < x0 < 1

πx0 for − 1 < x0 < 0

Finally we get:

Π0(qω) = −2νF

{
1− ω

2vF q
ln

∣∣∣∣ω + vF q

ω − vF q

∣∣∣∣+ iπ

2

|ω|
vF q

θ

(
1− |ω|

vF q

)}
(2.25)

For ω = 0 we obtain:
Π0(qω = 0) = −2νF = −N(EF ) (2.26)

where we have introduced:
N(EF ) = 2νF =

mpF
π2~3

(2.27)

— the density of states at the Fermi level for both spin projections. For
ω ≫ vF q we have:

Π0(qω) ≈ N(EF )
1

3

v2F q
2

ω2

(
1 +

3

5

v2F q
2

ω2

)
(2.28)

These expressions will be often used in the future.

2.4 Dielectric function of an electron gas

Using (2.26) in (2.8) we obtain dielectric function describing the usual
(Debye or Thomas–Fermi) screening:

ϵ(q, 0)|q→0 = 1 +
κ2
D

q2
(2.29)
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where the inverse square of screening length is:

κ2
D = 4πe2N(EF ) =

4e2mpF
π

=
6πne2

EF

(2.30)

where n = p3
F

3π2 is the density of electron gas. Then the Fourier transform
of effective interaction is:

V(q, 0) = 4πe2

q2 + κ2
D

(2.31)

In coordinate space this corresponds to the screened potential:

V(r) = e2

r
e−κDr (2.32)

Using in (2.8) the asymptotic behavior given in (2.28), in the limit of
q → 0 we get:

ϵ(ω) = 1−
ω2
p

ω2
(2.33)

where for the square of plasma frequency we have the usual expression:

ω2
p =

4πne2

m
(2.34)

Taking into account the second term in (2.28), from the condition
ϵ(qω) = 0 we obtain the spectrum of plasmons:

ω2(q) = ω2
p +

3

5
v2F q

2 (2.35)

More accurate analysis, taking into account the imaginary part of po-
larization operator, allows to study plasmon damping [Schrieffer J.R.
(1964); Nozieres P., Pines D. (1966)]. With the growth of q the spec-
trum (2.35) enters the region of single-particle excitations (electron-hole
pairs) as shown in Fig. 2.7(a), where strong damping appears and plas-
mons cease to exist as well defined collective excitations.

Fig. 2.7 (a) Dashed region are the allowed values of the energy of electron-hole pair
excitations in the Fermi system, corresponding to the region of strong plasmon damping.
(b) Imaginary part of generalized density–density susceptibility in electron-hole channel.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 26

26 Diagrammatics

Energy of electron-hole excitation in the system of free electrons is:

ω0
pq = ξp+q − ξp =

(p+ q)2

2m
− p2

2m
=

qp

m
+

q2

2m
(2.36)

The spectrum of these excitations with momentum q forms the continuum be-
longing to:

0 ≤ ω0
pq ≤ qpF

m
+

q2

2m
for q < 2pF

−qpF
m

+
q2

2m
≤ ω0

pq ≤ qpF
m

+
q2

2m
for q > 2pF (2.37)

This region is shown as dashed in Fig. 2.7(a). Below we shall show that the
imaginary part of polarization operator given by (2.25), for ω > 0 coincides (up to
a sign) with the imaginary part of density–density response function (generalized
susceptibility), as shown in Fig. 2.7(b).

It is clear that our calculations leading to (2.25) are valid only for
small ω and q. In fact, polarization operator can be found for arbitrary
q and ω (J. Lindhardt, 1954). Let us quote some of the results [Schri-
effer J.R. (1964)]. Static dielectric function is given by the following
expression:

ϵ(q, 0) = 1 +
4me2pF
πq2

u

(
q

2pF

)
= 1 +

(
4

9π4

)1/3 rs
x2
u(x) = 1 + 0.66rs

(
pF
q

)2

u

(
q

2pF

)
(2.38)

where

u(x) =
1

2

{
1 +

1− x2

2x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣} (2.39)

In (2.38) we have introduced the standard notations of the theory of electron
gas, where rs is determined by the relation: 4πr3sa

3
0

3
= 1

n
, where n is the density

of electrons, and a0 = ~2
me2

is the Bohr radius. We see that rs is just the mean
distance between electrons in units of Bohr radius.

Small parameter for perturbation theory in our model (RPA) is the ratio of
characteristic Coulomb (interaction) energy and Fermi energy:

VC

EF
∼ e2pF

p2F
m ∼ e2

~vF
∼ ~
pF a0

∼ a

a0
∼ rs (2.40)

In real metals we have 1 < rs < 5, so that RPA is obviously rather bad approxi-
mation. It works well for the case of highly compressed electron gas and is usually
called “high-density approximation”.
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Fig. 2.8 Plot of u(x). The derivative of this function is logarithmically divergent at
x = 1.

The plot of u(x) is shown in Fig. 2.8. For q → 0 we obviously
again get the simple result (2.29). It is important to discuss the re-
gion of q ∼ 2pF . From (2.38) and (2.39) it is seen that the derivative
∂ϵ(q,0)

∂q
→ ∞ for q → 2pF . This leads to a number of anomalies of phys-

ical properties. For example, the spatial dependence of the screened
interaction potential is not as simple as given by Eq. (2.32). In fact,
asymptotic behavior of the Fourier integral

∫
dqeiqrf(q) is determined

by singularities of f(q) and its derivatives, within integration interval.
Consider the case of f(q) → ∞ at q = q0, e.g. f(q) ∼ δ(q − q0). Then
for f(r) we obviously get the oscillating contribution ∼ eiq0r. Similarly,
singularity of the derivative ∂ϵ

∂q
at q = 2pF leads to the appearance of

long-range and oscillating contribution to interaction potential:

V(r)|r→∞ ∼ cos(2pF r + ϕ)

r3
(2.41)

Then the screening charge around e.g. charged impurity in a metal also
oscillates according to (2.41) (Friedel oscillations).

Even more important is the similar effect in the theory of magnetic
interactions in metals. We have already noted that paramagnetic sus-
ceptibility of electron gas in fact is determined by the same “polarization
loop” (cf. (2.15)). Then:

χ0(qω = 0) =
3g2µ2

Bn

8EF

u

(
q

2pF

)
(2.42)
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Then the spin density s(r) on some distance r from the magnetic im-
purity with spin Sa, determined as

s(r) =
J

g2µ2
B

∑
q

χ0(q)e
iqrSa (2.43)

will also be oscillating function similar to (2.41). Here J determines
contact exchange interaction of impurity with conduction electrons:
−JSas. Now, if we place another magnetic impurity Sb, it will inter-
act with conduction electrons in a similar way, and we obtain an effec-
tive exchange interaction of two impurity spins via conduction electrons
(Ruderman–Kittel–Kasuya–Yosida). This so-called RKKY interaction
can be written as:

JRKKY (ra − rb) = − J2

g2µ2
B

∑
q

χ0(q)e
iq(ra−rb) ∼ J2

EF

cos(2pF rab + ϕ)

r3ab
(2.44)

It is seen that this interaction oscillates as a function of the distance
between impurities rab = |ra − rb|. This oscillating nature of exchange
interaction of localized spins in metals leads to a number of important
physical effects. According to (2.44) in coordinate space appear regions
with different signs of exchange interaction (i.e. where interaction is
either of ferromagnetic or antiferromagnetic nature) leading to the for-
mation of complicated magnetic structures, e.g. in metallic compounds
with regular sublattices of rare-earth elements (magnetic spirals or he-
licoidal structures) [Khomskii D.I. (2010)]. In case of randomly placed
magnetic impurities in non magnetic metal, Eq. (2.44) produces random
signs of exchange interaction between spins at different sites, which leads
to the formation of quite unusual magnetic state — spin glass [Ginzburg
S.L. (1989)].

2.5 Electron self-energy, effective mass and damping of
quasiparticles

Our final aim is to calculate single-particle Green’s function in a system
with Coulomb (or also some other) interaction. This Green’s function
can always be written in Dyson’s form:

G(pε) =
1

ε− εp − Σ(pε)
(2.45)
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where self-energy Σ(pε) is taken in some approximation, obtained e.g.
via some partial summation of diagram series. What physical informa-
tion can be obtained in this way? We know that the Green’s function
of free electrons G0(pε) has a pole at εp = p2

2m
−µ. Let us assume that

in the interacting system Green’s function also has a pole:

G(pε) ≈ 1

ε− ε̃p
(2.46)

where ε̃p represents the spectrum of “renormalized” quasiparticles.
Comparing with (2.45) we see, that the spectrum ε̃p is defined by the
equation:

ε− εp −ReΣ(pε) = 0 or ε̃p − εp −ReΣ(pε̃p) = 0 (2.47)

where, just to simplify our calculations (and only for a time!), we have
neglected ImΣ, which (as we shall see later) determines quasiparticle
damping. Let us expand (2.45) in the vicinity of the pole:

G(pε) =
1

ε− εp − Σ(pε)
=

1

ε− εp − Σ(pε̃p)− ∂Σ
∂ε
|ε=ε̃p(ε− ε̃p)

(2.48)
Taking into account (2.47) we can rewrite (2.48) in the following form:

G(pε) =
1

ε− ε̃p − ∂Σ
∂ε
|ε=ε̃p(ε− ε̃p)

=

1
1− ∂Σ

∂ε |ε=εp

ε− ε̃p
≡ Zp

ε− ε̃p
(2.49)

where we have introduced “residue” at the quasiparticle pole as:

Zp =
1

1− ∂Σ
∂ε
|ε=εp

(2.50)

Sometimes Zp is also called a factor of “wave function renormalization”.
From general grounds it is clear that Zp ≤ 1 and equality is only reached
for the ideal (free) Fermi gas. Spectral density corresponding to the
Green’s function (2.49) is given by:

A(pε) = Zpδ(ε− ε̃p) (2.51)

i.e. it is represented by δ-function peak at ε = ε̃p (quasiparticle energy)
as in the case of free electron gas. In fact, inequality Zp < 1 means that
in a system with interactions the quasiparticle contribution to A(pε) is
slightly suppressed due to appearance of an additional “multi particle”
(incoherent) contribution to the spectral density [Migdal A.B. (1967)],
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which we just dropped in this simplified analysis. Neglecting quasipar-
ticle damping we obtain here the quasiparticle contribution to A(pε) in
the form infinitesimally narrow δ-function, finite damping (as we shall
show below) leads to the appearance of the finite width of this peak.

Suppose now that the spectrum of “renormalized” quasiparticles can
be described by an effective mass approximation:

ε̃p =
p2

2m∗ − µ (2.52)

Then we easily get:
1

2m∗ =
∂ε̃p
∂(p2)

=
∂εp
∂(p2)

+

{
∂Σ

∂(p2)
+
∂Σ

∂ε̃p

∂ε̃p
∂(p2)

}
=

1

2m
+

∂Σ

2m∂
(

p2

2m

) +
∂Σ

∂ε
|ε=ε̃p

∂ε̃p
∂(p2)

(2.53)

or
1

m∗

(
1− ∂Σ

∂ε
|ε=ε̃p

)
=

1

m

(
1 +

∂Σ

∂εp

)
(2.54)

so that
m∗

m
=

1− ∂Σ
∂ε
|ε=ε̃p

1 + ∂Σ
∂εp

=
1

Zp

1

1 + ∂Σ
∂εp

(2.55)

which gives us an important relation between “mass renormalization”
m∗/m and residue at the pole of the green’s function Zp. In the simplest
case, when the self-energy has no dependence on the momentum p (or,
equivalently, on ε̃p), this relation is especially simple:

m∗

m
=

1

Zp

(2.56)

so that the effective mass in a system with interactions is enhanced in
comparison with the case of an ideal gas.

General behavior of damping is connected with ImΣ and will be dis-
cussed later in detail. However, even from this simplified analysis, it is
clear that simple relations obtained above allow us to calculate effective
parameters of many particle system (quasiparticles) from some approx-
imate form of electron self-energy, obtained from specific diagrams of
perturbation theory.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 31

Electron–Electron Interaction 31

As an example, consider again high density approximation for elec-
tronic gas. Let us analyze simplest contributions to electron self-energy.
In fact we can just drop Hartree-like diagrams, as they cancel with simi-
lar contributions due to electron interaction with spatially homogeneous
positively charged “ion background”, which is necessary to introduce to
guarantee charge neutrality. This becomes clear if we consider the sum
of simplest diagrams of this type shown in Fig. 2.9. In obvious notations
we have:

2i

∫
dp′

(2π)4
V (0)G(p′)− 2i

∫
dp′

(2π)4
V (0)Gi(p

′)

= 2i

∫
dp′

(2π)3

∫
dε

2π
V (0)G(εp′)− 2i

∫
dp′

(2π)3

∫
dε

2π
V (0)Gi(εp

′)

= 2V (0)

[∫
dp

(2π)3
np −

∫
dp

(2π)3
ni
p

]
= 2V (0)(n− ni) = 0

(2.57)

so that we have total cancellation of these contributions (charge density
of electrons n is equal to charge density of ions (positive “background”)
ni).

Fig. 2.9 Simplest Hartree-like diagrams describing electron–electron interaction and
similar interaction with positive “background” of ions (Green’s function of ions is shown
by dashed line).

Thus in RPA approximation the problem is reduced to calculation of
self-energy diagram shown in Fig. 2.10, where “dressed” wave-like line
describes effectively screened Coulomb interaction of Fig. 2.4(b):

Σ(p) = i

∫
d4q

(2π)4
V(q)G0(p+ q) (2.58)
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Fig. 2.10 Electron self-energy in RPA approximation.

Though both G0(p) and V(q) entering (2.58) are known exactly, inte-
grations here are very complicated and we just quote the final results
(J.J. Quinn, R.A. Ferrell, 1958) [Schrieffer J.R. (1964)]. Excitation en-
ergy of a quasiparticle (measured from the Fermi energy EF ) in this
approximation can be written as:

ε̃p = EF

{
p2

p2F
− 0.166rs

[
p

pF
(ln rs + 0.203) + ln rs − 1.80

]}
− EF

(2.59)
Quasiparticle damping in RPA is given by:

|γp| = EF (0.252r
1/2
s )

(
p

pF
− 1

)2

(2.60)

and it is small for p → pF , in a sense that we can guarantee |ε̃p| ≫
|γp|, in full accordance with general conclusions of (phenomenological)
Landau theory of Fermi-liquids [Lifshits E.M., Pitaevskii L.P. (1980);
Nozieres P. (1964); Nozieres P., Pines D. (1966)]. This allows us to speak
about well-defined quasiparticles close to the Fermi surface. From (2.59)
and (2.60) it is clear that in RPA quasiparticles are well-defined roughly
for |ε̃p| < EF/5. From (2.59) we can easily get the expression for the
effective mass of an electron as:

1

m∗ =
1

pF

∂ε̃p
∂p

|p=pF
=

1

m
[1− 0.083rs(ln rs + 0.203)] (2.61)

It is well known that electronic contribution to the specific heat is pro-
portional to m∗. Then, from (2.61) we immediately obtain (M. Gell-
Mann, 1957) [Schrieffer J.R. (1964)]:

c

c0
= 1 + 0.083rs(ln rs + 0.203) (2.62)

where c0 is the specific heat of an ideal Fermi-gas.
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Finally note, that all the results quoted are valid for an electronic
gas of high enough density, when rs ≪ 1. In real metals we mostly
have 1 < rs < 5, and you should be careful while using RPA for any
estimates.

2.6 RKKY-oscillations

Let us return to more detailed discussions of RKKY-oscillations [Levitov
L.S., Shitov A.V. (2003)]. Consider localized spin S surrounded by an
ideal Fermi gas of (conduction) electrons (e.g. magnetic impurity in a
normal metal) and interacting with local spin-density of these electrons
via contact (point-like) exchange interaction:

Hint = −J
∫
drSiδ(r)ψ+(r)σ̂iψ(r) (2.63)

Assuming that exchange coupling J is small enough, we can find (first-
order) contribution to spin polarization of conduction electrons:

σi(r) =< ψ+(r)σ̂iψ(r) > (2.64)
at the distance |r| from localized spin (impurity) S.

Consider first the case of zero temperature T = 0. Let us write
down Green’s function of a free electron in coordinate representation.
It is useful (methodically) to make calculations in two ways. Start with
angular integration:

G(ε, r) =

∫ ∞

0

∫ π

0

dpp2 sin θdθ

2π2

eipr cos θ

ε− ξ(p) + iδsignε

=
1

2π2r

∫ ∞

0

dpp sin pr

ε− ξ(p) + iδsignε
(2.65)

First and simplest way to proceed is to change integration variable from
p to linearized (in the vicinity of the Fermi surface) spectrum ξ and
perform contour integration in the complex plain:

G(ε, r) ≈ 1

2π2r

∫ ∞

−∞

dξ

vF
pF

sin(pF + ξ/vF )r

ε− ξ + iδsignε
= − m

2πr
eir(signεpF+|ε|/vF )

(2.66)
We see that the Green’s function is oscillating with the period deter-
mined by the Fermi wavelength λF = 2π~

pF
. The phase of these oscilla-

tions changes sign at the Fermi level (for ε = 0) due to the effects of
Fermi statistics.
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Another way is to perform integration over p exactly. As the inte-
grand in (2.65) is even, we can make integration over the whole real
axis of p, dividing the result by two:

G(ε, r) =
1

4π2r

∫ ∞

−∞

dpp sin pr

ε− p2

2m
+ EF + iδsignε

(2.67)

Expanding the integrand here into simple fractions and performing in-
tegration we get:

G(ε, r) =
m

4π2r

∫ ∞

−∞
dp sin pr

[
1

κ− p
− 1

κ+ p

]
= − m

2πr
eisignεκr

(2.68)
where κ =

√
2m(ε+ EF + iδsignε). Comparing this result with (2.66)

we can see, that simplified calculation using ξ-integration gives rather
good approximation of an exact result for |ε| ≪ EF , i.e. in the imme-
diate vicinity of the Fermi surface.

Let us return now to calculation of spin polarization (2.64), writing
this expression via an exact Green’s function (accounting for electron
interactions with localized spin):

σ̂i(r) = −i lim
t′→t+0r=r′

Spσ̂iG(rt; r′t′) (2.69)

Trace3 here is calculated over spin indices of σ̂i and G. Now, let us
just take first order expression for Green’s function correction due to
interaction (2.63):

G
(1)
αβ(ε, r, r

′) = −σi
αβG0(εr)G0(ε,−r′)JSi (2.70)

Substituting (2.70) into (2.69) and using Spσiσj = 2δij we obtain:

σi(r) = 2iJSi

∫
dε

2π
G2

0(εr) (2.71)

which in fact coincides with (2.43) written above. Use now (2.66) and
get (for pF r ≫ 1):∫

dε

2π
G2

0(εr) =
1

2π

( m

2πr

)2 ∫ ∞

0

dε
(
ei2pF r+ 2iε

vF
r + e−i2pF r+ 2iε

vF
r
)

= i
mpF
(2π)3

cos 2pF r

r3
(2.72)

3According to Russian and German literature tradition we always use Sp-notation in-
stead of English Tr.
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Now for the spin density we immediately obtain slowly damping oscil-
lations with period π/pF :

σi(r) = −JSimpF
4π3

cos 2pF r

r3
(2.73)

More accurate expression for spin density at the point r can be obtained using
exact r-dependence of the Green’s function (2.68) and integrating its square in
(2.71) over ε. Then we get:

σi(r) = −JSi 2mp
4
F

π3

(
cos 2pF r

(2pF r)3
− sin 2pF r

(2pF r)4

)
(2.74)

In the limit of pF r ≫ 1 Eq. (2.74) actually goes to (2.73), in accordance with
our “ideology” of ξ-integration. Note also that an exact Eq. (2.74) has only 1/r

singularity at small r of. Thus, as we perform integration over d3r no divergence
of full polarization appears. Approximate Eq. (2.73) is more singular for r → 0,
but it is inappropriate at small r as ξ-integration guarantees correct answer only
at large distances.

Let us now consider the case of finite temperatures. Again, we start
with calculating free (Matsubara!) Green’s function in coordinate rep-
resentation (similarly to the way we obtained (2.66)):

G(εnr) =

∫
d3p

(2π)3
eipr

iεn − ξ(p)
=
νF
pr

∫ ∞

−∞
dξ

sin
(
pF + ξ

vF

)
r

iεn − ξ

=
νF
2ipr

∫ ∞

−∞
dξ
ei(pF+ξ/vF )r − e−i(pF+ξ/vF )r

iεn − ξ

= − m

2πr
ei(pF+iεn/vF )rsignεn (2.75)

In the same way as above we can express spin density via an exact
Green’s function. All expressions differ now only by replacements of −i
by −1 here and there. Finally we get:

σi(r) = −2JSiT
∑
εn

G2
0(εn, r) (2.76)

and:

σi(r) = −2JSiT
( m

2πr

)2{∑
εn>0

e2ipF r−2εnr/vF +
∑
εn<0

e−2ipF r+2εnr/vF

}
(2.77)
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Sums over Matsubara frequencies are calculated in elementary way and
we obtain:

σi(r) = −JSi m
2T

2π2r2
cos 2pF r

sh 2πTr
vF

(2.78)

For T → 0 this expression goes to our previous result (2.73). The length
at which oscillations are damped is now equal to ~vF

2πT
(just look at the

argument of hyperbolic sine!). Thus, at finite temperatures RKKY
oscillations persist at the distances smaller than the “thermal” length
given by lT = ~vF

T
and are exponentially small for r > lT .

2.7 Linear response

Calculation of the linear response of a many-particle system to some
external perturbation (field) is one of the central tasks of the theory
of condensed matter. Below we shall show how this problem is solved
within the formalism of Matsubara Green’s functions.

Let us return to the analysis of dielectric function. Strictly speak-
ing, the permeability defined by Eq. (2.8), does not represent correct
response function! In particular, it does not possess correct analytic
properties as (cf. (2.25)) it has singularities in Imω > 0 — halfplane,
which breaks Kramers–Kronig relations [Sadovskii M.V. (2019a)]. This
is clear also from (2.19), where, depending on the signs of ξ+ and ξ−
the pole in ω may lay in the upper halfplane, in lower halfplane, or
on the real axis. This automatically leads to the breaking of causality
(Kramers–Kronig relations), which is necessary for any correct response
function [Sadovskii M.V. (2019a)]. The reason for this behavior is that
during our calculation of the polarization “bubble” (at T = 0) we have
used Feynman Green’s functions (on which diagram technique at T = 0

is built), which lead to Π(−ω) = Π(ω), while any generalized suscepti-
bility (retarded response function) has to satisfy χ(−ω) = χ∗(ω). So we
need some special discussion, how to find a correct response function?

The standard approach to deal with susceptibilities uses Matsubara
diagram technique with analytic continuation of the final result from
discrete imaginary frequencies to the real one. This procedure gives
the appropriate retarded susceptibility (Green’s function) [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]. How to perform such
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calculations in general case we shall see later, but first we shall discuss
a simple case of non-interacting particles [Levitov L.S., Shitov A.V.
(2003)]

Generalized susceptibility of some quantum operator A with respect
to another operatorB is given by the famous Kubo expression [Sadovskii
M.V. (2019a); Zubarev D.N. (1974)]:

χAB(ω) = i

∫ ∞

0

dteiωt < [Â(t), B̂(0)] > (2.79)

Here we see the commutator (averaged over the ground state or Gibbs
ensemble) which originates form the appropriate retarded two-time
Green’s function of Bogoliubov and Tyablikov [Sadovskii M.V. (2019a);
Zubarev D.N. (1974)].4 In non-interacting case we can write second
quantized expressions for (single-particle) operators Â and B̂ using some
full system of eigenfunctions ψm with eigenenergies Em appropriate to
our system:5

Â(t) =
∑
mk

Amkâ
+
mâke

−i(Ek−Em)t (2.80)

B̂(t) =
∑
mk

Bmkâ
+
mâke

−i(Ek−Em)t (2.81)

where Amk and Bmk are the matrix elements of operators, calculated
using eigenfunctions ψm and ψk, while â+m, âk are appropriate Fermion
creation and annihilation operators for these eigenstates. Substitut-
ing these expressions to < [Â(t), B̂(0)] > and calculating this com-
mutator directly, using Wick’s theorem [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], we get:

χAB(ω) =
∑
mk

AmkBkm

n(Em)− n(Ek)

Ek − Em − ω − iδ
(2.82)

where n(Ek) =< â+k âk > reduces to the usual Fermi distribution.
4θ(t)-function, entering the definition of this Green’s function, leads to the appearance

in (2.79) of time integration from t = 0 to t = ∞.
5For non-interacting particles such eigenfunctions and eigenstates always can be found

(at least in principle!) by solving the appropriate stationary Schroedinger equation
similar to (1.4). As was already noted, these states may be just plane-waves for an ideal
Fermi gas, Landau states for the same gas in an external magnetic field, or these may
be some exact (but unknown to us!) states of an electron in a random potential field (if
we are dealing with a disordered system). Note that notations here are slightly different
from those of the previous Chapter, where, in particular, we denoted eigenstates as φλ,
eigenergies ελ, etc.
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In case when eigenstates of an electron are unknown (e.g. in case
we are considering the levels of an electron in a specific realization of
the random potential in a disordered system) it is useful to express
susceptibility via Green’s function. Let us remind definitions of retarded
and advanced Green’s functions GR(ε) and GA(ε). These functions are
related to the causal (Feynman) Green’s function as [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

G(t, t′) =

{
GR(t, t′) t > t′

GA(t, t′) t < t′
(2.83)

After the Fourier transformation:

GR(A)(εp) =
1

ε− ξ(p)± iδ
(2.84)

so that Feynman Green’s function contains contributions from both
electrons and holes (cf. Chapter I):

G(εp) = (1− n(p))GR(εp) + n(p)GA(εp)

=
1− n(p)

ε− ξ(p) + iδ
+

n(p)

ε− ξ(p)− iδ
(2.85)

where

n(p) =

{
1 p ≤ pF
0 p > pF

(2.86)

is just Fermi distribution at T = 0.
To express susceptibility via GR(ε) and GA(ε), let us represent en-

ergy denominator in (2.82) as an integral over an additional energy
variable:

1

Ek − Em − ω − iδ
= − 1

2πi

∫ ∞

−∞
dε

1

(ε− ω − Em − iδ)(ε− Ek + iδ)

= − 1

2πi

∫ ∞

−∞
dεGA

m(ε− ω)GR
k (ε) (2.87)

Substituting this expression to (2.82), we obtain the general operator
expression for susceptibility:

χAB(ω) =
1

2πi

∫ ∞

∞
dεSp([ĜR(ε)B̂, ĜA(ε− ω)Â]ρ̂) (2.88)

where ρ̂ is the density matrix (in diagonalizing representation we have
ρmk = n(Em)δmk). The main advantage of Eq. (2.88) in comparison
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with (2.82) is its validity for an arbitrary representation, even when we
do not know exact eigenstates.

Up to now we have used Green’s function formalism for T = 0. For
T > 0 we have to use Matsubara technique. It may seem that to ana-
lyze dynamics in real time t (necessary to calculate (2.79)) Matsubara
formalism is useless, as it deals with imaginary time τ . However, as we
shall see now, Matsubara technique allows rather simple approach to
calculation of the linear response.

Let us introduce Matsubara susceptibility as (ωm = 2πmT ):

χ
(M)
AB (ωm) =

1

2

∫ β

−β

dτ < Tτ Â(τ)B̂(0) > eiωmτ (2.89)

Now we can use the following spectacular theorem [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

• Analytic continuation of χ(M)
AB (ωm) from the discrete set of points

at positive imaginary half-axis of frequency ω = iωn (n > 0) to the
real axis (Imω → +0) precisely gives us the retarded susceptibility
χAB(ω).

This theorem allows us to determine χAB(ω) using χ(M)
AB (ωm) calculated

using Matsubara diagram technique. In the absence of interactions,
Matsubara susceptibility is given by a single “bubble” diagram (“polar-
ization operator”) with operators Â and B̂ standing at the vertices. In
diagram technique for T = 0 susceptibility and polarization operator
possess different analyticity properties (cf. above). However, accord-
ing to just formulated statement, to find the correct susceptibility it
is sufficient to calculate “polarization bubble” with Matsubara Green’s
functions, and then just continue it analytically to the real frequencies.

Let us now give a proof of our major statement (theorem). We have
to calculate Kubo susceptibility:

χAB(ω) = i

∫ ∞

0

dteiωt < [Â(t), B̂(0)] > (2.90)

where < ... >= Sp(e−βH ...)/Sp(e−βH) is the usual Gibbs average,
Â(t) = eitHÂe−itH-operator in Heisenberg representation. It is easily
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seen that (2.90) can be written as:

χAB(ω) =
i

Z

∫ ∞

0

dteiωt
∑
mn

e−βEn

(
eiωnmt < n|Â|m >< m|B̂|n >

− e−iωnmt < n|B̂|m >< m|Â|n >
)

(2.91)

where ωnm = En−Em, Z = Spe−βH , and n, m numerate exact energy
levels of many-particle interacting system. Changing m to n and vice
versa in the second term in the sum and integrating over t, we obtain:

χAB(ω) =
1

Z

∑
mn

e−βEn − e−βEm

ωnm − ω − iδ
< n|A|m >< m|B|n > (2.92)

Imaginary term iδ(δ → +0) appears here due to the factor of e−δt,
which has to be added into formally divergent integral over t to guar-
antee convergence.

Now calculate in a similar way Matsubara response function:

χ
(M)
AB (ωm) =

1

2

∫ β

−β

dτeiωmτ < Tτ Â(τ)B̂(0) > (2.93)

where Â(τ) = eτHÂe−τH . We have:

χ
(M)
AB (ωm) =

1

2Z

∫ β

0

dτeiωmτ
∑
mn

e−βEneωnmτ < n|A|m >< m|B|n >

+
1

2Z

∫ 0

−β

dτeiωmτ
∑
mn

e−βEne−ωnmτ < n|B|m >< m|A|n > (2.94)

Again changing summation indices in the second sum, taking into ac-
count ωmβ = 2πm, and performing integration over τ , we get:

χ
(M)
AB (ωm) =

1

Z

∑
mn

e−βEn − e−βEm

ωmn − iωm

< n|A|m >< m|B|n > (2.95)

Now everything is ready! Susceptibility χAB(ω) is an analytic function
of ω in the upper half-plane of complex frequency. This is a general
property of the Fourier transform of a function, which is different from
zero only for t > 0 (retarded response!) [Sadovskii M.V. (2019a)]. Now,
such a function can be analytically continued from the real axis to the
positive imaginary half-axis. Obviously, at points ωm = 2πmT this
function just coincides with χ

(M)
AB , it is seen by direct comparison of
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(2.92) and (2.95). Suppose the existence of an analytical continuation
of χ(M)

AB from the positive imaginary half-axis to the whole upper half-
plane of complex ω. Then, this analytically continued function have
to coincide with χAB(ω), as according to the well known theorem of
the theory of complex variables, two functions analytic in some region
of the complex plane and coinciding on the infinite subset of discrete
points (possessing the limiting point at m → ∞) just coincide in the
whole complex plane.

Note that the case of T = 0 sometimes is also conveniently analyzed
within Matsubara formalism. In this case we have just to transform
summation over Matsubara frequencies to integration over continuous
(imaginary) frequencies, as for T → 0 discrete points iωm “fill” all
the imaginary axis of complex plane of ω, so that T

∑
m ... →

∫
dω
2π
....

During such calculations we do not have to care about the rules of
overcircling the poles of Green’s functions as the direction of integration
is correct automatically.

Let us see how it works on a typical example of calculations of the
polarization operator of the free electron gas, i.e. of the dielectric func-
tion (response function!) in RPA approximation. We have:

Π(M)(ωm,q) = 2T
∑
n

∫
d3p

(2π)3
G(εnp)G(εn + ωm,p+ q) (2.96)

First we perform summation over εn. Let us write down the sum as
follows:

T
∑
n

1

iεn + iωm − ξ(p+ q)

1

iεn − ξ(p)

= T
∑
n

1

iωm − ξ(p+q)+ξ(p)

(
1

iεn − ξ(p)
− 1

iεn+iωm − ξ(p+q)

)
(2.97)

In the second term we may change summation index from n→ n−m, so
that ωm just disappears. In both contributions the real part of the sum
converges, while imaginary part is formally divergent. At the same time,
this imaginary part is odd over n and cancels during the summation over
n. Thus it is sufficient to calculate only the following sum:

S(ξ) = T
∑
n

ξ

ε2n + ξ2
(2.98)
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It can be done using the identity:6
∞∑

n=−∞

1

(2n+ 1)2π2 + x2
=

1

2x
th
x

2
(2.100)

Then:

S(ξ) =
1

2
th

ξ

2T
=

1

2
− n(ξ) (2.101)

where n(ξ) = (e
ξ
T + 1)−1 is the Fermi distribution. Finally, we get

the following expression, which is very useful in calculations of response
functions of the Fermi gas:

T
∑
n

1

(iεn + iωm − ξ(p+ q))(iεn − ξ(p))
= −n(ξ(p+ q))− n(ξ(p))

iωm − ξ(p+ q) + ξ(p)

(2.102)
Using this identity in (2.96), we obtain:

Π(M)(ωmq) = −2

∫
d3p

(2π)3
n(ξ(p+ q))− n(ξ(p))

iωm − ξ(p+ q) + ξ(p)
(2.103)

Consider now the limit of T = 0. In this case we have n(ξ) = θ(−ξ).
Changing, in the usual way, to integration over ξ we limit ourselves to
small q ≪ pF . Then we have:

Π(M)(ωmq) = −2

∫
d3p

(2π)3
∂n

∂ξ(p)

vq

iωm − vq
= 2νF

∫
dΩ

4π

vFq

iωm − vFq
(2.104)

Performing angular integration as it was done in (2.23), we get:

Π(M)(ωmq) = −2νF

{
1 +

iωm

2vF q
ln
iωm − vF q

iωm + vF q

}
(2.105)

To perform analytic continuation of this expression to the real axis of
frequencies, we have only to make a substitution iωm → ω+iδ. Finally,
we obtain:

ΠR(ω + iδq) = −2νF

{
1 +

ω

2vF q
ln
ω − vF q + iδ

ω + vF q + iδ

}
(2.106)

6This result can be obtained as follows:
1

(2n+ 1)2π2 + x2
=

1

2x

{
1

x+ iπ(2n+ 1)
+

1

x− iπ(2n+ 1)

}
=

1

2x

∫ ∞

0
dze−xz [e−iπ(2n+1)z + eiπ(2n+1)z ] (2.99)

Now just sum the progression under the integral.
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which determines the dielectric function of electron gas in RPA approx-
imation (as a response function with correct analytical properties).

In fact, taking the real and imaginary parts of (2.106) and changing
the sign, we obtain the density–density response function as:

Reχ(ωq) = 2νF

{
1 +

ω

2vF q
ln

∣∣∣∣ω − vF q

ω + vF q

∣∣∣∣} (2.107)

Imχ(ωq) = πνF
ω

vF q
θ(vF q − |ω|) (2.108)

Opposite to the case of a similar expression (2.25) (which appeared
via summation of Feynman diagrams for T = 0), this result satisfies all
analyticity requirements for response functions [Lifshits E.M., Pitaevskii
L.P. (1980); Sadovskii M.V. (2019a)].7 In particular, it satisfies the
Kramers–Kronig relation:

χ(ω) =
1

π

∫ ∞

−∞
dω′ Imχ(ω′)

ω′ − ω − iδ
(2.109)

Thus, dielectric permeability (response function) is defined as:

ϵ(qω) = 1 +
4πe2

q2
χ(qω) (2.110)

where χ(qω) is the retarded density–density response function [Nozieres
P., Pines D. (1966)], which is obtained (up to a sign) via analytic con-
tinuation of Matsubara polarization operator.

Dielectric function is directly connected with electric conductivity of
a system [Zubarev D.N. (1974)]:

σ(qω) =
iω

4π
(1− ϵ(qω)) = − ie

2

q2
ωχ(qω) (2.111)

It can be seen as follows. The current density induced by an external electric
field E = −∇φ (where φ is the scalar potential) is given by:

j(qω) = σ(qω)E(qω) = −iσ(qω)qφ(qω) (2.112)

Charge conservation is expressed via continuity equation:

e
∂

∂t
n(rt) +∇j(rt) = 0 (2.113)

or, in Fourier components:

− iωeδn(qω) + iqj(qω) = 0 (2.114)
7It is precisely Eq. (2.108), which is shown in Fig. 2.7(b).
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where δn is some deviation of the density from spatially homogeneous (equilib-
rium) value n. This deviation is defined (in linear response theory) as [Nozieres
P., Pines D. (1966)]:

δn(qω) = eχ(qω)φ(qω) (2.115)

Combining (2.112)–(2.115) we immediately obtain (2.111).
In experiment we usually deal with the limit of q → 0 (homogeneous

external field). Then the conductivity is defined as:

σ(ω) = − lim
q→0

ie2

q2
ωχ(qω) (2.116)

In the simplest case of free electron gas, to calculate the limit of q → 0

for finite ω we use (2.28) and obtain (ω → ω + iδ, δ → +0):

σ(ω) = lim
q→0

ie2

q2
ω
2νF
3

v2F q
2

ω2
=

p3F
3π2m

i
e2

ω
=
ne2

m

i

ω + iδ
(2.117)

i.e. the usual Drude relation for conductivity of electron gas without
any scatterings (ideal conductor!). For the real part of conductivity we
get:

Reσ(ω) =
ω

4π
Imϵ(ω) =

ne2

m
πδ(ω) (2.118)

where we have used 1
ω+iδ

= 1
ω
− iπδ(ω). Phenomenologically, we may

take scattering into account replacing δ → γ = 1
τ
, where γ is some

scattering rate and τ is the mean-free time.

2.8 Microscopic foundations of Landau–Silin theory of
Fermi-liquids

In real metals with rs ∼ 2 − 3 electron interaction is not weak and
we cannot limit ourselves by the sum of any specific diagram subseries
(like in RPA, which is valid for rs ≪ 1). At the same time, phe-
nomenological theory of Fermi-liquids, introduced by Landau and Silin
[Nozieres P., Pines D. (1966)], is quite successful even in the case of
Fermi-systems with pretty strong interactions. Let us consider the ba-
sics of its microscopic justification [Lifshits E.M., Pitaevskii L.P. (1980);
Migdal A.B. (1967); Nozieres P. (1964)].

In fact, Landau just assumed that the ground state of the Fermi-
liquid is qualitatively the same as that of a Fermi-gas, while the low
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energy excitations can be described as quasiparticles, similar to particles
and holes in a Fermi-gas, despite the strong interactions present in a real
system of Fermions (like electrons in metals, atoms of He3, protons and
neutrons in an atomic nuclei etc.). The basic assumption here is that
of an existence of well defined Fermi surface with the Fermi momentum
pF , define by the usual “gaseous” relation:

n =
N

V
=

p3F
3π2~3

(2.119)

relating it to the full particle density. This statement can be, in fact,
proven in any order of perturbation theory over interaction, using the
general properties of Green’s functions, and is known as Luttinger theo-
rem (J.M. Luttinger, 1960) [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)]. This proof is
rather complicated and technical, we just drop it.8 It should be clearly
understood that the ground state of a normal Fermi-liquid is not the
only possible ground state of the system of interacting Fermions. For
example we know, that the system may be in the superconducting (su-
perfluid) state, when Luttinger theorem does not apply and there is no
Fermi surface in the usual sense — it is “closed” by the energy gap.
Presently, much attention is being paid to strongly correlated electronic
systems with many “scenarios” of the formation of non Fermi-liquid
state. However, below we shall mainly concentrate on the analysis of
microscopic foundations of the theory of normal Fermi-liquids [Migdal
A.B. (1967); Nozieres P. (1964)].

Basic physical reason for an interacting system of Fermions to has
much in common with free Fermion case is due to restrictions introduced
by Pauli principle. As we shall see shortly, mainly Pauli “correlations”
allow us to observe well defined quasiparticle excitations close to the
Fermi surface. In an infinite and homogeneous system the Green’s
function Gαβ(p) is diagonal in spin indices and same for both9 spin
projections (in the absence of an external magnetic field or sponta-
neous magnetization), so we just drop all these indices. Now introduce
8In Appendix A we give some general topological arguments, justifying the stabil-

ity of the Fermi surface towards adiabatic “switching on” of interparticle interactions
(G.E. Volovik, 1991).
9We shall deal mostly with the case of spin s = 1/2.
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Fermion self-energy as usual and write down the Dyson equation:

G−1(εp) = ε− p2

2m
+ µ− Σ(εp) (2.120)

What can be said for the “general” case of interacting system? Let us
estimate the contribution to the imaginary part of Σ from the process
of creation of three quasiparticles (see Fig. 2.11) — the simplest process
leading to the finite lifetime of a quasiparticle. This process reduces to
the excitation of another particle (e.g. electron) from below of the Fermi
surface, i.e. to the creation of an electron-hole pair. Then we have the
usual conservation laws:

p1 + p2 = p3 + p4 ε1 + ε2 = ε3 + ε4 (2.121)

Fig. 2.11 Creation of three quasiparticles in Fermi-liquid.

and in our case
|p1|, |p3|, |p4| ≥ pF , |p2| ≤ pF

ε1, ε2, ε4 ≥ 0, ε2 ≤ 0 (2.122)
Now it is clear that for the case of |p1| → pF , for all the other excitations
we also have |p2|, |p3|, |p4| → pF , while for ε1 → +0 leads also to
εα(α = 2, 3, 4) → 0. When p1 is somewhere “above” pF , remaining
values of (|pα| − pF ) are of the same order as (|p1| − pF ). Then, the
probability amplitude for the process shown by the diagram of Fig. 2.11
is proportional to:

W =
1

τ
∼
∫
δ(ε1 + ε2 − ε3 − ε4)dp2dp3 (2.123)

It is clear, as the momentum p1 is fixed, while p4 = p1+p2−p3, so that
we have only two independent momenta for integration, as is written in
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(2.123). As both p2 and p3 are close to pF , we have (|p2,3| − pF ) ∼
(|p1| − pF ). Allowed values for the modules of p2 and p3 belong to
the intervals: pF < p3 < p1 + p2 − pF and 2pF − p1 < p2 < pF . The
angle between p1 and p3 can be arbitrary, while an angle between p3

and p1 + p2 is determined by energy conservation and integration over
this angle “cancels” δ-function in (2.123). Accordingly, the integration
over dp2dp3 is done for p2 ≈ p3 ≈ pF which leads to (2.123) being of
the order of ∼ (|p1| − pF )

2. Finally, we have for the inverse lifetime of
a electron (Fermion) with momentum p:

1

τ
∼ ImΣ ∼ (p− pF )

2 ∼ ε2 (2.124)

We can easily convince ourselves that the statistical weight of the processes with
larger number of excited quasiparticles is proportional to higher powers of ε. For
example, ImΣ5 ∼ |ε3|ε [Migdal A.B. (1967)]. For finite temperatures, “smearing”
of Fermi distribution ∼ T leads to the appropriate contribution to damping due
to thermally excited quasiparticles ∼ T2

EF
. Then, taking (2.124) into account, we

can write down the following general estimate:
1

τ
= A

(
ε2

EF
+
T 2

EF

)
≈Max

(
ε2

EF
,
T 2

EF

)
(2.125)

where A ∼ const. Using the simple Drude-like expression for conductivity:

σ =
ne2

m
τ (2.126)

and taking τ−1 = A T2

EF
we obtain (use also (2.119)) the following estimate of

resistivity:

R =
1

σ
∼ T 2m

EF p3F e
2
=

1

e2pF

(
T

EF

)2

(2.127)

This gives characteristic temperature dependence of resistivity due to electron–
electron scattering R ∼ T 2 (L.D. Landau, I.Ya. Pomeranchuk, 1937). Typically
in metals we have pF ∼ ~

a
(where a is interatomic spacing) and R ∼ ~a

e2

(
T
EF

)2
∼

10−3Ohm cm
(

T
EF

)2
, which corresponds to a very small contribution to resistiv-

ity for most typical values of T , which is usually completely “masked” by other
scattering mechanisms (e.g. due to phonons). Experimental observation of ∼ T 2

contribution to resistivity of metals is possible in very pure samples and usu-
ally for temperatures T < 1K, when we can neglect scattering of electrons by
phonons. These simple findings are often forgotten in modern literature.

Thus, close to the pole ε = ε(p) of the Green’s function (2.120) we
always have Reε(p) ≈ vF (p − pF ) ≫ Imε(p) ∼ τ−1 ∼ (p − pF )

2,
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which corresponds to “well defined” quasiparticles close to the Fermi
level. More accurately (than was done deriving Eqs. (2.46)–(2.50)) we
have to proceed in the following way. In homogeneous and isotropic
system (Fermi-liquid) the value of ReΣ(εp) depends only on modulus
of the momentum p = |p|. Let us define the Fermi momentum pF for
the interacting system by the following relation:

p2F
2m

+Σ(pF , 0) = µ (2.128)

Expanding Σ(pε) in powers of p − pF and ε, we obtain the expression
for G(pε) valid close to the Fermi surface (ε→ 0, p→ pF ) as:

G−1(εp) ≈ ε− p2

2m
+ µ− Σ(pF , 0)−

(
∂Σ

∂p

)
F

(p− pF )−
(
∂Σ

∂ε

)
F

ε

+ iα′|ε|ε =
[
1−

(
∂Σ

∂ε

)
F

]
ε−

[
pF
m

+

(
∂Σ

∂p

)
F

]
(p− pF ) + iα′|ε|ε

(2.129)

where we have taken into account Eq. (2.124) and guaranteed the correct
sign change of the imaginary part of (Feynman) Green’s function at ε =
0. Thus we find that the Green’s function for (presumably) arbitrary
system interacting Fermions can be written close to the Fermi surface
as [Migdal A.B. (1967)]:

G(εp) =
Z

ε− vF (p− pF ) + iα|ε|ε
+Greg(εp) (2.130)

whereGreg(εp) is some regular (non-singular) part with no poles close to
the Fermi surface (and due to multi-particle excitations of the systems
[Migdal A.B. (1967)]). Here in (2.130) we have introduced the following
notations:

1

Z
= 1−

(
∂Σ

∂ε

)
F

=

(
∂G−1

∂ε

)
F

(2.131)

for the residue at the pole of the Green’s function and

vF =

pF

m
+
(

∂Σ
∂p

)
F(

∂G−1

∂ε

)
F

= −

(
∂G−1

∂p

)
F(

∂G−1

∂ε

)
F

; α = Zα′ (2.132)

for the velocity at the Fermi surface. Eq. (2.130) defines the general
form of the single-particle Green’s function in a system of interacting
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Fermions (Fermi-liquid). It is easily seen that specific expressions, ob-
tained above within RPA, are precisely of this form.

Now we can easily show, that Eq. (2.130) directly leads to the exis-
tence (at T = 0) of a discontinuity in particle distribution in momentum
space even in the case of interacting Fermions (A.B. Migdal, 1957). To
see this we have to calculate the difference of the values of particle dis-
tribution function n(p) at both sides of the Fermi surface, i.e. the limit
of n(pF + q)− n(pF − q) for q → +0. Momentum distribution of par-
ticles in Green’s function formalism is expressed as (cf. (1.34), (1.38))
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

n(p) = −i lim
t→−0

∫ ∞

−∞

dε

2π
e−iεtG(εp) (2.133)

Now use here (2.130). As Greg(εp) is regular, it is clear that its contri-
bution to the difference of integrals will tend to zero with q → 0. Thus,
it is sufficient to analyze only the difference of integrals from the poles
of the Green’s function (2.130). Then we get:

n(pF − q)− n(pF + q) = −i
∫ ∞

−∞

dε

2π

{
Z

ε+ vF q − iδ
− Z

ε− vF q + iδ

}
(2.134)

where we have taken into account that close to the pole signε =

sign(p − pF ), and dropped the factor of e−iεt (with t → 0) due to
convergence of the integral. Closing the integration contour at infinity
(no matter in the lower or in the upper half-plane), we obtain:

n(pF − 0)− n(pF + 0) = Z (2.135)

As we obviously have n(p) ≤ 1, it follows that:

0 < Z ≤ 1 (2.136)

and the limiting value of Z = 1 is reached only in the case of and ideal
Fermi-gas. Thus we see that the momentum distribution of particles
in the Fermi-liquid at T = 0 has (similarly to the case of Fermi-gas)
a finite discontinuity at the Fermi surface, as is qualitatively shown
in Fig. 2.12. Two major differences with the case of an ideal gas are
that discontinuity is less than unity, while distribution function n(p)

itself is finite also in the region of p > pF (particles are “pushed” to this
region by interaction!). In fact, the existence of discontinuity in particle
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Fig. 2.12 Qualitative form of particle distribution function in the Fermi-liquid at T = 0.

distribution allows strict definition of the Fermi surface in the system
of interacting Fermions.

Spectral density A(pε) = −signε 1
π
ImG(εp), corresponding to the

Green’s function (2.130) has a typical form of a smeared quasiparti-
cle (Lorentzian) peak at ε = εp (quasiparticle energy), on the smooth
background due to multi-particle excitations, as shown in Fig. 2.13(b),
while in an ideal gas of Fermions it reduces to δ-function, shown in
Fig. 2.13(a). Note, that spectral densities of electrons in interacting
systems can, in fact, be measured experimentally via photoemission
with angular resolution (ARPES),10 which allows also to study the
form of real Fermi surfaces, even for very complicated compounds.11

These measurements, performed in recent years, confirmed qualitative
predictions of the theory of Fermi-liquids for majority of “metallic” sys-
tems. Deviations from Fermi-liquid behavior, observed in some systems
are usually attributed to the effects of strong correlations [Varma C.N.,
Nussinov Z., Wim van Saarloos (2002)].

10J.C. Campuzano, M.R. Norman, M. Randeria. Photoemission in the High Tc Super-
conductors. ArXiv: cond-mat/0209476.
11A. Damascelli, D.H. Lu, Z.-X. Shen. From Mott insulator to overdoped superconduc-
tor: Evolution of the electronic structure of cuprates studied by ARPES. Rev. Mod.
Phys. 75, 473 (2003).



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 51

Electron–Electron Interaction 51

Fig. 2.13 Spectral density in Fermi-gas (a) and in Fermi-liquid (b).

2.9 Interaction of quasiparticles in Fermi-liquid

Interactions of quasiparticles in Fermi-liquid is described by the two-
particle Green’s function [Migdal A.B. (1967)]:

K =< Tψ(1)ψ(2)ψ+(3)ψ+(4) > (2.137)
which is determined by the sum of all diagrams, describing the prop-
agation of two particles from the points (1, 2) to (3, 4). First of all,
we can separate diagrams with no interactions between these two parti-
cles, but with all possible interactions of each of the particles with the
“background”, of the type shown in Fig. 2.14. It is obvious that here
we are dealing with two independent sum of diagrams, each reducing to
the full single-particle Green’s function G. Accordingly, we have:

K0 = G(1, 3)G(2, 4)−G(1, 4)G(2, 3) (2.138)
Minus sign before the second (exchange) term here is due to the anti-
symmetry of Fermions under permutations.

All the remaining diagrams for K describe interactions of the par-
ticles with each other. Let us denote as V all the graphs of this type,
which can not be separated into two parts, connected by two electronic
lines, as shown in Fig. 2.15. Then for the two-particle Green’s function
K we can write down the following equation:

K = K0 −GGVK (2.139)
as the sum of all diagrams following after V again reduces to K. Of
course, Eq. (2.139) is in fact an integral equation and “operator” multi-
plication of Green’s functions denote here (and in similar cases below)
appropriate integrations.
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Fig. 2.14 Independent propagation of two particles in Fermi-liquid.

Fig. 2.15 Diagrammatic definition of the block V . Crossed out are diagrams, which can
be cut by two particle lines.

To describe interaction itself it is convenient to introduce the vertex
part (scattering amplitude) Γ defined by the following expression:

K −K0 = −GGΓGG (2.140)
This vertex Γ is represented by the sum of all diagrams, starting and
ending with interaction lines, it does not contain the lines of particles,
entering or leaving the whole block (i.e. the “external” lines are just
cut off). Substituting (2.140) into (2.139) we get:
K −K0 = −GGΓGG = −GGVK = −GGVK0 +GGV GGΓGG

(2.141)
Introduce the obvious relation:

GGVK0 = GG(V − Ṽ )GG (2.142)
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where Ṽ denotes V with exchange of outgoing external lines, Then from
(2.141), after the multiplication from the left and right by (GG)−1, we
obtain:

Γ = V − Ṽ − V GGΓ (2.143)

From the definitions of Γ and K it follows that:

Γ(1, 2; 3, 4) = −Γ(2, 1; 3, 4) = −Γ(1, 2; 4, 3)

Γ(1, 2; 3, 4) = Γ(3, 4; 1, 2) (2.144)

reflecting the antisymmetry of wave functions in the system of Fermions.
Eq. (2.143) for Γ can be obtained also directly from the equation

for K. Separating the block V , it is simple to obtain the diagrammatic
equation, shown in Fig. 2.16, which (after symmetrization) reduces to
(2.143).

Fig. 2.16 Diagrammatic equation for the vertex Γ in the particle–particle channel.

To derive phenomenological equations of Fermi-liquid theory it is
convenient to rewrite equation for Γ in another form. Above we intro-
duced the block V , which could not be cut by two lines in the particle–
particle channel (called also irreducible vertex in this channel). We may
act also in another way and separate from all diagrams for the vertex Γ,
those representing the block (vertex) U , irreducible in the particle–hole
channel, consisting of diagrams, which can not be separated in two parts
connected by two lines, representing a particle and a hole. Appropriate
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Fig. 2.17 Diagrammatic definition of the block (irreducible vertex) U . Crossed out are
diagrams which can be cut by two lines of a particle and a hole.

Fig. 2.18 Diagrammatic equation for the vertex Γ in particle–hole channel.

diagrams are shown in Fig. 2.17. Then for Γ we can write diagrammatic
equation, shown in Fig. 2.18, or analytically:

Γ = U + UGGΓ (2.145)

In momentum representation, the difference of 4-momenta, entering
Green’s functions G (and satisfying the conservation law p1 + p2 =

p3 + p4), is equal to the transferred momentum q = p1 − p3 = p4 − p2,
which is equal to the sum of momenta in the particle–hole channel and
is the same in each “cross-section” in this channel. In equation shown
in Fig. 2.16, the sum of momenta entering into Γ, is equal to the full
momentum of the system of two particles q′ = p1+ p2 = p3+ p4, which
is the same in each “cross-section” of particle–particle channel. Intro-
duction of different blocks (irreducible vertices), of the type we used
above, becomes convenient in the case, when such a block happens to
be a smooth function of its variables (momenta), as in such a case it
can be replaced by some effective constant.
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Remarks on “parquet”.
In some cases it is convenient to introduce block (vertex) W , which can not be

cut by two lines (irreducible) both in particle–particle and particle–hole channels.
Then, besides Eqs. (2.16), (2.18) we have to write down also equations, estab-
lishing connection of vertices U and V with vertex W , as shown in Fig. 2.19.
Together with equations, shown in Fig. 2.16 and Fig. 2.18, equations shown in
Fig. 2.19 form a system of the so-called “parquet” equations. Here we understand
that W should be taken in symmetrized form, i.e. for Fermions we should take
the difference Wαβγδ(p1, p2; p3, p4) −Wα,β,δ,γ(p1, p2; p4, p3). In analytic form we
have:

V − Ṽ =W + UGGΓ (2.146)

U =W − V GGΓ (2.147)
Using for Γ the equation shown in Fig. 2.18, we obtain from (2.146):

U + V − Ṽ =W + Γ (2.148)
The same result follows from (2.147) if we use for Γ the equation, shown in
Fig. 2.16. These equations allow us to express Γ via the irreducible vertex W .
As a result we obtain the following nonlinear (integral) equation:

Γ =W +
1

2
WGGΓ− 1

2
ΓGG(Γ +W )GGΓ (2.149)

Fig. 2.19 “Parquet” equations for the vertex parts.
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Usually the irreducible vertex W , taken in momentum representation, is rather
weakly dependent on incoming and outgoing momenta, while the vertex U , ac-
cording to (2.147), possess a significant dependence on the (small) sum of these
momenta. Similarly, the vertex V , according to (2.146), has an important depen-
dence on (small) transferred momentum q → 0.

Introduction of the block (irreducible vertex) U is useful to study
the properties of the full vertex Γ at small transferred momenta, while
block V (and the use of equations, shown in Fig. 2.16) is conveniently
used in case of small sum of incoming (outgoing) momenta (cf. below
the analysis of Cooper instability!).

In Landau theory of normal Fermi-liquid the equation, shown in
Fig. 2.18, is of special significance. In general, the second term in the
r.h.s. of this equation contains integrations both in the vicinity and
far away from the Fermi surface. However, Landau has shown that at
small momentum transfers this equation may be transformed to another
(“renormalized”) equation for Γ with momenta close to the Fermi sur-
face and with all integrations performed also in the close vicinity of the
Fermi surface (i.e. we can obtain the closed equation for Γ at the Fermi
surface).

Let us write down the equation, shown in Fig. 2.18, explicitly (in
momentum representation):

Γ(p, p′, q) = U(p, p′, q)− i

∫
d4p′′

(2π)4
U(p, p′′, q)G

(
p′′ +

q

2

)
×G

(
p′′ − q

2

)
Γ(p′′, p′, q) (2.150)

where integration is supposed to include summation over the spin indices
of internal lines (which we just drop for the shortness of presentation).
Here we introduced the following notations:

Γ(p1, p2, p3, p4) = Γ(p, p′, q)(2π)4δ(p1 + p2 + p3 + p4)

U(p1, p2, p3, p4) = U(p, p′, q)(2π)4δ(p1 + p2 + p3 + p4) (2.151)

where incoming (p1, p2) and outgoing (p3, p4) 4-momenta are connected
with p and p′ as:

p1 = p+
q

2
p2 = p′ − q

2

p3 = p− q

2
p4 = p′ +

q

2
(2.152)
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so that the transferred momentum is q = (q, ω) and we have a conser-
vation law: p1 + p2 = p3 + p4. In the first order of perturbation theory
we have:

U(p, p′, q) =

∫
d(r1 − r2)e

−iq(r1−r2)V (r1 − r2) (2.153)

where V (r1 − r2) is the potential of interparticle interaction.
In Eq. (2.130) we have written down the general form of the single-

particle Green’s function in the Fermi-liquid:

G(p) =
Z

ε− ε(p) + iγ(ε)
+Greg(p) (2.154)

where ε(p) = vF (p− pF ),

Z−1 =

(
∂G−1

∂ε

)
F

; γ(ε) ∼ ε2signε (2.155)

When q → 0, the poles of both Green’s functions in (2.150) move to
each other and effectively we obtain a δ-like maximum close to the Fermi
surface. Accordingly, we can write down the following representation
of this product of Green’ functions (considered in a sense of the kernel
of the integral equation) in Eq. (2.150) (all energies are calculated with
respect to ε = EF = 0):

G
(
p+

q

2

)
G
(
p− q

2

)
≈ Z2δ(ε)

∫ ∞

−∞
dεG0

(
p+

q

2

)
G0

(
p− q

2

)
+B(p, q)

(2.156)
where

G0(p) =
1

ε− ε(p) + iγsign(ε)
; γ → +0 (2.157)

is just a free Green’s function. The integral entering (2.156) was, in fact,
already calculated above in (2.19). Using the result of this calculation,
we have: ∫ ∞

−∞
dεG0

(
p+

q

2

)
G0

(
p− q

2

)
= −2πi

n (p+ q/2)− n (p− q/2)

ω − ε (p+ q/2) + ε (p− q/2) + iγsignω
(2.158)

where

n(p) =

{
1 for |p| ≤ pF
0 for |p| > pF

(2.159)
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From here we easily obtain (cf. (2.19), (2.23) etc.):

G0

(
p+

q

2

)
G0

(
p− q

2

)
q→0

= iZ2δ(ε)2π
qv

ω − qv + iγsignω

δ(|p| − pF )

pF
m∗ +B(p, q)

≡ A+B

(2.160)

where v = ∂ε(p)/∂p = pF

m∗p/p is quasiparticle velocity at the Fermi
surface, m∗ is an effective mass, and B(p, q) does not contain any sin-
gularities, and up to the terms of the order of q2/p2F and ω2/E2

F can be
assumed independent of q.

Returning to the analysis of the full vertex Γ, let us rewrite
Eq. (2.145) in the following form:

Γ = U + ΓGGU = U + Γ(A+B)U = U + U(A+B)Γ (2.161)

This equation can be obtained from diagrammatic representation for Γ,
if we sum diagrams in “inverse” order. Introduce now the scattering
amplitude Γω, defined by the equation:

Γω = U + UBΓω = U + ΓωBU (2.162)

It is easily seen that Γω can be defined as the following limit:

Γω = lim
ω→0, q

ω→0
Γ (2.163)

The order of limits here is very important, first we have to perform
q → 0, and only then put ω → 0 (L.D. Landau, 1958). In this case we
have A in (2.161) going to, which leads to Eq. (2.162).

Multiplying (2.161) from the left side by 1 + ΓωB, we get:

Γ = Γω + ΓωAΓ = Γω + ΓAΓω (2.164)

It can be checked directly:

(1 + ΓωB)Γ = (1 + ΓωB)U + (1 + ΓωB)U(A+B)Γ

= Γω + Γω(A+B)Γ = Γω + ΓωAΓ + ΓωBΓ

The underlined terms cancel and we obtain (2.164).
The vertex part Γω depends on p2, (p′)2,pp′ and ε, ε′ (at the moment

we do not discuss spins!), but on the Fermi surface we have |p| = |p′| =
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pF , ε = ε′ = 0, so that Γω depends only on the angle between vectors
p and p′. Vertex part Γ, taken at the Fermi surface, depends also on
the transferred momentum. Integrals in Eq. (2.164) are taken at the
Fermi surface (due the explicit form of A given in (2.160)), so that we
take |p| = |p′| = pF and ε = ε′ = 0 and obtain the closed equation
determining Γ at the Fermi surface (L.D. Landau, 1958).

During this derivation we assumed that the block U (irreducible
vertex in particle–hole channel) is non-singular as the transferred mo-
mentum q → 0. Thus, strictly speaking, our analysis is invalid in the
case of Coulomb interaction between Fermions (e.g. for electrons in met-
als!), but can be applied for Fermi-liquids with short-range interactions
(e.g. for the liquid He3). Necessary generalizations for the Coulomb
case will be given below.

Let us write down Eq. (2.164) explicitly for the limit of small q.
Consider first the simplified case, when Γω does not depend on the
quasiparticle spins. Then, summation over spin indices of internal lines
(particle and hole) leads just to an additional factor of 2 (for Fermions
with spin 1/2). Using the explicit form of A from (2.160), we obtain:

Γ(n,n′,q) = Γω(n,n′)

+
Z2pFm

∗

π2

∫
Γω(n,n′

1)
qv1

ω − qv1 + iγ(ω)
Γ(n1,n

′,q)
dΩ1

4π
(2.165)

where γ(ω) = γsignω, (γ → +0), n,n′,n1 are unity vectors for di-
rections of p,p′ and v1. Integration in (2.165) is performed over the
angles of vector v1.

Consider as an example the oversimplified case, when Γω(n,n′) is
not dependent on the angle between n and n′. Then Γ also does not
depend on this angle and is easily found from Eq. (2.165):

Γ(qω) =
Γω

1− 1
2
Φ0

∫ 1

−1
dx qvx

ω−qvx+iγ(ω)

(2.166)

where Φ0 = Z2Γω m∗pF

π2 . Here m∗pF

π2 is just the density of states at the
Fermi level.

Integral in (2.166) is calculated as was done above in (2.23) and
(2.25), so that we obtain:

Γ(qω) =
Γω

1 + Φ0

{
1− ω

2qv
ln
∣∣∣ω+qv
ω−qv

∣∣∣+ iπ |ω|
2qv
θ(qv − |ω|)

} (2.167)
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In case of Coulomb interaction, for q → 0, in first approximation for U
we may take only a single diagram shown in Fig. 2.17), so that:

U =
4πe2

q2
≡ Vq (2.168)

as it diverges for q → 0. Assuming Z = 1 and dropping non-singular
contribution to GG, we get:

Γ(qω) =
Vq

1 + mpF

π2 Vq

[
1− ω

2qv
ln
∣∣∣ω+qv
ω−qv

∣∣∣+ iπ |ω|
2qv
θ(qv − |ω|)

] (2.169)

For ω ≫ vq this reduces to:

Γ(qω) =
4πe2

q2 − mpF

π2 4πe2 1
3
v2q2

ω2

=
Vq(

1− ωp
2

ω2

) (2.170)

i.e. we obtain effective screening with ϵ(ω) = 1− ω2
p

ω2 , where ω2
p = 4πne2

m

is the square of plasma frequency. For vq ≫ ω we obtain the usual
Debye screening:

Γ(qω = 0) =
4πe2

q2 + κ2
D

(2.171)

where κ2
D = 4e2mpF

π
. These expressions just coincide with those ob-

tained above within RPA.
As we already stressed above, our general analysis of the Fermi-liquid

approach assumed the absence of singularity of irreducible vertex part
U for q → 0, typical for Coulomb case. Thus, the correct account of
Coulomb interaction within the general theory of Fermi-liquids requires
special attention (V.P. Silin, 1957; P. Nozieres, J.M. Luttinger, 1962)
[Nozieres P. (1964); Nozieres P., Pines D. (1966)]. Consider an arbi-
trary diagram for the vertex part Γ. Let us call a diagram the “proper”
one [Nozieres P. (1964)], if it contains no interaction lines with small
momentum transfers q. In the opposite case we shall call a diagram
“improper”. Typical examples are shown in Fig. 2.20. “Proper” dia-
grams give regular contributions for q → 0. Let us denote as Γ̃ the
sum of all “proper” diagrams for the vertex part. This sum is obviously
regular for q → 0. Then it is clear that an arbitrary contribution to the
full vertex has a structure, shown in Fig. 2.21. Thus we may write:

Γ = Γ̃ + T̃VT̃ (2.172)
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Fig. 2.20 Examples of “improper” (a) and “proper” (b) diagrams for the case of
Coulomb interaction.

Fig. 2.21 General structure of an arbitrary contribution to the full vertex for the case
of Coulomb interaction.

where diagrams for blocks V (screened interaction!) and T̃ are shown
in Fig. 2.22. Analytically (Fig. 2.22(a)):

V = Vq + VqΠ̃Vq + VqΠ̃VqΠ̃Vq + ... (2.173)
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Fig. 2.22 Diagrams for the effective (screened) interaction (a) and the definition of the
block T̃ (b).

where Π̃, as well as T̃ (Fig. 2.22(b)), does not contain “improper” dia-
grams. It is clear that:

V =
Vq

1− VqΠ̃
(2.174)

so that

Γ = Γ̃ +
T̃ VqT̃

1− VqΠ̃
(2.175)

Blocks Γ̃, T̃ , Π̃ possess well defined limits at q → 0 (of the type of Γω).
Thus all the general equation for scattering amplitudes (vertices) of the
general theory of Fermi-liquids, derived above, remain, in fact, valid for
“proper” vertices (amplitudes), so that in these equations we have only
to add “tildas”. Physically, this means that we split the full vertex Γ

into short-range part Γ̃ and the part, describing the self-consistent field
(appearing due to long-range forces) Γlong:

Γ = Γ̃ + Γlong (2.176)

as it is shown in Fig. 2.23. The value of Γlong is precisely equiva-
lent to the effective self-consistent field, introduced in Landau–Silin
theory as the scalar potential to be determined from the solution
of Poisson equation [Sadovskii M.V. (2019a); Nozieres P. (1964);
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Fig. 2.23 Full interaction vertex in the theory of Fermi-liquids with Coulomb interac-
tion. The second term in the r.h.s. represents an effective self-consistent field (scalar
potential).

Nozieres P., Pines D. (1966)]. The “proper” vertex Γ̃ describes short-
range correlation effects, and to determine it in the Fermi-liquid with
Coulomb interactions (e.g. electrons in metals) we just write the same
phenomenological equations as in the case of short-range interactions
(e.g. He3). These equations will be briefly discussed below. In spa-
tially homogeneous system, the contribution of Γlong at q = 0 is just
cancelled by the “compensating background” of positive ions (necessary
for charge neutrality). However, it becomes quite important in kinetic
equation of Landau–Silin theory, which describes collective oscillations
in metallic Fermi-liquid [Nozieres P., Pines D. (1966)].

From the previous discussion it is clear that the value of Z2Γω plays
the role of the scattering amplitude of Fermi-liquid quasiparticles. Note
that the value of Γω (for ω → 0) is real (Hermitian in spin indices).
Physically Γω represents the scattering amplitude of two particles (in
Fermi-liquid) with zero value of scattering angle (vq ≪ EF ). Imaginary
part for the forward scattering amplitude can be expressed via the total
scattering cross-section (optical theorem of quantum scattering theory).
However, this cross-section goes to zero as momenta of the particles tend
to the Fermi momentum, as in this case we have the phase space of the
final states tending to zero. Now for Γω we can introduce the standard
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phenomenological representation (L.D. Landau, 1958):

Z2Γωm
∗pF
π2

≡ f(pσ;p′σ′) = f s + (σ⃗σ⃗′)fa (2.177)

where both f s and fa depend only on the angle between p and p′ (both
belonging to the Fermi surface), so that we can introduce the following
expansion over Legendre polynomials:

f s,a(θ) =
π2

m∗pF

∞∑
l=0

F s,a
l Pl(cos θ) (2.178)

where F s,a are dimensionless parameters (Landau constants), describing
correlation effects (short-range Fermi-liquid interactions).12

Solution of the integral equation (2.165) for Γ can also be sought in
the similar form:

Z2m
∗pF
π2

Γ = φ+ (σ⃗σ⃗′)ψ (2.179)

Then for φ and ψ we obtain the following equations:

φ(n,n′,q) = f s(n,n′)

+

∫
f s(n,n1)

qv1

ω − qv1 + iγ(ω)
φ(n1,n

′,q)
dΩ1

4π
(2.180)

ψ(n,n′,q) = fa(n,n′)

+

∫
fa(n,n1)

qv1

ω − qv1 + iγ(ω)
ψ(n1,n

′,q)
dΩ1

4π
(2.181)

If we are interested in collective excitations of the Fermi-liquid, we must
take into account that these are determined by the poles of the two-
particle Green’s function in particle–hole channel, which is determined
by the equation (2.140):

K = K0 −GGΓGG (2.182)

Here the term K0 possesses the pole, corresponding to the sum of en-
ergies of two free particles, so that the poles of K, describing collective
oscillations can be present only in Γ. Close to that pole we can just
neglect inhomogeneous term of (2.145) and write:

Γ = UGGΓ (2.183)
12Within phenomenological Landau approach these constants are to be determined from
the experiments.
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Limiting ourselves to excitations with small q ≪ pF and ω ≪ EF , we
may use the renormalized equation for Γ:

Γ = Γω + ΓωAΓ (2.184)

solution of which can be sought in the form given by (2.179). Then
the acoustic type oscillations (zero sound) are possible in our system,13

described by φ, and spin waves, described by ψ. Consider in more
details the case of zero sound. From Eq. (2.180), close to the pole, we
obtain:

φ(n,n′,q) =

∫
f s(n,n1)

qv1

ω − qv1 + iγ(ω)
φ(n1,n

′,q)
dΩ1

4π
(2.185)

Now, close to the pole, describing collective oscillations with the spec-
trum ωq, φ can be written as:

φ(n,n′) =
χ(n)χ(n′)

ω2 − ω2
q

2ωq (2.186)

This structure of the solution can be justified on general grounds [Migdal
A.B. (1967)], but for us it is sufficient to say, that we just are seeking the
solution of this form. Then, for χ(n) we obtain the following equation:

χ(n) =

∫
f s(n,n1)

qv1

ω − qv1 + iγ(ω)
χ(n1)

dΩ1

4π
(2.187)

Let us define the function:

ρ(n) =
vq

ω − vq+ iγ(ω)
χ(n) (2.188)

Then it satisfies the following equation, which is easily obtained from
(2.187):

(ω − vq)ρ(n) = vq

∫
f s(n,n1)ρ(n1)

dΩ1

4π
(2.189)

which coincides with kinetic equation of phenomenological Landau the-
ory [Nozieres P., Pines D. (1966)], with ρ(n) being the non-equilibrium
part of the distribution function of quasiparticles.

Let us explain this point in more details. Some small change of dis-
tribution function of the Fermi-gas (quasiparticles of the Fermi-liquid,
13To simplify the problem, we are dealing here only with the Fermi-liquid with short-
range interactions. Physically, the zero sound corresponds not to the oscillations of the
density in the liquid, but to oscillations of the Fermi surface itself [Nozieres P., Pines D.
(1966)].



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 66

66 Diagrammatics

in first approximation, form just such a gas) for small q and ω satisfy
the kinetic (transport) equation of the following form:

(ω − vq)δfq(p) = −q
∂f0
∂p

Vq(p) (2.190)

where f0 is the equilibrium (Fermi) distribution, while the self-
consistent field (potential) Vq(p) is connected with the change of dis-
tribution function as:14

Vq(p) = 2

∫
U(p,p′)δfq(p

′)
dp′

(2π)3
(2.191)

where U(p,p′) is interaction amplitude of the particles in momentum
representation. Using now:

∂f0
∂p

= − p

|p|
δ(|p| − pF ) (2.192)

and rewriting the non-equilibrium part of distribution function as:

δfq(p) = δ(|p| − pF )ρ(n) (2.193)

we obtain:

(ω − vq)ρ(n) = vq
m∗pF
π2

∫
U(p,p1)ρ(n1)

dΩ1

4π
(2.194)

with |p1| = |p| = pF . Comparison with (2.189) yields:

U(p,p1) =
π2

m∗pF
f s(n,n1) = Z2Γω

s (p,p1) (2.195)

where Γω
s denotes the spinless part of the amplitude.

