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We have no better way of describing elementary particles than quantum field the-
ory. A quantum field in general is an assembly of an infinite number of interacting
harmonic oscillators. Excitations of such oscillators are associated with particles ...
All this has the flavor of the 19th century, when people tried to construct mechanical
models for all phenomena. I see nothing wrong with it, because any nontrivial idea
is in a certain sense correct. The garbage of the past often becomes the treasure of
the present (and vice versa). For this reason we shall boldly investigate all possible
analogies together with our main problem.

A. M. Polyakov, “Gauge Fields and Strings”, 1987 [51]






Preface

This book is the revised English translation of the 2003 Russian edition of “Lectures on
Quantum Field Theory”, which was based on a much extended lecture course taught
by the author since 1991 at the Ural State University, Ekaterinburg. It is addressed
mainly to graduate and PhD students, as well as to young researchers, who are work-
ing mainly in condensed matter physics and seeking a compact and relatively simple
introduction to the major section of modern theoretical physics, devoted to particles
and fields, which remains relatively unknown to the condensed matter community.
The latter is largely unaware of the major progress related to the formulation the so-
called “standard model” of elementary particles, which is—at the moment—the most
fundamental theory of matter confirmed by experiments. In fact, this book discusses
the main concepts of this fundamental theory, which are basic and necessary (in the
author’s opinion) for everyone starting professional research work in other areas of
theoretical physics, not related to high-energy physics and the theory of elementary
particles, such as condensed matter theory. Actually, an additional point of this book’s
importance is that many of the theoretical approaches developed in quantum field
theory are now actively used in condensed matter theory, and many of the concepts
of condensed matter theory are now widely used in the construction of the “standard
model” of elementary particles. One of the main aims of the book is to illustrate this
unity of modern theoretical physics, widely using the analogies between quantum
field theory and modern condensed matter theory.

In contrast to many books on quantum field theory [2, 6, 8-10, 13, 25, 28, 53, 56, 59,
60], most of which usually follow rather deductive presentation of the material, here
we use a kind of inductive approach (similar to that used in [59, 60]); the same prob-
lem is discussed several times using different approaches. In the author’s opinion,
such repetitions are useful for a deeper understanding of the various ideas and meth-
ods used for solving real problems. Of course, among the books mentioned above, the
author was much influenced by [6, 56, 60], and this influence is obvious in many parts
of the text. However, the choice of material and the form of presentation is essentially
his own. For the present English edition some of the material was rewritten, bringing
the content more up-to-date and adding more discussion on some of the more difficult
cases.

The central idea of this book is the presentation of the basics of the gauge field
theory of interacting elementary particles. As to the methods, we present a rather de-
tailed derivation of the Feynman diagram technique, which long ago also became very
important for condensed matter theory. We also discuss in detail the method of func-
tional (path) integrals in quantum theory, which is now also widely used in many
aspects of theoretical physics.

We limit ourselves to this relatively traditional material, dropping some of the
more modern (but more speculative) approaches, such as supersymmetry. Obviously,

https://doi.org/10.1515/9783110648522-201



VIII —— Preface

we also drop the discussion of some new ideas, which are in fact outside the domain of
the quantum field theory, such as strings and superstrings. Also we do not discuss in
any detail the experimental aspects of modern high-energy physics (particle physics),
using only a few illustrative examples.

The second edition of this book has been expanded with boxes presenting brief
summaries of the lives and achievements of the major founders and contributors to the
field of “Quantum Field Theory”. The biographical details complement the scientific
content of the book and contextualize the discoveries within the framework of global
research in Theoretical Physics. In my personal opinion, this information is useful for
readers and lecturers alike.

Ekaterinburg, 2019 M. V. Sadovskii
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1 Basics of elementary particles

1.1 Fundamental particles

Before we begin with the systematic presentation of the principles of quantum field
theory, it is useful to give a short review of the modern knowledge of the world of ele-
mentary particles, as quantum field theory is the major instrument for describing the
properties and interactions of these particles. In fact, historically, quantum field the-
ory was developed as the principal theoretical approach in the physics of elementary
particles. Below, we will introduce the basic terminology of particle physics, shortly
describe the classification of elementary particles, and note some of the central ideas
used to describe particle interactions. Also, we will briefly discuss some of the prob-
lems which will not be discussed at all in the rest of this book. All of these problems
are discussed in more detail (on an elementary level) in a very well-written book [46]
and a review [47]. It is quite useful to read these references before reading this book!
Elementary presentation of the theoretical principles to be discussed below is given
in [26]. A discussion of the world of elementary particles—similar in spirit—can be
found in [23]. At the less elementary level, the basic results of the modern experimen-
tal physics of elementary particles, as well as basic theoretical ideas used to describe
their classification and interactions, are presented in [24, 50, 29].

During many years (mainly in the 1950s and 1960s and much later in popular
literature) it was a common theme to speak about a “crisis” in the physics of ele-
mentary particles, which was related to an enormous number (hundreds!) of exper-
imentally observed subnuclear (“elementary”) particles, as well as to the difficulties
of the theoretical description of their interactions. A great achievement of modern
physics is the rather drastic simplification of this complicated picture, which is ex-
pressed by the so-called “standard model” of elementary particles. Now it is a well-
established experimental fact, that the world of truly elementary particles! is rather
simple and theoretically well described by the basic principles of modern quantum
field theory.

According to most fundamental principles of relativistic quantum theory, all ele-
mentary particles are divided in two major classes, fermions and bosons. Experimen-
tally, there are only 12 elementary fermions (with spin s = 1/2) and 4 bosons (with
spin s = 1), plus corresponding antiparticles (for fermions). In this sense, our world is
really rather simple!

1 Naturally, we understand as “truly elementary” those particles which cannot be shown to consist
of some more elementary entities at the present level of experimental knowledge.

https://doi.org/10.1515/9783110648522-001



2 — 1 Basics of elementary particles

1.1.1 Fermions

All the known fundamental fermions (s = 1/2) are listed in Table 1.1. Of their pro-
perties—in this table—we show only the electric charge. These 12 fermions form three
“generations”,2 with two leptons and two quarks.3 For each charged fermion, there is
a corresponding antiparticle, with an opposite value of electric charge. Whether or
not there are corresponding antiparticles for neutrinos is at present undecided. It is
possible that neutrinos are the so-called truly neutral particles.

Table 1.1: Fundamental fermions.

Generations i 2 3 Q
Quarks u t +2/3
(“up” and “down”) d b -1/3
Leptons Ve Vy Vg 0
(neutrinoand charged) e py 1 -1

All the remaining subnuclear particles are composite and are built of quarks. How this
is done is described in detail, example in [24, 50],* and we shall not deal with this prob-
lem in the following. We only remind the reader that baryons, that is, fermions (such
as protons, neutrons, and various hyperons) are built of three quarks each, whereas
quark-antiquark pairs form mesons, that is, Bosons, for example m-mesons, and
K-mesons. Baryons and mesons form a large class of particles, known as hadrons -
these particles take part in all types of interactions known in nature: strong, elec-
tromagnetic, and weak. Leptons participate only in electromagnetic and weak inter-
actions. Similar particles originating from different generations differ only by their
masses, all other quantum numbers are just the same. For example, the muon y is in
all respects equivalent to an electron, but its mass is approximately 200 times larger,
and the nature of this difference is unknown. In Table 1.2, we show experimental
values for masses of all fundamental fermions (in units of energy), as well as their

2 In particle theory, there exists a rather well-established terminology. In the following, we use the
standard terms without quotation marks. Here we wish to stress that almost all of these accepted terms
have absolutely no relation to any common meaning attributed to the terms.

3 Leptons, such as electron and electron neutrino, have been well known for a long time. Until re-
cently, in popular and general physics texts, quarks were called “hypothetical” particles. This is
wrong — quarks have been studied experimentally for a rather long time. Certain doubts that have
been expressed concerning their existence are related to their “theoretical” origin and impossibility
of observing them in free states (confinement). It should be stressed that quarks are absolutely real
particles, which have been clearly observed inside hadrons in many experiments at high energies.

4 Historical aspects of the origin of the quark model can be easily followed in older reviews [77, 76].
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lifetimes (or appropriate widths of resonances) for unstable particles. We also give the
year of discovery of the appropriate particle.” The values of quark masses (as well as
their lifetimes) are to be understood with some caution, as quarks are not observed as
free particles, so that these values characterize quarks deep inside hadrons at some
energy scale of the order of several Gev.®

Table 1.2: Masses and lifetimes of fundamental fermions.

Ve < 10eV(1956) v, < 170KeV (1962) Vv, < 24 MeV (1975)
e=0.5MeV(1897) pu=1057MeV,2-10"°5(1937) 1=1777MeV,3-107135(1975)
u=25MeV(1964) c=1266MeV, 10 125(1974) t =173 GeV, T = 2GeV (1994)
d=5MeV(1964)  s=105MeV (1964) b =4.2GeV, 10725 (1977)

It is rather curious that in order to build the entire world around us, which consists of
atoms, molecules, etc., i. e., nuclei (consisting of protons and neutrons) and electrons
(with the addition of stable neutrinos), we need only fundamental fermions of the first
generation! Who “ordered” two more generations, and for what purpose? At the same
time, there are rather strong arguments supporting the claim, that there are only three
(not more!) generations of fundamental fermions.”

1.1.2 Vector bosons

Besides fundamental fermions, which are the basic building blocks of ordinary mat-
ter, experiments confirm the existence of four types of vector (s = 1) bosons, which
are responsible for the transfer of basic interactions; these are the well-known pho-
ton y, gluons g, neutral weak (“intermediate”) boson 7%, and charged weak bosons
W* (which are antiparticles with respect to each other). The basic properties of these
particles are given in Table 1.3.

5 The year of discovery is in some cases not very well defined, so that we give the year of theoretical
prediction.

6 Precise values of these and other parameters of the Standard Model, determined during the hard
experimental work of recent decades, can be found in [67].

7 In recent years, it has become clear that the “ordinary” matter, consisting of atoms and molecules
(built of hadrons (quarks) and leptons), corresponds to a rather small fraction of the whole universe we
live in. Astrophysical and cosmological data convincingly show that most of the universe apparently
consists of some unknown classes of matter, usually referred to as “dark” matter and “dark” energy,
both having nothing to do with the “ordinary” particles discussed here [67]. In this book, we shall
discuss only “ordinary” matter.
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Table 1.3: Fundamental bosons (masses and widths).

Boson y(1900) g(1973) Z(1983) W (1983)

Mass 0 0 91.2GeV  80.4GeV
Width 0 0 2.5GeV 2.1GeV

The most studied of these bosons are obviously photons. These are represented by
radio waves, light, X-rays, and y-rays. The photon mass is zero, so that its energy
spectrum (dispersion) is given by8 E = hc|K|. Photons with E # hc|Kk| are called vir-
tual; for example the Coulomb field in the hydrogen atom creates virtual photons with
#?c’k? > E2. The source of photons is the electric charge. The corresponding dimen-
sionless coupling constant is the well-known fine structure constant a = e?/Ac ~ 1/137.
All electromagnetic interactions are transferred by the exchange of photons. The the-
ory which describes electromagnetic interactions is called quantum electrodynamics
(QED).

Massive vector bosons Z and W* transfer the short-range weak interactions. To-
gether with photons they are responsible for the unified electroweak interaction. The
corresponding dimensionless coupling constants are ay, = gﬁv/hc ~ 0y = gé /hc ~ a,
of the order of the electromagnetic coupling constant.

Gluons transfer strong interactions. The sources of gluons are specific “color”
charges. Each of the six types (or “flavors) of quarks u, d, ¢, s, t, b exists in three color
states: red r, green g, blue b. Antiquarks are characterized by corresponding the anti-
colors: 7, &, b. The colors of quarks do not depend on their flavors. Hadrons are formed
by symmetric or opposite color combinations of quarks—they are “white”, and their
color is zero. Taking into account antiparticles, there are 12 quarks, or 36 if we consider
different colors. However, for each flavor, we are dealing simply with a different color
state of each quark. Color symmetry is exact.

Color states of gluons are more complicated. Gluons are characterized not by one,
but by two color indices. In total, there are eight colored gluons: 3 x 3 = 8 + 1, one
combination — r7 + g& + bb — is white with no color charge (color neutral). Unlike in
electrodynamics, where photons are electrically neutral, gluons possess color charges
and interact both with quarks and among themselves, that is, radiate and absorb other
gluons (“luminous light”). This is one of the reasons for confinement: as we try to sepa-
rate quarks, their interaction energy grows (in fact, linearly with interquark distance)
to infinity, leading to nonexistence of free quarks. The theory of interacting quarks
and gluons is called quantum chromodynamics (QCD).

8 Up to now we are writing # and c explicitly, but in the following we shall mainly use the natural
system of units, extensively used in theoretical works of quantum field theory, where i = ¢ = 1. The
main recipes to use such system of units are described in detail in Ref. [46]. In most cases, & and c are
easily restored in all expressions, when necessary.
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1.2 Fundamental interactions

The physics of elementary particles deals with three types of interactions: strong, elec-
tromagnetic, and weak. The theory of strong interactions is based on quantum chro-
modynamics and describes the interactions of quarks inside hadrons. Electromag-
netic and weak interactions are unified within the so-called electroweak theory. All
these interactions are characterized by corresponding dimensionless coupling con-
stants: a = ez/hc, a; = gz/hc, ay = gﬁ,/hc, ay = g%/hc. Actually, it was already was
recognized in the 1950s that & = ?/hc ~ 1/137 is constant only at zero (or a very small)
square of the momentum g2, transferred during the interaction (scattering process). In
fact, due to the effect of vacuum polarization, the value of a increases with the growth
of qz, and for large, though finite, values of q2 can even become infinite (Landau-—
Pomeranchuk pole). At that time this result was considered to be a demonstration of
the internal inconsistency of QED. Much later, after the creation of QCD, it was discov-
ered that as(qz), opposite to the case of a(g?), tends to zero as g> — oo, which is the
essence of the so-called asymptotic freedom. Asymptotic freedom leads to the possi-
bility of describing gluon—quark interactions at small distances (large g°!) by simple
perturbation theory, similar to electromagnetic interactions. Asymptotic freedom is
reversed at large interquark distances, where the quark-gluon interaction grows, so
that perturbation theory cannot be applied: this is the essence of confinement. The
difficulty in giving a theoretical description of the confinement of quarks is directly
related to this inapplicability of perturbation theory at large distances (of the order of
hadron size and larger). Coupling constants of weak interaction ay;, a, also change
with transferred momentum—they grow approximately by 1% as ¢* increases from
zero to ¢ ~ 100 GeV? (this is an experimental observation!). Thus, modern theory
deals with the so-called “running” coupling constants. In this sense, the old problem
of the size of an electric charge as a fundamental constant of nature, in fact, lost its
meaning—the charge is not a constant, but a function of the characteristic distance
at which particle interaction is analyzed. The theoretical extrapolation of all coupling
constants to large g° demonstrates the tendency for them to become approximately
equal to ¢* ~ 10" - 10'° GeV?, where a ~ a; ~ ayy ~ $4- ~ ;L. This leads to the
hopes for a unified description of electroweak and strong interactions at large g2, the
so-called grand unification theory (GUT).

1.3 The Standard Model and perspectives

The Standard Model of elementary particles foundation is special relativity (equiva-
lence of inertial frames of reference). All processes are taking place in four-dimen-
sional Minkowski space-time (x,y,z,t) = (r,t). The distance between two points
(events) A and B in this space is determined by a four-dimensional interval: s3, =
c*(ty — tg)? — (x4 — xg)* — (¥4 — ¥B)* — (z4 — 2zp)*. The interval 53 > O for two events,
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which can be casually connected (time-like interval), whereas the space-like interval
shp < O separates two events, which cannot be casually related.

At the heart of the theory lies the concept of a local quantum field—field commuta-
tors in points separated by a space-like interval are always equal to zero: [((x,), P(xp)] =
0 for sle < 0, which corresponds to the independence of the corresponding fields.
Particles (antiparticles) are considered as quanta (excitations) of the corresponding
fields. Most general principles of relativistic invariance and stability of the ground
state of the field system directly lead to the fundamental spin-statistics theorem:
particles with halfinteger spins are fermions, whereas particles with integer spin are
bosons. In principle, bosons can be assumed to be “built” of an even number of
fermions; in this sense Fermions are “more fundamental”.