Consider the solution of (2.189) for the simplest case, when
f s(n,n′) = F0, i.e. is represented by a single constant. Then (2.189)
reduces to:

ρ(n) =
vq

ω − vq
F0

∫
ρ(n1)

dΩ1

4π
(2.196)

Performing angular integration (as we have already done before), we
obtain the following equation:

− 1

F0

= 1− ω

2vq
ln

∣∣∣∣ω + vq

ω − vq

∣∣∣∣+ iπ
|ω|
2vq

θ(vq − |ω|) (2.197)

14In Landau–Silin theory we have to add to Vq(p) the contribution from self-consistent
scalar potential, defining the electric field, and determined by appropriate Poisson equa-
tion.
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Solution of this equation immediately gives the dispersion law for the
zero sound. Real frequencies (no damping!) is obtained for |ω| > vq.
Denoting ωq = svq we get:

1

F0

=
s

2
ln
s+ 1

s− 1
− 1, where s > 1 (2.198)

It is not difficult to see, that the r.h.s. here is positive, so that the zero
sound is possible only for F0 > 0. In limiting cases we have:

sF0→0 = 1 + 2e−
2
F0 sF0→∞ =

√
F0/3 (2.199)

Finally we just quote a number of basic relations of the standard theory
of Fermi-liquids [Nozieres P., Pines D. (1966)]. Using Halilean invari-
ance it can be shown that the effective mass m∗ is determined by a
simple relation:

m∗

m
= 1 +

F s
1

3
(2.200)

Accordingly, the specific heat of Fermi-liquid (at T = 0) is given by:

c =
m∗

m
c0 (2.201)

where c0 is the specific heat of the Fermi-gas.
Magnetic susceptibility is given by:

χ =
m∗

m

1

1 + F a
0

χ0 (2.202)

where χ0 is the susceptibility of an ideal gas. Similarly, compressibility
of the Fermi-liquid is:

κ =
m∗

m

1

1 + F s
0

κ0 (2.203)

where κ0 is the compressibility of a gas.
Using these relations we can come to some general conclusions. For

example, from Eqs. (2.202) and (2.203) we immediately obtain condi-
tions for stability of the homogeneous Fermi-liquid:

1 + F a
0 > 0; 1 + F s

0 > 0 (2.204)

If we have 1 + F s
0 < 0, then we get the negative compressibility (which

may mean that the system is unstable to some “structural” phase tran-
sition, transforming the system to some new stable state!). The general
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stability analysis of the Fermi-liquid state (I.Ya. Pomeranchuk, 1957)
gives the following stability conditions (which must be satisfied for all
values of l):

1 +
1

2l + 1
F s,a

l > 0 (2.205)

For l = 1 inequality (2.205) guarantees the positiveness of m∗ as defined
by (2.200). From (2.202) we can see, that for the system, close to
magnetic instability, it is possible to have 1+F a

0 ≪ 1. The value of this
parameter can be determined experimentally from the measurements of
susceptibility and specific heat, determining the so-called Wilson ratio:

RW =
π2χT

3µ2
Bc

=
1

1 + F a
0

(2.206)

2.10 Non-Fermi-liquid behavior

Fermi-liquid is not the only possible ground state of many-electron
(Fermion) system. The system may become superconducting, mag-
netic (antiferromagnetic) ordering or charge (spin) density waves
(CDW(SDW)) are also possible. Some of these states may be dielectrics,
resulting from the initial metallic state via metal–insulator transitions.
Some of these possibilities will be discussed below. However, there is a
general question — if Landau Fermi-liquid is the only possible ground
state of a normal metal without any type of long-range order? This
problem is actively discussed in recent years, mainly due to the prob-
lems with an explanation of the anomalies of electronic properties of the
normal state of high-temperature copper oxide superconductors (and
also the so-called “heavy Fermion” compounds). Non-Fermi-liquid be-
havior is realized (as a rule!) in one-dimensional models of interacting
Fermions. Some of the examples of such systems (models), such as ba-
sic Tomonaga–Luttinger model, will be dealt with in the final part of
our lectures. However, high-temperature superconducting copper ox-
ides belong to some border-crossing case of two-dimensional (or, more
precisely, quasi-two-dimensional) systems, and the question about the
proper ground state is still more or less open. There is a number of
“scenarios” of non-Fermi-liquid behavior of such systems.
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At the moment we shall briefly discuss only one such scenario —
that of the so-called “marginal” Fermi-liquid [Varma C.N., Nussinov
Z., Wim van Saarloos (2002)]. In this theory it is assumed,15 that the
polarization operator of electronic system Π(qω) possess no significant
dependence on q, while the frequency dependence of its imaginary part
has the following form:

ImΠ(qω) =

{
−N(EF )

ω
T

for ω ≪ T

−N(EF ) for T ≪ ω ≪ ωc
(2.207)

Here ωc is some cut-off frequency, and it is assumed that ωc ≪ EF . Us-
ing Kramers–Kronig dispersion relations, we can restore the appropriate
form of the real part of Π:

ReΠ(qω) ∼ N(EF ) ln
(ω
T

)
(2.208)

Now we can estimate the self-energy of an electron, determined by the
diagram shown in Fig. 2.24:

Σ ∼ λε

[
ln

x

ωc

+ i
π

2
signε

]
(2.209)

where x = Max(ε, T ), while λ is some dimensionless interaction con-
stant.

Fig. 2.24 Self-energy of an electron in “marginal” Fermi-liquid.

Then, using (2.50), we immediately obtain:

Z =
1

1− ∂ReΣ
∂ε

∼ 1

1− λ ln
(

x
ωc

) (2.210)

Now we see that the residue at the pole of the Green’s functions goes
to zero at the Fermi surface itself, so that quasiparticles are just not
15These assumptions qualitatively correspond to experimentally observed anomalous
behavior of copper oxide superconductors in the normal state.
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defined there at all! However, everywhere close to the Fermi surface we
have more or less “usual” quasiparticle contribution. Important differ-
ence with standard Fermi-liquid behavior is that quasiparticle damping,
determined by the imaginary part of Σ (2.209), is linear in energy (with
respect to the Fermi level): γ ∼ ε. This means that quasiparticles (close
to the Fermi surface) are just “marginally” defined (note that in Landau
theory we have obtained γ ∼ ε2, leading to well defined quasiparticles).

At present it is not clear what kind of the microscopic mechanism
(interaction) can lead to such anomalous behavior, though “marginal”
Fermi-liquid gives (phenomenologically) rather satisfactory description
of basic anomalies of electronic properties of copper oxides in the nor-
mal state and this model is often used to fit experiments [Varma C.N.,
Nussinov Z., Wim van Saarloos (2002)].

Note, that this problem is linked, in general, with the low di-
mensionality of the systems under study. We already noted that
in one-dimensional (interacting) systems Landau theory just never
“works”. Many theorists believe that similar situation is typical for
two-dimensional systems also. The physical reason for non-Fermi liquid
behavior is usually attributed to strong correlations, which can not be
described by Fermi-liquid phenomenology, as it assumes the qualitative
picture of the ground state similar to that of an ideal Fermi-gas. At the
same time, a number of detailed studies has shown that Fermi-liquid be-
havior is mostly conserved in two-dimensional (quasi-two-dimensional)
case.
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Electron–Phonon Interaction

3.1 Diagram rules

Phonons are the quanta of lattice oscillations. Phonons can be either
acoustical or optical. The difference is that the frequency of acousti-
cal phonons goes to zero as the wave vector k → 0, while for optical
phonons it stays finite. Acoustical phonons are present in any crys-
tal, representing, in fact, Goldstone mode related to broken translation
symmetry. Optical phonons appear only in crystals with more than one
atom in elementary cell.

There are two standard (simplified!) models to describe phonon
spectra — that of Debye and Einstein. In Debye model the phonon
spectrum is assumed to be described by ω0(k) = ck (c— sound velocity)
for all k < kD, where kD a limiting (cut-off) wave vector of the order of
inverse lattice spacing. In Einstein model the phonon frequency is just
independent of the wave vector ω0(k) = Ω0 (for all values of k). Debye
model gives simplified description of acoustical phonons, while that of
Einstein — the same for the optical phonons.

As ions constituting the crystal lattice are charged particles, phonons
can interact with electrons. Lattice oscillations induce the deviations
of the electric field of ions from the average value dictated by charge
neutrality. The potential of this additional field is usually called de-
formation potential. Due to the long-range nature of Coulomb forces
electron–phonon interaction can be expected to be strongly non-local.
However, as we have seen above, electric field in metals is strongly
screened, thus, in most cases, electron–phonon interaction can be as-
sumed local.

71
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Relations of deformation potential to lattice distortion are different
for acoustical and optical phonons. For acoustical oscillations nearby
lattice ions displacements are almost the same and electric field changes
only slightly, proportionally to these (relative) displacements, and the
deformation potential Ud−ac ∼ divu, where u(r) is atomic displace-
ment. In the case of optical phonons nearby atoms move in opposite
directions, so that Ud−op ∼ u(r). To describe electron–phonon interac-
tion in a similar way for both types of phonons, an operator of phonon
field is usually introduced in the following (Hermitian!) form [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

φ̂(rt) = i
∑
k

√
ω0(k)

2V

[
b̂ke

ikr−iω0(k)t − b̂+k e
−ikr+iω0(k)t

]
(3.1)

where b̂+k , b̂k are creation and annihilation operators of phonons, V -
system volume. Then φ(r) ∼ ∇u(r) for acoustical phonons and
φ(r) ∼ u(r) for the optical phonons. Accordingly, the Hamiltonian
of electron–phonon interaction is written as [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]:

Hint = g

∫
drψ̂+(r)ψ̂(r)φ̂(r) (3.2)

where g is the coupling constant. The Hamiltonian density in (3.2)
just proportional to the product of electron density and deformation
potential.

Diagram rules for electrons and phonons look almost the same as
for the case of two-particle interaction [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]. To calculate Green’s function at T = 0

these rules are formulated as follows:

• Only diagrams of even order give nonzero contributions. Diagram
of order 2n contains 3n+1 internal (electron and phonon) lines and
2n vertices, with 3n− 1− (2n− 1) = n independent integrations.
All lines are attributed with 4-momenta, conserving at the vertices.

• Electron is described by continuous line, denoting free Green’s func-
tion:

G0(p) =
δαβ

ε− ξ(p) + iδsignξ(p)
where δ → +0 (3.3)
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where

ξ(p) =
p2

2m
− µ ≈ vF (|p| − pF ) (3.4)

is the energy spectrum of free electrons, calculated with respect
to the Fermi level (chemical potential µ), pF and vF are Fermi
momentum and velocity.

• Dashed line denotes the phonon Green’s function:

D0(k) =
ω2
0(k)

ω2 − ω2
0(k) + iδ

where δ → +0 (3.5)

• Integration is done over n independent momenta and frequencies
(4-momenta).

• The result is multiplied by (g)2n(2π)−4n(i)n(2s+1)F (−1)F , where
F is the number of closed Fermion loops, and s is Fermion spin (for
electrons s = 1/2, so that, in fact, we always have 2s+ 1 = 2).

For T > 0 everything is quite similar:

• Each electronic (continuous) line with momentum p and Matsubara
frequency εn = (2n+ 1)πT corresponds to:

G0(εnp) =
δαβ

iεn − ξ(p)
(3.6)

• Each phonon (dashed) line with momentum k and frequency ωm =

2πmT corresponds to:

D0(k) = − ω2
0(k)

ω2
m + ω2

0(k)
(3.7)

• The result is multiplied by g2n(−1)n Tn

(2π)3n
(2s + 1)F (−1)F , where

F is again the number of Fermion loops and s = 1/2 is electronic
spin.

The form of phonon Green’s function in these rules corresponds to normaliza-
tion of the operator of phonon field used in (3.1) [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:1

φ(k) =

√
ω0(k)

2
(bk + b+−k) (3.8)

1The reader is advised to convince himself that physically (3.1) and (3.8) are just
equivalent.
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Sometimes in the literature you cam meet with a different normalization
[Schrieffer J.R. (1964)]:

φ(k) = bk + b+−k (3.9)

Then the free phonon Green’s function takes the following form [Schrieffer J.R.
(1964)]:

D0(kω) =
1

ω − ω0(k) + iδ
− 1

ω + ω0(k)− iδ
=

2ω0(k)

ω2 − ω2
0(k) + iδ

(3.10)

Accordingly, if we are using different normalizations, we have to take into account
some differences in the form of matrix elements of electron–phonon interaction,
compensating this difference in normalization, so that physical results are equiv-
alent. This is important to remember, while comparing the results of different
authors. If we use (3.9), interaction Hamiltonian (3.2) can be written as [Schri-
effer J.R. (1964)] (we take here V = 1 for shortness):

Hint =
∑
pk

ḡka
+
p+kap(bk + b+−k) (3.11)

However, if we use (3.8), then:

Hint = g
∑
pk

√
ω0(k)

2
a+p+kap(bk + b+−k) (3.12)

which leads to the difference in the definition of electron–phonon coupling con-
stant. In particular, for the appropriate dimensionless constant we mainly use
(following the tradition of Russian or rather “Soviet” literature) [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

ζ = g2νF (3.13)

Another common (“Western”) definition is:

λ =
2ḡ2kνF
ω0(k)

(3.14)

Direct comparison of (3.11) and (3.12) gives:

ḡk = g

√
ω0(k)

2
(3.15)

Calculation of electron self-energy allows us to determine electron
spectrum “renormalization” due to electron–phonon interaction. To
determine the phonon spectrum we have to find the poles of phonon
Green’s function D(ωk). Similarly to the case of electron Green’s func-
tion G(Ep), for phonon Green’s function we may also introduce the
self-energy part which, in fact, reduces to the polarization operator
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Fig. 3.1 Diagrams for phonon self-energy.

Π(ωk), with corrections due to electron–phonon interaction, as shown
in Fig. 3.1. Dyson equation for phonon Green’s function can be written
as:

D(ωk) = D0(ωk) +D0(ωk)g
2Π(ωk)D(ωk) (3.16)

with solution:

D−1(ωk) = D−1
0 (ωk)− g2Π(ωk) (3.17)

Phonon spectrum is defined from:

D−1
0 (ωk) = g2Π(ωk) (3.18)

If we introduce the dimensionless coupling constant for electron–phonon
interaction as ζ = g2νF (where νF = mpF

2π2~3 is the density of states
at the Fermi level for one spin projection), direct estimate gives ζ ∼
1. Thus, it may seem that electron–phonon coupling is always strong
enough. However, as we shall see below, there is an additional small
parameter in this problem, allowing us to find a simple solution with
no assumption of smallness of the coupling constant g. This is so-called
adiabaticity parameter ωD

EF
∼
√

m
M

≪ 1 (where ωD is Debye frequency,
m-electron mass and M -ion mass). Physically it means that due to a
large mass, ions move much slower than electrons. Accordingly, much
faster electrons more or less “follow” local ion configuration. As a result,
as we shall show below, electron–phonon interaction does not destroy
Fermi-liquid behavior.

3.2 Electron self-energy

Consider, following [Levitov L.S., Shitov A.V. (2003)], the simplest con-
tribution to self-energy of an electron, defined by the diagram shown in
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Fig. 3.2 Simplest contribution to electron self-energy due to electron–phonon interac-
tion.

Fig. 3.2. In analytic form we have (for the case of acoustical phonons):

Σ(Ep) =
ig2

(2π)4

∫
dωd3k

E − ω − ξ(p− k) + iδsignξ(p− k)

c2k2

ω2 − c2k2 + iδ
(3.19)

Here we have poles at ω1 = E− ξ(p− k)+ iδsignξ(p− k) and ω2,3 =

±(ck − iδ), and we can close integration contour in such a way, that
only one of the poles of phonon Green’s function is inside. The integral
over infinitely far semi-circle is zero and after elementary calculations
we obtain:

Σ(Ep) =
−g2

(2π)3

{∫
ξp−k<0

d3k

E + ck − ξ(p− k)− iδ

c2k2

(−2)ck

−
∫
ξp−k>0

d3k

E − ck − ξ(p− k) + iδ

c2k2

2ck

}

=
g2c

16π3

{∫
ξp−k>0

kd3k

E − ck − ξ(p− k) + iδ
+

∫
ξp−k<0

kd3k

E + ck − ξ(p− k)− iδ

}

=
g2c

16π3

{∫
|p−k|>pF

kd3k

E − ck − vF (|p− k| − pF ) + iδ

+

∫
|p−k|<pF

kd3k

E + ck − vF (|p− k| − pF )− iδ

}
(3.20)

Let us denote as x the cosine of the angle between vectors k and p,
then we have p21 = |p− k|2 = p2 + k2 − 2pkx and d3k = 2πk2dkdx, so
that p1dp1 = −pkdx. Then (3.20) can be written as:

Σ(Ep) = − g2c

8π2p

{∫
p1>pF

k2dkdp1p1
E − ck − vF (p1 − pF ) + iδ

+

∫
p1<pF

k2dkdp1p1
E + ck − vF (p1 − pF )− iδ

}
(3.21)
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The main contribution to integrals here comes from the vicinity of the
poles, where we can put p1 ≈ p ≈ pF , as ωD ≪ EF . Thus we can
neglect the difference between p1 and p, so that we have:

Σ(E) = − g2c

8π2

{∫
p1>pF

k2dkdp1
E − ck − vF (p1 − pF ) + iδ

+

∫
p1<pF

k2dkdp1
E + ck − vF (p1 − pF )− iδ

}
(3.22)

Then for imaginary part of Σ(E) we get:

ImΣ(E) =
g2c

8π

{∫
p1>pF

δ(E − ck − vF (p1 − pF ))k
2dkdp1

−
∫
p1<pF

δ(E + ck − vF (p1 − pF ))k
2dkdp1

}
(3.23)

First term here (which is nonzero for E > 0) gives the lifetime of an
electron, while the second one (nonzero for E < 0) — the lifetime of a
hole. Let us consider now the limiting cases of E ≪ ωD and E ≫ ωD.

• The case of E ≪ ωD

For E > 0 only the first term in (3.23) contributes, and we have
to integrate over k in the region of k < E/c, or p1 determined from
the argument of the δ-function, will become smaller than pF . Thus we
have:

ImΣ(E) =
g2c

8π

∫
ck<E

1

vF
k2dk =

g2cE3

24πvF c3
(3.24)

Introducing dimensionless coupling constant of electron–phonon inter-
action as ζ = g2νF , we get:

ImΣ(E) =
ζπE3

12p2F c
2

(3.25)

For E < 0 only the second term in (3.23) contributes. Calculating the
integral we again obtain (3.25), due to particle–hole symmetry (valid
for E ≪ EF ) and the imaginary part of ImΣ(E) is an odd function
of E.

Now we can see that for E → 0 we have ImΣ(E) ≪ E, so that
electron–phonon interaction does not destroy Fermi-liquid behavior, as
due to E3-dependence of damping, phonon contribution for E → 0
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becomes negligible in comparison to electron–electron scattering contri-
bution to damping discussed above, which is ∼ E2. At the same time,
it is clear that this statement is valid only for E → 0 (T → 0).

• The case of E ≫ ωD

In this case, integration over p1 in (3.23) does not put any limitations
on k-integration, which is now performed up to k = kD. Calculation
the integral of the type of (3.24), we obtain:

ImΣ(E) =
g2

8πvF
c
k3D
3
signE =

g2k3Dmc

24πpF
signE (3.26)

Again, expressing the damping via dimensionless constant ζ, we get:

ImΣ(E) =
ζπk3Dc

12p2F
signE (3.27)

It is easily seen that in this limit ImΣ ∼ ζωD. Thus, even for ζ ∼ 1

the phonon renormalization is small due to ωD ≪ EF .
Let us now consider ReΣ(E). From (3.22) we have:

ReΣ(E) = − g2c

8π2

{∫
p1>pF

k2dkdp1
E − ck − vF (p1 − pF )

+

∫
p1<pF

k2dkdp1
E + ck − vF (p1 − pF )

}

= − g2c

8π2

∫
k<kD

dkk2I1(k) (3.28)

where

I1(k) =

∫
p1>pF

dp1
E − ck − vF (p1 − pF )

+

∫
p1<pF

dp1
E + ck − vF (p1 − pF )

(3.29)
Formally, the first integral here diverges, but this divergence is unphys-
ical, as for large differences between p1 and pF we have to take into
account the deviations from the linearized form electron spectrum we
are using (and also the finiteness of the bandwidth). Thus we may just
cut-off integration at p1 = p∗ ∼ pF . Exact value of this cut-off parame-
ter is unimportant, as does not influence the form of the spectrum, but
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only renormalizes the chemical potential (contributing only to ReΣ(0)).
Thus we obtain:

I1(k) =
1

vF
ln

∣∣∣∣ E + ck

E + ck + vFpF

∣∣∣∣+ 1

vF
ln

∣∣∣∣E − ck − vF (p
∗ − pF )

E − ck

∣∣∣∣
(3.30)

Subtracting this constant renormalization of the chemical potential
δµ = Σ(0), we obtain:

Re(Σ(E)− Σ(0)) =
g2c

8π2

∫
dkk2

m

pF
ln

∣∣∣∣E − ck

E + ck

∣∣∣∣ (3.31)

Characteristic property of an electron self-energy due to electron–
phonon interaction is its independence of momentum p. This is due
to the “slowness” of phonons, compared to electrons, which leads to
the local nature of the processes of phonon emission and absorption by
electrons. Let us again analyze limiting cases of E ≪ ωD and E ≫ ωD.

• The case of E ≪ ωD

In this case we may expand logarithm in (3.31), as E ≪ ck. Then we
have:

Re(Σ(E)−Σ(0))=−2mg2E

8π2pF

∫ kD

0

dkk=−mg
2k2D

8π2pF
E=−ζ

4

k2D
p2F
E≡−λE

(3.32)
where we have introduced renormalization constant λ = ζk2

D

4p2
F
∼ ζ.

• The case of E ≫ ωD

Now we have E ≫ ck, so that again, after expanding logarithm in (3.31)
we get:

Re(Σ(E)− Σ(0)) = −mg
2c2

4π2pF

∫ kD

0

k3dk

E
= −mg

2c2k4D
16π2pFE

= −ζc
2k4D

8p2FE
(3.33)

so that at E ∼ ωD the growth of ReΣ(E) with energy changes to
decline.

Quasiparticle spectrum for the region of E ≪ ωD is determined from
the equation:

E − ξ(p) = Re(Σ(E)− Σ(0)) (3.34)
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where ξ(p) = p2

2m
− µ. Then we immediately obtain:

E =
p2

2m∗ − EF EF =
p2F
2m∗ (3.35)

where the effective mass is defined as:
m∗

m
= 1 +

ζk2D
4p2F

≡ 1 + λ (3.36)

Thus, λ is sometimes called mass renormalization factor. We see that
due to electron–phonon interaction an electron becomes “heavier”. Ac-
cordingly grows the density of states at the Fermi level (∼ m∗) and
electronic contribution to specific heat.

Let us consider now behavior of electron self-energy at finite temper-
atures. It is useful also from technical point of view, as we shall be able
to study the general method to perform summation over the Matsubara
frequencies. So we have to calculate:

Σ(εp) = − g2T

(2π)3

∑
ε1

∫
d3p1G(ε1p1)D(ε− ε1,p− p1) (3.37)

where all frequencies are assumed to be Matsubara’s!
The general and convenient method to calculate Matsubara sums

can be formulated as follows [Schrieffer J.R. (1964)]. The idea is, of
course, to go from summation to integration. To be specific, let us start
with summation over odd (Fermion) frequencies iεn = i(2n + 1)πT .
This sum can be written in the form of the following contour integral
in the complex plane of frequency ε:

T
∞∑

n=−∞

F (iεn) = − 1

2πi

∫
C

dε
F (ε)

eβε + 1
=

1

2πi

∫
C

dε
F (ε)

e−βε + 1

=
1

4πi

∫
C

dεF (ε)th
ε

2T
(3.38)

where the contour of integration C encircles the imaginary axis, as
shown in Fig. 3.3, assuming there is no singularities of F (ε) inside this
contour. Validity of (3.38) follows from Cauchy theorem, as eβε+1 and
e−βε + 1 (where β = 1

T
, as usual) possess simple zeroes at ε = iεn,

leading to the poles of the integrand in (3.38) at the discrete set of
points on the imaginary axis. Similar poles appear if we use th ε

2T
in

the last term of (3.38).
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Fig. 3.3 Integration contour used for summation over Matsubara frequencies.

To perform summation over even (Boson) frequencies iωm = i2πTm

we can use a similar identity:

T
∞∑

m=−∞

F (iωm) =
1

2πi

∫
C

dω
F (ω)

eβω − 1
= − 1

2πi

∫
C

dω
F (ω)

e−βω − 1

=
1

4πi

∫
C

dωF (ω)cth
ω

2T
(3.39)

where the poles of the integrand are at points iωm = i2πTm.
As the next stage we can, usually, “stretch” integration contour C

to infinity. During this operation we have only to calculate contribu-
tions from singularities of F (ε) or F (ω), which are encircled by the
“stretched” contour C. In most cases, the remaining integral over the
circle of infinite radius is just zero, due to the fast decrease of F (ε) and
F (ω) at infinity.

Let us illustrate this method by explicit calculation of (3.37). We
have to calculate the following sum over frequencies:

S = T
∑
ε1

G(ε1p1)D(ε− ε1,p− p1) (3.40)

where summation is over Fermion frequencies iεn = i(2n+1)πT . Thus,
we have to use (3.38). Consider, for definiteness, the case of ε > 0, i.e.
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belonging to the upper half-plane.2 Consider the function:

f(z) = G(z,p1)D(ε− z,p− p1)th
z

2T
(3.41)

which has poles at z = iεn = i(2n+ 1)πT and calculate the integral:

I =

∫
C

dzf(z) (3.42)

over the contour C, shown in Fig. 3.4, which encircles the straight lines
where Im(ε − ε1) = 0 and Imε1 = 0, corresponding to the cuts of
exact Green’s functions in (3.40).3 In the rest of the complex plane of
frequency, except these cuts, the function f(z) is analytic. Now the
integral in (3.42) can be calculated directly. The residue of f(z) at the
pole at zn = i(2n+ 1)πT is equal to:

Resz=znf(z) = 2TG(zn,p1)D(ε− zn,p− p1) (3.43)

Fig. 3.4 Integration contour used to sum over Matsubara frequencies in electron self-
energy.

so that integral in (3.42) reduces to I = 4πiS giving us the required sum
(3.40). On the other hand, we can consider the “stretched” integration
2Remember that finally, in most cases, we want to make an analytic continuation iεn →
ε+ iδ!
3Analytic continuation from upper and lower half-planes gives different Green’s func-

tions GR and GA [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)].
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contour, shown in Fig. 3.5. Now our integral reduces to the integrals
over the straight lines, shown in Fig. 3.5, and going along the cuts, so
that the contribution from the different “sides” of each cut is determined
by appropriate discontinuities:

I =

∫ ∞

−∞
dε1

{
(GR(ε1p1)−GA(ε1p1))D

A(ε− ε1,p− p1)th
ε1
2T

−GR(−ε1 + ε,p1)(D
R(ε1,p− p1)−DA(ε1,p− p1))th

ε− ε1
2T

}
(3.44)

Fig. 3.5 “Stretched” integration contour used for summation over Matsubara frequen-
cies in electron self-energy.

Taking into account ε = i(2n+1)πT , we may write th ε−ε1
2T

= −cth ε1
2T

.
Also, we can use:

GR(εp)−GA(εp) = 2iImGR(εp) (3.45)

and dispersion relation [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)]:

GR(A)(εp) =
1

π

∫ ∞

−∞

ImGR(A)(ωp)

ω − ε∓ iδ
dω (3.46)
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Substituting these relations into (3.44), we obtain:

Σ(εp) =
g2

(2π)4π

∫
dε1dωd

3p1

{
ImGR(ε1p1)ImD

R(ωp− p1)

ω − ε+ ε1 − iδ
th
ε1
2T

+
ImGR(ωp1)ImD

R(ε1p− p1)

ω − ε+ ε1 − iδ
cth

ε1
2T

}
(3.47)

Exchanging integration variables ε1 and ω in the second term, we finally
obtain:

Σ(εp) =
g2

(2π)4π

∫
dε1dωd

3p1
ImGR(ε1p1)ImD

R(ωp− p1)

ω − ε+ ε1 − iδ

(
th
ε1
2T

+ cth
ω

2T

)
(3.48)

Here we have only integration over real ε1 and ω. After rather awkward
calculations which we drop, it can be shown [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)], that for ε ≪ T ≪ ωD (after analytic
continuation iεn → ε+ iδ) Eq. (3.48) gives:

ImΣR(ε) ∼ ζ
T 3

c2p2F
(3.49)

so that, in fact, electron damping due to electron–phonon interaction
for ε ≪ ωD and T ≪ ωD can be written in unified form as (remember
(3.25)):

ImΣR(ε) ∼ ζ
Max[T 3, ε3]

c2p2F
(3.50)

For ε≫ ωD it follows from (3.48) that:

ImΣR(ε) = const ∼ ωD (3.51)

From these expressions it is clear that the damping of quasiparticles
(electrons) becomes comparable to their energy for ε ∼ ωD. At the
same time it is clear that with the further growth of energy, damping
again becomes smaller than the quasiparticle energy. Thus, we have
two regions, where the notion of quasiparticles is meaningful: |ε| ≪ ωD

and |ε| ≫ ωD. In both regions the energy of electrons can be written
as vF (p− pF ), but velocities vF (effective masses) are different.
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3.3 Migdal theorem

Up to now we limited ourselves to the simplest contribution to electron
self-energy, shown in Fig. 3.2. It may seem that we have to add also
numerous diagrams with higher-order vertex corrections. But in fact
we do not need these (!), as in the case of electron–phonon interaction
all these corrections are small over the adiabaticity parameter ωD

EF
∼√

m
M

≪ 1. This statement is usually referred to as Migdal theorem
(A.B. Migdal, 1957). Let us show the validity of this claim, making
a simple estimate of the vertex correction, shown by the diagram of
Fig. 3.6. Let us write down an analytic expression, corresponding to
this diagram:

Γ(1) = −g3
∫
G(p1ε1)G(p1 + k, ε1 + ω)D(ε− ε1,p− p1)

d3p1dε1
(2π)4

(3.52)

Fig. 3.6 Simplest vertex correction due to electron–phonon interaction.

Now make a crude estimate of this expression. Consider first the integral
over ε1. Assuming that the characteristic momentum transfer due to
phonon exchange is of the order of kD ∼ pF , and taking into account
that D(ε−ε1) decreases quadratically for |ε−ε1| ≫ ωD, we understand
that the main contribution to the integral comes from the region of
|ε− ε1| ∼ ωD. Then the integral over ε1 is of order of ωD, and we can
write:
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Γ(1) ∼ g3ωD

∫
d3p1

(ε1 − ξ(p1) + iδsignξ(p1))(ε1 + ω − ξ(p1 + k) + iδsignξ(p1 + k))
(3.53)

Consider now the remaining integral over p1. Characteristic momentum
transfer here is also of the order kD ∼ pF . Thus we may estimate all
denominators to be of the order of ∼ EF , and

∫
d3p1 ∼ p3F . Then we

have:

Γ(1) ∼ g3ωD

p2F
vF

EF

E2
F

∼ g3
p2F

vFEF

ωD (3.54)

and the relative vertex correction is:
Γ(1)

g
∼ g2

p2F
vFEF

ωD ∼ ζ
ωD

EF

∼ ζ

√
m

M
(3.55)

where we have used ωD

EF
∼
√

m
M

. Electrons are much lighter than ions,
so this correction is practically negligible! Of course, our analysis is
too crude, e.g. it is invalid if ω ∼ vFk and ω ≪ ωD, when the poles
of Green’s functions in (3.53) are close to each other and more refined
considerations are necessary. However, in most cases, the contribution
from this region is also small due to c≪ vF .

For better understanding of the situation, it is instructive to make
estimates of the vertex correction in the “mixed” momentum–time rep-
resentation. This will allow us to show the importance of different
time-scales. First, let us introduce the appropriate free phonon and
electron Green’s functions:

D(kt) =

∫
dω

2π
D(ωk)e−iωt = − ick

2
e−ick|t| (3.56)

G(pt) = −ie−iξ(p)t

{
θ(ξ(p)) for t > 0

−θ(−ξ(p)) for t < 0
(3.57)

Note that D(kt) is much more slowly changing function of t, than
G(pt).

Now write the vertex correction shown in Fig. 3.7 in analytic form:

Γ(1) = −g3
∫

d3p1
(2π)3

∫
dtG(p1, t−t1)G(p1+k, t2−t)D(p− p1, t1−t2)

(3.58)
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Fig. 3.7 Simplest correction to electron–phonon vertex in momentum–time representa-
tion.

For p1 ∼ pF characteristic time scale for the change of electron Green’s
function is ∼ E−1

F . Thus in (3.58) we may put |t1 − t| ∼ |t2 − t| ∼
|t1 − t2| ∼ E−1

F . On such a time scale, phonon Green’s function prac-
tically does not change at all and we may estimate its value putting
t1 ≈ t2, so that it is simply proportional to c|p− p1| ∼ ωD. These
estimates immediately lead to the appearance of the small (adiabatic-
ity) parameter ωD

EF
. In other words, electron quickly (during the time

of the order of ∼ E−1
F ) absorbs phonon, and “following” the phonon

induced lattice deformation. During this short time interval, electrons
just are not able to induce any strong changes in the local configura-
tion of ions — this requires the time of the order of ω−1

D . Electrons are
moving adiabatically in slowly changing field of heavy ions.

Migdal theorem is very important, as it allows us to neglect nu-
merous diagrams, without assumption of smallness of electron–phonon
coupling.

3.4 Eliashberg–McMillan approximation

Migdal’s theorem allows neglecting vertex corrections in all calculations
related to electron–phonon interaction in typical metals. The real small
parameter of perturbation theory is λ Ω0

EF
≪ 1, where λ — is dimen-

sionless coupling constant of electron–phonon interaction, Ω0 ∼ ωD —
is characteristic phonon frequency, and EF — is Fermi energy of
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electrons. In particular, this leads to a common view, that vertex cor-
rections can be neglected in this theory even for the case of λ > 1, due
to the validity of inequality Ω0

EF
≪ 1 in typical metals. In fact, this

means that diagram of Fig. 3.1 is sufficient to describe even the case
of rather strong electron–phonon coupling. This conclusion is of major
importance for the derivation of Eliashberg–McMillan theory of strong
coupling superconductors, which will be discussed below in Chapter 5.
Here we consider the main expressions used in this theory for the case
of normal metal, where all analysis is much simpler.

Fig. 3.8 “Stretched” integration contour used to calculate sums over Matsubara fre-
quencies in (3.60).

Consider once again the second order (over electron–phonon inter-
action) diagram shown in Fig. 3.1. Calculations will be performed in
Matsubara formalism (T ̸= 0), using notations (3.9)–(3.15) [Schrieffer
J.R. (1964)]. Analytic expression, corresponding to this diagram, is
written as (cf. (3.37)):

Σ(iωn,p) = −T
∞∑

n=−∞

∑
p′

|ḡpp′ |2G0(iωn′ ,p′)D0(iωn − iωn′ ,p− p′)

(3.59)
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Here ḡp,p′ is Fröhlih coupling constant of electron–phonon interaction
(3.15) with explicit, in general, dependence on momenta, εp is elec-
tronic spectrum reckoned from the Fermi level, while phonon spectrum
in Green’s function (3.10) in the following is denoted as Ωq (q = p−p′).
Index 0 of Green’s functions here stresses, that we consider here Green’s
functions of free particles.

Summation over Matsubara frequencies can again be performed with
the help of (3.38):

−T
∞∑

n=−∞

G0(iωn′ ,p′)D0(iωn − iωn′ ,p− p′)

=
1

2πi

∫
C

G0(iω,p
′)D0(iωn − iω,p− p′)f(ω)dω (3.60)

where f(ω) = 1

e
ω
T +1

is Fermi function, while the “stretched” integration
contour C here should be taken as shown in Fig. 3.8, encircling the
poles of the integrand at ω = εp and ω = iωn ±Ωq, which contribution
determines the value of the integral. Then, applying Cauchy theorem
we immediately obtain the result of the summation in (3.60) in the
following form:

−2Ωqf(εp′)

(εp′ − iωn)2 − Ω2
q

− f(iωn +Ωq)

iωn +Ωq − εp′
+

f(iωn − Ωq)

iωn − Ωq − εp′
(3.61)

Taking into account the equality:

f(iωn ± Ωq) =
1

ei
ωn
T e±

Ωq
T + 1

=
1

1− e±
Ωq
T

(3.62)

and substituting everything into (3.59) we obtain:

Σ(iωn,p) =
∑
p′

|ḡpp′ |2
{

fp′ + nq

z − εp′ +Ωq

+
1− fp′ + nq

iωn − εp′ − Ωq

}
(3.63)

where nq = 1

e
Ωq
T +1

Bose (Planck) distribution for phonons. For tem-
peratures T → 0, when Fermi-distribution becomes a step-function,
while Planckian function for phonons becomes zero, the first term in
figure brackets is finite only for εp′ < 0 and the second one — for
εp′ > 0. Correspondingly, in the limit of T = 0, after the substitution



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 90

90 Diagrammatics

iωn → ε+ iδsignεp′ , the contribution of the diagram of Fig. 3.1 can be
written in the standard form of zero-temperature technique:

Σ(ε,p) =
∑
p′

|ḡpp′ |2
{

fp′

ε− εp′ +Ωp−p′ − iδ
+

1− fp′

ε− εp′ − Ωp−p′ + iδ

}
(3.64)

In particular, for the imaginary part of self-energy at positive frequen-
cies we obtain:

ImΣ(ε > 0,p) = −π
∑
p′

|ḡpp′ |2(1− fp′)δ(ε− εp′ − Ωp−p′) (3.65)

Eq. (3.64) can be identically rewritten as:

Σ(ε,p) =

∫
dω
∑
p′

|ḡpp′ |2δ(ω − Ωp−p′)

×
{

fp′

ε− εp′ + ω − iδ
+

1− fp′

ε− εp′ − ω + iδ

}
(3.66)

Electron scattering by phonons actually takes place in a narrow energy
layer close to the Fermi level of the width of the order of double De-
bye frequency 2ΩD, and in typical metals we always have ΩD ≪ EF .
In this situation we can with high accuracy assume, that both initial
and final momenta p and p′ of the scattered electron are at the Fermi
surface. The basic idea of Eliashberg–McMillan approach is that we
can get rid of explicit dependence on momenta by averaging the ma-
trix element of electron–phonon interaction over surfaces of constant
energy, corresponding to initial and final p and p′, which in practice
reduces to averaging over corresponding Fermi surfaces, determined by
the equations ε(p) = 0 and ε(p′) = 0. This is achieved by the following
substitution (N(0) is the density of states at the Fermi level):

|ḡpp′ |2δ(ω − Ωp−p′) =⇒
1

N(0)

∑
p

1

N(0)

∑
p′

|ḡpp′ |2δ(ω − Ωp−p′)δ(εp)δ(εp′)

≡ 1

N(0)
α2(ω)F (ω) (3.67)

where we have introduced the standard definition of Eliashberg function
α2(ω), which reflects the strength of electron–phonon interaction, while
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F (ω) =
∑

q δ(ω−Ωq) is the phonon density of states. In principle, these
functions can be directly determined from some experiments [White
R.M., Geballe T.H. (1979)].

After the substitution like (3.67) the explicit dependence of self-
energy on momenta just disappears and in the following we, in fact, are
dealing with self-energy averaged over the real Fermi surface: Σ(ε) ≡

1
N(0)

∑
p δ(εp)Σ(ε,p), which is now written as:

Σ(ε) =

∫
dε′
∫
dωα2(ω)F (ω)

{
f(ε′)

ε− ε′ + ω − iδ
+

1− f(ε′)

ε− ε′ − ω + iδ

}
(3.68)

In the case of self-energy depending only on frequency (and not
on momentum) we can use the previously derived relations (2.50) and
(2.56) for the residue in the pole of the Green’s function and electron
mass renormalization:

Z−1 = 1− ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

(3.69)

m⋆ =
m

Z
= m

(
1− ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

)
(3.70)

and directly obtain from Eq. (3.68) (all integrals here are in infinite
limits):

− ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

=

∫
dε′
∫
dωα2(ω)F (ω)

{
f(ε′)

(ω − ε′ − iδ)2
+

1− f(ε′)

(ω + ε′ + iδ)2

}

= 2

∫ ∞

0

dω

ω
α2(ω)F (ω)

(3.71)

Introducing now the dimensionless electron–phonon coupling constant
of Eliashberg–McMillan theory as:

λ = 2

∫ ∞

0

dω

ω
α2(ω)F (ω) (3.72)

we immediately obtain the standard expression for electron mass renor-
malization due to interactions with phonons:

m⋆ = m(1 + λ) (3.73)
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The function α2(ω)F (ω) in the expression for Eliashberg coupling con-
stant of electron–phonon interaction (3.72) should be calculated accord-
ing to (3.67) or determined from experiments.

Using (3.67) we can rewrite (3.72) in the following form:

λ =
2

N(0)

∫ ∞

0

dω

ω

∑
p

∑
p′

|ḡpp′ |2 × δ(ω − Ωp−p′)δ(εp)δ(εp′) (3.74)

which gives the general recipe to calculate electron–phonon coupling
constant λ, which determines the Cooper pairing in Eliashberg–
McMillan theory (also for real metals).

Obviously, we can act similarly to (3.66), (3.67) in expression (3.64),
which is valid for finite temperatures, so that instead of (3.68) we get:

Σ(iωn) =

∫
dε′
∫ ∞

0

dωα2(ω)F (ω)

{
f(ε′) + n(ω)

iωn − ε′ + ω
+
1− f(ε′) + n(ω)

iωn − ε′ − ω

}
(3.75)

The above expressions in fact determine the structure of Eliashberg–
McMillan theory for superconductors with strong electron–phonon cou-
pling (cf. below in Chapter 5).

3.5 Self-energy and spectrum of phonons

Return now to the analysis of Dyson equations for the phonon Green’s
function (3.16), (3.17) and (3.18), which determine the phonon spec-
trum renormalization due to electron–phonon interaction in metals. Us-
ing the simplest approximation for the polarization operator of electron
gas, we can write:

g2Π0(ωk)=− 2ig2

(2π)4

∫
dEd3p

(E − ξ(p)+iδsignξ(p))(E+ω − ξ(p+ k)+iδSignξ(p+ k))
(3.76)

Above we have already calculated this polarization operator, obtaining
Eq. (2.25), so that we have:

g2Π0(ωk) = −g
2mpF
π2

{
1− ω

2vFk
ln

∣∣∣∣ω + vFk

ω − vFk

∣∣∣∣+ iπ|ω|
2vFk

θ

(
1− |ω|

vFk

)}
(3.77)
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According to Eq. (3.17), the phonon Green’s function in the system
with electron–phonon interaction is determined by Dyson equation of
the form:

D−1(ωk) = D−1
0 (ωk)− g2Π(ωk) (3.78)

Then, the phonon spectrum is determined by the equation D−1(ωk) =

0. As sound velocity is much smaller than Fermi velocity of electrons,
we may safely assume that ω ≪ vFk. Then, polarization operator, de-
termining the phonon self-energy, can be taken in static approximation
(ω = 0) and we can write:

g2Π0 ≈ −g
2mpF
π2

= −2ζ (3.79)

Then (3.78) reduces to:

D−1(ωk) = D−1
0 (ωk)− g2Π =

ω2 − c20k
2

c20k
2

+ 2ζ (3.80)

where c0 is “bare” sound velocity, while the renormalized phonon spec-
trum is written as ω = ck, where the sound velocity is defined as:

c2 = c20(1− 2ζ) (3.81)
We see that electron–phonon interaction leads to the “softening” of the
lattice (decrease of phonon frequency).

It may seem that Eq. (3.81) leads to the instability of the lattice (ω2 < 0!) for
ζ > 1/2. However, this instability is, in fact, unphysical. More elaborated analysis
[Ginzburg V.L., Kirzhnits D.A. (1982)] shows that we have to introduce physical
(renormalized) electron–phonon coupling constant λ, which can be expressed via
ζ by the following relation:

λ = ζ
ω2
0

ω2
=

ζ

1− 2ζ
(3.82)

Then it is clear that λ ≈ ζ only for ζ ≪ 1, while with the growth of ζ the
coupling constant λ just grows continuously, diverging only at “instability” point
itself. Thus, the condition of ζ < 1/2, in fact, does not lead to any limitation
of the value of λ. Note that the condition of ζ < 1/2, in some sense, is also
unphysical, as in the framework of the standard Fröhlih model of electron–phonon
interaction we have no rigorous way to define the “bare” coupling constant ζ, and
experimentally “observable” is only renormalized coupling λ. Using (3.82) we can
write inverse relation:

ζ =
λ

1 + 2λ
(3.83)

so that for any λ > 0 we, in fact, have ζ < 1/2.
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Physical meaning of “bare” parameters of the Fröhlih model, such as frequency
ω0(k) = c0k, is not clear at all, while the “real” spectrum of phonons ω(k) is
determined by Dyson equation with the account of electron–phonon coupling
and Green’s function:

D(ωk) =
ω2
0(k)

ω2 − ω2(k) + iδ
(3.84)

Then the physical constant of electron–phonon interaction can be defined
[Ginzburg V.L., Kirzhnits D.A. (1982)] by the following integral expression:

λ = ζ

∫ 2pF

0

dkk

2p2F

ω2
0(k)

ω2(k)
(3.85)

If we neglect the relatively weak dependence of Π0 on k and use (3.79), Eq. (3.85)
immediately gives (3.82). It is believed that this coupling constant λ enters e.g.
into the famous expression for transition temperature in BCS theory of supercon-
ductivity [Ginzburg V.L., Kirzhnits D.A. (1982)].

To find phonon damping we have to take into account the imaginary
part of polarization operator (3.77):

g2ImΠ0(ωk) = −πζ |ω|
kvF

(3.86)

Substituting this into Dyson equation for the phonon Green’s function
and seeking the solution for the spectrum as ω = ck + iγ, we find:

γ =
π

2
ζ
c2

vF
k =

π

2
ζ
c

vF
ω (3.87)

Though damping is proportional to frequency, it is in fact small in
comparison with Reω due to smallness of c/vF ∼

√
m/M .

In usual liquids and gases sound damping is of the order of:

γ ∼ ηω2

ρc3
(3.88)

where η is the viscosity of the medium and ρ its density. Thus we may say that
in electron–phonon system the effective viscosity of electron gas grows with the
decrease of frequency: η(ω) ∼ ω−1. Physically the effective viscosity here is due
to high density of electron–hole excitations with energy ω < ck, which are excited
by phonons.

In the previous chapter we have noted, that at q = 2pF polariza-
tion operator Π0(q0) has the logarithmic singularity in its derivative
∂Π0(q0)

∂q
|q=2pF

. This singularity becomes more strong in two-dimensional
system (d = 2) and, especially strong, for one-dimensional case (d = 1),
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Fig. 3.9 Qualitative behavior of static polarization operator (as a function of q) for the
free electron gas in different space dimensionalities.

when we have logarithmic singularity in polarization potential Π0(q0)

itself (A.M. Afanas’ev, Yu.M. Kagan, 1962):

Π0(q0) ∼ ln |q − 2pF | (3.89)

Qualitative behavior of Π0(q0) fro different dimensionalities is shown in
Fig. 3.9. The presence of these singularities leads to important anoma-
lies of physical properties. The essence of the previous discussion was
that the phonon Green’s function, with the account of electron–phonon
interaction, is given by:

D(ωq) =
1

D−1
0 (ωq)− g2Π0(ωq)

=
ω2
0(q)

ω2 − ω2
0(q)− g2ω2

0(q)Π0(ωq)
(3.90)

so that the phonon spectrum is:

ω2(q) = ω2
0(q)[1 + g2Π0(ωq)] (3.91)

Then it is clear that due to Π0(q0) → −∞ at q = 2pF (for d = 1)
the frequency of a phonon with q = 2pF becomes imaginary (ω2 < 0),
for any (even infinitesimally small) value of the coupling constant g.
This signifies an instability of the system, leading to the appearance
of spontaneous static deformation of the lattice (superstructure) with
the wave vector Q = 2pF (i.e. with period L = 2π

Q
). This is so-called

Peierls instability, which will be discussed in detail in the last chap-
ter.4 Even for d = 3, when we have singularity only in the derivative
4For d = 1 such instability leads to the appearance of the gap in an energy spectrum

of electrons at ±pF , i.e. to the metal-insulator transition.
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of polarization operator, there appears an anomaly in the phonon spec-
trum at q = 2pF (W. Kohn, 1959) (so-called Kohn anomaly, for d = 1

it is sometimes called the “giant” Kohn anomaly). These anomalies
are directly observed in phonon spectra of metals in experiments with
inelastic neutron scattering.

Up to now we have dealt only with isotropic electron spectrum of the
type of ε(p) = p2

2m∗ . In real materials this spectrum may be anisotropic,
and Fermi surfaces are not spheres (d = 3) or circles (d = 2). In general,
the topology of the Fermi surface can be rather complicated. Especially
interesting is the case, when flat parts (sometimes called “patches”)
appear on the Fermi surface. For example, for d = 2 and simple square
lattice, the tight binding electron spectrum (with the account of only
nearest neighbor transfers) takes the form:

ε(p)− µ = −2t(cos pxa+ cos pya)− µ (3.92)

where t is transfer integral between nearest neighbors. Curves of con-
stant energy inside the Brillouin zone, corresponding to this spectrum
for different values of chemical potential µ (electron concentration), are
shown in Fig. 3.10. In particular case of µ = 0 (half-filled band, one elec-
tron per lattice site) we have the Fermi surface in the form of the plane

Fig. 3.10 Curves of constant energy in the Brillouin zone of the square lattice, corre-
sponding to the simple tight-binding spectrum with only nearest neighbors transfers.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 97

Electron–Phonon Interaction 97

square. Direct calculation show, that in this case Π0(q0) for q →
(
π
a
, π
a

)
possess a singularity of “one-dimensional” type: Π0(q0) ∼ ln |q−Q|,
where Q =

(
π
a
, π
a

)
, which naturally leads to the “giant” Kohn anomaly

of the phonon spectrum and structural transition of the Peierls type
(period doubling).

In general case, a special property of the Fermi surface is needed
for the appearance of such “giant” anomalies, which is called “nesting”.
Nesting property of the Fermi surface means that certain parts of the
Fermi surface are congruent (completely coincide with each other) after
the translation by some specific vector Q in momentum space (vector
of nesting). For the square Fermi surface of the tight-binding spectrum
at half-filling Q =

(
π
a
, π
a

)
, but other, more general, situations are also

possible. Mathematically it is expressed by the following property of
electronic spectrum:

ε(p+Q)− µ = −ε(p) + µ (3.93)

which is usually called the nesting condition. We can see that the spec-
trum given by Eq. (3.92) satisfies this condition for µ = 0 (half-filled
band) and Q =

(
π
a
, π
a

)
. Similarly, this condition is satisfied for the

tight-binding spectrum for the simple cubic lattice (d = 3), analogous
to (3.92):

ε(p)− µ = −2t(cos pxa+ cos pya+ cos pza)− µ (3.94)

for µ = 0 and Q =
(
π
a
, π
a
, π
a

)
. Fermi surface in this case possess nesting

property, though there are no “flat” parts.
In all cases with nesting, calculation of polarization operator shows

the divergence at q = Q, leading to the appearance of the giant Kohn
anomaly in phonon spectrum and lattice instability (structural phase
transition, leading to static superstructure with wave vector Q).

3.6 Plasma model

Let us consider now the simplest “plasma” model of a metal, where
both phonons and electron phonon interactions appear self-consistently
[Schrieffer J.R. (1964); Ginzburg V.L., Kirzhnits D.A. (1982)]. Start
with plasma consisting of electrons and ions, interacting via (non-
screened) Coulomb forces. In first approximation, collective oscillations
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in this system are just independent plasma oscillations of electrons and
ions. We shall show how the account of screening allows to introduce
the “usual” phonons and obtain the coherent description of electron–
phonon interaction.

Let us write the Hamiltonian of electron–ion plasma as:

H =
∑
k

Eka
+
k ak +

∑
qλ

Ωqλ

(
b+qλbqλ +

1

2

)
+
∑
kk′λ

gkk′λa
+
k ak′

(
bk−k′λ + b+k′−kλ

)
+

1

2

∑
pkq

Vqa
+
p+qa

+
k−qakap (3.95)

where Vq = 4πe2

q2
and Ek is the energy of (Bloch) electron, define by the

solution of Schroedinger equation:{
k2

2m
+
∑
n

Vei(r−Rn) + UH(r)

}
ψk(r) = Ekψk(r) (3.96)

where Vei(r−Rn) is the potential of electron–ion interaction, UH(r) —
Hartree contribution from electron–electron interaction, Ωqλ — “bare”
frequencies of ion plasma oscillations.

In the simplest possible jellium model we assume ions to form a
homogeneous structureless medium, so that:

Ω2
qλ =

4πn(Ze)2

M
(3.97)

where n is ion density, Z-ion charge, M -ion mass. In jellium model this
is the only (longitudinal) mode of ion oscillations.5

The “bare” electron–phonon coupling gkk′λ is defined as:

gkk′λ = −
(

n

MΩ2
kλ

)1/2

< k′|∇iVei|k > eqλ, (q = k− k′) (3.99)

5In crystals there exist three branches of ion oscillations, which we number as λ = 1, 2, 3.
Two branches are transverse, while the “bare” longitudinal branch represents the optical
plasma oscillations. There is a general sum rule:∑

λ

Ω2
qλ =

4πn(Ze)2

M
(3.98)
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where eqλ is polarization vector of “bare” phonons. It can be easily
seen that in the simplest jellium type model the “bare” electron–phonon
coupling is g2kk′λ possess Coulomb type singularity:

g2kk′λ ∼ 1

(k− k′)2
(3.100)

Now we have to make renormalizations, accounting for screening and
regularizing such singularities. For Coulomb interaction between elec-
trons we can just use the RPA expression:

V(qω) = 4πe2

q2ϵe(qω)
(3.101)

where

ϵe(qω) = 1− 4πe2

q2
Π0(qω) (3.102)

is the dielectric function of free electrons, corresponding to diagrams
shown in Fig. 2.4(b). In a similar way, as shown by diagrams of Fig. 3.11,
we may describe the screening of electron–phonon vertex:

g̃(q, λ) = g + gVqΠ0 + gVqΠ0VqΠ0 + ... =
g(q, λ)

ϵe(qω)
(3.103)

Fig. 3.11 Screening of electron–phonon vertex.

To define the “physical” phonon spectrum we can write Dyson equation,
shown in Fig. 3.12:
D−1(qλ, ω) = D−1

0 (qλ, ω)− g2Π0(qω)− g2Π0(qω)VqΠ0(qω)− ...

= D−1
0 (qλ, ω)− g2(q, λ)

Vq

(
1

ϵe(qω)
− 1

)
(3.104)
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Fig. 3.12 Dyson equation for phonon Green’s function in generalized jellium model.

where

D0(qλ, ω) =
Ω2

qλ

ω2 − Ω2
qλ + iδ

(3.105)

Then, from (3.102), (3.104) and (3.105) we immediately obtain:

D(qλ, ω) =
Ω2

qλ

ω2 − g2(q,λ)Ω2
qλ

Vqϵe(q0)
− Ω2

qλ

[
1− g2(q,λ)

Vq

]
+ iδ

(3.106)

Here we neglected frequency dependence of ϵe(qω), as this is unimpor-
tant for small ω of the order of phonon frequencies.

For a simple jellium model from (3.97) and (3.99) we can easily
obtain the following identity :

g2(q, λ)

Vq

= 1 (3.107)

In this case (3.106) reduces to:

D(qλ, ω) =
Ω2

qλ

ω2 − Ω2
qλ

ϵe(q0)
+ iδ

(3.108)

The poles of this expression define the frequencies of renormalized
(“physical”) phonons (D. Bohm, T. Staver, 1950):

ω2(qλ) =
Ω2

qλ

ϵe(q0)
≈

Ω2
qλ

1 +
κ2
D

q2

=
mZ

3M
v2F q

2 (3.109)
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where we have used (2.29) and (2.30), with electron density equal to
Zn (charge neutrality!). Now we see that renormalized phonons in
jellium model acquire the acoustical dispersion with sound velocity c =(
mZ
3M

)1/2
vF . This result can also be obtained in a more general case,

when the potential Vei(q) differs from purely Coulomb form, as for small
q the charge neutrality condition still requires Vei(q) to be equal to
Ze2/q2.

In this model we can also determine the full (effective) interelectron
interaction, which is necessary e.g. for calculations of superconducting
properties of metals. This interaction can be described by diagrams
shown in Fig. 3.13 and is given by:

Veff (qω) =
4πe2

q2ϵe(qω)
+
g2(q, λ)

ϵe(q0)

Ω2
qλ

ω − ω2(qλ)
(3.110)

where ω2(qλ) is the spectrum of renormalized phonons, following from
(3.104):

ω2(q, λ) = Ω2
qλ

{
1− g2(q, λ)

Vq

(
1− 1

ϵe(q0)

)}
(3.111)

Fig. 3.13 Effective interaction between electrons in metals.

In jellium model Veff (qω) reduces to:

Veff (qω) =
4πe2

q2ϵeff (qω)
(3.112)

where ϵeff (qω) is full dielectric function:

ϵeff (qω) = ϵe(qω)−
Ω2

qλ

ω2
(3.113)

which includes both electron and ion contributions. In more general
(than jellium) case, interelectron interaction also reduces to (3.112),
but with ϵeff (qω) given by:

ϵeff (qω) = ϵe(qω)−
g2(q, λ)

Vq

Ω2
qλ

ω2 − Ω2
qλ

[
1− g2(q,λ)

Vq

] (3.114)
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Stability of the lattice requires ω2(qλ) > 0, so that from (3.111) we get:

1 +
g2(qλ)

Vq

1− ϵe(q0)

ϵe(q0)
> 0 (3.115)

These expressions allow to determine conditions, when this effective
interaction may become attractive, in particular for q ∼ 2pF , which
is necessary for the appearance of superconductivity [Ginzburg V.L.,
Kirzhnits D.A. (1982)]. Of course, in real metals we need something
more, e.g. we have to overcome somehow limitations due to our use of
RPA.

Eq. (3.111) determining the phonon spectrum can be written in more general
form:

ω2(qλ) = Ω2
qλ

{
1 + g2(q, λ)χ(q, ω(qλ))

}
(3.116)

where we have introduced the generalized susceptibility of electronic subsystem,
expressed via appropriate dielectric function as:

χe(qω) =
1

Vq

(
1

ϵe(qω)
− 1

)
(3.117)

Here we also take into account the ω-dependence, neglected above in the adiabatic
approximation. Calculations of non-adiabatic corrections should be done solving
Eq. (3.116). It is not difficult to convince oneself, that due to small velocities of
ions (compared to Fermi velocity of electrons), the account of frequency depen-
dence of χe(qω) will lead to small change of phonon frequencies of the order of
∼
√

m
M

.
It is clear now, that the “softening” of the frequencies of real phonons as

well as lattice instability can be expressed via the changes of effective inter-ion
interaction, which is in turn connected with the change of static dielectric function
of electrons. This situation is typical for quasi-one-dimensional conductors (and
also in the case of nesting for d = 2, 3), when, as noted above, both polarization
operator and ϵe(qω) at T = 0 possess logarithmic singularity and diverge at
q = 2pF . In this case, both phonon frequency and Fourier-component of inter-ion
interaction at q = 2pF may become zero.

3.7 Phonons and fluctuations

Let us consider, following [Levitov L.S., Shitov A.V. (2003)], correlation
function of atomic displacements:

CT (r) =
∑
αβ

< uα(r)uβ(0) > (3.118)
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and study its asymptotic behavior at large distances r → ∞. Correla-
tion function (3.118) can be expressed via the Matsubara Green’s func-
tion of phonons. We only have to take into account that the standard
phonon Green’s function [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)] defines, in fact, the correlator of gradients of atomic dis-
placements, which allows convenient introduction of electron–phonon
interaction Hamiltonian. Green’s function of atomic displacements can
be obtained by dividing the standard phonon Green’s function by ρω2

k

(where ρ is the density of continuous medium of ions) and changing the
sign.6 Then we obtain:

CT (r) =
T

ρ

∑
m

∫
ddk

(2π)d
eikr

ω2
m + ω2

k

(3.119)

where ωk is the phonon spectrum, which we assume here to be acoustic.
Summation over (even) Matsubara frequencies in (3.119) can be done
using the identity:

∞∑
m=−∞

1

m2 + a2
=
π

a
cthπa (3.120)

Then we get:

CT (r) =
1

2ρ

∫
ddk

(2π)d
1

ωk

cth
ωk

2T
eikr (3.121)

From these expression we can separate contributions of thermal and
quantum (zero-point, T = 0) fluctuations (displacements) using the
formula:

1

2
cth

ω

2T
=

1

2
+ nB(ω) (3.122)

where nB(ω) =
1

e
ω
T −1

is Bose distribution. Obviously, we have nB → 0

for T → 0, so that the appropriate contribution defines thermal fluctu-
ations.7

Thus, we can write two contributions to our correlator:

C0(r) = CT=0(r) =
1

2ρ

∫
ddk

(2π)d
eikr

ωk

(3.123)

6It is immediately seen if we compare Eqs. (7.9), (7.10) and (7.13) of [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)].
7Note, that all these expressions can be derived without the use of Matsubara functions,

just performing Gibbs averaging of operators of atomic displacements.
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∆C(r, T ) =
1

ρ

∫
ddk

(2π)d
nB(ωk)

ωk

eikr (3.124)

We are interested in the behavior of these functions for r → ∞. Leading
contributions to this asymptotics of ∆C(r, T ) came only from very small
k ∼ 1

r
, corresponding to ωk ≪ T . Thus we can approximate Bose

distribution here as nB(ωk) ≈ T
ωk

and write:

∆C(r, T ) ≈ T

ρ

∫
ddk

(2π)d
eikr

ω2
k

(3.125)

It is clear that this expression directly follows from equipartition law of
classical statistics [Sadovskii M.V. (2019a)].

Calculate now these correlators for different spatial dimensionalities.
Consider first quantum correlations described by C0(r).

For d = 3 we have:

C
(3)
0 (r) =

4π

(2π)3ρ

∫ ∞

0

dkk2

ck

sin kr

kr
∼ 1

4π2ρcr2
(3.126)

where we have to cut-off divergence at the upper limit at k ∼ 1
r
, as for

larger values of k integrand oscillations just compensate each other.
For d = 2:

C
(2)
0 (r) =

1

4πρc

∫ 2π

0

dθ

2π

∫ ∞

0

dkeikr cos θ =
1

4πρc

∫ ∞

0

dkJ0(kr) =
1

4πρcr
(3.127)

where J0(r) is appropriate Bessel function.
Finally, for d = 1 we obtain:

C
(1)
0 (r) =

1

4πρc

∫ ∞

−∞

dk

|k|
eikr =

1

2πρc

∫ ∞

0

dk

k
cos kr =

1

2πρc
ln
L

r
(3.128)

In the last integration (similarly to (3.126)) we again have to cut-off
upper limit logarithmic divergence at k ∼ 1

r
, and at k ∼ 1

L
for lower

limit (L is the size of the system).
Consider now thermal fluctuations — ∆C(r, T ).
For d = 3 we have:

∆C
(3)
T (r) =

T

2π2ρc2r

∫ ∞

0

dk

k
sin kr =

T

4πρc2r
(3.129)

For d = 2:

∆C
(2)
T (r) =

T

(2π)2ρc2

∫ 2π

0

dθ

∫ ∞

0

dk

k
eikr cos θ (3.130)
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This integral also diverges and we have to introduce a cut-off, similarly
to the case of C1(r). Then we get:

∆C
(2)
T (r) =

T

2πρc2
ln
L

r
(3.131)

For d = 1, in a similar way we obtain:

∆C
(1)
T (r) =

T

πρc2

∫ ∞

0

dk

k2
cos kr = ConstL (3.132)

Our calculations are summarized in Table 3.1.
Table 3.1 Asymptotic (r → ∞)
behavior of correlation functions.

d C0(r) ∆CT (r)

3 ∼ 1
r2

∼ T
r

2 ∼ 1
r

∼ T ln L
r

1 ∼ ln L
r

∼ TL

These results allow us to study the problem of possible destruction of
the long-range (crystalline here!) order by quantum and thermal fluctu-
ations (atomic displacements). We only have to look at the asymptotic
behavior of C(r) for r → ∞. If we have C(r) → 0, long-range order
(crystalline lattice) survives, as even rather large initial displacement
u(0) of an atom from its average position does not lead to a strong
change of u(r), at some far away position. However, if C(r) → ∞, this
means that the long-range order is destroyed. This situation is typical
for quantum fluctuations for d = 1, and for thermal fluctuations for
d = 1, 2!
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Chapter 4

Electrons in Disordered Systems

4.1 Diagram technique for “impurity” scattering

Consider an electron moving in a random potential field, created by Ni

scatterers (“impurities”), which are randomly placed in space with some
fixed density (concentration) ρi = Ni

V
, where V is the system volume.

Total potential (random field!), created by these impurities is given by:

V (r) =
Ni∑
j=1

v(r−Rj) (4.1)

where v(r−Rj) is the potential of a single scatterer, situated at the
(random!) point Rj . Absolutely random distribution of scatterers cor-
responds to the following distribution function in coordinate space:

P{Rj} = V −Ni (4.2)

For some given configuration of scatterers, electronic Green’s function
satisfies the following equation:{

i~
∂

∂t
+

~2

2m
∇2 −

Ni∑
j=1

v(r−Rj)

}
G(rr′t{Rj}) = δ(r− r′)δ(t)

(4.3)
and is functionally dependent on all Rj . Usually, in the theory of disor-
dered systems it is assumed [Lifshits I.M., Gredeskul S.A., Pastur L.A.
(1988)], that (experimentally measurable) physical characteristics of a
system are determined as averages over the ensemble of samples with all
possible configurations of “impurities” (impurity averaging). Thus, we
shall be mainly interested in studying of the averaged Green’s function,

107
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defined as:

G(r− r′, t) =< G(rr′t) >=
1

V Ni

∫
...

∫ Ni∏
j=1

dRjG(rr
′t{Rj}) (4.4)

Assuming the scattering potential to be weak enough, we may develop
perturbation theory, writing down the second-quantized Hamiltonian
for electron interaction with (random) field (4.1) as:

Hint =

∫
drψ+(r)V (r)ψ(r) (4.5)

This perturbation theory (over “external” field [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]) is very simple, and appropriate expan-
sion for the Green’s function (4.3) has the well known form:

G(1, 1′) = G0(1, 1
′) +

∫
d2G0(1, 2)V (2)G0(2, 1

′)

+

∫
d2d3G0(1, 2)V (2)G0(2, 3)V (3)G0(3, 1

′) + ... (4.6)

where 1 = (r, t), 1′ = (r′, t′) etc. Graphically this expansion is shown
in Fig. 4.1. But we are interested in the averaged Green’s function
< G(rr′t) >, defined in (4.4). Then, in the process of averaging of
the series given by (4.6) over the distribution function (4.2), we need to
calculate the following averages:

< V (2) >, < V (2)V (3) >, < V (2)V (3)V (4) >, ... (4.7)

Fig. 4.1 Electron scattering by fixed configuration of scatterers.

For random impurities (the random field (4.1) distributed according to
(4.2)) all these averages can be calculated explicitly. First of all we
introduce the Fourier representation:

V (r) =
∑
p

∑
j

v(p)eip(r−Rj) (4.8)



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 109

Electrons in Disordered Systems 109

where v(p) is the Fourier transform of the potential of a single scatterer,
v(−p) = v∗(p). For simplicity, we mostly assume this potential to be
point-like, so that v(p) = v = const. This limitation is actually not
very important.

Using (4.8), we reduce our task of calculating the averages of the
type of (4.7) to calculations of:

Ms(p1,p2, ...,ps) =< ρ(p1)ρ(p2)...ρ(ps) >

≡
〈∑

l1

∑
l2

...
∑
ls

exp(−i
∑
j

pjRlj )

〉
(4.9)

It is convenient to consider slightly different (actually more general
and “realistic”) version of our model. Let Ni scatterers (impurities) be
distributed randomly over N sites of a regular (e.g. simple cubic) lattice.
Then, instead of (dimensional) volume density ρi, introduced above, we
can introduce dimensionless concentration of impurities ρ = Ni

N
, which

may change in the interval between 0 and 1. Then, the averaging of the
arbitrary sum over the impurity positions is obviously calculated as:〈∑

li

...

〉
→ Ni

N

∑
l

... = ρ

∫
dRl

a3
... = ρi

∫
dRl... (4.10)

where the second sum is already done over all sites of the lattice, and a
denotes the lattice spacing. Here we also have taken into account that
the dimensional (volume) density of scatterers ρi = Ni

V
= Ni

Na3 = ρa−3.
Transition to the “continuous” model, discussed above, is obtained as
the limit of a → 0, so that the fixed value of ρ corresponds to the
limit of ρi → ∞. At the same time, if we fix ρi, the limit of a → 0

gives ρ = ρia
3 → 0. If we put (as is done very often) the system

volume V = 1, we have N = a−3, and the difference in definitions of
concentrations just vanish. Thus, in the future discussion we shall use
the single notation of ρ.

The following calculations are more or less simple, we need only
to separate accurately the special cases, when summation (impurity)
indices in (4.9) coincide. Then, direct calculations (for the lattice model)
show:

M1(p) =

〈∑
l

exp(−ipRl)

〉
= ρ

∫
dRe−ipR = (2π)3ρδ(p) (4.11)
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M2(p1,p2)=

〈∑
l

exp[−i(p1 + p2)Rl]+
∑
l ̸=m

exp[−(p1Rl + p2Rm)]

〉
= (2π)3ρδ(p1 + p2) + ρ2[(2π)3δ(p1)(2π)

3δ(p2)− (2π)3δ(p1 + p2)]

= (2π)6ρ2δ(p1)δ(p2) + (2π)3(ρ− ρ2)δ(p1 + p2)

≡< ρ(p1) >c< ρ(p2) >c + < ρ(p1)ρ(p2)) >c (4.12)
where, by definition, we have introduced cumulant averages < ... >c.1
Similarly we get:

M3(p1,p2,p3) =< ρ(p1) >c< ρ(p2) >c< ρ(p3) >c

+ < ρ(p1) >c< ρ(p2)ρ(p3) >c + < ρ(p2) >c< ρ(p1)ρ(p3) >c

+ < ρ(p3) >c< ρ(p1)ρ(p2) >c + < ρ(p1)ρ(p2)ρ(p3) >c (4.14)
Finally, after the averaging of an expansion in (4.6) we obtain the fol-
lowing elements of the new (averaged) perturbation series:

v < ρ(p1) >c= (2π)3ρvδ(p1) (a) (4.15)

v2 < ρ(p1)ρ(p2) >c= (2π)3(ρ− ρ2)v2δ(p1 + p2) (b) (4.16)

v3 < ρ(p1)ρ(p2)ρ(p3) >c= (2π)3v3(ρ−3ρ2+2ρ3)δ(p1+p2+p3) (c)

(4.17)
v4 < ρ(p1)ρ(p2)ρ(p3)ρ(p4) >c= (2π)3v4(ρ− 7ρ2 + 12ρ3 − 6ρ4)

×δ(p1 + p2 + p3 + p4) (d) (4.18)
which can be represented diagrammatically as shown in Figs. 4.2(a–d).
Cumulants of higher orders are even more awkward.

4.2 Single-electron Green’s function

The main conclusion of the previous discussion is that diagrammatic ex-
pansion for the single-electron Green’s function, averaged over random
configurations of scatterers (impurities), can be represented by diagrams
shown in Fig. 4.3. Sometimes it is said that interaction lines (denot-
ing interaction with impurities) are grouped into “bunches” attached to
“crosses” (impurity diagram technique (S.F. Edwards, 1958)).
1Formal correspondence between the average moments and cumulants is given by:⟨

exp
∑
j

αjρ(pj)

⟩
= exp

⟨
exp

∑
j

αjρ(pj)

− 1

⟩
c

(4.13)
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Fig. 4.2 Diagrams representing different cumulants in the averaged perturbation series.

Fig. 4.3 Diagrammatic expansion for the averaged Green’s function of an electron in a
random field of impurities.

For small concentration of impurities (ρ → 0) (or in the “continu-
ous” model) we may limit ourselves to terms linear in ρ. Then, assuming
also the smallness of the potential (v → 0), we may consider only con-
tributions from (4.15), (4.16), or, accordingly, diagrams (cumulants),
shown in Figs. 4.2(a,b). Note that the contribution of (4.15) is trivial
and reduces to a constant, which only changes the origin of the energy
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axis by ρv (or, equivalently, just renormalizes the chemical potential).2
The second cumulant (Fig. 4.2(b)) reduces now to (2π)3ρv2δ(p1 +p2).
Then, the expansion for the averaged Green’s function reduces to the
sum of diagrams, shown in Fig. 4.4. This case corresponds to the sim-
plest “Wick-like” factorization of random field correlators (4.7):

< V (1)V (2) ≯= 0

< V (1) >= 0 < V (1)V (2)V (3) >= 0

– etc., for all odd products,
< V (1)V (2)V (3)V (4) >=< V (1)V (2) >< V (3)V (4) >

+ < V (1)V (4) >< V (2)V (3) >

– etc., for all even products. (4.19)

Fig. 4.4 Diagrammatic expansion of the averaged Green’s function in the Gaussian
random field.

From mathematical (statistical) point of view this means that we are
dealing with the Gaussian random field.3

2Thus, we may just put < V (2) >= 0 in (4.7) and calculate energies with respect to
the average level of the random field. In fact, if we limit ourselves to the self-energy
given by diagram of Fig. 4.2(a), we obtain Σ = ρv(0) = ρ

∫
drv(r) and, accordingly, the

Green’s function is: G(εnp) =
1

iεn−ξ(p)−ρv(0)
, which proves our statement.

3It can be shown that the same result follows from the sum of all perturbation series for
the “continuous” model of impurity distribution in the formal limit of ρi → ∞, v2 → 0,
with ρiv

2 → const!
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For the problem under consideration the “two-point” correlator of
the random field in coordinate space has the following form:

< V (r1)V (r2) > = (2π)3ρv2
∫

ddp1
(2π)3

eip1r1

∫
ddp2
(2π)3

eip2r2δ(p1 + p2)

= ρv2
∫

ddp1
(2π)3

eip1(r1−r2) = ρv2δ(r1 − r2) (4.20)

Thus, it is usually said, that here we are dealing with the problem of
an electron moving in the Gaussian random field with “white-noise”
correlation.