Symmetries are of fundamental importance in quantum field theory. Besides the
relativistic invariance mentioned above, modern theory considers a number of exact
and approximate symmetries (symmetry groups) which are derived from the vast ex-
perimental material on the classification of particles and their interactions. Symme-
tries are directly related with the appropriate conservation laws (Noether theorem),
such as energy-momentum conservation, angular momentum conservation, and con-
servation of different “charges”. The principle of local gauge invariance is the key to
the theory of particles interactions. Last but not least, the phenomenon of sponta-
neous symmetry-breaking (vacuum phase transitions) leads to the mechanism of mass
generation for initially massless particles (Higgs mechanism).’ The rest of this book
is essentially devoted to the explanation and deciphering of these and of some other
statements to follow.

The Standard Model is based on experimentally established local gauge SU(3). ®
SUQ)y ® U(1)y symmetry. Here, SU(3),. is the symmetry of strong (color) interaction
of quarks and gluons, whereas SU(2);; ® U(1)y describes electroweak interactions.
If this last symmetry is not broken, all fermions and vector gauge bosons are mass-
less. As a result of spontaneous SU(2), ® U(1)y breaking, bosons responsible for weak
interaction become massive, whereas the photon remains massless. Leptons also ac-
quire mass (except for the neutrino?).!° The electrically neutral Higgs field acquires
a nonzero vacuum value (Bose-condensate). The quanta of this field (the notorious
Higgs bosons) are the scalar particles with spin s = 0, and up to now have not been
discovered in experiments. The search for Higgs bosons was among the main tasks
of the Large Hadron Collider (LHC) at CERN. This task was complicated by rather in-

9 The Higgs mechanism in quantum field theory is the direct analogue of the Meissner effect in the
Ginzburg-Landau theory of superconductivity.

10 The problem of neutrino mass is somehow outside the Standard Model. There is direct evidence of
finite, but very small masses of different neutrinos, following from the experiments on neutrino oscil-
lations [67]. The absolute values of neutrino masses are unknown, are definitely very small (in com-
parison to electron mass): experiments on neutrino oscillations only measure differences of neutrino
masses. The current (conservative) limitation is m,, <2eV [67].
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determinate theoretical estimates [67] of Higgs boson mass, which reduced to some
inequalities, such as, m; < m; < 2my. In 2012 the ATLAS and CMS collaborations at
LHC announced the discovery of a new particle “consistent with the long-sought Higgs
boson” with mass my, ~ 125.3 + 0.6 Gev. The brief review of experimental situation can
be found in [55]. That was the major triumph of the Standard Model.

There is an interesting theoretical possibility that the Higgs boson could be a com-
posite particle built of the fermions of the Standard Model (the so-called technicolor
models). However, these ideas meet with serious difficulties of the selfconsistency of
experimentally determined parameters of the Standard Model.

We already noted that the Standard Model (even taking into account only the first
generation of fundamental fermions) is sufficient for complete understanding of the
structure of matter in our world, consisting only of atoms and nuclei. All generaliza-
tions of the Standard Model up to now are rather speculative and are not supported by
the experiments. There are a number of grand unification (GUT) models, where mul-
tiplets of quarks and leptons are described within the single (gauge) symmetry group.
This symmetry is assumed to be exact at very high transferred momenta (small dis-
tances) of the order of g* ~ 10”° —10'® GeV?, where all coupling constants become (ap-
proximately) equal. Experimental confirmation of GUT is very difficult, as the energies
needed to make scattering experiments with such momentum transfers are unlikely
to be ever achievable by humans. The only verifiable, in principle, prediction of GUT
models is the decay of the proton. However, the intensive search for proton instability
during the last decades has produced no results, so that the simplest versions of GUT
are definitely wrong. More elaborate GUT models predict proton lifetime one or two
orders of magnitude larger, making this search much more problematic.

Another popular generalization is supersymmetry (SUSY), which unifies fermions
and bosons into the same multiplets. There are several reasons for theorists to believe
in SUSY:

— cancellation of certain divergences in the Standard Model;
— unification of all interactions, probably including gravitation (;);
— mathematical elegance.

In the simplest variant of SUSY, each known particle has the corresponding “super-
partner”, differing (in case of an exact SUSY) only by its spin, for example, a photon
with s = 1has a corresponding photino with s = 1/2; an electron with s = 1/2 has a cor-
responding electrino with s = 0; quarks with s = 1/2 have corresponding quarks with
s = 0. Supersymmetry is definitely strongly broken (by mass); the search for super-
partners was also one of the major tasks for LHC. However, up to now the results from
LHC produced no evidence for SUSY, but the search continues. We shall not discuss
supersymmetry in this book.

Finally, beyond any doubt there should be one more fundamental particle, the
graviton, that is, the quantum of gravitational interactions with s = 2. However, grav-
itation is definitely outside the scope of experimental particle physics. Gravitation is
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too weak to be observed in particle interactions. It becomes important only for mi-
croprocesses at extremely high energies, the so-called Planck energies of the order of
E ~ mpc2 = (hc/G)l/zc2 = 1.22- 10" GeV. Here, G is the Newtonian gravitational con-
stant, and mp is the so-called Planck mass (~ 10~ Gramm!), which determines also
the characteristic Planck length: Ap ~ /mpc ~ VhG/c3 ~ 10> cm. Experiments at
such energies are simply unimaginable for humans. However, the effects of quantum
gravitation were decisive during the Big Bang and determined the future evolution of
the universe. Thus, quantum gravitation is of primary importance for relativistic cos-
mology. Unfortunately, quantum gravitation is still undeveloped, and for many seri-
ous reasons. Attempts to quantize Einstein’s theory of gravitation (general relativity)
meet with insurmountable difficulties, due to the strong nonlinearity of this theory.
All variants of such quantization inevitably lead to a strongly nonrenormalizable the-
ory, with no possibility of applying the standard methods of modern quantum field
theory. These problems have been under active study for many years, with no signif-
icant progress. There are some elegant modifications of the standard theory of gravi-
tation, such as supergravity. Especially beautiful is an idea of “induced” gravitation,
suggested by Sakharov, when Einstein’s theory is considered as the low-energy (phe-
nomenological) limit of the usual quantum field theory in the curved space-time. How-
ever, up to now these ideas have not been developed enough to be of importance for
experimental particle physics.

There are even more fantastic ideas, which have been actively discussed during
recent decades. Many people think that both quantum field theory and the Standard
Model are just effective phenomenological theories, appearing in the low energy limit
of the new microscopic superstring theory. This theory assumes that “real” micro-
scopic theory should not deal with point-like particles, but with strings with charac-
teristic sizes of the order of Ap ~ 10722 cm. These strings are moving (oscillating) in
the spaces of many dimensions and possess fermion—boson symmetry (superstrings!).
These ideas are now being developed for the “theory of everything”.

Our aim in this book is a much more modest one. There is a funny terminology
[47], according to which all theories devoted to particles, which have been and will
be discovered in the near future called “phenomenological”, while theories devoted
to particles or any entities, which will never be discovered experimentally, are called
“theoretical”. In this sense, we are not dealing here with “fundamental” theory at
all. However, we shall see that there are too many interesting problems even at this
“low” level.



2 Lagrange formalism. Symmetries and gauge fields

2.1 Lagrange mechanics of a particle

Let us recall first of all some basic principles of classical mechanics. Consider a particle
(material point) with mass m, moving in some potential V(x). For simplicity, we con-
sider a one-dimensional motion. At the time moment ¢, the particle is at point x(t) of
its trajectory, which connects the initial point x(¢;) with the finite point x(¢,), as shown
in Figure 2.1(a). This trajectory is determined by the solution of Newton’s equation of
motion:

dx dv(x)

mﬁ =F(x)=- I

with appropriate initial conditions. This equation can be “derived” from the principle
of least action. We introduce the Lagrange function as the difference between kinetic
and potential energy:

(2.1)

2
L:T—V:%(%) — V() 2.2)
and the action integral
t
S= j dtL(x, %), (23)

&

where as usual x denotes velocity x = dx/dt. The true trajectory of the particle corre-
sponds to the minimum (in general extremum) of the action on the whole set of ar-
bitrary trajectories, connecting points x(t;) and x(t,), as shown in Figure 2.1(b). From
this principle we can immediately obtain the classical equations of motion. Consider
the arbitrary small variation a(t) of the true trajectory x(t):

x(t) = x'(t) = x(t) + a(t). (2.4)

(t,) x(t,)

t t

Figure 2.1: (a) Trajectory corresponding to the least action. (b) The set of arbitrary trajectories of the
particle.

https://doi.org/10.1515/9783110648522-002
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At the initial and final points this variation is naturally assumed to be zero:
a(tl) = a(tz) =0. (2.5)

Substituting (2.4) into action (2.3), we obtain its variation as
6
S-S = Jdt

o

=Jdt

2}

%(x @)t - Vix+ a)]

%m)'cz +mxa - V(x) - av’(x)] +0(a)

7}
=S+ jdt[mxa—av'(x)] =S+6S, (2.6)
tl
where V' = dV/dx, so that
2}
8S = J dt[mxa - aV'(x)]. 7
&
The action is extremal at x(t) if S = 0. Integrating the first term in (2.7) by parts, we
get
t, | t, t,
Jdtkd:katl—Jdtakz—Jdtak, (2.8)

4 Lo} 4

as variations at the ends of trajectory are fixed by equation (2.5). Then

t
6S=- J dta[mx +V'(x)] = 0. (2.9)

tl
Due to the arbitrariness of variation a, we immediately obtain Newton’s law (2.1):
mi = -V'(x),

which determines the (single!) true trajectory of the classical particle.