Expansion shown in Fig. 4.3 can be written in the form of Dyson
equation:

G(1, 1′) = G0(1, 1
′) +

∫
d2d3G0(1, 2)Σ(2, 3)G(3, 1

′) (4.21)

or in momentum space (Matsubara technique):4

G(pεn) = G0(pεn) +G0(pεn)Σ(pεn)G(pεn) (4.22)

Fig. 4.5 Diagrams for electron self-energy in a random field.

where the self-energy part Σ(1, 2) is given by diagrams, shown in
Fig. 4.5. Consider the contribution of the first diagram of Fig. 4.5,
corresponding, as we shall see shortly, to the first-order Born approxi-
mation for impurity scattering (1BA) (v(−p) = v∗(p)):

Σ1BA(εnp)=ρ
∑
q

|v(q)|2 1

iεn − ξ(p− q)
=ρ
∑
p′

|v(p− p′)|2 1

iεn − ξ(p′)

(4.23)
where, as usual, ξ(p) = εp − µ ≈ vF (|p| − pF ).
4The averaged Green’s function < G(rr′εn) >= G(r− r′εn) depends only on |r− r′| —

the averaging “restores” translational invariance.
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In metals we have typically EF ∼ 7eV ∼ 80000K, and in most
cases we are interested in studying electrons close enough to the Fermi
level EF ≈ µ. For example, at temperatures T < 800K we have
T
EF

< 10−2. Thus, we only need to know Σ1BA(εnp) for |p| ∼ pF and5

|iεn → ε+ isign(εn)δ| ≪ EF . From the previous analysis of screening,
it is clear that the impurity potential is also screened, so that in fact
v(p− p′) is rather smooth function on the interval of 0 < |p− p′| <
2pF . These facts will help us in calculations to follow.

We have:

Σ1BA(p, ε+ isign(εn)δ) = ρ
∑
p′

|v(p− p′)|2 1

ε− ξ(p′) + isign(εn)δ

= ρ
∑
p′

|v(p− p′)|2
{

ε− ξ(p′)

(ε− ξ(p′))2 + δ2
− isign(εn)πδ(ε− ξ(p′))

}
(4.24)

As |v(p− p′)|2 changes rather slowly and we are interested in |ε −
ξ(p′)| ≪ EF ≈ µ, we have qualitative picture shown in Fig. 4.6. Due
to the fact that ε−ξ(p′)

(ε−ξ(p′))2+δ2
is an odd function of ε − ξ(p′), we have

ReΣ1BA(pεn) ≈ 0.6 The (4.24) is reduced to purely imaginary contri-
bution:

Σ1BA(pε) = −iπsign(εn)
∑
p′

ρ|v(p− p′)|2δ(ε− ξ(p′)) ≈ −i εn
|εn|

1

2τp

≡ −i εn
|εn|

γp (4.25)

where, putting ε ≈ ξ(p) (close to the pole!), we have introduced
1

τp
= 2γp = 2π

∑
p′

ρ|v(p− p′)|2δ(ξ(p)− ξ(p′)) (4.26)

— the scattering rate of electrons due to impurities, calculated in Born
approximation (Fermi “golden rule”).
5Note that finally we have to perform analytic continuation to the real axis from the

upper half-plane, where εn > 0, i.e. iεn → ε + iδ, or from the lower half-plane, where
εn < 0, i.e. iεn → ε− iδ.
6Strictly speaking, the integral over p′ in the first term of (4.24) can be split in two:

one over p′, which are from pF , and the other, over p′ close to pF . The limits in the
second integral can be taken symmetric in p′ − pF , leading to the integral being zero (if
we neglect the deviations from v(p− p′) — behavior of the spectrum close to pF ). The
first integral gives just a real constant, which again can be included into renormalized
chemical potential.
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Fig. 4.6 (a) Comparison of ρ|v(p)|2 and ε−εp+µ

(ε−εp+µ)2+δ2
, entering ReΣ1BA(pε).

(b) Comparison of ρ|v(p)|2 and δ
(ε−εp+µ)2+δ2

, entering ImΣ1BA(pε).

If, for simplicity, from the very beginning we introduce point-like im-
purity potential v(p) = v, and linearized spectrum for electrons close
to the Fermi surface, all calculations become much simpler and we im-
mediately obtain:

Σ1BA(pεn) = ρv2
∑
p′

1

iεn − ξ(p′)
≈ −ρv2νF

∫ ∞

−∞
dξ
iεn + ξ

ε2n + ξ2

= −iρv2νFarctg
ξ

εn

∣∣∣∣∞
−∞

εn
|εn|

= −i εn
|εn|

πρv2νF (4.27)

which, in fact, coincides with (4.25), and

γp = πρv2νF (4.28)

is a constant, determined by the impurity potential and electron density
of states at the Fermi level.

Finally, in this approximation, the averaged single-electron Green’s
function can be written as:

G1BA(pεn) =
1

iεn − ξ(p) + iγpsignεn
(4.29)

which, after the continuation iεn → z, gives:

G1BA(pz) =

{
1

z−ξ(p)+iγp
Imz > 0

1
z−ξ(p)−iγp

Imz < 0
(4.30)
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which for z → ε ± iδ (where δ → +0) defines GR(A)(pε). Accord-
ing to general analyticity properties [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], G1BA(pz) possess a cut along the real axis
of z.

After an elementary Fourier transformation, we obtain:

GR(pt) =

∫
dε

2π

e−i(ε+iδ)t

ε− ξ(p) + iγp
= −iθ(t)e−iξ(p)te−γpt (4.31)

and similarly:

GR(rε) =

∫
d3p

(2π)3
eipr

ε− ξ(p) + iγp
= −πνF

pF r
eipF re−r/2lp (4.32)

where lp = vF τp.7 Thus, γp = 1
2τp

determines “damping” of the aver-
aged Green’s function both in time and space (on the length lp, similar
to the mean free path).

Spectral density, corresponding to (4.30), has the form of a simple
Lorentzian with the width γp:

A(pε) = − 1

π
ImGR(pε) =

1

π

γp
(ε− ξ(p))2 + γ2

p

(4.34)

which naturally transforms to A(pε) = δ(ε − ξ(p)) for the gas of free
electrons for γp → 0.

Let us analyze now the role of neglected diagrams and possible gen-
eralizations.

We can introduce the “full” Born approximation, which is exact in the lowest
order in impurity concentration ρ, and taking into account the multiple-scattering
of an electron by a single impurity. Appropriate diagrams for the self-energy are
shown in Fig. 4.7(a). Analytically:

ΣFBA(pεn) = tpp(εn) (4.35)
7We can write (4.32) as (use p− pF = ξ/vF ):

GR(rε) =
νF

pF r

∫ ∞

−∞
dξ

sin pr

ε− ξ + i
2τp

=
νF

2ipF r

∫ ∞

−∞
dξ

exp(ipF r + i ξ
vF
r)− exp(−ipF r − i ξ

vF
r)

ε− ξ + i
2τp

= −
πνF

pF r
eipF re

− r
2vF τp

(4.33)
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which reduces to the diagonal element of the scattering matrix tpp′ , which is de-
termined by the equation, shown diagrammatically in Fig. 4.7(b), or analytically:

tpp′(εn) = ρv(0)δpp′ +
∑
p′′

v(p− p′′)G0(p
′′)tp′′p(εn) (4.36)

Here again we have great simplifications for electrons close to the Fermi surface.
The real part of the diagonal element of t-matrix tpp(iεn) is practically constant
for |p| ∼ pF and can be included in µ. Then we only have to analyze Imtpp(iεn).
Using the optical theorem of quantum theory of scattering8

Imtpp = Im
∑
p′

t+pp′G0(p
′)tp′p (4.38)

we have:

ImΣFBA(pεn) = Imtpp(εn) = Im
∑
p′

|tpp′ |2

iεn − ξ(p′)

= −signεnπ
∑
p′

|tpp′ |2δ(ε− ξ(p′)) (4.39)

where in the last equality iεn → ε + iδsignεn. Eq. (4.39) coincides with (4.25),
where we substitute ρ|v(p− p′)|2 by |tpp′ |2:

ΣFBA(pεn) = −isignεn
1

2τp
= −isignεnγp (4.40)

where
1

τp
= 2γp = 2π

∑
p′

|tpp′ |2δ(ξ(p)− ξ(p′)) (4.41)

If in Eq. (4.26) we replace ρ|v(p− p′)|2 by |tpp′ |2, we get precisely this result.
In this sense, we may limit ourselves by the second diagram of Fig. 4.7(a) only,
as was done above, but assume that v(p− p′) is just the matrix element of the
single-impurity scattering matrix.

Now let us consider the self-consistent Born approximation, which is achieved
by “dressing” internal electronic lines in self-energy diagrams, as shown in
Fig. 4.7(c). Analytically:

ΣSCBA(pεn) = ρv(0)δpp +
∑
p′

v(p− p′)G(p′εn)tp′p (4.42)

8From (4.36) we have: t = v + vG0t, v+ = v, v = −t+G+
0 v + t+ t = v + (t+G0t −

t+G+
0 vG0t), so that due to Hermiticity of v and t+G+

0 vG0t, we get:

Imtpp = Im < p|t+G0t|p >= Im
∑
p′

t+
pp′G0tp′p (4.37)

which reduces to (4.38).
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Fig. 4.7 (a) Diagrams for the self-energy, accounting for the multiple scattering by a
single impurity. (b) Equation for t-matrix. (c) Diagrams for self-energy in self-consistent
approximation, accounting for multiple scattering.

where the difference with (4.36) is in replacement of Green’s function G0 by:

G(pεn) =
1

iεn − ξ(p)− Σ(pεn)
(4.43)

so that, in fact, we obtain self-consistency procedure, determining self-energy part
(Green’s function).

After that, we can repeat our arguments. Using the weak energy dependence
of tpp for |p| ≈ pF and ε ≪ EF , and assuming weak enough scattering, so that
|ΣSCBA| ≪ EF , we again obtain the result of the type of (4.39). Again only ImΣ
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is relevant, as ReΣ can be “hidden” in the chemical potential µ. Finally we get:

ImΣSCBA(pεn) = Imtpp = Im
∑
p′

|tpp′ |2

iεn − ξ(p′)− iImΣSCBA(p′εn)

≈ −sign(εn − ImΣSCBA)π
∑
p′

|tpp′ |2δ(ε− ξ(p′)) (4.44)

where the approximate equality is valid for small ImΣSCBA. For self-consistency
it is sufficient to take ImΣSCBA(iεn) ∼ −sign(εn), which is checked by direct
substitution. The difference between the Born approximation discussed above and
its self-consistent variant appears only in the case of strong enough scattering,
when δ-function in (4.44) is replaced by Lorentzian of the finite width, which in
the model with point-like scattering (cf. (4.27)) changes nothing at all.

Finally we again get the well known result:

ΣSCBA(pεn) = −isign(εn)
1

2τp
= −isign(εn)γp (4.45)

where τp and γp are defined as in (4.41), or (4.28) for the case of point-like
impurities.9

Fig. 4.8 Diagram without intersections of interaction lines (a) and “crossing” diagram
(b). Shown also are corresponding regions of integration in momentum space.

In diagram expansion for the Green’s function our approximation
corresponds to the account of only “non-crossing” diagrams, shown in
Fig. 4.4, without intersections of interaction lines. Why and under what
conditions we can neglect “crossing” diagrams? Let us compare two di-
agrams, shown in Fig. 4.8. Calculating the contribution of the diagram
9If we consider the band of the finite width, νF denotes the density of states at the

Fermi level, with the account of scattering effects.
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of Fig. 4.8(a) we note, that integration momenta p1 and p2 can take any
values in the spherical layer of the width ∆k ∼ 1/l, so that this con-
tribution is proportional to the appropriate phase space volume of the
order of Ωa ≈ (4πp2F~∆k)2. In the case of diagram shown in Fig. 4.8(b)
the same limitations apply to p1 and p2, but in addition we have to
satisfy |p+ p2 − p1| ≈ pF . For fixed p2, the change of p1 is limited
to the region of intersection of its layer and the appropriate layer for
p+ p2−p1, as shown by doubly dashed region in Fig. 4.8(b). The phase
space of the “ring”, formed by intersection of two spherical layers, is of
the order of Ωb ≈ (4πp2F~∆k)(2πpF~2∆k2). Then we understand that
the ratio of the contributions of “crossing” and “non-crossing” diagrams
is of the order of Ωb

Ωa
∼ ~∆k

pF
= ~

pF l
≪ 1 (“weak” disorder corresponds

to large enough mean free path, i.e. pF l/~ ≫ 1). Thus, the dimension-
less “small parameter” of our perturbation theory is given by ~

pF l
≪ 1,

which is equivalent to ~
EF τp

≪ 1. Taking into account pF ∼ ~/a (where
a is interatomic spacing), we see that the smallness of this parameter
corresponds to the condition l ≫ a, so that the mean free path must be
significantly larger than interatomic spacing (lattice constant). In fact,
this is the usual condition of applicability of kinetic (Boltzmann-like)
equation of the standard transport theory.

4.3 Keldysh model

Condition of pF l/~ ≫ 1(l ≫ a) allows us to limit ourselves to the
subseries of “dominating” diagrams (diagrams without intersections of
interaction lines) of Feynman perturbation series. In majority of prob-
lems solved by diagram technique we act precisely in this way, i.e. we
are looking (using some physical criteria) for some infinite subseries of
diagrams, which we are able to sum. From “mathematical” point of
view it is not very well defined procedure. Neglected diagrams (though
small over some physical parameter) also constitute an infinite subseries
of the full perturbation expansion and their contribution, strictly speak-
ing, remains unknown. In some (very rare!) cases we can actually sum
the whole Feynman series and obtain an exact solution of the problem.
Unfortunately, it is usually possible only for some oversimplified mod-
els. However, conclusions, obtained via the analysis of such model may
be very instructive.
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As an example of such a model, we shall consider an electron, mov-
ing in Gaussian random field (when perturbation series is given by di-
agrams, shown in Fig. 4.4) with special form of pair correlator, defined
in momentum representation as W 2(q) = (2π)3W 2δ(q). In this case,
the momentum transferred by each interaction line is equal to zero. In
coordinate space this gives the pair correlator for the random field of
the form:

< V (r)V (r′) >=

∫
d3q

(2π)3
eiq(r−r′)(2π)3W 2δ(q) =W 2 (4.46)

corresponding to the case of “infinite range” correlations of the random
field V (r). It is the case just opposite to the “white noise” correlator
(4.20).10

In this model we can easily sum the whole Feynman series
(L.V. Keldysh, 1965).11 Let us return to the series for non averaged
Green’s function, shown in Fig. 4.1. After we perform averaging over
the Gaussian random field, interaction lines, corresponding to external
field, are joined “pairwise” in all possible combinations, and we obtain
diagrammatic expansion shown in Fig. 4.4. Accordingly, in the n-th or-
der over the correlator of Gaussian field, in each term of the expansion
for the averaged Green’s function we have 2n vertices, joined pairwise
by interaction lines (all diagrams in this order are obtained if we per-
form all possible pairwise connections of 2n vertices by interaction lines
in 2n-th order term of the expansion shown in Fig. 4.1). If each interac-
tion line transfers zero momentum to the electron, it is easily seen that
all diagrams in the given order of perturbation theory (including those
with “crossing” interaction lines!) give just equal contributions. Then,
the complete perturbation series is written as:

G(εp) = G0(εp)

{
1 +

∞∑
n=1

GnW
2nG2n

0 (εp)

}
(4.47)

where An is the total number of diagrams in the n-th order of this series
(in 2n-th order in interaction amplitude W ). The contribution of the
arbitrary diagram is equal to:

W 2nG2n+1
0 (εp) (4.48)

10In general case, correlator < V (r)V (r′) > can be characterized by some correlation
length ξ of fluctuations of the random field. “White noise” corresponds to the limit of
ξ → 0, in the model under consideration we have ξ → ∞.
11Doctoral Thesis, P.N. Lebedev Physical Institute, Moscow, 1965.
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which corresponds to 2n vertices (factor of W 2n), connected pairwise by
dashed (interaction) lines, and also the product of 2n+ 1 free electron
Green’s functions. The factor of An is directly determined by combina-
torics — this is just the number of possible ways, in which we can join
pairwise 2n vertices by dashed (interaction) lines. It is easily seen that:

Gn = (2n− 1)!! (4.49)

There are 2n vertices and 2n+1 electronic lines in each diagram. Take
an arbitrary vertex. It can be joined in 2n − 1 ways with each of
remaining 2n−1 vertices. After that we have 2n−2 “unjoined” vertices
at our disposal. Again, take one. It can be joined with the others in
2n− 3 ways. Then, there remain 2n− 4 “unjoined”. Any of these can
be joined with the remaining in 2n− 5 ways, etc. The total number of
ways we can join 2n vertices in the given order is equal to (2n−1)(2n−
3)(2n− 5)... = (2n− 1)!!, which gives us (4.49).

Now we may use rather well known integral representation:12

(2n− 1)!! =
1√
2π

∫ ∞

−∞
dtt2ne−

t2

2 (4.54)

12By definition: (2n)!! = 2.4.6...(2n) = 2nn!. Similarly:

(2n− 1)!! = 1.3.5...(2n− 1) = 2n
1

√
π
Γ

(
n+

1

2

)
(4.50)

Using the integral representation of Γ-function:

Γ(z) =

∫ ∞

0
dxxz−1e−x (4.51)

it is easy to obtain quite useful relation:

n! = Γ(n+ 1) =

∫ ∞

0
dxxne−x (4.52)

and also

Γ

(
n+

1

2

)
=

∫ ∞

0
dxxn−1/2e−x =

∫ ∞

0
dxx

2n−1
2 e−x (4.53)

which, after the substitution x→ t2/2 and with the account of (4.50), gives (4.54).
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Then (4.47) reduces to:

G(εp) = G0(εp)

{
1 +

∞∑
n=1

1√
2π

∫ ∞

−∞
dtt2ne−

t2

2 W 2nG0(εp)
2n

}

=
1√
2π

∫ ∞

−∞
dte−

t2

2 G0(εp)

{
1 +

∞∑
n=1

t2nW 2nG2n
0 (εp)

}

=
1√
2π

∫ ∞

−∞
dte−

t2

2 G0(εp)

{
1 +

t2G2
0(εp)W

2

1− t2G2
0(εp)W

2

}
(4.55)

where during the calculations we have changed the order of summa-
tion and integration, and summed the simple progression.13 After the
elementary transformations we have:

G(εp) =
1√
2π

∫ ∞

−∞
dte−

t2

2 G0(εp)
1

1− t2W 2G2
0(εp)

=
1√
2π

∫ ∞

−∞
dte−

t2

2 G0(εp)
1

2

{
1

1− tWG0(εp)
+

1

1 + tWG0(εp)

}
(4.56)

so that finally we get:

GR(εp) =
1√
2π

∫ ∞

−∞
dte−

t2

2
G0(εp)

1− tWG0(εp)

=
1√
2π

∫ ∞

−∞
dte−

t2

2
1

ε− εp − tW + iδ
(4.57)

where we have used the explicit form of GR
0 (εp) = 1

ε−εp+iδ
.14 In the

following we take εp = p2

2m
. Introducing tW = V we rewrite (4.57) in a

more descriptive form:

GR(εp) =
1√
2πW

∫ ∞

−∞
dV e−

V 2

2W2
1

ε− p2

2m
− V + iδ

(4.60)

13This approach in mathematics is called Borel summation.
14Define the function of complex variable z:

Ψ(z) =
1

√
2π

∫ ∞

−∞
dte−

t2

2
1

z − t
(4.58)

Then (4.57) can be written as:

G(εp) =
1

W
Ψ

(
1

WG0(εp)

)
(4.59)
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The physical meaning of this result is obvious — we have an electron,
moving in spatially homogeneous random field V , with Gaussian dis-
tribution of the width W . The averaged Green’s function describes an
ensemble of “samples”, with field V being constant along each “sam-
ple”, but having random values in different “samples” (elements of am
ensemble).

Let us give another derivation of this elegant result (L.V. Keldysh,
1965, A.L. Efros, 1970). Consider Dyson equation:

G−1(εp) = ε− p2

2m
− Σ(εp) (4.61)

where the self-energy part can be represented by the diagram shown in
Fig. 4.9(a). In analytic form we have:

Σ(εp) =

∫
d3q

(2π)3
Γ(p,p− q,q)G(εp− q)W 2(q) (4.62)

Fig. 4.9 Diagrams for an exact self-energy part of an electron in Gaussian random field
(a) and for the vertex-part, determining this self-energy (b).

Here Γ(p,p− q,q) is an exact vertex-part, defined by diagrams shown
in Fig. 4.9(b).15 Taking into account W 2(q) = (2π)3W 2δ(q), equations
(4.61) and (4.62) are reduced to:

ε− p2

2m
−G−1(εp) =W 2G(εp)Γ(p,p, 0) (4.63)

15Note that both electronic “legs” of this vertex correspond to retarded or advanced
Green’s function GR(A), depending on which of them is obtained from Eq. (4.61). It is
precisely because of this fact we can use Ward identity (4.64) to find Γ(p,p, 0).
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The vertex-part Γ(p,p, 0) satisfies the following Ward identity:

Γ(p,p, 0) =
dG−1(εp)

dε
(4.64)

which is easily derived by direct differentiation of diagrammatic series
for self-energy Σ(εp). Then, from (4.63) we obtain the differential equa-
tion, determining the Green’s function:

W 2dG

dx
+Gx− 1 = 0 (4.65)

where we introduced x = ε − p2

2m
+ iδ. Solving Eq. (4.65) with the

boundary condition G(x) = 1
x

for x→ ∞ immediately leads to (4.60).
The main result given by Eq. (4.60) and obtained by an exact sum-

mation of the whole Feynman series (4.47) is rather instructive. For
example, the spectral density, corresponding to (4.60), has the form:

A(εp) =
1

π

1√
2πW

∫ ∞

−∞
dV e−

V 2

2W2 δ

(
ε− p2

2m
− V

)
=

1

π
√
2πW

exp

(
−
(ε− p2

2m
)2

2W 2

)
(4.66)

i.e. is given by wide Gaussian peak. Note also, that Eq. (4.60) does not
reduce to something similar to Eq. (4.30), i.e. to the Green’s function
with smeared “quasiparticle” pole, it does not possess poles at all.

From Eqs. (4.60) and (4.66) we can easily calculate the density of
(electronic) states:

N(ε) = − 2

π

∫
d3p

(2π)3
ImGR(εp) = 2

∫
d3p

(2π)3
A(εp)

=
2√
2πW

∫ ∞

−∞
dV e−

V 2

2W2

∫
d3p

(2π)3
δ

(
ε− p2

2m
− V

)
(4.67)

where we have added 2 to account for two spin projections. Accordingly:

N(ε) =
23/4m3/2W 1/2

π2~3
G0

(
ε√
2W

)
(4.68)

where the dimensionless function G0(x) is defined as:

G0(x) =
1√
π

∫ x

−∞
dye−y2

(x− y)1/2 (4.69)
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Fig. 4.10 Dimensionless function G(x), determining the density of states in Keldysh
model.

and shown in Fig. 4.10. For ε > 0 and ε≫W we have:

N(ε) = N0(ε)−
(2m)3/2W 2

16π2~3ε3/2
(4.70)

where the second term represents a small correction to the density of
states of free electrons (dashed line in Fig. 4.10):

N0(ε) =
(2m)3/2

2π2~3
√
ε (4.71)

Most important result following from an exact solution is the appear-
ance of the “tail” of the density of states in the region of ε < 0. For
ε < 0 and |ε| ≫ W we obtain Gaussian asymptotic behavior for the
“tail”:

N(ε) =
21/4m3/2

√
W

4π2~3

(√
2W

ε

)3/2

exp

(
− ε2

2W 2

)
(4.72)

Formation of the “tail” in the density of states within the band gap
is the general result of electronic theory of disordered systems [Lifshits
I.M., Gredeskul S.A., Pastur L.A. (1988)]. Of course, the specific energy
dependence of the “tail” is not universal and depends on the model of
the random field (disorder).

In particular, the “tail” of the density of states appears also in the “white
noise” model, discussed above. It can be shown that in this model (for three-
dimensional case, d = 3) at ε < 0 [Lifshits I.M., Gredeskul S.A., Pastur L.A.
(1988)]:

N(ε) ∼ exp

{
−const |ε|

1/2~3

m3/2ρv2

}
(4.73)
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for |ε| ≫ Esc ∼ m3(ρv2)/~6, which corresponds to |ε| ≫ γ(ε), where γ(ε) =

πρv2N0(ε) ∼ ρv2 m3/2

~3
√
ε.

For the model of Gaussian random field with correlator, characterized by
some finite correlation length ξ, there appear characteristic energy regions shown
in Fig. 4.11. For the spatial dimensions d < 4 the energy Esc, determining
the size of the “strong coupling” region (following from γ(ε) ∼ ε) is defined as
(M.V. Sadovskii, 1977):

Esc =
m

d
4−d

~2d
(ρv2)

2
4−d (4.74)

Besides that, one more characteristic energy scale appears in this problem:

E0 ∼ ~2

mξ2
(4.75)

The energy dependence of the “tail” in the density of states in the region of
Esc ≪ |ε| ≪ E0 is determined by the following expression, directly generalizing
(4.73) (M.V. Sadovskii, 1979):

N(ε) ∼ exp

{
−Ad

|ε|2−
d
2 ~d

ρv2

}
= exp

{
−Ad

(
|ε|
Esc

)2− d
2

}
(4.76)

where Ad = const, depending only on d. In the region of |ε| ≫ E0 the “tail”
asymptotics becomes Gaussian:

N(ε) ∼ exp

{
− ξd

ρV 2
E2

}
(4.77)

which is the same as (4.72).

Fig. 4.11 Characteristic energy regions in the problem of an electron in the random
field.
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4.4 Conductivity and two-particle Green’s function

Let us return to the problem of an electron in the field of random im-
purities (Gaussian random field with “white noise” correlation). The
major task is to formulate the general method to calculate conductivity
of such a system. We have already seen above that to calculate conduc-
tivity we need to know the density–density response function χ(qω).
Then we can use (2.111) and (2.116). We also convinced ourselves, that
(up to a sign) this response function may be obtained via analytic con-
tinuation (iωm → ω+ iδ) of Matsubara polarization operator Π(iωmq)

of an electron gas:

σ(ω) = − lim
q→0

ie2

q2
ωχ(qω) = lim

q→0

ie2

q2
ωΠ(qiωm → ω + iδ) (4.78)

We consider free (noninteracting with each other) electrons in the field
of random impurities.16 From the general quantum mechanical point of
view we are dealing with single-particle problem. For such an electron
there always exist some (in general unknown!) exact eigenfunctions
and eigenenergies in the potential field, determined by the given (fixed)
configuration of impurities:17

Hφn(r) = εnφn(r) (4.79)
where

H =

∫
drψ+(r)

{
−∇2

2m
+
∑
i

v(r−Ri)

}
ψ(r) (4.80)

Accordingly, we can introduce (non averaged!) retarded and advanced
Green’s functions of the Schroedinger equation (4.79) as:

GR,A(rr′, ε) =
∑
n

φn(r)φ
∗
n(r

′)

ε− εn ± iδ
(4.81)

or, after the Fourier transformation over each of the coordinates:

GR,A(pp′, ε) =
∑
n

φn(p)φ
∗
n(p

′)

ε− εn ± iδ
(4.82)

16General discussion of the approach proposed below can also be found in [Sadovskii
M.V. (2000); Altshuler B.L., Aronov A.G. (1985)].
17The averaging procedure discussed above leads to formally “multi-particle” structure
of perturbation theory, but the averaged Green’s function is no longer Green’s function
(propagators) of any quantum mechanical problem. They give only the effective picture
averaged over the statistical ensemble of “samples” with all possible configurations of
scatterers (impurities).



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 129

Electrons in Disordered Systems 129

Expanding electron operators over exact eigenfunctions:

ψ(r) =
∑
n

anφn(r) ψ+(r) =
∑
n

a+nφ
∗
n(r) (4.83)

we define the density operator as:

ρ(r) = ψ+(r)ψ(r) =
∑
mn

φ∗
n(r)φm(r)a

+
nam (4.84)

Then the density–density response function can be calculated using the
general scheme, described above in (2.82)–(2.88), so that for T = 0 we
get:

χ(rr′, ω) = i

∫ ∞

0

dtei(ω+iδ)t < 0|[ρ(r, t), ρ(r′, 0)]|0 >

= 2
∑
mn

φ∗
n(r)φm(r)φ

∗
m(r

′)φn(r
′)

n(εm)− n(εn)

ω + εn − εm + iδ
(4.85)

where the averaging is performed over the ground state, and the factor
of 2 accounts for both spin projections. Eq. (4.85) gives an explicit ex-
pression for (2.82). In fact, we are interested in averaged (over impurity
configurations) response function χ(r− r′, ω) =< χ(rr′, ω) >, or its
spatial Fourier-transform:

χ(qω)=2
∑
pp′

∑
nm

〈
φm(p+)φ

∗
m(p

′
+)φn(p

′
−)φ

∗
n(p−)

n(εm)− n(εn)

ω + εn − εm + iδ

〉
=2
∑
pp′

∫ ∞

−∞

dε

2πi

{
[n(ε+ω)− n(ε)]<GR(p+p

′
+, ε+ω)G

A(p′
−p−, ε)>

+n(ε) < GR(p+p
′
+, ε+ ω)GR(p′

−p+, ε) >

−n(ε+ ω) < GA(p+p
′
+, ε+ ω)GA(p′

−p−, ε) >
}

(4.86)

where the second expression is directly checked using (4.82), and we
introduced p± = p± 1

2
q. Eq. (4.86) can be rewritten as:

χ(qω) = −
∫ ∞

−∞
dε{[n(ε+ ω)− n(ε)]ΦRA(εωq) + n(ε)ΦRR(εωq)

−n(ε+ ω)ΦAA(εωq)} (4.87)

where we have introduced:

ΦRA(εωq) = − 1

2πi
2
∑
pp′

< GR(p+p
′
+, ε+ ω)GA(p′

−p−, ε) > (4.88)
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and similar expressions for ΦRR and ΦAA. Note that we included here
a factor of 2 due to spin.

Previous discussion was concerned with the case of T = 0. For
T ̸= 0 similar expressions are obtained after analytic continuation of
appropriate Matsubara functions.

Using the rules of “impurity” diagram technique, we can obtain Mat-
subara polarization operator as shown in Fig. 4.12(a). Analytically:

Π(qωm) = 2T
∑
n

∑
p

G(pεn)G(p+ qεn+ωm)T (p,p+ q, εn, εn+ωm)

(4.89)
where equations for vertices Γ and T are shown graphically in
Fig. 4.12(b),(c). the sum over frequencies in (4.89) can be calculated
using the general approach, described above in connection with (3.40)–
(3.44). The presence in (4.89) of the pair of Green’s functions (with
frequencies, differing by iωm) leads to the appearance of two cuts in

Fig. 4.12 Diagrammatic expansion for polarization operator in impure system (a) and
appropriate vertices Γ (b) and T (c).



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 131

Electrons in Disordered Systems 131

their product18 in the complex plane of frequency — one along z = ε,
and the other along z = ε− iωm. Then, using Eq. (3.38) we may write
the sum in (4.89) as:

S(iωm) = T
∑
n

f(iεn, iεn+iωm) = −
∫
C

dz

2πi
n(z)f(z, z+iωm) (4.90)

where f(z, z + iωm) = G(z)G(z + iωm)T (z, z + iωm) (we drop mo-
menta arguments for shortness!), and n(z) is the Fermi distribution.
The contour of integration C is shown in Fig. 4.13. Rewriting (4.90)
via integrals over four horizontal lines of C (integrals over infinitely far
away arcs vanish!), we obtain:

S(iωm) = −
∫ ∞

−∞

dε

2πi
n(ε)[f(ε+ iδ, ε+ iωm)− f(ε− iδ, ε+ iωm)]

−
∫ ∞

−∞

dε

2πi
n(ε− iωm)[f(ε− iωm, ε+ iδ)− f(ε− iωm, ε− iδ)]

(4.91)

Fig. 4.13 Integration contour used in calculations of the sum over Matsubara frequen-
cies.

18Remember, that Green’s function G(pz) possess a cut in the complex plane of fre-
quency z along the line defined by Imz = 0.
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After the substitution ωm → ω + iδ, we get:

S(ω) = −
∫ ∞

−∞

dε

2πi
n(ε)[fRR(ε, ε+ ω)− fRA(ε, ε+ ω)

+fRA(ε− ω, ε)− fAA(ε− ω, ε)] (4.92)

where notations of the type fRA(ε, ε′) correspond to f(ε − iδ, ε + iδ),
etc. The shift of the summation variable ε → ε + ω in the last two
terms gives:

S(ω) =

∫ ∞

−∞

dε

2πi
[n(ε)− n(ε+ ω)]fRA(ε, ε+ ω)

−
∫ ∞

−∞

dε

2πi
[n(ε)fRR(ε, ε+ ω)− n(ε+ ω)fAA(ε, ε+ ω)]

(4.93)

This, in fact, coincides with (4.87), if we introduce:

ΦRA(εωq) =
1

2πi
fRA(ε, ε+ ω) =

− 1

2πi
2
∑
p

GR(ε+ ωp+ q)GA(εp)T (p,p+ q, ε, ε+ ω) (4.94)

which is just another form of (4.88), where everything is expressed via
averaged Green’s functions GR(ε + ωp+ q) and GA(εp), and the av-
eraged vertex T (p,p+ q, ε, ε + ω). As all calculations were made in
Matsubara technique, Fermi functions in (4.93) are taken at T > 0.
Thus, we have:

χ(qω)=−Π(qiωm → ω+iδ)=−
∫ ∞

−∞
dε
{
[n(ε+ω)− n(ε)]ΦRA(εωq)

+ n(ε)ΦRR(εωq)− n(ε+ ω)ΦAA(εωq)
}

(4.95)

which equivalent to (4.87), as expected!
Let us return to Eq. (4.88). Using GA(pp′, ε) = [GR(p′p, ε)]∗, we

obtain ΦRR(ε00) = −[ΦAA(ε00)]∗. Then, we easily see that:

ΦRR(ε00) =
1

2πi
2
∑
pp′

∂

∂ε
< GR(pp′, ε) > (4.96)

where < GR,A(pp′, ε) >≡ GR,A(pε)δ(p− p′) and

GR,A(pε) =
1

ε− p2

2m
+ µ− ΣR,A(pε)

(4.97)
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is the retarded (advanced) Green’s function, determined by “impurity”
diagram technique.19 It is not difficult to check the following identity:∫ ∞

−∞
dεn(ε)Im

{
−2πiΦRR(ε00)

}
= πN(EF ) (4.98)

which is obtained by direct substitution of (4.96) into (4.98) and partial
integration, using the definition of the density of states:

N(ε) = − 2

π

∑
p

ImGR(pε) (4.99)

For T ≪ EF we have:20 (
−∂n(ε)

∂ε

)
≈ δ(ε) (4.100)

and accordingly:

n(ε+ ω)− n(ε) = −ωδ(ε) (4.101)

Then, from (4.87) or (4.95), using (4.98), and for small q ≪ pF and
ω ≪ EF , we have:

χ(qω) = ωΦRA(qω) +N(EF ) (4.102)

where we have introduced the notation:

ΦRA(qω) = ΦRA(qωε = 0) (4.103)

For q = 0 the density–density response function must be zero for arbi-
trary values of ω. This is a general property [Nozieres P., Pines D.
(1966)], which is clear e.g. from comparison of (2.114) and (2.115).
Then, from (4.102) we obtain:

ΦRA(0ω) = −N(EF )

ω
(4.104)

which, in fact, is directly related to Ward identity, connected with
charge conservation. Then we can rewrite (4.102) as:

χ(qω) = ω
{
ΦRA(qω)− ΦRA(0ω)

}
(4.105)

19Using Matsubara technique we obtain R or A functions via analytic continuation
iεn → ε± iδ.
20Remember, that for us EF is an origin of energy scale, so that in all expressions here
formally we have EF = 0.
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and general relation for conductivity (2.111) reduces to:

σ(ω) = − lim
q→0

ie2
ω2

q2
{
ΦRA(qω)− ΦRA(0ω)

}
(4.106)

This expression (D. Vollhardt, P. Wölfle, 1980) is quite convenient for
direct calculations, as we can effectively calculate two-particle Green’s
function (loop) ΦRA(qω) using “impurity” diagram technique.

Often to study conductivity diagrammatically another approach is
used, based on the calculation of the response to an external vector-
potential. The general expression for conductivity tensor is then given
by:21

σµν(qω) =
1

iω
{Φµν(qω + iδ)− Φµν(q0 + iδ)} (4.107)

where

Φµν(qiωm) = T

∫ β

0

dτ

∫ β

0

dτ ′eiωm(τ−τ ′) < TτJµ(qτ)Jν(−q, τ ′) >

(4.108)
and J(p) is the Fourier transform of the (so-called “paramagnetic”)
current operator:

J(q) = − ie

2m

∫
dre−iqr

[
ψ+(r)∇ψ(r)−∇ψ+(r)ψ(r)

]
(4.109)

Schematic derivation of these expressions is as follows. Consider the
response of a system to an external vector-potential, leading to the
following perturbation term in the Hamiltonian:

Hext = −J(r)A(rt) (4.110)
and take A(rt) in the form of a plane-wave:

A(rt) = A(qω)eiqr−iωt (4.111)
so that the appropriate electric field is given by:

E(rt) = −∂A(rt)

∂t
= iωA(qω)eiqr−iωt (4.112)

Then, according to the general Kubo formalism [Sadovskii M.V.
(2019a)], we obtain (“paramagnetic”) response as:

Jµ(qω) = χp
µν(qω)A

ν(qω) =
χp
µν(qω)

iω
iωAν(qω) =

χp
µν(qω)

iω
Eν(qω)

(4.113)
21Obviously, in isotropic system and in the absence of an external magnetic field we have
σµν = σδµν .
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where

χp
µν(qω) = i

∫ ∞

0

dteiωt < [Jµ(qt), Jν(−q0)] > (4.114)

From the general discussion of the connection between linear response
and Matsubara formalism given above, it is clear that χp

µν(qω) =

Φµν(qω+iδ), i.e. it can be obtained via analytic continuation of (4.108).
The full electric current in the presence of an external vector-

potential is given by:

Jtot = J− ne2

m
A (4.115)

where the second term represents “diamagnetic” current, appearing be-
cause of electron velocity having now the form: v = 1

m
(p− eA). On

the other hand, for ω = 0 (static vector-potential (magnetic field)) an
electric current in the system (normal metal) is just absent, so that
“diamagnetic” part of (4.115) practically cancels “paramagnetic” one.22

Then we have:

χµν(q0) = Φµν(q0) =
ne2

m
δµν (4.116)

and we immediately obtain the general expression (4.107) for conduc-
tivity. In fact, Eq. (4.116), similarly to (4.104), is also some version of
the Wars identity.

Now it is clear that the diagonal element of conductivity tensor at
q = 0 can be written as:

σxx(ω) =
1

iω
{Φxx(ω + iδ)− Φxx(0 + iδ)} (4.117)

where, similarly to (4.89), we can write:

Φxx(iωm) = −2eT
∑
n

∑
p

px
m
Jx(p,p,εn, εn +ωm)G(εnp)G(εn +ωmp)

(4.118)
Here we have introduced the “current” vertex:

Jµ(p,p, εn, εn + ωm) ≡
e

m
pµΞ(p, εn, εn + ωm) (4.119)

which can be defined diagrammatically as shown in Fig. 4.12(c), where
the “bare” vertex is given by e

m
pµ.

22Up to a small contribution due to Landau diamagnetism! More detailed discussion of
this situation will be given below in the Chapter on superconductivity.
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Accordingly, rewriting (4.118) as:

Φxx(iωm) = −2e2T
∑
n

∑
p

p2x
m2

Ξ(p, εn, εn + ωm)G(εnp)G(εn + ωmp)

(4.120)
and performing summation over n and analytic continuation iωm →
ω + iδ as it was done above, we obtain the following expression for
static conductivity (ω → 0):

σxx =
e2

2π

∑
p

p2x
m2

Ξ(p)GR(p, 0)GA(p, 0) (4.121)

where we have introduced the static limit Ξ(p) = Ξ(p, 0− iδ, 0 + iδ).
Let us give also, just for reference and without derivation, the general expres-

sion for non-diagonal (Hall) conductivity in the presence of the weak external
magnetic field H (H. Fukuyama, H. Ebisawa, Y. Wada, 1969):

σxy =
eH

m

e2

4πi

∑
p

px
m

Ξ2(p)

{
GR(p, 0)

∂

∂px
GA(p0)− ∂

∂px
GR(p,0)GA(p, 0)

}
(4.122)

which gives us diagrammatic method to calculate the Hall effect.

4.5 Bethe–Salpeter equation, “diffuson” and “Cooperon”

Thus, according to (4.105), to calculate the density–density response
function χ(qω) and conductivity of a system (4.106), we have to find
the way to calculate:23

ΦRA(ωq) = − 1

2πi
2
∑
pp′

< GR(p+p
′
+, E + ω)GA(p′

−p−, E) >

(4.123)
which, in turn, is defined via two-particle Green’s function:
ΦRA

pp′(Eωq) = − 1

2πi
< GR(p+p

′
+, E + ω)GA(p′

−p−, E) > (4.124)
which is determined by diagrams, shown in Fig. 4.14(a). It is convenient
to introduce the vertex function Γpp′(qω), defined by:24

ΦRA
pp′(Eωq) = − 1

2πi
GR(p+E + ω)GA(p−E) {δpp′

+Γpp′(qω)GR(p′
+E + ω)GA(p′

−E)
}

(4.125)
and diagrams of Fig. 4.14(b).
23In the following, we always assume µ = EF ≡ E, T = 0.
24Here and below we mainly follow [Sadovskii M.V. (2000)] and [Altshuler B.L., Aronov
A.G. (1985)].
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Fig. 4.14 Diagrams for two-particle Green’s function (a) and vertex part Γpp′ (qω) (b).
Upper electron line corresponds to retarded Green’s function GR(p+E+ω) (“particle”),
while lower to advanced GA(p−E) (“hole”).

Now it is convenient to classify diagrams for the vertex as reducible
(i.e. those which can be “cut” over two R and A lines) and irreducible in
“R−A-channel” (or “particle–hole” channel). For example, in Fig. 4.14,
the second and the fifth diagrams are reducible, while the rest are irre-
ducible. Then it is clear that the full vertex Γpp′(qω) is described by
Bethe–Salpeter integral equation, shown diagrammatically in Fig. 4.15,
or analytically:
Γpp′(qω)=Upp′(qω)+

∑
p′′

Upp′′(qω)GR(E+ωp′′
+)G

A(Ep′′
−)Γp′′p′(qω)

(4.126)
where Upp′(qω) denotes the sum of all diagrams, irreducible in R−A-
channel, of the type shown in Fig. 4.15(b).

In the simplest approximation, we can take for Upp′(qω) only the
first diagram from the r.h.s. of Fig. 4.15(b), i.e. just put:

U0(p− p′) = ρ|v(p− p′)|2 U0 = ρv2 (4.127)
where the second equality is valid for point-like impurities. Then
Eq. (4.126) takes the form, shown diagrammatically in Fig. 4.16(a).
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Fig. 4.15 Bethe–Salpeter equation for the vertex part Γpp′ (qω) (a) and diagrams of
the lowest orders for irreducible (in R−A-channel) vertex Upp′ (qω) (b).

Fig. 4.16 Bethe–Salpeter equation for the vertex part Γpp′ (qω) in “ladder” approxi-
mation (a) and appropriate diagrams of lowest orders (b).

Its solution can be written as:

Γ0
pp′(qω) =

U0

1− U0

∑
pG

R(E + ωp+)GA(Ep−)
(4.128)

which defines Γpp′(qω) via the sum of “ladder” diagrams, shown in
Fig. 4.16(b).

Now let us perform explicit calculations for the case of arbitrary
spatial dimensionality d. Basic element, determining (4.128), can be
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written as:

Id(qω) =
∑
p

GR(E + ωp+)G
A(Ep−)

=

∫
ddp

(2π)d
GR

(
E + ωp+

q

2

)
GA

(
Ep− q

2

)
=

∫
ddp

(2π)d
GR(E + ωp− q)GA(Ep)

=

∫
ddp

(2π)d
1

E + ω − ξ(p) + vF q cos θ + iγ

1

E − ξ(p)− iγ

(4.129)

where we have taken the averaged Green’s functions in simplest ap-
proximation (4.29), (4.30). Here vF =

√
2E
m

is electron velocity at the
Fermi level, while damping (for point-like impurities) γ = πρv2ν(E) =

πU0ν(E), where ν(E) is density of states at the Fermi level E in d-
dimensional space and for a single spin direction.

Integrals over the polar angle θ in d dimensions, are calculated using the
following rules:∫

ddp

(2π)d
f(p, θ) =

1

(2π)d

∫ ∞

0

dppd−1Ωd−1

∫ π

0

dθ sind−2 θf(p, θ)

=
Ωd

(2π)d

∫ ∞

0

dppd−1Ωd−1

Ωd

∫ π

0

dθ sind−2 θf(p, θ)

≈ ν(E)

∫ ∞

−∞
dξ

Ωd−1

Ωd

∫ π

0

dθ sind−2 θf(ξ, θ) (4.130)

where Ωd = 2πd/2

Γ(d/2)
is the surface of the sphere with radius unity in d-dimensional

space.
For small ω and q we can write:25

1

E + ω − ξ(p)± vF q cos θ + iγ

≈ 1

E − ξ(p) + iγ
− ω ± vF q cos θ

(E − ξ(p) + iγ)2
+

(ω ± vF q cos θ)
2

(E − ξ(p) + iγ)3
+ · · ·

(4.131)
25In the following it will become clear, that we are speaking about ω ≪ γ and vF q ≪ γ.
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so that:

Id(qω) ≈ ν(E)

∫ ∞

−∞
dξ

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ
1

E − ξ − iγ

×
{

1

E − ξ + iγ
− ω + vF q cos θ

(E − ξ + iγ)2
+

(ω + vF q cos θ)
2

(E − ξ + iγ)3
+ · · ·

}
(4.132)

Integrals over ξ are elementary (calculate residues!), so that:

Id(qω) ≈ ν(E)
Ωd−1

Ωd
2πi

∫ π

0

dθ sind−2 θ

×
{

1

2iγ
− ω + vF q cos θ

(2iγ)2
+

(ω + vF q cos θ)
2

(2iγ)3
+ · · ·

}
=
π

γ
ν(E)

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ

×
{[

1 +
iω

2γ
− ω2

4γ2

]
+

[
ivF q

2γ
− vF qω

2γ2

]
cos θ − v2F q

2

4γ2
cos2 θ

}
(4.133)

Now θ integrations give:

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ = 1 (4.134)

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ cos θ = 0 (4.135)

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ cos2 θ =
1

d
(4.136)

Then, taking into account π
γ
ν(E) = U0 and γ = 1

2τ
, we finally obtain

the denominator of (4.128) as:

1− U0Id(qω) = − iω
2γ

+
ω2

4γ2
+D0

q2

2γ
≈ −iωτ +D0τq

2 (4.137)

1− U0I
∗
d (qω) ≈ iωτ +D0τq

2 (4.138)

where

D0 =
1

d
v2F τ =

1

d

2E

m
τ =

1

d

E

mγ
(4.139)
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is the usual Drude diffusion coefficient in d dimensions. Accordingly,
from (4.128) we obtain the following typical (and very important!) ex-
pression for the vertex with diffusion pole:

Γ0
pp′(qω) =

U0τ
−1

−iω +D0q2
=

2U0γ

−iω +D0q2
(4.140)

or the so-called diffuson.26

It is very important to note, that in the case of time-reversal symme-
try, the full vertex Γp,p′(q, ω) possesses the following general property:

Γp,p′(q, ω) = Γ 1
2 (p−p′+q), 12 (p

′−p+q)(p+ p′, ω) (4.141)

To prove this, consider the general vertex part shown in Fig. 4.17(a).
Here we performed the “ordering” of momenta: on the lower electronic
line the numbers attributed to momenta are even, while on the up-
per — odd. The smaller number corresponds to incoming line, while
the larger — to outgoing. We have the general conservation law:

p1 + p2 = p3 + p4 = p+ p′ (4.142)

so that

q = p1 − p4 = p3 − p2 p =
1

2
(p1 + p4) p′ =

1

2
(p2 + p3)

(4.143)
In the case of time-reversal symmetry the single-particle eigenstates p

and −p are just equivalent! Then we can reverse the direction of e.g.
lower (“hole”-like) line of the diagram, changing the sign of its momen-
tum. Then the diagram of Fig. 4.17(a) is transformed into the second
diagram of Fig. 4.17(b), and Eqs. (4.142) and (4.143) are transformed
to:

p1 + p2 = p3 + p4 = q (4.144)

and

p+ p′ = p1 − p4 = p3 − p2,
1

2
(p1 + p4) =

1

2
(p− p′ + q),

1

2
(p2 + p3) =

1

2
(p′ − p+ q) (4.145)

26Note that the cancellation of contributions independent of ω and q in the denominator
of (4.128), leading to the appearance of diffusion pole in (4.140), follows, in general, from
particle conservation (Ward identity)(S.V. Maleev, B.P. Toperverg, 1975).
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Fig. 4.17 The general vertex part (a) and the vertex obtained from it by reversal of
one of electronic lines (b). First diagram (b) is obtained by a simple “unwrapping” of
diagram (a), and obviously it is the same as (a). The second diagram (b) is obtained
from the first one by the reversal of the direction of the lower electronic line, which is
possible in the case of time-reversal symmetry.

Thus, the reversal of the direction of lower electronic line of the diagram
of Fig. 4.17(a), acceptable in the case of t→ −t symmetry, is equivalent
to the following change of variables of the vertex:

q → p+ p′ p → 1

2
(p− p′ + q) p′ → 1

2
(p′ − p+ q) (4.146)

which reduces to (4.141).
Let us apply this procedure to diffuson (4.140) and diagrams of

Fig. 4.16(b). We can see that the reversal of the lower electronic line on
these diagrams leads to the “ladder” in “particle–particle” channel, or,
equivalently, to “maximally crossed” diagrams in “particle–hole” chan-
nel (first introduced by Langer and Neal (J.S. Langer, T. Neal, 1966)),
as shown in Fig. 4.18. Analytic expression for the sum of these dia-
grams is easily obtained by the simple change of variables (4.146) in the
expression for diffuson (4.140):27

UC
pp′(qω) =

2γU0

−iω +D0(p+ p′)2
; p ≈ −p′ (4.147)

27Of course, the same result can be obtained by direct diagram summation!
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Fig. 4.18 “Cooperon” — reversal of electron line in diffuson gives “ladder” in “particle–
particle” channel, or to “maximally-crossed” diagrams in “particle–hole” channel.

Due to the obvious analogy with diagrams, appearing during the
analysis of Cooper instability in the theory of superconductivity (cf.
Ch. 4), this sum and the result of summation (4.147) is usually called
“Cooperon” (L.P. Gorkov, A.I. Larkin, D.E. Khmelnitskii, 1979). The
necessity of p ≈ −p′ directly follows from the criteria of applicability
of diffusion approximation (smallness of q and ω in (4.140)) and cor-
responds, in the case of Cooperon, to the scattering of particles with
almost opposite momenta (nearly “backward” scattering).

Now note, that diagrams of Fig. 4.18 are in fact irreducible in RA-
channel (“particle–hole”). Thus, we can use Eq. (4.147) as an irreducible
vertex Upp′(qω) in Bethe–Salpeter equation (4.126), shown diagram-
matically in Fig. 4.15. In this way we, of course, obtain much more
complicated approximation, than those given by (4.127), which takes
into account, as will be shown below, quantum (localization) correc-
tions to electron propagation in the field of random impurities (and
also to conductivity).

Returning to our general analysis, let us use (4.126) in (4.125) and
write down Bethe–Salpeter equation for the two-particle Green’s func-
tion in the following form:

ΦRA
pp′(qω) = GR(E + ωp+)G

A(Ep−)

{
− 1

2πi
δ(p− p′)

+
∑
p′

Upp′′(qω)ΦRA
p′′p′(qω)

}
(4.148)

which is shown diagrammatically in Fig. 4.19. The product of two
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Fig. 4.19 Bethe–Salpeter equation for the two-particle Green’s function.

Green’s functions entering this equation can be rewritten as:

GR
(
E + ωp+

q

2

)
GA

(
Ep− q

2

)
=

1

(E + ω − ξ(p+)− ΣR(E + ω,p+)) (E + ξ(p−)− ΣA(E,p−))

=

{
1

E − ξ(p−)− ΣA(E,p−)
− 1

E + ω − ξ(p+)− ΣR(E + ω,p+)

}
× 1

ω + (ξ(p−)− ξ(p+))− ΣR +ΣA

= − ∆Gp

ω + (ξ(p−)− ξ(p+))− ΣR +ΣA
≡ − GR −GA

(GR)−1 − (GA)−1
(4.149)

where ∆Gp = GR(Ep−) − GA(E + ωp+). Then, taking into account
(4.149) and ξ(p−)− ξ(p+) ≈ − 1

m
pq, we can rewrite (4.148) as:{

ω − 1

m
pq− ΣR(E + ωp+) + ΣA(Ep−)

}
ΦRA

pp′(qω)

= ∆Gp

{
1

2πi
δ(p− p′)−

∑
p′′

Upp′′ΦRA
p′′p′(qω)

}
(4.150)

Sometimes Eq. (4.150) is called the generalized kinetic (transport) equa-
tion.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 145

Electrons in Disordered Systems 145

Let us now introduce (without a complete proof) an important Ward
identity, which gives an exact relation between the self-energy and irre-
ducible vertex part for our impurity scattering problem (D. Vollhardt,
P. Wölfle, 1980):

ΣR(E + ωp+)− ΣA(Ep−) =
∑
p′

Upp′(qω)∆Gp′ (4.151)

This identity can be used as an important check of self-consistency of
different diagrammatic approximations. It will also be used during the
derivation of general equations of self-consistent theory of localization.

We shall give here only an idea of the proof of the Ward identity (4.151). In
fact, this identity follows from the simple fact, that all diagrams for the irreducible
vertex Upp′(qω) can be obtained by “cutting” (internal) electronic line in all
diagrams for the self-energy in all possible ways. Consider as an example the
typical diagram of the second order for the self-energy Σ

(2)
p , shown in Fig. 4.20(a).

Direct calculations give:

∆Σ(2)
p = ΣR(2)

p+
− ΣA(2)

p−

=
∑
p1p2

U(p1)U(p2)
{
GR

p+−p
1
GR

p+−p
1
−p2

GR
p+−p

2
−GA

p−−p
1
GA

p−−p
1
−p2

GA
p−−p

2

}
=
∑
p1p2

U(p1)U(p2)
{
GR

p+−p
1
GR

p+−p
1
−p2

∆Gp−p2
+GR

p+−p
1
∆GR

p−p1−p2
GA

p−−p
2

+ ∆Gp−p1
GA

p−−p
1
−p2

GA
p−−p

2

}
=
∑
p1p2

{
U(p1)U(p− p′)GR

p+−p
1
GR

p′
+−p

1
− U(p1)U(p− p′ − p1)G

R
p+−p

1
GA

p′
−+p

1

+ U(p− p′)U(p2)G
A
p′
−−p

2
GA

p−−p
2

}
∆Gp′ =

∑
p′

U
(2)

pp′(qω)∆Gp′ (4.152)

Now we can convince ourselves that an expression for U (2)

pp′(qω) (defined by the
figure bracket in an expression before the last formula) is given by diagrams,
shown in Fig. 4.20(b), which are obtained by all possible “cuts” of internal elec-
tronic lines in Σ(2)(p) (and by the reversal of one of those remaining uncut). The
generalization of this analysis to the case of an arbitrary diagram of higher order
gives us the complete proof of the Ward identity given in (4.151).

4.6 Combinatorics of diagrams

In any problem, dealing with summation of Feynman diagrams, any kind of in-
formation on combinatorics of graphs, i.e. on the number of diagrams of different
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Fig. 4.20 Typical diagram of the second order for electron self-energy (a) and corre-
sponding diagrams for the irreducible vertex Upp′ (qω) in the Ward identity (b).

types for the given order of perturbation theory, is quite useful. In the problem
of an electron in Gaussian random field the complete analysis of this problem can
be performed using Keldysh model (E.Z. Kuchinskii, M.V. Sadovskii, 1998). We
have seen above, that the total number of diagrams in n-th order of perturbation
theory for the Green’s function is determined by (4.49), which corresponds to the
number of ways to connect 2n vertices by n impurity lines. Naturally, this result
is not specific to Keldysh model, but is always valid within impurity technique for
a general case of the Gaussian random field. The similar problem for the number
of diagrams in the expansion of self-energy Σn is much more difficult. However
it can also be solved exactly. Let us return to an exact solution for the Green’s
function in Keldysh model, written as (4.59):

G(E, p) =
1

W
Ψ

(
1

WG0(E, p)

)
(4.153)

where the function (4.58):

Ψ(z) = − 1√
2π

∞∫
−∞

dte−
t2

2
1

t− z
(4.154)

Consider the self-energy part corresponding to the Green’s function (4.153),
dealing with its expansion over “skeleton” graphs, containing only Green’s func-
tions “dressed” by impurity scattering. Addition of a new impurity line to any
diagram in this problem leads just to the appearance of an additional factor
W 2G2, so that the self-energy part can be written as:

Σ = Q(W 2G2)W 2G (4.155)
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where Q(x) is some function. We shall see, that this function is the generating
function for the number of “skeleton” graphs for the self-energy part, i.e. the
coefficients of its Taylor expansion determine the required numbers Σn.

The Dyson’s equation for the problem under consideration is written as:

G = G0 +G0ΣG = G0

(
1 +Q(W 2G2)W 2G2) (4.156)

Introducing z = (WG0)
−1 and y = W 2G2, from Eqs. (4.153) and (4.156) we

obtain the following parametric representation for Q(y):

1 + yQ(y) = zΨ(z) = z
√
y

y = Ψ2(z) (4.157)

This representation of Q is rather inconvenient. Below we show that this function
obeys certain differential equation. It is easily seen that previously introduced
function Ψ(z), satisfies the usual dispersion relation:28

ReΨ(z) =
1

π

∞∫
−∞

dt
ImΨ(t)

t− z
;

1

π
ImΨ(t) = ∓ 1√

2π
e−

t2

2 (4.158)

from which it follows immediately that Ψ(z) satisfies the differential equation:
dΨ

dz
= 1− zΨ (4.159)

with the initial condition:

Ψ(z = ±i0) = ∓i
√
π

2
(4.160)

Differentiating the first equation in (4.157) over y, we obtain:

dz

dy
=

1

2
y−

3
2

{
2y2

dQ(y)

dy
+ yQ(y)− 1

}
(4.161)

Differentiating the second-equation in (4.157) over z and using (4.159) we obtain:
dy

dz
= 2Ψ(z)

dΨ(z)

dz
= 2Ψ(z)(1− zΨ(z)) = −2y

3
2Q(y) (4.162)

Comparing (4.161) and (4.162) we obtain the following non-linear differential
equation for Q(y):

dQ(y)

dy
=

1

2y2
{
1−Q−1(y) + yQ(y)

}
(4.163)

Using (4.157) and (4.160) we get y = Ψ2(z)
∣∣
z=±i0

= −π
2

, so that

Q(−π
2
) =

zΨ(z)− 1

y

∣∣∣∣
z=±i0

=
2

π
(4.164)

28The sign of imaginary part is defined as we consider either retarded or advanced
Green’s function.
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which gives the initial condition for Eq. (4.163). Note that the condition Q(0) =

1, which obviously follows from diagram expansion for Σ, is a special one for
Eq. (4.163) and can not be used as an initial condition. Eq. (4.163) can be
expressed in more convenient form:

Q(y) = 1 + y
d

dy
yQ2(y) (4.165)

We are interested in Taylor expansion for Q(y):

Q(y) =
∞∑

n=0

any
n (4.166)

As the number of “skeleton” diagrams of the n-th order for the self-energy part
is just the coefficient of W 2n in the expansion of Σ over the powers of W 2, it is
easily seen that Eq. (4.155) gives the required value of Σn as:

Σn = an−1 (4.167)

This means that function Q(y) is the generating function for combinatorial factors
Σn.

Substitution of Eq. (4.166) into Eq. (4.165) leads to the following recurrence
relation for the coefficients an:

an = n

n−1∑
m=0

aman−1−m (4.168)

where a0 = 1. From a0 = 1 it follows that Q(0) = 1. It is due to this fact this
point is special — equation Q(0) = 1 is satisfied for any initial conditions, for
which Eq. (4.165) has a solution. From Eq. (4.168) it is easy to find the values
of an for small values of n, the appropriate results are presented in Table below.

The knowledge of combinatorics for the self-energy part allows to find also the
combinatorics for the two-particle Green’s function — both for the full vertex-
part Γ and for the irreducible vertex U . The appropriate diagram representations
of these vertices is shown in Figs. 4.14, 4.15. The self-energy part Σ is connected
with the vertex-part Γ by the equation shown graphically in Fig. 4.9(a). For the
problem with zero transferred momentum this equation has the following form:

Σ =W 2G(1 +G2Γ) (4.169)

Thus, for the number of diagrams in the n-th order of the full vertex Γn, we
obtain immediately:

ΓN = Σn+1 = an (4.170)

In this sense Q(y) is also the generating function for the number of diagrams for
the full vertex-part.

The number of diagrams of the n-th order for the irreducible vertex-part Un

can be easily obtained if we note, that the cut of any of 2n− 1 internal Green’s
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function lines in the diagram for the self-energy part of N -th order produces the
appropriate diagram for the n-th order contribution to U . Thus:

Un = (2n− 1)Σn = (2n− 1)an−1 (4.171)

In the limit of large orders of perturbation theory n ≫ 1 the use of the
recurrence relation (4.168) becomes inconvenient due to the factorial growth of
the number of diagrams. At the same time the fact of this factorial growth itself
can be used for significant simplification of the problem. Let us rewrite (4.168)
as:

an = 2na0an−1 + 2na1an−2 + 2na2an−3 + · · · (4.172)

where a0 = 1, a1 = 1, a2 = 4. It is natural to assume that in the limit of large
n we have an ≈ (2n + β)an−1, then an−2 ≈ an−1

2n−2+β
etc. Substituting these

expressions into (4.172) immediately leads to β = 1 and

an = (2n+ 1 +O(
1

n
))an−1 (4.173)

This means that in the limit of large n we have an ∼ (2n+ 1)!!. Let us define bn
as:

bn =
an

(2n+ 1)!!
(4.174)

Substituting (4.174) into (4.168), we obtain the recurrence relation for bn:

bn = n

n−1∑
m=0

(2m+ 1)!!(2n− 2m− 1)!!

(2n+ 1)!!
bmbn−1−m (4.175)

with b0 = 1. In the limit of large n, taking into account b1 = 1
3
, b2 = 4

15
, and

limiting ourselves to the accuracy of the order of b/n2 (where b ∼ bn ∼ bn−1 ∼
bn−2 ∼ bn−3), we get:

∆bn = bn − bn−1 =
5

4

bn−1

n2
+O(

b

n3
) (4.176)

Thus, in the limit of large n we can write down the following differential equation
for bn:

dbn
dn

=
5

4

bn
n2

+O(
b

n3
) (4.177)

from which it follows immediately:

bn = b · exp
(
−5

4

1

n
+O(

1

n2
)

)
= b

{
1− 5

4

1

n
+O(

1

n2
)

}
(4.178)

It is natural, that this analysis can not provide us with the value of the constant
b = limn→∞ bn. Numerical study of bn using the recurrence relation (4.175)
completely supports the dependence defined by Eq. (4.178) and leads to the value
of b = 1

e
= 0.36787944 · · · . This funny result can also be derived analytically

(I.M. Suslov, 2007), but we shall not go into further details here.
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Finally, the asymptotic expressions for the number of diagrams of different
types for large n have the following form:

Σn = an−1 = bn−1(2n− 1)!! =
1

e

{
1− 5

4

1

n
+O(

1

n2
)

}
(2n− 1)!!

=
1√
πe

{
1− 5

4

1

n
+O(

1

n2
)

}
2nΓ(n+

1

2
) (4.179)

Γn = an =
1

e

{
1− 5

4

1

n
+O(

1

n2
)

}
(2n+ 1)!!

=
1√
πe

{
1− 5

4

1

n
+O(

1

n2
)

}
2n+1Γ(n+

3

2
) (4.180)

Un = (2n− 1)an−1 =
1

e

{
1− 5

4

1

n
+O(

1

n2
)

}
(2n− 1)(2n− 1)!!

=
1

e

{
1− 9

4

1

n
+O(

1

n2
)

}
(2n+ 1)!!

=
1√
πe

{
1− 9

4

1

n
+O(

1

n2
)

}
2n+1Γ(n+

3

2
) (4.181)

It is interesting to note that:

Σn

Gn
= bn−1 =

1

e

{
1− 5

4

1

n
+O(

1

n2
)

}
→ 1

e
(4.182)

Un

Γn
= 1− 1

n
+O(

1

n2
) → 1 (4.183)

In Table below we present the summary of the main results for the number of
diagrams of different types.

n Γn = an bn = an/(2n+ 1)!! Σn = an−1 Un = (2n− 1)an−1

1 1 0.3333 1 1
2 4 0.2667 1 3
3 27 0.2571 4 20
4 248 0.2624 27 189
5 2830 0.2722 248 2232
6 38232 0.2829 2830 3130
7 593859 0.2930 38232 497016
8 10401712 0.3019 593859 8907885
9 202601898 0.3158 10401712 176829104
10 4342263000 0.3211 202601898 3849436062

n≫ 1 1
e
[1− 5

4n
](2n+ 1)!! 1

e
[1− 5

4n
] 1

e
[1− 5

4n
](2n− 1)!! 1

e
[1− 9

4n
](2n+ 1)!!
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4.7 Quantum corrections, self-consistent theory of
localization and Anderson transition

4.7.1 Quantum corrections to conductivity

Information contained in two-particle Green’s function (4.124) is, in
some sense, excessive. To calculate conductivity we need only to know
(4.123), i.e. two-particle Green’s function summed over the momenta p

and p′. From (4.150) we can directly obtain an approximate system of
equations determining this function. Let us sum over p and p′ both
sides of Eq. (4.150) using also the Ward identity (4.151). Then we
immediately get:

ωΦRA(ωq)− vF qΦ
RA
1 (ωq) = −N(E) (4.184)

where we have introduced

ΦRA
1 (ωq) = 2

∑
pp′

(p̂q̂)ΦRA
pp′(ωq) (4.185)

Here p̂ and q̂ are the unit vectors along the directions of p and q,
|p| ≈ |p′| ≈ pF , vF = pF

m
=
√

2E
m

, while N(E) is the density of states
at the Fermi level for both spin projections:

N(E) = 2ν(E) = − 2

π

∑
p

ImGR(Ep) = − lim
ω→0,q→0

2

2πi

∑
p

∆Gp

(4.186)
The appearance of the spin factor of 2 here is due to its presence in our
definitions (4.88), (4.185). In the r.h.s. of (4.184) we can limit ourselves
to the limit used in (4.186) because N(E) is practically constant on the
energy interval of ω ≪ E, vF q ≪ E.

But now we have a new function ΦRA
1 (ωq) defined by (4.185). For

this function we also derive an equation using (4.150). Let us mul-
tiply (4.150) by (p̂q̂), sum both sides of the equation over p and
p′, use the Ward identity (4.151) and also the following approximate
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representation:29∑
p′

ΦRA
pp′(ωq) ≈ − ∆Gp

2πiν(E)

∑
p′p′′

{1 + d(p̂q̂)(p̂′′q̂)}ΦRA
p′′p′(ωq)

(4.192)
we obtain:

[ω +M(qω)] ΦRA
1 (ωq)− 1

d
vF qΦ

RA(ωq) = 0 (4.193)

where we have introduced the so-called relaxation kernel:

M(qω) = 2iγ +
id

2πν(E)

∑
pp′

(p̂q̂)∆GpUpp′(qω)∆Gp′(p̂′q̂) (4.194)

with γ = πρv2ν(E) the usual Born frequency of impurity scattering.
Now Eqs. (4.184) and (4.193) form the closed system, allowing us to
express two-particle function ΦRA(qω) via M(qω), which, in turn, is
expressed via the irreducible vertex part Upp′(qω) with the help of
Eq. (4.194).

4.7.1.1 Technical details

Let us present the detailed derivation of Eqs. (4.193) and (4.194). Multiplying
both sides of (4.150) by pq̂

m
and performing the summation over p and p′ we

29Note that (4.192) reduces to the first two terms of the following expansion over Leg-
endre polynomials:∑

p′
ΦRA

pp′ =

∞∑
l=0

Pl(cos θpq)Φ
l
p ≈ Φ0

p + cos θpqΦ
1
p + · (4.187)

where θpq is an angle between vectors p and q. Assuming Φ0
p ∼ Φ1

p ∼ ∆Gp, we can
write:

Φ0
p = −[2πiν(E)]−1∆Gp

∑
p′p′′

ΦRA
p′′p′ (ωq) (4.188)

Φ1
p = −[2πiν(E)]−1∆Gp

∑
p′p′′

(p′′q̂)

pF
Φp′′p′ (ωq) (4.189)

which was, in fact, done in (4.192). For ω → 0, q → 0, with the account of (4.186) and
|p| ≈ |p′| ≈ pF , we have:∑

pp′
ΦRA

pp′ = −
1

2πiν(E)

∑
p

∆Gp

∑
p′p′′

ΦRA
p′′p′ =

∑
p′p′′

ΦRA
p′′p′ (4.190)

∑
pp′

(pq̂)ΦRA
pp′ = −

d

2πiν(E)

∑
p

∆Gp
(pq̂)2

p2F

∑
p′p′′

(p′′q̂)ΦRA
p′′p′ =

∑
p′p′′

(p′′q̂)ΦRA
p′′p′

(4.191)
where d is the number of space dimensions.
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obtain:

∑
pp′

pq̂

m

ω − pq

m
− ΣR(E + ω,p+) + ΣA(Ep−)︸ ︷︷ ︸

−
∑

p′′ Upp′′ (qω)∆Gp′′

ΦRA
pp′(qω)

=
∑
pp′

pq̂

m
∆Gp

1

2πi
δ(p− p′)−

∑
pp′

pq̂

m
∆Gp

∑
p′′

Upp′′ΦRA
p′′p′(qω) (4.195)

where the difference of self-energies in the l.h.s. is rewritten with the use of the
Ward identity (4.151). Then we get:

ω
∑
pp′

pq̂

m
ΦRA

pp′(qω)−
∑
pp′

(pq̂)2

m2︸ ︷︷ ︸
1
d

p2

m2 = 2E
dm

ΦRA
pp′(qω)−

∑
pp′

(pq̂)

m

∑
p′′

Upp′′∆Gp′′ΦRA
pp′(qω)

=
∑
p

pq̂

m

∆Gp

2πi︸ ︷︷ ︸
Zero after the angular integration!

−
∑
pp′

pq̂

m
∆Gp

∑
p′′

Upp′′ΦRA
p′′p′(qω)

(4.196)

which gives:

ω
∑
pp′

pq̂

m
ΦRA

pp′(qω) +
∑
pp′

pq̂

m
∆Gp

∑
p′′

Upp′′ΦRA
p′′p′(qω)

︸ ︷︷ ︸
(I)

=
∑
pp′

pq̂

m

∑
p′′

Upp′′∆Gp′′ΦRA
pp′(qω)

︸ ︷︷ ︸
(II)

+q
2E

dm

∑
pp′

ΦRA
pp′(qω) (4.197)

Let us consider the contributions (I) and (II) separately. Using (4.192) we have:

(I) =
∑
pp′′

pq̂

m
∆GpUpp′′

∑
p′

ΦRA
pp′

= −
∑
pp′′

pq̂

m
∆GpUpp′′

∆Gp′′

2πiν(E)

∑
p′p′′′

[
1 + d(p′′q̂)(p′′′q̂)/p2F

]
ΦRA

p′′′p′

=
i

2πν(E)

∑
pp′′

pq̂

m
∆GpUpp′′∆Gp′′

∑
p′p′′′

ΦRA
p′′′p︸ ︷︷ ︸

(III)

+
id

2πν(E)p2F

∑
pp′′

(pq̂)∆GpUpp′′∆Gp′′(p′′q̂)
∑
p′p′′′

p′′′q̂

m
ΦRA

p′′′p′ (4.198)
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Similarly:

(II) =
∑
p

pq̂

m

∑
p′′

Upp′′∆Gp′′
∑
p′

ΦRA
pp′

= −
∑
p

pq̂

m

∑
p′′

Upp′′∆Gp′′
∆Gp

2πiν(E)

∑
p′p′′′

{
1 + d(pq̂)(p′′′q̂)/p2F

}
ΦRA

p′′′p′

= (III) +
id

2πν(E)

∑
p

(pq̂)2

p2F︸ ︷︷ ︸
1/d

∆Gp

∑
p′′

Upp′′∆Gp′′
∑
p′p′′′

p′′′q̂

m
ΦRA

p′′′p′

= (III) +
∑
p′′

Upp′′∆Gp′′
∑
p′p′′′

p′′′q̂

m
ΦRA

p′′′p′ = (III)− 2iγ
∑
pp′

pq

m
ΦRA

pp′

(4.199)

where to obtain the last equality we again used the Ward identity (4.151) and
rewritten the difference of self-energies using the simplest approximation (4.25)
as ΣA − ΣR = 2iImΣA = 2iγ. Then from (4.198) and (4.199) we obtain:

(I)− (II) = 2iγ
∑
pp′

pq̂

m
ΦRA

pp′

+
id

2πν(E)p2F

∑
pp′′

(pq̂)∆GpUpp′′∆Gp′′(p′′q̂)
∑
pp′

pq̂

m
ΦRA

pp′

= M(qω)
∑
pp′

pq̂

m
ΦRA

pp′ (4.200)

where M(qω) is defined in (4.194). As a result Eq. (4.197) reduces to (4.193),
completing our derivation.

In principle, all these manipulations are “almost exact”. Most serious limita-
tion of our analysis is the use of the simplest approximation for the self-energy
(4.25) in (4.199). If we do not use this simplification, we obtain more general
(compared to (4.194)) expression for the relaxation kernel:

M(qω) =
1

2πiν(E)

∑
p

∆Gp

[
ΣR(E + ωp+)− ΣA(Ep−)

]
+

id

2πν(E)p2F

∑
pp′

(pq̂)∆GpUpp′∆Gp′(p′q̂) (4.201)

Next everything depends on the approximation we use for the irreducible vertex
Upp′ , but explicit results, up to now, are only obtained using the approximate
expressions given above and valid, strictly speaking, in the limit of weak enough
disorder: γ ≪ E. However, as we shall see below, some kind of self-consistency
procedure allows to overcome these limitations.
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Solving now the system of equations (4.184), (4.193) we get:

ΦRA(qω) = −N(E)
ω +M(qω)

ω2 + ωM(qω)− 1
d
v2F q

2
(4.202)

Using (4.102) we immediately obtain the density–density response func-
tion in the following form:

χ(qω) = ωΦRA(qω) +N(EF ) = vF qΦ
RA
1 (qω)

= −N(E)
1
d
v2F q

2

ω2 + ωM(qω)− 1
d
v2F q

2
(4.203)

For small ω, neglecting ω2 in the denominator of (4.202) or (4.203), we
can write:

ΦRA(qω) = −N(E)
1

ω + iDE(qω)q2
(4.204)

χ(qω) = N(E)
iDE(qω)q

2

ω + iDE(qω)q2
(4.205)

where we have introduced, by definition, the generalized diffusion coef-
ficient:

DE(qω) = i
2E

dm

1

M(qω)
=
v2F
d

i

M(qω)
(4.206)

which is directly expressed via the relaxation kernel.
Using the general expression (4.106) for conductivity, we obtain:

σ(ω) =
ne2

m

i

ω +M(0ω)
→ e2DE(00)N(E) ω → 0 (4.207)

where we have used n
N(E)

= 2E
d

(n is electron density).
Thus, all important characteristics of the system are, in fact, ex-

pressed via the relaxation kernel (4.194). The question is in what ap-
proximation we can calculate it! If we take Upp′(qω) in (4.194) in the
simplest possible approximation (4.127), Eq. (4.194) in the limit of small
disorder (precisely when this approximation is valid!) reduces to:30

M(00) =
i

τtr
= 2πiρ

∑
p′

δ

(
E − p′2

2m

)
|v(p− p′)|2(1− p̂p̂′) (4.208)

30In ∆Gp we just take here the limit of γ → 0.
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i.e. the usual expression for the transport relaxation time τtr due to
impurity scattering in metals, determining the value of the residual
resistivity (remember that here E = EF and p̂p̂′ = cos θpp′)) and
(4.207) gives the standard Drude expression:

σ =
ne2

m
τtr (4.209)

for ω = 0, or

σ(ω) =
ne2

m

τtr
1− iωτtr

(4.210)

for the finite frequencies of external field.
Let us now take Upp′(qω) as given by Cooperon (4.147). Then it

is clear that the presence of diffusion pole can, in general case, lead to
divergence of relaxation kernel M(0ω) for ω → 0, as in this limit:∫

dk
kd−1

ω + iD0k2
∼
{

1√
ω

d = 1

lnω d = 2
(4.211)

This (“infrared”) divergence appears for d ≤ 2.31 Thus, besides the
usual Drude contribution (finite for ω → 0), we can get the singular
(in the “infrared” limit of ω → 0) contribution to M(0ω), which leads
to important physical effects (such as Anderson localization). Our next
task is to perform an accurate separation and analysis of such contri-
butions.

Substituting (4.147) into (4.194) we have (q → 0, ω → 0):

M(0ω) =2iγ − 2id

πν(E)p2F

∑
pp′

(pq̂)ImGR(Ep)Upp′(0ω)ImGR(Ep′)(p′q̂)

=2iγ +
4dU0γ

πν(E)p2F

∑
pp′

(pq̂)ImGR(Ep)
1

ω + iD0(p+ p′)2
ImGR(Ep′)(p′q̂)

(4.212)

31For d ≥ 2 in (4.211) we have to introduce the cut-off at the upper limit for k ∼ l−1 ∼
v−1
F γ (which is connected with the applicability limit of diffusion approximation (cf.

footnote after (4.131)).
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After the variable change k = p+ p′; p′ = k− p we rewrite (4.212)
as:

M(0ω) = 2iγ +
4dU0γ

πν(E)p2F

∑
pk

(pq̂)ImGR(Ep)
1

ω + iD0k2
ImGR(Ep− k)(kq̂)

− 4dU0γ

πν(E)p2F

∑
pk

(pq̂)2︸ ︷︷ ︸
1
d
p2
F

ImGR(Ep)
1

ω + iD0k2
ImGR(Ep− k) (4.213)

Note that the second term here is finite for ω → 0 (we can say that it just
“renormalize” 2iγ), and in the third the singular at ω → 0 contribution
appears from the zeroth-order term in the expansion of the integrand
over k → 0 (then integral of the type of (4.211) appears). So finally we
write:

M(0ω) ≈ 2iγ − 4U2
0

∑
p

(ImGR(Ep))2
∑
k

1

ω + iD0k2
(4.214)

Now take into account that in our approximation:∑
p

(ImGR(Ep))2 ≈ ν(E)

∫ ∞

−∞
dξ

γ2

[(E − ξ)2 + γ2]2
=

π

2γ
ν(E)

(4.215)
so that:

2U0

∑
p

(ImGR(Ep))2 = πU0ν(E)γ−1 = 1 (4.216)

Accordingly, (4.214) reduces to:

M(0ω) = 2iγ − 2U0

∑
k

1

ω + iD0k2
(4.217)

Consider now in details the case of two-dimensional system (d = 2).
We have to calculate the integral:

I =
∑
k

1

ω + iD0k2
=

Ω2

(2π)2

∫ Λ

0

dkk
1

ω + iD0k2
=

1

2π

∫ Λ

0

dkk
1

ω + iD0k2

=
1

4π

∫ Λ2

0

dx
1

ω + iD0x
=

1

4πiD0

∫ Λ2

0

1

x+ ω
iD0

=
1

4πiD0

∫ Λ2

0

dx
x+ i ω

D0

x2 + ω2

D2
0

(4.218)
Now we see that:

ReI =
1

4πD0

ω

D0

∫ Λ2

0

dx
1

x2 + ω2

D2
0

→ 0 ω → 0 (4.219)
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due to convergence of the integral. On the other hand:

ImI = − 1

4πD0

∫ Λ2

0

dx
x

x2 + ω2

D2
0

(4.220)

giving the logarithmic divergence for ω → 0:

ImI = − 1

8πD0

∫ Λ4

0

dz
1

z + ω2

D2
0

= − 1

8πD0
ln

(
1 +

D2
0Λ

4

ω2

)
(4.221)

Accordingly, for ω → 0 we have:

ImI ≈ − 1

8πD0
ln
D2

0Λ
4

ω2
= − 1

4πD0
ln
D0Λ

2

ω

= − 1

4πD0
ln

1

ωτ
= −m

2

1

2πEτ
ln

1

ωτ
(4.222)

where we have chosen the cut-off Λ such that:32

D0Λ
2 ∼ 1

τ
= 2γ (4.223)

which gives:

Λ ∼
√

2m

E

1

τ
= 2

√
2m

E
γ ∼ l−1 (4.224)

where l = vF τ is the mean-free path, or

vFΛ ∼ 1

τ
= 2γ (4.225)

with the account of vF =
√

2E
m

and D0 = Eτ
m

for d = 2. Then we obtain:

− 2U0I ≈ imU0
1

2πEτ
ln

1

ωτ
(4.226)

For d = 2 ν(E) = m
2π

, so that mU0 = m
2πν(E)τ

= 1
τ

.
Finally (4.217) reduces to:

M(0ω) =
i

τ
+
i

τ

1

2πEτ
ln

1

ωτ
(4.227)

Using this expression in (4.206), we find the generalized diffusion coef-
ficient of two-dimensional system as:

D(ω) = D0

i

τ

1

M(ω)
=

D0

1 + 1
2πEτ

ln 1
ωτ

≈ D0

{
1− 1

2πEτ
ln

1

ωτ

}
(4.228)

32Later we shall discuss this choice in detail!
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where in the last equality we have taken into account the fact that all our
procedures are valid only in the limit of weak disorder, when 2πEτ ≫ 1.
The second term in (4.228) describes quantum corrections to diffusion
(conductivity) in two-dimensional system of electrons and impurities
(L.P. Gorkov, A.I. Larkin, D.E. Khmelnitskii, 1979). As the sign of
this correction (in this simple case of potential scattering) is negative
(diminishing diffusion coefficient compared to its classical Drude value
D0), this phenomenon is often called “weak localization”.33

All the previous analysis was performed for the case of T = 0. For fi-
nite temperatures, inelastic scattering of electrons becomes important,
leading to “phase decoherence” of wave functions, with characteristic
time τϕ = AT−p (the power p depends on the type of inelastic scatter-
ing). Thus, the expression (4.228) is changed to:

D(ω) = D0

1− 1

2πEτ
ln

1

Max
[
ω, 1

τϕ

]
τ

 (4.229)

In particular, for ω = 0 we obtain the static conductivity in the following
form:

σ = σ0

{
1− 1

2πEτ
ln
τϕ
τ

}
= σ0

{
1− p

2πEτ
ln
T0

T

}
(4.230)

where T0 is some temperature (energy) scale. Using n
N(E)

= 2π n
m

= E

(which is valid for d = 2), we obtain σ0 =
ne2

m
τ = e2

2π
Eτ , so that (4.230)

can be rewritten as:
σ =

e2

2π
Eτ

{
1− 1

2πEτ
ln
τϕ
τ

}
(4.231)

Note that e2

2π
= e2

2π~ = e2

h
defines the quantum scale of conductivity:

e2

~ = 2.5 · 10−4Ohm−1.
Logarithmic temperature dependence of the type of (4.230), (4.231)

is experimentally observed for low enough temperatures practically in all
two-dimensional metallic systems (such as thin films, two-dimensional
electron gas in MOSFETs, etc.) [Alshuler B.L., Aronov A.G., Khmel-
nitskii D.E., Larkin A.I. (1982); Lee P.A., Ramakrishnan T.V. (1985)].
33If we formally consider in (4.228) the limit of ω → 0, the logarithmic divergence leads
to quantum correction becoming of the order and greater than the classical contribution,
signifying the possibility of static conductivity of the system at T = 0 becoming zero
(metal–insulator or Anderson transition). Of course, in this case we are already outside
the limits of applicability of our expressions and special analysis is needed, which will
be given later.
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4.7.1.2 “Poor man” interpretation of quantum corrections

Let us consider now the physical meaning of quantum corrections to conductivity
(A.I. Larkin, D.E. Khmelnitskii, 1980). Consider (for the moment!) the case
of weak disorder with mean-free path l ≫ ~

pF
or (~ = 1) pF l ≫ 1, Eτ ≫ 1.

Starting with the usual “metallic” regime of conductivity, we are looking for
small corrections due to “weak localization”:

σ = σ0 + δσ; |δσ| ≪ σ0 (4.232)

The usual Drude conductivity (the result of the standard transport theory), as
we have just seen, is given by σ0 ∼ e2

~2Eτ . In this (classic) theory the different
acts of scattering by impurities are considered as independent (uncorrelated).
Electrons are moving by (classical) diffusion, so that for the particle which at the
moment t = 0 is at the point r0, the probability to arrive at some moment t > 0

at the point r is given by the solution of diffusion equation, which for space of d
dimensions is given by:

P (rt) =
e
− |r−r0|2

4D0t

(4πD0t)d/2
(4.233)

where the classical diffusion coefficientD0 = v2F τ/d. This probability is essentially
nonzero within the volume Vdiff , which is defined by |r− r0|2 ≪ 4D0t, when:

P (rt) ∼ 1

Vdiff
=

1

(D0t)d/2
(4.234)

This is all just a classical picture. Consider now quantum propagation of an elec-
tron described by Feynman trajectories [Sadovskii M.V. (2019b)] going from some
point A to point B, as shown in Fig. 4.21(a). Due to Heisenberg indeterminacy
principle each trajectory can be, in fact, represented by a “tube” with finite width
of the order of:

λF =
~

mvF
(4.235)

Then, the effective crossection of this “tube” is of the order of λd−1
F . In the

classical limit we have ~ → 0 and λF = 0. In case of weak disorder λF /l =
~

pF l
≪

1 and our “tubes” are thin enough. Let the temperature be low, so that acts of
inelastic scattering, characterized by τϕ are rare enough and τϕ ≫ τ .

Probability of A→ B transition according to Feynman is given by:

W =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

=
∑
i

|Ai|2 +
∑
i ̸=j

AiA
∗
j (4.236)

where Ai is the transition amplitude of A → B transition along the i-th tra-
jectory. The usual Boltzmann transport theory naturally neglects quantum in-
terference contribution in (4.236). In most cases this is well justified — the
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Fig. 4.21 Feynman trajectories of an electron propagating from the point A to point B
(a) and an example of self-intersecting trajectory (b).

trajectories (paths) have different lengths and amplitudes Ai have different (es-
sentially random!) phases. However, there is one special case, that is when points
A and B just coincide, i.e. the case of self-intersecting paths of the type shown in
Fig. 4.21(b).34 Such a closed path may be traversed in both (opposite) directions
1 and 2. Now, as paths 1 and 2 coincide, the phases of amplitudes A1 and A2 are
coherent and the second term in (4.236) gives a finite contribution! Appropriate
classical transition probability in the case of A1 = A2 = A is Wcl = 2|A|2 (the
first term in (4.236)), but in quantum case we have an additional contribution
due to interference (second term in (4.236)), so that:

Wqm = 2|A|2 +A∗
1A2 +A1A

∗
2 = 4|A|2 (4.237)

and

Wqm = 2Wcl (4.238)

Thus, the probability of return for the quantum particle is twice that of the
classical particle — quantum diffusion is “slower” than classical.35 This leads to
the suppression of conductivity σ and tendency to localization!

Let us estimate now the value of δσ/σ0. From the previous discussion it
is clear that the sign of δσ/σ0 is negative and the change of conductivity is
proportional to probability of the self-intersecting trajectory appearance (in the
process of diffusion). Consider the path (“tube” with the cross-section λd−1

F ) in d-
dimensional space. During the time interval dt an electron passes a distance of the
order of dl = vF dt and the corresponding volume of the “tube” is dV = vF dtλ

d−1
F .

34The case of backward scattering, leading to return to the initial point.
35This is due to the wave-like nature of particles in quantum mechanics. All these
conclusions are also valid and well known for the classical waves. In particular, this
leads to the enhancement of the usual echo in the forest!
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On the other hand, the maximal available volume for diffusing particle is Vdiff

(4.234). Then, the probability for an electron to find itself inside the closed tube
can be roughly estimated to be determined by the ratio of these volumes:

W =

∫ τin

τ

dV

Vdiff
= vFλ

d−1
F

∫ τϕ

τ

dt

(D0t)d/2
(4.239)

The lower limit of integration here is determined by the applicability of diffusion
approximation, while the upper — by the limit of applicability of the picture of
coherent quantum propagation. Remembering that σ0 ∼ e2

~2Eτ , we obtain the
simple estimate:

δσ

σ0
∼ ~
Eτ


( τϕ

τ

)1/2
d = 1

ln
( τϕ

τ

)
d = 2( τϕ

τ

)−1/2
d = 3

(4.240)

If 1
τϕ

∼ T p, we have from (4.240):

δσ

σ0
∼ ~
Eτ


T−p/2 d = 1

p ln T0
T

d = 2

T p/2 d = 3

(4.241)

Above we have used the equality A1 = A2 assuming the equivalence of electronic
states with momenta p and −p, i.e. time reversal invariance (t → −t). This
is valid in the absence of an external magnetic field and magnetic impurities.36

In the presence of external magnetic field H these transition amplitudes acquire
phases of opposite sign:

A1 → A1e
iφ A2 → A2e

−iφ (4.242)

with

φ =
e

~c

∮
dlA =

2πϕ

hc/e
(4.243)

where ϕ = HS is magnetic flux through the cross-section S of the closed path
(trajectory). As our electron moves by diffusion, we have S ∼ D0t, so that
ϕ ∼ HD0t. As a result, instead of (4.237), we obtain the probability of return as:

WH = 2|A|2
{
1 + cos

(
2π

ϕ

ϕ0

)}
(4.244)

where ϕ0 = ch
2e

is magnetic flux quantum appearing in the theory of superconduc-
tivity [Sadovskii M.V. (2019a)] and corresponding to electric charge 2e! Charge
doubling appears here due to the interference of contributions of a pair of electrons
with p and −p (similarly, to the case of superconductivity, where the Cooper pair
is formed by electrons with opposite momenta). For H = 0 we obviously obtain
36Very clear discussion of time reversal invariance and its absence for the systems in an
external magnetic field or containing magnetic impurities can be found in Ch. VIII of
[De Gennes P.G. (1966)].
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WH=0 = 4|A|2. Now, we can conclude that external magnetic field leads to the
effect of negative magnetoresistance given by:

∆σ(H) = δσ(H)− δσ(0) ∼WH −WH=0

∼ vFλ
d−1
F

∫ τϕ

τ

dt

(D0t)d/2

{
1− cos

(
2π

ϕ

ϕ0

)}
> 0 (4.245)

and connected with suppression of quantum (localization) corrections by an
external magnetic field. It is clear that ∆σ(H) is a function of HDoτϕ

ϕ0
. “Crit-

ical” magnetic field, leading to almost complete suppression of localization cor-
rections, is determined from HcD0τϕ

ϕ0
∼ 1, which gives (for typical values of

D0 and τϕ) Hc ∼ 100 ÷ 500Gs. This effect of negative magnetoresistance
in weak magnetic fields is widely observed in disordered systems and gives a
practical method for investigation of quantum corrections and characteristic
time τϕ [Alshuler B.L., Aronov A.G., Khmelnitskii D.E., Larkin A.I. (1982);
Lee P.A., Ramakrishnan T.V. (1985)].37

4.7.2 Self-consistent theory of localization

Let us return to general discussion. Below we shall present some self-
consistent approach, which apparently allows to analyze the case of
strong enough disorder. Consider again Eq. (4.217). The basic idea
of self-consistent theory of localization (W. Götze, 1979, D. Vollhardt,
P. Wölfle, 1980) is to substitute the classical diffusion coefficient D0

in the denominator of Eq. (4.217) by the generalized diffusion coeffi-
cient (4.206), which is expressed via the relaxation kernel in its turn
determined by Eq. (4.217). As a result we obtain the following self-
consistency equation determining the relaxation kernel M(0ω):38

M(ω) = 2iγ

1 +
1

πν(E)

∑
|k|<k0

i

ω − 2E
dm

k2

M(ω)

 (4.246)

or equivalent (due to (4.206)) equation for the generalized diffusion co-
efficient:

D0

DE(ω)
= 1 +

1

πν(E)

∑
|k|<k0

1

−iω +DE(ω)k2
(4.247)

37Note that this effect is completely different from the classical magnetoresistance where
∆σ(H)

σ0
∼ −(ωHτ)

2, with ωH = eH
mc

. The value of classical magnetoresistance for mag-
netic fields studied here is in orders of magnitude smaller than (4.245) and have the
opposite sign!
38Note that here we neglect the possible spatial dispersion: M(qω) → M(0ω),
DE(qω) → DE(0ω).
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The choice of cut-off momentum k0 will be discussed later.39

Before we go to the detailed analysis of solutions of Eqs. (4.246)
and (4.247), let us see what can be said from “general considerations”.
Consider again expression (4.204) for ΦRA(qω). We are expecting that
M(ω) may be singular for ω → 0. Assume that the existence of the
following limit:

R2
loc(E) = − 2E

dm
lim
ω→0

1

ωM(ω)
(4.248)

defining characteristic length Rloc. Then the following singular contri-
bution appears in (4.204)40 (for simplicity we also assume that q → 0):

ΦRA(qω) = −N(E)

ω

1

1 +R2
locq

2
(4.249)

In this case it is convenient to introduce also the characteristic frequency
ω0(E):

ω2
0(E) = − lim

ω→0
ωM(ω) =

2E

dm

1

R2
loc(E)

> 0 (4.250)

so that

Rloc(E) =

√
2E

dm

1

ω0(E)
(4.251)

The length Rloc has the meaning of localization radius (length) of elec-
tronic states in the field of random potential of impurities [Sadovskii
M.V. (2000)]. If these limits exist electronic states at the Fermi level
E are localized and our system becomes the Anderson insulator. Lo-
calization of electrons in disordered systems or Anderson transition is
one of the basic concepts of the modern theory of disordered systems
[Mott N.F. (1974)]. Below we shall see that the self-consistent theory
localization gives rather satisfactory description of this transition.
39Surely, the proposed self-consistency scheme introduces into our theory some “uncon-
trollable” elements, which is typical for many other “self-consistent” approximations.
In fact, there exists more rigorous derivation of Eqs. (4.246), (4.247) (D. Vollhardt,
P. Wölfle, 1982), based upon the general diagrammatic analysis and the drop of “less
singular” (for ω → 0) contributions, but we shall not discuss it here. As a matter of
fact, the fruitfulness of self-consistent approach is justified mainly by physical results
obtained below.
40The presence of such contribution in ΦRA(qω) corresponds to the general criterion of
electron localization in the random field of impurities, i.e. to (Anderson) transition to
insulating state [Sadovskii M.V. (2000)].
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Appearance of localized states (Anderson insulator) is related here
to the existence of the limit in (4.248), i.e. with the existence of fi-
nite frequency ω0(E), defined in (4.250). In another words, it corre-
sponds to the appearance of divergent contribution to relaxation kernel:
ReM(0ω) = −ω2

0(E)

ω
for ω → 0. Then, the relaxation kernel (at q → 0

and ω → 0) can be written as:

M(0ω) =

{
i
τE

(metal)
i
τE

− ω2
0(E)

ω
(Anderson insulator)

(4.252)

The problem is whether such solutions of Eq. (4.246) really exist?
Returning to discussion of the cut-off momentum in Eqs. (4.246) and

(4.247) we note that from Eq. (4.194) and the simple estimate (for the
case of weak disorder!) ∆Gp ∼ ImGR(Ep) ∼ δ

(
E − p2

2m

)
, it is clear

that the modulus of the sum of momenta k = p+ p′ in Upp′(qω) can
change from 0 to 2pF . At the same time, our expression for Upp′(qω)

given by (4.147) (“Cooperon”) is valid only for |p+ p′| ≤ l−1 (criterion
of validity of diffusion approximation). Then it is clear that the cut-off
momentum in (4.246) and (4.247) can be estimated as:

k0 ∼Min{pF , l−1} (4.253)
In fact, the Anderson transition takes place for the mean-free path given
by the simple estimate pF l ∼ 1 (so-called Ioffe–Regel criterion) [Mott
N.F. (1974)], so that we may write:

k0 = x0pF = x0

√
2mE (4.254)

where x0 = const ∼ 1÷ 2.
Let us now turn to the solution of self-consistency equation (4.246)

(A.V. Myasnikov, M.V. Sadovskii, 1982). Introduce the dimensionless
integration variable y = k

x0

√
2mE

and rewrite Eq. (4.246) as:

M(ω) = 2iγ + dλxd−2
0 M(ω)

∫ 1

0

dydd−1 1

y2 − dω
4x2

0E
2M(ω)

(4.255)

where λ is (dimensionless) perturbation theory parameter:

λ =
1

2πEτ
=

γ

πE
=
(m
2π

)d/2 E d
2−2

Γ
(
d
2

)ρv2 (4.256)

and we have taken into account γ = πρv2ν(E) and the form of the
density of states of free electrons in d-dimensional space:

ν(E) =
(m
2π

)d/2 E d
2−1

Γ
(
d
2

) (4.257)
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4.7.2.1 Metallic phase

Putting in (4.255) ω = 0 and considering the metallic regime of (4.252),
when ReM(ω = 0) = 0 and ImM(ω = 0) = 1/τE , we immediately
obtain from (4.255):

τE =
1

2γ

{
1− d

d− 2
λxd−2

0

}
(4.258)

Then, from (4.207) we get the metallic conductivity in the following
form:

σ =
ne2

m

1

2γ

{
1−

(
Ec

E

) 4−d
2

}
; 2 < d < 4 (4.259)

where

Ec =

{
d

d− 2

xd−2
0

Γ
(
d
2

)(2π)− d
2

} 2
4−d

Esc (4.260)

and we introduced characteristic energy:

Esc = m
d

4−d (ρv2)
2

4−d (4.261)

which already appeared in (4.74) and defines the width of “strong cou-
pling” (strong scattering) region on the energy axis for an electron in the
random field of impurities. In fact it follows from the simplest estimate
of γ ∼ ρv2ν(E) ∼ E (with the account of (4.257)), which corresponds
to Ioffe–Regel criterion (and limit of validity of our perturbation the-
ory!).41 It is easily seen that energy Ec ∼ Esc (4.260) plays the role of
mobility edge [Mott N.F. (1974)]. In fact, for E > Ec we obtain from
(4.259):

σ ≈ ne2

m

1

2γ(Ec)

(
4− d

2

)(
E − Ec

Ec

)
∼ E − Ec

Ec

(4.262)

so that static conductivity of the system at T = 0 tends to zero as
Fermi energy E → Ec. This corresponds to Anderson metal–insulator
transition (Anderson localization).
41Already from these simple estimates we can see the special role of space dimensionali-
ties d = 2 and d = 4, which has the meaning of “lower” and “upper” critical dimensions
for Anderson transition.
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Let us present explicit results for d = 3. For definiteness we just put
x0 = 1 and obtain:

Ec =
9

2π4
m3(ρv2)2 (4.263)

In terms of dimensionless perturbation theory parameter λ given by
(4.256) this corresponds to the critical value λc =

d−2
d
x2−d
0 = 1/3 or

E

γ(E)

∣∣∣∣
E=Ec

=
3

π
pF l =

3

π
(4.264)

where l = vF
2γ

is the mean-free path in Born approximation, which can
be used as a measure of disorder. Then (4.264) corresponds to the usual
formulation of Ioffe–Regel rule: the mean-free path in a metal can not
be shorter than typical interatomic spacing [Mott N.F. (1974)]. With
the further growth of disorder the system becomes Anderson insulator.
Drude conductivity, corresponding to “critical” mean-free path given by
(4.264) is:

σc =
ne2

m

1

2γ(Ec)
=

e2pF
3π2~2

(
pF l

~

)∣∣∣∣
E=Ec

=
e2pF
π3~2

(4.265)

where we used n = p3
F

3π2~3 and “restored” ~. Due to pF ∼ ~
a
, where a

is interatomic spacing, the value of σc (4.265) is of the order of Mott’s
“minimal metallic conductivity”:

σmm ≈ 1

π3

e2

~a
(4.266)

which for a ∼ 3Å gives σmm ∼ 2 · 102Ohm−1cm−1.
Writing (4.258) as

τE =
1

2γ

{
1− 3

πE
γ

}
=

1

2γ

{
1− γ(E)

γ(Ec)

}
(4.267)

we can rewrite (4.259) in the following form:

σ = σ0

{
1− σc

σ0

}
= σ0 − σc (4.268)

where Drude conductivity σ0 = ne2

m
1
2γ

enters as the measure of disor-
der. For weak disorder (large mean-free path) σ0 ≫ σc and from (4.268)
follows the usual result: σ ≈ σ0. As disorder grows (mean-free path di-
minishes) σ → 0 as σ0 → σc ≈ σmm. Then we see that σmm determines
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characteristic conductivity scale for the continuous (in contradiction
with early ideas of Mott [Mott N.F. (1974)]) metal–insulator transition
induced by disorder. It is rather surprising that these simple expres-
sions are experimentally confirmed in many real systems [Sadovskii M.V.
(2000)].

From our estimates it is clear that for d = 3 the mobility edge Ec belongs
to the “strong coupling” region of the width of the order of Esc = m3(ρv2)2

(M.V. Sadovskii, 1977) around the origin on the energy axis, where the perturba-
tion theory parameter λ ∼ 1 and, strictly speaking, we have to take into account
all diagrams of perturbation theory. On the other hand, for d→ 2 it can be seen
from (4.260) that Ec → ∞, in accordance with the picture of all states being lo-
calized at infinitesimally small disorder for d = 2 (P.W. Anderson, E. Abrahams,
D.C. Licciardello, D.J. Thouless, 1979).

The fact that mobility edge belongs to the “strong coupling” region is the
major difficulty of the theory of electron localization in disordered systems. That
is why this theory is still uncompleted and we need the development of some new
(non perturbative) approaches.42

4.7.2.2 Anderson insulator

Consider now the region of localized state E < Ec (Anderson insulator).
Let us look for the solution of Eq. (4.246) in the form given by the second
expression in (4.252). From the real part of Eq. (4.246), for ω → 0 we
find the following equation determining ω2

0(E):

1 = dλxd−2
0

∫ 1

0

dyyd−1 1

y2 +
dω2

0(E)

4x2
0E

2

(4.269)

Similarly, from the imaginary part of (4.246), for ω → 0, we obtain the
following equation for τE in localization region:

1− 2γτE = dλxd−2
0

∫ 1

0

dyyd+1 1[
y2 +

dω2
0(E)

4x2
0E

2

]2 (4.270)

Using (for ω2
0 → 0) the simple estimate of the integral43 in (4.269) we

42More details on these problems can be found in original reviews: M.V. Sadovskii.
Physics Uspekhi 24, 96 (1981), I.M. Suslov. Physics Uspekhi 41, 441 (1998).
43Of course, this integral can be calculated exactly, but this will only lead to rather
insignificant change of some constants in the final results.
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get:

1 ≈ dλxd−2
0

1∫
(

dω2
0
(E)

4x2
0
E2

)1/2

dyyd−3

=

dλx
d−2
0

1
d−2

{
1−

(
dω2

0(E)

4x2
0E

2

) d−2
2

}
(2 < d < 4)

λ ln 2x2
0E

2

ω2
0(E)

(d = 2)
(4.271)

and from (4.260) it follows that:

ω2
0(E) =

 4
d
x2
0E

2

{
1−

(
E
Ec

) 4−d
2

} 2
d−2

(2 < d < 4)

2x2
0E

2 exp
(
− 1

λ

)
(d = 2)

(4.272)

The position of mobility edge on the energy axis is naturally deter-
mined by the condition ω2

0(Ec) = 0. For d = 2 we have ω2
0(E) > 0 for

arbitrary E, which corresponds to the picture of localization of all elec-
tronic states for any, even weakest possible, disorder (P.W. Anderson,
E. Abrahams, D.C. Licciardello, D.J. Thouless, 1979). Note, however,
that for weak disorder (λ ≪ 1) ω2

0(E) is exponentially small, which
really corresponds to weak localization.

Using “representation of unity” given by Eq. (4.269) in (4.270), we
express τE via ω2

0(E) as:

2γτE = dλxd−2
0

dω2
0(E)

4x2
0E

2

∫ 1

0

dy
yd−1[

y2 +
dω2

0(E)

4x2
0E

2

]2
≈ dλxd−2

0

1

d− 4

{
dω2

0(E)

4x2
0E

2
−
(
dω2

0(E)

4x2
0E

2

) d−2
2

}
(d < 4) (4.273)

so that for ω2
0(E) → 0 (close to the mobility edge) we have:

2γτE =

 d
4−d

λxd−2
0

(
dω2

0(E)

4x2
0E

2

) d−2
2

(2 < d < 4)

λ
[
1− ω2

0(E)

2x2
0E

2

]
(d = 2)

(4.274)
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From (4.251) and (4.272) we find localization radius:44

Rloc(E) =
1

x0

√
2mE

{
1−

(
E

Ec

) 4−d
2

}− 1
d−2

∼ 1

pF

∣∣∣∣E − Ec

Ec

∣∣∣∣−ν

;

E ≤ Ec (4.276)

where the critical exponent (index) ν:

ν =
1

d− 2
(4.277)

Introduce now characteristic correlation (localization) length (coinciding
with Rloc for E ≤ Ec, i.e. in insulating phase), defining it as:

ξloc(E) =
1

x0

√
2mE

=


[
1−

(
E
Ec

) 4−d
2

]− 1
d−2

; E ≤ Ec[
1−

(
Ec

E

) 4−d
2

]− 1
d−2

; E > Ec

(4.278)

ξloc(E) ∼ 1

pF

∣∣∣∣E − Ec

Ec

∣∣∣∣−ν

; E ∼ Ec (4.279)

Now this length is also defined for E > Ec, i.e. in metallic phase. Then
we can rewrite conductivity (4.259) in metallic phase as:

σ =
ne2

m

1

2γ
(x0pF ξloc)

2−d =
σ0

(x0pF ξloc)d−2
∼ (E − Ec)

(d−2)ν (4.280)

obtaining the so-called Wegner scaling law for conductivity (F. Wegner,
1976) with critical index:

s = (d− 2)ν (4.281)

In particular, for d = 3 (assuming x0 = 1) we have:

σ =
σ0

pF ξloc(E)
∼ (E − Ec); E > Ec (4.282)

and the critical index of conductivity s = 1. Precisely this type of
behavior is observed experimentally in the vicinity of metal–insulator
44Similarly, for d = 2 we get

Rloc(E) =
1

x0
√
2mE

exp

{
πE

mρv2

}
(4.275)

so that localization radius is exponentially large in the case of weak disorder.
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transition induced by disorder in a number of real systems [Sadovskii
M.V. (2000)]. However, in some systems another behavior is observed,
corresponding to the critical exponent s ≈ 1/2. Usually, this discrep-
ancy is attributed to the role of electron–electron interactions, which
were neglected in the above analysis. Thus the question of critical be-
havior of conductivity close to disorder induced metal–insulator transi-
tion is, in fact, still open.45

Note that all the previous expressions are written in analogy to scaling re-
lations of modern theory of (thermodynamic) critical phenomena for the second
order phase transitions [Sadovskii M.V. (2019a)] and correspond to the concept
of scaling at the mobility edge (P.W. Anderson, E. Abrahams, D.C. Licciardello,
D.J. Thouless, 1979). Let us stress (to avoid possible misunderstanding) that An-
derson (metal–insulator) transition is in no sense (thermodynamic) phase transi-
tion of either order and its description is much more complicated (and, in fact,
incomplete). In particular, up to now there is no commonly accepted definition
of any order parameter, characterizing this transition. As we already mentioned,
the difficulties of theoretical description of this transition (even in one-particle
approximation, neglecting interactions) are connected with the fact that the mo-
bility edge position at the energy axis belongs to the “strong coupling” region
(which is, by the way, quite analogous to the Ginzburg critical region of the
usual theory of critical phenomena (M.V. Sadovskii, 1977)), where (in contrast
to the theory of critical phenomena!) we have to take into account all diagrams of
Feynman perturbation series or use essentially non-perturbative methods.46 It is
important to stress, that in the standard theory of critical phenomena interaction
of order-parameter fluctuations in the critical region becomes weak, at least in
the space of d = 4−ε dimensions. But for the Anderson transition we meet quite
opposite situation!

Another example of the behavior of physical characteristics at the
Anderson transition is dielectric permeability (in the phase of Anderson
insulator). From general definition (2.110) we have:

ϵ(qω) = 1 +
4πe2

q2
χ(qω) (4.283)

where χ(qω) is the retarded density–density response function. Then,
45This problem is complicated also by the fact that most of the modern numerical
simulations of the Anderson transition for non-interacting electrons give the value of
conductivity exponent s ∼ 1.5.
46Due to this, we should not be very serious with respect to the explicit relations for
critical exponents for the Anderson transition obtained above. At the same time, the
continuous nature of this transition for d = 3 is rather well established, both theoretically
and experimentally (in contradiction with early ideas of Mott [Mott N.F. (1974)]).
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using (4.204), (4.205) and (4.252), (4.276), we immediately obtain:

ϵ(0ω → 0) = 1 +
ω2
p

ω2
0(E)

= 1 + κ2
DR

2
loc(E) ∼

∣∣∣∣E − Ec

Ec

∣∣∣∣−2ν

(4.284)

where ω2
p = 4πne2

m
is the square of the plasma frequency and κ2

D =

4πe2N(E) is the inverse square of the (Debye) screening length in a
metal. From Eq. (4.284) we can see that the static dielectric permeabil-
ity diverges at the mobility edge as the system approaches the insulator–
metal transition (from within the Anderson insulator). This is also the
observable effect, which can be used to determine the critical exponent
ν of localization length.

4.7.2.3 Frequency dispersion of the generalized diffusion coefficient

Results obtained above are valid for ω → 0. It is, of course, possible to perform a
complete analysis of frequency dependence of the generalized diffusion coefficient
(D. Vollhardt, P. Wölfle, 1982). We shall give here only a short summary of
appropriate results. Eq. (4.247) for the generalized diffusion coefficient can be
written in the following form, similar to (4.255):

DE(ω)

D0
= 1− dλ

d− 2
xd−2
0 + dλxd−2

0

[
− iωD0

2γDE(ω)

] ∫ 1

0

dy
yd−3

y3 − iωD0
2γDE(ω)

(4.285)

Under the condition of
∣∣∣ ω
2γ

D0
DE(ω)

∣∣∣ ≪ 1, the upper limit of integration in (4.285)
can be replaced by infinity, so that we obtain the following algebraic equation for
DE(ω):

DE(ω)

D0
= 1− λ

λc
+ pd

λ

λc

{
− iω

2γ

D0

DE(ω)

} d−2
2

(4.286)

where λc = d−2
d
x2−d
0 is the “critical” value of dimensionless parameter λ at the

transition point and pd = Γ
(
d
2

)
Γ
(
2− d

2

)
. From (4.286) it follows that DE(ω)

(and conductivity σ(ω)) satisfy the following scaling relation:

DE(ω)

D0
=
σ(ω)

σ0
=

(
− iω

2γ

) d−2
d

Fd

(
ω

ωc

)
(4.287)

where for ω ≪ ωc we have:

Fd

(
ω

ωc

)
∼
(
− iω
ωc

) 2
d

; λ > λc (insulator) (4.288)

Fd

(
ω

ωc

)
∼
(
− iω
ωc

) 2−d
d

; λ < λc (metal) (4.289)
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while for ω ≫ ωc:

Fd

(
ω

ωc

)
∼ const (4.290)

Characteristic frequency ωc is defined as:

ωc ≈ 2γ

∣∣∣∣1− λ

λc

∣∣∣∣ d
d−2

∼ 2γ[pF ξloc(E)]−d (4.291)

Inequality used to reduce Eq. (4.285) to (4.286) is satisfied for ωc ≪ 2γ, which is
definitely valid close to the mobility edge.

For d = 3 Eq. (4.286) becomes:

DE(ω)

D0
= 1− λ

λc
+
π

2

λ

λc

{
− iω

2γ

D0

DE(ω)

}1/2

; λc =
1

3x0
(4.292)

and can be solved explicitly. With sufficient (for many applications) accuracy the
generalized diffusion coefficient can be written as [Sadovskii M.V. (2000)]:47

DE(ω) =


DE ; (ω ≪ ωc, E ≥ Ec) (metal)

D0

(
− iω

2γ

)1/3
; (ω ≫ ωc) (both metal and insulator)

DE
−iω

−iω+
3DE
v2
F

ω2
0(E)

; (ω ≪ ωc, E < Ec) (insulator)

(4.293)
where DE = D0

pF ξloc(E)
. At the mobility edge itself we have ξloc(E = Ec) = ∞, so

that ωc = 0, and we obtain the so-called ω1/3-law (W. Götze, 1981):

DE(ω) = D0

(
− iω

2γ

)1/3

(4.294)

The frequency ωc is in fact determined from DE(ωc) ∼ DE ∼ D0

(
ωc
2γ

)1/3
. The

limit of ω → 0 often used above should be understood in the sense of ω ≪ ωc.
Finally, note that for ω ≫ 2γ equations of self-consistent theory of localization de-
scribe the transition to the usual Drude-like behavior: DE(ω) ≈ D0

[
1− iω

2γ

]−1

.

4.8 “Triangular” vertex

Existence of diffusion pole (4.140) in “four-leg” vertex Γpp′(qω) and in
two-particle Green’s functions in general (cf. e.g. (4.204)) leads to the
appearance of similar contributions in other “blocks” of our diagram
47For d = 2 and very small frequencies ω ≪ λ−1e−

1
λ γ (λ≪ 1), self-consistent theory of

localization gives σ(ω) = ne2

m
γ
λ
e

2
λ ω2

2(x0E)4
→ 0, for ω → 0. For λ−2e−

1
λ γ ≪ ω ≪ λ2γ

we obtain for D(ω) the dependence of the type of (4.228).
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technique.48 In particular, it is useful to analyze the “triangular” ver-
tex, defined by diagrams shown in Fig. 4.12(c). In general case, it is
defined by the integral equation shown diagrammatically in Fig. 4.22(a).
Though in the following we shall mainly consider the case of weak dis-
order, when we can restrict ourselves by the use of U0(p− p′) = ρv2

(“ladder” approximation), at first we shall present rather general anal-
ysis, allowing the generalization in the spirit of self-consistent theory
of localization. Returning to the general definition of the two-particle
Green’s function, shown diagrammatically in Fig. 4.14(a), or analyti-
cally in (4.125), we can immediately write down the following expression
for “triangular” vertex T RA

p+p−
(qω) via ΦRA

pp′(qω):49

T RA
p+p−

(qω)GR(E + ωp+)G
A(Ep−) = −2πi

∫
ddp′

(2π)d
ΦRA

pp′(qω)

(4.295)

Fig. 4.22 Integral equation for “triangular” vertex (a) and different combinations of (R)
and (A) electronic lines (b), (c), (d).

48The same statement is valid concerning the appearance of “Cooperon”-type contribu-
tions related to (4.147).
49For definiteness we assume the upper electron line in Fig. 4.22(a) to be retarded.
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or

T RA
p+p−

(qω) = − 2πi

GR(E + ωp+)GA(Ep−)

∫
ddp′

(2π)d
ΦRA

pp′(qω) (4.296)

Using now (4.192), we can rewrite (4.296) as:

T RA
p+p−

(qω) =
1

ν(E)

∆Gp

GR(E + ωp+)GA(Ep−)

×
∫

ddp′

(2π)d

∫
ddp′′

(2π)d

{
1 +

d

p2F
(pq̂)(p′′q̂)

}
ΦRA

p′′p′(qω)

=
1

ν(E)

∆Gp

GR(E + ωp+)GA(Ep−)

{
ΦRA(qω) + d(p̂q̂)ΦRA

1 (qω)
}

(4.297)

where we have used also (4.88) and (4.185). Using Eqs. (4.184) and
(4.193) for ΦRA(qω) and ΦRA

1 (qω) we have obtained (4.202) and
(4.203), so that, in particular, we have:

ΦRA
1 (qω) =

1

vF q
χ(qω) (4.298)

Then:

d(p̂q̂)ΦRA
1 (qω) = (pq)

d

pFvF q2
χ(qω) (4.299)

so that after the use of (4.149):
∆Gp

GR(E + ωp+)GA(Ep−)

= −
{
ω − 1

m
(pq)− ΣR(p+E + ω) + ΣA(p−E)

}
(4.300)

and (4.297) is rewritten as:

T RA
p+p−(qω) =

1

ν(E)

{
−ω +

1

m
(pq) + ΣR(p+E + ω)− ΣA(p−E)

}
×
{
ΦRA(qω) +

1

m
(pq)

d

v2F q
2
χ(qω)

}
= −

{
−ω +

1

m
(pq) + ΣR(p+E + ω)− ΣA(p−E)

}
ω +M(qω) + 1

m
(pq)

ω2 + ωM(qω)− 1
d
v2F q

2

=

{
ω − 1

m
(pq) + 2iγ

}
ω +M(qω) + 1

m
(pq)

ω2 + ωM(qω)− 1
d
v2F q

2
(4.301)
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where we have used also (4.202) and (4.203), as well as, at the end,
the simplest approximation for self-energies. As a result, in the limit of
ω → 0 and q → 0, introducing again the generalized diffusion coefficient
(4.206), we obtain the following simple form of “triangular” vertex in
RA-channel and shown in Fig. 4.22(b):

T RA(qω) ≈ 2γ

−iω +DE(qω)q2
(4.302)

Of course, in the “ladder” approximation (weak disorder!), when we
use (4.127), expression of the type of (4.302) (with the replacement
DE(qω) → D0) is directly obtained from the equation shown in
Fig. 4.22(a) after elementary calculations. More complicated deriva-
tion given above allows generalization to the case of strong disorder
(pF l ∼ 1), when for DE(qω) we may use expressions derived within
self-consistent theory of localization.

Similarly, we can show that the “triangular” vertex in AR-channel,
shown in Fig. 4.22(a), is given by:

T AR(qω) ≈ 2γ

iω +DE(qω)q2
(4.303)

while for vertices in RR and AA channels, shown in Fig. 4.22(d) we
have:

T RR(qω) = T AA(qω) = 1 (4.304)

so that diffusion pole here is absent.
In Matsubara formalism the general form of “triangular” vertex is

now also quite clear:50

T (qωmεn) = θ(εn)θ(εn + ωm) + θ(−εn)θ(−εn − ωm)

+ 2γ

{
θ(εn)θ(−εn − ωm)

−ωm +D0q2
+
θ(−εn)θ(εn + ωm)

ωm +D0q2

}
(4.305)

where we have only written expressions with D0 = 1
d
vF τ = v2

F

2dγ
, as in

the rest of this chapter we shall be interested only in the case of weak
disorder (pF l ≫ 1).
50We have taken into account that G(εn > 0p) is continued to GR(Ep), G(εn < 0p) to
GA(Ep), iωm → ω ± iδ for m > 0 and m < 0 etc.
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4.9 The role of electron–electron interaction

In real disordered metals we deal, of course, with electrons interacting
via Coulomb repulsion. The task of joint account of both disorder (im-
purity scattering) and interaction effects is very difficult problem, which
is not finally solved up to now [Altshuler B.L., Aronov A.G. (1985);
Lee P.A., Ramakrishnan T.V. (1985)]. Below we limit ourselves only
to the analysis of some simple examples of interactions effects in dis-
ordered systems, mainly concerning the density of states close to the
Fermi level.

Consider the simplest interaction correction to single-electron
Green’s function shown diagrammatically in Fig. 4.23(a). Here the
wave-like line corresponds to electron–electron interaction, while “tri-
angular” vertices describe renormalization of this interaction due to the
multiple scattering of electrons by impurities.

Fig. 4.23 Simplest correction to the single-particle Green’s function due to electron–
electron interactions in disordered metal.

First we shall make calculations for T = 0. Analytic expression for
the Green’s function correction in this case has the following form:51

δG(Ep) = iG2(Ep)

∫
ddq

(2π)d

∫ ∞

−∞

dω

2π
V (q)T 2(qω)G(E + ωp+ q)

(4.306)
where V (q) is the Fourier transform of interaction potential. Appro-
priate correction to the density states is given by:

δN(E) = −N(EF )

π
Im

∫ ∞

−∞
dξ

∫
ddq

(2π)d

∫
dω

2π
V (q)T 2(qω)

× i

E − ω − ξ(p+ q) + iγsign(E − ω)

(
1

E − ξ + iγsignE

)2

(4.307)

51Note that in the following E denotes not the Fermi energy (as above), but the energy
calculated with respect to the Fermi energy, which will be denoted now as EF .
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For E > 0 the integral over ξ is different from zero if sign(E−ω) < 0,
i.e. for ω > E. Accordingly we have:

δN(E)

N(EF )
≈ − 1

π
Im i

∫ ∞

−∞
dξ(p)

∫
ddq

(2π)d

∫ ∞

E

dω

2π
V (q)[T RA(qω)]2

×GA(E − ωp+ q)[GR(Ep)]2 (4.308)

which corresponds to diagram shown in Fig. 4.23(b). Here we already
can use explicit expression for the vertex given by (4.302). Substituting
to (4.308) standard expressions for GA(Ep) and GR(Ep) (dependence
of GA on ω and q can be neglected in the limit of ω ≪ γ and vF q ≪ γ),
we obtain:

δN(E)

N(EF )
= − 1

π
Im i

∫
ddq

(2π)d

∫ ∞

E

dω

2π
V (q)× [T RA(qω)]2

×
∫ ∞

−∞
dξ

1

E − ξ − iγ

1

(E − ξ + iγ)2

= − 1

2γ2
Im

∫
ddq

(2π)d

∫ ∞

E

dω

2π
[T RA(qω)]2V (q) (4.309)

which, after the use of (4.302), finally gives for T = 0:
δN(E)

N(EF )
= − 1

π
Im

∫
ddq

(2π)d

∫ ∞

E

dω
1

(−iω +D0q2)2
V (q) (4.310)

Strictly speaking we also have to introduce here the cut-off for ω-
integration at ω ∼ 1/τ to guarantee the validity of diffusion approxi-
mation, but this is unnecessary, due to fast convergence of the integral
at infinity.

Surely, the same result can be obtained also from Matsubara formal-
ism in the limit of T → 0. Let us see how it can be done. Since we are
seeking the density of states correction, define:

δN(εn) = − 2

π

∫
ddp

(2π)d
δG(εnp) (4.311)

which in accordance with Fig. 4.23(a), reduces to:

δN(εn) =
2

π

∫
ddq

(2π)d
T
∑
n

V (q)T 2(qωm)

×
∫

ddp

(2π)d
G2(εnp)G(εn + ωmp+ q) (4.312)
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Let us first calculate the integral over p, where for vF q ≪ γ we can
completely neglect dependence on q:∫

ddp

(2π)d
G2(εnp)G(εn + ωmp+ q) ≈

∫
ddp

(2π)d
G2(εnp)G(εn + ωmp)

≈ ν(EF )

∫ ∞

−∞
dξ

1

(iεn − ξ+iγsignεn)2
1

iεn+iωm − ξ+iγsign(εn + ωm)

= 2πiν(EF )

{
θ(εn)θ(−εn − ωm)

(2iγ − iωm)2
− θ(εn + ωm)θ(−εn)

(2iγ + iωm)2

}
≈ −iν(EF )2πτ

2{θ(εn)θ(−εn − ωm)− θ(εn + ωm)θ(−εn)} (4.313)
Here the integral over ξ was calculated in a standard way via residues
(it is different from zero on for different signs of εn and εn + ωm), and
in the final expression we have used |ωmτ | ≪ 1.

Consider for definiteness εn > 0. Then only first pair of θ-functions
in (4.313) contributes: εn > 0, εn + ωm < 0, which gives ωm < −εn.
Then (4.312) reduces to:

δN(εn) = −2iTN(EF )τ
2

−εn∑
ωm=−∞

∫
ddq

(2π)d
V (q)T 2(qωm)

= −2iTN(EF )
−εn∑

ωm=−∞

∫
ddq

(2π)d
V (q)

(−ωm +D0q2)2
(4.314)

For T → 0 we replace iωm → ω+iδ, i.e. ωm → −i(ω+iδ), iεn → E+iδ

and, accordingly, iT
∑

m · · · →
∫

dω
2π

· · · , so that in this limit we get:
δN(E)

N(EF )
= −2Im

∫ −E

−∞

dω

2π

∫
ddq

(2π)d
V (q)

1

(iω +D0q2)2

= −2Im

∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

1

(−iω +D0q2)2
(4.315)

which obviously coincides with Eq. (4.310), obtained via diagram tech-
nique for T = 0.

The rest is elementary. We have:
δN(E)

N(EF )
= −2Im

∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

(iω +D0q
2)2

[ω2 + (D0q2)2]2

= −2

∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

2D0q
2ω

[ω2 + (D0q2)2]2

= 2

∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

d

dω

Doq
2

ω2 + (D0q2)2
(4.316)
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so that finally we get:
δN(E)

N(EF )
= − 1

π

∫
ddq

(2π)d
V (q)

D0q
2

E2 + (D0q2)2
(4.317)

Let us estimate this correction to the density of states for the case of
point-like electron–electron interaction V (q) = V0. Then we have:

δN(E)

N(EF )
= −V0

π
Sd

∫ p0

0

dqqd−1 D0q
2

E2 + (D0q2)2

= −V0

π
Sd

1

D
d/2
0

∫ Ẽ1/2

0

dx
xd+1

E2 + x4
≈ −V0

π
Sd

1

D
d/2
0

∫ Ẽ1/2

E1/2

dxxd−3

(4.318)

where we have introduced the upper limit cut-off p0 ∼ l−1, which cor-
responds to Ẽ = D0p

2
0, and Sd = Ωd/(2π)

d = 2−(d−1)π− d
2 /Γ

(
d
2

)
. The

last equality gives in (4.318) gives the simple estimate of the integral.
Of course, it can be calculated exactly, but this estimate is valid up
to insignificant constants of the order of unity. Finally we obtain the
following correction to the density of states close to the Fermi level
(A.G. Aronov, B.L. Altshuler, 1979):

δN(E)

N(EF )
=
V0

π


1

D
d/2
0

Sd
1

d−2

{
|E| d−2

2 − Ẽ
d−2
2

}
(d > 2)

1
D0
S2 ln

|E|
Ẽ

(d = 2)
1

D
1/2
0

{
1

Ẽ1/2 − 1
|E|1/2

}
(d = 1)

(4.319)

In particular, for d = 3 this gives the famous Aronov–Altshuler “sea
gull” form of the density of states around the Fermi level:

δN(E)

N(EF )
∼
√
|E|

D
3/2
0

(4.320)

which is shown in Fig. 4.24. It is remarkable, that precisely this be-
havior obtained for the density of states in many tunneling experi-
ments in disordered metals [Altshuler B.L., Aronov A.G. (1985)]. With
the growth of disorder diffusion coefficient D0 is suppressed, so that
this anomaly in the density of states grows. What happens close to
the metal–insulator transition (when pF l ∼ 1) is at present unclear,
the complete theory of this transition with the account of electron–
electron interactions is still absent [Altshuler B.L., Aronov A.G. (1985);
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Fig. 4.24 Typical form of interaction correction to the density of states in a disordered
metal.

Lee P.A., Ramakrishnan T.V. (1985)]. The majority opinion is that
this Altshuler–Aronov anomaly smoothly transforms to the so-called
“Coulomb gap” of Efros and Shklovskii, which forms in the density of
states deeply in localized phase [Shklovskii B.I., Efros A.L. (1984)]. In
principle, the behavior of this type is derived in simple generalizations
of the above theory in the spirit of the self-consistent theory of localiza-
tion [Sadovskii M.V. (2000)], but we shall not discuss these complicated
(unsolved) problems here.

Instead we shall generalize our analysis for the more realistic case of
Coulomb (long-range) interaction, when we have to take into account
the effects of dynamic screening. Also we shall consider the finite tem-
perature effects, making calculations in Matsubara technique. Now the
wave-like line of the diagram in Fig. 4.23(a) represents the screened in-
teraction. Returning to (4.312) we rewrite this expression similarly to
(4.314):

δN(εn) = −2iN(EF )τ
2T
∑
m

∫
ddq

(2π)d
V(qωm)T 2(qωm)

×{θ(εn)θ(−εn − ωm)− θ(−εn)θ(εn + ωm)}

= −2iN(EF )T
∑
m

∫
ddq

(2π)d
V(qωm)

{
θ(εn)θ(−εn − ωm)

[−ωm +D0q2]2
− θ(−εn)θ(εn + ωm)

[ωm +D0q2]2

}
(4.321)
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which for εn > 0 reduces to an expression similar to (4.314):

δN(εn) = −2iTN(EF )
−εn∑

ωm=−∞

∫
ddq

(2π)d
V(qωm)

(−ωm +D0q2)2
(4.322)

Here (cf. (2.7), (2.8)):

V(qωm) =
4πe2

q2ϵ(qωm)
(4.323)

ϵ(qωm) = 1− 4πe2

q2
Π(qωm) (4.324)

where the polarization operator, with the account of impurity scattering,
is determined by diagrams of Fig. 4.12(a), and analytically by (4.89):

Π(qωm) = 2T
∑
n

∫
ddp

(2π)d
G(pεn)G(p+ qεn + ωm)T (qωm) (4.325)

Using again (4.313), (4.305) and assuming, for example, ωm < 0, we
obtain:

ΠRA(qωm) = T
∑

0<εn<−ωm

2πN(EF )

−ωm +D0q2
= N(EF )

−ωm

−ωm +D0q2

(4.326)
The case of ωm > 0 is calculated in a similar way, so that:

ΠRA(qωm) = N(EF )

{
ωmθ(ωm)

ωm +D0q2
+

−ωmθ(−ωm)

−ωm +D0q2

}
(4.327)

Now we have to find also the contribution from RR and AA-channels,
when, according to (4.305):

T (qωmεn) = θ(εn)θ(εn + ωm) + θ(−εn)θ(−εn − ωm) (4.328)
As diffusion pole is absent here, we may just put ωm = 0, q = 0 and
write:

ΠRR(00) + ΠAA(00) = 2T
∑
n

∑
p

G2(εn) = −N(EF ) (4.329)

In slightly more details:

ΠRR(00) + ΠAA(00) = 2T
∑
n

∫
ddp

(2π)d
1

(iεn − ξ(p) + iγsignεn)2

= T
∑
n

N(EF )

∫ ∞

−∞
dξ

∂

∂ξ

1

iεn − ξ + iγsignεn

≈ N(EF )
∑
n

∫ ∞

−∞
dξ

∂

∂ξ

1

iεn − ξ
= N(EF )

∫ ∞

−∞
dξ

(
−∂n(ξ)

∂ξ

)
= −N(EF )

(4.330)
where n(ξ) is Fermi distribution.
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As a result, to (4.327) we have to add −N(EF ){θ(ωm) + θ(−ωm)},
so that the final expression for polarization operator of a metal with
impurities is:

Π(qωm) = −N(EF )D0q
2

{
θ(ωm)

ωm +D0q2
+

θ(−ωm)

−ωm +D0q2

}
(4.331)

From here, using (4.324), we immediately get:

ϵ(qωm) = 1 +
D0κ

2
D

ωm +D0q2
θ(ωm) +

D0κ
2
D

−ωm +D0q2
θ(−ωm) (4.332)

where κ2
D = 4πe2N(EF ) is the inverse square of screening length. For

ωm = 0 from (4.332) we obtain the usual result:52

ϵ(q0) = 1 +
κ2
D

q2
(4.333)

for the static screening of Coulomb interaction. In general case
Eq. (4.332) determines the dielectric function (permeability) of a metal
with impurities in the limit of |ωmτ | ≪ 1 and ql ≪ 1.

As a result, for small ωm and q we obtain the effective interelectron
interaction (4.323) in the following form:

V(qωm) =
4πe2

q2 − 4πe2Π(qωm)

≈ 4πe2(−ωm +D0q
2)

4πe2N(EF )D0q2
=

−ωm +D0q
2

N(EF )D0q2
(4.334)

where, for definiteness, we have assumed ωm < 0. It is interesting to
note, that in this approximation dependence on electric charge e2 just
canceled out.53

As a result, dynamically screened Coulomb interaction (4.322) re-
duces to:

δN(εn > 0) ≈ −2iT
−εn∑

ωm=−∞

1

D0

∫
ddq

(2π)d
q−2

−ωm +D0q2
(4.335)

For point-like interaction the similar expression, following from (4.314),
has the form:

δN(εn > 0) ≈ −2iN(EF )T
−εn∑

ωm=−∞

∫
ddq

(2π)d
V0

[−ωm +D0q2]2
(4.336)

52Take into account the definition: θ(ωm) =

{
1 m ≥ 0

0 m < 0
.

53This result is not universal and e2 dependence reappears in more refined approxima-
tions.
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Let us make explicit calculations for the case of d = 3. We have:

δN(εn > 0) = − iT
π2

−εn∑
ωm=−∞

1

D0

∫ p0

0

dq

D0q2 − ωm

(Coulomb)

(4.337)

δN(εn > 0) = − iT
π2
g

−εn∑
ωm=−∞

∫ p0

0

dqq2

[D0q2 − ωm]2
(point-like)

(4.338)
where g = N(EF )V0 is dimensionless coupling constant for the case of
point-like potential.

After the variable change x2 = D0q
2, these expressions are rewritten

as:

δN(εn > 0) = − iT

π2D
3/2
0

−εn∑
ωm=−∞

Φ(ωm) (4.339)

where

Φ(ωm) =

{∫ x0

0
dx

x2−ωm
(Coulomb)

g
∫ x0

0
x2dx

(x2−ωm)2
(point-like) (4.340)

Now we have to calculate the sum over Matsubara (Bose) frequencies:∑−εn
ωm=−∞ Φ(ωm) =

∑−n
m=−∞ Φ(ωm). Using ωm = 2πmT and εn =

(2n+1)πT , we write this sum as the following integral over the contour,
shown in Fig. 4.25:

T
−n∑

m=−∞

Φ(iωm) =

∮
dz

2πi
nB(z)Φ(z) =

∫ −iεn−∞

−iεn+∞

dz

2πi
nB(z)Φ(z)

= −
∫ ∞

−∞

dz

2πi
nB(z − iεn)Φ(z − iεn) =

∫ ∞

−∞

dz

2πi
n(z)Φ(z − iεn)

(4.341)

where nB(z) = 1

e
z
T −1

is Bose and n(z) = 1

e
z
T +1

is Fermi distribution.
All this “works” if Φ(z) does not possess singularities for Im z < −εn
and vanishes (sufficiently fast!) for |z| → ∞. Then, for Coulomb case
we can write:

Φ(z) =

∫ ∞

0

dx

x2 + iz
(4.342)
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Fig. 4.25 Integration contour used in the calculations of the sum over Matsubara fre-
quencies.

while for point-like interaction:

Φ(z) = g

∫ ∞

0

dxx2

(x2 + iz)2
(4.343)

This function vanishes at |z| → ∞ too slow, but this gives (as we
shall see in a moment) only some infinite constant irrelevant for us (in
difference with (4.340) here we write integrals without the upper limit
cut-off!). Making in (4.341) continuation iεn → E + iδ (for εn > 0)
and calculating the imaginary part ImΦ(z) = −ImΦ(−z), we get:∫ ∞

−∞
dzn(z)ImΦ(z) =

1

2

∫ ∞

−∞
dz[n(z + E)− n(−z + E)]ImΦ(z)

=

∫ ∞

0

dz[n(z + E)− n(−z + E)]ImΦ(z) (4.344)

The the density of states correction is given by:

δN(E) = − 1

2π3D
3/2
0

∫ ∞

0

dz[n(z+E)+n(z−E)−1]ImΦ(z) (4.345)

where we have used −n(−z) = 1 + n(z), which allowed us to separate
the last term in square brackets, which gives divergent contribution (to
be cut-off!) independent of E, and thus irrelevant to us.
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For the Coulomb case we have:

ImΦ(z) = −Im
∫ ∞

0

dx
x2 − iz

(x2 + iz)(x2 − iz)
= z

∫ ∞

0

dx

x4 + z2

=
1√
z

∫ ∞

0

dx

x4 + 1
=

π

2
√
2z

(4.346)

Then using (4.346) in (4.345) (dropping the irrelevant contribution of
the last term, depending on the cut-off) we get:

δN(E) = − 1

25/2π2D
3/2
0

∫ ∞

0

dω
1√
ω
[n(ω + E) + n(ω − E)] (4.347)

or, after the partial integration:

δN(E) =
T 1/2

23/2π2D
3/2
0

φ

(
E

2T

)
(4.348)

where

φ(x) =
1√
2

∫ ∞

0

dyy1/2
{

1

ch2(x− y)
+

1

ch2(x+ y)

}
(4.349)

These expressions describe the “sea gull” behavior of the density of
states at finite temperatures. Note the asymptotic dependencies:

φ(x) =

{√
π(1−

√
2)ζ(1/2) ≈ 1.07 x→ 0√

2x x≫ 1
(4.350)

Thus, for Coulomb case (for T → 0) we also have:

δN(E) ∼
√
|E|

D
3/2
0

(4.351)

which is similar to (4.320) obtained for the case of short-range interac-
tion.

These corrections to the density of states can be illustrated by the following
heuristic estimates. Consider interactions of an electron in some quantum state
n with energy E with some other electron from the Fermi surface. The relative
correction to the wave function of our electron can be estimated in the first order
of perturbation theory as:

δφn

φn
∼
∫ ∞

0

dtHint(t) (4.352)

where t = 0 is the moment, when interaction is switched on, and Hint(t) is inter-
action Hamiltonian (in interaction representation). During the time interval t our
electron diffuses in disordered metal within the volume of the order of ∼ (D0t)

d/2.
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Then the matrix element of the interaction due to short-range interaction can be
estimated as V0(D0t)

−d/2. Accordingly we have:

δφn

φn
∼ V0

∫ tmax

tmin

dt(D0t)
−d/2 ∼ V0

D
d/2
0

{
t
1− d

2
min − t

1− d
2

max

}
(4.353)

Here tmin is naturally defined by the limit of validity of diffusion approxima-
tion: (D0tmin)

1/2 ∼ l, which gives tmin ∼ (D0l
−2)−1 ∼ Ẽ−1. The time tmax

is determined as some t ≥ |E|−1, as at these times the matrix element is effec-
tively suppressed by fast (time) oscillations of wave functions. Then, assuming
δN(E)
N(EF )

∼ δφn
φn

from (4.353) we immediately obtain (4.319).
All this is not the end, but only the start of an unfinished story about

the role of electron–electron interactions in disordered systems. Above
we limited our analysis to the study of only single lowest order (so-called
“Fock”) process, described by the diagram of Fig. 4.23. There are many
other contributions (diagrams), which are to be accounted for even in
the limit of weak disorder pF l ≫ 1. Important corrections (qualitatively
similar to quantum corrections considered above) appear not only in the
density of states, but also in conductivity. The interested reader can find
the detailed discussion of these problems in original reviews [Altshuler
B.L., Aronov A.G. (1985); Alshuler B.L., Aronov A.G., Khmelnitskii
D.E., Larkin A.I. (1982); Lee P.A., Ramakrishnan T.V. (1985)]. Even
more complicated is the problem of the role of interaction effects in the
region of strong disorder, when pF l ∼ 1, especially in the vicinity of
metal–insulator transition induced by disorder. Despite the significant
progress achieved in many theoretical studies, we are still rather far
from complete understanding of this region [Sadovskii M.V. (2000)].



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 188



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 189

Chapter 5

Superconductivity

5.1 Cooper instability

Consider scattering of two-electrons due to phonon exchange, shown in
Fig. 5.1. Dashed line here corresponds to:

g2D(ε3 − ε1;p3 − p1) = g2
ω2
p3−p1

(ε3 − ε1)2 − ω2
p3−p1

(5.1)

Fig. 5.1 Elementary process of electron–electron interaction due to phonon exchange.

If we consider interacting electrons with small sum of momenta, so that
p3 + p1 ∼ 0 (nearly opposite momenta!), the transferred momentum
p3 − p1 is not small and its absolute value ∼ 2pF . At the same time,
for electrons, which are close to the Fermi surface, we have ε3 ∼ ε1 ∼ 0.
Then (5.1) in fact reduces to:

g2D(ε3 − ε1;p3 − p1) = −g2 < 0 (5.2)

189
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which corresponds to the appearance of electron–electron attraction.
This leads to the general idea that electrons in metals with opposite
momenta and spins (Pauli principle!) attract each other due to phonon
exchange, which is of basic importance to BCS approach to super-
conductivity [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
De Gennes P.G. (1966); Schrieffer J.R. (1964)]. In the simplest ap-
proach using BCS model Hamiltonian the real interaction due to phonon
exchange is replaced by an effective point-like attraction, which is dif-
ferent from zero only for electrons from the layer of the width of ∼ 2ωD

around the Fermi surface [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963); De Gennes P.G. (1966); Schrieffer J.R. (1964)].

Fig. 5.2 “Ladder” in Cooper channel (a) and integral equation for the appropriate
vertex-part (b).

Cooper instability of the normal metallic phase due to this attraction
can be analyzed if we consider “ladder” diagrams, describing interaction
of two quasiparticles (electrons) close to the Fermi surface, shown in
Fig. 5.2(a), where the wave-like line denotes this attractive interaction.1
The sum of this series (without external “tails”) is given by the vertex
Γ, which is determined by the integral equation shown in Fig. 5.2(b)

1We assume the following choice of external 4-momenta: p1 = p+q; p2 = −p; p3 = p′+q;
p4 = −p′, so that q is the small sum of (incoming) 4-momenta.
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and has the following (analytic) form:

Γ(p3p4; p1p2)=< p3p4|Γ|p1p2 >=< p′+q,−p′|Γ|p+q,−p >=V (p−p′)

+i

∫
d4p′′

(2π)4
V (p′ − p′′)G0(p

′′+q)G0(−p′′) < p′′+q,−p′′|Γ|p+ q,−p >

(5.3)

We can check the validity of Eq. (5.3) by iterations — as a result we
just have the “ladder” series. In BCS model interaction “potential”
V (p− p′) is taken in the following form:

V (p− p′) → V (p, p′) = λwpwp′ (5.4)

where

wp =

{
1 |ξp| < ωD

0 |ξp| > ωD
(5.5)

From the simplest estimate given above for electron–phonon exchange
we can take λ = −g2. Now Eq. (5.3) is easily solved:

Γ(p3p4; p1p2) =< p′ + q,−p′|Γ|p+ q,−p >=
λwp′+qwp+q

1− iλ
∫

d4p
(2π)4

w2
p+qG0(p+ q)G0(−p)

(5.6)

which is checked by direct substitution into Eq. (5.3). Consider the
integral entering this expression:

iλ

∫
d4p

(2π)4
w2

p+qG0(p+ q)G0(−p) = iλ

∫
d4p

(2π)4
w2

pG0(p)G0(q − p)

= iλ

∫
d3p

(2π)3

∫
dε

2π
w2

p
1

ε− ξ(p) + iδsignξ(p)

1

ω0 − ε− ξ(q− p) + iδsignξ(q− p)

(5.7)

where q = [ω0,q] = [ε1 + ε2;p1 + p2]. Performing elementary contour
integration, we get:∫

dε

2π

1

ε− ξ(p) + iδsignξ(p)

1

ω0 − ε− ξ(q− p) + iδsignξ(q− p)

=

{
−i 1

ω0−ξ(p)−ξ(q−p)+iδ
for ξ(p) > 0; ξ(q− p) > 0

i 1
ω0−ξ(p)−ξ(q−p)−iδ

for ξ(p) < 0; ξ(q− p) < 0
(5.8)
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Substituting this into (5.7), changing integration variable to ξ = ξ(p),
with the account of factor w2

p cutting-off this integration at Debye fre-
quency ωD, we obtain:

iλ

∫
d4p

(2π)4
w2

pG0(p)G0(q − p)

≈−λmpF
2π2

∫ ωD

0

dξ

∫ 1

0

dx

{
1

ω0+2ξ+vF qx− iδ
+

1

2ξ+vF qx− ω0 − iδ

}
(5.9)

where we have used ξ(q− p) ≈ ξ(p) − vF q cos θ and introduced x =

cos θ. The remaining integrations are elementary and we get:

iλ

∫
d4p

(2π)4
w2

pG0(p)G0(q − p)

≈ −λmpF
2π2

{
1 +

1

2
ln

2ωD − iδ

ω0 + vF q − iδ
+

1

2
ln

2ωD − iδ

−ω0 + vF q − iδ

+
ω0

2vF q

(
ln

ω0 − iδ

ω0 + vF q − iδ
+ ln

vF q − ω0 − iδ

−ω0 − iδ

)}
(5.10)

The main (dominating) contribution to this expression at small (in com-
parison to ωD) ω0 and vF q is of the following form:

− λ
mpF
2π2

ln
ωD

Max[2ω0; vF q]
(5.11)

i.e. we obtain large logarithmic factor (logarithmic divergence as limiting
behavior). Finally, for the vertex part (5.6) of interest to us we get:

Γ(p3p4; p1p2) =< p′ + q,−p′|Γ|p+ q,−p >≡ Γ(q)wp′+qwp+q (5.12)
where (for ω0 > vF q)2

Γ(q)=λ

{
1+λ

mpF
2π2

[
ln e

∣∣∣∣2ωD

ω0

∣∣∣∣+ iπ2 +
1

2
ln

∣∣∣∣ ω2
0

ω2
0 − vF q2

∣∣∣∣+ ω0

2vF q
ln

∣∣∣∣ω0 − vF q

ω0 + vF q

∣∣∣∣]}−1

(5.15)

2Here we are using the well known relation:

ln z = ln |z|+ i arg z (5.13)

where

arg z = arg(x+ iy) =


arctg y

x
for x > 0

π + arctg y
x

for x < 0; y > 0

−π + arctg y
x

for x < 0; y < 0

(5.14)
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Let us analyze now the properties of the vertex-part (5.15). For sim-
plicity, consider first the case of q = 0. For real and positive ω0 we
have:

Γ(ω0) =
λ

1 + λmpF

2π2

[
ln
∣∣∣ 2ωD

ω0

∣∣∣+ iπ
2

] (5.16)

Consider now Γ(ω0) as the function of a complex variable ω0, defining
it as an analytic continuation of (5.16) to the upper half-plane, where
Imω0 > 0. Then, putting in Eq. (5.16) ω0 = |ω0|eiφ, we get:

Γ(ω0) =
λ

1 + λmpF

2π2

[
ln
∣∣∣ 2ωD

ω0

∣∣∣+ iπ
2
− iφ

] (5.17)

If interaction of electrons is attractive, i.e. λ < 0 (5.17) has a pole,
defined by the equation:3

1 + λ
mpF
2π2

[
ln

∣∣∣∣2ωD

ω0

∣∣∣∣− i
(π
2
− φ

)]
= 0 (5.18)

giving φ = π
2

and 1 + λmpF

2π2

[
ln
∣∣∣ 2ωD

ω0

∣∣∣] = 0. In other words, the pole
appears at imaginary frequency, ω0 = iω̃, where:

ω̃ = 2ωD exp

(
− 2π2

mpF |λ|

)
(5.19)

Close to the pole Γ(ω0) has the following form:

Γ(ω0) ≈ − 2π2

mpF

iω̃

ω0 − iω̃
(5.20)

This corresponds to Cooper instability — the pole in the vertex part
in the upper half-plane of frequency formally signifies the appearance
of an unstable collective mode with exponentially growing (in time)
amplitude: e−iω0t ∼ e−iiω̃t ∼ eω̃t! This leads to instability of the system
and reconstruction of its ground state and spectra of excitations.
3In case of repulsion λ > 0 and there is nothing interesting. In this case Eq. (5.17) just

gives the sum of all “ladder” corrections to the “bare” interaction λ. The large logarithm
leads only to the effective suppression of this repulsion and there is no “pathology” at
all.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 194

194 Diagrammatics

For nonzero values of vF q Eq. (5.15) may be rewritten (for ω0 > vF q)
as:

Γ(q, ω0) = λ

{
1 + λ

mpF
2π2

[
ln e

∣∣∣∣2ωD

ω0

∣∣∣∣+ iπ

2
− iφ

−1

2
ln

(
1− v2F q

2

ω2
0

)
+

ω0

2vF q
ln

(
ω0 − vF q

ω0 + vF q

)]}−1

(5.21)

so that after the continuation to the half-plane of Imω0 > 0 and the
use of definition of ω̃ given in (5.19), we find:

Γ(q, ω0) = − 2π2

mpF

{
ln
ω0

iω̃
− 1 +

1

2
ln

(
1− v2F q

2

ω2
0

)
− ω0

2vF q
ln

(
ω0 − vF q

ω0 + vF q

)}−1

(5.22)

For small vF q ≪ ω̃ we have:

Γ(q, ω0) ≈ − 2π2

mpF

iω̃

ω0 − iω̃ + i
v2
F q2

6ω̃

(5.23)

Then we find the pole position as a function of q:

ω0 = iω̃

(
1− v2F q

2

6ω̃2

)
(5.24)

so that the absolute value of ω0 diminishes with the growth of q. For
some vF qmax the pole position ω0 goes to zero, and for larger values of
vF q the pole in Γ is just absent. As q gives the sum of the momenta of
two electrons, this result means that the tendency to pairing is stronger
for electrons with nearly opposite momenta.