2.2 Real scalar field. Lagrange equations

The transition from the classical mechanics of a particle to classical field theory re-
duces to the transition from particle trajectories to the space-time variations of field
configurations, defined at each point in space-time. Analogue to the particle coordi-
nate as a function of time x(t) is the field function ¢(x*) = p(x,y, z, t).
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Notes on relativistic notations

We use the following standard notations. Two space-time points (events) (x,y, z, t) and x +dx, y +dy, z +
dz, t + dt are separated by the interval

ds? = cde* - (dx2 + dy2 + dzz).

The interval ds? > 0 is called time-like and the corresponding points (events) can be casually related.
The interval ds® < 01is called space-like; the corresponding points (events) cannot be casually related.
The set of coordinates
X = (xo,xl,xz,XB) = (ct, X, Y,2)
determines the contravariant components of 4-vector, whereas
Xy = (X0, X1, X2, X3) = (ct, =X, -y, =2)
represents the corresponding covariant components. Then the interval can be written as
2 2 2,2 2 2 2
_ U = dyfdy —
ds” = Z;)dx dx, =dx"dx, = c"dt” —dx" - dy” - dz".
=

There is the obvious relation
v 0 1 2 3
Xy = X = 8uoX +8nX +8pX +8;3X,

where we have introduced the metric tensor in Minkowski space-time:

1 0 0 O
0o -1 O 5 5
— olV . Vo _
Sw=8 o 0 -1 o | w8 =6,.
0 0 0 -1

For differential operators, we shall use the following short notations:

0 10 0 0 0 10
0y =55=0000,0,0)=| == = =— = |=| =5,V |,
B oxk (3091, 97, 35) <cat ox’ oy az) <cat >

o= _ii_<i+i+i>_ifi_A
TR T 2o \oaxd  oyr 9z2) 2o

For the energy-momentum vector of a particle with mass m, we have

w_(E _(E _
P=(op) m=(7P)

2 E 5 5,
pi=pp =5 -pi=mc

For typical combination, usually standing in Fourier integrals, we write
px=p,x" =Et-p-r.

In the following, almost everywhere we use the natural system of units with # = ¢ = 1. The advantages
of this system, besides the obvious compactness of all expressions, and its connection with traditional
systems of units, are well described in [46].
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Consider the simplest example of a free scalar field p(x*) = @(x,y, z,t), which is at-
tributed to particles with spin s = 0. This field satisfies the Klein—Gordon equation:

(o+m?)p=0. (2.10)

Historically this equation was obtained as a direct relativistic generalization of the
Schroedinger equation. If we consider ¢(x,) as a wave function of a particle and take
into account relativistic dispersion (spectrum)

E*=p*+m’, (2.11)
we can perform the standard Shroedinger replacement of dynamic variables by oper-
ators acting on the wave function:

", B, 1)
which immediately gives (2.10). Naturally, this procedure is not a derivation, and a
more consistent procedure for obtaining relativistic field equations is based on the
principle of least action.

Let us introduce the action functional as

p—)

S= J d*x L(p,0,9), (2.13)

where £ is the Lagrangian (Lagrange function density) of the system of fields. The La-
grange functionis L = f d’r L. It is usually assumed that £ depends on the field ¢ and
its first derivatives. The Klein—-Gordon equation is easily derived from the following
Lagrangian:

c—l(a“ 0 —m—zz—la 2_ (Vo) - m’p? 2
= 5(@0)0up) - 59" = 5[@op)" - (V)" - m°97]. (2.14)

This directly follows from the general Lagrange formalism in field theory.

Hermann MinkowsKi (1864-1909) was a Ger-
man mathematician who developed the geome-
try of numbers and used geometrical methods
to solve problems in number theory, mathemati-
cal physics, and the theory of relativity. Hermann
Minkowski was born in a village near Kovno in
the Russian Empire (now incorporated into the
city of Kaunas, Lithuania). Minkowski was ed-
ucated in East Prussia at the Albertina Univer-
sity of Kénigsberg. In 1883, while still a student
at Konigsberg, he was awarded the Mathematics
Prize of the French Academy of Sciences for his
manuscript on the theory of quadratic forms. Minkowski taught at the universities of



2.2 Realscalar field. Lagrange equations =—— 13

Bonn, Géttingen, Konigsberg, and Ziirich. At the Eidgendssische Polytechnikum, to-
day the ETH Zurich, he was one of Einstein’s teachers. Minkowski explored the arith-
metic of quadratic forms, especially concerning nvariables, and his research into that
topic led him to consider certain geometric properties in a space of n dimensions. In
1896, he presented his geometry of numbers, a geometrical method that solved prob-
lems in number theory. In 1902, he joined the Mathematics Department of Gottingen
and became a close colleague of David Hilbert, whom he first met at university in
Konigsberg. Minkowski is perhaps best known for his work in relativity, in which he
showed in 1907 that his former student Albert Einstein’s special theory of relativity
could be understood geometrically as a theory of four-dimensional space-time, since
known as the “Minkowski spacetime”. Minkowski died suddenly of appendicitis in
Gottingen on 12 January 19089.

Notes on dimensionalities

In our system of units with # = ¢ = 1, dimensionalities of energy, mass, and inverse length are just
the same: [energy] = [mass] = I". To understand the last equality, it is important to recall that the
Compton length for a particle with mass m is determined as i/mc. The action S = Id"x L has the
dimensionality of £, so that in our system of units it is dimensionless! Then the dimensionality of La-
grangianis [£] = I, Accordingly, from equation (2.14) we obtain the dimensionality of the scalar field
as [¢] = I"\. This type of dimensionality analysis will be used many times as we proceed with the text.

Now let us turn to the general Lagrange formalism of the field theory. Consider the
field ¢ filling some space-time region (volume) R in the Minkowski space. As initial
and final hypersurfaces in this space, we can take time slices at t = t; and t = ¢,.
Consider now arbitrary (small) variations of coordinates and fields:

o ™M=+ X (2.15a)

P(x) = @'(x) = Px) + 8p(x) . (2.15b)

Here, we assume these variations 6x* and §¢(x) to be fixed at zero at the boundaries
of our space-time region R:

bp(x)=0, 6" =0, xeR. (2.16)

Let us analyze the sufficiently general case, when the Lagrangian £ is explicitly
dependent on coordinates x*, which may correspond to the situation when our fields
interact with external sources. The total variation of the field can be written as

@'(x") = (0 + Ap(x), .17)
where

Ap =o' (x") - o(xX') + p(x") - @(x) = 8p(x) + 6x*(3,0). (2.18)
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Then action variation is given by

8S = Jd"x’ L(p', 0,0, %,) - Jd X L(9, 0,0, X,). (2.19)
R R

Here, d*x' = J(x/x")d*x, where J(x/x') is the Jacobian of transformation from x to x’'.
From equation (2.15a), we can see that

ox'™

W = 65{ + aA(SXy, (2.20)

and for the Jacobian, we can write down the simple expression according to terms of
the first order in 6x*:

, ox'* u
J(x/x") = Det( o ) =1+0,(6x"). (2.21)
Then
55 = J d'x[6C + £3,6¢"], 2.22)
R
where
oL oL oL
6L = a(p&p 56, <p)5( Q)+ T ox” . (2.23)

From equation (2.15a), it is clear that 8(9,9) = 9,69, so that from equations (2.22) and
(2.23) it immediately follows that

B oL oL u
55_7! { o5 30, )y(5(p)+8(£5x)]> (2.24)

The third term in figure brackets reduces to full divergence, so that this contribution is
transformed (using the Gauss theorem) into the integral over the boundary surface R.
The second term in equation (2.24) can also be transformed to an expression contain-
ing full divergence:

a<g£ (0P = {aéﬁ jon - a“{a(g,io) foo- (2:25)

As a result, we rewrite the action variation (2.24) as

65 = i dax{g_; a[ (aﬁqa)”&"’ Jao {<a ?) } (2:26)
R
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Due limitations of equation (2.16), the variations ¢ and x* on the boundary of integra-
tion region R are equal to zero, so that the surface integral in equation (2.26) reduces
to zero. Then, demanding 6S = O for arbitrary field and coordinate variations, we get

oL 0 [ oL ] (2.27)

a<p oxk [ 92 uP)
This is the general form of Lagrange equations (equations of motion) for the field p.!

Let us write down the Lagrangian of a scalar field (2.14) as a simplest quadratic
form of the field and its first derivatives:

1 1
L= Eg’"’(ay(p)(av(p) - Emz(pz. (2.28)

Then we have

oL 2

= VV
59~ O ©,p) = o, (2.29)

a( y<p>
and Lagrange equation reduces to the Klein—-Gordon equation:

0,0 + m’p=op+m’Q=0. (2.30)
This is a linear differential equation, and it describes the free (noninteracting) field. If

we add to the Lagrangian (2.28) higher-order (higher-power) invariants of field ¢, we
shall obtain a nonlinear equation for self-interacting scalar fields.

2.3 The Noether theorem

Let us return to equation (2.26) and rewrite the surface integral in a different form:

oL oL
8S = | d*x { -2 [—”5
i op ~ *a@,p 11

jdu {a(a )[6(p+ (0,9)8x"] - [—(8 )—6"&]6){ } (2.31)
R

9(0,9)

where we just added and subtracted the same term. The expression in the first square
brackets in the surface integral represents the full variation of the field, as defined in

1 This derivation is actually valid for arbitrary fields, not necessarily scalar ones. In the case of vectors,
tensors, or spinor fields, this equation is satisfied by all components of the field, which are numbered
by the appropriate indices.
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equation (2.18). The second square bracket, as we shall demonstrate below, defines
the energy-momentum tensor:

o _ oL

Y 00,9)

d,9-6,C. (2.32)

Then 6S is rewritten as

_43_5_1[95” J {BL‘, _yv}
5S—id x{aq) el 1 K Erem il SCEY

Note that the first integral here is equal to zero (for arbitrary variations §¢) due to
the validity of the equations of motion (2.27). Consider now the second term in equa-
tion (2.33). Assume that the action S is invariant with respect to some continuous group
of transformations of x* and ¢ (Lie group). We can write the corresponding infinitesi-
mal transformations as

&' = Xsw", Ap =D 60, (2.34)

where §w* are infinitesimal parameters of group transformation (“rotation angles”),
X! is some matrix, and @, are some numbers. Note that in the general case, indices
here may be double, triple, etc. In particular, we may consider some multiplet of fields
©;, so that

A(pi = ¢)115w] > (2.35)

where @ is now also some matrix in some abstract (“isotopic”) space.
Demanding the invariance of the action S = 0 under transformations (2.34), from
(2.33) (taking into account (2.27)), we obtain
oL

_ pHyK v _
Jday{—a(au(p)(bv exxv}aw 0, (2.36)

which, due to the arbitrariness of 6w", leads to

J do,Ji =0, (2.37)
R
where
oL
Jh = 33 q))qav -0EX) . (2.38)
U

Using the Gauss theorem, from equation (2.37) we obtain the continuity equation

0y =0, (2.39)
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so that J/' represents some conserving current. More precisely, conserving is the gener-
alized charge:

Q = Jday]]’,‘, (2.40)

o

where the integral is taken over the arbitrary space-like hypersurface o. If we take o
as hyperplane ¢t = const, we simply obtain the integral over the three-dimensional
volume V:

Q, = Jd3r JO. (2.41)

v

As usual [33], integrating (2.39) over the volume V, we have

Jd3raojf . jd3ra,.1;' - 0. (2.42)
74 |4

The second integral here is transformed—using the three-dimensional Gauss theo-
rem—into the surface integral, which determines the flow of charge through this sur-
face [33]. For the closed system (universe) this flow is zero and we obtain

% jd3r]3 - % -o0. (2.43)
14
This is the main statement of the Noether theorem: invariance of the action with respect
to some continuous symmetry group leads to the corresponding conservation law.
Consider the simple example. Let symmetry transformations (2.34) be the simple
space-time translations

&t =, Ap =0, (2.44)
so that

Xi=gl, @

= 0. (2.45)

Then—from equation (2.38)—we immediately obtain

I = -6, (2.46)
and the corresponding conservation law is given by
d [ 3. .0
— | d’r6, =0, 247
dt j o 247)

v
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which represents the conservation of energy and momentum, and confirms the defi-
nition of the energy-momentum tensor given above. Here,

P, = J &r 6 (2.48)
v
defines the 4-momentum of our field. This is also clear from the simple analogy with
classical mechanics. In particular, from definition (2.32), it follows that

jd3r08 - jd3r{a—‘,:<p-c}, (2.49)
4 \4 a(p

which is similar to the well-known expression relating Lagrange function with the
Hamiltonian of classical mechanics [34]:

H=Ypag;-L, pi= 3—.L, (2.50)
; qi
so that equation (2.49) gives the energy of the field. Likewise, the value of jd3r 91-0
determines the momentum of the field.
Thus, energy-momentum conservation is valid for any system with the Lagrangian
(action) independent of x* (explicitly).
For the Klein—Gordon Lagrangian (2.28) from (2.32), we immediately obtain the
energy-momentum tensor as

" = () (d'p) -8 L. (2.51)

This expression is explicitly symmetric over indices 8*¥ = 6"*. However, it is not always
so if we are using the definition of equation (2.32) for an arbitrary Lagrangian. At the
same time, we can always add to (2.32) an additional term like aAfW, where fPV =
- so that aua,\f’l’“’ = 0 and conservation laws (2.39), (2.47) are not broken. We can
use this indeterminacy and introduce

TH = 0" + 9, f W, (2.52)

choosing some specific f*" to guarantee the symmetry condition T¥ = T". In this
case, the energy-momentum tensor is called canonical. Naturally we have

W o_ 5 gHv _
9,T" =9,0" = 0. (2.53)
The total 4-momentum in this case is also unchanged, as
Jd3r 9 f = Jd3r afiov = jdaiffOV -0. (2.54)
v v

The first equality in equation (2.54) follows from fOOV = 0, and the second one follows
from the Gauss theorem. The zero in the right-hand side appears when the surface o
is moved to the infinity, where fields are assumed to be absent.

Thus, both the energy and momentum of the field are determined unambiguously,
despite some indeterminacy of the energy-momentum tensor.



2.3 The Noether theorem =— 19

Amalie Emmi Noether (1882-1935) was a German
mathematician who made important contributions to
abstract algebra and theoretical physics. She invariably
used the name “Emmy Noether” in her life and publi-
cations. She was often described as the most important
woman in the history of mathematics. As one of the lead-
ing mathematicians of her time, she developed the the-
ories of rings, fields, and algebras. In physics, Noether’s
theorem explains the connection between symmetry and
conservation laws. Noether was born to a Jewish family
in Erlangen, her father was a mathematician. She stud-
ied mathematics at the University of Erlangen. At the
time, women were largely excluded from academic positions. In 1915, she was in-
vited by David Hilbert and Felix Klein to join the mathematics department at the
University of Géttingen. The philosophical faculty objected, however, and she spent
four years lecturing under Hilbert’s name. Noether remained a leading member of
the Gottingen mathematics department until 1933, when Germany’s Nazi government
dismissed Jews from university positions, and Noether moved to the United States.
Noether’s mathematical work is sometimes divided into three “epochs”. In the first
(1908-1919), she made contributions to the theories of algebraic invariants and num-
ber fields. Noether’s theorem is considered to be one of the most important mathemat-
ical theorems ever proved in the development of modern physics. In the second epoch
(1920-1926), she began work that changed the face of algebra. In her classic 1921 pa-
per Noether developed the theory of ideals in commutative rings. She made elegant
use of the ascending chain condition, and objects satisfying it are named Noetherian
in her honor. In the third epoch (1927-1935), she published works on noncommutative
algebras and hypercomplex numbers and united the representation theory of groups
with the theory of modules and ideals. In 1935 she underwent surgery for an ovarian
cyst and, despite signs of a recovery, died four days later at the age of 53.