Cooper “ladder” contributes to electron self-energy via diagrams
shown in Fig. 5.3(a). Naturally, the existence of the pole in the “ladder”
leads to singularity in Σ(p) and in the vertex part, shown in Fig. 5.3(b).

Let us stress once again that these results signify the instability of
the usual (normal) ground state (T = 0) of Fermi-gas due to attrac-
tive interaction. The physical meaning of this instability reduces to the
ability of particles (with almost zero momentum of their center of in-
ertia) to form bound pairs, i.e. some kind of Bose particles, which may
“condense” in the ground state. The temperature, corresponding to the
appearance of this instability, defines the temperature of superconduct-
ing transition. To understand this more deeply, let us analyze the same
problem within Matsubara formalism.
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Fig. 5.3 Corrections to electron self-energy due to scattering in Cooper channel (a) and
diagrams for appropriate vertex-part (b).

If we neglect scattering of bound pairs on each other, the ideal Bose-
gas of Cooper pairs is formed and Matsubara Green’s function of this
gas can be written as:

G(q, ωm) =
1

iωm − q2

2m∗ + µ
(5.25)

where ωm = 2πmT , q is the momentum of the bound pair, m∗ — its
mass, which is equal to two masses of an electron. For ωm = 0 (5.25)
reduces to [µ − q2/2m∗]−1. At the temperature of Bose condensation
T = T0 this function diverges for q = 0, so that T0 is determined from
the equation for µ = 0, in accordance with the standard analysis of
Bose-condensation [Sadovskii M.V. (2019a)].

If we take into account the internal structure of Cooper pair, the
analogue of (5.25) is the two-particle Fermion Green’s function. At the
transition point its analytic behavior have to be similar to that of Bose-
gas Green’s function, in the sense of its dependence on ω0m = (ε1+ε2)n
and q = p1+p2 (corresponding to the center of inertia of a pair). Single-
Fermion Green’s functions do not have these singularities and we have
to consider the appropriate vertex-part Γ(qω0), which is given by the
same “ladder” diagrams as above, but written in Matsubara formalism.
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The difference is that instead of Eq. (5.7) we have to consider:

I = −λT
∑
n

∫
d3p

(2π)3
wp

2 1

iεn − ξ(p)

1

iω0m − iεn − ξ(q− p)
(5.26)

where ω0m = 2πm0T (where m0 is an integer). We shall not calculate
(5.26) for arbitrary ω0m and q, because it is clear that (as in Bose-gas)
the pole in Γ(qω0) appears first for ω0 = q = 0. Thus it is sufficient to
analyze only this case and we have to calculate:

I =
λ

(2π)3
T
∑
n

∫
d3pw2

p

1

iεn − ξ(p)

1

iεn + ξ(p)

≈ −λmpF
2π2

∫ ωD

−ωD

dξT
∑
n

1

ε2n + ξ2
= −λmpF

2π2

∫ ωD

0

dξ

ξ
th

ξ

2T
(5.27)

where the sum over frequencies was calculated using (2.100). After
partial integration we get:

I = −λmpF
2π2

(
ln
ωD

2T
−
∫ ∞

0

dx
lnx

ch2x

)
(5.28)

where in the remaining integral we replaced the upper limit x = ωD

2T

by infinity, due to fast convergence and T ≪ ωD (of interest to us).
Now this integral is equal to ln π

4γ
, where ln γ = C = 0.577... (Euler

constant), so that γ ≈ 1.78 and 2γ
π

≈ 1.14. Finally we get:

Γ(0, 0) =
λ

1 + λmpF

2π2 ln 2γωD

πT

(5.29)

For λ < 0 we again get a pole, close to which we have:

Γ(0, 0) = − 2π2

mpF

Tc

T − Tc

(5.30)

where temperature of superconducting transition Tc is defined by BCS
expression (J. Bardeen, L. Cooper, J. Schrieffer, 1957):

Tc =
2γ

π
ωD exp

(
− 2π2

|λ|mpF

)
=

2γ

π
ωD exp

(
− 1

|λ|νF

)
(5.31)

Note that here enters the density of states at the Fermi level νF for
the single spin projection. The value of |λ|νF determines dimensionless
coupling constant of pairing interaction. It is important to stress that
dependence on this constant in (5.31) is nonanalytic and this expression
can not be expanded in powers of λ for λ→ 0!
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The frequency ω̃ introduced in Eq. (5.19) and characterizing insta-
bility of the system at T = 0 is directly connected with Tc:

ω̃ =
π

γ
Tc (5.32)

5.2 Gorkov equations

From the previous results it is clear that special analysis is required
for the temperature region T < Tc [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)]. We
shall consider the simplified model of the Fermi-gas with point-like at-
traction described by the Hamiltonian:

H = H0 +Hint

=
∑
α

∫
drψ+

α (r)

[
− 1

2m
∇2 − µ

]
ψα(r)

+
λ

2

∑
αβ

∫
drψ+

α (r)ψ
+
β (r)ψβ(r)ψα(r) (5.33)

Formally this corresponds to interaction potential V (r− r′) =

λδ(r− r′), but during calculations of integrals and sums we shall take
into account the limitation of the type given by Eqs. (5.4), (5.5), to
mimic electron–phonon nature of this attraction in real metals.

In Heisenberg representation we can write down the standard equa-
tions of motion for electronic operators:

i
∂

∂t
ψα(x) = [ψα,H] (5.34)

Commutator in the right-hand side is calculated directly using commu-
tation relations for operators ψα(x):

ψα(r, t)ψ
+
β (r

′, t) + ψ+
β (r

′, t)ψα(r, t) = δαβδ(r− r′) (5.35)

ψα(r, t)ψβ(r
′, t) + ψβ(r

′, t)ψα(r, t) = 0

ψ+
α (r, t)ψ

+
β (r

′, t) + ψ+
β (r

′, t)ψ+
α (r, t) = 0 (5.36)

Calculating commutators of operators with separate terms of the Hamil-
tonian (5.33) we get:

[ψα(x),H0] = −
(
∇2

2m
+ µ

)
ψα(x) (5.37)



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 198

198 Diagrammatics

[ψα(x),Hint] = −λ
∑
β

ψ+
β (x)ψβ(x)ψα(x) (5.38)

[ψ+
α (x),H0] =

(
∇2

2m
+ µ

)
ψ+

α (x) (5.39)

[ψ+
α (x),Hint] = λ

∑
β

ψ+
α (x)ψ

+
β (x)ψβ(x) (5.40)

so that explicitly equations of motion are:

i
∂ψα

∂t
= −

(
∇2

2m
+ µ

)
ψα − λψ+

γ ψγψα (5.41)

i
∂ψ+

α

∂t
=

(
∇2

2m
+ µ

)
ψ+

α + λψ+
αψ

+
γ ψγ (5.42)

where we implicitly assume summation over repeating Greek (spin) in-
dices.

Our qualitative picture of the ground state of a superconductor as-
sumes that at T = 0 we are dealing with condensate of Cooper pairs
with enormous (macroscopic) number of particles. Physically, it is ob-
vious that this state does not change at all if we change the number of
pairs in the condensate by one.4 Mathematically this is expressed by
the appearance of nonzero (in the limit of number of particles N → ∞)
values of matrix elements of the following form:

lim
N→∞

< m,N |ψβ(x2)ψα(x1)|m,N + 2 >=

lim
N→∞

< m,N + 2|ψ+
α (x1)ψ

+
β (x2)|m,N >∗ ̸= 0 (5.43)

Here ψβ(x2)ψα(x1) is the operator of annihilation of two electrons, while
similarly ψ+

α (x1)ψ
+
β (x2) is the pair creation operator. In the following,

for shortness, we drop the symbol of limit and diagonal matrix index,
enumerating “the same” states of the system with different number of
particles.

Thus, superconducting transition is characterized by spontaneous
breaking of gauge symmetry,5 corresponding to particle number (or
4Note the obvious analogy of this assumption with similar hypothesis in Bogoliubov’s

theory of weakly interacting Bose-gas [Sadovskii M.V. (2019a)].
5The concept of spontaneous symmetry breaking plays the central role in the modern

theory of second order phase transitions [Mattuck R.D. (1968)]. The ground state of
“condensed” phase, appearing at temperatures below the transition point Tc, always
possess the symmetry, which is lower than the symmetry of the Hamiltonian, describing
this phase transition [Sadovskii M.V. (2019a)].



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 199

Superconductivity 199

charge!) conservation — electron pairs may “disappear” in conden-
sate, or “appear” from condensate, without change of the macroscopic
state of the system (for N → ∞!).

Thus, besides the usual (normal) Green’s function:
iGαβ(x1, x2) =< N |Tψα(x1)ψ

+
β (x2)|N > (5.44)

it is necessary to introduce the so-called anomalous Green’s functions:6

iFαβ(x1, x2) =< N |Tψα(x1)ψβ(x2)|N + 2 > (5.45)

iF+
αβ(x1, x2) =< N + 2|Tψ+

α (x1)ψ
+
β (x2)|N > (5.46)

Anomalous Green’s functions Fαβ and F+
αβ satisfy the following general

symmetry properties, which follow directly from commutation relations
for electron operators:

Fαβ(x1, x2) = −Fβα(x2, x1) F+
αβ(x1, x2) = −F+

βα(x2, x1) (5.47)
In the following we consider only (spin) singlet Cooper pairing, which is re-

alized in majority of known metallic superconductors.7 Let us separate spin
dependence using the following representation:

Fαβ = AαβF F+
αβ = BαβF

+ (5.48)

Due to Pauli principle < ψα(x)ψα(x) >= 0, so that Fαα = F+
αα = 0. Accordingly

Aαα = Bαα = 0 and matrices A and B can be written as:

A =

(
0 a1
a2 0

)
B =

(
0 b1
b2 0

)
(5.49)

For singlet pairing F (r− r′) = F (r′ − r) and from (5.47) it follows that Aαβ =

−Aβα and Bαβ = −Bβα, so that:8

A =

(
0 a

−a 0

)
B =

(
0 b

−b 0

)
(5.50)

and from (F+
αβ)

∗ = −Fαβ we get B∗ = −A, so that also b∗ = −a. Accordingly:

A = a

(
0 1

−1 0

)
B = −a∗

(
0 1

−1 0

)
(5.51)

6Note the close connection of the appearance of anomalous Green’s functions with
Bogoliubov’s ideology of quasi-averages [Sadovskii M.V. (2019a); Mattuck R.D. (1968);
Bogoliubov N.N. (1991b)].
7Triplet pairing is observed in superfluid phases ofHe3 and in some metallic compounds,

e.g. in Sr2RuO4.
8For triplet pairing the coordinate part of anomalous Green’s function is antisymmetric,

while spin part is symmetric.
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Then the spin dependence of anomalous Green’s functions reduces
to unit antisymmetric spinor of the second rank:

gαβ =

(
0 1

−1 0

)
= iσy

αβ (ĝ2)αβ = −δαβ (5.52)

where σy =

(
0 −i
i 0

)
. Thus we can write anomalous Green’s functions

as:
Fαβ(x1, x2) = gαβF (x1, x2) F+

αβ(x1, x2) = gαβF
+(x1, x2) (5.53)

where in the r.h.s. we have functions symmetric over x1 and x2. Spin
dependence of the normal Green’s function Gαβ (for nonmagnetic sys-
tem) reduces to Gαβ = δαβG. In homogeneous and stationary system
Green’s functions G, F , F+ depend only on the differences of coordi-
nates and moments of time.

Let us introduce anomalous functions at coinciding points:
Ξ(x) = iF (x, x) Ξ∗(x) = −iF+(x, x) (5.54)

which sometimes are called condensate wave-functions of Cooper pairs.
In stationary and spatially homogeneous system Ξ(x) reduces to a con-
stant and with the appropriate choice of phases of ψ-operators this
constant may be made real.

Let us now find these Green’s functions in our model of Fermi-gas
with attraction, defined by the Hamiltonian (5.33). Equations of motion
for operators ψ and ψ+ were given above in Eqs. (5.41) and (5.42). Now
we have:9
∂

∂t1
Gαβ = −i

〈
T
∂ψα(x1)

∂t1
ψ+

β (x2)

〉
− iδαβδ(r1 − r2)δ(t1 − t2) (5.56)

so that substituting here (5.41) we obtain the equation of motion for
the normal Green’s function:(
i
∂

∂t
+
∇2

2m
+µ

)
Gαβ(x− x′)− iλ <N |Tψ+

γ (x)ψγ(x)ψα(x)ψ
+
β (x

′)|N>

= δαβδ(x− x′) (5.57)
9To obtain the second term in (5.56) we have to remember that Gαβ is discontinuous

at t1 = t2:
Gαβ |t1=t2+0 −Gαβ |t1=t2−0 = −i < ψα(t1, r1)ψ

+(t1, r2) + ψ+
β (t1, r2)ψα(t1, r1) >

= −iδαβδ(r1 − r2) (5.55)
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Here the diagonal matrix element of the product of four ψ-operators
can be (approximately) expanded a’la Wick theorem via all “pairings”,
i.e. into the sum of matrix elements of products of pairs of operators:

< N |Tψ+
γ (x)ψγ(x)ψα(x)ψ

+
β (x

′)|N >

≈ Gγγ(0)Gαβ(x− x′)−Gαγ(0)Gγβ(x− x′)

+ < N |Tψγ(x)ψα(x)|N + 2 >< N + 2|Tψ+
γ (x)ψ

+
β (x

′)|N > (5.58)

The terms of the type of GG are not very interesting to us, as they just
lead to some irrelevant renormalization of the energy spectrum of the
normal state. Thus, in the following we consider only the contributions
of the last terms in (5.58), containing the matrix elements of transitions
changing the number of particles N ↔ N + 2, so that:10

< N |Tψ+
γ (x)ψγ(x)ψα(x)ψ

+
β (x

′)|N >

→< N |Tψγ(x)ψα(x)|N + 2 >< N + 2|Tψ+
γ (x)ψ

+
β (x

′)|N >

= −Fγα(x, x)F
+
γβ(x, x

′) = −δαβF (0)F+(x− x′) (5.59)

where we have taken into account (5.45), (5.46) and (5.52), (5.53). Using
(5.59) Eq. (5.57) can be reduced to:(

i
∂

∂t
+

∇2

2m
+ µ

)
G(x) + λΞF+(x) = δ(x) (5.60)

where we have changed x−x′ by x, and denoted a constant iF (0) as Ξ.
But now we have to write down an equation of motion also for

the anomalous Green’s function F+(x)! To do this, calculate first the
derivative:

i
∂

∂t1
F+

αβ(x− x′) =

〈
N + 2

∣∣∣∣T ∂ψ+
α (x)

∂t1
ψ+

β (x
′)

∣∣∣∣N〉 (5.61)

Note that term with δ-function, of the type of the second term in (5.56),
does not appear here as Fαβ(x− x′) (opposite to Gαβ(x− x′)) is con-
tinuous at t = t′ (due to anticommutation of ψ+

α (t, r) and ψ+
β (t, r

′)).
Substituting (5.41) into (5.61) and separating condensate contribution,
similarly to (5.59), we obtain the equation:(

i
∂

∂t
− ∇2

2m
− µ

)
F+(x) + λΞ∗G(x) = 0 (5.62)

10In the normal system of fermions (without condensate these matrix elements are, of
course, zero). But here, these anomalous contributions lead to qualitatively new results.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 202

202 Diagrammatics

Thus we obtain the closed system of Eqs. (5.60) and (5.62), determining
the Green’s functions of a superconductor (L.P. Gorkov, 1958).

In the momentum representation Gorkov equations can be written
as
(
p = (ε,p), ξ(p) = p2

2m
− µ

)
:

(ε− ξ(p))G(p) + λΞF+(p) = 1 (5.63)

(ε+ ξ(p))F+(p) + λΞ∗G(p) = 0 (5.64)

Substituting F+ from the second equation into the first we immediately
find:

(ε2 − ξ2(p)− |∆|2)G(p) = ε+ ξ(p) (5.65)

where we have introduced notation:

∆ = λΞ (5.66)

Below we shall see that this quantity will play the role of the energy
gap in the spectrum of elementary excitations of a superconductor and
simultaneously that of the order parameter for superconducting transi-
tion.

Formal solution of (5.65) is:

G(p) =
ε+ ξ(p)

ε2 − ε2(p)
=

u2
p

ε− ε(p)
+

v2p
ε+ ε(p)

(5.67)

where

ε(p) =
√
ξ2(p) + |∆|2 (5.68)

is the spectrum of elementary excitations of BCS theory (with energy
gap 2|∆|), while up and vp are the well known Bogoliubov’s coefficients
[Sadovskii M.V. (2019a)]:

u2
p

v2p

}
=

1

2

(
1± ξ(p)√

ξ2(p) + |∆|2

)
(5.69)

Note that in Eq. (5.67) the imaginary part of G remains undetermined.
It obviously contains contribution of the type of δ(ε± ε(p)) which van-
ishes after multiplication by (ε2−ε2(p)) in (5.65). According to general
properties of analyticity [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)] the sign of the imaginary part of the Green’s function should
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be opposite to the sign of ε. Thus, in terms with positive and negative
frequencies this variable should be changed to ε± iδ, so that

G(εp) =
u2
p

ε− ε(p) + iδ
+

v2p
ε+ ε(p)− iδ

=
ε+ ξ(p)

(ε− ε(p) + iδ)(ε+ ε(p)− iδ)
(5.70)

Now from (5.64) we find also the anomalous function F+:

F+(εp) = − λΞ∗

(ε− ε(p) + iδ)(ε+ ε(p)− iδ)

= − ∆∗

(ε− ε(p) + iδ)(ε+ ε(p)− iδ)
(5.71)

At the same time, by definition, we have:

iΞ∗ = F+(x = 0) =

∫ ∞

−∞

dε

2π

∫
d3p

(2π)3
F+(εp) (5.72)

Substituting here (5.71) we perform integration over ε closing the con-
tour in the upper half-plane, so that integral is expressed via the residue
at the pole at ε = ε(p). As a result, after division by Ξ∗, we get:

1 = − λ

2(2π)3

∫
d3p

1√
ξ2(p) + ∆2

(5.73)

— the gap equation of BCS theory. Remember that we consider λ < 0,
also we now write ∆ already without the sign of modulus as now we
can consider the gap to be real. The divergence of integral in (5.73) is
cut-off, as usual in BCS approach, due to the fact that only electrons
from the layer of the width of 2ωD around the Fermi level attract each
other (cf. (5.4), (5.5)). Then we get:

|λ|
2(2π)3

∫
dp

4πp2√
ξ2(p) + ∆2

→ |λ|p2F
4π2vF

∫ ωD

−ωD

dξ√
ξ2 +∆2

=
|λ|mpF
2π2

ln
2ωD

∆
(5.74)

so that (5.73) reduces to:

1 = |λ|mpF
2π2

ln
2ωD

∆
(5.75)

which gives the standard result of BCS theory:

∆0 = 2ωDe
− 2π2

|λ|mpF = 2ωDe
− 1

|λ|νF (5.76)
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Comparing with (5.31), we have:

∆0 =
π

γ
Tc (5.77)

It is instructive to calculate the density of electronic states of a super-
conductor. Using the general definition of the density of states given in
(4.99) and (5.67), (5.70), we obtain:

N(ε)=− 2

π
νF

∫ ∞

−∞
dξImGR(ε, ξ)=− 2

π
νF signεIm

∫ ∞

−∞
dξ

ε+ ξ

ε2 − ξ2−∆2

=
2

π
|ε|Im

∫ ∞

−∞
dξ

1

ξ2 +∆2 − ε2
= 2νF |ε|Im

1√
∆2 − ε2

(5.78)

where we have taken into account that for T = 0 ImGR(εp) =

signεImG(εp) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]. Introducing the density of states of free electrons at the Fermi
level (for both spin projections) N(EF ) = 2νF , we have:

N(ε)

N(EF )
=

{
|ε|√

ε2−∆2 for |ε| > ∆

0 for |ε| < ∆
(5.79)

This is the famous result of BCS theory. Density of states is zero within
the gap, i.e. in the energy region of the width of 2∆ around the Fermi
level. For ε = ±∆ there are square root divergences, while for |ε| → ∞
the density of states tends asymptotically to its free value N(EF ).

Gorkov equations may be expressed diagrammatically as shown in
Fig. 5.4, where zig-zag line denotes the “coherent” (condensate!) field
of the order parameter ∆, while for the anomalous Green’s function we
use the standard notation with opposite arrows11 In analytic form these
diagrams correspond to the following system of equations:12

G(p) =
1

ε− ξ(p)
− 1

ε− ξ(p)
∆F+(p) (5.80)

F+(p) = − 1

ε+ ξ(p)
∆∗G(p) (5.81)

which is equivalent to (5.63), (5.64).
11Interaction with ∆, shown in this diagram, can be interpreted as “annihilation” of
electron pairs into condensate or their “creation” from the condensate.
12For brevity we drop here infinitesimally small imaginary terms in the denominators of
Green’s functions of free electrons.
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Fig. 5.4 Diagrammatic representation of Gorkov equations.

Using (5.66) and equation conjugate to (5.72), we can write:

∆ = λΞ = iλ

∫ ∞

−∞

dε

2π

∫
d3p

(2π)3
F (εp) (5.82)

which can be diagrammatically expressed as shown in Fig. 5.5(a). Then
the diagrams of Fig. 5.4 lead to graphical representation of Gorkov
equations shown in Fig. 5.5(b).13

Fig. 5.5 Self-energy part due to pairing interaction built on the anomalous Green’s
function (a) and another form of diagrammatic representation of Gorkov equations (b).

Often it is convenient to use matrix form of Gorkov equations, introduced
first by Nambu. Let us define, along with G, F+ and F (i.e. (5.44), (5.45) and
13Note that here as above we just neglect the pairing interaction contribution to the
self-energy built on the normal Green’s function.
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Green’s function conjugated to (5.45)), an additional anomalous function:

iG̃αβ(x1, x2) =< N |Tψ+
α (x1)ψβ(x2)|N > (5.83)

which enters the system of equations, similar to (5.80), (5.81):

G̃(p) =
1

ε+ ξ(p)
− 1

ε+ ξ(p)
∆∗F (p) (5.84)

F (p) = − 1

ε− ξ(p)
∆G̃(p) (5.85)

Then we can define the matrix Green’s function as:

Ĝ(p) =

(
G(p) F (p)

F+(p) G̃(p)

)
(5.86)

and write both pairs of Gorkov equations ((5.80), (5.81) and (5.84), (5.85)) as a
single matrix equation:{

ε1̂− σ̂zξ(p) +
1

2

(
∆σ̂+ +∆∗σ̂−)} Ĝ(p) = 1̂ (5.87)

where we have introduced the standard Pauli matrices σ̂x, σ̂y, σ̂z and their linear
combinations σ̂± = σ̂x ± iσ̂y.

It is easily checked that

iĜ(x1, x2) =< Tψ̂(x1)ψ̂
+(x2) > (5.88)

where

ψ̂(x1) =

(
ψα(x1)

ψ+
β (x1)

)
ψ̂+(x2) = (ψ+

α (x2), ψβ(x2)) (5.89)

are the so-called Nambu spinors.
In the presence of an external electromagnetic field Green’s functions

depend not only on difference of coordinates. Electromagnetic field can
be easily introduced into Gorkov equations written as (5.60), (5.62).
This is done by the usual substitution of covariant derivatives:

∇ψ → (∇− ieA)ψ ∇ψ+ → (∇+ ieA)ψ+ (5.90)

where A is an external vector potential.14 Then equations for G and
F+ take the form:{
i
∂

∂t
+

1

2m
(∇− ieA)2 + µ

}
G(x, x′)+iλF (x, x)F+(x, x′) = δ(x−x′)

(5.91)
14We assume the use of the gauge with zero scalar potential ϕ = 0.
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{
i
∂

∂t
− 1

2m
(∇+ ieA)2 − µ

}
F+(x, x′) + iλF−(x, x)G(x, x′) = 0

(5.92)
Under the gauge transformation:

A → A+∇φ (5.93)

Green’s functions G, F and F+ are transformed as:

G(x, x′) → G(x, x′)eie[φ(r)−φ(r′)] (5.94)

F (x, x′) → F (x, x′)e+ie[φ(r)+φ(r′)] (5.95)

F+(x, x′) → F+(x, x′)e−ie[φ(r)+φ(r′)] (5.96)

as charged electron operators (fields) are transformed according to:

ψ(x) → ψeieφ(r) ψ+(x) → ψ+e−ieφ(r) (5.97)

Then the gap functions ∆(x) ∼ |λ|F (x, x) or ∆∗(x) ∼ |λ|F+(x, x),
which in external field are, in general, functions of x, are transformed
as:

F (x, x) → F (x, x)e2ieφ(r) F+(x, x) → F+(x, x)e−2ieφ(r) (5.98)

which, in accordance with general ideology of gauge theories [Sadovskii
M.V. (2019b)], means that the order parameter of a superconductor
(“gap”) ∆ is a charged field with electric charge 2e, i.e. the double
charge of an electron (Cooper pair condensate)!

Let us consider now the case of finite temperatures. In Matsub-
ara formalism, along with “normal” Green’s function of an electron,
in superconducting state we have to introduce also the “anomalous”
function:

Fαβ(τ1, r1; τ2, r2) = Sp
{
e

Ω+µN−H
T Tτ (ψα(τ1r1)ψβ(τ2r2))

}
(5.99)

F+
αβ(τ1, r1; τ2, r2) = Sp

{
e

Ω+µN−H
T Tτ (ψ̄α(τ1r1)ψ̄β(τ2r2))

}
(5.100)

where

ψα(τr) = eτ(H−µN)ψα(r)e
−τ(H−µN)

ψ̄β(τr) = eτ(H−µN)ψ+
β (r)e

−τ(H−µN) (5.101)
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where averaging in (5.99) and (5.100) is performed over the grand canon-
ical ensemble (Ω is the appropriate thermodynamic potential), Tτ is
“time ordering” operator over imaginary (Matsubara) time.15

Spin dependence of these functions is separated (similarly to
(5.53))16 as:

Fαβ = gαβF F+
αβ = −gαβF+ (5.103)

Similarly to G, both functions F and F+ depend on the difference
τ = τ1 − τ2 and satisfy “antiperiodicity” condition:

F (τ) = −F
(
τ +

1

T

)
F+(τ) = −F+

(
τ +

1

T

)
(5.104)

so that Fourier series expansions of these functions over τ contain only
odd Matsubara frequencies εn = πT (2n + 1). Matsubara ψ-operators
at τ = 0 coincide with Heisenberg operators at t = 0, and comparing
the definitions (5.99), (5.100) with (5.45), (5.46) and (5.54), we find:

F (0, r; 0, r) = Ξ(r) F+(0, r; 0, r) = Ξ∗(r) (5.105)

and thus defined Ξ can be considered as the condensate “wave function”,
averaged over the Gibbs ensemble.

Equations of “motion” for Matsubara Green’s functions of a super-
conductor G, F , F+ are derived similarly to the derivation of (5.60),
(5.62), only instead of differentiating by time t we have to calculate
derivatives over τ and substituting in (5.34) it→ τ . Then we obtain:(
− ∂

∂τ
+
∇2

2m
+ µ

)
G(τ, r; τ ′, r′)+λΞF+(τ, r; τ ′, r′) = δ(τ−τ ′)δ(r− r′)

(5.106)(
∂

∂τ
+

∇2

2m
+ µ

)
F+(τ, r; τ ′, r′)− λΞ∗G(τ, r; τ ′, r′) = 0 (5.107)

After Fourier transformation these equations take the form:

(iεn − ξ(p))G(εnp) + ∆F+(εnp) = 1 (5.108)
15For normal Green’s function we use the standard definition [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]:

Gαβ(τ1, r1; τ2, r2) = −Sp
{
e

Ω+µN−H
T Tτ (ψα(τ1r1)ψ̄β(τ2r2))

}
(5.102)

16The sign difference in comparison to (5.53) is connected here with the absence of the
factor of i in definitions of (5.99), (5.100), which is present in T = 0 formalism.
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− (iεn + ξ(p))F+(εnp)−∆∗G(εnp) = 0 (5.109)
where we have introduced:

∆ = λΞ = λF (0r; 0r) ∆∗ = λΞ∗ = λF+(0r; 0r) (5.110)
Solution of Eqs. (5.108), (5.109) is:

G(εnp) = − iεn + ξ(p)

ε2n + ξ2(p) + |∆|2
= − iεn + ξ(p)

ε2n + ε2(p)
(5.111)

F+(εnp) =
∆∗

ε2n + ξ2(p) + |∆|2
=

∆∗

ε2n + ε2(p)
(5.112)

where ε(p) is again given by (5.68):

ε(p) =
√
ξ2(p) + |∆|2 (5.113)

In contrast to the case of T = 0 everything here is well defined and we
do not need any additional clarifications, based on analytic properties.

The gap equation can be found from:

Ξ∗ = F+(τ = 0, r = 0) = T
∞∑

n=−∞

∫
d3p

(2π)3
F+(εnp) (5.114)

which, after the substitution of (5.112), gives:

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ε2n + ξ2(p) + |∆|2
=

|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ε2n + ε2(p)

(5.115)
Summation over frequencies is again performed using (2.100), which
gives gap equation of BCS theory for the case of finite temperatures:

1 =
|λ|
2

∫
d3p

(2π)3
1√

ξ2(p) + ∆2(T )
th

√
ξ2(p) + ∆2(T )

2T
(5.116)

The properties of this equation are well known [Lifshits E.M., Pitaevskii
L.P. (1980); Schrieffer J.R. (1964); Sadovskii M.V. (2019a); De Gennes
P.G. (1966)] and we shall not analyze (5.116) in details, noting only
that it gives the famous temperature dependence of the gap ∆(T ) of
BCS theory. In particular, the gap becomes zero for T ≥ Tc, which is
defined by (5.31). This can be seen directly, as for ∆ = 0 Eq. (5.116)
reduces to:

1 =
|λ|mpF
2π2

∫ ωD

0

dξ

ξ
th

ξ

2T
(5.117)
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which, in fact, coincides with equation, determining the pole position
in Cooper “ladder” (5.30). For T = 0 (5.116) reduces to (5.73), so that
we again obtain (5.76), (5.77) and ∆0 =

π
γ
Tc.

Gorkov equations (5.108) and (5.109) can be rewritten as:

G(εnp) =
1

iεn − ξ(p)
− 1

iεn − ξ(p)
∆F+(εnp) (5.118)

F+(εnp) =
1

−iεn − ξ(−p)
∆∗G(εnp) = − 1

iεn + ξ(p)
∆∗G(εnp)

(5.119)
which is similar to (5.80), (5.81) and can be represented diagrammati-
cally as shown in Fig. 5.4, with p = (εn,p). Iterating (i.e. substituting
many times (5.119) into (5.118)), we obtain for the normal Green’s
function perturbation theory expansion in powers of ∆:

G(εnp) =
1

iεn − ξ(p)
+

1

iεn − ξ(p)

|∆|2

(iε+ ξ(p))(iε− ξ(p))

+
1

iεn − ξ(p)

|∆|4

(iεn + ξ(p))2(iεn − ξ(p))2
+ · · ·

=
iεn + ξ(p)

(iεn)2 − ξ2(p)− |∆|2
(5.120)

shown diagrammatically in Fig. 5.6(a). Summation of this series obvi-
ously gives (5.111). Similarly, we can substitute Eq. (5.118) into (5.119)
and “generate” diagrammatic series for F+(εnp), shown in Fig. 5.6(b),
where in every term we have an odd number of interaction lines with
“field” ∆, and which gives (5.112). Note, that in the series for anoma-
lous Green’s function the zeroth-order term is just absent — there is no
“free” anomalous Green’s function at all.17 Note also that the anoma-
lous Green’s function F+ explicitly depends on the phase of the “field”
(order parameter) ∆.

Similarly to (5.82), expressions (5.110) and (5.114) for the gap can
be written as:

∆ = λΞ = λT
∞∑

n=−∞

∫
d3p

(2π)3
F (εnp) (5.121)

17It appears if we introduce an infinitesimally weak Bogoliubov’s “source” of Cooper
pairs, which is introduced in the concept of quasi-averages [Sadovskii M.V. (2019a);
Bogoliubov N.N. (1991b)], and is equivalent to infinitesimal field ∆.
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Fig. 5.6 Diagrammatic expansion of the normal (a) and anomalous (b) Green’s functions
in powers of ∆.

which can be represented by the diagram shown in Fig. 5.5(a), so that
Gorkov equations take the form shown graphically in Fig. 5.5(b).

In Matsubara formalism we also can use Nambu matrices, when in addition
to (5.99), (5.100) and (5.102) we introduce:

G̃αβ(τ1, r1; τ2, r2) = −Sp
{
e

Ω+µN−H
T Tτ (ψ̄α(τ1r1)ψβ(τ2r2))

}
(5.122)

and define the matrix Green’s function:

Ĝ(εnp) =

(
G(εnp) −F (εnp)

−F+(εnp) G̃(εnp)

)
(5.123)

which satisfies the following equation:{
iεn1̂− σ̂zξ(p)−

1

2

(
∆σ̂+ +∆∗σ̂−)} Ĝ(p) = 1̂ (5.124)

which contains (5.108), (5.109) and similar equations for G̃ and F :

(iεn − ξ(p))F (εnp) + ∆G̃(εnp) = 0 (5.125)

(iεn + ξ(p))G̃(εnp) + ∆∗F (εnp) = 1 (5.126)
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Matrix Green’s function (5.123) can be written as (x = (τ, r)):

Ĝ(x1, x2) =

(
− < Tψα(x1)ψ̄β(x2) > − < Tψα(x1)ψβ(x2) >

− < Tψ̄α(x1)ψ̄β(x2) > − < Tψ̄α(x1)ψβ(x2) >

)
= − < Tψ̂(x1)ψ̂

+(x2) > (5.127)
where angular brackets denote averaging over the Gibbs ensemble, while Nambu
spinors are defined as:

ψ̂(x1) =

(
ψα(x1)

ψ̄β(x1)

)
ψ̂+(x2) = (ψ̄α(x2), ψβ(x2)) (5.128)

The appearance of matrix Green’s functions of the Nambu type, which contain
“anomalous” functions, is typical in systems with spontaneous symmetry breaking
(phase transitions of second order) [Mattuck R.D. (1968)]. This formalism is
convenient as now we can draw Feynman diagrams as in the “normal” state, with
particle lines corresponding to matrix Green’s functions, so that in fact we obtain
systems of equations for “normal” and “anomalous” Green’s functions.

5.3 Basics of Eliashberg–McMillan theory

We can construct more refined microscopic theory of superconductivity, based not
BCS–Gorkov model of pairing interaction (5.33), but on more “realistic” model
of electron–phonon interaction (Fröhlih Hamiltonian). The theory is based on
the system of equations for normal and anomalous Green’s functions of a super-
conductor, shown diagrammatically on Fig. 5.7. The structure of these equa-
tions (G.M. Eliashberg, 1960) is clear without further explanations. It is cleat,
that solving these integral equations, with the account of peculiarities of the real
phonon spectrum, poses rather difficult problem. However, a significant progress
here was achieved (W.L. McMillan, 1968) and the theory of traditional supercon-
ductors, based on the pairing due to electron–phonon interaction is an example
of quite successful application of Green’s functions formalism. Detailed presen-
tation of the analysis of Eliashberg equations and the results of its applications

Fig. 5.7 Diagrammatic representation of Eliashberg equations. Dashed line denotes
phonon Green’s function.
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can be found in [Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1977)]. Be-
low we present somehow simplified derivation of these equations, dropping some
technical details. In particular, we shall not consider the role of direct Coulomb
repulsion of electrons within Cooper pair, which is taken into account in the
full Eliashberg–McMillan theory [Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z.
(1977)], limiting ourselves only to electron–phonon interaction, as it is actually
already shown in Fig. 5.7.

Taking into account that in adiabatic approximation, according to Migdal’s
theorem, vertex corrections are irrelevant, Eliashberg equations can be derived by
calculating the diagram, shown in Fig. 3.1, where electronic Green’s function in
superconducting state is taken in Nambu matrix representation. All calculations
are, in principle, similar to derivation of Eqs. (3.60)–(3.68), (3.75). We again
perform calculations in Matsubara technique (T ̸= 0) using the notations of
Eqs. (3.9)–(3.15) [Schrieffer J.R. (1964)]. In Nambu formalism, the electronic
Green’s function of a superconductor is written in the standard form as (σ̂i-Pauli
matrices) [Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1977)]:

Ĝ−1(iωn,p) = iωn1̂− εpσ̂z − Σ̂(iωn,p) (5.129)

where the matrix self-energy is represented as:18

Σ̂(iωn,p) = (1− Z(iωn))iωn1̂ + Z(iωn)∆(iωn)σ̂x (5.130)

Here we introduced a number of simplifications, like independence of renormal-
ization factor Z(iωn) and gap function ∆(iωn) on the momentum [Vonsovsky
S.V., Izyumov Yu.A., Kurmaev E.Z. (1977)]. Then we have:

Ĝ(iωn,p) =
Z(iωn)iωn1̂ + εpσ̂z + Z(iωn)∆(iωn)σ̂x

Z2(iωn)(iωn)2 − Z2(iωn)∆2(iωn)− ε2p
(5.131)

Self-energy part, corresponding to diagram of Fig. 3.1 with matrix Green’s
function of electron (5.131), can be written as:

Σ̂(ωn,p) = −T
∑
m

∑
p′

|ḡpp′ |2D(iωn − iωm,p− p′)σ̂zĜ(iωm,p
′)σ̂z (5.132)

where phonon Green’s function D(iωn − iωm,p− p′) can be taken as in (3.10),
denoting the phonon frequency by Ωp−p′ , as in Eqs. (3.60)–(3.64).

Calculations can be conveniently done using the standard spectral representa-
tion of electronic Green’s function [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)]:

Ĝ(iωn,p) = − 1

π

∫ ∞

∞
dε′

ImĜ(ε′ + iδ)

iωn − ε′
(5.133)

18Possible contribution proportional to σ̂y here can be dropped after appropriate choice
of the phase of the order parameter, while contribution proportional to σ̂z reduces to
the renormalization of the chemical potential [Vonsovsky S.V., Izyumov Yu.A., Kurmaev
E.Z. (1977)].
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As a result in Eq. (5.132) appears the following sum over Matsubara frequencies:
−T

∑
m

D(iωn − iωm,p− p′)Ĝ(iωm,p
′)

= −T 1

π

∫ ∞

∞
dε′ImĜ(ε′ + iδ)

∑
m

1

iωn − ε′
2Ωp−p′

(iωn − iωm)2 − Ω2
p−p′

(5.134)

which is calculated similarly to (3.60):

− T
∑
m

1

iωn − ε′
2Ωp−p′

(iωn − iωm)2 − Ω2
p−p′

=

∫
C

dz

2πi
f(z)

2Ωp−p′

(iωn − z)2 − Ω2
p−p′

(5.135)
where integration contour C goes counterclockwise around the imaginary axis
where discrete points iωn are placed. Calculating the residues and obtain this
sum as:

[1− f(ε′) + n(Ωq)]
1

ε′ +Ωq − iωn
+ [f(ε′) + n(Ωq)]

1

ε′ − Ωq − iωn
(5.136)

where again appeared Fermi f(ε′) and Bose (Planck) n(Ωq) distributions and we
introduced q = p− p′ just to shorten notations. In obtaining this expression we
have taken into account that f(iωn − Ω) = −n(Ω) (cf. Eq. (3.62)).

Collecting now all these expressions and making the standard analytic con-
tinuation iωn → ε + iδ (for ωn > 0), we write down the self-energy part (5.132)
as:

Σ̂(ε,p) =
1

π

∫ ∞

−∞
dε′
∑
p′

|ḡpp′ |2
∫ ∞

0

dωδ(ω − Ωp−p′)σ̂zImĜ(ε′ + iδ,p′)σ̂z

×
[
1− f(ε′) + n(ω)

ε′ + ω − ε− iδ
+

f(ε′) + n(ω)

ε′ − ω − ε− iδ

]
(5.137)

where we have introduced the additional integration with δ(ω − Ωp−p′) similar
to used in writing Eq. (3.66) above.

Note that for real frequencies, after analytic continuation iωn → ε+iδ Green’s
function (5.129) itself is rewritten as:

G(ε,p) =
Z(ε)ε1̂ + εpσ̂z + Z(ε)∆(ε)σ̂x

Z2(ε)(ε+ iδ)2 − Z2(ε)∆2(ε)− ε2p
(5.138)

which corresponds to matrix self-energy of the following form:
Σ(ε,p) = [1− Z(ε)]ε1̂ + Z(ε)∆(ε)σ̂x (5.139)

As we know, all physics related to superconductivity, is confined in a narrow
layer of the width of the order of 2ωD ≪ EF near the Fermi surface. Then we can
make here the substitution (3.67) and obtain for (5.137) the following expression
for self-energy part, averaged over momenta on the Fermi surface (similarly to
(3.68)):

Σ̂(ε) =
1

π

∫ ∞

−∞
dε′
∫ ∞

0

dωα2(ω)F (ω)

∫ ∞

−∞
dεp′ σ̂zImĜ(ε′ + iδ,p′)× σ̂z

×
[
1− f(ε′) + n(ω)

ε′ + ω − ε− iδ
+

f(ε′) + n(ω)

ε′ − ω − ε− iδ

]
(5.140)
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Calculating here the integral over εp′ in infinite (due to rapid convergence) limits,
using the explicit expression for the Green’s function (5.138), we obtain:∫ ∞

−∞
dεp′Ĝ(ε′ + iδ,p′) = −iπ Z(ε′)ε′1̂ + Z(ε′)∆(ε′)σ̂x

[Z2(ε′)ε′2 − Z2(ε′)∆2(ε′)]1/2
sign ε′ (5.141)

Then Eq. (5.140) is rewritten as:

Σ̂(ε)=
1

π

∫ ∞

−∞
dε′
∫ ∞

0

dωα2(ω)F (ω)Re

{
σ̂z[Z(ε

′)ε′1̂ + Z(ε′)∆(ε′)σ̂x]σ̂z√
Z2(ε′)ε′2 − Z2(ε′)∆2(ε′)

}
sign ε′

×
[
1− f(ε′) + n(ω)

ε′ + ω − ε− iδ
+

f(ε′) + n(ω)

ε′ − ω − ε− iδ

]
(5.142)

Now we can write down the l.h.s. of this expression as (5.139) and make equal
the coefficients at 1̂ and σ̂x (taking into account σ̂zσ̂xσ̂z = −σ̂x) and immediately
obtain the following Eliashberg (integral) equations for (complex in general!)
functions of mass renormalization Z(ε) and energy gap ∆(ε):

[1− Z(ε)]ε = −
∫ ∞

−∞
dε′K(ε′, ε)Re

ε′√
ε′2 −∆2(ε′)

sign ε′ (5.143)

Z(ε)∆(ε) =

∫ ∞

−∞
K(ε′, ε)Re

∆(ε′)√
ε′2 −∆2(ε′)

sign ε′ (5.144)

where the integral kernel has the form:

K(ε′, ε) =

∫ ∞

0

dωα2(ω)F (ω)

{
1− f(ε′) + n(ω)

ε′ + ω − ε− iδ
− f(ε′) + n(ω)

ε′ − ω − ε− iδ

}

=
1

2

∫ ∞

0

dωα2(ω)F (ω)

{
th ε′

2T
+ cth ω

2T

ε′ + ω − ε− iδ
−

th ε′

2T
− cth ω

2T

ε′ − ω − ε− iδ

}
(5.145)

Here we used the identities th z
2T

= 1 − 2f(z) and cth z
2T

= 1 + 2n(z). After the
substitution of (5.145) into (5.143) and (5.144), after obvious transformations, we
can rewrite Eliashberg equations as:

[1− Z(ε)]ε =
1

2

∫ ∞

0

dωα2(ω)F (ω)

∫ ∞

0

dε′Re
ε′√

ε′2 −∆2(ε′)

×

{(
th
ε′

2T
+ cth

ω

2T

)(
1

ε′ + ω + ε+ iδ
− 1

ε′ + ω − ε− iδ

)

−
(
th
ε′

2T
− cth

ω

2T

)(
1

ε′ − ω + ε+ iδ
− 1

ε′ − ω − ε− iδ

)}
(5.146)

Z(ε)∆(ε) =
1

2

∫ ∞

0

dωα2(ω)F (ω)

∫ ∞

0

dε′Re
∆(ε′)√

ε′2 −∆2(ε′)

×

{(
th
ε′

2T
+ cth

ω

2T

)(
1

ε′ + ω + ε+ iδ
+

1

ε′ + ω − ε− iδ

)

−
(
th
ε′

2T
− cth

ω

2T

)(
1

ε′ − ω + ε+ iδ
+

1

ε′ − ω − ε− iδ

)}
(5.147)
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In fact, these equations replace Eqs. (3.68) and (3.75) for normal metal after its
transition to superconducting phase.

To determine the temperature of superconducting transition it is sufficient
to consider the linearized (over ∆(ε)) Eliashberg equations, which for the case
of characteristic phonon frequencies much exceeding Tc has the following form
[Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1977)]:

[1− Z(ε)]ε =

∫ ∞

0

dε′
∫ ∞

0

dωα2(ω)F (ω)f(−ε′)

×
(

1

ε′ + ε+ ω + iδ
− 1

ε′ − ε+ ω − iδ

)
(5.148)

Z(ε)∆(ε) =

∫ ∞

0

dε′

ε′
th

ε′

2Tc
Re∆(ε′)

∫ ∞

0

dωα2(ω)F (ω)

×
(

1

ε′ + ε+ ω + iδ
+

1

ε′ − ε+ ω − iδ

)
(5.149)

which is the system of homogeneous integral equations determining Tc to be
solved, e.g. numerically.

For simple estimates it is sufficient to consider in these equations the limit of
ε → 0 and look for solutions Z(0) = Z and ∆(0) = ∆. Then, from (5.148) we
obtain:

[1− Z]ε = −2ε

∫ ∞

0

dωα2(ω)F (ω)

∫ ∞

0

dε′

(ε′ + ω)2
= −2ε

∫ ∞

0

dω

ω
α2(ω)F (ω)

(5.150)
or

Z = 1 + λ (5.151)

where constant λ was defined above in Eqs. (3.72), (3.74). Thus precisely this
effective constant determines mass renormalization both in normal and super-
conducting phases. Note that factor Z introduced in (5.151) is, in fact, inverse
to renormalization factor, defined according to (3.69) for the normal state. This
simply reflects the difference in standard notations used in the literature.

In the limit of ε → 0, using (5.151) from (5.149) we immediately obtain the
following equation for Tc:

1 + λ̃ = 2

∫ ∞

0

dωα2(ω)F (ω)

∫ ∞

0

dε′

ε′(ε′ + ω)
th

ε′

2Tc
(5.152)

In the model with one Einstein phonon of frequency Ω0 we have F (ω) = δ(ω−Ω0),
so that Eq. (5.152) takes the form:

1 + λ̃ = 2α2(Ω0)

∫ ∞

0

dε′

ε′(ε′ +Ω0)
th

ε′

2Tc
(5.153)

where pairing interaction constant λ is defined as:

λ = 2

∫ ∞

0

dω

ω
α2(ω)F (ω) = α2(Ω0)

2

Ω0
(5.154)
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Then we immediately obtain an estimate for Tc in Eliashberg theory for the case
of intermediate coupling:

Tc ∼ Ω0 exp

(
−1 + λ

λ

)
(5.155)

which for the values of λ ∼ 1 rather significantly changes the standard result of
BCS theory, which follows from here only in the weak-coupling limit λ≪ 1.

Consider now the more general model with discrete set of Einstein phonons,
when the phonon density of states can be written as:

F (ω) =
∑
i

δ(ω − Ωi) (5.156)

where discrete frequencies Ωi just model optical phonons. Then, from (3.72) we
get:

λ = 2
∑
i

α2(Ωi)

Ωi
≡
∑
i

λi (5.157)

Correspondingly, for this model:

α2(ω)F (ω) =
∑
i

α2(Ωi)δ(ω − Ωi)

=
∑
i

λi

2
Ωiδ(ω − Ωi) (5.158)

so that Eq. (5.152) is written as:

1 + λ = 2
∑
i

α2(Ωi)

∫ D

0

dε′

ε′(ε′ +Ωi)
th

ε′

2Tc
(5.159)

This equation is easily solved and gives:

Tc ∼
∏
i

Ω
λi
λ
i exp

(
−1 + λ

λ

)
(5.160)

In particular, for the case of two Einstein phonons with frequencies Ω1 and Ω2

we have:

Tc ∼ Ω
λ1
λ

1 Ω
λ2
λ

2 exp

(
−1 + λ

λ

)
(5.161)

where λ = λ1 + λ2. Thus, the preexponential factor in the expression for the
critical temperature of superconducting transition is determined by partial con-
tributions of different phonons, with appropriate partial coupling constants.

Eq. (5.160) is easily rewritten as:

Tc ∼ ωlog exp

(
−1 + λ

λ

)
(5.162)

where we have introduced the logarithmic average of the frequency ⟨Ω⟩ as:

ωlog = ln
∏
i

Ω
λi
λ
i =

∑
i

λi

λ
lnΩi (5.163)
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In the limit of continuous distribution of phonon frequencies the last expression
reduces to:

lnωlog =
2

λ

∫ ∞

0

dω

ω
α2(ω)F (ω) lnω =

∫∞
0

dω
ω

lnωα2(ω)F (ω)∫∞
0

dω
ω
α2(ω)F (ω)

(5.164)

where the total coupling constant λ is determined by the usual expression (3.72).
Thus, in general case, preexponential factor in the expression for Tc is deter-
mined by average logarithm of the phonon frequency (5.164), where averaging is
performed over the whole phonon spectrum.

There exists a vast literature on numerical solutions of Eliashberg equations
[Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1977); Allen P.B., Mitrović B.
(1982)]. Using these solutions, a number of authors proposed the appropriate
analytic expressions for Tc, approximating the results of numerical calculations.
As an example, we shall quote the popular interpolation formula, proposed by
Allen and Dynes [Allen P.B., Mitrović B. (1982)], which is formally valid for the
wide range of dimensionless coupling constant of electron–phonon interaction λ,
including the region of strong coupling λ > 1:

Tc =
f1f2
1.20

ωlog exp

{
− 1.04(1 + λ)

λ− µ⋆(1 + 0.62λ)

}
(5.165)

where

f1 = [1 + (λ/Λ1)
3/2]1/3; f2 = 1 +

[< ω2 >1/2 /ωlog − 1]λ2

λ2 + Λ2
2

Λ1 = 2.46(1 + 3.8µ⋆); Λ2 = 1.82(1 + 6.3µ⋆)
< ω2 >1/2

ωlog
(5.166)

Here ωlog is average logarithmic frequency of phonons introduced above in (5.164),
while < ω2 > is the average (over the phonon spectrum) square of phonon fre-
quency, defined as:

< ω2 >=
2

λ

∫ ∞

0

dω

ω
α2(ω)F (ω)ω =

∫∞
0
dωωα2(ω)F (ω)∫∞

0
dω
ω
α2(ω)F (ω)

(5.167)

Coulomb pseudopotential µ⋆ determines electron repulsion within the Cooper
pair. According to most of calculations [Vonsovsky S.V., Izyumov Yu.A., Kur-
maev E.Z. (1977); Allen P.B., Mitrović B. (1982)] its values are small and vary
in the interval 0.1–0.15. It is interesting, that in the limit of very strong coupling
with λ > 10 these formulas give the following expression for Tc:

Tc ≈ 0.15
√
λ < ω2 > (5.168)

where the BCS-like exponential factor is just absent, so that in principle, pretty
large values of Tc can be achieved even for electron–phonon mechanism of Cooper
pairing.
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5.4 Superconductivity in disordered metals

Consider a superconductor with impurities with potential (or, more pre-
cisely its Fourier transform) v(p), randomly distributed in space (with
density ρ). In principle, this problem can be analyzed similarly to the
case of impurities in a normal metal. However, superconductor is differ-
ent as here we have both “normal” and “anomalous” Green’s functions
and we have to write down the system of equations for both functions,
averaged over random configurations of impurities. “Impurity” diagram
technique has the usual form, only diagrams are now built on Green’s
functions G and F+. However, there is one delicate point — intro-
duction of impurities leads, in general, to impurity dependence of the
energy gap (order parameter) ∆(r), ∆∗(r). This may much complicate
the diagram technique, as corrections to ∆ will be determined by an
integral equation (as ∆(r) = λF (x, x)). Thus, it is usually assumed
that superconducting order parameter (gap) is self-averaging (non ran-
dom): < ∆(r) >= ∆(0) (where angular brackets denote averaging over
impurities), < ∆2(r) > − < ∆(r) >2= 0, so that all corrections due to
impurity scattering vanish. This assumption19 will be confirmed by the
final result, when we shall see that all quantities of the type of F (x, x)
are not changed by (nonmagnetic) impurities. Thus, the diagram tech-
nique for impurity scattering is usual — dashed line with a cross de-
notes ρv2(q), and the frequency of electronic line does not change in
the interaction vertex. All estimates allowing us to neglect diagrams
with intersecting interaction lines are valid here as in the normal metal.
Equations for the averaged Green’s functionsG(p) and F+(p) are shown
graphically in Fig. 5.8, which is clear without additional justifications.

Fig. 5.8 Gorkov equations for superconductor with impurities.

19In fact it can be justified in the limit of weak disorder when pF l ≫ 1, EF τ ≫ 1.
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Using the explicit form of Green’s function of the “clean” supercon-
ductor G(0) and F+(0), which we found above, we can reduce Gorkov
equations for impure superconductor to the following (relatively simple)
form [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]:20

(iεn − ξ(p)− Ḡε)G(p)− (∆ + F̄ε)F
+(p) = 1 (5.170)

− (iεn + ξ(p)− Ḡ−ε)F
+(p) + (∆∗ + F̄+

ε )G(p) = 0 (5.171)

where:

Ḡε = ρ

∫
d3p′

(2π)3
|v(p− p′)|2G(p′) (5.172)

F̄+
ε = ρ

∫
d3p′

(2π)3
|v(p− p′)|2F+(p′) (5.173)

where we again use the notation p = (p, εn).
Solution of this system takes the following form (below we shall see

that Ḡε = −Ḡ−ε):

G(p) = − iεn − Ḡε + ξ(p)

−(iεn − Ḡε)2 + ξ2(p) + |∆+ F+
ε |2

(5.174)

F+(p) = − ∆+ F̄+
ε

−(iεn − Ḡε)2 + ξ2(p) + |∆+ F+
ε |2

(5.175)

Substitution of these expressions to (5.172) and (5.173) gives two equa-
tions determining Ḡε and F̄+

ε . As before (for impurity scattering in
normal metals), self-energy part of Ḡε contains a constant, which may
be considered as an additive contribution to the chemical potential.
This is independent of temperature and originates mainly from integra-
tion d3p′ far from the Fermi surface. Thus, this contribution is, in fact,
the same as in the normal metal:

δµ ≈ ρ

∫
d3p′

(2π)3
|v(p− p′)|2 1

ξ(p′)
(5.176)

20For ρv(p)2 → 0 Eqs. (5.170), (5.171) reduce to (5.108) and (5.109). We only have to
take into account that, in accordance with notations of [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], instead of (5.110) and (5.121), we define here:

∆ = |λ|F (x, x) ∆∗ = |λ|F+(x, x) (5.169)

which leads to some difference of signs in comparison to (5.108) and (5.109).
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Then, in Eqs. (5.172) and (5.173) we can limit ourselves to integration
over the linearized spectrum (close to the Fermi surface), so that (5.170)
and (5.171) are rewritten as:

(iε̃n − ξ(p))G(p)− ∆̃F+(p) = 1 (5.177)

(iε̃n + ξ(p))F+(p)− ∆̃∗G(p) = 0 (5.178)

where

iε̃n = iεn − Ḡε = iεn + ρv2νF

∫ ∞

−∞
dξ

iε̃n + ξ

−(iε̃n)2 + ξ2 + ∆̃2
(5.179)

∆̃ = ∆+ F̄ε = ∆+ ρv2νF

∫ ∞

−∞
dξ

∆̃

−(iε̃n)2 + ξ2 + ∆̃2
(5.180)

where we are already considering point-like impurities. Note that con-
tribution of the second term under the integral in (5.179) is zero (as
integrand is odd), so that:

− Ḡε

iεn
=
F̄ε

∆
(5.181)

Now we can write:

∆̃ = ∆+ F̄ε = ∆ηε (5.182)

iε̃n = iεn − Ḡε = iεnηε (5.183)

where ηε is defined (cf. (5.179), (5.180)) by the equation:

ηε = 1+
ηε
2πτ

∫ ∞

−∞

dξ

ξ2 + (ε2n +∆2)η2ε
= 1+

ηε
2πτ

π

ηε
√
ε2n +∆2

(5.184)

where we have taken into account that ρv2νF = 1
2πτ

. Finally, we obtain:

ηε = 1 +
1

2τ
√
ε2n +∆2

(5.185)

Thus, Green’s functions G(p) and F+(p) of a superconductor averaged
over random configurations of impurities are obtained from appropriate
Gorkov’s functions of the “clean” superconductor (5.111) and (5.112)
via the simple substitution:

{εn, ∆} → {εnηε, ∆ηε} (5.186)
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Then, repeating calculations leading to Eqs. (5.114), (5.115) and
(5.116), we can convince ourselves that ηε just drops out the equation
for superconducting gap ∆(T ) after the change of integration variable
ξ → ξ/η, which changes nothing. Let us see it in details. The re-
placement (5.186) in (5.114) and (5.115) gives the gap equation in the
following form:

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ηε
ε2nη

2
ε + ξ2(p) + |∆|2η2ε

≈ |λ|νFT
∞∑

n=−∞

∫ ωD

−ωD

dξ
ηε

ε2nη
2
ε + ξ2 + |∆|2η2ε

(5.187)

Equation for Tc can be obtained by putting ∆ = 0 in (5.187):

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ηε
ε2nη

2
ε + ξ2

≈ |λ|νFT
∞∑

n=−∞

∫ ωD

−ωD

dξ
ηε

ε2nη
2
ε + ξ2

(5.188)
where

ηε = 1 +
1

2|εn|τ
(5.189)

Now let us add ± 1
ε2n+ξ2

to the integrand in (5.188), and again use (2.100)
to rewrite equation for Tc as:

1 = |λ|νF
∫ ωD

−ωD

dξ

2ξ
th

ξ

2Tc

+|λ|νF
∞∑

n=−∞

∫ ωD

−ωD

dξ

{
ηε

ε2nη
2
ε + ξ2

− 1

ε2n + ξ2

}
(5.190)

In the second integral here (due to the fast convergence) we may put
ωD → ∞. Then, after the change of integration variable ξ → ξ/ηε in
the first term of the integral it is precisely canceled by the second one!
As a result Eq. (5.190) reduces to Eq. (5.117), which defines Tc of the
“clean” superconductor (5.31).

Similarly we can analyze also the “full” equation (5.187), determin-
ing ∆(T ) of the impure superconductor. It is easily seen that it also
reduces to Eq. (5.116) for the “clean” case.

Thus, both Tc and ∆(T ) of a superconductor with “normal” (non-
magnetic) impurities do not depend on the presence of impurities at all
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(A.A. Abrikosov, L.P. Gorkov, 1959).21 We obtained this result in the
limit of weak disorder, when pF l ≫ 1, EF τ ≫ 1, and we can neglect the
contribution of diagrams with intersecting impurity interaction lines.
In fact, this statement has even more wide region of validity [Sadovskii
M.V. (2000)], if we assume the self-averaging nature of superconduct-
ing order parameter (gap). These results are in rather good agreement
with experimentally known relative stability of superconducting state
in many metals to the introduction of more or less small amount of
nonmagnetic impurities (disordering).

Of course, due to the oversimplified nature of BCS model, these results are
only approximate. In fact, disordering leads e.g. to the growth of effective re-
pulsion (due to the growth of the so-called Coulomb pseudopotential [Sadovskii
M.V. (2019a); De Gennes P.G. (1966)]) of electrons forming the Cooper pair
and appropriate lowering of Tc [Sadovskii M.V. (2000)]. “Anderson theorem” is
also invalid within the BCS model, when we consider superconductors with gap
anisotropy at the Fermi surface (e.g. for systems with Cooper pairs with higher
orbital moments, like the case of d-wave pairing in copper oxide high-temperature
superconductors). In such cases, disordering usually strongly suppresses super-
conductivity [Sadovskii M.V. (2000)]. Spectacular example of superconductivity
suppression by disordering is the case of magnetic (paramagnetic) impurities (i.e.
impurities with “free” (uncompensated) spin S) (A.A. Abrikosov, L.P. Gorkov,
1960). Let us consider this problem briefly.

If superconductor contains paramagnetic impurities, potential of electron in-
teraction with impurity contains an exchange term:

V (r) = v(r) + J(r)(S · s) (5.191)

where J(r) is appropriate exchange integral, S — impurity spin, s = 1
2
σ — spin

of conduction electron. In this case, in diagrams of impurity scattering in Gorkov
equations, shown in Fig. 5.8, we have to take into account the spin structure of
G and F+. Above we have seen that Gαβ = Gδαβ , Fαβ = gαβF , F+

αβ = −gαβF
+,

where gαβ = iσy
αβ (cf. (5.52)). Then it happens that contributions of the second

term in (5.191) into self-energies of Fig. 5.8 due to impurity scattering, built on
normal and anomalous Green’s functions, are of different sign.22 Then, instead
of the same renormalization of iεn and ∆ of the type given in (5.182), (5.183)
and (5.185), we obtain equations:

iε̃n = iεn +
iε̃n

2τ1
√
ε̃2n + ∆̃2

(5.192)

21Sometimes this is called “Anderson theorem” as he also obtained this result by a
different method [De Gennes P.G. (1966)].
22This follows from σαγδγδσδβ = σαδσδβ = σ2δαβ and σαγgγδσδβ = −σ2gαβ , where
σ2 = 3.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 224

224 Diagrammatics

∆̃ = ∆+
∆̃

2τ2
√
ε̃2n + ∆̃2

(5.193)

where
1

τ1
= 2πρνF

(
v2 +

1

4
S(S + 1)J2

)
(5.194)

1

τ2
= 2πρνF

(
v2 − 1

4
S(S + 1)J2

)
(5.195)

where we have assumed the point-like nature for both impurity potential and ex-
change integral, and also averaged over the orientations of impurity spins, writing
< S2 >= 1

3
S(S + 1). Besides, we have taken into account that for electron spin

s2 = 1
4
σ2 = 3

4
. The difference of (5.194) and (5.195) reduces to:

1

τ1
− 1

τ2
=

2

τs
i.e. 1

τs
=
π

2
πρJ2νFS(S + 1) (5.196)

and defines the scattering rate (including spin–flip processes) due to exchange po-
tential. Though, in fact, we always have inequality 1

τs
≪ 1

τ
, where 1

τ
is scattering

rate due to potential scattering, it is 1
τs

which is the relevant parameter for su-
perconductivity. Complete analysis23 of the gap equation, derived from (5.174),
(5.175) or (5.177), (5.178) with the use of (5.192), (5.193), leads to the following
conclusions. Scattering by magnetic impurities leads to the strong suppression
of superconducting critical temperature, described by the notorious Abrikosov–
Gorkov equation:

ln
Tc0

Tc
= ψ

(
1

2
+

1

2πTcτs

)
− ψ

(
1

2

)
(5.197)

where Tc0 is transition temperature in the absence of impurities, while

ψ(z) =
Γ′(z)

Γ(z)
= − ln γ − 1

z
+

∞∑
n=1

(
1

n
− 1

n+ z

)
(5.198)

is the logarithmic derivative of the Γ-function (digamma function), ln γ = C =

0.577... is Euler constant. Characteristic form of dependence of Tc on the rate
of exchange scattering, following from (5.197), is shown in Fig. 5.9. There exists
the critical scattering rate (determining the critical concentration of magnetic
impurities):

1

τ cs
=
πTc0

2γ
=

∆0

2
∆0 =

π

γ
Tc0 (5.199)

When this critical value is reached (e.g. with the growth of the concentration
of magnetic impurities) superconductivity vanishes (Tc becomes zero). For weak
exchange scattering (small impurity concentration) τs → ∞, and from (5.197) we
get:

Tc ≈ Tc0 −
π

4τs
(5.200)

23Details of calculations for a similar problem will be given in the next Chapter.
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Fig. 5.9 Dependence of superconducting critical temperature on the scattering rate due
to magnetic impurities and the region of “gapless” superconductivity.

so that we have a small suppression of Tc. Note that dependence of Tc on con-
centration of magnetic impurities, determined by (5.197), is directly confirmed
experimentally.

Another remarkable property of the model with magnetic impurities is the
existence on the “phase diagram” shown in Fig. 5.9 of a narrow region of the
so-called “gapless” superconductivity. It follows from the detailed calculations
based on Eqs. (5.177), (5.178) and (5.192), (5.193), that in this region both Tc

and the order parameter ∆ remain finite (∆ becomes zero at T = Tc), while
the energy gap in the spectrum of elementary excitations (or, more precisely, in
the density of states) is absent. The thing is that in the presence of (magnetic)
impurities the order parameter ∆ does not coincide with the gap in the spectrum
and the scattering by impurities “smears” this gap (leads to the overlapping “tail”
formation within the gap), leading to characteristic form of the density of states
with “pseudogap”, (different from that of BCS theory, which was given in (5.79)),
and shown qualitatively in Fig. 5.10. Superconducting response of the system in
this unusual state persists.

Fig. 5.10 Density of electronic states in “gapless” superconductor.
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Why superconducting state is stable towards introduction of normal
impurities, but unstable towards magnetic impurities? The reason is
very simple — the usual (potential) scattering acts on both electrons of
the Cooper pair in the “same way” and the pair survives, while magnetic
scattering acts on the opposite spins of electrons in the pair differently.
For singlet pairing (the only pairing we consider here) this scattering
leads to depairing of electrons or destruction of Cooper pairing.

5.5 Ginzburg–Landau expansion

It is well known how important is the phenomenological approach to su-
perconductivity, proposed by Ginzburg and Landau (1950), and based
on the expansion of free energy in powers of the order parameter, allow-
ing to describe main properties of superconductors close to supercon-
ducting transition temperature [Lifshits E.M., Pitaevskii L.P. (1980);
Sadovskii M.V. (2019a); De Gennes P.G. (1966)]. Let us show, how
this expansion can be derived from microscopic BCS theory. It was
first done by Gorkov (1959), but below we shall use slightly different
approach [Sadovskii M.V. (2000)].

In fact, it is sufficient to analyze the case of electrons in a normal
metal (T > Tc), propagating in a random “field” of thermodynamic
fluctuations24 of superconducting order parameter, which we describe
by a single Fourier component, ∆q, characterized by some fixed (small)
wave vector q. Then we can write down the following Hamiltonian for
electron interaction with these fluctuations:25

Hint =
∑
p

{
∆qa

+
p+
a+−p−

+∆∗
qa−p−ap+

}
(5.201)

where, as usual, we use the notation p+ = p± 1
2
q.

Let us now calculate the correction to thermodynamic potential (free
energy) due to (5.201). According to [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], correction to thermodynamic potential due
to any interaction is expressed via the average value of (Matsubara)
S-matrix:

∆F = −T ln < S > (5.202)
24We assume that these fluctuations are static and “smooth” enough in space.
25This Hamiltonian can also be interpreted as describing electron interaction with ran-
dom “source” of Cooper pairs.
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where angular brackets denote Gibbs average, while

S = Tτ exp

{
−
∫ 1

T

0

dτHint(τ)

}
(5.203)

Then it is given by the loop expansion over connected diagrams:

∆F = −T{< S >c −1} (5.204)

Diagrams for < S >c −1 are closed loops which are drawn accord-
ing to the rules of diagram technique (for the given interaction), with
additional factor of 1

n
attributed to each diagram of n-th order of per-

turbation theory (for topologically nonequivalent diagrams) [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)].

In the absence of an external magnetic field26 Ginzburg–Landau
(GL) expansion for the difference of free energies of superconducting
an normal states is usually written as [De Gennes P.G. (1966)]:

Fs − Fn = A|∆(r)|2 + B

2
|∆(r)|4 + C|∇∆(r)|2 (5.206)

Introducing Fourier expansion:

∆(r) =
∑
q

∆qe
iqr (5.207)

and restricting analysis to a single Fourier component, we can write
(5.206) as:

Fs − Fn = A|∆q|2 +
B

2
|∆q|4 + Cq2|∆q|2 (5.208)

Now the task of microscopic theory is reduced to calculation of GL
coefficients A, B, C. From general considerations we can only say
that A ∼ T − Tc [Lifshits E.M., Pitaevskii L.P. (1980); Sadovskii M.V.
(2019a); De Gennes P.G. (1966)].

The knowledge of GL coefficients allows us to find the main charac-
teristics of a superconductor at temperatures close to Tc [Lifshits E.M.,
Pitaevskii L.P. (1980); Sadovskii M.V. (2019a); De Gennes P.G. (1966)].
26Taking into account that our “field” ∆ is charged, and the charge is 2e (5.98), inter-
action with an external magnetic field can be introduced via the standard replacement:

∇ → ∇∓ 2ieA (5.205)

for ∆ and ∆∗ respectively, where A is the vector-potential of external field.
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In particular, the coherence length ξ(T ), which determines characteris-
tic scale of inhomogeneities of the order parameter ∆, i.e., in fact, the
typical size of the Cooper pair, is given by:

ξ2(T ) = −C
A

(5.209)

Penetration depth of an external magnetic field is expressed via GL
coefficients and electric charge e as:

λ2
L(T ) = − c2

32πe2
B

AC
(5.210)

where we have “restored” the velocity of light c. Dimensionless param-
eter of Ginzburg and Landau is given by:

κ =
λL(T )

ξ(T )
=

c

4eC

√
B

2π
(5.211)

Close to Tc the upper critical magnetic field Hc2 is determined by:

Hc2 =
ϕ0

2πξ2(T )
= −ϕ0

2π

A

C
(5.212)

where ϕ0 = π~c/|e| is magnetic flux quantum [Lifshits E.M., Pitaevskii
L.P. (1980); Sadovskii M.V. (2019a)]. At last, specific heat discontinuity
at superconducting transition is given by:

cs − cn =
Tc

B

(
A

T − Tc

)2

(5.213)

Up to terms of fourth order in ∆q we have:

< S >c −1 =
1

2!

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2 < Tτ (Hint(τ1)Hint(τ2)) >c

+
1

4!

∫ 1/T

0

dτ1...

∫ 1/T

0

dτ4 < Tτ (Hint(τ1)...Hint(τ4)) >c

(5.214)

Consider now the second order correction to free energy (5.204):

∆F2 = −T
2

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2 < Tτ (Hint(τ1)Hint(τ2)) >c (5.215)

To calculate this correction, we can use Wick theorem, allowing to re-
duce the average of the products of Fermi operators to the products of
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averages of pairs of operators27 a and a+. Then, from (5.215), after
appropriate calculations, we obtain:

∆F2=−T
2

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2∆
∗
q∆q

{∑
p

G(p+, τ1 − τ2)G(−p−, τ1 − τ2)

+
∑
p

G(p+, τ2 − τ1)G(−p−, τ2 − τ1)

}

= −T
∫ 1/T

0

dτ1

∫ 1/T

0

dτ2|∆q|2
∑
p

G(p+, τ1 − τ2)G(−p−, τ1 − τ2)

(5.216)
where

G(p, τ1 − τ2) = − < Tτap(τ1)a
+
p (τ2) > (5.217)

is the Green’s function of a free electron in (p, τ) representation. Ex-
panding this Green’s function into Fourier series over τ and calculating
“time” integrals, we get:

∆F2 = −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn) (5.218)

where

G(pεn) =
1

iεn − ξ(p)
, εn = (2n+ 1)πT (5.219)

is the standard form of Matsubara Green’s function of free electron.
Similarly, for the fourth order correction, we have:

∆F4 = −T 1

4!
12|∆q|4

∫ 1/T

0

dτ1...

∫ 1/T

0

dτ4G(p, τ1 − τ3)G(−p, τ1 − τ4)

×G(p, τ2 − τ4)G(−p, τ2 − τ3) (5.220)
where in Green’s function we put q = 0, neglecting the contribution of
spatial inhomogeneities to fourth order term of GL-expansion. Then,
after some calculations, similar to those just done for the second order
contribution, we obtain:

∆F4 =
T

2
|∆q|4

∑
p

∑
n

G(p, εn)G(−p,−εn)G(p, εn)G(−p,−εn)

(5.221)
27We do need to consider here any anomalous averages, as we analyze the normal metal at
T > Tc, where some random “source” of fluctuating Cooper pairs (5.201) is “operational”.
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Finally, the correction to free energy, up to fourth order in ∆q, is given
by:

∆F ≈ −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn)

+
T

2
|∆q|4

∑
p

∑
n

G(p, εn)
2G(−p,−εn)2 (5.222)

Now GL-expansion for the difference of free energies of a superconductor
and normal metal will be is obtained from (5.222), if we rewrite it in
such a form, that the coefficient before |∆q|2 at q = 0 will be zero
at T = Tc and negative for T < Tc. This type of behavior is easily
guaranteed, if we subtract from the r.h.s. of (5.222) the value of ∆F2

(5.218), taken with the coefficient before |∆q|2 calculated at T = Tc

and q = 0. Then, the GL-expansion is written as:

Fs − Fn = −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn)

+|∆q|2Tc

∑
p

∑
n

G(p, εn)G(−p,−εn)|T=Tc

+
Tc

2
|∆q|4

∑
p

∑
n

G(p, εn)
2G(−p,−εn)2|T=Tc

(5.223)

Here we have taken into account that the coefficient B before |∆q|4
is finite at T = Tc, so that calculating it (besides neglecting the q-
dependence) we can safely put T = Tc. With the account of BCS
equation for Tc, taken in the form given in (5.115) with ∆ = 0, we
see that the second term in (5.223) reduces just to 1

|λ| |∆q|2, so that
GL-expansion can be rewritten in more compact form:

Fs − Fn =
1

|λ|
|∆q|2 − |∆q|2T

∑
p

∑
n

G(p+, εn)G(−p−,−εn)

+
Tc

2
|∆q|4

∑
p

∑
n

G(p, εn)
2G(−p,−εn)2|T=Tc

(5.224)

Graphically Eqs. (5.223), (5.224) can be represented by diagrams, shown
in Fig. 5.11. Subtraction of the second diagram here precisely guaran-
tees correct behavior of the coefficient A, so that it goes through zero
and changes sign at T = Tc.
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Fig. 5.11 Diagrammatic representation of Ginzburg–Landau expansion.