There are certain physical reasons to require the energy-momentum tensor to always be symmetric
[56, 33]. An especially elegant argument follows from general relativity. Einstein’s equations for grav-
itational field (space-time metric gy‘,) has the form [33]

1 8nG
R,uv - ig}lVR = _7(;2 T (2.55)

wo
where RH‘, is Riemann’s curvature tensor, simplified by two indices (Ricci tensor); R is the scalar cur-
vature of space, and G is the Newtonian gravitational constant. The left-hand side of equation (2.55)
is built of the metric tensor g, and its derivatives, and by definition it is a purely geometric object. It
can be shown to be always symmetric over indices y, v [33]. Then, the energy-momentum tensor in the
right-hand side, which is the source of the gravitational field, should also be symmetric.
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2.4 Complex scalar and electromagnetic fields

Consider now the complex scalar field, which can be conveniently written as

1 )
Q= ﬁ(gvl +1¢,), (2.56a)
* 1 .
Q= E((pl_l(pz)~ (2.56h)

In fact, we are considering here two independent scalar fields ¢;, ¢,, which can be
representing, for example, two projections of some two-dimensional vector on axis 1
and 2 in some isotopic® space, associated with our field. Requiring the action to be
real, the Lagrangian of our field, similar to (2.28), can be written as

L= (0,0)("p") - m’e . (2.57)

Considering fields ¢ and ¢* to be independent variables, we obtain from the Lagrange
equations (2.27) two Klein—Gordon equations:

(o+ m2)<p =0, (2.58a)

(o+m’)p* =0. (2.58b)
The Lagrangian (2.57) is obviously invariant with respect to the so-called global® gauge
transformations:

¢ - e—iA(p, o o eiA(p*) (2.59)

where A is an arbitrary real constant. Equation (2.59) is the typical Lie group transfor-
mation (in this case it is the U(1) group of two-dimensional rotations), accordingly;
for small A we can always write

Sp = -iNp, 6¢" =i\p", (2.60)

that is, as the infinitesimal gauge transformation. Due to the independence of A on
space-time coordinates, the infinitesimal transformation of field derivatives has the
same form:

8(0,p) = ~iNd,p, 8(0,0") = iN0,p" . (2.61)

2 The term “isotopic’—as used by us—is, in most cases, not related to the isotopic symmetry of hadrons
in nuclear and hadron physics [40]. In fact, we are speaking about some space of internal quantum
numbers of fields (particles), conserving due to appropriate symmetry in this associated space (not
related to space-time).

3 The term “global” means that the arbitrary phase A here is the same for fields, taken at different
space-time points.
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In the notations of equation (2.34), we have
®=-ip, O =ip, X=0, (2.62)

so that conserving Noether current (2.38) in this case takes the following form:

oL

oL
T = —ip) + ip*). (2.63)
8(8y(p)( ®) a(ay(p,f)( )
With the account of (2.57), we get
JH=i(p e - pd'p™) (2.64)

that is, the explicit form of the current, satisfying the equation

5]

J'=0. (2.65)

This may be checked also directly, using equations of motion (2.58). Accordingly, in
this theory we get the conserving charge

o) op*
Q:JdVIO:inV<¢ a-‘f-<,>(_‘§). (2.66)

If the field is real, that is, ¢ = ¢*, we obviously get Q = 0, so that the concept of con-
serving the charge with dQ/dt = 0 can be defined only for a complex field. This is the
decisive role of U(1) symmetry of Lagrangian (2.57), (2.59). Note that our entire discus-
sion up to now is purely classical; accordingly, Q may acquire arbitrary (noninteger)
values.

Let us rewrite (2.57), using (2.56) as the additive sum of Lagrangians for fields

P15 P3¢
1 u 1 5, 2.
£ = S[@up)(@p1) + @up2)(@92)] - Sm (91 + 93). (267)
Then, writing the field ¢ as a vector ¢ in the two-dimensional isotopic space,
P=pii+py, (2.68)
where ,] are unit vectors along the axes in this space, we can write (2.67) as

m’p-p, (2.69)

NI =

1. .
L= E(ay(p)(ay(p) -

which clearly demonstrates the geometric meaning of this symmetry of the La-
grangian. The gauge transformations (2.59) can be written also as

ol +iph = e Mo, +ip,), @) —igph =g, —ipy),
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or

@1 = @,cosA+@,sinA,

@5 = -, sin A+ @, cos A, (2.70)
which describes the rotation of the vector ¢ by angle A in the 1-2-plane. Our La-
grangian is obviously invariant with respect to these rotations, described by the two-
dimensional rotation group O(2), or the isomorphic U(1) group. Transformation (2.59)
is unitary: e*(e*)* = 1. Group space is defined as the set of all possible angles A,
determined up to 27zn (where n is an integer and the rotation by angle A is equivalent
to rotations by A + 27n), which is topologically equivalent to a circle of unit radius.

Now we are going to take a decisive step! We can ask rather the formal question
of whether or not we can make our theory invariant with respect to local gauge trans-
formations, similar to (2.59), but with a phase (angle), which is an arbitrary function
of the space-time point, where our field is defined by

P00 — e ™o, @ (0 - " Vo*(x). @.71)

There are no obvious reasons for such a wish. In principle, we can only say that the
global transformation (2.59) does not look very beautiful from the point of view of rela-
tivistic “ideology”, as we are “rotating” our field by the same angle (in isotopic space)
in all space-time points, including those separated by space-like interval (which can-
not be casually related to each other). At the same time, isotopic space is in no way
related to Minkowski space-time. However, we shall see shortly that demanding the
invariance of the theory with respect to (2.71) will immediately lead to rather remark-
able results.

Naively, the invariance of the theory with respect to (2.71) is just impossible. Con-
sider once again infinitesimal transformations with A(x) <« 1. Then (2.71) reduces to

p—@-ilp, 6b¢p=-i\p, (2.72)

which is identical to (2.60). However, for field derivatives, the situation is more com-
plicated due to explicit dependence A(x) on the coordinate:

A9 — 9,9 —i(0,N)g —iN,p), b8(0,p) = —IAG,p) — (0, M), (2.73)
which, naturally, does not coincide with (2.61). For a complex conjugate field, every-
thing is similar:

@" — @" +ihg", Sp* =ihp", (2.74)

00" — 0,0" +i(0,N)p" +iA(3,0"), 6(3,0") = iIA(,0") +i(0,N)p".  (2.75)
This means that field derivatives of ¢ are transformed (in contrast to the field itself) in
anoncovariant way, that is, not proportionally to itself. The problem is with the deriva-

tive of A! The Lagrangian (2.57) is obviously noninvariant to these transformations. Let
us look, however, whether we can somehow guarantee it.
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The change of the Lagrangian under arbitrary variations of fields and field deriva-
tives is written as
oL oL

=—6p+
EPMETES

6L 8(0,0) +(p — ¢7). (2.76)

Rewriting the first term using the Lagrange equations (2.27) and substituting (2.72) into
(2.73), we obtain

oL . oL . . %
L= ay[—](—lAtp) + == (~iAd,p — ipd, ) — (¢ — ¢7)

0(0,9) 9(0,9)
. oL . oL *
= _’Aa"[a(ay<p)"’] - la(ay(p) 0N~ (9 — ¢7). 2.77)

The first term here is proportional to the divergence of the conserving current (2.63)
and gives zero. The second term, using the explicit form of the Lagrangian, is rewrit-
ten as

8L =i(p "o - 9 )0, A = 'O, A, (2.78)

where J¥ is again the same conserving current (2.64).