Let us now start with explicit calculations of GL-coefficients. From
(5.223) we write the coefficient A as:

A=−T
∑
p

∑
n

G(pεn)G(−p,−εn)+Tc

∑
p

∑
n

G(pεn)G(−p,−εn)|T=Tc

= −TνF
∫ ∞

−∞
dξ
∑
n

1

ε2n + ξ2
+ TcνF

∫ ∞

−∞
dξ
∑
n

1

ε2n + ξ2

∣∣∣∣∣
T=Tc

= −νF
∫ ∞

−∞

dξ

ξ

[
th

ξ

2T
− th

ξ

2Tc

]
(5.225)

For T ≈ Tc we have 1
ξ
th ξ

2T
≈ 1

ξ
th ξ

2Tc
+ Tc−T

2T 2
c

1

ch2 ξ
2Tc

, so that:

A = −νF
Tc − T

4T 2
c

∫ ∞

−∞
dξ

1

ch2 ξ
2Tc

= νF
T − Tc

Tc

(5.226)

To calculate the coefficient C we have to expand the product of Green’s
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functions in the first term of (5.223) in powers of q:

G(p+, εn)G(−p−,−εn)≈
1

ε2n + ξ2(p)
− (qp)2

4m2(ε2n + ξ2(p))2
− iεn(qp)

m(ε2n + ξ2(p))2

− ξ(p)q2

4m2(ε2n + ξ2(p))2
− ε2n − ξ2(p)

2m2(ε2n + ξ2(p))3
(qp)2 (5.227)

so that
−Tc

∑
p

∑
n

G(p+εn)G(−p−,−εn)

≈ −Tc

∑
p

∑
n

{
1

ε2n + ξ2(p)
− (qp)2

3ε2n − ξ2(p)

4m2(ε2n + ξ2(p))3

}
(5.228)

and we get the expression for C as:

C = TcνF
1

d

∑
n

∫ ∞

−∞
dξ
( p

2m

)2 3εn − ξ2

(ε2n + ξ2(p))3
(5.229)

where d is the spatial dimensionality. Due to fast convergence of the
integral in (5.229) the main contribution here comes from the immediate
vicinity of the Fermi level and we can put p ≈ pF = mvF . Then finally:

C = TcνF
v2F
4d

∑
n

π

|εn|3
= νF

7ζ(3)

16π2d

v2F
T 2
c

≡ νF ξ
2
0 (5.230)

where we have defined the coherence length ξ0 [De Gennes P.G. (1966)]
as:

ξ20 =
7ζ(3)

16π2d

v2F
T 2
c

(5.231)

and ζ(3) ≈ 1.202... (ζ(x) – ζ is Riemann zeta-function). In these
expressions we again introduced:

νF =

{
mpF

2π2 d = 3
m
2π

d = 2
(5.232)

— density of states of electrons at the Fermi level for a single spin
projection.

At last, the value of the coefficient B is immediately obtained from
the diagram with four ∆-“tails”, shown in Fig. 5.11:

B = Tc

∑
p

∑
n

G2(εnp)G
2(−εn,−p) = νFTc

∑
n

∫ ∞

−∞
dξ

1

(ε2n + ξ2(p))2

= νFTc

∑
n

π

2|εn|3
= νF

7ζ(3)

8π2T 2
c

(5.233)



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 233

Superconductivity 233

Expressions (5.226), (5.230) and (5.233) give the standard expressions
for GL coefficients, obtained by Gorkov (1959) for “clean” supercon-
ductors. The use of these in Eqs. (5.209)–(5.213) gives the well known
expressions of BCS theory for temperatures close to Tc. Thus we ob-
tain the complete microscopic justification of Ginzburg–Landau theory
within BCS model. At the same time, it should be noted that GL
approach is much more convenient (and simpler) than the complete
microscopic theory.

Now we can proceed with further generalizations. Consider e.g. the
so-called “dirty” superconductors with nonmagnetic impurities. GL ex-
pansion for this case is obtained by direct generalization of our previous
analysis. We only have to take into account scattering by impurities,
as we have already done several times. It is not difficult to convince
yourself that the proper generalization of GL expansion is described by
diagrams shown in Fig. 5.12, where we have introduced “triangular” ver-
tices (which we analyzed in the previous Chapter), taking into account
impurity scattering, and all electron lines are assumed to be “dressed”
by impurities:28

G(εnp) =
1

iεn − ξ(p) + iγ εn
|εn|

, γ =
1

2τ
= πρv2νF (5.234)

and, as usual, we consider the case of point-like impurities.
An important difference from the analysis given in previous Chap-

ter is that now we have to consider the Cooper channel and loops in
Fig. 5.12(a) are defined (in notations similar to that of the previous
Chapter, and in Matsubara technique) as:

Ψ(qωmεn) = − 1

2πi

∑
pp′

< G(p+p
′
+,−εn + ωm)G(−p′

−,−p−,−εn) >

(5.235)
which is shown in Fig. 5.13 (for the case of interest to us with ωm = 2εn).
Then from an expansion shown in Fig. 5.12 it is not difficult to obtain

28In the standard approximation without intersecting impurity lines, valid in the limit
of weak disorder, when pF l ≫ 1, EF τ ≫ 1.
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Fig. 5.12 Diagrammatic representation of Ginzburg–Landau expansion for a supercon-
ductor with impurities.

Fig. 5.13 Diagrammatic representation of Ψ(qωm = 2εn) for impure system.

the following general expressions for GL coefficients A and C:29

A =
1

|λ|
+ 2πiT

∑
n

Ψ(q = 0, ωm = 2εn) (5.236)

29Dropping details of calculations we just note that coefficient B in a superconductor
with impurities, determined by Fig. 5.12(b), is again given by Eq. (5.233), i.e. is the
same as for the “clean” case [Sadovskii M.V. (2000)]. Thus, below we only analyze the
coefficients A and C.
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C = iπT
∑
n

∂2

∂q2
Ψ(q, ωm = 2εn)|q=0,T=Tc

(5.237)

Our analysis is simplified in the case of time-reversal invariance (i.e. in
the absence of an external magnetic filed or magnetic impurities), when
we can just reverse one of electronic lines (as was already done in the
previous Chapter) in the loops in Figs. 5.12, 5.13 and convince ourselves
that

Ψ(qωmεn) = Φ(qωmεn) (5.238)

where Φ(qωmεn) is the obvious Matsubara formalism generalization
of the two-particle Green’s function (loop), which was analyzed in de-
tails in the previous Chapter (cf. (4.88), (4.305)). Thus, in fact we do
not need any calculations at all! GL coefficients are determined from
Φ(qωm = 2εn), the form of which is easily “guessed”, returning to the
appropriate results given in the previous Chapter:30

Φ(qωm) = − νF
i|ωm|+ iD0q2

(5.239)

where D0 =
1
d
v2F τ = 1

d
EF

mγ
is Drude diffusion coefficient, until we discuss

the case of weak enough disorder (pF l ≫ 1, EF τ ≫ 1) and can use the
“ladder” approximation for the vertex part Γ of impurity scattering.31

Using (5.239) and (5.238) in (5.236), we find:

A =
1

|λ|
− 2νF

n∗∑
n≥0

1

2n+ 1
=

1

|λ|
− νF ln

2γ

π

ωD

T

= νF ln
T

Tc

≈ νF
T − Tc

Tc

(5.240)

where we have introduced the cut-off (of logarithmically divergent) sum
over n at n∗ = ωD

2πT
. Here we obtained a standard result of BCS theory

for Tc = 2γ
π
ωD exp

(
− 1

|λ|νF

)
, so that transition temperature does not

depend on impurity concentration, in complete accordance with the
analysis given in the previous section (Anderson “theorem”). Formally,
30Note, that we are obviously dealing with single spin projection here!
31In reality, Eq. (5.239) “works” also in the framework of self-consistent theory of local-
ization [Sadovskii M.V. (2000)], with the only replacement of Drude diffusion coefficient
D0 by the generalized diffusion coefficient D(|ωm|).
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impurity contribution “drops out” with D0, as in (5.236) we have to
take q = 0.

In contrast, for the coefficient C, from (5.237) we obtain:

C = −iπTνF
∑
n

∂2

∂q2
1

2i|εn|+ iD0q2

∣∣∣∣
q=0

= πTνFD0

∑
n

1

2ε2n
=
νFD0

πT

∑
n≥0

1

(2n+ 1)2
=

π

8T
νFD0 (5.241)

Writing (5.241) as:

C ≡ νF ξ
2 =

π

8Tc

D0 =
π

8Tc

1

3
v2F τ =

π

24

vF
Tc

vF τ =
π

24

vF
Tc

l = 0.13
vF
Tc

l

(5.242)
where l = vF τ is the mean free path, and taking into account the
definition (5.231) for the “clean” case, i.e. ξ0 = 0.18 vF

Tc
, we immediately

get the main result of the theory of “dirty” superconductors for the
coherence length (L.P. Gorkov, 1959):

ξ2 ≈ ξ0l ξ ≈
√
ξ0l (5.243)

Thus, the effective size of Cooper pairs in “dirty limit”, when l ≪ ξ0,
is suppressed in comparison with the “clean” case. Then, according to
(5.212), this means that disordering (introduction of impurities), while
leaving Tc untouched, may lead to a significant growth of the upper
critical field Hc2, which may be useful for the practical applications!32

Using (5.242), (5.243) in (5.212) we may obtain the remarkable
Gorkov’s relation, connecting the temperature derivative (slope of the
temperature dependence) of the upper critical field Hc2 (close to Tc)
with conductivity of the system σ = ne2

m
τ = 2e2νFD0 and the density

of states at the Fermi level νF :

− σ

νF

(
dHc2

dT

)
Tc

=
8e2

π2~
ϕ0 (5.244)

where ϕ0 =
πc~
e

is magnetic flux quantum. In the r.h.s. of Eq. (5.244) we
have only fundamental constants, while in the l.h.s. can be determined
experimentally. Disorder (concentration of impurities) growth, in gen-
eral, does not change density of states νF significantly, while (residual)
32Of course, we oversimplify the real situation. As we already noted above, Tc may be
strongly dependent on disordering [Sadovskii M.V. (2000)].
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resistivity grows linearly with impurity concentration (i.e. conductivity
is suppressed).33 Then from (5.244) it follows that the slope of the up-
per critical field Hc2 (close to Tc) grows linearly with disorder (impurity
concentration). This is confirmed by many experiments on traditional
superconductors.

Up to now in our analysis of “dirty” superconductors we were dealing with
weak enough disorder. As in traditional superconductors the typical values of
coherence length ξ0 ∼ vF

Tc
are orders of magnitude larger than interatomic spac-

ing a, there is no problem with reaching the “dirty” limit l ≪ ξ0 at relatively
large mean free paths l ≫ a (corresponding to weak disorder in the sense of sat-
isfying the inequality pF l ≫ 1). An interesting question is what happens to the
usual “dirty” limit results with further decrease of the mean free path (growth
of disorder) up to l ∼ a, when, as we have seen in the previous Chapter, An-
derson metal–insulator transition takes place [Sadovskii M.V. (2000)]. In fact we
understand, that in this limit an expression for the two-particle Green’s function
of the type of Eq. (5.239) is conserved, but Drude diffusion coefficient has to be
replaced by the generalized one D0 → D(|ωm|), which is determined (for Mat-
subara frequencies) by an equation of self-consistent theory of localization of the
type of (4.286), which (for d = 3) takes the form [Sadovskii M.V. (2000)]:

DE(ωm)

D0
= 1− λ

λc
+
π

2

λ

λc

[
D0

DE(ωm)

ωm

2γ

]1/2
(5.245)

where all notations are the same as in the previous Chapter.34 Similarly to (4.293)
and with sufficient (for our purposes) accuracy solution of (5.245) can be written
as:

DE(ωm) ≈Max

{
DE

ωm

ωm + 3DEω2
0(E)/v2F

; D0

(
ωm

2γ

)1/3
}

(5.246)

where DE = D0
pF ξloc(E)

is the renormalized diffusion coefficient (which drops to
zero at the mobility edge), ω0 is characteristic frequency define in (4.250).

Then we see that GL coefficients A and B are again given by (5.240) and
(5.233), while the coefficient C is significantly changed. Calculating it for the
vicinity of Anderson transition we have to take into account an important fre-
quency dependence of the generalized diffusion coefficient (4.294), defined (in
Matsubara formalism) by the second expression under the brackets in (5.246).

In metallic region, not very close to the mobility edge, we have DE(ωm) = DE ,

33For low enough temperatures, of interest to us in traditional superconductors, we can
limit ourselves with the discussion of residual resistivity only.
34In particular, for shortness, we use here E instead of EF .
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and coefficient C is determined as:
C = −iπTνF

∑
εn

∂2

∂q2
1

2i|εn|+ iDEq2

∣∣∣∣
q=0

= πTνFDE

∑
εn

1

2ε2n
=
νFDE

πT

∑
n≥0

1

(2n+ 1)2
=

π

8T
νFDE (5.247)

In insulating region, also not very close to the mobility edge, according to (5.246):
DE(ωm) = DE

ωm

ωm + 3DEω2
0/v

2
F

(5.248)

and we obtain (Rloc is localization radius, defined by (4.250)):

C =
π

2
TνF

∑
εn

1

ε2n
DE(2|εn|)

=
νFDE

2πT

∑
n

1

(2n+ 1)2 + (2n+ 1)3DEω2
0/2πTv

2
F

=
νF v

2
F

3ω2
0

[
ψ

(
1

2
+

3DEω
2
0

4πTv2F

)
− ψ

(
1

2

)]
= νFR

2
loc

[
ψ

(
1

2
+

DE

4πTR2
loc

)
− ψ

(
1

2

)]
≈ νFR

2
loc ln

1.78DE

πTR2
loc

(5.249)

where the approximate equality is valid until DER
−2
loc ≫ 4πT .

In the immediate vicinity of the mobility edge, both in metallic and insulating
regions, we can write (cf. (5.246)):

DE(ωm) ≈ D0(ωmτ)
1/3 ≈ (D0l)

2/3ω1/3
m (5.250)

so that
C =

π

2
TνF

∑
εn

1

ε2n
DE(2|εn|) ∼ (D0l)

2/3TνF
∑
εn

1

|εn|5/3

∼
(
D0l

T

)2/3

νF
∑
n≥0

1

(2n+ 1)5/3

∼ ζ

(
5

3

)
νF

(
D0l

T

)2/3

(5.251)

Expression (5.251) is dominating, in comparison to (5.247), in the region where:
DE/Tc ≈ D0l/ξlocTc ≤ D

2/3
0 (l/Tc)

2/3 (5.252)
Finally we obtain the following behavior of coefficient C on the way from “dirty”
metal to Anderson insulator (L.N. Bulaevskii, M.V. Sadovskii, 1984):

C ≡ νF ξ
2 ≈ νF


π

8Tc
DE for ξloc(E) < (ξ0l

2)1/3 for E > Ec(
D0l
Tc

)2/3
≈ (ξ0l

2)2/3 for ξloc(E) > (ξ0l
2)1/3 E ∼ Ec

R2
loc(E)ln 1.78DE

πTcR
2
loc

(E)
for Rloc(E) < (ξ0l

2)1/3 E < Ec

(5.253)
where ξ0 = 0.18vF /Tc as usual, l is Drude mean free path.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 239

Superconductivity 239

As Fermi level moves towards the mobility edge Ec in metallic phase, cor-
relation length of localization theory (4.279) ξloc grows, so that coefficient C at
first diminishes along with generalized diffusion coefficient DE , i.e. with suppres-
sion of conductivity of the system in normal state. However, in the vicinity of
the Anderson transition, while σ → 0, further suppression of coefficient C stops
and it remains finite even for E < Ec, i.e. in the insulating phase. With further
lowering of E within localization region (or with the growth of Ec with disorder)
coefficient C is determined by localization length Rloc, which is diminishing as E
moves deeper into localization region.

The finiteness of GL coefficient C in the vicinity of Anderson transition means
that in this region the superconducting (Meissner) response of the system persists.
Accordingly, in principle, at temperatures T < Tc the system may transform from
Anderson insulator to superconducting state (L.N. Bulaevskii, M.V. Sadovskii,
1984). Of course, analysis based upon the GL expansion and the simplest BCS-
like model of superconducting pairing is not sufficient for a complete proof of
such an exotic behavior of strongly disordered system. Note that all considera-
tions were based on the concept of Tc being independent of disorder (Anderson
“theorem”). We have noted above that this statement is valid in strongly dis-
ordered system (up to the Anderson transition) if we neglect disorder influence
on pairing interaction itself. In real systems, the growth of disorder leads to
the appropriate growth of effective Coulomb repulsion of electrons forming the
Cooper pair [Sadovskii M.V. (2000)]. Thus, for more or less typical values of
parameters, characterizing a superconductor, transition temperature Tc is com-
pletely suppressed long before the Anderson transition. However, under very
restrictive conditions (e.g. if the initial value of Tc, when no disorder is present,
is high enough) we may hope to find the finite values of Tc even in the immedi-
ate vicinity of Anderson transition (or even in insulating phase) [Sadovskii M.V.
(2000)]. Unfortunately, in these lectures there is no time and place for further
discussion of these interesting possibilities. Further details, as well as discussion
of experimental situation can be found in [Sadovskii M.V. (2000)].

It is convenient to rewrite (5.253) using the relation between conductivity and
generalized diffusion coefficient (e.g. (4.207)) and expressions (4.265) and (4.268).
Then, using the definition of characteristic length ξ, from (5.253) we can easily
obtain the following expression for temperature dependent coherence length ξ(T )
[De Gennes P.G. (1966)] of disordered superconductor:

ξ2(T ) =
Tc

Tc − T

{
ξ0l

σ
σ+σc

σ > σ⋆ (E > Ec)

(ξ0l
2)2/3 σ < σ⋆ (E ∼ Ec)

(5.254)

where in accordance with (4.265) σc = e2pF /(π
3~2), while characteristic conduc-

tivity scale σ⋆ is defined as:

σ⋆ ≈ σc(pF ξ0)
−1/3 ≈ σc

(
Tc

E

)1/3

(5.255)
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Thus, in the region of very small conductivity σ < σ⋆ the scale of coherence
length ξ(T ) is determined not by ξ ∼

√
ξ0l, as in the usual theory of “dirty”

superconductors, but by the new characteristic length ξ ∼ (ξ0l
2)1/3 ∼ (ξ0/p

2
F )

1/3,
which gives an estimate of the Cooper pair size in a superconductor in the vicinity
of Anderson transition (L.N. Bulaevskii, M.V. Sadovskii, 1984).

The density of superconducting electrons ns in GL theory can be defined as
[De Gennes P.G. (1966)]:

ns(T ) = 8mC∆2(T ) = 8mC(−A)/B (5.256)
Close to the Anderson transition this can be estimated as:

ns ∼ mN(E)ξ2∆2 ∼ mpF (ξ0/p
2
F )

2/3∆2 ∼ n(T 1/2
c /E2

F )
2/3(Tc − T ) (5.257)

where n ∼ p3F is the total electron density. If we take here T ∼ 0.5 Tc, we get the
simple estimate:

ns ∼ n

(
Tc

EF

)4/3

(5.258)

which, by the order of magnitude, is valid up to T = 0. Thus we can see that
only a small fraction of electrons in strongly disordered superconductor remains
superconducting. However, it confirms possibility of superconductivity in the
vicinity of Anderson metal–insulator transition.

The value of conductivity σ⋆, defined by (5.255), determines the typical scale
of conductivity, below which localization effects are significant for superconduct-
ing properties. While σc is of the order of Mott’s “minimal metallic conductivity”
[Mott N.F. (1974)], the value of σ⋆ is even smaller. However, for a superconduc-
tor with small enough Cooper pairs (which is typical for strong coupling and
high-temperature superconductors) σ⋆ is more or less of the order of σc. Ex-
perimentally this can be determined as conductivity scale at which, with further
growth of disorder, appear significant deviations from predictions of traditional
theory of “dirty” superconductors.

Direct information on the value of coherence length ξ2(T ) can be obtained
from the measurements of the upper critical field (5.212). In particular, it is
easy to convince oneself, that the use of (5.253) and (5.254) leads to the follow-
ing generalization of Gorkov’s relation (5.244) (L.N. Bulaevskii, M.V. Sadovskii,
1984):

− σ

νF

(
dHc2

dT

)
Tc

≈

{
8e2

π2~ϕ0 σ > σ⋆

ϕ0
σ

νF (ξ0l2)
2/3Tc

≈ ϕ0
σ

[νF Tc]1/3
σ < σ⋆ (5.259)

We see that for σ < σ⋆, i.e. close to the Anderson metal–insulator transition,
the standard relation (5.244) becomes invalid and (assuming weak dependence
of νF and Tc on disorder) the usual growth of the derivative (dHc2/dT )Tc (the
slope of Hc2(T )-curve) with the growth of disorder “saturates”, and this slope be-
comes more or less independent of conductivity of the system in the normal state.
Qualitatively, this behavior of the slope of the upper critical field is observed in
a number of strongly disordered superconductors [Sadovskii M.V. (2000)].
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5.6 Superconductors in electromagnetic field

In this section we shall consider the microscopic theory of electromag-
netic response of superconductors, with the aim to understand impor-
tant differences from the case of normal metals.

Let us start with a general formulation of the problem [Schrieffer J.R.
(1964)]. Consider a superconductor in a weak external electromagnetic
field, described by vector and scalar potentials A(rt) and φ(rt), which
can be combined in a single 4-vector (x = (r, t)):

Aµ(x) =

{
Ai(x) for µ = i = 1, 2, 3

cφ(x) for µ = 0
(5.260)

where we again “restored” the velocity of light c. In the first order in
Aµ the interaction of electrons with electromagnetic field is given by:

Hp = −1

c

∫
d3rjpµ(x)Aµ(x) = −1

c

∫
d3r[jp(x)A(x)− ρe(x)cφ(x)]

(5.261)
This is the interaction Hamiltonian with “paramagnetic” 4-vector of
current density, which has the form:

jpµ(x)=

{
jp(x) = e

2m
i{ψ+(x)∇ψ(x)− [∇ψ+(x)]ψ(x)}, µ = i = 1, 2, 3

ρe(x) = −eψ+(x)ψ(x) = −ρ(x), µ = 0

(5.262)
The total current density jµ(x) in the presence of a vector-potential
A is, as we have already noted above, the sum of paramagnetic and
“diamagnetic” contributions:

jµ(x) = jpµ(x) + jdµ(x) (5.263)
where the density of diamagnetic current is given by:

jdµ(x) =

{
e
mc
ρe(x)A(x) for µ = i = 1, 2, 3

0 for µ = 0
(5.264)

Then the total interaction of electrons with an external electromagnetic
field can be written as:

Hint = Hp +Hd (5.265)
where diamagnetic part of interaction is determined as:

Hd = − e

2mc2

∫
d3rρe(x)A

2(x) (5.266)
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Now we can use interaction representation with Hint (assuming that
Aµ → 0 for t→ −∞), which defines the following change of the system
ground state in time [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]:

|Φ(t) >= T exp

{
−i
∫ t

−∞
dt′Hint(t

′)

}
|0 >≡ U(t,−∞)|0 > (5.267)

Then the value of current density in the state |Φ(t) > is given by:
Jµ(x) =< Φ(t)|jµ(rt)|Φ(t) >=< 0|U+(t,−∞)jµ(rt)U(t,−∞)|0 >

(5.268)
We are interested in first order in Aµ contributions to Jµ(x), so that
after direct calculations we obtain:

Jµ(x) =
e

mc
< 0|ρe(x)|0 > Aµ(x)[1− δµ0]− i < 0|[jpµ(rt),∫ ∞

−∞
dt′Hint(t

′)]|0 > (5.269)

All terms of the zeroth order in Jµ(x) vanish, except < j0(x) > —
the average charge density, which is of no interest to us and can be
dropped. Using (5.261)–(5.266) we find that the linear response of the
system Jµ to the external potential Aµ is nonlocal and expressed via
integral kernel Kµν :

Jµ(x) = − c

4π

∫
Kµν(rt; r

′t′)Aν(r
′t′)d3r′dt′ (5.270)

where time integration is done over the whole time axis, while the kernel
is given by:

Kµν(x, x
′) = −4πi

c2
< 0|[jpµ(x), jpν(x′)]|0 > θ(t− t′)

− 4πe

mc2
< 0|ρe(x)|0 > δ(x− x′)δµν [1− δν0] (5.271)

If our system is translationally invariant, the kernel Kµν depends only
on the difference of coordinates and it is convenient to use Fourier rep-
resentation:

Kµν(q, t− t′) =

∫
Kµν(x, x

′)e−iq(r−r′)d3rd3r′

= −4πi

c2
< 0|[jpµ(qt), jpν(−qt′)]|0 > θ(t− t′)

+
4πne2

mc2
δ(t− t′)δµν(1− δν0) (5.272)
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where n is the total electron density. As the second term in (5.272) (dia-
magnetic response) is known exactly, we have to calculate only param-
agnetic contribution (first term):

Rµν(qt) = −i < 0|[jpµ(qt), jpν(−q0)]|0 > θ(t) (5.273)

This can be found with the help of T -ordered Green’s function of the
following form:35

Pµν(qt) = −i < 0|Tjpµ(qt)jpν(−q0)|0 > (5.274)

Comparing spectral representations for time Fourier transforms of
(5.273) and (5.274) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)], it is not difficult to convince yourself, that the real parts of Rµν

and Pµν coincide, while imaginary parts differ by sign for ω < 0:

RePµν(qω) = ReRµν(qω) (5.275)

ImPµν(qω) = signωImRµν(qω) (5.276)

which gives us the required expression for Rµν via Pµν . As Kµν contains
only system parameters in the absence of an external vector-potential
Aµ, operators jµ and jpµ just coincide and in the following we drop the
index p.

Finally, the response of the system to an external vector-potential
Aµ(q) = [A(q), cφ(q)] (where q = [q, ω]) takes the form:

Jµ(q) = − c

4π
Kµν(q)Aν(q) = − c

4π

[
3∑

i=1

Kµi(q)Ai(q)−Kµ0(q)cφ(q)

]
(5.277)

where:

Kµν(q) =
4π

c2
Rµν(q) +

1

λ2
L

δµν [1− δν0] (5.278)

and we defined λ2
L = mc2

4πne2
— the square of London penetration depth

at T = 0. Two terms in (5.278) reflect contributions of paramagnetic
and diamagnetic currents.

Introduce now the following shortened notation:

Qαβ(q) = − c

4π
Kαβ(q) (5.279)

35Similar Green’s function was used by us (in Matsubara technique) in (4.108).
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Consider first an ideal Fermi-gas (normal metal) [Levitov L.S., Shi-
tov A.V. (2003)]. Let us determine the response (current density j)
to spatially inhomogeneous static vector-potential36 A. In momentum
representation, the linear relation between j and A can be written as:

jq = Q̂(q)Aq (5.280)
In the previous Chapter we have already noted that the static vector-
potential does not lead to the appearance of electric current in a normal
metal (or ideal Fermi-gas) in the long wavelength limit. This means that
Q̂(q = 0) = 0, so that at q = 0 diamagnetic and paramagnetic con-
tributions to (5.278) completely compensate each other. At the same
time, in the limit of q → 0, and for ω = 0, the response contains a
small contribution due to Landau diamagnetism. Consider this in more
details. Calculations will be done for the case of finite temperatures,
using Matsubara formalism. From the analysis made in the previous
Chapter concerning (4.108)–(4.120), after the obvious change of nota-
tions, it becomes clear that for an ideal Fermi-gas the paramagnetic
contribution to the response kernel37 can be written as:

Qp
αβ(q=0)=− lim

τ→0
2
e2

m2c
T
∑
n

eiεnτ
∫
v

pαpβ
(iεn − ξ(p))(iεn − ξ(p))

d3p

(2π)3

(5.281)
Now use the obvious relation, valid for the free electron Green’s function:

pG2
0(εnp) = m∇pG0(εnp) (5.282)

and write (5.281) as:

Qp
αβ(0) = − e2

mc
2T
∑
n

∫
pα∇pβ

G0(εnp)
d3p

(2π3)
(5.283)

Integration over d3p can be done in parts, so that ∇pβ
acts on pα, and

leading to:

Qp
αβ(0) =

e2

mc
δαβ2T

∑
n

∫
G0(εnp)

d3p

(2π)3
=
ne2

mc
δαβ (5.284)

which totally compensates diamagnetic part of (5.278).
36We assume the gauge choice: divA = 0, φ = 0.
37For an impure metal everything can be done in a similar way, but we have to take
into account the finite damping in denominators of Green’s functions due to impurity
scattering. Vertex corrections due to impurity scattering in “current” vertices just vanish
due to angular integrations (in the model with point-like impurities).
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Consider now the case of q ̸= 0. Expansion of Q̂(q) in powers of
q starts from the second order: Q(q) = aq2 + O(q4), which is easily
checked by an expansion of diagram shown in Fig. 5.14. Then we can
write:

j = Q̂A = −a∇2A (5.285)

On the other hand, as we know from electrodynamics, the current may
be related to magnetization of the system as:

j = c rotM = c rotχ0B = χ0c rot rotA (5.286)

so that using rot rotA = grad divA − ∇2A and gauge condition
divA = 0 we may write:

j = −χ0c∇2A (5.287)

where χ0 is the magnetic susceptibility of electron gas. Then, com-
paring (5.285) with (5.287), we find: χ0 = a

c
, where coefficient a can

be calculated from the diagram shown in Fig. 5.14. In fact, from this
diagram we have:

Qxx = − lim
τ→0

2
e2

c
T
∑
n

eiεnτ
∫

vx(p+ q)vx(p)

(iεn − ξ(p+ q))(iεn − ξ(p))

d3p

(2π)3

(5.288)

Fig. 5.14 Diagram determining the response of an ideal Fermi-gas to an external vector-
potential.

where vx(p+ q) = ∂ξ(p+ q)/∂px and vx(p) = ∂ξ(p)/∂px are ap-
propriate velocity projections. Let us assume that the wave vector q is
directed along z-axis. In contrast to spin susceptibility, orbital suscepti-
bility is determined not only by electrons from the vicinity of the Fermi
surface, but by all electrons inside it, as Landau quantization influence
all electrons with E < EF , and the finite value of susceptibility χ0 ap-
pears due to the difference between the usual integral over continuous
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spectrum and the sum over quantized Landau levels. Let us limit our-
selves to the case of free electrons, when ξ(p) = p2

2m
−EF . Expand Qxx

in powers of q = qz and take into account vx(p+ q) = vx(p) = px/m,
so that:

Qxx = − lim
τ→0

e2q2

c
T
∑
n

eiεnτ
∫

v2x
iεn − ξ(p)

∂2

∂p2z

1

iεn − ξ(p)

d3p

(2π)3

(5.289)
Now:

∂2

∂p2z

1

iεn − ξ(p)
=

1

m

1

(iεn − ξ(p))2
+ 2

p2z
m2

1

(iεn − ξ(p))3

and we immediately obtain:

χ0=− lim
τ→0

e2

c2
T
∑
n

eiεnτ
∫ {

1

m

v2x
(iεn − ξ(p))3

+ 2
v2xv

2
z

(iεn − ξ(p))4

}
d3p

(2π)3

(5.290)
Angular averaging gives < v2x >= v2/3 and < v2xv

2
z >= v4/15, and

after the double partial integration in the first term of (5.290):∫ ∞

0

p4

(iεn + EF − p2/2m)3
dp =

3m2

2

∫ ∞

0

dp

iεn + EF − p2/2m
(5.291)

and after triple partial integration in the second term,∫ ∞

0

dp
p6

(iεn + EF − p2/2m)4
= −5m3

2

∫ ∞

0

dp

iεn + EF − p2/2m
(5.292)

Then, summation over n in (5.290) gives just the Fermi distribution
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)] and from the
first term in (5.290) we get − e2pF

4π2mc2
, while from the second we have

+ e2pF

6π2mc2
so that the sum of these contributions gives the final result:

χ0 = − e2

12π2mc2

∫ ∞

0

dpn(ξ(p)) = − e2pF
12π2mc2

(5.293)

which is the usual diamagnetic susceptibility of free electron gas
[Sadovskii M.V. (2019a)]. If we remember a similar result for Pauli
(spin) susceptibility:

χp = 2µ2
BνF =

e2

4m2c2
mpF
π2

(5.294)
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we obtain the well known result for total susceptibility [Sadovskii M.V.
(2019a)]:

χ0 = −1

3
χp (5.295)

Let us return now to superconductors and calculate again the re-
sponse to static vector-potential. We shall see that in contrast to the
normal metal (free Fermi-gas), there will be no complete compensation
of paramagnetic and diamagnetic contributions in this case. Thus, even
if we take q = 0 in (5.280), we get the finite response, which is written
as:

j(r) = −nse
2

mc
A(r) (5.296)

and which is called London equation — basic equation of electrodynam-
ics of superconductors. Here ns represents (by definition) the density of
superconducting (superfluid) electrons. Eq. (5.296), “obviously” breaks
gauge invariance. The physical reason for the absence of total com-
pensation of diamagnetic and paramagnetic contributions in response
kernel Q(0) is precisely due to the fact (already noted above), that
gauge invariance (charge conservation) in superconductors is sponta-
neously broken. This is the symmetry (of the ground state!) which is
lowered when the system goes superconducting. In a normal metal the
zero value of Q(0) is guaranteed by the validity of the Ward identity,
which is directly related to charge conservation and gauge invariance
[Sadovskii M.V. (2019b)]. It is not so (simple) for superconductors, and
special care is needed to “restore” gauge invariance of electromagnetic
response absent in a simple BCS-approach.

Now, let us directly calculate Q(0) for a superconductor. Diamag-
netic contribution is obviously the same as before and can be written
as:

Q
(2)
αβ(0) = −ne

2

mc
δαβ (5.297)

But in calculations of paramagnetic contribution, in contrast to the
case of the normal metal, we have to take into account contributions
to Q(0) both from normal and anomalous Green’s functions. Paramag-
netic contribution Q(1)

αβ(ω,q) is again obtained (for finite temperatures,



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 248

248 Diagrammatics

in Matsubara formalism) by averaging the product of two current op-
erators and is given by the following expression (σ, σ′ are spin indices):

Q
(1)
αβ(ωm,q) =

1

2c

∑
σσ′

∫ β

−β

eiωmτ

∫
d3reiqr

× < Tτψ
+
σ (rτ)ĵαψσ(rτ)ψ

+
σ′(00)ĵβψσ′(00) > (5.298)

where ĵ = −i e
m
∇r. Now we have to consider all the pairing of ψ-

operators, taking into account both normal and anomalous averages.
Then we obtain:

< Tτψ
+
σ (rτ)ĵαψσ(rτ)ψ

+
σ′(00)ĵβψσ′(00) >

= −ĵαGσσ′(rτ)ĵβGσ′σ(−r,−τ)− ĵαF
+
σσ′(rτ)ĵβFσ′σ(−r,−τ) (5.299)

so that Qαβ(ωmq) takes the form:

Q
(1)
αβ(ωm,q) =

1

2c

∑
σσ′

∫ β

−β

eiωmτ

∫
d3reiqr{2ĵαG(rτ)ĵβG(−r,−τ)

+2ĵαF (rτ)ĵβF
∗(−r,−τ)} (5.300)

Note that the signs of loops containing G and F are here the same.38

Rewriting (5.300) in momentum representation we have:

Qαβ(ωm,q) = −2
e2

c
T
∑
n

∫
d3p

(2π)3
vα
(
p− q

2

)
vβ
(
p+

q

2

)
×
{
G
(
εnp− q

2

)
G
(
εn + ωmp+

q

2

)
+F

(
εnp− q

2

)
F ∗
(
εn + ωmp+

q

2

)}
(5.301)

Then, for ωm = 0, q = 0 we have:

Q(1)
αα(0) = − 2e2

3m2c
T
∑
n

∫
d3p

(2π)3
p2{G2(εnp) + |F (εnp)|2} (5.302)

Combining (5.297) and (5.302) together, using the definition of ns, fol-
lowing from (5.296), and also the explicit form of Gorkov’s functions
(5.111), (5.112), we obtain:

n− ns = −2νFp
2
F

3m
T
∑
n

∫ ∞

−∞
dξ

∆2 + ξ2 − ε2n
(ε2n + ξ2 +∆2)2

(5.303)

38In the next Chapter we shall see that the situation is opposite for loops with scalar
(not vector or “current”) vertices.
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This expression is not fully satisfactory. Total electron density is deter-
mined by all electronic states, including those far from the Fermi sur-
face. Thus, the usual integration over the linearized spectrum ξ, used
in Eq. (5.303), is not, strictly speaking, justified. At the same time
it is clear that density of superconducting electrons ns is determined
by the close vicinity of the Fermi surface, as only there an important
transformation of electronic spectrum takes place in BCS theory. Deep
inside the Fermi sphere (i.e. for ξ ∼ EF ) nothing happens at all. Thus,
the correct procedure is to subtract from (5.303) the same expression
for the normal metal, i.e. with ∆ = 0. Then the contribution of deep
states just drops out. This will also guarantee the obvious requirement
of ns being zero for ∆ → 0. Finally we obtain:

ns = −2νFp
2
F

3m
T
∑
n

∫ ∞

−∞
dξ

[
ξ2 − ε2n

(ξ2 + ε2n)
2
− ∆2 + ξ2 − ε2n

(ε2n + ξ2 +∆2)2

]
(5.304)

Now we can perform ξ-integrations using the standard integrals:∫ ∞

−∞

dx

(x2 + a2)2
=

π

2a3
,

∫ ∞

−∞

dxx2

(x2 + a2)2
=

π

2a
(5.305)

Then we obtain:

ns =
2νFp

2
F

3m
T
∑
n

π∆2

(ε2n +∆2)3/2
(5.306)

Let us analyze now the different limiting cases.

• The case of T → 0. Here we can replace summation by integration
and obtain:

ns =
2νFp

2
F

3m

π∆2

2π

∫ ∞

−∞

dε

(ε2 +∆2)3/2
=

2νFp
2
F

3m
=

p2F
3π2

= n

(5.307)
We see that at T = 0 superfluid density is equal to total density of
electrons, as it should be in translationally invariant system.

• The case of T → Tc. Now we can neglect ∆2 in the denominator of
(5.306). The remaining sum over frequencies is already known to
us, it is expressed via ζ-functions, and we obtain:

ns

n
=

7ζ(3)∆2

4π2T 2
c

= 2

(
1− T

Tc

)
(5.308)

so that for T → Tc superfluid density goes to zero.
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Impurity scattering suppresses superfluid density ns, but it remains fi-
nite. To understand it in more details, we calculate Q(0) for an impure
system. It is sufficient to calculate the loop diagrams, built upon the
impurity averaged Gorkov’s functions, which are obtained from those
of the “clean” superconductor, given by (5.111) and (5.112), via the
replacement (5.186). Vertex corrections (diagrams with impurity lines
connecting different Green’s functions in the loop) can be dropped, as
they vanish due to angular integration (vector nature of vertices, de-
scribing interaction with external electromagnetic field). Thus, an ex-
pression for ns can be immediately written as (cf. (5.303)):

n− ns

n
= −T

∫ ∞

−∞

ξ2 + ∆̃2 − ε̃2n
(ξ2 + ∆̃2 + ε̃2n)

2
(5.309)

where ε̃n and ∆̃ were defined in (5.185), (5.186). Let us again subtract
from this expression its value with ∆ = 0 and in the absence of im-
purities, to exclude contribution of deep levels under the Fermi sphere.
Then, after the integration over ξ, we obtain the following generalization
of (5.306):

ns

n
= πT

∑
n

∆̃2

(ε̃2n + ∆̃2)3/2
(5.310)

or, with the account of (5.185), (5.186):
ns

n
= πT

∑
n

∆2

(ε2n +∆2)3/2
(
1 + 1

2τ
√

ε2n+∆2

) (5.311)

For small impurity concentration, when ∆0τ ≫ 1, this expression re-
duces to (5.306), while in the “dirty” limit, when ∆0τ ≪ 1, it gives:

ns

n
= 2πτT

∑
n

∆2

(ε2n +∆2)2
= πτ∆th

∆

2T
(5.312)

Thus in a “dirty” superconductor, even for T → 0, we have:
ns(T → 0)

n
= πτ∆0 ≪ 1 (5.313)

i.e. only a small fraction of electrons is superconducting.
Let us continue the general discussion after the return to our initial

notations (5.270)–(5.278) and putting c = 1 for shortness. In isotropic
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system, electromagnetic response kernel reduces to Kµν = Kδµν . The
previous discussion can be summarized as follows. To obtain supercon-
ducting response it is necessary (and sufficient) to satisfy the following
requirements:39

lim
q→0

lim
ω→0

K(qω) = lim
ω→0

lim
q→0

K(qω) = K(0, 0) ̸= 0 (5.316)

where, according to (5.306), we have:

K(0, 0) =
1

λ2
L

ns

n
=

4πnse
2

m
=

1

λ2
L

2πT
∑
n

∆2

(ε2n +∆2)3/2
(5.317)

with λ2
L = mc2

4πne2
— the usual definition of the square of London pene-

tration depth at zero temperature T = 0.
From (5.270) we get:

Jµ(qω) = − 1

4π
Kµν(qω)A

ν
qω (5.318)

so that, taking into account the definition of electric field:

E = −∂A
∂t

Eqω = iωAqω (5.319)

we can introduce conductivity as:

σµν(qω) = − 1

4πiω
Kµν(qω) σ(qω) = − 1

4πiω
K(qω)

(5.320)
where the second equality is valid for isotropic case. In most cases we
are interested in the limit q → 0 (response to homogeneous field), which
is assumed in what follows.
39There are two contributions to Kµν(qω): paramagnetic one Kp

µν and diamagnetic
Kd

µν . Diamagnetic contribution is proportional to the total density of electrons and is
the same as in the normal state. In normal state the total current induced by static
vector-potential is negligible (and determines only the the small contribution of Landau
diamagnetism). Thus, with high accuracy we have: Kn

µν(q0) = Knp
µν (q0) + Kd

µν ≈ 0,
Knp

µν (q0) ≈ −Kd
µν (exact equality holds for q → 0). Then the current density in a

superconductor is given by:

Jµ(qω) = −
1

4π
{Ksp

µν(qω)−Knp
µν (q0)}Aν

qω (5.314)

Thus, as noted above, we have only to calculate the paramagnetic response. The differ-
ence of current densities in superconducting and normal states can be written as:

Js
µ(qω)− Jn

µ (qω) = {Ks
µν(qω)−Kn

µν(q0)}Aν
qω

= {Ksp
µν(qω)−Knp

µν (qω)}Aν
qω (5.315)
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It is convenient to write:

σ(ω) = σs(ω) + σexc(ω) (5.321)

where

σs(ω) = −K(0)

4πiω
(5.322)

is conductivity of superconducting condensate, while

σexc(ω) = − 1

4π

K(ω)−K(0)

iω
(5.323)

is conductivity due to single-particle excitations. We see that (5.322),
with the use of (5.317), is reduced to:

σs(ω) =
nse

2

m

i

ω + iδ
, δ → +0 (5.324)

so that:

Reσs(ω) =
nse

2

m
πδ(ω) (5.325)

which corresponds to dissipationless contribution of condensate into
conductivity (i.e. to superconductivity itself).

Let us consider now in detail σexc(ω), i.e. conductivity due to single-
particle excitations in superconductor, which, in particular, determines
the absorption of electromagnetic energy by a superconductor at finite
frequencies (optical properties of a superconductor). In fact, we have
to return to (5.300), (5.301) and repeat all calculation for the case of a
finite frequency of external field iωm → ω + iδ and q → 0. We have:

Qαα(ωm,q) = −2
e2

3m2
T
∑
n

∫
d3p

(2π)3

(
p+

q

2

)2
×
{
G
(
εnp− q

2

)
G
(
εn + ωmp+

q

2

)
+F

(
εnp− q

2

)
F ∗
(
εn + ωmp+

q

2

)}
(5.326)

Now substitute here explicit expressions for Gorkov’s functions, per-
form summation over frequencies and introduce integration over the
linearized spectrum ξp ≡ ξ(p) in the vicinity of the Fermi surface,
where p ≈ pF and can be taken out of integral. These calculations are
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rather cumbersome and we just skip them.40 Finally, after the usual
continuation iωm → ω + iδ, we get:

Qαα(ωm,q) = − 2e2

3m2
νF p

2
F

∫ ∞

−∞
dξp

{
εpεp+q + ξpξp+q +∆2

εpεp+q

}
{n(εp)− n(εp+q)}

×
{

1

εp − εp+q + ω + iδ
+

1

εp − εp+q − ω − iδ

}
+

2e2

3m2
νF p

2
F

∫ ∞

−∞
dξp

{
εpεp+q − ξpξp+q −∆2

εpεp+q

}
{1− n(εp)− n(εp+q)}

×
{

1

εp + εp+q + ω + iδ
+

1

εp + εp+q − ω − iδ

}
(5.327)

where we have introduced the usual notation εp =
√
ξ2p +∆2 for elec-

tron spectrum in BCS model (5.68), n(εp) is Fermi distribution with
this spectrum. In the limit of T → 0 only the second term contributes,
as n(εp) → 0 for T → 0 due to the gap in BCS spectrum. At the same
time we are interested in the limit of q → 0, when actually goes to zero
numerator (so-called coherence factor) of the expression, standing in the
first brackets of this term. Thus we obtain zero, and all conductivity, in
fact, is reduced to (5.322), (5.324). In particular, the real part of con-
ductivity is concentrated in δ-function contribution at zero frequency
(5.325), with ns = n, i.e. all electrons contribute to this dissipationless
motion of condensate.

To understand what has happened remember, that we are analyzing the re-
sponse at finite frequency of a superconductor without impurity (or any other)
scattering, leading to current dissipation. The velocity of i-th electron in an ex-
ternal field is determined as: mvi = pi − e

c
A(ri). Then the total current is equal

to:

J = e
∑
i

< vi >=
e

m

∑
i

< pi > − e2

mc

∑
i

A(ri) (5.328)

The first term here is proportional to the applied electric field E(rt) = Eeiqr−iωt,
so that:

J(rt) = σ(ω)E(rt)− e2

mc
nA(rt) (5.329)

where in writing the second term we assumed the homogeneity of the system.
With the account of E = − 1

c
∂A(rt)

∂t
, we have A = ic

ω
E. Then London equation

40In the next Chapter we shall perform similar calculations (for another problem) in all
details.
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(5.296) with ns = n (at T = 0) directly follows from (5.329), if σ(ω) = 0. It is
precisely what was obtained in (5.327).

Thus, consistent analysis of conductivity in a superconductor should
be done with the account of e.g. impurity scattering (S.B. Nam, 1967).
These calculations are also very cumbersome, and we shall use instead
much simplified arguments, which give correct answer in the “dirty”
limit [Mahan G.D. (1981)]. Let us use the definition of conductivity (cf.
(5.320), (5.279)) in the following form:

σ(ω) = lim
q→0

Q(qω)

iω
, Reσ(ω) =

1

ω
ImQ(0ω) (5.330)

and consider the imaginary part of (5.327) for ω > 0. Besides, let
us take into account that in “dirty” superconductor momenta p and
p+ q are not well defined quantum number for an electron. Then we
may assume that in this limit both ξp and ξp+q in Eq. (5.327) can be
considered as independent variables, so that we can write:

Reσ(ω) =
C0

ω

∫ ∞

−∞
dξp

∫ ∞

−∞
dξ′pδ(ω − εp − εp′)

εpεp′ − ξpξp′ −∆2

εpεp′

=
C0

ω

∫ ∞

∆

dε

∫ ∞

∆

dε′N(ε)N(ε′)δ(ω − ε− ε′)

(
1− ∆2

εε′

)
(5.331)

where in the last equality we have changed integration variable from
ξ to BCS spectrum (5.68) ε and, accordingly, introduced BCS density
of states, defined by Eq. (5.79). In Eq. (5.331 we also introduced a
constant C0, which will be determined from matching with conductivity
of a normal metal (when ∆ → 0). From (5.331), performing δ-function
integration, we obtain:

Reσ(ω) =
C0

ω
θ(ω − 2∆)

∫ ω−∆

∆

dεN(ε)N(ω − ε)

{
1− ∆2

ε(ω − ε)

}
=
C0

ω
θ(ω − 2∆)

∫ ω−∆

∆

dε
ε(ω − ε)−∆2

(ε2 −∆2)1/2[(ω − ε)2 −∆2]1/2

(5.332)
Introducing new integration variable x via 2ε = ω + x(ω − 2∆), we
have:

Reσ(ω) =
1

2

C0

ω
θ(ω − 2∆)(ω − 2∆)

∫ 1

−1

dx
1− αx2

[(1− x2)(1− α2x2)]1/2

(5.333)
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where α = ω−2∆
ω+2∆

. The integral in (5.333) is expressed via elliptic func-
tions as:

Reσ(ω) =
C0

ω
[(ω + 2∆)E(α)− 4∆K(α)]θ(ω − 2∆) (5.334)

In the normal state (∆ = 0) electromagnetic absorption is determined
by C0 (which is seen from (5.331), calculated for ∆ = 0). Accordingly,
the ratio of optical conductivities in a superconductor and normal metal
is defined as:
Reσs(ω)

Reσn(ω)
≡ σ1s(ω)

σ1n(ω)
=

1

ω
[(ω+2∆)E(α)−4∆K(α)]θ(ω−2∆) (5.335)

This is the so-called Mattis–Bardeen formula (D. Mattis, J. Bardeen,
1958), which gives beautiful agreement with experiment, as you can see
in Fig. 5.15.

Fig. 5.15 Real part of optical conductivity of lead in superconducting state at T =
2K. Shown are experimental data for different samples and theoretical curve (full line)
(L. Palmer, M. Tinkham, 1968).

In a wide interval of frequencies of an external electromagnetic field the qual-
itative behavior of the real part of conductivity (optical absorption) in super-
conductors is given in Fig. 5.16, where we show the results of more detailed
calculations of optical conductivity in BCS model, with the account of impurity
scattering with fixed value of γ = 1

2τ
= ∆. In the normal phase (for T ≥ Tc) con-

ductivity dependence on frequency is given by the usual Drude expression (4.210)
with mean free time, determined (e.g. for low enough temperatures) by impurity
scattering. This gives characteristic behavior shown in Fig. 5.16 by full curve.
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Fig. 5.16 Real part of optical conductivity in normal and superconducting states with
the account of finite impurity scattering rate Γ = 1

τ
= 2∆.

After the superconducting transition, a δ(ω)-contribution appears in conductivity
(5.325), which is due to superconducting response of Cooper pairs condensate,
while the finite absorption appearing at ω > 2∆ corresponds to excitation of sin-
gle electrons through BCS gap. At T = 0 these electrons are created by external
field “breaking” of Cooper pairs (in accordance with the physical meaning of ∆
as a binding energy of an electron in Cooper pair). Conductivity of an arbitrary
system has to satisfy the following exact sum rule [Nozieres P., Pines D. (1966)]:∫ ∞

0

dωReσ(ω) =
πne2

2m
=
ω2
p

8
(5.336)

where ω2
p = 4πne2

m
is the square of plasma frequency. For superconductors this

sum rule means that the dashed area below Drude conductivity curve of a normal
metal in Fig. 5.16, after the superconducting transition is transformed into the
amplitude of δ-function contribution in (5.325), while the remaining area under
conductivity curve at ω > 2∆ guarantees the validity of the sum rule (5.336)
together with this contribution of superconducting condensate.

This relatively simple analysis based on BCS model leads to the
correct results for the response of a superconductor to the trans-
verse electromagnetic field, but it leads to wrong results if applied to
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calculations of the response to a longitudinal field.41 This is deeply
connected with gauge non invariant expressions for response functions
obtained above and spontaneous breaking of gauge invariance by BCS
ground state. The physical reason for the difficulty with consistent de-
scription of longitudinal response is due to the fact, that longitudinal
gauge (gradient) transformations are directly connected with collective
excitations (of electron density) in superconductors. In the model with
only short-range interactions these excitations correspond to the so-
called Bogoliubov sound, which is the Goldstone mode, appearing due
to spontaneous breaking of gauge invariance. The account of long-range
Coulomb interactions leads to transformation of Bogoliubov sound into
the usual plasma oscillations. Gauge invariant formulation of electro-
magnetic response of superconductors can be obtained if we generalize
BCS scheme by inclusion of these collective excitations [Schrieffer J.R.
(1964)].

41We always assumed above the transverse gauge divA = 0, ϕ = 0!
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Chapter 6

Electronic Instabilities and Phase
Transitions

6.1 Phonon spectrum instability

Let us consider renormalization of phonon spectrum due to electron–
phonon interaction in one-dimensional metal. We shall use the general
approach, described by Eqs. (3.16), (3.18) and (3.91). It will be shown,
that this renormalization leads to phonon spectrum instability, which
we already mentioned shortly in the Chapter on electron–phonon inter-
action. Now we shall discuss this instability in more details.

For d = 1 polarization operator of the free electron gas at T = 0 is
defined by the following expression:

Π(kω) = −2i

∫
dp

2π

∫
dε

2π
G0(εp)G0(ε+ ωp+ k) (6.1)

where the factor of 2 is due to spin. Calculating the integral over ε as
was already done previously, we obtain:

Π(kω) =
1

π

∫
dp

n(ξp)− n(ξp+k)

ω − ξp+k + ξp + iδ(signξp+k − signξp)
(6.2)

where we again introduced the notation ξp ≡ ξ(p) = p2

2m
− µ. Nonzero

contributions to integral in (6.2) come from two regions:

(1) ξp > 0, ξp+k < 0

(2) ξp < 0, ξp+k > 0

in all other cases we have n(ξp)− n(ξp+k) = 0. To be specific, consider
the case of k > 0. Then these regions correspond to:

(1) −pF − k < p < −pF
(2) pF − k < p < pF

259
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These inequalities determine also the correct sign of ±iδ-contribution
in the denominator of (6.2). Then (6.2) can be rewritten as:

Π(kω) = − 1

π

∫ −pF

−pF−k

dp

ω − k2

2m
− pk

m
− iδ

+
1

π

∫ pF

pF−k

dp

ω − k2

2m
− pk

m
+ iδ

=
m

πk
ln


(

k2

2m
− kpF

m
− ω + iδ

)
(

k2

2m
+ kpF

m
+ ω − iδ

)
(

k2

2m
− kpF

m
+ ω + iδ

)
(

k2

2m
+ kpF

m
− ω − iδ

)
 (6.3)

Consider the behavior of Π(kω) for ω = 0 and close to k = 2pF . Define
k = 2pF + q (i.e. q = k − 2pF , |q| ≪ 2pF ). Then:

Π(k = 2pF + q, ω = 0) = − m

πpF
ln

4pF
|q|

= − m

πpF
ln

4pF
|k − 2pF |

(6.4)

In fact, we have mentioned this result previously in (3.89), in our pre-
liminary discussion of the “giant” Kohn anomaly.

Consider now renormalization of phonon spectrum. Let us write
down the phonon Green’s function as (cf. (3.18) and (3.91)):

D−1(kω) = D−1
0 (ωk)− g2Π(kω) (6.5)

Close to k = 2pF , using (6.4),1 we have:

ω2 − ω2
2pF

ω2
2pF

+
mg2

πpF
ln

4pF
|k − 2pF |

= 0 (6.6)

or

ω2 = ω2
2pF

{
1− mg2

πpF
ln

4pF
|k − 2pF |

}
(6.7)

Now we can see that for k, close enough to 2pF , the second term
overcomes the first one, so that phonon frequency becomes imaginary
(ω2 < 0). Suppression of phonon frequency at k ∼ 2pF is usually
called the appearance of the “soft” mode (lattice “softening”), as shown
in Fig. 6.1, and respective instability of the phonon spectrum leads to
spontaneous deformation of the lattice. This means (as we shall see
below) that formation of (atomic) density modulation with the period
2π
2pF

= π
pF

becomes thermodynamically advantageous, leading to the
1Strictly speaking we should have used here Π(ω, k ≈ 2pF ) at ω ̸= 0, but neglect of

this frequency dependence does not change qualitative conclusions.
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Fig. 6.1 Phonon “soft” phonon mode due to “giant” Kohn anomaly.

appearance of static density wave ∼ Reei2pF x ∼ cos(2pFx + ϕ). This
is called Peierls structural transition. Atomic displacements in this
density wave directly lead to modulation of electronic charge density:
ρ(x) = ρ0 + ρ1 cos(2pFx + ϕ), or to formation of the so-called charge
density wave (CDW). This is illustrated in Fig. 6.2.

Fig. 6.2 Atomic displacements in one-dimensional chain leading to new period and
appearance of charge density wave (CDW) due to Peierls transition. The case of period
doubling.

In fact, the instability of phonon spectrum appears at some finite
temperature T = Tp0, when the square of the frequency ω2(k = 2pF )

becomes zero for the first time. To understand it in more details we
consider the case of T ̸= 0. As usual we shall use Matsubara technique.
For phonon Green’s function we again write down the Dyson equation:

D−1(kωm) = D−1
0 (ωmk)− g2Π(ωmk) (6.8)

where

D0(kωm) =
ω2
k

(iωm)2 − ω2
k

, ωm = 2πmT (6.9)
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Polarization operator is given by:

Π(kωm) = 2T
∑
n

∫
dp

2π
G0(εnp)G0(εn − ωm, p− k) (6.10)

We are interested in the region of k ∼ 2pF , so that we introduce:

k = 2pF + q, |q| ≪ 2pF (6.11)

As everything of interest to us is determined by electrons from rela-
tively narrow vicinity of the Fermi level, in future estimates we use the
linearized spectrum of electrons, shown in Fig. 6.3. Then we have:

ξp−k = −ξp + vF q for p ∼ +pF

ξp+k = −ξp + vF q for p ∼ −pF (6.12)

Fig. 6.3 Linearized (close to the Fermi level) spectrum of electrons in one-dimensional
metal. Fermi “sphere” is represented by a straight line, electronic states with momenta
from dashed region (−pF , pF ) are filled. Fermi “surface” consists of two points ±pF .

In fact, this is valid for any form of electronic spectrum in one-
dimensional metal close to two “ends” of the Fermi line (Fermi “points”).
Accordingly, we write the polarization operator as:

Π(qωm) = TN(EF )
∑
n

∫ ∞

−∞

dξp
2πi

2πi
1

iεn − ξp

1

i(εn − ωm) + ξp − vF q

= −2πTN(EF )
∑
n

θ[εn(εn − ωm)]
signεn

2εn − ωm + ivF q
(6.13)
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where spin degeneracy is included in N(EF ). Here, the factor of
θ[εn(εn − ωm)] guarantees signεn = sign(εn − ωm), which, in turn,
places the poles in ξp into different half-planes of appropriate complex
variable, and guarantees nonzero value of integral over ξp, which is triv-
ially calculated using Cauchy theorem.

Multiplying both numerator and denominator by signεn =

sign(εn − ωm), we obtain:

Π(qωm) = −2πTN(EF )
∑
n

θ[εn(εn − ωm)]

|εn|+ |εn − ωm|+ ivF q signεn

= −2πTN(EF )
∑
n

θ[εn(εn − ωm)]

|2εn − ωm|+ ivF q signεn
(6.14)

where we have taken into account |εn| = εnsignεn; |εn − ωm| = (εn −
ωm)signεn; |2εn − ωm| > 0. Then:

Π(qωm) = −2πTN(EF )
∑
n≥0

1

2εn + ωm + ivF q

−2πTN(EF )
∑
n≥0

1

2εn + ωm − ivF q
(6.15)

The sums entering here are formally divergent and we have to intro-
duce a cut-off, remembering that electron–phonon interaction (coupling
“constant” g) is effectively suppressed for frequencies ∼ EF , i.e. of the
order of conduction band width.2 Thus we have to perform summation
up to εn ∼ EF ! Then, adding and subtracting to the sums in (6.15)
2πTN(EF )

∑N∗

n≥0
1

2εn
, with N∗ =

[
EF

2πT

]
, we can write:

Π(ωmq) = −4πTN(EF )
N∗∑
n≥0

1

2εn

−2πTN(EF )
∞∑

n=0

[
1

2εn + ωm + ivF q
− 1

2εn

]

−2πTN(EF )
∞∑

n=0

[
1

2εn + ωm − ivF q
− 1

2εn

]
(6.16)

2Do not mix it with pairing interaction in superconductors, which, as we have seen
above, is cut-off at frequencies ∼ ωD.
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where in convergent sums we can already take the infinite upper limit.
Using now:3

4πTN(EF )
N∗∑
n≥0

1

2εn
= N(EF ) ln

2γEF

πT
, (6.17)

we get:

Π(qωm) = −N(EF ) ln
2γEF

πT

−1

2
N(EF )

∞∑
n=0

[
1

n+ 1
2
+ ωm

4πT
+ ivF q

4πT

− 1

n+ 1
2

]

−1

2
N(EF )

∞∑
n=0

[
1

n+ 1
2
+ ωm

4πT
− ivF q

4πT

− 1

n+ 1
2

]
(6.18)

Using now the definition of ψ(x)-function:

ψ(x) = −C −
∞∑

n=0

[
1

n+ x
− 1

n+ 1

]
(6.19)

where C = ln γ = 0.577..., we can write down the final expression for
polarization operator as:

Π(qωm) = −N(EF ) ln
2γEF

πT
+

1

2
N(EF )

[
ψ

(
1

2
+

ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1

2

)]
= −N(EF ) ln

EF

2πT
+

1

2
N(EF )

[
ψ

(
1

2
+

ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
− ivF q

4πT

)]
(6.20)

where we also used ψ
(
1
2

)
= − ln 4γ.

Let us define dimensionless coupling constant for electron–phonon
interaction as:4

λ = g2N(EF ) (6.21)
3We use here: 2

∑N
n=0

1
2n+1

= ln(4γN).
4It should not be mixed with dimensional constant λ of pairing interaction used in the

previous Chapter!
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Then the equation for phonon Green’s function (6.8) is rewritten as:

ω2
2pF

D−1(qωm) = (iωm)
2 − ω2

2pF

{
1− λ ln

EF

2πT

+
λ

2

[
ψ

(
1

2
+

ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
− ivF q

4πT

)]}
= (iωm)

2 − ω2
2pF

{
1− λ ln

2γEF

πT

+
λ

2

[
ψ

(
1

2
+

ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1

2

)]}
(6.22)

Then we define the phase transition temperature Tp0, as temperature
at which the frequency of phonons with k = 2pF (i.e. q = 0) becomes
zero. Putting in (6.22) q = 0 and ωm = 0, we obtain the equation:

D−1(0, 0) = 1− λ ln
2γEF

πTp0

= 0 (6.23)

which gives BCS-like expression for the transition temperature (at which
the crystal lattice becomes unstable):

Tp0 =
2γ

π
EF e

− 1
λ (6.24)

Writing (6.23) as:

1− λ ln
EF

2πTp0

+ λψ

(
1

2

)
= 0 (6.25)

and subtracting this expression from the r.h.s. of (6.22), we obtain:

ω2
2pF

D−1(ωmq) = (iωm)
2 − ω2

2pF
λ

{
ln

T

Tp0

+
1

2

[
ψ

(
1

2
+

ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1

2

)]}
(6.26)
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To find dispersion relation for the soft mode we have to perform her the usual
analytic continuation iωm → ω and use the expansion of ψ-function (which is
easily obtained from (6.19)):

ψ

(
1

2
− iω

4πT
± ivF q

4πT

)
≈ −C −

∞∑
n=0

[
1

n+ 1/2
− 1

n+ 1

]

+

∞∑
n=0

1

(n+ 1/2)2

[
− iω

4πT
± i

vF q

4πT

]

−
∞∑

n=0

1

(n+ 1/2)3

[
− iω

4πT
± i

vF q

4πT

]2
= ψ(1/2) +

π

8

(
− iω
T

± ivF q

)
+ 7ζ(3)

[
ω2

16π2T 2
+

v2F q
2

16π2T 2
∓ ωvF q

8π2T 2

]
(6.27)

Then we obtain the equation for the soft mode dispersion (spec-
trum):

ω2
2pF

D−1(qω) = ω2 − ω2
2pF

λ

{
ln

T

Tp0

− iπ

8T
ω +

7ζ(3)

16π2

v2F
T 2
q2

+
7ζ(3)

16π2T 2
ω2

}
= 0 (6.28)

Considering T ∼ Tp0 and introducing characteristic “coherence” length
ξ0(T ):

ξ20(T ) =
7ζ(3)

16π2

v2F
T 2

(6.29)

we rewrite (6.28) in the following form (D. Allender, J. Bray, J. Bardeen,
1974; B. Patton, L. Sham, 1974):

ω2 − ω2
2pF

λ

{
T − Tp0

Tp0

− iπ

8T
ω + ξ20(T )q

2 +
7ζ(3)ω2

16π2T 2

}
= 0 (6.30)

Neglecting damping (as a first approximation), we obtain the dispersion
of the soft mode as:

ω2 ≈ λω2
2pF

{
T − Tp0

Tp0

+ ξ20(T )q
2

}
(6.31)

This demonstrates the qualitative picture described above: for T → Tp0

(in the region of T > Tp0) we observe suppression (softening) of phonon
frequency for k ∼ 2pF , so that at T = Tp0 frequency square at k = 2pF
is zero and becomes negative in the region of T < Tp0 (corresponding
to lattice instability).
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Returning to (6.26), let us write:

D(qωm = 0) = − 1

λ

1
T−Tp0

Tp0
+ 7ζ(3)

16π2

v2
F

T 2
p0
q2

= − 1

λ

1
T−Tp0

Tp0
+ ξ20(Tp0)q2

(6.32)
As noted above in connection with (3.118), (3.119), correlation function
of atomic displacements differs from Green’s function only by sign and
the factor of (ρω2

2pF
)−1 (where ρ is the density of the medium), so that:

C(q) =

∫
dxeiqx < u(x)u(0) >=

Tp0

λρω2
2pF

1
T−Tp0

Tp0
+ ξ20(Tp0)q2

(6.33)

where the factor of T = Tp0 appeared due to “summation” over Mat-
subara frequencies (cf. (3.119)), where we have left only the term with
ωm = 0, which corresponds to high temperatures (most strongly fluc-
tuating contribution, corresponding to classic limit). Shortly speaking,
we write:

C(q) =
A

(T − Tp0) +Bq2
for A =

T 2
p0

λρω2
2pF

, B = Tp0ξ
2
0(Tp0)

(6.34)
Then in coordinate representation we have:

C(x) =

∫ ∞

−∞

dq

2π
C(q)e−iqx =

A

π

∫ ∞

0

dq
cos qx

T − Tp0 +Bq2

=
A

2
√
B(T − Tp0)

exp

{
− |x|
ξ(T )

}
(6.35)

where

ξ2(T ) = ξ20(Tp0)
Tp0

T − Tp0

(6.36)

It is not difficult to understand that we, in fact, obtained just the usual
“mean-field” description of second-order phase transition, taking place
at T = Tp0, and (6.34), (6.35), (6.36) correspond to the picture of non-
interacting fluctuations of atomic displacements at T ∼ Tp0, described
by Ornstein–Zernike correlator [Sadovskii M.V. (2019a)].

The previous discussion illustrates the general microscopic method of inves-
tigation of second-order phase transitions with the help of diagram technique.
First we have to study fluctuations of the order parameter in harmonic (“Gaus-
sian”) approximation. In the case just discussed, the order parameter is, in fact,
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the Fourier component of atomic displacements, corresponding to wave-vector
k = 2pF . If phase transition really happens, there must appear the tempera-
ture, at which the system becomes “soft” enough and static (ωm = 0) correlation
function (in momentum representation) diverges. This condition defines the tran-
sition temperature in “mean field” approach. Then we have to consider long wave
fluctuations of the order parameter and their interactions in the vicinity of critical
temperature. To do this we have to surpass (quadratic) Gaussian approximation.
In the model under discussion we have to take into account “anharmonicities” due
to electron–phonon interaction, e.g. diagrams for free energy with four external
“tails” of order parameter fluctuations (to be considered below). Finally this will
lead to Ginzburg–Landau type of free energy expansion, which is used to study
thermodynamics of the transition. This scheme was already realized above for
superconductivity.

In fact, for one-dimensional systems our analysis is oversimplified. We have
already seen (cf. discussion around (3.128) and (3.132)), that for d = 1 phase
transition (long-range order) of the “mean field” type is impossible. In the fol-
lowing we shall return to discussion of this problem and demonstrate, that in
the temperature region T ∼ Tp0 well developed fluctuations of short-range or-
der appear in the system, while stabilization of the true long-range order takes
place only after we take into account three-dimensional interactions in a system
of one-dimensional atomic chains (i.e. in three-dimensional anisotropic crystal).

Consider now one-dimensional metallic chain with random impu-
rities. In this case polarization operator is determined by diagrams,
shown in Fig. 6.4, and can be written analytically as:

Π(ωmk) = 2T
∑
n

∫
dp

2π
G(εnp)G(εn − ωmp− k)T (εn, ωm, k) (6.37)

where

G(εnξp) =
1

iε̃n − ξp
, ε̃n = εn

[
1 +

1

2τ |εn|

]
,

1

2τ
= πρv2νF

(6.38)
and “triangular” vertex in “ladder” approximation of Fig. 6.4(b) is de-
termined by the equation:

T (εn, εn−m, q) = 1− 1

2πτ

∫ ∞

−∞
dξp

T (εn, εn−m, q)

(ξp − iε̃n)(ξp − vF q + iε̃n−m)
(6.39)

where, as usual, we changed integration over dp to that over dξp, in-
troduced the notation εn−m = εn − ωm and taken into account that
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Fig. 6.4 Polarization operator for impure system (a) and appropriate “triangular” ver-
tex (b).

ρv2νF = 1
2πτ

. Then we immediately obtain:

T −1(εn, εn−m, q) = 1 +
1

τ
θ(εnεn−m)

εn
|εn|

1

ε̃n + ε̃n−m + ivF q
(6.40)

To simplify calculations we assume that impurity lines in the “ladder”
shown in Fig. 6.4(b) do not scatter electrons from one end of the Fermi
line to the other. In general case in (6.40) we have to write symmetrized
sum of terms with ±q.

As a result, polarization operator is written as:5

Π(qωm) = TN(EF )
∑
n

∫
dξp

T (εn, εn−m, q)

(iε̃n − ξp)(iε̃n−m + ξp − vF q)

= −2πTN(EF )
∑
n

θ(εnεn−m)
εn
|εn|

1

ε̃n + ε̃n−m + ivF q

×
{
1 +

1

τ
θ(εnεn−m)

εn
|εn|

1

ε̃n + ε̃n−m + ivF q

}−1

(6.41)

which reduces to:
Π(qωm) = −2πTN(EF )

∑
n

θ[εn(εn−ωm)]
signεn

2εn − ωm + ivF q +
2
τ
signεn
(6.42)

5In contrast to similar calculations in previous Chapters, here it is more convenient to
perform ξp-integration first.
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Further transformations can be done similarly to those done before,
during the transition from (6.13) to (6.22), so that we obtain:

Π(qωm) = −2πTN(EF )
∑
n

1

|2εn − ωm|+ 2
τ
− ivF qsignεn

= −2πTN(EF )
∑
n>0

1

2εn + ωm + 2
τ
− ivF q

−2πTN(EF )
∑
n>0

1

2εn + ωm + 2
τ
+ ivF q

= N(EF ) ln
2γEF

πT
+

1

2
N(EF )

{
ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
− ivF q

4πT

)
− 2ψ

(
1

2

)}
(6.43)

Then we get the following equation for phonon Green’s function:

ω2
2pF

D−1(qωm) = (iωm)
2 − ω2

2pF

{
1− λ ln

2γEF

πT

+
λ

2

[
ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
− ivF q

4πT

)
− 2ψ

(
1

2

)]}
= (iωm)

2 − ω2
2pF

λ

{
ln

T

Tp0

+
1

2

[
ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
+
ivF q

4πT

)
+ ψ

(
1

2
+

ωm

4πT
+

1

2πTτ
− ivF q

4πT

)
− 2ψ

(
1

2

)]}
(6.44)

Then, similarly to (6.23), i.e. from the condition D−1(0, 0) = 0, we
obtain the equation, determining temperature Tp of Peierls transition
in a system with impurities (L.N. Bulaevskii, M.V. Sadovskii, 1974):

ln
Tp

Tp0

+ ψ

(
1

2
+

1

2πTpτ

)
− ψ

(
1

2

)
= 0 (6.45)

which is formally identical to Eq. (5.197), discussed above and deter-
mining the critical temperature of a superconductor with magnetic im-
purities. Thus, normal (nonmagnetic) impurities (disordering) strongly
suppress the temperature of Peierls structural transition.
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6.2 Peierls dielectric

As we already noted, Peierls instability of phonon spectrum leads to
the appearance of spontaneous deformation of the lattice (chain) with
the wave vector Q = 2pF . Let us now consider the description of
“condensed” phase, which exists at temperatures T < Tp0. Hamiltonian
of our system can be written in the following form:

H =
∑
p

ξpa
+
p ap +

∑
l

ωkb
+
k bk +

∑
pk

gka
+
p+kap(bk + b+−k) (6.46)

where we have defined coupling constant as:

gk = g

√
ωk

2
(6.47)

as we are using notations of [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii I.E. (1963)].

Formation of the Peierls superstructure is described by introduction
of the following anomalous average [Bogoliubov N.N. (1991b)], which
breaks translational symmetry of initial lattice:

∆ = g2pF
< b2pF

+ b+−2pF
≯= 0 (6.48)

where angular brackets denote thermodynamic average. Appearance
of such anomalous average can be interpreted as Bose-condensation of
phonons into a state with (quasi) momentum Q = 2pF . In coordinate
representation (6.48) describes potential field of Peierls deformation:

V (x) = ∆ei2pF x +∆∗e−i2pF x = 2|∆| cos(2pFx+ ϕ) (6.49)
where |∆| is the modulus, while ϕ — the phase of appropriate order
parameter: ∆ = |∆|eiϕ.