Thus, the action is noninvariant with respect to local gauge transformations. How-
ever, we can guarantee such invariance of the action by introducing the new vector
field A, directly interacting with current J*, adding to the Lagrangian the following
interaction term:

Ly =-eJ'A, = —ie(p"d'p - pd'p")A,, (2.79)

where e is a dimensionless coupling constant. Let us require that local gauge transfor-
mations of the field ¢ (2.71) are accompanied by the gradient transformations of Ay

1
Ay — A+ anA. (2.80)
Then we obtain
6L, = —e(6]")AM - e]"(SAF) = —e(6]”)Ay —]"ayA. (2.81)

Now we see that the second term in (2.81) precisely cancels (2.78). But we also need to
eliminate the first term in (2.81). With the help of (2.72) and (2.74), we can get

8 =i6(p o - ™) = 20" pd*A, (2.82)
so that

8L+ 6L, = —2eA, (M) . (2.83)
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But let us add to £ one more term:
Ly = eZAHA"(p*(p. (2.84)
Then, under the influence of (2.80), we have
8L, = 28°A,6A " = 2eA, (' N)p* . (2.85)
Then, it is easily seen that
OL+6L,+6L,=0, (2.86)

so that the invariance of the action with respect to local gauge transformations is guar-
anteed!

Let us now take into account that the new vector field A, should also produce the
appropriate “free” contribution to the Lagrangian. This term should be invariant to
gradient transformations (2.80). It is quite clear how we now proceed. Let us introduce
the 4-vector of the curl of the field 4,:

Fo=0,A,-0,A,, (2.87)

which is obviously invariant with respect to (2.80). Then, we can introduce

L3 = —ﬁF"VFW. (2.88)
Collecting all terms of the new Lagrangian, we get
Liot = L+ Ly + Lo+ L3 = @,0)(0"9") ~m’p" ¢
—ie(p"d"p - pd'p")A, + eZAHA’Qp*(p - éFHVF”V , (2.89)
which is rewritten as
Liot = —ﬁFvaW + (0, +ieA,)p( — ieA")p" - m’p*p. (2.90)

Thus, we obtained the Lagrangian of electrodynamics of the complex scalar field ¢!
It is easily obtained from the initial Klein—Gordon Lagrangian (2.57) by the standard
replacement [33] of the usual derivative aygo by the covariant derivative:*

D,p = (0, +ieA,)p (2.91)

and the addition of the term corresponding to the free electromagnetic field (2.88).

4 The constant e means the electric charge.
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The Lagrangian of an electromagnetic field (2.88) can be written as £ = aFw,F’“’ [33], where the con-
stant a can be chosen to be different, depending on the choice of the system of units. In the Gaussian
system of units used, for example by Landau and Lifshitz, it is taken as a = —1/1671. In the Heaviside
system of units (see e. g., [56]) a = —1/4. In this system there is no factor of 47 in field equations, but
instead it appears in Coulomb’s law. In a Gaussian system, on the contrary, 4 enters Maxwell equa-
tions, but is absent in Coulomb’s law. In the literature on quantum electrodynamics, in most cases
the Heaviside system is used. However, below we shall mainly use the Gaussian system, with special
remarks, when using Heaviside system.

In contrast to ay(p, the value of (2.91) is transformed under gauge transformation co-
variantly, that is, as the field ¢ itself:

6(Dy<p) = 6(0, ) +1e(6A,)p + ieA, 8¢ = —iA(,p + ieA,p) = —IAN(D,p) . (2.92)

The field ¢ is now associated with an electric charge e, and the conjugate field ¢*
corresponds to the charge (-e):

(Dyp)" = (9, — ieA,)p". (2.93)

It is clear that Fyv, introduced above, represents the usual tensor of electromagnetic
fields [33].
Mazxwell equations follow from (2.90) as Lagrange equations for the A, field:

L [ oL ]
29| =] =0, (2.94)
A, 12@,4,)

which reduces to

1 o .
R OF = <ie(p" g - 9" + 2°A " =
= —ie[p" D' - p(D'p)"] = -eJ", (295)
where
T =ilp Do - p(D'p)’] (2.96)

is the covariant form of the current. From the antisymmetry of F*V, it immediately
follows that

0,J" =0, 2.97)
so that in the presence of electromagnetic field the conserved current is 7*, not J*.

Note that electromagnetic field is massless and that this is absolutely necessary; if we attribute to an
electromagnetic field a finite mass M, we have to add to the Lagrangian (2.88) an additional term such

as
- L

L
M~ 8

M*AA". (2.98)
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It is obvious that such a contribution is noninvariant with respect to local gauge transformations (2.71),
(2.80).

This way of introducing an electromagnetic field was used apparently for the first time
by Weyl during his attempts to formulate the unified field theory in the 1920s. Electro-
dynamics corresponds to the Abelian gauge group U(1), and the electromagnetic field
is the simplest example of a gauge field.

2.5 Yang-Mills fields

Introducing the invariance to local gauge transformations of the U(1) group, we obtain
from the Lagrangian of a free Klein—Gordon field the Lagrangian of scalar electrody-
namics, that is, the field theory with quite nontrivial interaction. We can say that the
symmetry “dictated” to us the form of interaction and leads to the necessity of intro-
ducing the gauge field A, which is responsible for this interaction. Gauge group U(1)
is Abelian. The generalization of gauge field theory to non-Abelian gauge groups was
proposed at the beginning of the 1950s by Yang and Mills. This opened the way for con-
struction of the wide class of nontrivial theories of interacting quantum fields, which
were quite successfully applied to the foundations of the modern theory of dynamics
of elementary particles.

The simplest version of a non-Abelian gauge group, analyzed in the first paper
by Yang and Mills, is the group of isotopic spin, SU(2), which is isomorphic to the
three-dimensional rotation group O(3). Previously we considered the complex scalar
field, which is represented by the two-dimensional vector ¢ = (¢, ¢,) in the “isotopic”
space. Consider instead the scalar field, which is simultaneously a three-dimensional
vector in some “isotopic” space: @ = (¢;, ¢,, ¢3). The Lagrangian of this Klein—Gordon
field, which is invariant to three-dimensional rotations in this “associated” space, can
be written as

1 s 1 o
£=5@,p)(0") - 5m'p - P, (2.99)

where the field @ enters only via its scalar products. Invariance with respect to rota-
tions here is global; the field § is rotated by an arbitrary angle in isotopic space, which
is the same for fields in all space-time points. For example, we can consider rotation
in the 1-2-plane by angle A5 around the axis 3:

(p{ = @,C0S A3+ @,sin;,
@, = —@;sin A5 + @, cos A5, (2.100a)

!
2
!
3 @3-

S

For infinitesimal rotation, A; <« 1, and we can write

(P; = @1+ A30,,



2.5 Yang-Mills fields =— 27

@) =@, - D30, (2.100b)
P =5. (2.100¢)

For infinitesimal rotation around an arbitrarily oriented axis, we write
p—@ =p-Axp, 6p=-Axp, (2.100d)

where the vector A is directed along the rotation axis, and its value is equal to the
rotation angle.

Consider now the local transformation, assuming A = A(xy). Then, the field
derivative  is transformed in a noncovariant way:

.

p—>0,0' =0,0-3,Axp-Ax0,p,
80,p) =-Ax0,p-9,Axp. (2.101)

Oy

Let us again try to construct the covariant derivative, writing it as
D,p=0,p+8W, x9, (2.102)

where we have introduced the gauge field (Yang—Mills field) Wy, which is the vector
not only in the Minkowski space, but also in an associated isotopic space, and g is the
coupling constant.

Covariance means that

8(D,p) = —Ax (D). (2103)

What transformation rules for field W), are necessary to guarantee covariance? The
answetr is

. L
Wy — Wy = Wy = R Wy 29,8,

. I

81, = ~Rx Wy + 0,0 (2.104)

To check this, use (2.100d), (2.101), and (2.102) to obtain

8(D,p) = 8(3,) + 8(6W,,) x § + gW), x (69)
=—A><ay¢—ayf\><(7)—g(7\><Wy)x¢+ay7\><¢—gﬂ/y><(7\x¢)
=—7\><8y¢—g[(7\>< Wy)x¢+Wy x(f\><(7))]. (2.105)

Then use the Jacobi identity:5

AxB)xC+BxC)xA+(CxA)xB=0. (2.106)

5 This identity is easily proven using the well-known rule (4 x B) x C=B@A-C)-AB-0).
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Making here cyclic permutations, we can obtain

-

AxB)xC+Bx(AxC)=AxBxC). (2.107)
Applying this identity to the expression in square brackets in (2.105), we get
8(D,@) = -Ax (3,p +gW, x ) =-AxD,p, (2108)

Q.E.D.

Let us now discuss how we should write the analogue of the F),, tensor of electro-
dynamics. We shall denote it as Wuv. Incontrastto F,,,
0(2) (U(1)) gauge group transformations, Wuv is the vector with respect to O(3) (SU(2)).