To find the spectrum of an electron moving in the field defined by
(6.49) we have, in fact, to solve the usual problem of electron motion
in one-dimensional periodic field. This is well known from any course
on solid state theory. Let us show how this can be done within Green’s
functions formalism. For generality, consider electron motion in periodic
field characterized by an arbitrary wave vector Q:

V (x) = ∆eiQx +∆∗e−iQx = 2|∆| cos(Qx+ ϕ) (6.50)
Then, limiting ourselves to first order in V , we can describe everything
by the system of equations for Green’s functions of Gorkov type, shown
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Fig. 6.5 Diagrammatic representation of “Gorkov equations” for an electron moving in
periodic field.

diagrammatically in Fig. 6.5. For T = 0 we can write this system
analytically as:

G(εp) = G0(εp) +G0(εp)∆F (εp) (6.51)

F (εp) = G0(εp−Q)∆∗G(εp) (6.52)

where normal and anomalous Green’s functions (in momentum-
coordinate representation) are defined as:

G(tp) = −i < Tap(t)a
+
p (0) > (6.53)

F (tp) = −i < Tap(t)a
+
p−Q(0) > (6.54)

Anomalous Green’s function F (6.54) describes here an elementary
Umklapp scattering process p−Q→ p, which appears in periodic field
(6.50). The system of equations (6.51), (6.52) is easily rewritten as:

(ε− ξp)G(εp)−∆F (εp) = 1 (6.55)

(ε− ξp−Q)F (εp)−∆∗G(εp) = 0 (6.56)

which gives the following solutions:

G(εp) =
ε− ξp−Q

(ε− ξp)(ε− ξp−Q)− |∆|2
(6.57)

F (εp) =
∆∗

(ε− ξp)(ε− ξp−Q)− |∆|2
(6.58)
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Zero of denominators (pole) is determined here by an equation:

(ε− ξp)(ε− ξp−Q)− |∆|2 = 0 (6.59)

which gives the standard result for the spectrum of “new” quasiparticles:

ε1,2(p) =
1

2
(ξp + ξp−Q)±

√
1

4
(ξp − ξp−Q)2 + |∆|2, ξp =

p2

2m
− µ

(6.60)
i.e. the usual “band” spectrum in “two-wave” approximation [Ziman
J.M. (1972)], which is shown in Fig. 6.6. Naturally, all our analysis is
symmetric with respect to Q→ −Q.

Fig. 6.6 Electron spectrum in periodic potential field, characterized by wave-vector Q
(“two-wave” approximation).

For Q = 2pF Fermi level µ is precisely in the middle of the band gap
of the width 2∆, so that our system is dielectric. For one-dimensional
case free electron spectrum always satisfies “nesting” condition:

ξp−Q = ξp−2pF
= −ξp (6.61)

which is easily seen from Fig. 6.7. Then, the spectrum (6.60) reduces
to BCS-like:

ε1,2(p) = ±
√
ξ2p + |∆|2 (6.62)

and ξp can be taken in a linearized form (close to Fermi level).
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Fig. 6.7 Graphic illustration of validity of “nesting” property for one-dimensional spec-
trum of free electrons: K = Q = 2pF .

Often we have to deal with electronic spectrum in tight-binding approximation
[Ziman J.M. (1972)]. For example, in a model with transfer integral J being
nonzero only for nearest neighbors (in a chain), we have the spectrum:

εp = −2J cos pa, ξp = εp − µ = −2J cos pa (6.63)

where a is lattice constant (distance between nearest atoms in the chain), and the
second equality is valid for half-filled band (one conduction electron per atom),
when pF = π

2a
, and Fermi level is exactly in the middle of the band (EF = 2J , if

the origin of the energy scale is at the “bottom” of the band, but EF = µ = 0,
if it is placed at the Fermi level). In this case Q = 2pF = π

a
, which corresponds

to Peierls transition with period doubling (lattice dimerization). Here we again
have “nesting” condition valid:

ξp−Q = −ξp, εp−π
a
= −εp (6.64)

The form of the spectrum after Peierls transition for this case is shown in Fig. 6.8.
This is a typical example of commensurate Peierls transition, when the period of
Peierls superstructure and initial period of the chain form a rational relation (e.g.
the new period is equal to rational number of initial periods). The case of free
electron spectrum in the chain (Fig. 6.7) is a good model for incommensurate
Peierls transition, when the period of the new superstructure is unrelated to the
period of initial chain (incommensurate with it). In particular, this is due to
Fermi momentum in this case being determined only by electron concentration,
unrelated to the period of initial lattice. In the following we shall deal only with
this last case.

Let us rewrite the system of equations (6.51), (6.52) in Matsubara
technique:

G(εnp) = G0(εnp) +G0(εnp)∆F (εnp) (6.65)
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Fig. 6.8 Electron spectrum in Peierls dielectric in tight-binding approximation, the case
of period doubling.

F (εnp) = G0(εnp−Q)∆∗G(εnp) (6.66)

or (if “nesting” condition is valid):

G(εnp) =
1

iεn − ξp
+

1

iεn − ξp
∆F (εnp) (6.67)

F (εnp) =
1

iεn + ξp
∆∗G(εnp) (6.68)

which may be rewritten also as:

(iεn − ξp)G(εnp)−∆F (εnp) = 1 (6.69)

(iεn + ξp)F (εn)−∆∗G(εnp) = 0 (6.70)

which (almost!) coincides with (5.108) and (5.109). Solution of this
system is:

G(εnp) =
iεn + ξp

(iεn)2 − ξ2p − |∆|2
(6.71)

F (εnp) =
∆∗

(iεn)2 − ξ2p − |∆|2
(6.72)

which again is almost the same as (5.111) and (5.112). There is only
some difference in signs of (5.112) and (6.72).
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As in superconductivity theory, for Peierls dielectric we can introduce matrix
Green’s function:

Ĝ−1(εnp) =

(
iεn + ξp −∆∗

−∆ iεn − ξp

)
(6.73)

or (F− ≡ F )

Ĝ(εnp) =

(
G F−

F+ G̃

)
=

(
G++ G+−

G−+ G−−

)
(6.74)

where notations ± correspond to “ends” of Fermi line (Fermi “points”) (±pF )
and to obvious electron transitions in our system. Often we speak just about ±
(“right” or “left”) electrons. In addition to (6.69) and (6.70) here we also have
the obvious equations:

(iεn + ξp)G̃(εnp)−∆∗F (εnp) = 1 (6.75)

(iεn − ξp)F
+(εn)−∆G̃(εnp) = 0 (6.76)

From (6.71), after analytic continuation iεn → ε+ iδ, we can easily
(similarly to (5.78)) calculate the density of electronic states close to
Fermi level, which takes the same form (5.79) as in BCS theory:

N(ε)

N(EF )
=

{ |ε|√
ε2−|∆2|

for |ε| > |∆|

0 for |ε| < |∆|
(6.77)

Characteristic form of the density of states is shown in Fig. 6.9. Despite
almost complete coincidence of all expressions, obtained here, with those
of BCS theory, from previous discussion it is quite clear that energy gap
|∆| is now of dielectric nature.

Up to now we have done only a first part of our task — we still have
to write down equations for self-consistent determination of ∆, which
was introduced above “by hand”. As ∆ is determined by the anomalous
average (6.48), we shall write down (Matsubara) equations of motion
for operators bQ and b+Q perform Gibbs averaging. With the help of
Hamiltonian (6.46), in a standard way, we get:(

− ∂

∂τ
− ωQ

)
< b±Q(τ) > = −gQ

∑
p

< a+p∓Qap >

= −gQ
∑
p

F∓(pτ = −0) (6.78)
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Fig. 6.9 BCS-like density of electronic states in Peierls insulator.

(
− ∂

∂τ
+ ωQ

)
< b+±Q(τ) > = gQ

∑
p

< a+p±Qap >

= −gQ
∑
p

F±(pτ = −0) (6.79)

From these expressions we see that “phonon” anomalous average (6.48)
are proportional to “electronic” anomalous averages < a+p±Qap >.6
Thus, sometimes it is said that we are dealing here with electron-hole
pairing.

After Fourier transformation over Matsubara “time”, the system of
equations (6.78), (6.79) reduces to:

(iωm − ωQ) < b±Q >ωm
= −gQ

∑
p

∑
n

F∓(pεn) (6.81)

(iωm + ωQ) < b+±Q >ωm
= gQ

∑
p

∑
n

F±(pεn) (6.82)

From these equations we obtain:

< bQ + b+−Q >ωm
= − gQ

ω2
m + ω2

Q

2ωQT
∑
p

∑
n

F−(εnp) (6.83)

6It is clear now that charge density wave (CDW) appears in a system, as its order
parameter is < a+p±Qap >. For the Fourier component of charge density we have (Q =

2pF ):
< ρq >= ρ0δ(q) + ρ1δ(q ±Q), ρ1 ∼

∑
p

< a+p±Qap > (6.80)

which gives < ρ(x) >= ρ0 + ρ1 cos(2pF x+ ϕ).



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 278

278 Diagrammatics

For ωm = 0 (Bose-condensate!) we have:

< bQ + b+−Q >ωm=0= −λωQ

gQ

∫
dξpT

∑
n

F−(εnp) (6.84)

where, as usual, we have changed variables from p to ξp integration and
taken into account definition (6.21). Then, from (6.48) and (6.84) we
get:

∆ = gQ < bQ + b+−Q >ωm=0= − λ

ωQ

∫ EF

−EF

dξpT
∑
n

F−(εnp) (6.85)

where we have introduced the cut-off in divergent integral at energies
of the order of ±EF , similar to frequency summation cut-off discussed
above. Substituting here (6.72) and performing standard calculations,
similar to those made above in case of superconducting transition, we
obtain BCS-type gap equation for ∆:

1 = λ

∫ EF

0

dξ
1√

ξ2 +∆2(T )
th

√
ξ2 +∆2(T )

2T
(6.86)

From this equation it follows immediately, that the temperature of
Peierls transition and the value of the gap at T = 0 are determined
by standard relations:

Tp0 =
2γ

π
EF e

− 1
λ , ∆0 =

π

γ
Tp0 (6.87)

In particular, the value of transition temperature Tp0 naturally coincides
with (6.24), obtained from our analysis of instability of the “normal”
phase.

6.3 Peierls dielectric with impurities

It is instructive to analyze the condensed phase of Peierls insulator
with the account of scattering by non magnetic impurities (disorder).7
Acting in a standard way and in obvious notations, we write down
the system of Gorkov equations with impurity scattering (for the case
7It also gives us an opportunity to perform in detail all calculations, which are prac-

tically the same as dropped above in our discussion of superconductors with magnetic
impurities.
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Fig. 6.10 Gorkov equations for Peierls dielectric with impurity scattering.

of weak disorder, pF l ≫ 1), shown diagrammatically in Fig. 6.10 (cf.
Fig. 5.8 and the following discussion for superconductors):

G(εnp) = G0(εnp) +G0(εnp)Σ(εnpp)G(εnp) +G0(εnp)∆F (εnp)

+G0(εnp)Σ(εnpp−Q)F (εnp) (6.88)

F (εnp) = G0(εnp−Q)Σ(εnp−Qp−Q)F (εnp)

+G0(εnp−Q)∆∗G(εnp)

+G0(εnp−Q)Σ(εnp−Qp)G(εnp) (6.89)

Solution of this system, with the account of “nesting” condition ξp−Q =

−ξp (for Q = 2pF ), has the following form (cf. (5.177), (5.178), (5.179),
(5.180)):

G(εnp) = [iε̃n + ξp]Det
−1 (6.90)

F (εnp) = ∆̃∗Det−1 (6.91)

where

iε̃n = iεn − Σ(εnpp) ≡ iεn − Σn(εn) (6.92)

∆̃n = ∆+Σ(εnp−Qp) ≡ ∆+Σa(εn) (6.93)

Det = (iε̃n)
2 − ξ2p − |∆̃n|2 (6.94)

and, similarly to the case of superconductors, here we also have:

Σn(εn) = ρv2νF

∫ ∞

−∞
dξpG(εnξp) = −Γ

2

iε̃n√
ε̃2n + |∆̃n|2

(6.95)
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Σa(εn) = ρv2νF

∫ ∞

−∞
dξpF (εnξp) = −Γ

2

∆̃n√
ε̃2n + |∆̃n|2

(6.96)

where Γ = 1
τ
= 2πρv2νF . Then from (6.92)–(6.96) we have:

iε̃n = iεn +
Γ

2

iε̃n√
ε̃2n + |∆̃n|2

(6.97)

∆̃n = ∆n − Γ

2

∆̃n√
ε̃2n + |∆̃n|2

(6.98)

Note the opposite signs in (6.97) and (6.98), making this result different
from (5.182), (5.183), (5.185) and similar to (5.192), (5.193) (the case
of magnetic impurities in superconductors). This follows directly from
difference between (6.71), (6.72) and (5.111), (5.112), already noted
above.

Introducing

un =
ε̃n

∆̃n

(6.99)

from (6.97) and (6.98) we find:

εn
∆

= un

{
1− Γ

∆

1√
u2
n + 1

}
(6.100)

This equation determines un as a function of εn/∆ and Γ/∆. Knowing
un, we can find:

ε̃n = εn +
1

2
Γ

un√
u2
n + 1

(6.101)

∆̃n = ∆+
1

2
Γ

1√
u2
n + 1

(6.102)

Similarly to (6.85), order parameter (gap function) ∆ is determined now
by the equation:

∆ = −λT
∑
n

∫
dξpF

+(εnξp) (6.103)
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or

1 = −λT
∑
n

∫
dξp

∆̃n

∆

(iεn)2 − ξ2p − |∆̃n|2
(6.104)

We deliberately drop limits of integration here! Let us now subtract
in both r.h.s. and l.h.s. of this equation an expression, standing in the
r.h.s. for ∆ → 0 and in the absence of impurities. Then we obtain:

1 + λT
∑
n

∫ ∞

−∞
dξp

1

(iεn)2 − ξ2p

= −λT
∑
n

∫ ∞

−∞
dξp

{
∆̃n

∆

(iεn)2 − ξ2p − |∆̃n|2
− 1

(iεn)2 − ξ2p

}
(6.105)

Now we can take infinite limits of integration, due to fast convergence
of all integrals!

Performing elementary integrations, we get:

1− λT
∑
n

π

|εn|
= 1− λ ln

2γEF

πT
= λ ln

Tp0

T

= −λT
∑
n

 ∆̃n

∆√
ε̃2n + |∆̃n|2

− 1

|εn|

 (6.106)

where in the sum over n in l.h.s. we introduced cut-off at |εn| ∼ EF , as
was done before in (6.16), while in r.h.s. we can sum over all n up to
infinity. As a result, using (6.99), we immediately obtain:

ln
Tp0

T
= πT

∑
n

{
1

|εn|
− ∆−1√

1 + u2
n

}
(6.107)

where un is determined from Eq. (6.100). For ∆ → 0, from (6.100) we
have:

un∆ → εn + Γ
εn
|εn|

(6.108)

so that

un = ∆−1(εn + Γsignεn) (6.109)

Then √
1 + u2

n → |un| =
1

∆
[|εn|+ Γ] (6.110)
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and from (6.107) we obtain the following equation for transition tem-
perature:

ln
Tp0

Tp

= 2πTp

∑
n≥0

{
1

εn
− 1

εn + Γ

}
(6.111)

which, with the use of (6.19), reduce again to already known to us
Eqs. (5.197), (6.45):

ln
Tp0

Tp

= ψ

(
1

2
+

Γ

2πTp

)
− ψ

(
1

2

)
(6.112)

For small Γ, similarly to (5.200), we have:

Tp ≈ Tp0 −
π

4
Γ = Tp0 −

π

4τ
(6.113)

For the critical disorder Γc, at which Tp vanishes, we obtain:

Γc =
1

τc
=

π

2γ
Tp0 =

∆00

2
(6.114)

where ∆00 denotes the gap at T = 0 and in the absence of impurities
(6.87).

Consider now the case of T = 0. Introduce notations:

∆0 = ∆(T = 0; Γ), ∆00 = ∆(T = 0; Γ = 0) (6.115)

For T → 0 in equations, discussed above, we have to make the obvious
change: T

∑
n ...→

∫
dε
2π
.... In particular, Eq. (6.104) reduces to:

1 = −λ
∫
dε

2π

∫
dξp

∆̃ε

∆

ε̃2ε − ξ2p − |∆̃ε|2
(6.116)

where ε̃ε and ∆̃ε are determined by analytic continuation of (6.97)–
(6.107):

ε̃ε = ε+
Γ

2

u√
1− u2

(6.117)

∆̃ε = ∆0 −
Γ

2

1√
1− u2

(6.118)

ε

∆0

= u

{
1− Γ

∆

1√
1− u2

}
(6.119)
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Subtracting from both r.h.s. and l.h.s. of (6.116) an expression, standing
at the r.h.s., but taken with ∆̃ε → ∆0 and ε̃ → ε, we obtain (taking
infinite integration limits in fast converging integrals):

1 + λ

∫ ∞

0

dξp√
ξ2p +∆2

0

= 1 + λ ln
2EF

∆0

= −λ ln ∆00

∆0

= −λ
∫ ∞

−∞

dε

2π

∫ ∞

−∞

{
∆̃ε

∆0

ε̃2 − ξ2p − ∆̃2
ε

− 1

ε2 − ξ2p −∆2
0

}

=
λ

2

∫ ∞

−∞
dε


∆̃ε

∆0√
∆̃2

ε − ε̃2
− 1√

∆2
0 − ε2

 (6.120)

so that for the gap function at T = 0 we have the following equation:

ln
∆0

∆00

=

∫ ∞

0

dε

{
∆−1

0√
1− u2

− 1√
∆2

0 − ε2

}

=

∫ ∞

0

dx

{
1√

1− u2(x)
− 1√

1− x2

}
(6.121)

In the first integral in (6.121) we change integration over x to that over
u, which is defined in (6.119). Then, taking into account x = ∞ ↔
u∞ = ∞, x = 0 ↔ u0 = 0 for Γ

∆0
≤ 1, and x = 0 ↔ u0 =

√
Γ2

∆2
0
− 1

from Γ
∆0

> 1, after calculating elementary integrals, we get:

ln
∆0

∆00

=

−π
4

Γ
∆0
, Γ

∆0
≤ 1

− 1
2
arctg

(
Γ2

∆2
0

)−1/2

+ ∆0

Γ

(
Γ2

∆2
0

)1/2
− ln

[
Γ
∆0

+
(

Γ2

∆2
0

)1/2]
, Γ
∆0

≥ 1

(6.122)
Then, it follows that ∆ = 0 for Γ > Γc = ∆00/2 = πTp0/2γ (cf.
(6.114)).

Electronic density of states is given by:
N(ε)

N(EF )
= − 1

π

∫ ∞

−∞
dξpIm

ε̃ε + ξp

ε̃2ε − ξ2p − ∆̃2
ε

= Im
ε̃ε√

∆̃2
ε − ε̃2ε

= Im
u√

1− u2
(6.123)
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where u = u
(

ε
∆0
, Γ
∆0

)
is determined from (6.119). It is clear that

density of states (6.123) is nonzero for |u| > 1. Energy gap in the
spectrum is defined as the region of ε, where (6.123) is equal to zero.
Then, from (6.123) it can be seen, that half-width of the gap is defined
as Maxε = εg, for which (6.119) still has a real solution for u

(
ε
∆0

)
with |u| < 1. Thus defined value of εg depends on the ratio Γ

∆0
. For

Γ = 0 we obviously have εg = ∆00. Maximizing the r.h.s. of (6.119),
we find ug

(
Γ
∆0

)
= u

(
Γ
∆0
, εg
∆0

)
:

Max u

[
1− Γ

∆0

1√
1− u2

]
≡MaxF(u) =Max

ε

∆0

=
εg
∆0

(6.124)

From F ′(ug) = 0 we obtain:

1− Γ

∆0

1√
1− u2

g

−
u2
g

(1− ug)3/2
Γ

∆0

= 0 (6.125)

so that

(1− u2
g)

3/2 =
Γ

∆0

, u2
g < 1 (6.126)

and:

ug =

√
1−

(
Γ

∆0

)2/3

(6.127)

Substituting (6.127) into (6.119), we find finally:

εg = ∆0

{
1−

(
Γ

∆0

)2/3
}3/2

(6.128)

Thus we have εg = 0 for Γ
∆0

≥ 1, when density of states becomes
“gapless”, despite the fact that order parameter ∆0 ̸= 0. Appropriate
region of parameters (at T = 0) is determined by an inequality:

∆0 ≤ Γ ≤ ∆00

2
(6.129)

For Γ = ∆0 from (6.122) it follows that ∆0 = exp
(
−π

4

)
∆00, so that

appropriate Γ = 2 exp
(
−π

4

)
Γc ≈ 0.91Γc, which defines rather narrow

gapless region on the phase diagram.8
8All the results obtained here are directly related also to the problem of magnetic

impurities in superconductors, discussed in the previous Chapter. Historically, first these
were obtained during the analysis of precisely this problem of superconductivity theory
(A.A. Abrikosov, L.P. Gorkov, 1960).
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6.4 Ginzburg–Landau expansion for Peierls transition

For temperatures T > Tp0 we can expand free-energy of the system,
undergoing Peierls transition, in powers of the order-parameter:

∆Q = gQ < bQ + b+Q >, Q ∼ 2pF (6.130)
which is quite similar to GL-expansion in superconductors.

From the very beginning, we shall work in static approximation, tak-
ing ωm = 0. Our aim is to obtain microscopic derivation of coefficients
in an expansion for the difference of free-energies of “condensed” and
“normal” phases, which is written as:

F (∆Q; T )− F (0; T ) = a(Q)|∆Q|2 + b|∆Q|4 + · · · (6.131)
The form of expansion (6.131) directly follows from general Landau
theory of second order phase transitions [Sadovskii M.V. (2019a)].

Contributions due to (6.130) appear from the phonon part of Hamil-
tonian (6.46):

Hph =
∑
Q

ωQb
+
QbQ (6.132)

and its electron–phonon interaction part:
Hint =

∑
pQ

∆Qa
+
p+Qap (6.133)

Restricting ourselves to a contribution of a single mode with fixed Q,
we have:

< Hph >= ωQ < b+QbQ + b+−Qb−Q >= ωQ

|∆Q|2

2g2Q
=
N(EF )

λ
|∆Q|2

(6.134)
Then, using the standard loop expansion of free-energy [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)] in powers of Hint, we imme-
diately obtain an expansion shown in Fig. 6.11. It is clear that dia-
gram shown in Fig. 6.11(a) defines the term a(Q)|∆Q|2, while that of
Fig. 6.11(b) gives b|∆Q|4. During the calculations we have to remember
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)], that contri-
bution of diagram in Fig. 6.11(a) has to be multiplied by an extra factor
of 1/2, and that of Fig. 6.11(b) by 1/4 accordingly. Besides, during cal-
culation of the loops, we have to take into account contributions of both
Fermi “points”, giving an extra factor of 2.
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Fig. 6.11 Diagrammatic representation of Ginzburg–Landau expansion for Peierls tran-
sition.

In fact, all calculations, leading to a(Q)|∆|2-contribution, were al-
ready performed in (6.10)–(6.32). Thus we can immediately write (tak-
ing into account Q = 2pF + q, ωm = 0 and ξp−2pF

= −ξp):

1

2
[Fig. 6.11(a)] = −T

∑
n

∫
dp

2π
G0(εnξp)G0(εn, −ξp + vF q)

= N(EF )

{
− ln

2γEF

πT
+

1

2

[
ψ

(
1

2
+
ivF q

4πT

)
+ψ

(
1

2
− ivF q

4πT

)
− 2ψ

(
1

2

)]}
(6.135)

Then we have:

a(q) = N(EF )

{
1

λ
− ln

2γEF

πT
+

1

2

[
ψ

(
1

2
+
ivF q

4πT

)
+ ψ

(
1

2
− ivF q

4πT

)
−2ψ

(
1

2

)]}
(6.136)
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During calculations of b-coefficient, we neglect its dependence on q, so
that we have:

b =
1

4
[Fig. 6.11(b)] = 1

2
T
∑
n

∫
dp

2π
G2

0(εnξp)G
2
0(εn, −ξp) (6.137)

or
b =

1

2
TN(EF )

∫
dξp
2πi

2πi
∑
n

1

(iεn − ξp)2
1

(iεn + ξp)2

= −TN(EF )2πi
∑
n

signεn
(2iεn)3

=
N(EF )

16π2T 2

∞∑
n=0

1

(n+ 1/2)3

=
7ζ(3)

16π2T 2
N(EF ) (6.138)

Let us return to the analysis of a(q), defined by (6.136). Making ex-
pansion in powers of q (as during the derivation of (6.28)), we obtain:
a(q)

= N(EF )

{
ln

T

Tp0

+
1

2
ψ

(
1

2
+
ivF q

4πT

)
+

1

2
ψ

(
1

2
− ivF q

4πT

)
− ψ

(
1

2

)}
≈ N(EF )

{
T − Tp0

Tp0

+
7ζ(3)

16π2T 2
v2F q

2

}
= N(EF )

{
T − Tp0

Tp0

+ ξ20(T )q
2

}
(6.139)

where we used also (6.29), defining the “coherence length”.
Finally, Ginzburg–Landau expansion for Peierls transition is written

as:
F (∆Q; T )− F (0; T ) = N(EF )

T − Tp0

Tp0

|∆Q|2

+N(EF )ξ
2
0(Tp0)|∆Q|2(Q− 2pF )

2 +
7ζ(3)

16π2T 2
N(EF )|∆Q|4 (6.140)

By the way, from this expression it is clear that correlation length, in-
troduced above in (6.36), is in fact the correlation length of fluctuations
of the order-parameter at T ∼ Tp0 in Gaussian approximation.

In the presence of random impurities, all calculation for a(q) are quite similar
to those done during the derivation of (6.43) (it is sufficient to consider only the
case of ωm = 0). As a result, we get:

a(q) = N(EF )

{
ln

T

Tp0
+

1

2
ψ

(
1

2
+

1

2πTτ
+
ivF q

4πT

)
+
1

2
ψ

(
1

2
+

1

2πTτ
− ivF q

4πT

)
− ψ

(
1

2

)}
(6.141)
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For vF q ≪ 4πT we have:

a(q) ≈ N(EF )

{
T − Tp

Tp
+

B

16π2T 2
v2F q

2

}
(6.142)

where Tp is determined by the well known equation (6.45)

ln
Tp

Tp0
+ ψ

(
1

2
+

1

2πTpτ

)
− ψ

(
1

2

)
= 0 (6.143)

The constant B in (6.142) is determined as:

B =
∞∑

n=0

1(
n+ 1

2
+ 1

2πTτ

)3 = −1

2
ψ(2)

(
1

2
+

1

2πTτ

)
(6.144)

Accordingly, in the impure case we have the following asymptotic expressions for
“coherence length”:

ξ20(T ) = − v2F
32π2T 2

ψ(2)

(
1

2
+

1

2πTτ

)
≈

{
7ζ(3)v2

F
16π2T2 for 1

τ
≪ 4πT

v2F τ
2 for 1

τ
≫ 4πT

(6.145)

Naturally, we everywhere assume that τ > τc = γ
πTp0

= 2∆−1
00 . As to GL-

coefficient b in the system with impurities, its calculation is to cumbersome and
we drop it.

6.5 Charge and spin density waves in multi-dimensional
systems. Excitonic insulator

A natural question may arise — why are we dealing in so much
details with Peierls transition? We analyzed the one-dimensional
problem, and we actually learned above that long-range order (phase
transition) is, strictly speaking, broken by fluctuations and impossible
in such a system. In this sense, our approach, based on mean-field
description of this phase transition seems to be unjustified. However,
in reality, Peierls transition is experimentally observed in a number of
quasi-one-dimensional systems, where even small interaction of elec-
trons (or order parameters) on neighboring “chains” of atoms (effects
of three-dimensionality) leads to stabilization of this transition.9

What is more important for us at the moment, is the fact, that
theoretical scheme, described in detail above, is almost completely valid
9Discussion of some early experiments and theoretical studies can be found in a nice

review paper by L.N. Bulaevskii, Physics Uspekhi 115, 263 (1975).
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for the description of structural and magnetic phase transitions in two-
dimensional and three-dimensional systems, possessing the “nesting”
property of an energy spectrum (Fermi surface, or parts of it) [Khomskii
D.I. (2010)]. Similar description is also applicable to a model of so-called
“excitonic insulator” — one of the basic models in the theory of metal–
insulator transitions. The thing is, that in the case, when electronic
spectrum ε(p) satisfies “nesting” condition:

ε(p+Q) = −ε(p) (6.146)

where Q is some (nesting) vector in reciprocal space, response functions
of appropriate multi-dimensional system (i.e. polarization operator, loop
diagram, etc.) are described by practically the same expressions, as in
one-dimensional case. Accordingly, such systems become unstable to
formation of charge density (CDW) waves (deformation of the lattice)
with wave-vector Q, if electron–phonon interaction is a dominating one.
If dominating interaction is electron–electron one (repulsion), as a rule,
in such systems the similar instability occurs in “spin-channel”, leading
to the formation of spin-density wave (SDW).

Condition (6.146) is valid on the whole Fermi surface, for example,
in the case of tight-binding spectrum with transfer integral J , different
from zero only between nearest neighbors in the square lattice:

ε(p) = −2J(cos pxa+ cos pya) (6.147)

Eq. (6.146) in this case is satisfied for Q = (π/a, π/a) (a is lattice
spacing), and the Fermi surface, for the case of half-filled band (one
conduction electron per atom), is just a square, shown in Fig. 6.12(a).
We see that after the “translation” by vector Q the opposing sides of this
Fermi surface just coincide, which leads to the appearance of logarithmic
singularities of “one-dimensional” type in response functions, and Fermi
surface becomes completely “closed” by dielectric gap.

Another possibility is that after the translation by vector Q only
finite parts (“patches”) of the Fermi surface coincide, as it is shown
in Fig. 6.12(b). Then the energy spectrum can also become unstable,
but dielectric gap is “opened” only on these parts of the Fermi surface,
while the remaining parts remain “metallic”. Such situation is realized
in some “layered”-compounds of transition metals (e.g. NbSe2, TaS2

etc.) [White R.M., Geballe T.H. (1979)]. In some of these systems (e.g.



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 290

290 Diagrammatics

Fig. 6.12 “Nesting” property of Fermi surface in two-dimensional system: (a) half-filled
band in tight-binding approximation with Q = (π/a, π/a), (b) general case.

in T − TaS2) we observe almost complete metal–insulator transition
(due to strong “nesting”), so that the energy gap almost completely
“closes” the Fermi surface. In other systems (e.g. in H−NbSe2) Fermi
surface is only partially “closed”, so that the system remains metallic
due to “open” parts. However, CDW transition is signalled in anomalies
of temperature dependence of resistivity, and in some thermodynamic
characteristics (e.g. in specific heat).

Similar in many respects is a remarkable model of “excitonic insula-
tor” (L.V. Keldysh, Yu.V. Kopaev, 1964). This model is based on the
model of electronic spectrum, shown in Fig. 6.13. Here we have over-
lapping bands of electron and holes. Such a band structure (with small
band overlap) is typical for so-called semi-metals. From Fig. 6.13 it is
seen that in both cases, shown as (a) and (b), Fermi surface consists
of electron and hole “pockets” and we have “nesting” condition of the
following form:

ε1(p) = −ε2(p) for spectrum (a) (6.148)
ε1(p) = −ε2(p+Q) for spectrum (b) (6.149)

Thus, we have instability of the spectrum at zero wave-vector in
case (a), or at finite vector Q in case (b), which is due to forma-
tion of electron-hole pairs, induced by natural attraction of electrons
and holes (as for the usual Wannier–Mott excitons), and their “Bose-
condensation”(sometimes it is called Bose-condensation of “excitons”).
Qualitatively, situation here is very similar to Cooper pairing in super-
conductors, the major difference, of course, is that electron-hole pairs
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are electrically neutral (non charged), but in the spectrum we again ob-
tain an energy gap at the Fermi level, which is formed due to this phase
transition, as it is shown (for case (a)) in Fig. 6.14. As a result, the
system becomes “excitonic” insulator. In the case of instability at the
finite wave-vector Q, determined by band structure of the type shown
in Fig. 6.13(b), a charge density wave (CDW) or a spin density wave
(SDW) forms in a system.

Fig. 6.13 Electronic spectrum of initial semi-metal in the model of an excitonic insu-
lator: (a) directly overlapping bands, (b) indirect overlap with extrema of electron and
hole bands at different points of the Brillouin zone, connected by vector Q.

Fig. 6.14 Electronic spectrum of excitonic insulator in the model with direct overlap of
electron and hole bands.
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Mathematical analysis of this model is very similar to that of BCS
and even more to our analysis of Peierls transition. Thus, we limit
ourselves to only schematic discussion.10 For definiteness, let us discuss
the case of the spectrum, shown in Fig. 6.13(a), when both spectra of
electrons and holes are very simple:

ε1,2(p) = ±
(

p2

2m1,2

− p2F
2m1,2

)
(6.150)

Excitonic instability is determined (similarly to Cooper instability)
by the sum of ladder diagrams in particle-hole channel, shown in
Fig. 6.15(a). All calculations are practically the same as those done
during the derivation of (5.15)–(5.17), and we obtain the vertex, defined
by integral equation of Fig. 6.15(b), expression analogous to (5.17):

Γ(q = 0, ω) =
λ

1 + λ
(
ln
∣∣ 2ωc

ω

∣∣− iπ
2

) (6.151)

Fig. 6.15 Vertex part describing “excitonic” instability: (a) ladder approximation for
particle-hole interaction, (b) integral equation for vertex-part.

Here ωc ∼ EF is the cut-off frequency for logarithmic divergence, q
and ω are sums of momenta and energies of e− h pair. Dimensionless
10Detailed analysis of excitonic instability can be found in a review paper by
Yu.V. Kopaev, P.N. Lebedev, Physical Institute Proceedings 86, 3 (1975) and in
[Ginzburg V.L., Kirzhnits D.A. (1982)].
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coupling constant λ < 0 (attraction!). For the case of screened Coulomb
e− h-interaction, it can be shown that:

λ =
me2

2πpF
ln
κ2
D

2p2F
(6.152)

Attraction in particle-hole channel leads to the appearance of the pole
of (6.151) at imaginary frequency ω = iΩ, where (cf. (5.19)):

Ω = 2ωce
− 1

|λ| (6.153)
indicating instability of the system towards pairing of electrons and
holes (i.e. formation of “excitons”) from different bands, close to over-
lapping e and h Fermi surfaces.

To find the excitation spectrum in “condensed” phase, we have to
act as in BCS theory, or in the case of Peierls transition. Let us write
down an interaction Hamiltonian for particles from different bands as:

Hint =
∑
ppq′

V (q)a+1σ(p+ q)a+2σ′(p′ − q)a2σ′(p′)a1σ(p) (6.154)

where we have explicitly written band and spin indices. Separating
“most highly divergent” contributions to the scattering amplitude (ver-
tex part), corresponding to scattering of electrons from band 1 on holes
from band 2, we can transform this Hamiltonian to quadratic form,
introducing appropriate anomalous averages:

Hint ∼ a+1σ(p
′)a+2σ′(p)a2σ′(p′)a1σ(p)

→ < a+2σ′(p)a1σ(p) > a+1σ(p
′)a2σ′(p′) (6.155)

Then it can be diagonalized by Bogoliubov u− v transformation, simi-
larly to the case of BCS theory [Sadovskii M.V. (2019a)]. But instead,
we can also write down appropriate Gorkov equations for Green’s func-
tions for both bands G1(εp) and G2(εp), introducing again anomalous
Green’s functions F and F+, “mixing” particles from different bands:

F (r1t1; r2t2) = −i < Tψ2(r2t2)ψ
+
1 (r1t1) > (6.156)

F+(r1t1; r2t2) = −i < Tψ1(r1t1)ψ
+
2 (r2t2) > (6.157)

Then we can write down equations of motion, e.g. for G1, and leave in
the “r.h.s.” only contributions of the type of (6.155). Similarly we can
deal with F . Finally, we obtain Gorkov equations:

(ε− ε1(p))G1(εp)−∆F (εp) = 1 (6.158)
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(ε− ε2(p))F (εp)−∆∗G1(εp) = 0 (6.159)

where

∆(p) = i

∫
dp′dε

(2π)4
V (p− p′)F (p′ε) (6.160)

Solution of Eqs. (6.158), (6.159) is:

G1(εp) =
ε− ε2(p)

ε2 − (ε1(p) + ε2(p))ε+ ε1(p)ε2(p)− |∆(p)|2
(6.161)

F (εp) =
∆∗(p)

ε2 − (ε1(p) + ε2(p))ε+ ε1(p)ε2(p)− |∆(p)|2
(6.162)

and we immediately obtain excitation spectrum:

E1,2(p) =
1

2
[ε1(p) + ε2(p)]±

√
1

4
[ε1(p)− ε2(p)]2 + |∆(p)|2 (6.163)

Solution of the gap equation gives (as in BCS theory) ∆ = Ω, where Ω

is defined in (6.153).
Thus we obtain insulating spectrum, shown in Fig. 6.14, and mech-

anism of its formation, introduced above, is considered as one of most
important mechanisms of metal–insulator transitions. What are the ba-
sic properties of excitonic insulator? Naively, we have direct analogy
with BCS superconductor — a Bose condensate of neutral electron-hole
pairs forms in the ground state. So it was thought initially that such
an insulator may possess anomalous properties due to possible super-
fluidity of e − h pairs (which may signal itself e.g. in “super thermal
conduction”). However, special studies has shown, that apparently no
“superfluidity” is realized in this model, and we are dealing with more
or less “usual” insulator. Unfortunately, experimentally, the state of
excitonic insulator is observed in rather rare cases. This is apparently
due to the fact, that exact “nesting” properties of the type of (6.148),
(6.149), with complete matching of electron and hole Fermi surfaces,
are difficult to obtain (in three-dimensional systems), while deviations
from these conditions suppress excitonic instability. Besides, similarly
to the case of Peierls transition, normal impurities (disorder) also de-
stroy excitonic phase. However, excitonic instability is considered as a
microscopic reason for the formation of different types of charge and
spin ordering in a number of real systems.
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Up to now we considered attractive interaction. However, even in
the case of repulsive interaction, systems with “nesting” properties of
Fermi surfaces may acquire instabilities in “spin channel”, leading not to
CDW, but to SDW transition (A.W. Overhauser, 1965). To understand
this, let us return to Eqs. (2.14), (2.15) for magnetic susceptibility in a
system with Hubbard interaction:

χ(qω) =
χ0(qω)

1 + UΠ0(qω)
=

χ0(qω)

1− 4U
g2µ2

B
χ0(qω)

(6.164)

Let us remind that, in accordance with our definitions Π0(q0) < 0, and
due to g = 2 we can write χ0 = −µ2

BΠ0.
In one-dimensional, and also in higher-dimensional systems with

“nesting”, magnetic susceptibility χ0 ∼ Π0(q) possesses logarithmic
singularity at q = Q, where Q is vector of “nesting”. Accordingly, in
case of repulsion (U > 0), total susceptibility (6.164) has a pole (diver-
gence), of the same type as in charge channel (dielectric permeability,
charge response function) in case of attraction (excitonic instability).
In this case, instability signals a tendency to magnetic ordering — for-
mation of SDW with the wave vector Q. Instability appears again even
for the case of arbitrarily weak repulsion U . Of course, in case of in-
complete “nesting” (or even in its absence) this instability may require
strong enough repulsion, so that we satisfy inequality:

U |Π0(Q, 0)| > 1 (6.165)
This condition also applies to the theory of itinerant ferromagnetism,
when Q = 0. Then we have Π0(q → 0, 0) = −N(EF ), so that (6.165)
reduces to:

UN(EF ) > 1 (6.166)
giving the well known Stoner criterion of ferromagnetic instability.

Formal analysis here is again similar to that used in our discussion of
Peierls transition. For simplicity, let us again consider one-dimensional
case and Hubbard interaction U

∑
i ni↑ni↓. In momentum represen-

tation Hubbard Hamiltonian can be written as (L is the length of a
system):

H =
∑
kσ

(εk − µ)a+kσakσ +
U

L

∑
kk′q

a+k↑ak+q↑a
+
k′↓ak′−q↓ (6.167)
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Spin density at the point x is defined as:

Sz(x) =
1

2
[c+↑ (x)c↑(x)− c+↓ (x)c↓(x)]

=
1

2L

∑
kk′

[c+k↑ck′↑ − c+k↓ck′↓]e
−i(k−k′)x (6.168)

As susceptibility (6.164) is divergent (in this case at q = 2pF ), let us
leave in (6.168) only terms with k − k′ = ±2pF . Then we have:11

Sz(x) =
1

2L

∑
k

[< c+k↑ck+2pF ↑ > − < c+k↓ck+2pF ↓ >]e
i2pF x + c.c.

(6.169)
Defining:

< S >= |S|eiϕ =
1

L

∑
k

[< c+k↑ck+2pF ↑ > − < c+k↓ck+2pF ↓ >] (6.170)

and introducing appropriate anomalous averages into Hamiltonian
(6.167) (with only terms with q = ±2pF left), we obtain:

H =
∑
kσ

{εka+kσakσ + (∆a+k+2pFσakσ + h.c.)} (6.171)

where (N is the number of atoms in our chain)

∆ =
U

N
< Sz >=

U

N

1

2
Re(< S > ei2pF x) =

U

N
|S| cos(2pFx+ ϕ)

(6.172)
All these relations are quite similar to Eqs. (6.46)–(6.50), and the struc-
ture of solutions is absolutely clear. In particular, electronic spectrum
in such system takes the form:

Ek = µ±
√
(εk − µ)2 + |∆|2 (6.173)

and is the same as shown in Fig. 6.6.
Magnetic structure (SDW), appearing in the system, can be rep-

resented by two static waves of electrons with spins ↑ and ↓, being
in antiphase, so that charge density remains homogeneous, while spin
density oscillates with period 2π/2pF (order parameter (6.172)). This
is called sinusoidal SDW. In principle, another types of solutions are
11Term with k′ = k− 2pF becomes complex conjugate to the first term in (6.169), after
the change of summation index k → k + 2pF .
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possible, e.g. so-called helicoidal SDW, where the modulus of spin re-
mains constant along the chain direction, while its direction rotates in
orthogonal plane, as shown in Fig. 6.16:

< Sx >= |S| cos(2pFx+ϕ), < Sy >= |S| sin(2pFx+ϕ) (6.174)

Usually, such structure has slightly lower energy.

Fig. 6.16 “Helicoidal” spin density wave.

Of course, thermodynamics of these transitions can also be analyzed
in a standard way. In mean-field we obtain critical temperature, at
which SDW vanishes and the gap in electronic spectrum disappears.
Appropriate expressions are very similar to those obtained in BCS the-
ory, or in the theory of Peierls transition. In particular, for transition
temperature we usually obtain something similar to (6.24), with dimen-
sionless coupling constant λ = UN(EF ).

Analogous treatment can be used for higher-dimensional systems
with “nesting”. Experimentally SDW of this type were observed in a
number of quasi-one-dimensional organic compounds. But probably
most notorious is SDW transition in chromium. Magnetism of Cr is
explained by this type of a model (or more precisely, in its two-band
analogue, of the type of excitonic insulator), as in Cr we have the Fermi
surface consisting of electron and hole “pockets”, possessing “nesting”
property.

Another useful model (with possible practical applications) deals
with two-dimensional electrons on a square lattice in a tight-binding ap-
proximation (6.147), with only nearest neighbor transfers. We already
noted that in case of half-filled band, Fermi surface of such system is
represented by the square, shown in Fig. 6.12(a), so that we have com-
plete “nesting” with vector Q = (π/a, π/a). Accordingly, in the case
of repulsion we shall obtain here SDW with Q = (π/a, π/a), which
will “close” the whole Fermi surface by the energy gap ∆, so that the
system will become dielectric. At the same time, it is easy to under-
stand that SDW with such wave vector corresponds to the “usual” (two
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sublattice) antiferromagnet (with “checkerboard” ordering of oppositely
directed spins on the square lattice). One example of such a system is
well known, that is the insulating state of La2CuO4, where spins of
Cu order precisely in the same way in CuO2 plane. This system is
especially interesting as small doping by holes makes it a typical high-
temperature superconductor. Thus, the models of the type discussed
above, may be of use here.

6.6 Pseudogap

6.6.1 Fluctuations of Peierls short-range order

Return again to one-dimensional system with Peierls CDW. As we noted
several times before, in purely one-dimensional case long-range order (at
finite temperatures) is impossible. So let us discuss qualitatively, what
happens in the temperature region T < Tp0, if we take into account
fluctuations, destroying long-range order. Write down one-dimensional
GL-expansion (6.140) as:

F (∆Q; T )−F (0; T ) = a(T )|∆Q|2+c(T )(Q−2pF )
2|∆Q|2+b(T )|∆Q|4

(6.175)
where coefficients a(T ), c(T ) are:

a(T ) = N(EF )
T − Tp0

Tp0

, Tp0 =
2γ

π
EF e

− 1
λ (6.176)

c(T ) = N(EF )ξ
2
0(T ), ξ20(T ) =

7ζ(3)v2F
16π2T 2

(6.177)

while for coefficient b(T ) we can write the following interpolation for-
mula (P.A. Lee, T.M. Rice, P.W. Anderson, 1973):

b(T ) =

{
b0 + (b1 − b0)

T

Tp0

}
N(EF )

T 2
p0

, b0 =
γ2

2π2
, b1 =

7ζ(3)

16π2

(6.178)
Then, GL-expansion (6.175), which was formally obtained for the re-
gion of T ∼ Tp0, can be applied also for qualitative analysis of low-
temperature region. In particular, for T → 0 we get:

F (∆ ∼ ∆0) ≈ −1

2
N(EF )∆

2
0 + 2N(EF )(|∆| −∆0)

2 + · · · (6.179)
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where ∆0 =
π
γ
Tp0 = 2EF e

− 1
λ coincides with the gap function at T = 0,

obtained in mean-field approximation. For the temperature dependence
of the order parameter, in a standard way [Sadovskii M.V. (2019a)] we
obtain:

∆(T ) =


0 for T > Tp0(
− a

2b

)1/2
=
(

N(EF )

2b

)1/2 (
Tp0−T

Tp0

)1/2
for T ≤ Tp0

∆0 =
π
γ
Tp0 for T ≪ Tp0

(6.180)
Thus, GL-expansion (6.175)–(6.178) qualitatively reproduces results of
mean-field approximation (microscopic theory) in the whole tempera-
ture interval. But this approximation, as is well known, does not take
into account fluctuations of the order-parameter, which, in fact, just
destroy long-range order in one-dimensional systems.

In principle, fluctuations of the order parameter {∆Q} may be ar-
bitrary. However, the probability of a given fluctuation ∆Q is given by
[Sadovskii M.V. (2019a)]:

P(∆Q) ∼ exp

{
− 1

T
[F (∆Q, T )− F (0, T )]

}
(6.181)

Then, the statistical sum over all fluctuations is described by the func-
tional integral [Sadovskii M.V. (2019b)] of the following form:

Z =

∫
{δ∆Q} exp

{
− 1

T
[F (∆Q, T )− F (0, T )]

}
(6.182)

Accordingly, the free energy of the system as a whole is given by F =

−T lnZ.
One-dimensional model of GL type (6.175) allows practically exact

treatment (D.J. Scalapino, M. Sears, R.A. Ferrell, 1972). We shall
not deal with this problem, but only quote most important qualitative
results. The absence of long-range order is equivalent to vanishing value
of thermodynamic average of the order-parameter:

< ∆Q >=
1

Z

∫
{δ∆Q}∆Q exp

{
− 1

T
[F (∆Q, T )− F (0, T )]

}
= 0

(6.183)
However, mean-square fluctuation of the order parameter is obviously
nonzero: < |∆Q|2 ≯= 0. Accordingly, two-point correlation function of
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fluctuations of the order parameter, in our model, is given by:

< ∆(x)∆(x′) >= 2 < |∆|2 > exp

{
−|x− x′|

ξ(T )

}
cos 2pF (x− x′)

(6.184)
Behavior of parameters, determining (6.184), is shown12 in Figs. 6.17,
6.18, where t = T

Tp0
, and the value of ∆t defines the width of the

“Ginzburg” critical region [Sadovskii M.V. (2019a)], which in this model
is given by:

∆t =
∆T

Tp0

=

(
bTp0

a′2ξ0

)2/3

∼
(
N(EF )

T 2
p0

Tp0

vF

1

N(EF )

)2/3

∼
(

1

N(EF )vF

)2/3

∼ 1 (6.185)

where a′ is defined by a(T ) = a′(t − 1), and in the last estimate we
used N(EF ) = 1

πvF
. Note that the width of Ginzburg critical region

of the order of unity, in fact, corresponds to the absence of true phase
transition (long-range order).

Fig. 6.17 Temperature behavior of mean-square fluctuation of the order-parameter in
one-dimensional GL model. Shown are cases of real and complex order parameters.
Dashed line — mean-field approximation for the square of the order parameter.

12Peierls transition with incommensurate CDW is described by complex order parameter,
while that with commensurate CDW — by the real one.
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Fig. 6.18 Temperature behavior of inverse correlation length in one-dimensional GL
model. Shown are cases of real and complex order parameters. Dashed line — mean-
field approximation.

Basic qualitative conclusions, following from results shown in
Figs. 6.17, 6.18, are as follows. Crudely we may estimate < |∆|2 >∼
∆(T ) ∼ Tp0 in rather wide temperature region. Correlation length
ξ(T ) ∼ ξ0

√
Tp0

T−Tp0
for T ≫ Tp0, but ξ(T ) → ∞ only for T → 0. At the

same time, for temperatures T < Tp0, correlation length becomes very
large — in our system appear rather large regions of short-range order,
where we can speak about the existence of (fluctuating) Peierls CDW
with the wave vector of the order of Q ∼ 2pF .

Real systems, where Peierls transition is observed experimentally,
are always quasi-one-dimensional, with one-dimensional chains coupled
by weak inter-chain interactions, which lead to stabilization of Peierls
long-range order at some finite transition temperature. Interchain cou-
pling may be due to electron tunnelling between chains, i.e. due to,
in fact, three-dimensional (though strongly anisotropic) nature of elec-
tronic spectrum. Also of importance may be “direct” interaction of
order-parameters on the nearby chains. For example, we may remem-
ber, that Peierls CDW creates real modulation of electronic charge den-
sity along the chain:

ρ(x) = ne
∆

λEF

cos(Qx+ ϕ) (6.186)
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which, in turn, creates electrostatic potential around the chain, given
by:

φ(r⊥, x) = 2ne
∆

λEF

cos(Qx+ ϕ)K0(Qr⊥) (6.187)

where K0(r) is Bessel function of imaginary argument (exponentially
small for large distances). Thus, we obtain electrostatic interaction
energy of CDW’s (per chain length) of the following form:

U = U0

∑
n

∑
<m>

cos(ϕn − ϕm) (6.188)

where the second sum is taken over the nearest neighbors (chains) of
the chain n. We conclude that there is an energy gain in case of CDW’s
on the neighboring chains being in antiphase, as shown in Fig. 6.19.
Thus we obtain three-dimensional ordering and a real phase transition.
Qualitatively, the temperature of such transition is determined by al-
most obvious condition U0ξ(T ) ∼ T , which gives the following equation
for the critical temperature:

1 ∼ 1

Tc

U0ξ(Tc) (6.189)

As temperature T lowers, the value of ξ(T ), as we have seen in purely
one-dimensional model, grows (ξ(T ) → ∞ for T → 0), so that solution
of Eq. (6.189) exists even for arbitrarily small U0. In real life everything
depends on parameters. It can be that Tc ∼ Tp0, or it may be that
Tc ≪ Tp0. Thus, in quasi-one-dimensional systems we may have wide
enough temperature region, where Tc ≪ T ≪ Tp0, and long-range order
is absent, though well developed fluctuations of short-range order exist
and are characterized by correlation function of the type of (6.184). For
high enough temperatures T ∼ Tp0 these fluctuations may be considered

Fig. 6.19 CDW antiphase ordering on neighboring chains due to electrostatic interchain
interaction.
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as Gaussian, for T ≪ Tp0 this is obviously wrong. Correlation length of
these fluctuations is of order of ξ(T ) and may significantly greater than
interatomic spacing.

Let us consider the problem of three-dimensional ordering in the system of
interacting order parameters on the nearby chains in more details. For such a
system (with chains enumerated by indices i, j), from purely phenomenological
point of view we can write the following GL-expansion:

F{∆i}=
∫
dx

ξ0

{∑
i

[
a|∆i(x)|2 + b|∆i(x)|4 + c

∣∣∣∣d∆i

dx

∣∣∣∣2
]
+

1

2

∑
<ij>

λij∆i(x)∆j(x)

}
(6.190)

where we assume only nearest neighbor (chains) interaction.
The average value of the order parameter can be written as:

< ∆i >

= Z−1

∫
{δ∆}∆i(x) exp

{
− 1

T

∫
dx′

ξ0

[∑
i

Fi(∆i(x
′)) +

1

2

∑
ij

λij∆i(x
′)∆j(x

′)

]}

→ Z−1

∫
{δ∆}∆i(x) exp

{
− 1

T

∫
dx′

ξ0

[∑
i

Fi(∆i(x
′)) +

∑
ij

λij∆i(x
′) < ∆j >

]}
(6.191)

where in the second line we have made “mean-field” approximation over the
interchain coupling. For T → Tc we have < ∆i >→ 0, then we can write:

< ∆i >

≈ Z−1

∫
{δ∆}∆i(x) exp

{
− 1

T

∫
dx′

ξ0

∑
i

Fi

}{
1 +

1

T

∫
dx′

ξ0

∑
ij

∆i(x
′) < ∆j >

}

=
1

T

∫
dx′

ξ0

∑
j

λij < ∆i(x)∆i(x
′) >< ∆j > (6.192)

so that critical temperature Tc is determined by the equation:

1 =
λ

T

∫
dx′

ξ0
< ∆i(x)∆i(x

′) >, λ =
∑
<j>

λij (6.193)

and, using

< ∆i(x)∆i(x
′) >=< ∆2 > exp

{
−|x− x′|ξ−1(T )

}
(6.194)

we get equation similar to (6.189):

1 =
λ

T
< ∆2 >

ξ(T )

ξ0
(6.195)

and the same conclusions as above.
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6.6.2 Electron in a random field of fluctuations

Consider an electron propagating in a random field of fluctuations ∆(x),
which we assume to be Gaussian. Then we can use the usual “impu-
rity” diagram technique, associating with interaction (scattering) lines
correlation function of order parameter (6.184). In momentum repre-
sentation we associate with interaction line the Fourier-transform of
(6.184):

S(Q) = 2∆2

{
κ

(Q− 2pF )2 + κ2
+

κ

(Q+ 2pF )2 + κ2

}
(6.196)

where κ = ξ−1(T ), and < |∆|2 > is denoted (for shortness) as ∆2.
In the following we shall first consider much oversimplified, but quite
instructive, variant of this model, corresponding to the limit of ξ → ∞
(κ→ 0), i.e. the asymptotics of very large correlation lengths of short-
range order fluctuations.13 This problem can be solved exactly, and we
can sum all Feynman diagrams of perturbation theory for “interaction”
(6.196), which in the limit of ξ → ∞ (κ→ 0) becomes:14

S(Q) = 2π∆2{δ(Q− 2pF ) + δ(Q+ 2pF )} (6.197)

Consider the simplest contribution to electron self-energy, described by
the diagram shown in Fig. 6.20, which we write in Matsubara represen-
tation:

Σ(εnp)=

∫
dQ

2π
S(Q)

1

iεn − ξp−Q

≈ 2∆2

∫ ∞

−∞

dx

2π

κ

x2 + κ2

1

iεn + ξp − vFx

= 2∆2

∫ ∞

−∞

dx

2π

κ

(x− iκ)(x+ iκ)

1

iεn + ξp − vFx

=
∆2

iεn + ξp + ivFκ
(6.198)

where, for definiteness we assume p ∼ +pF , εn > 0 and defined the new
integration variable x via Q = 2pF + x (it is helpful to look once again
at Fig. 6.3!).
13To avoid misunderstanding, note that this limit does not correspond to the appearance
of long-range order! Electron is propagating in the Gaussian random field with specific
pair correlator, not in the periodic system. In details this will be seen from the analysis
which follows.
14Note the obvious analogy of this model with that of Keldysh, discussed above.
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Fig. 6.20 Simplest diagram for electron self-energy. Wave-like line denotes correlator
S(Q).

The limit of ξ(T ) → ∞ (κ → 0) should be understood as the
requirement of:

vFκ = vF ξ
−1 ≪Max{2πT, ξp} (6.199)

or

vFκ = vF ξ
−1 ≪ 2πT, ξ(T ) ≫ |p− pF |−1 (6.200)

Then (6.198) gives just:

Σ(εnp) ≈
∆2

iεn + ξp
(6.201)

Now, for “interaction” of the form of (6.197) there is no problem to write
down the contribution of an arbitrary diagram for Green’s function
correction in any order, e.g. of the type shown in Fig. 6.21. In such
a diagram of the n-th order in S(Q) we have 2n vertices, connected
by interaction lines in any possible combinations. These lines either
“bring” or “take away” momentaQ = 2pF .15 As a result, in the analytic
expression for the contribution of such a diagram we have a sequence
of alternating Green’s functions like 1

iεn−ξp
(n times) and 1

iεn+ξp
(also

n times), plus one more (at the start of the sequence) 1
iεn−ξp

.16 In
15These processes have to alternate with each other, so that the electron does not “leave”
far from the Fermi level (Fermi points ±pF ) in Fig. 6.3 or Fig. 6.7 (in opposite case large
energies appear in denominators of Green’s functions in higher orders). This requirement
is absent in the case of commensurate fluctuations, e.g. like period-doubling, when we
work with the spectrum shown in Fig. 6.8 and “bringing” or “taking away” any number
of momenta Q = (π/a, π/a) leave an electron close to the Fermi level. Accordingly, in
this special case a different combinatorics of interaction lines (similar to that in Keldysh
model) appears. We drop this special case for shortness of our presentation.
16Obviously, just in the same way we may solve for the case of arbitrary fixed scattering
vector Q, when we have alternating 1

iεn−ξp
and 1

iεn−ξp−Q
. Here we take Q = 2pF only

for compactness of our expressions and because of the physics of Peierls transition.
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Fig. 6.21 Diagram of an arbitrary order for the single-electron Green’s function.

addition we have the factor of ∆2n. Finally, we see that contributions
of all diagrams in a given order just coincide and the total contribution
of this order can be obtained by multiplication by the total number of
these diagrams, which is easily calculated from combinatorics — it is
equal to n!. In fact, wee have 2n points (vertices), with “incoming”
or “outgoing” interaction lines. Of these, n points are connected with
“outgoing” line, which in any of n! ways may “enter” into the remaining
“open” n vertices. Use now the identity:17

∞∑
n=0

n!zn =
∞∑

n=0

∫ ∞

0

dζe−ζ(ζz)n =

∫ ∞

0

dζe−ζ 1

1− ζz
(6.202)

Then we easily sum the whole series for Green’s function and obtain an
exact solution of our problem (M.V. Sadovskii, 1974):18

G(εlp)=
∞∑

n=0

∆2nn!

(iεl − ξp)n(iεl + ξp)n(iεl − ξp)
≡

∞∑
n=0

n!zn(εl, ξp)G0(εlξp)

=

∫ ∞

0

dζe−ζ iεl + ξp
(iεl)2 − ξ2p − ζ∆2

≡< Gζ∆2(εlξp) >, εl = (2l + 1)πT

(6.203)

where we have used the notation:

z(εl, ξp) = ∆2G0(εl, ξp)G0(εl,−ξp) (6.204)

and we obtained the “normal” Green’s function of the Peierls dielectric:

G∆2(εlp) =
iεl + ξp

(iεl)2 − ξ2p −∆2
(6.205)

17As already noted above, in mathematics this procedure is called Borel summation.
18Let us stress once again the major difference of this problem from that of an electron,
propagating in coherent periodic field, analyzed above in connection with (6.57), (6.58).
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“averaged” according to:

< ... >ζ=

∫ ∞

0

dζe−ζ ... (6.206)

It is easy to understand (formal proof is given in Appendix B), that
(6.203) represent the Green’s function of an electron, which is prop-
agating in an external periodic field of the form 2W cos(2pFx + ϕ),
with amplitude W “fluctuating” according to so-called Rayleigh distri-
bution:19

P(W ) =
2W

∆2
e−

W2

∆2 (6.207)

while the phase ϕ is homogeneously distributed over the interval from
0 to 2π.

Performing analytic continuation iεl → ε± iδ, from (6.203) we ob-
tain for ε > 0:

ImGR,A(εξp) = ∓π(ε+ ξp)

∫ ∞

0

dζe−ζδ(ε2 − ξ2p − ζ∆2)

= ∓ π

∆2
(ε+ ξp)θ(ε

2 − ξ2p)e
−

ε2−ξ2p

∆2 (6.208)

so that spectral density

A(εξp) = − 1

π
ImGR(εξp) (6.209)

acquires “non Fermi-liquid” form, shown in Fig. 6.22.
Let us write for completeness also the analytic expressions for ReGR,A(εξp):

ReGR,A(εξp) =


ε+ξp
∆2 e

−
ε2−ξ2p

∆2 Ei

(
ε2−ξ2p
∆2

)
for ε2 − ξ2p ≥ 0

ε+ξp
∆2 e

|ε2−ξ2p|

∆2 Ei

(
− |ε2−ξ2p|

∆2

)
for ε2 − ξ2p < 0

(6.210)

where Ei(x) and Ei(x) are integral exponential functions. Let us stress, that our
Green’s function (6.203) does nor possess poles in the vicinity of the Fermi level
and, in this sense, does not describe the spectrum of any “elementary excitations”
(quasiparticles), once again demonstrating “non-Fermi liquid” behavior.
19This distribution is widely used in statistical radiophysics: S.M. Rytov. Introduction
to statistical radiophysics. Part I. “Nauka”, Moscow, 1976.
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Fig. 6.22 Spectral density in the model of the pseudogap state: (1) ξp = 0; (2) ξp =
0.1∆; (3) ξp = 0.5∆.

Electron density of states of is now given by:

N(ε)

N0(EF )
=
∣∣∣ ε
∆

∣∣∣ ∫ ε2

∆2

0

dζ
e−ζ√
ε2

∆2 − ζ
= 2

∣∣∣ ε
∆

∣∣∣ exp(− ε2

∆2

)
Erfi

( ε
∆

)

=

{
1 for |ε| → ∞
2ε2

∆2 for |ε| → 0
(6.211)

where N0(EF ) is the density of states of free electrons at the Fermi
level, while Erfi(x) =

∫ x

0
dxex

2 is probability integral of an imagi-
nary argument. Characteristic form of this density of states is shown
in Fig. 6.23 and demonstrates the presence of “soft” pseudogap in the
vicinity of the Fermi level. In fact, it is just the density of states of
Peierls dielectric (6.77), shown above in Fig. 6.9, averaged over the gap
fluctuations, determined by Rayleigh distribution (6.207).

Generalization of these results for the case of finite correlation lengths ξ(T )
(or finite κ) is much more difficult (M.V. Sadovskii, 1979). First of all, we have
to learn how to calculate the contribution of an arbitrary diagram in any order.
Unfortunately, this problem can not be solved exactly, as integrations become
more and more cumbersome. However, we can formulate some very effective
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Fig. 6.23 Density of states with pseudogap.

(as we shall see below) approximate Ansatz, allowing to write down an explicit
expression for any diagram in any order. On Fig. 6.24 we show all essential
diagrams of third order. Assume we are working with linearized spectrum of
Fig. 6.3, and scattering vector Q < pF , so that scattering takes place only within
one branch (“right” or “left”) of the spectrum. In this case we can calculate the
contribution of any diagram of the type shown in Fig. 6.24, as it happens that
we can guarantee, that only nonzero contributions to integrals come from the
poles of the Lorentzian S(Q) (6.196), like in (6.198). This is due to the fact, that
electron velocity does not change sign, while we remain within a single branch
of the spectrum. For example, after elementary calculations we find that the
contribution of Fig. 6.24(d) is given by:

∆6 1

iεn − ξp

1

iεn − ξp−Q + ivFκ

1

iεn − ξp + 2ivFκ

1

iεn − ξp−Q + 3ivFκ

× 1

iεn − ξp + 2ivFκ

1

iεn − ξp−Q + ivFκ

1

iεn − ξp
(6.212)

Assume now, that ξp and ξp−Q in (6.212) represent the real spectrum of an
electron, which is, of course, a continuous function of momenta p. Then we can
safely continue (6.212) to any value of Q, including Q = 2pF . In this case, instead
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of (6.212) we immediately obtain (remember “nesting” condition (6.61)!):

∆6 1

iεn − ξp

1

iεn + ξp + ivFκ

1

iεn − ξp + 2ivFκ

1

iεn + ξp + 3ivFκ

× 1

iεn − ξp + 2ivFκ

1

iεn + ξp + ivFκ

1

iεn − ξp
(6.213)

This is the essence of our Ansatz! In fact, it is exact in the limit of ξ → ∞ (or
κ→ 0), as is obvious from the direct comparison with the above discussion of this
case. Thus, for Q = 2pF we actually take into account backward scattering (from
one branch of the spectrum to the other) by Q exactly, the only approximation
made concerns the account of small (at large ξ or small κ) “deviations” from
scattering vector Q = 2pF .

Now we can easily see, that contributions of all the other diagrams (calculated
in the way just described) are entirely analogous: the numbers over the electron

Fig. 6.24 All relevant diagrams of third order.
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lines in Fig. 6.24 indicate how many times ivFκ occurs in the corresponding
denominator. We note that the contribution of the diagram with crossing inter-
action lines in Fig. 6.24(d) is equal to that of diagram without crossings, shown
in Fig. 6.24(e). We stress that simplicity of the expressions for the contributions
of the various diagrams is due entirely to our Ansatz, but we shall see that this
is, apparently, a very good approximation.

In fourth order there are 4! = 24 relevant diagrams, all of the irreducible dia-
grams for self-energy are shown in Fig. 6.25. The corresponding contributions are
now easily found and are analogous in form to those obtained in third order, with
the use of the numbers over electron lines is as in Fig. 6.24. Furthermore, again
there are quite a number of equalities among the diagrams: (a)=(b)=(c)=(d);
(e)=(f)=(g)=(h); (i)=(j); (k)=(l).

The general rules for writing out the expression corresponding to an arbitrary
diagram are now clear. The contribution of any diagram is determined by the
arrangement of initial and final vertices (in Fig. 6.25 they are marked with letters
i and f). In each electron line following a vertex of type i a term ivFκ is added
in the denominator, and in an electron line following a vertex of type f , such a
term is subtracted.

Thus, it is clear that the contribution of any diagram is determined by the
arrangement of initial and final vertices. Furthermore any diagram with inter-
secting interaction lines can be uniquely represented by a diagram without any
intersections. The recipe for the construction of the corresponding diagram with-
out intersections (for a given arrangement of i and f vertices) is: Counting from
the left, the first final vertex must be connected with an interaction line to the
nearest initial vertex on its left, and so on for the remaining vertices not so far
connected with interaction lines. Thus, for example, the diagrams of Fig. 6.25(b),
(c), (d) reduce to the form of Fig. 6.25(a), the diagrams of Fig. 6.25(e), (f) reduce
to the form of Fig. 6.25(g), and so on. For a fixed distribution of initial vertices,
the final vertices can be chosen only from the points of opposite parity (as we limit
ourselves to incommensurate case only). The numbers put on electron lines in
Figs. 6.24 and 6.25 can be transferred to the vertices, by assigning to a vertex the
number of terms ivFκ in the denominator corresponding to the line proceeding
after that vertex. The general rule is: To an initial vertex is assigned the number
Nn = Nn−1 +1, where Nn−1 is the number assigned to the nearest vertex on the
left. To a final vertex is assigned the number Nn − 1. Also N0 = 0, and n is the
order number of a vertex.

Let us define:

v(k) =

{
k+1
2

for odd k
k
2

for even k.
(6.214)

Then it can be verified that the number of irreducible self-energy diagrams which
are equal to a given diagram without intersections of interaction lines is equal
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Fig. 6.25 All irreducible diagrams for self-energy in fourth order.

to the product of the factors of v(Nn) for all initial vertices of that diagram
(P.V. Elyuitin, 1977).20 Accordingly, we can conduct all further discussion in
terms of diagrams without intersections of interaction lines by applying to all
initial vertices the appropriate factors v(Nn).

Any diagram for an irreducible self-energy, when restructured according to the
rules that have been formulated above, contains an all-surrounding interaction
line, i.e. reduces to the form, shown in Fig. 6.26(a). This allows us to derive
20The only change for commensurate case is that we define v(k) = k, for any k.
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Fig. 6.26 Representation of general irreducible self-energy via diagrams without inter-
secting interaction lines.

recursion equations determining the irreducible self-energy, which includes all
diagrams of Feynman series. By definition of irreducible self-energy part, we
write Dyson equation for the Green’s function as:

G−1(εn, ξp) = G−1
0 (εn, ξp)− Σ1(εn, ξp) (6.215)

where

Σ1(εn, ξp) =
∆2

(iεn + ξp − ivFκ)2
Ξ1(εn, ξp) = ∆2G2

0(εn,−ξp − ivFκ)Ξ1(εn, ξp)

(6.216)
and for Ξ1(εn, ξp) we have an expansion shown in Fig. 6.26(b) in terms of di-
agrams without intersecting interaction lines, with factors v(Nn) attributed to
vertices. This expansion can be expressed in the standard way in terms of the
corresponding irreducible diagrams:

Ξ1(εn, ξp) = G−2
0 (εn,−ξp − ivFκ){G−1

0 (εn,−ξp − ivFκ)−Σ2(εn, ξp)}−1 (6.217)

where G0(εn, ξp) denotes the free electron Green’s function, and Σ2(εn, ξp) can
be expressed as a sum of irreducible diagrams shown in Fig. 6.26(c):

Σ2(εn, ξp) = ∆2v(2)G2
0(εn, ξp − 2ivFκ)Ξ2(εn, ξp) (6.218)

Ξ2(εn, ξp) = G−2
0 (εn, ξp − 2ivFκ){G−1

0 (εn, ξp − 2ivFκ)− Σ3(εn, ξp)}−1 (6.219)
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and so on. We have finally:

Σk(εn, ξp) = ∆2v(k)G2
0(εn, (−1)kξp − ikvFκ)Ξk(εn, ξp) (6.220)

Ξk(εn, ξp) = G−2
0 (εn, (−1)ξp−ikvFκ){G−1

0 (εn, (−1)kξp−ikvFκ)−Σk+1(εn, ξp)}−1

(6.221)
so that the fundamental recursion relation for self-energy takes the form
(M.V. Sadovskii, 1979):

Σk(εn, ξp) =
∆2v(k)

G−1
0 (εn, (−1)kξp − ikvFκ)− Σk+1(εn, ξp)

(6.222)

Similarly we can write the recursion formula for the Green’s function itself:

Gk(εn, ξp) = {iεn − (−1)kξp + ikvFκ−∆2v(k + 1)Gk+1(εn, ξp)}−1 (6.223)

with physical Green’s function being determined as G(εn, ξp) ≡ Gk=0(εn, ξp),
which represents the sum of all Feynman series for our problem. Actually, these
recursion relations yield the representation of the single-electron Green’s function
in the form of the following continuous fraction:

G(εn, ξp)

=
1

iεn − ξp − ∆2

iεn + ξp + ivFκ− ∆2

iεn − ξp + 2ivFκ− 2∆2

iεn + ξp + 3ivFκ− ...

(6.224)

Symbolically, this recursion relation can be represented by Dyson-like equation
shown diagrammatically in Fig. 6.27.

Fig. 6.27 Dyson-like representation of recursion relation for Green’s function.

For κ = 0 we can use continuous fraction representation of the incomplete
Γ-function:

Γ(α, x) =

∫ ∞

x

dte−ttα−1 =
xα

x+ 1−α

1+ 1

x+ 2−α
1+...

(6.225)
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and the relation Γ(0, x) = −Ei(−x) to verify that (6.224), after the usual analytic
continuation iεn → ε+ iδ, reduces to (6.210), (6.208), thus reproducing our exact
result (6.203), etc.

From the fundamental recursion relation (6.222), after analytic continuation
iεn → ε+iδ, we obtain similar relations for real and imaginary parts of self-energy:

ReΣk(ε, ξp) =
∆2v(k)[ε− (−1)kξp −ReΣk+1(ε, ξp)]

[ε− (−1)kξp −ReΣk+1(ε, ξp)]2 + [kvFκ− ImΣk+1(ε, ξp)]2

(6.226)

ImΣk(ε, ξp) =
−∆2v(k)[kvFκ− ImΣk+1(ε, ξp)]

[ε− (−1)kξp −ReΣk+1(ε, ξp)]2 + [kvFκ− ImΣk+1(ε, ξp)]2

(6.227)
Next we can use these relations for numerical calculations — start with some large
enough (to guarantee convergence) value of k and e.g. ReΣk+1 = ImΣk+1 = 0,
and perform calculations down to k = 1. In fact, convergence is pretty fast, and
calculations take only seconds on any modern PC.

Let us start from spectral density:

A(ε, ξp) = − 1

π
ImGR(ε, ξp) =

ImΣ1(ε, ξp)

[ε− ξp −ReΣ1(ε, ξp)]2 + [ImΣ1(ε, ξp)]2
(6.228)

Results of our calculations are shown in Fig. 6.28 for different values of dimen-
sionless parameter Γ = vFκ/∆ = vF ξ

−1/∆. As we know, in the case of well
defined quasiparticles the spectral density is given by δ(ε− ξp) or similar narrow
peak around the value of quasiparticle energy ξp. However, our results show that
at small values of Γ, i.e. for large correlation lengths ξ ≫ vF /∆, our solution con-
tains no contributions of quasiparticle type. Quite opposite, our spectral density
shows rather wide double peak (pseudogap) structure due to strong renormaliza-
tion by short-range order fluctuations (in the limit of ξ → ∞ (κ → 0) it reduces
to that shown in Fig. 6.22), transforming continuously to a single peak, as we
move far from the Fermi level (for large ε, ξp ≫ ∆). The second peak in spectral
density is usually attributed to the so-called “shadow band”. Similarly, at fairly
large values of Γ (short correlation lengths ξ ≪ vF /∆), we also obtain a quasi-free
single peak behavior at ϵ ∼ ξp, corresponding to weakly damped quasiparticles.

The physical reason for the free-like behavior ar small ξ (large κ) is clear.
In the limit of ξ = κ−1 → 0 our effective interaction (6.196) with fluctuations
becomes short-ranged, but is not reduced to the common “white noise” limit.
Although all momenta in the integral (for self-energy) over Q become important,
the scattering amplitude itself becomes ∼ ∆2/κ, so that scattering rate, estimated
(via Fermi “golden rule”) as 2πN0(EF )∆

2/κ = ∆2/vFκ = ∆/Γ → 0, as κ → ∞
(where we used N0(EF ) = 1/2πvF for electron density of states at the Fermi
level for one-dimensional case). Correspondingly, in the limit of κ→ ∞ electrons
become effectively “free” (as they do also if we move far from the Fermi level).
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Fig. 6.28 The surfaces of spectral density A(ε, ξp) for: (a) Γ = 0.1; (b) Γ = 0.5;
(c) Γ = 1.0; (d) Γ = 5.0. All energies are in units of ∆.

Now let us calculate density of states:

N(ε)

N0(EF )
=

∫ ∞

−∞
dξpA(ε, ξp) (6.229)

Results for different value of Γ = vFκ/∆ = vF ξ
−1/∆ are shown in Fig. 6.29

with full curves. We see that for finite κ = ξ−1 density of states now is finite
at the Fermi level (cf. Fig. 6.23). Pseudogap is gradually smeared (or “filled”)
by additional scattering due to finiteness of correlation length21 and completely
vanishes for vFκ≫ ∆.
21Physically, we are dealing now with an electron, propagating in the system of random
one-dimensional “clusters” of length ∼ ξ, with “periodic” field 2W cos(Qx + ϕ) with
Q ∼ 2pF within each of the “clusters” and random amplitude W , distributed “almost”
according to (6.207).
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Fig. 6.29 Density of states with pseudogap for different values of Γ = vF κ/∆. Full
lines — our approximation. Dashed lines — results of exact numerical simulation (L. Bar-
tosch, P. Kopietz, 1999).

Dashed curves in Fig. 6.29 show the results of exact numerical simulation
of the density of states for our (one-dimensional) problem, obtained by “crude
force”, i.e. via direct solution of Schroedinger equation for many configurations
of Gaussian random field (with correlator (6.196)) subsequent averaging (L. Bar-
tosch, P. Kopietz, 1999). We can clearly see that our approximation (based on
the Ansatz (6.213) for contribution of higher-order diagrams) is in fact very good
quantitatively, probably except the close vicinity of the Fermi level (center of the
pseudogap)22 (cf. (6.199), (6.200)). Obviously, our method has many advantages
in comparison with “direct” numerical approaches, it is much less time-consuming,
and also it can be generalized to more complicated situations, e.g. to the study of
pseudogaps in two-dimensions (very important in high-temperature copper oxide
superconductors).23

22In case of commensurate fluctuations similar comparison shows, that our Ansatz is less
accurate — it misses the formation of so-called Dyson singularity in the center of the
pseudogap (L. Bartosch, P. Kopietz, 1999).
23We refer the reader for further discussion and references to our review paper:
M.V. Sadovskii. Physics Uspekhi 44, 515 (2001).
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6.6.3 Electromagnetic response

Remarkable property of the model under consideration is the availabil-
ity of an exact (in the limit of correlation length ξ → ∞) solution (i.e.
our ability to sum all diagrams) also for the response function, describ-
ing reaction to an external electromagnetic field (polarization operator)
(M.V. Sadovskii, 1974).

First of all, let us write down some general relations in zero-
temperature technique (T = 0). Apply to our system a small perturbing
external vector-potential:

δHint = − e

mc

∫
d3rψ+(r)p · δA(rt)ψ(r) (6.230)

where δA(rt) = δAqωe
iqr−iωt. Appropriate variation of the single-

electron Green’s function can be written as [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]:
δG(εp)=−G(εp) e

mc
(p · δAqω)G(ε+ωp+q) + iG(εp)G(ε+ωp+q)

×
∫

d3p′

(2π)3

∫
dε′

2π
Γ(εp, ε′p′;qω)G(ε′p′)

e

mc
(p′ · δAqω)G(ε

′ + ωp′ + q)

(6.231)
or

δG(εp) = G(εp)J(εp; ε+ ωp+ q)G(ε+ ωp+ q)δAqω (6.232)
which is shown diagrammatically in Fig. 6.30. From here, by the way,
it is clear that for the free-electron Green’s function:

δG0(εp) = −G0(εp)
e

mc
pG0(ε+ ωp+ q)δAqω

≡ G0(εp)J0(p;p+ q)G0(ε+ ωp+ q)δAqω (6.233)

Fig. 6.30 Variation of Green’s function due to a small external electromagnetic field.
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where

J0(p;p+ q) = − e

mc
p (6.234)

is the “current” vertex for the free particle. The full vertex is defined
from (6.232) as:

J(p;p+ q) = −δG
−1(εp)

δAqω

(6.235)

Quite similar expressions appear also for the case of response to an
external scalar potential:

δHint = e

∫
d3rψ+(r)δφ(rt)ψ(r) (6.236)

where δφ(rt) = δφqωe
iqr−iωt. In particular, similarly to (6.231) we

have:

δG(εp) = G(εp)eδφqωG(ε+ ωp+ q)− iG(εp)G(ε+ ωp+ q)

×
∫

d3p′

(2π)3

∫
dε′

2π
Γ(εp, ε′p′;qω)G(ε′p′)eδφqωG(ε

′ + ωp′ + q)

(6.237)

or

δG(εp) = G(εp)J0(εp; ε+ ωp+ q)G(ε+ ωp+ q)δφqω (6.238)

where we have defined “scalar” vertex J0(p; p+ q):

J0(p; p+ q) = −δG
−1(εp)

δφqω

(6.239)

Diagrammatically (6.238) is again expressed by Fig. 6.30. Analogously
to (6.233):

δG0(εp) = G0(εp)G0(ε+ ωp+ q)eδφqω

≡ G0(εp)J
0
0 (p;p+ q)G0(ε+ ωp+ q)δφqω (6.240)

where J0
0 (p; p+ q) = e is the “free” vertex.

It is convenient to introduce a general definition of the vertex:

Jµ(p; p+ q) = −δG
−1(εp)

δAµ(qω)
(6.241)
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where Aµ(qω) = {φqω,Aqω}, so that the “free” vertex is:

Jµ
0 (p; p+ q) =

{
− e

mc
p µ = 1, 2, 3

e µ = 0
(6.242)

or

δG0(εp)

δAµ(qω)
= G0(εp)J

µ
0 (p; p+ q)G0(ε+ ωp+ q) (6.243)

while for the “full” Green’s function:

δG(εp)

δAµ(qω)
= G(εp)Jµ(p; p+ q)G(ε+ ωp+ q) (6.244)

Now it is time to start! Let us consider our model in the asymptotic limit
of large correlation lengths ξ → ∞. From previous discussion it is clear,
that an arbitrary diagram, describing response to an external field, can
be obtained from the arbitrary diagram for the single-electron Green’s
function (of the type shown in Fig. 6.21) by “insertion” of the line of
external field into any of electron lines of this diagram, as it is shown in
Fig. 6.31 (and we have to do all possible insertions!). Performing such
“differentiation” of the whole series (6.203),24 we obtain (m-number of
the “block” z, to which we insert the line of Aµ(qω)):

Fig. 6.31 Diagram of an arbitrary order for the vertex correction, describing interaction
with external electromagnetic field.

24In fact, we are explicitly calculating functional derivative of the whole perturbation
series for the single-particle Green’s function and “generating” all diagrams for the ap-
propriate vertex-part.
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Fig. 6.32 Diagrams for functional derivative of “block” z(εp).

δG(εp)

δAµ(qω)
=

〈
∞∑

n=1

n∑
m=1

(ζz(εp))m−1ζ
δz

δAµ(qω)
(ζz(ε+ ωp+q))n−mG0(ε+ωp+q)

+

∞∑
n=0

(ζz(εp))n
δG0(εp)

δAµ(qω)

〉
ζ

(6.245)

Here δG0(εp)

δAµ(qω)
is defined by (6.243), and derivative of the “block” z(εp)

is determined by Fig. 6.32 and is equal to:

δz(εp)

δAµ(qω)
= ∆2G0(εp)J

µ
0 (p;p+ q)G0(ε+ ωp+ q)G0(ε+ ωp−Q+ q)

+∆2G0(εp)G0(εp−Q)Jµ
0 (p−Q;p−Q+ q)G0(ε+ ωp−Q+ q)

= G0(εp)J
µ
0 (p;p+ q)z(ε+ ωp+ q) + z(εp)Jµ

0 (p− q;p−Q+ q)

G0(ε+ ωp−Q+ q) (6.246)

Substituting (6.246) into (6.245), and taking into account (6.243), we
obtain:

δG(εp)

δAµ(qω)
=

〈 ∞∑
n=1

n∑
m=1

(ζz(εp))
m−1

(ζz(ε + ωp + q))
n−m+1

G0(εp)J
µ
0 (p;p + q)G0(ε + ωp + q)

︸ ︷︷ ︸
I

+
∞∑

n=1

n∑
m=1

(ζz(εp))
m

(ζz(ε + ωp + q))
n−m

G0(ε + ωp − Q + q)J
µ
0 (p − Q;p − Q + q)G0(ε + ωp + q)

︸ ︷︷ ︸
II

+
∞∑

n=0

(ζz(εp))
n
G0(εp)J

µ
0 (p;p + q)G0(ε + ωp + q)

︸ ︷︷ ︸
III

〉

ζ

(6.247)
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The first and third terms of this expression together give:

< I + III >ζ=

〈
J
µ
0 (p;p + q)G0(εp)G0(ε + ωp + q)


∞∑

n=0

ζ
n
z(εp)

+
∞∑

n=1

n∑
m=1

ζ
m−1

z
m−1

(εp)ζ
n−m+1

z
n−m+1

(ε + ωp + q)


〉
ζ

= (m − 1 → m)

= J
µ
0 (p;p + q)G0(εp)G0(ε + ωp + q)

〈 ∞∑
n=0

n∑
m=0

ζ
m

z
m

(εp)ζ
n−m

z
n−m

(ε + ωp + q)

〉
ζ

=

〈
J
µ
0 (p;p + q)G0(εp)G0(ε + ωp + q)

∞∑
n=0

ζ
n
z
n
(εp)

∞∑
m=0

ζ
m

z
m

(ε + ωp + q)

〉
ζ

(6.248)

where we have used the standard rule for multiplication of series:
(
∑∞

n=0 an) (
∑∞

m=0 bm) =
∑∞

n=0

∑n
m=0 anbn−m.

Then, using (6.203), we get:

< I + III >ζ= Jµ
0 (p;p+ q) < Gζ∆2(εp)Gζ∆2(ε+ ωp+ q) >ζ

(6.249)
where

G∆2(εp) =
ε+ ξp

ε2 − ξ2p −∆2
(ε→ ε± iδ) (6.250)

is the normal Green’s function of Peierls dielectric.
Analogous calculations for the second term in (6.247) give:

< II >ζ= Jµ
0 (p−Q;p−Q+ q)G0(ε+ ωp−Q+ q)G0(ε+ ωp+ q)

×

〈
∞∑

n=1

n∑
m=1

ζmzm(εp)ζn−mzn−m(ε+ ωp+ q)

〉
ζ

= Jµ
0 (p−Q;p−Q+ q)

〈
∞∑

n=1

n∑
m=1

ζmzm(εp)ζn−mzn−m+1(ε+ ωp+ q)
1

ζ∆2

〉
ζ

= Jµ
0 (p−Q;p−Q+ q)

〈
1

ζ∆2

∞∑
n=1

ζnzn(εp)

∞∑
m=1

ζmzm(ε+ ωp+ q)

〉
ζ

= Jµ
0 (p−Q;p−Q+ q) < Fζ∆2(εp)F+

ζ∆2(ε+ ωp+ q) >ζ (6.251)

where appeared “ζ-average” of the product of two anomalous Green’s
functions of Peierls dielectric:

F+
∆2(ε) =

∆

ε2 − ξ2p −∆2
(ε→ ε± iδ) (6.252)

despite the obvious absence of Peierls long-range order in the prob-
lem we are discussing! Here we used (

∑∞
n=1 an) (

∑∞
m=1 bm) =



September 10, 2019 14:34 ws-book9x6 Diagrammatics 11605-main page 323

Electronic Instabilities and Phase Transitions 323

∑∞
n=1

∑n
m=1 anbn−m+1 and summed progressions in the term before the

last one in (6.251).
Thus, finally we obtain:

δG(εp)

δAµ(qω)
= G(εp)JµG(ε+ ωp+ q)

=

∫ ∞

0

dζe−ζ {Gζ∆2(εp)Jµ
0 (p;p+ q)Gζ∆2(ε+ ωp+ q)

+Fζ∆2(εp)Jµ
0 (p−Q;p−Q+ q)F+

ζ∆2(ε+ ωp+ q)
}

(6.253)

which can be expressed by diagrams shown in Fig. 6.33. Let us stress
that this result was obtained by summation of all diagrams of pertur-
bation theory for the vertex part. This answer is “almost obvious”, if
we remember the nature of the random field, scattering an electron in
our problem (cf. remarks after Eq. (6.206)) — we have to obtain Peierls
“dielectric” response, averaged over gap fluctuations.

Fig. 6.33 Diagrammatic representation of functional derivative of G(εp).

Now, the appropriate polarization operator (which we write down in
Matsubara technique) is:

Π(qωm) =

∫ ∞

0

dζe−ζ2T
∑
n

∫ ∞

−∞

dp

2π
{Gζ∆2(εnp)Gζ∆2(εn + ωmp+ q)

+Fζ∆2(εnp)F
+
ζ∆2(εn + ωmp+ q)

}
=< Πζ∆2(qωm) >ζ

(6.254)

which is represented by diagrams shown in Fig. 6.34. We see that under
the averaging procedure over gap fluctuations we have here just the
polarization operator of Peierls dielectric. Accordingly, the structure
of our (exact!) solution for electromagnetic response is clear — we
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Fig. 6.34 Polarization operator for the model of pseudogap state.

have to calculate the response of Peierls insulator (with fixed gap in
the spectrum) and then average over gap fluctuations (with Rayleigh
distribution (6.207)). Thus, during calculations which follow we, in
fact, are analyzing two physical problems — that of Peierls dielectric
response to electromagnetic field, and that of the response in exactly
solvable model of the pseudogap state.

Let us now perform detailed calculations of Π∆2(qωm) — polariza-
tion operator of Peierls insulator with fixed gap. Substituting into the
relevant expression (directly following from (6.254) both normal and
anomalous Green’s functions of Peierls insulator:25

G∆2(εnp) =
u2
p

iεn − Ep

+
v2p

iεn + Ep

(6.255)

F+
∆2(εnp) =

∆

(iεn − Ep)(iεn + Ep)
(6.256)

where

u2
p =

1

2

{
1 +

ξp
Ep

}
, v2p =

1

2

{
1− ξp

Ep

}
(6.257)

with Ep =
√
ξ2p +∆2, we write the sum over Fermion frequencies via

the contour integral (3.38) and obtain:

Π
∆2(qωm) = −2

∫ ∞

−∞

dp

2πi

∫
C

dε

2π
n(ε)

 u2
pu2

p+q

(ε − Ep)(ε + iωm − Ep+q)

+
v2
pv2

p+q

(ε + Ep)(ε + iωm + Ep+q)
+

u2
pv2

p+q

(ε − Ep)(ε + iωm + Ep+q)

+
v2
pu2

p+q

(ε + Ep)(ε + iωm − Ep+q)
+

∆2

(ε + Ep)(ε − Ep)(ε + iωm − Ep+q)(ε + iωm + Ep+q)

 (6.258)

25In the following we may assume ∆ to be real.
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Fig. 6.35 Integration contours used during the calculation of the sum over frequencies
in polarization operator.

where integration contour C is shown in Fig. 6.35(a). This contour
may be deformed as shown in Fig. 6.35(b), and then “stretched” to
infinity. Then our integral is determined by contributions of four poles
ε = ±Ep and ε = ±Ep+q. Calculating appropriate residues and using
the property of Fermi function: n(ε+iωm) = n(ε), where ωm = 2πmT ,
as well as n(−ε) = 1−n(ε), changing integration variable from p to ξp
(taking into account both “ends” of the Fermi surface (line), giving an
additional factor of 2), we obtain:

Π∆2(qωm)

= 2N0(EF )

∫ ∞

−∞
dξp

1

Ep − Ep+q + iωm
[n(Ep)− n(Ep+q)]

{
u2
pu

2
p+q +

∆2

4EpEp+q

}
+2N0(EF )

∫ ∞

−∞
dξp

1

Ep − Ep+q − iωm
[n(Ep)− n(Ep+q)]

{
v2pv

2
p+q +

∆2

4EpEp+q

}
+2N0(EF )

∫ ∞

−∞
dξp

1

Ep + Ep+q + iωm
[n(Ep) + n(Ep+q)− 1]

{
u2
pv

2
p+q −

∆2

4EpEp+q

}
+2N0(EF )

∫ ∞

−∞
dξp

1

Ep + Ep+q − iωm
[n(Ep) + n(Ep+q)− 1]

{
v2pu

2
p+q −

∆2

4EpEp+q

}
(6.259)
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where N0(EF ) is free-electron density of states at the Fermi level (for
both spin projections). Now use:

u2
pu

2
p+q =

1

4

{
1 +

ξpξp+q

EpEp+q
+
ξp
Ep

+
ξp+q

Ep+q

}
,

v2pv
2
p+q =

1

4

{
1 +

ξpξp+q

EpEp+q
− ξp
Ep

− ξp+q

Ep+q

}
u2
pv

2
p+q =

1

4

{
1− ξpξp+q

EpEp+q
+
ξp
Ep

− ξp+q

Ep+q

}
,

v2pu
2
p+q =

1

4

{
1− ξpξp+q

EpEp+q
− ξp
Ep

+
ξp+q

Ep+q

}
(6.260)

Terms linear over ξp and ξp+q drop after the integration due to odd
parity of the integrand.

After the analytic continuation iωm → ω + iδ we finally get:26

Π∆2(qω)

=
1

2
N0(EF )

∫ ∞

−∞
dξp

{
EpEp+q + ξpξp+q +∆2

EpEp+q

}
[n(Ep)− n(Ep+q)]

×
{

1

Ep − Ep+q + ω + iδ
+

1

Ep − Ep+q − ω − iδ

}
−1

2
N0(EF )

∫ ∞

−∞

{
EpEp+q − ξpξp+q −∆2

EpEp+q

}
[1− n(Ep)− n(Ep+q)]

×
{

1

Ep + Ep+q + ω + iδ
+

1

Ep + Ep+q − ω − iδ

}
(6.261)

This is the general expression for polarization operator of Peierls dielec-
tric with fixed gap ∆2. For ∆2 → 0 the second term in (6.261) goes
to zero, while the first one reduces to the usual (retarded) polarization
26Similar calculations for a superconductor give the same results, differing only by the
sign before ∆2 in the numerator of the integrand, which is due to antisymmetry of
Gorkov’s function Fαβ over spin indices (5.53). Thus, in the expression for polar-
ization operator of a superconductor, in comparison to (6.254), we have a change of
FF+ → −FF+. This expression determines e.g. ultrasound absorption in supercon-
ductors [Mahan G.D. (1981)], but it is insufficient for calculations of conductivity σ(ω)
via Eq. (2.111). To obtain the correct expression for polarization operator (and also for
dielectric permeability) of a superconductor we have to take into account also contribu-
tions from collective excitations (R. Prange, 1963). In FF+-loop with “current” vertices
for a superconductor this change of signs is compensated by the change of the relative
sign of these vertices, as Gorkov’s F -functions describe ±p → ∓p transitions. As a
result, we obtain a combination of signs written above in (5.301).
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operator of electron gas. On the other hand, for T → 0, but ∆2 ̸= 0,
the first term in (6.261) becomes zero, so that for polarization operator
at T = 0 we get:

Π∆2(qω) = −1

2
N0(EF )

∫ ∞

−∞
dξp

{
EpEp+q − ξpξp+q −∆2

EpEp+q

}
×
{

1

Ep + Ep+q + ω + iδ

1

Ep + Ep+q − ω − iδ

}
(6.262)

Performing the simple expansions27 in powers of q, in the limit of vF q ≪
∆ we obtain:

Π∆2(qω)=−1

2
N0(EF )v

2
F q

2

∫ ∞

0

dξp

{
1

2Ep + ω + iδ
+

1

2Ep − ω − iδ

}
∆2

E4
p

(6.263)
Then:

ReΠ∆2(qω) = −1

2
N0(EF )v

2
F q

2

∫ ∞

0

dξp

{
1

2Ep + ω
+

1

2Ep − ω

}
∆2

E4
p

(6.264)

ImΠ∆2(qω) =
π

2
N0(EF )v

2
F q

2

∫ ∞

0

dξp
∆2

E4
p

{δ(2Ep + ω)− δ(2Ep − ω)}

(6.265)
Let us calculate now dielectric permeability and conductivity. Using
the standard definition (2.8), we have:

Reϵ∆2(qω) = 1− 4πe2

q2
ReΠ∆2(qω) (6.266)

Imϵ∆2(qω) = −4πe2

q2
ImΠ∆2(qω) (6.267)

Then from (6.264) and (6.265) we obtain:

Reϵ∆2(qω) = 1 +
ω2
p

4

∫ ∞

0

dξp
1

E2
p − ω2

4

∆2

E3
p

(6.268)

27For p ∼ +pF and q > 0, we have: ξp+q ≈ ξp + vF q,
Ep+q =

√
ξ2p+q +∆2 ≈ Ep + vF q

ξp
Ep

+ 1
2
v2F q

2 ∆2

E3
p

Accordingly:
ξpξp+q ≈ ξ2p + vF qξp

EpEp+q ≈ E2
p + vF qξp + 1

2
v2F q

2 ∆2

E2
p

so that:
EpEp+q − ξpξp+q −∆2 ≈ 1

2
v2F q

2 ∆2

ξ2p+∆2 .
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Imϵ∆2(qω) =
π

4
ω2
p

∫ ∞

0

dξp
∆2

(ξ2p +∆2)2
{δ(2Ep − ω)− δ(2Ep + ω)}

(6.269)
where we have introduced:

ω2
p = vFκ

2
D, κ2

D = 8πe2N0(EF ) (6.270)

— squares of plasma frequency and inverse of screening length.28

For ω = 0 (6.262) reduces to:

Π∆2(q0) = −2N0(EF )

∫ ∞

0

dξp
EpEp+q − ξpξp+q −∆2

EpEp+q

1

Ep + Ep+q

(6.271)
For vF q ≪ ∆ from this expression (or from (6.264)) we obtain:

Π∆2(q0) = −1

2
N0(EF )v

2
F q

2

∫ ∞

0

dξp
∆2

E5
p

= −1

3
N0(EF )

v2F q
2

∆2
(6.272)

which gives (use also (6.270)):

ϵ∆2(q0) = 1 +
4πe2N0(EF )v

2
F

3∆2
= 1 +

ω2
p

6∆2
(6.273)

— the static dielectric permeability of Peierls insulator.
For vF q ≫ ∆ from (6.261), dropping the details of calculations, we

obtain:

Π∆2(q0) = 2N0(EF ) =
κ2
D

4πe2
(6.274)

so that:

ϵ(q0) = 1 +
κ2
D

q2
(6.275)

where we again took into account (6.270). Eq. (6.275) obviously cor-
responds to Debye screening in a metal — for vF q ≫ ∆ Peierls gap is
insignificant!
28For d = 1 we have n = 2pF

π
, pF = π

2
n, and v2F κ

2
D = 8πe2v2F

1
πvF

= 4e2vF =

4e2 pF
m

= 4πne2

m
, which coincides with the usual definition of plasma frequency. If we are

dealing with three-dimensional system, consisting of one-dimensional chains of atoms,
our expressions for polarization operator has to be multiplied by the number of chain per
unit square of specimen cross-section, i.e. by 1/a2, where a is the lattice constant of two-
dimensional (for simplicity square) lattice, which is formed by chains in the orthogonal
plane. Then all expressions remain valid, only n denotes electron density in three-
dimensional system.
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Returning to the case of ω ̸= 0 and vF q ≪ ∆, we can write (6.264)
as:

Reϵ∆2 = 1 +
ω2
p

4

∫ ∞

0

dξp
∆2

(ξ2p +∆2)3/2
1

ξ2p +∆2 − ω2

4

(6.276)

For ω → 0 (ω ≪ 2∆) it naturally leads to (6.273), while for ω ≫ 2∆

we obtain the usual plasma limit:

Reϵ∆2(ω ≫ 2∆) = 1−
ω2
p

ω2
(6.277)

The full expression (6.276) describes continuous crossover from (6.273)
to (6.277), taking place at ω ∼ 2∆. In more details we can proceed as
follows. Using in (6.276) the variable change ξp = ∆sh(z), after simple
transformations and taking (tabular) integrals, we obtain:

Reϵ∆2(ω) = 1−
ω2
p

ω2

1 +
2∆

ω

1√
1− ω2

4∆2

[
arctg

(√
4∆2

ω2
− 1

)
− π

2

] , ω2 < 4∆2

(6.278)

Reϵ∆2(ω) = 1−
ω2
p

ω2

1− 2∆

ω

1√
ω2

4∆2 − 1

[
arcth

(√
1− 4∆2

ω2

)
− 1

] , ω2 > 4∆2

(6.279)

which gives us the quoted asymptotic behavior.
Consider now Imϵ∆2(ω). Eq. (6.269) is written as:

Imϵ∆2(ω)=
π

4
ω2
p

∫ ∞

0

dξp
∆2

(ξ2p +∆2)2

{
δ
(
2
√
ξ2p +∆2 − ω

)
− δ

(
2
√
ξ2p +∆2 + ω

)}
(6.280)

Calculating integral with the use of well known expressions δ(ax) =
1
a
δ(x) and

∫∞
y
dxδ(x− a) = θ(a− y), we get:

Imϵ∆2(ω) = π∆
ω2
p

ω3

θ(|ω| − 2∆)√
ω2

4∆2 − 1
(6.281)

Then, for the real part of conductivity we obtain:

Reσ∆2(ω) =
ω

4π
Imϵ∆2(ω) =


ne2

mω
π√

ω2

4∆2 −1

∆
ω

for |ω| > 2∆

0 for |ω| < 2∆

(6.282)
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Fig. 6.36 Frequency dependence of the real part of conductivity in Peierls dielectric.

The frequency dependence given by (6.282) is shown in Fig. 6.36. We see
that electromagnetic absorption takes place via quasiparticle excitation
through Peierls gap 2∆, i.e. different from zero only for ω > 2∆. This
is typical insulating (semiconductor) behavior.

For ω ≫ 2∆ we have:

Imϵ∆2(ω) ≈ 2π

(
∆

ω

)2 (ωp

ω

)2
, Reσ∆2(ω) ≈ ne2

mω
2π

(
∆

ω

)2

(6.283)
In our model of the pseudogap state (with asymptotically large cor-

relation length of Gaussian short-range order fluctuations ξ → ∞) all
these expressions have to be averaged over fluctuations of ∆, distributed
according to (6.206) or (6.207). Thus, from (6.281) and (6.282) we ob-
tain:

Imϵ(ω) = π∆
ω2
p

ω3

∫ ω2

4∆2

0

dζe−ζ ζ√
ω2

4∆2 − ζ
(6.284)

Reσ(ω) =
ω2
p

4

∆

ω2

∫ ω2

4∆2

0

dζe−ζ ζ√
ω2

4∆2 − ζ
(6.285)
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Fig. 6.37 Frequency dependence of imaginary part of dielectric permeability in the
model of pseudogap state. The values of Imϵ(ω) are given in units of ω2

p

∆2 .

Characteristic behavior following from these expressions is shown in
Figs. 6.37, 6.38. Analytically, from (6.284) and (6.285) it is easy to
show that for ω ≪ 2∆ the following asymptotic behavior is valid:29

Imϵ(ω) ≈ π

6

ω2
p

∆2
, Reσ(ω) ≈ 1

24

(ωp

∆

)2
ω → 0 for ω → 0

(6.286)
Of course, we can perform numerical calculations of Reϵ(ω) using ex-
pressions following from (6.279), (6.278) with further averaging (6.206):

Reϵ∆2(ω)=1−
ω2
p

ω2

∫ ∞

0

dζe−ζ

{
1 +

4ζ∆2

ω

1√
4ζ∆2 − ω2

[
arctg

(√
4ζ∆2

ω2
− 1

)
− π

2

]}
(6.287)

for ω2 < 4∆2, and

29This immediately follows with the account of asymptotic behavior of the integral for
a→ 0:

∫ a
0 dxe

−x x√
a−x

→
∫ a
0 dx

x√
a−x

= 4
3
a3/2.
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Fig. 6.38 Frequency dependence of the real part of conductivity in the pseudogap state.
Conductivity is given in units of ω2

p

4π∆
.

Reϵ∆2(ω)= v1−
ω2
p

ω2

∫ ∞

0

dζe−ζ

{
1− 4ζ∆2

ω

1√
ω2 − 4ζ∆2

[
arcth

(√
1− 4ζ∆2

ω2

)
− 1

]}
(6.288)

for ω2 > 4∆2. However, it is much simpler to use, instead of (6.279)
and (6.278), a simplest interpolation:

Reϵ∆2(ω) = 1−
ω2
p

ω2 − 6∆2
(6.289)

which correctly reproduces the limiting behavior for ω ≪ 2∆ and ω ≫
2∆. Then we get:

Reϵ(ω) = 1− ω2
p

∫ ∞

0

dζe−ζ 1

ω2 − 6ζ∆2
= 1−

ω2
p

6∆2
e−

ω2

6∆2Ei

(
ω2

6∆2

)
(6.290)

Direct numerical calculations show, that (6.287), (6.288) and (6.290)
give (quantitatively) very close results, as is seen from Fig. 6.39. Using
the asymptotic behavior:

Ei(x) =

{
ex

x
for x≫ 1

C + lnx+ ... for x→ 0, C = ln γ
(6.291)
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Fig. 6.39 Real part of dielectric permeability as a function of frequency. (1) Dependence
obtained by numerical calculations from exact expressions, (2) dependence obtained from

interpolation formula. Dielectric permeability is given in units of ω2
p

∆2 .

we can find from (6.290):

Reϵ(ω) → 1−
ω2
p

ω2
for ω ≫ 2∆ (6.292)

Reϵ(ω) ≈ 1−
ω2
p

6∆2
ln γ

ω2

6∆2
(6.293)

Logarithmic divergence of Reϵ(ω) at small frequencies demonstrates
intermediate (between metallic and insulating) behavior, characteristic
of our (oversimplified!) model of the pseudogap state.

In a similar way we can analyze q-dependence of dielectric perme-
ability in the static limit of ω = 0. Let us write down again a simple
interpolation, connecting the limiting cases of (6.272) and (6.274):

Π∆2(q0) = −2N0(EF )
v2F q

2

v2F q
2 + 6∆2

(6.294)

so that

ϵ∆2(q0) = 1 +
κ2
D

q2 + 6∆2

v2
F

(6.295)
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interpolating between (6.273) and (6.275). Then in our model of the
pseudogap state:

ϵ(q0) =

∫ ∞

0

dζe−ζ
q2 + κ2

D + 6ζ ∆2

v2
F

q2 + 6ζ ∆2

v2
F

= 1− v2Fκ
2
D

6∆2
e

v2
F q2

6∆2 Ei

(
−v

2
F q

2

6∆2

)
(6.296)

This behavior is shown in Fig. 6.40, from which we again can see a
close agreement of our interpolation with the results of numerical cal-
culations, using exact expressions (which we drop for brevity). For
vF q ≫ ∆ we can use asymptotic behavior for x≫ 1: Ei(−x) → − e−x

x
.

Then, as expected, we obtain:

ϵ(q0) = 1 +
κ2
D

q2
(6.297)

i.e. “metallic” (Debye) behavior. However, for vF q ≪ ∆, using asymp-
totics Ei(−x) ≈ ln γx (x→ 0), we get:

ϵ(q0) ≈ 1− v2Fκ
2
D

6∆2
ln γ

v2F q
2

6∆2
(6.298)

Fig. 6.40 Dielectric permeability as a function of wave vector. (1) Dependence obtained
from exact expressions, (2) dependence obtain from interpolation. Dielectric permeabil-

ity is given in units of ω2
p

∆2 .
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With such behavior of ϵ(q0) in the limit of small q, effective Coulomb
interaction acquires the following form:

V(q) = 4πẽ2(q)

q2
(6.299)

where

ẽ2(q) =
e2

1− v2
Fκ2

D

6∆2 ln γ
v2
F q2

6∆2

→ 0 for q → 0 (6.300)

which is analogous to the well known “zero-charge” behavior in quantum
electrodynamics [Sadovskii M.V. (2019b)]. Thus, gap fluctuations in
the spectrum of our model lead to complete charge screening, though
of very peculiar form. Again we observe intermediate behavior, which
is between typical “metallic” one and “insulating”.30

The basic conclusion from our analysis of this simplified and rather
artificial model is rather important. Results of our exact solution (com-
plete summation of diagrammatic series) are quite different from what
we can obtain (or expect) by approximate methods, such as partial sum-
mation. Unfortunately, complete summation is usually possible only in
simplified and unrealistic models.

Generalization of these results for the case of finite correlation lengths ξ (or
finite κ) can be done if we formulate recursion relation for the vertex part, de-
scribing electromagnetic response, along the lines of our derivation of recursion
relations for electron self-energy (or single-electron Green’s function), described
above.

Arbitrary diagram for the vertex part, as we have seen above, can be ob-
tained by an insertion of an external field line to the appropriate diagram for the
self-energy. The basic idea now is that in our model we can limit ourselves only
to diagrams with non-intersecting interaction lines with additional combinatorial
factors v(k) at “initial” interaction vertices. It is clear then that to calculate ver-
tex corrections we have to consider only diagrams of the type shown in Fig. 6.41.
Then we immediately obtain the system of recurrence equations for the vertex
parts shown by diagrams of Fig. 6.42. To find appropriate analytic expressions
consider the simplest vertex correction shown in Fig. 6.43(a). Performing explicit

30Of course, these anomalies are mainly due to our artificial assumptions, used in our
model of the pseudogap state, and mostly disappear, when we go to a more realistic
situation, e.g. take into account the finite values of correlation length of short-range
order.
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Fig. 6.41 General diagram for vertex correction.

Fig. 6.42 Recursion relations for vertex-part.

calculations for T = 0 in RA-channel we find its contribution to be:

J (1)RA
1 (ε, ξp; ε+ ω, ξp+q) = ∆2

∫
dQ

2π
GA

0 (ε, ξp−Q)G
R
0 (ε+ ω, ξp−Q+q)

= ∆2
{
GA

0 (ε,−ξp + ivFκ)−GR
0 (ε+ ω, ξp+q − ivFκ)

} 1

ω + vF q

= ∆2GA
0 (ε,−ξp + ivFκ)G

R
0 (ε+ ω,−ξp+q − ivFκ)

{
1 +

2ivFκ

ω + vF q

}
(6.301)
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Fig. 6.43 Simplest corrections for vertex-part.

where during the integral calculations we have used the following identity, valid
for the free-electron Green’s functions:

GA
0 (ε, ξp)G

R
0 (ε+ ω, ξp+q) =

{
GA

0 (ε, ξp)−GR
0 (ε+ ω, ξp+q)

} 1

ω − vF q
(6.302)

“Dressing” the internal electronic lines by fluctuations we obtain the diagram
shown in Fig. 6.43(b), so that using the identity:

GA(ε, ξp)G
R(ε+ ω, ξp+q) =

{
GA(ε, ξp)−GR(ε+ ω, ξp+q)

}
× 1

ω − vF q − ΣR
1 (ε+ ω, ξp+q) + ΣA

1 (ε, ξp)
(6.303)

valid for exact Green’s functions (6.215), we can write the contribution of this
diagram as:

J RA
1 (ε, ξp; ε+ ω, ξp+q) = ∆2v(1)GA

1 (ε, ξp)G
R
1 (ε+ ω, ξp+q)

×
{
1 +

2ivFκ

ω + vF q − ΣR
2 (ε+ ω, ξp+q) + ΣA

2 (ε, ξp)

}
JRA
1 (ε, ξp; ε+ ω, ξp+q) (6.304)

Here we have assumed that interaction line in the vertex correction of Fig. 6.43(b)
“transforms” self-energies ΣR,A

1 of internal lines into ΣR,A
2 , in accordance with the
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main idea of our Ansatz for the self-energy.31 Now we can write down the similar
expression for the general diagram, shown in Fig. 6.43(c):
J RA

k (ε, ξp; ε+ ω, ξp+q) = ∆2v(k)GA
k (ε, ξp)G

R
k (ε+ ω, ξp+q)

×
{
1 +

2ivFκk

ω − (−1)kvF q − ΣR
k+1(ε+ ω, ξp+q) + ΣA

k+1(ε, ξp)

}
JRA
k (ε, ξp; ε+ ω, ξp+q)

(6.305)
Then we can write recurrence relation for the vertex-part, shown diagram-

matically in Fig. 6.42, in the following form (M.V. Sadovskii, A.A. Timofeev,
1991):
JRA
k−1(ε, ξp; ε+ ω, ξp+q) = 1 +∆2v(k)GA

k (ε, ξp)G
R
k (ε+ ω, ξp+q)

×
{
1 +

2ivFκk

ω − (−1)kvF q − ΣR
k+1(ε+ ω, ξp+q) + ΣA

k+1(ε, ξp)

}
JRA
k (ε, ξp; ε+ ω, ξp+q)

(6.306)
where all self-energies and Green’s functions are determined from appropriately
analytically continued recursion relations of the type of (6.222), (6.223). The
“physical” vertex JRA(ε, ξp; ε+ ω, ξp+q) is determined as JRA

k=0(ε, ξp; ε+ ω, ξp+q).
Recurrence procedure (6.306) takes into account all perturbation theory diagrams
for the vertex-part. In case of RR and AA-type of vertices we have the same type
of recursion procedure, with obvious replacements GR ↔ GA and expression in
large brackets in the r.h.s. replaced by 1. For κ→ 0 (ξ → ∞) these procedures
are equivalent to perturbation series studied above, which was summed exactly
in analytic form. Standard “ladder” approximation corresponds in our scheme to
the case of combinatorial factors in (6.306) v(k) = 1.

According to (2.116), (4.78) conductivity of our system can be expressed via
retarded density–density response function χ(q, ω) as:

σ(ω) = e2 lim
q→0

(
− iω
q2

)
χ(qω) (6.307)

To simplify numerical calculations it is tempting to use small ω expression (4.105):

χ(qω) = ω
{
ΦRA(qω)− ΦRA(0ω)

}
(6.308)

where two-particle Green’s function ΦRA(q, ω) was defined (4.103) (cf. general
discussion of Chapter IV and definitions (4.88), (4.94) etc.).32 However, due to
31One of the main motivations for this trick is that it guarantees the fulfillment of an
exact Ward identity (6.309).
32Direct numerical computations confirm that the recursion procedure (6.306) satisfies
an exact (in the limit of ω → 0) Ward identity (4.104):

ΦRA(0ω) = −
N(EF )

ω
(6.309)

where N(EF ) is the density of states at the Fermi level, which can be independently
calculated via (6.226)–(6.229). Actually, this is probably the main argument for the
validity of an Ansatz used to derive Eqs. (6.304), (6.305) and (6.306).
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existence in our problem of an additional energy scale ∆ ≪ EF (the width of
the pseudogap) the use of (6.308) leads to certain (quantitative, not qualitative!)
inaccuracy, especially notable in the limit of small κ. Thus, it is much better to
use complete (integral) representation for χ(q, ω), given by (4.87), (4.95). This
allows us to reproduce exact results for conductivity obtained above in the limit
of κ → 0 via recursion relations for the vertex part, used here. However, due
to additional integration this procedure obviously leads to more time-consuming
numerical calculations. Below we present results of calculations using full ex-
pression (4.95). Convergence of numerical procedure for the vertex part itself
is rather good (except the limit of very small frequencies and small κ = ξ−1),
though conductivity calculations are obviously much more time-consuming, than
e.g. calculations of the density of states.

Typical dependences of the real part of conductivity on frequency are shown in
Fig. 6.44 (for the case of incommensurate short-range order fluctuations).33 One
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Fig. 6.44 Frequency dependence of the real part of conductivity in the case of incom-
mensurate pseudogap fluctuations for different values of Γ = vF κ/∆. Dotted curve —
Γ = 0. Dashed curve — results of the “ladder” approximation for Γ = 1.0. Conductivity
is given in units of ω2

p

4π∆
.

33I am grateful to Dr. E.Z. Kuchinskii for making full calculations of conductivity for
these lectures.
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can see the gradual growth of absorption within the pseudogap with decrease
of the correlation length ξ = κ−1. Most striking anomaly is the appearance
of additional shallow maximum (or non monotonic behavior) in the frequency
dependence of conductivity within the pseudogap, which we attribute to Ander-
son localization of carriers, ever present in one-dimensional system. Localization
nature of this anomaly is directly confirmed by comparison of “exact” (i.e. tak-
ing into account all diagrams) calculations with that of “ladder” approximation,
obtained by putting combinatorial factor v(k) = 1 in all relations. Typical depen-
dence of conductivity, obtained in this approximation, is shown in Fig. 6.44 by
dashed curve. It is clearly seen that localization behavior is transformed into nar-
row Drude-like “metallic” peak at small frequencies, with no signs of localization
behavior. It is quite natural, as we seen above in Chapter IV, that localization
is intimately related with diagrams with intersecting interaction lines, absent in
“ladder” approximation. Direct check shows that all our results for conductivity
satisfy the exact sum rule (5.336).

This approach can also be generalized to studies of conductivity in two-
dimensional models of pseudogap behavior, relevant to high-temperature super-
conductors.34

6.7 Tomonaga–Luttinger model and non Fermi-liquid
behavior

Practically in all problems analyzed above, the starting point was Lan-
dau Fermi-liquid and the single-particle Green’s function with a pole:

G(p) =
Z

ε− vF (p− pF ) + iδ
+ · · · (6.310)

where 0 < Z < 1 is some constant, determining the discontinuity of dis-
tribution function of particles at the Fermi surface p = pF . At the same
time, in the previous sections we have shown, that an exact solution of
one-dimensional problem leads to quite different form of the Green’s
function, which does not possess poles and is in no way similar to that
assumed in Fermi-liquid theory. In fact, this is rather the general prop-
erty of interacting Fermions in one dimension — Fermi liquid behavior
is always absent. As probably most striking (and general) example,
in this section we shall briefly consider so-called Tomonaga–Luttinger
model (S. Tomonaga, 1950; J.M. Luttinger, 1963).
34More details can be found in reviews: M.V. Sadovskii. Physics Uspekhi 44, 515 (2001)
and ArXiV: cond-mat/0408489.
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This model describes a gas of Fermions with density n (Fermi mo-
mentum pF = πn/2), mass m (Fermi velocity vF = pF/m) and inter-
action potential λ(|x|), with Fourier components λ(k) being different
from zero only in very narrow interval of momenta |k| ≤ Λ ≪ pF . The
Hamiltonian of this model is written as:

H =
∑
p

p2

2m
a+p ap +

1

2

∑
pp′k

λ(k)a+p a
+
p′ap′−kap+k (6.311)

Tomonaga has shown, that in case of very long-range interaction, i.e.
neglecting all contributions of the order of Λ/pF → 0, the spectrum
of (6.311) coincides with the spectrum of (free) Bosons, described by
Boson operators bk, b+k :35

H =
∑
k

v(k)kb+k bk, v2(k) = v2F +
2vF
π
λ(k) (6.312)

Below we shall prove this by diagram technique (I.E. Dzyaloshinskii,
A.I. Larkin, 1973). We shall also show that single-particle Green’s func-
tion coincides with (6.310) in the region of |p− pF | ≫ Λ, but has com-
pletely different form close to the Fermi surface, i.e. for |p− pF | ≪ Λ.

Having in mind one-dimensional system of free electrons with the
spectrum shown in Fig. 6.3, we shall calculate Green’s functions close
to the “right” and “left” Fermi points ±pF , denoting these G+(p) and
G−(p) (±-Fermions). For the gas of free particles:

G
(0)
+ =

1

ε− p+ pF + iδ
, G

(0)
− =

1

ε+ p+ pF + iδ
(6.313)

where, for brevity, we are using the units with vF = 1.
Particles from the vicinity of right or left Fermi point, can be con-

sidered as different Fermions also in the interacting system, and even
for |p− pF | ≫ pF , as in the limit of Λ/pF → 0 our interaction can not
transform one sort of particles into the other. This means that with the
same accuracy, the values of p − pF for “+”-particles and p + pF for
“−”-particles may change on the interval from −∞ to +∞.

First of all, we have to calculate effective interaction, which we de-
note D(k) and express by wave-like line diagrammatically, as well as
35In other words, there are no Fermion excitations at all, the spectrum consists only of
“sound-like” collective excitations.
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“triangular” vertex Γ(p, k). Due to our condition Λ/pF → 0, only mo-
menta k ≪ pF are relevant in all vertices, thus both Fermion Green’s
functions, entering Γ belong to the same Fermi point (+pF or −pF ),
so that we can introduce Γ+(p, k) and Γ−(p, k). We shall consider a
certain generalization of Tomonaga–Luttinger model assuming differ-
ent interactions of particles of the same “sign” (+ or −) and of different
“signs”, as is shown in Fig. 6.45. Accordingly we introduce notations:

λ++ = λ−− = λ1; λ+− = λ2; D++ = D−−; D+− = D−+

(6.314)

Fig. 6.45 Interactions of particles in Tomonaga–Luttinger models.

Dyson equations for D has the form:

D++ = λ1 + λ1Π+D++ + λ2Π−D−+ (6.315)

D−+ = λ2 + λ2Π+D++ + λ1Π−D−+ (6.316)

Polarization operators entering here are given by diagrams shown in
Fig. 6.46. Dyson equation for Green’s function G has the standard

Fig. 6.46 Polarization operators in Tomonaga–Luttinger model.
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form:

G−1
± = ε∓ p+ pF − Σ± (6.317)

where Σ+ and Σ− are shown in Fig. 6.47.

Fig. 6.47 Electron self-energies in Tomonaga–Luttinger model.

Usually, as we have seen on different examples above, vertex part
Γ is determined by an infinite series of diagrams and can be found
only approximately. However, in this model the problem can be solved
exactly in the limit of Λ/pF → 0, using the Ward identity, connecting
Γ and G and taking the following simple form:

Γ+(p, k) =
G−1

+ (p)−G−1
+ (p− k)

ω − k
(6.318)

Γ−(p, k) =
G−1

− (p)−G−1
− (p− k)

ω + k
(6.319)

Here, as usual, we understand that k in Green’s functions and vertices
denote the pair (k, ω). Eqs. (6.318) and (6.319) can be derived directly,
analyzing diagrams of different orders and using the identity:

G
(0)
± (p)G

(0)
± (p+ k) =

1

ω ∓ k

(
G

(0)
± (p)−G

(0)
± (p+ k)

)
(6.320)

following directly from (6.313). The thing is that interaction (wave-
like line) transfers (almost) zero momentum (≤ Λ) → 0. Then in
all diagrams for G or Σ we have the continuous line of particles of
the “same sign”, carrying an “external” momentum p, as can be seen
analyzing typical diagrams shown in Fig. 6.48. Thus, all diagrams for
Γ can be obtained by arbitrary insertions of external interaction lines
into diagrams for self-energy. This is shown in Fig. 6.49, where we
show diagrams for the vertex, obtained from diagrams for self-energy,
shown in Fig. 6.48. Using (6.320) at any insertion point of this type we
immediately obtain Ward identities (6.318), (6.319).
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Fig. 6.48 Examples of typical diagrams for electron self-energy in Tomonaga–Luttinger
model.

Fig. 6.49 Examples of diagrams for the vertex-part in Tomonaga–Luttinger model.

It is quite important that in this model with very long-range interac-
tion and “bare” Green’s functions (6.313) with linear spectrum we have
another remarkable property — all diagrams, containing closed loops
with more than two Fermion lines, are just zero. Or, more precisely,
appropriately symmetrized sum of such diagrams gives zero contribu-
tion. Thus, we can drop contributions of the type shown in Fig. 6.50,
so that really all diagrams for the vertex are generated as shown in
Fig. 6.49. The proof is based on the particle number conservation for
±-particles (separately) and is similar to the case of quantum electro-
dynamics [Sadovskii M.V. (2019b)], where such diagrams also drop out
from Ward identity.

Let us write down equations of motion for free operators of +-particles:

i
∂ψ+

∂t
+ i

∂ψ+

∂x
= 0 (6.321)

from which we have the particle number (charge) conservation law as:
∂ρ+
∂t

+
∂j+
∂x

= 0, ρ+ = j+ = ψ+
+ψ+ (6.322)

For −-particles similarly:

i
∂ψ−

∂t
+ i

∂ψ−

∂x
= 0 (6.323)

∂ρ−
∂t

+
∂j−
∂x

= 0, ρ− = −j+ = ψ+
−ψ− (6.324)
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Fig. 6.50 Examples of diagrams for the vertex-part in Tomonaga–Luttinger model giv-
ing zero contribution.

As an arbitrary closed loop represents the Fourier component of the ground
state average of the product of appropriate number of density operators <

Tρ+(1)ρ+(2)...ρ+(n) > (and similarly for −-particles), it follows from conser-
vation laws (6.322), (6.324) that:

(ω1 − k1)(ω2 − k2)...(ωn − kn) < ρ+(k1)ρ+(k2)...ρ+(kn) >= 0 (6.325)

(ω1 + k1)(ω2 + k2)...(ωn + kn) < ρ−(k1)ρ−(k2)...ρ−(kn) >= 0 (6.326)

Then our statement concerning loops follows from (6.325), (6.326), if all momenta
integrals converge. It is easily seen that this is so for all loops, containing three
and more electron lines.

The loop containing two lines is proportional (for +-particles) to integral:∫
d2p

1

ε− p+ pF + iδ

1

ε− ω − p+ k + pF + iδ
(6.327)

which formally diverges. Physically, the finite value of this integral is guaranteed
by square dependence of particle energy on momentum far from the Fermi surface
(which is neglected in our model). Technically this may be achieved if we first
integrate over ε, and only afterwards over p. Result of such integration is finite
and proportional to k

ω−k
.
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Now we can write down the closed system of equations for G and
D, expressing vertices Γ in Π and Σ, defined by Figs. 6.46, 6.47 via G
using (6.318), (6.319). In this way we obtain:

Π+(k) = − i

2π2

1

ω − k

∫
d2p [G+(p− k)−G+(p)] (6.328)

Π−(k) = − i

2π2

1

ω + k

∫
d2p [G−(p− k)−G−(p)] (6.329)

and equations for G± take the form:

(ε− p+ pF )G+(p) = 1 +
i

4π2

∫
d2k

D++(k)

ω − k
G+(p− k) (6.330)

(ε+ p+ pF )G+(p) = 1 +
i

4π2

∫
d2k

D−−(k)

ω + k
G−(p− k) (6.331)

Let us now calculate Π+ and Π−. Introduce momentum cut-off A, so
that |p− pF | ≤ A≪ pF . Then:

Π+(k) = − i

2π2

1

ω − k

∫ pF+A

pF−A

dp

∫ ∞

−∞
dε [G+(p− k, ε− ω)−G+(p, ε)]

(6.332)
Contribution of the region of |p − pF | ≥ A can not be found from
(6.328), (6.329) as Ward identities (6.318), (6.319) are valid only close
to Fermi surface. We can convince ourselves that this contribution is
zero if we calculate it with “free electron” Green’s functions and vertices.
Calculating the integral over ε in (6.332) we have:

Π+(k) =
1

π(ω − k)

∫ pF+A

pF−A

dp [n+(p− k)− n+(p)] (6.333)

where we used the general expression for distribution function:

n+(p) = −i lim
t→−0

∫ ∞

−∞

dε

2π
e−iεtG+(εp) (6.334)

Now, the integral over p in (6.333) can be rewritten as:∫ pF+A

pF−A

dp... =

∫ pF−A

pF−A−k

dpn+(p)−
∫ pF+A

pF+A−k

dpn+(p) (6.335)

where, up to terms of the order of Λ/A → 0, we can take n+(p) =

nF (p), where nF is the usual Fermi-step function at T = 0. Thus we
obtain:

Π+(k) =
k

π(ω − k)
(6.336)
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Similarly we get:

Π−(k) = − k

π(ω + k)
(6.337)

Using (6.336), (6.337) in (6.315), (6.316) and solving these equations
we find:

D++(k) = (ω − k)
λ1(ω + k) + (λ2

1 − λ2
2)k/π

ω2 − u2k2 + iδ
(6.338)

where

u =

(
1 +

2λ1

π
+
λ2
1 − λ2

2

π2

)1/2

(6.339)

Thus we have obtained collective (Boson) excitations with spectrum
determined by the pole of (6.338). For λ1 = λ2 = λ these expressions,
in fact, give Tomonaga result (6.312) (remember that we use units with
vF = 1).

To find the single-electron Green’s function we still have to solve
the linear integral equation (6.330) with D++, determined above. We
shall not do it in details, considering only some simplest cases and just
quoting the general results.

Let λ2 = 0, then particles on one (+) side of Fermi surface (line) do
not interact at all with particles on the other (−) side, so that D−+ = 0,
and

D++(k) =
π(w − 1)(ω − k)

ω − wk + iδ
(6.340)

where

w = 1 +
λ1

π
(6.341)

Equation for G+ takes now the form:

(ε− p)G(p) = 1 +
i

4π

∫
d2kG(p− k)

w − 1

ω − wk + iδ
(6.342)

Here and below we drop index + at G+ and put the origin for p at +pF .
By direct substitution we can check that Eq. (6.342) is satisfied by:

G(p) = {(ε− p+ iδ)(ε− wp+ iδ)}−1/2 (6.343)

where the cut in the complex plane of ε is a line, connecting p − iδ

and wp− iδ (signδ = sign(p)). This Green’s function does not possess
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poles, corresponding to single-particle excitations, but simple calcula-
tion using (6.334) shows, that momentum distribution remains Fermi-
like:

n(p) = nF (p) (6.344)

Then we can analyze the case of small λ1 and λ2, when u given by
(6.339) is of the order of unity (vF !). Analysis of (6.330), (6.338) and
(6.339) shows, that in this case electron Green’s function has the form:

G(p) = {(ε− p)(ε− up)}−1/2
exp

{
− λ2

2

4π2
ln

Λ

|p|

}
(6.345)

where

u = 1 +
λ1

π
+
λ2
1 − λ2

2

2π2
(6.346)

Calculation of distribution function n(p) using (6.334) and (6.345)
shows that for λ2 ̸= 0 there is no discontinuity at p = 0 and we have
the following behavior instead (E. Lieb, D. Mattis, 1965):

n(p) =
1

2
− 1

2

(
|p|
Λ

) λ2
2

4π2

sign(p) (6.347)

Consider at last the physically “realistic” case of λ1 = λ2 = λ. Then
we have:

D++(k) =
λ(ω2 − k2)

ω2 − v2k2 + iδ
(6.348)

where

v =

(
1 +

2λ

π

)1/2

(6.349)

and for G we have an integral equation:

(ε− p)G(p) = 1 +
i

4π2

∫
d2kG(p− k)

λ(ω + k)

ω2 − v2k2 + iδ
(6.350)

This equation may be solved after transformation to time-coordinate
representation x, t. We shall not do that and only quote the result
for momentum distribution function n(p) close to Fermi point p = 0.
For small interaction, when λ → 0, v → 1 we obtain (6.347) with
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λ1 = λ2 = λ. This expression is conserved until interaction is not too
strong:

n(p) =
1

2
− const|p|2αsign(p) (6.351)

where

α =
(v − 1)2

8v
, for α < 1/2 (6.352)

However, when α > 1/2, the leading term in the expansion of n(p) near
the Fermi point is linear:

n(p) =
1

2
− const · p (6.353)

In any case there is no discontinuity at the Fermi point!
Let us quote the results for asymptotic behavior of G(εp) in the

region of p ∼ ε≪ Λ. For α < 1/2:

G(ε ∼ p) ∼ 1

ε1−2α
(6.354)

For α > 1/2:

G(ε ∼ p) ∼ A+Bε2α−1 (6.355)

For 3/2 > α > 1:

G(ε ∼ p) ∼ A+Bε+ Cε2α−1, etc. (6.356)

Thus, in Tomonaga–Luttinger model basic assumptions of Landau
Fermi-liquid theory are violated. Already for arbitrarily weak inter-
action singularity of Green’s function at Fermi surface is weaker than
a simple pole (cf. (6.354)), while for strong enough interaction Green’s
function remains finite at the Fermi point (cf. (6.354), (6.356)). In this
case, Fermi point manifests itself only in the derivatives of high enough
order.

These anomalies are connected with a kind of “infrared catastrophe”
taking place in one-dimensional systems. Any particle from close vicin-
ity of one of the Fermi points can emit (satisfying all conservation laws)
any number of real particle-hole pairs, which also are in close vicinity
of this Fermi point. Mathematically this is expressed by the presence in
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perturbation series for self-energy Σ(p) of singular contributions, con-
taining poles of higher orders, like:

λn

(ε− p)n−1
(6.357)

Consider e.g. an expression for Σ, corresponding to (6.343):

Σ(p) = ε− p− [(ε− p)(ε− p− λp/π)]
1/2 (6.358)

Expanding it in powers of λ, we obtain:

Σ(p) =
λp

2π
+

λ2p2

8π2(ε− p)
+ · · · (6.359)

All terms of this expansion (besides the first one) has a structure given
by (6.357).

Conclusions from this study of Tomonaga–Luttinger model are very
important and instructive. In fact, most of these results are qualitatively
valid also for more general models of interactions in one dimension.
Fermi-liquid behavior is always absent, and we observe bosonization of
spectrum of elementary excitations. In this sense, one-dimensional sys-
tems present a picture, alternative to that of Fermi-liquid. Usually it is
called “Luttinger-liquid”. In recent years major interest is attracted to
situation, realizing in two-dimensional case, where in case of strong cor-
relations (typical for high-temperature copper oxide superconductors)
scenario of “Luttinger-liquid” behavior competes with that of traditional
Fermi-liquid (or “marginal” Fermi-liquid mentioned previously) [Varma
C.N., Nussinov Z., Wim van Saarloos (2002)].
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Fermi surface as topological object

During our discussion of the basics of Fermi-liquid theory we assumed
that Fermi surface is conserved after adiabatic “switching” of arbitrary
strong interaction of Fermions. Below we present an elegant proof of
this assumption, based on topological arguments (G.E. Volovik, 1991).

In an ideal Fermi-gas the Fermi surface represents a natural border
dividing (in momentum space) the regions of occupied (n(p) = 1) and
unoccupied (n(p) = 0) states [Sadovskii M.V. (2019a)]. It is clear that
in such a gas the Fermi surface is a stable object — small changes of
particle energies only slightly deform the border between occupied and
unoccupied states, leading to small deformation of the Fermi surface.

If we “switch on” interaction between particles, distribution function
n(p) in the ground state (as we have seen above) is no more just 1

or 0. However, the Fermi surface is conserved and is reflected in the
singularity (discontinuity) of n(p). Such stability of the Fermi surface
follows from certain topological property of Fermion Green’s function.
Let us write down this function in an ideal gas for a given momentum
p and imaginary1 frequency z = ip0:

G(p0,p) =
1

ip0 − vF (p− pF )
(A.1)

It is obvious that this Green’s function still contains singularity at the
hypersurface (p0 = 0, p = pF ) in four-dimensional space of (p0, p),
where this function is undefined. This singularity is stable, i.e. it can
not be destroyed by small perturbations. The reason is, that the phase
1Imaginary frequency is introduced here to avoid the usual singularity at z = ξ(p), and

is not connected, in general, with Matsubara formalism.

351
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Fig. A.1 Fermi surface as topological object in momentum space. Above: In ideal
Fermi-gas, Fermi surface surrounds the sphere of occupied states with negative energy.
Below: Fermi surface is conserved after “switching on” interaction. The reason is that
it is a topologically stable object — the “vortex” in four-dimensional space of (p0,p).

Φ of Green’s function, considered as a complex number, i.e. G = |G|eiΦ,
changes by 2π as we move around any contour C, encircling arbitrary
element of this (singular) hypersurface.

To convince ourselves, let us drop one spatial dimension, so that
Fermi surface becomes a closed line in two-dimensional space of (px, py).
Singularities of the Green’s function (A.1) then lie on a closed line
in three-dimensional space of (p0, px, py), shown in the lower part of
Fig. A.1. The phase of the Green’s function changes by 2π during each
walk around the arbitrary contour C, encircling an arbitrary element
of this “vortex line”2 in three-dimensional space of (p0, px, py). Appro-
priate “circulation number” N1 = 1 can not change continuously and
is stable towards adiabatic “switching” of arbitrary interaction. Thus,
singularity of the Green’s function and the presence of zero excitation
energies in the system of Fermions is also conserved.
2This is in direct analogy with topological stability of Abrikosov vortices in type II

superconductors, where the order parameter has the form of Ψ = |Ψ|eiΦ [De Gennes
P.G. (1966)].
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In general case, Green’s function of a Fermion is a matrix with spin indices.
In periodic crystal it is characterized by an additional band index, etc. In such
cases the notion of the phase of the Green’s function looses its meaning, though
topological properties, described above, survive. It can be shown that in such a
general case we may define a topological invariant, given by:

N1 = Sp

∮
C

dl

2πi
G(p0,p)

∂G−1(p0,p)

∂l
(A.2)

where Green’s function is represented by appropriate matrix, while integral is
taken around an arbitrary contour C in the space of (p0,p), surrounding the
hypersurface of singularities in this space (as shown in lower part of Fig. A.1). In
(A.2) Sp is taken over spin, band and other (possible) indices.

In Landau Fermi-liquid the single-particle Green’s function, as we
know, takes the following form:

G(p0,p) =
Z

ip0 − vF (p− pF )
+ · · · (A.3)

The difference with the case of an ideal Fermi gas is that Fermi velocity
vF is no more simply pF/m, but is an additional “fundamental constant”
of the theory. It defines an effective mass of a quasiparticlem∗ = pF/vF .
The change of vF and of residue at the pole Z does not change the
value of topological invariant (A.2). This justifies Landau assumption
of direct correspondence between low energy quasiparticles in Fermi-
liquid and particles in an ideal Fermi-gas.

Thus (if there are no “infrared” singularities of the type appearing
in Tomonaga–Luttinger model), in isotropic Fermi-liquid the spectrum
of Fermion quasiparticles is described by universal dependence:

ε(p) → vF (|p| − pF ) (A.4)

with two “fundamental constants” vF and pF . Their values are deter-
mined by “microscopic” interactions, but in Fermi-liquid they are just
phenomenological constants.

Topological stability of the Fermi surface means that any continuous
change of the system does not change topological invariant. In particu-
lar, such a change may be due to adiabatic “switching on” interactions
between particles and (or) adiabatic deformation of the Fermi surface.
During such adiabatic perturbations, energy levels of the system do
not cross the Fermi surface. The state without excited quasiparticles
is transformed to another such state, i.e. vacuum is transformed into
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another vacuum (ground state). This leads to validity of Luttinger the-
orem, which is equivalent to the statement that the volume of Fermi
surface is an “adiabatic invariant” (if the total number of particles does
not change).

For isotropic Fermi-liquid with spherical Fermi surface, Luttinger
theorem reduces to the validity of usual (gas-like!) relation between
particle density and Fermi momentum:

n =
p3F

3π2~3
(A.5)

Fermi surface characterized by topological invariant N1 exists for any
space dimensionality. In two-dimensions it is represented by the closed
line in two-dimensional momentum space, corresponding to “vortex
loop” in three-dimensional momentum-frequency space. In one dimen-
sional systems Fermi surface is represented by point-like “vortex”.

We have seen above that in one-dimensional system Green’s function
may have the form quite different from canonical Fermi-liquid like, given
by (A.3). In particular, for Tomonaga–Luttinger model it has no poles
due to “infrared” divergences. However, Fermi surface survives, as well
as the existence of excitations with arbitrary small energies, due to
conservation of topological invariant N1 = 1. We may see it if in explicit
expressions for Green’s function obtained above, like Eq. (6.345), we
make transformation ε→ ip0. Then again we have singularity at (p0 =
0, p = 0). Thus, the Fermi surface survives, despite basic assumptions
of Landau theory are broken.

Let us consider from this point of view our model of the pseudogap
state, in the exactly solvable limit of large correlation lengths (ξ → ∞).
We may rewrite (6.203) as:

G(p0, p) =

∫ ∞

0

dζe−ζ ip0 + ξp
(ip0)2 − ξ2p − ζ∆2

=
ip0 + ξp

∆2
exp

(
p20 + ξ2p
∆2

)
Ei

(
−
p20 + ξ2p
∆2

)
(A.6)

Then for p0 → 0 and ξp → 0 (i.e. p→ pF ), we have:

G(p0, p) ≈
ip0 + ξp

∆2
ln

(
γ
p20 + ξ2p
∆2

)
≡ Z(p0, ξp)

ip0 − ξp
(A.7)
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where

Z(p0, ξp) = −
p20 + ξ2p
∆2

ln

(
γ
p20 + ξ2p
∆2

)
→ 0 for p0 → 0, ξp → 0

(A.8)
Now the effect of the “residue” is so strong, that it transforms the pole in
the Green’s function to zero of the Green’s function. But the singularity
of the Green’s function at the Fermi surface is not destroyed: the zero is
also the singularity and it has the same topological invariant as pole.3 So
in this sense our model is similar to some kind of Luttinger or “marginal”
Fermi-liquid with very strong renormalization of singularity at the Fermi
surface.

The difference with Landau Fermi-liquid in one-dimensional systems
is clearly seen when we analyze real frequencies: quasiparticle poles
in Green’s function are absent, instead we have a cut in the complex
plane of frequency, so that single-particle excitations are not defined.
However, distribution function, as we have seen e.g. in (6.351), though
not possessing discontinuity itself, may still contain singular behavior
in its derivatives.

3I am grateful to G.E.Volovik for the clarification of this point.
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Appendix B

Electron in a random field and
Feynman path integrals

Returning to the problem of an electron propagating in a field of scat-
terers randomly distributed in space, let us show how it is possible to
obtain formally exact expression for the averaged single-particle Green’s
function via Feynman path integral [Sadovskii M.V. (2019b)], equiva-
lent to the sum of all diagrams of perturbation theory. For electron
propagating in a potential field (4.1), in time-coordinate representation
we can write down the Green’s function as a standard path integral of
the following form (N is total number of scatterers):

G(rr′; t) =

∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

~

∫ t

0

dτ

[
mṙ2

2
−

N∑
j=1

v(r−Rj)

]}
(B.1)

where
∫ r(t)=r

r(0)=r′
Dr(τ) denotes Feynman–Wiener functional (path) inte-

gration [Sadovskii M.V. (2019b)], and r and r′ are final and initial points
for electron propagation during the time-interval t.

Consider general enough case, when we know N -particle distribution
functions [Sadovskii M.V. (2019a)] of scatterers FN(R1, ...,RN). Then,
performing averaging of the part of (B.1), depending on scatterers, we
obtain:

357
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〈
exp

{
− i

~
∑
j

∫ t

0

dτv(r(τ)−Rj)

}〉

=
1

V N

∫
dR1...

∫
dRN exp

{
− i

~
∑
j

∫ t

0

dτv(r(τ)−Rj)

}
FN (R1, ...,RN )

=exp


∞∑

n=0

(
− i

~

)n
1

n!

∫ t

0

dτ1...

∫ t

0

dτn

〈∑
i

v(r(τ1)−Ri)...
∑
j

v(r(τn)−Rj)

〉
c


≡ exp

{∑
n

(
− i

~

)n

Kn

}
(B.2)

where < ... >c are cumulant averages, defined in (4.13), V is the volume
of the system. Then, the averaged Green’s function is given by:

< G(rr′; t) >=

∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

~

∫ t

0

dτ
mṙ2

2
+
∑
n

(
− i

~

)n

Kn

}
(B.3)

Limiting ourselves with n = 2 (n = 1 contribution gives trivial phase
factor) i.e. in Gaussian approximation for the statistics of the random
field, we get:

< G(rr′; t) >

=

∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

~

∫ t

0

dτ
mṙ2

2
− 1

2~2

∫ t

0

dτ ′
∫ t

0

dτW [r(τ)− r′(τ ′)]

}
(B.4)

where

W (r− r′) =< V (r)V (r′) >c (B.5)

which for the case of randomly distributed (in space) “impurities” is
determined via (4.12), (4.16) and reduces to “white noise” correlator
(4.20).

As an example of application of Eq. (B.4), consider an electron prop-
agating in one-dimensional system with Gaussian random field with
correlator defined in (6.184), which was interest to us in the model of
pseudogap state (ξ-correlation length of short-range order fluctuations):

W (r − r′) = 2 < |∆|2 > exp

{
−|r − r′|

ξ

}
cos 2pF (r − r′) (B.6)
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Fourier-transform of this correlator is given by (6.196):

S(Q) = 2∆2

{
κ

(Q− 2pF )2 + κ2
+

κ

(Q+ 2pF )2 + κ2

}
(B.7)

where κ = ξ−1, and is represented by two Lorentzians of the width
∼ ξ−1, centered at Q = ±K = ±2pF . Introducing the variable q
(deviation from the center of the peak) via Q = ±K + q, we can write:

∫ t

0

dτ

∫ t

0

dτ ′W [r(τ)− r′(τ ′)] =

∫
dQ

2π
S(Q)

∫ t

0

dτ

∫ t

0

dτ ′eiQr(τ)e−iQr(τ ′)

= ∆2

∫
dq

π

κ

q2 + κ2

∫ t

0

dτ

∫ t

0

dτ ′eiKr(τ)eiqr(τ)e−iKr(τ ′)e−iqr(τ ′)

+∆2

∫
dq

π

κ

q2 + κ2

∫ t

0

dτ

∫ t

0

dτ ′e−iKr(τ)eiqr(τ)eiKr(τ ′)e−iqr(τ ′)

= 2∆2

∫
dq

π

κ

q2 + κ2

∫ t

0

dτ

∫ t

0

dτ ′eiqr(τ)e−iqr(τ ′) cosK[r(τ)− r(τ ′)]

= 2∆2

∫
dq

π

κ

q2 + κ2

∫ t

0

dτ

∫ t

0

dτ ′eiqr(τ)e−iqr(τ ′) {cosKr(τ) cosKr(τ ′)
+ sinKr(τ) sinKr(τ ′)

}
(B.8)

Above we have considered the asymptotic behavior for large correlation
lengths ξ → ∞ (or κ→ 0). In this limit we have:

∫ t

0

dτ

∫ t

0

dτ ′W [r(τ)− r′(τ ′)] ≈ 2∆2

∫ t

0

dτ

∫ t

0

dτ ′
{
cosKr(τ) cosKr(τ ′)

+ sinKr(τ) sinKr(τ ′)
}
= 2∆2

{∫ t

0

dτ cosKr(τ)

}2

+ 2∆2

{∫ t

0

dτ sinKr(τ)

}2

(B.9)

Then we easily obtain the following representation for nontrivial part
of the exponential in (B.4):

exp

{
− 1

2~2

∫ t

0

dτ

∫ t

0

dτ ′W [r(τ)− r(τ ′)]

}
= exp

{
−∆2

~2

[∫ t

0

cosKr(τ)

]2}
exp

{
−∆2

~2

[∫ t

0

sinKr(τ)

]2}

=

∫ ∞

−∞

dx√
π
e−x2+2ix∆

~
∫ t
0
cosKr(τ)

∫ ∞

−∞

dy√
π
e−y2+2iy∆

~
∫ t
0
sinKr(τ) (B.10)
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where in the last equality we have used the well known Hubbard–
Stratonovich trick. As a result, after the obvious changes of variables,
we obtain the averaged Green’s function as:

< G(rr′; t) >=

∫ ∞

−∞

dVx√
π
e
−V 2

x
∆2

∫ ∞

−∞

dVy√
π
e
−

V 2
y

∆2

∫ r(t)=r

r(0)=r′
Dr(τ) exp i

~

{∫ t

0

dτ
mṙ2(τ)

2

− 2

∫ t

0

dτVx cosKr(τ)− 2

∫ t

0

dτVy sinKr(τ)

}
(B.11)

Transforming to polar coordinates in (Vx, Vy) plane, i.e. introducing
W =

√
V 2
x + V 2

y and ϕ = arctg Vy

Vx
, we obtain:

< G(rr′; t) >=

∫ ∞

0

dW
2W

∆2
e−

W2

∆2

∫ 2π

0

dϕ

2π

×
∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

~

∫ t

0

dτ

[
mṙ2(τ)

2
− 2W cos(Kr(τ) + ϕ)

]}
=

∫ ∞

0

dWP{W}
∫ 2π

0

G2W cos(Kr+ϕ)(rr
′; t) (B.12)

where P(W ) is Rayleigh distribution (6.207), and G2W cos(Kr+ϕ)(rr
′; t)

is the single-electron Green’s function in periodic field (potential)
2W cos(Kr + ϕ). If we make transformation to momentum space and
find the Green’s function in this field in the simplest (two-wave) approx-
imation [Ziman J.M. (1972)], we get (6.57), (6.60) and (in Matsubara
technique, under “nesting” conditions, valid for K = 2pF (6.71) (cf.
Fig. 6.7)). Then it is clear that (B.12) reduces to the result (6.203) ob-
tained above by diagram summation. Appropriate anomalous Green’s
function (6.72) gives zero after we average over the phase in (B.12),
which corresponds to the absence of long-range order in our system.
Thus, our simplified model of the pseudogap state, analyzed in Chap-
ter VI, is really equivalent to the model of an electron propagating
in potential field 2W cos(Kr + ϕ), with amplitude W independent of
coordinate and distributed according to Rayleigh, while phase ϕ is dis-
tributed homogeneously on interval (0, 2π). The appearance of Rayleigh
distribution here is intimately connected with our assumption of the
Gaussian nature of the random field.

The use of asymptotics of ξ → ∞, i.e. neglecting the width of
Lorentzian peaks in S(Q), is obviously corresponding to neglect of
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large scale fluctuations of our random field on distances of the order
(or less than) ξ ∼ κ−1. Physically it is clear that such fluctuations
lead to additional scattering with characteristic times of the order of
τ ∼ ξ

vF
∼ (vFκ)

−1 (cf. (6.198)). It is clear that this scattering can be
neglected for energies, satisfying the inequality vFκ ≪ ξp. It is also
unimportant for vFκ ≪ T . These conditions were written above in
(6.199). Our analysis of the problem with finite values of κ confirms
these qualitative expectations. The main effect of additional large scale
scattering is the “filling” of the pseudogap, which completely disappears
for vFκ ∼ ∆.
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