Accordingly, transformation rules should be the same, as for the field ¢:

which is a scalar with respect to

8W,, = -Ax W, . (2.109)
In fact, 9, W, - 3, Wy is not transformed in this way:
53, W, - 3,W,) = ay<—A X W, + éajx) av<—7\ X W, + éajx)
=-Ax @,W, - 0,W,) - @A x W, - 3,A x W,). (2.110)

We have here an “extra” second term. Note now that
B(gil, x W) = g~ x W, + éa,]x) W+ il x (R W, + éav/*\). (2411)
The first and third terms here can be united with the use of (2.107), which gives
8(gW, x W,) = -gA x (W, x W,) + @,A x W, - 3,A x W,). (2112)

We see that the second term here coincides with the “extra” term in (2.110). Thus, we
have to define the tensor of Yang—-Mills fields as

o

W, = 0,W, - 3, W, + gW, x W,, (2.113)
which is transformed in a correct way, that is, according to (2.109).
Now we can write the Lagrangian of Yang—Mills theory:

1 -

- EW ST (2.114)

1 5 N 1 5,
L= E(DH‘P)(DH‘P) - EmZ‘P % uv

Equations of motion are derived in the usual way from Lagrange equations:

oL :av{ oL } (2.115)
awl) ~ 1a@,wi)
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where i is the vector index in the isotopic space. Then we have
aVWW +gW’ x Wuv = 4nig[(0,P) x § + g(WH x ) x @] (2.116)
or, taking into account (2.102),
D'W,, = 47g(D, @) x § = 4mg]), . (2117)

These equations are similar to Maxwell equations (2.95), but are nonlinear in the field
Wy. The second equality in (2.117) in fact determines the current of the field §, which
plays the role of the “source” of the gauge (Yang—Mills) field Wy. In the absence of
“matter”, that is, for ¢ = 0, from (2.116), (2.117), we have

D'W,, =0 or W, =-gW' xW,, (2.118)

so that the Yang-Mills field (non-Abelian gauge field) is the source of itself® (“lumi-
nous light”)! This is radically different from the case of the Abelian gauge field (elec-
tromagnetic field), where (Maxwell) field equations are linear [33]:

0'F,, =0 or divE=0, % —rotH=0. (2.119)

In standard electrodynamics we also have an additional homogeneous Maxwell equa-
tion [33]:

WFuw + 0, Fp +0,Fy, =0, (2.120)

from which, in three-dimensional notations, we get the second pair of electromagnetic
field equations:

divH=0, %—I;l+rotE:O. (2.121)

The first of these equations, in particular, signifies the absence of magnetic charges
(monopoles). Similar equations also exist in Yang—Mills theory (its derivation will be
presented a little bit later):

DyW,, + D, W, + D, Wy, = 0. (2122)

The tensor of Yang—Mills fields Wyv can be written via corresponding non-Abelian
“electric” and “magnetic” fields, in a similar way to electrodynamics [33]:

o E E E
. -E, 0 -H, H
wo-| B ¢ z fy (2.123)
"\ E K0 R
-E, -H, H o0

6 The situation here is similar to general relativity, where the gravitational field is also the source of
itself due to the nonlinearity of Einstein’s equations [33].
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Then, it follows from (2.122) that
divH # 0, (2.124)

which directly leads to the existence of the so-called t’"Hooft—Polyakov monopoles in
Yang-Mills theory [56]. Due to the lack of space, we shall not further analyze these
interesting solutions of field equations here.

The Yang—Mills field, similar to the electromagnetic field, should be massless. For
the massive case, we have to add to the Lagrangian (2.114) an additional term such as

1 5 -
Ly=—MW, WH, 2.125
M= 8n K (2125)
which will lead to the replacement of equation (2.117) by
VA 7 211
D'W,, = 4ng], + M"W,,, (2.126)

which is explicitly noninvariant with respect to local gauge transformations.

Yang Chen-Ning (born 1922) is a Chinese and
American physicist who worked on statistical me-
chanics and particle physics. He and Tsung-Dao
Lee received the 1957 Nobel Prize in Physics for
their work on parity nonconservation of weak in-
teraction. The two proposed that one of the basic
quantum-mechanics laws, the conservation of par-
ity, is violated in the so-called weak nuclear reac-
tions. The most important work of Yang is Yang-
Mills field theory, which forms the basis of the Stan-
dard Model of elementary particles. Yang was born
in Hefei, Anhui, China. In 1944 he received his mas-
ter’s degree from Tsinghua University. From 1946, Yang studied at the University of
Chicago, where he received his doctorate in 1948. He remained at the University of
Chicago for a year as an assistant to Enrico Fermi. In 1949 he was invited to do his re-
search at the Institute for Advanced Study in Princeton, New Jersey, where he began a
period of fruitful collaboration with Tsung-Dao Lee. In 1965 he moved to Stony Brook
University, where he was named the Albert Einstein Professor of Physics and the first
director of the newly founded Institute for Theoretical Physics. Today this institute is
known as the C. N. Yang Institute for Theoretical Physics. He has been elected a Fel-
low of the American Physical Society, the Chinese Academy of Sciences, the Academia
Sinica, the Russian Academy of Sciences, and the Royal Society. Yang visited China
in 1971 for the first time after the thaw in China-US relations, and has subsequently
made great efforts to help the Chinese physics community rebuild the research atmo-
sphere, which was destroyed by the radical political movements during the Cultural
Revolution. After retiring from Stony Brook, he returned as an honorary director of
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Tsinghua University, Beijing. He was granted permanent residency in China in 2004.
He renounced his U. S. citizenship in 2015 and reclaimed his Chinese citizenship.

Robert Laurence Mills
(1927-1999) was an Amer-
ican theoretical physicist
specializing in quantum
field theory and many-
body theory. While sharing
an office at Brookhaven
National Laboratory in
1954, Chen Ning Yang and
Mills proposed what is
now called Yang-Mills
field theory. Mills was born
in Englewood, New Jersey. He graduated from George School in Pennsylvania in early
1944. He studied at Columbia College from 1944 to 1948, while on leave from the
Coast Guard. Mills demonstrated his mathematical ability by winning the William
Lowell Putnam Mathematical Competition in 1948. The mathematical ability he dis-
played there was evident throughout his career as theoretical physicist. He earned a
master’s degree from Cambridge, and a Ph. D. in Physics from Columbia University
in 1955. After a year at the Institute for Advanced Study in Princeton, New Jersey,
Mills became Professor of Physics at Ohio State University in 1956. He remained at
Ohio State University until his retirement in 1995. Mills and Yang shared the 1980
Rumford Premium Prize from the American Academy of Arts and Sciences for their
“development of a generalized gauge invariant field theory” in 1954.

For a rather long time, the zero mass of Yang—Mills fields under conditions of strict gauge invariance
was considered to be a primary obstacle for physical applications of gauge field theories. The initial
idea of these theories was [75] that—using one or another (exact or approximate and experimentally
confirmed) internal symmetry of elementary particles (e. g., conservation of baryon number or iso-
topic spin)—one can introduce local invariance with respect to appropriate group transformations and
obtain quite nontrivial interaction Lagrangians with corresponding (Abelian or non-Abelian) gauge
fields.

The gauge principle was proposed as a foundation for the theory of interacting fields. But it seems that
difficulties appeared from the very beginning. The appearance of a massless gauge field immediately
leads to the existence of long range forces, associated with this field. A typical case is electrodynamics
and its long range Coulomb interaction. However, it is rather easily demonstrated that an electromag-
netic field is probably the only long range force in nature (except, obviously, for gravitation). We can
see this using very simple estimates, due to Lee and Yang [39].

Consider the simplest case of an Abelian gauge field, which may be related to conservation of a baryon
charge. It will lead to an additional long-range B-force, acting upon baryons. Let us compare the usual
Newtonian gravitation potential with the potential energy of this hypothetical field, due to its inter-
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action with nucleons of the earth. Consider a test-particle p with mass m,,, which is placed above the
earth’s surface at distance r from the earth’s center. Then
~ Gm, Mg

er = ’ (2.127)

where G is the Newtonian gravitational constant, and Mg, is the earth mass. Let the baryon charge of
our test particle be N,, and the nucleon mass be my. Assume the density of nucleons on the earth to
be constant (and there are no antinucleons at all) and equal to

Mg

_—, (2.128)
my 3RS,

p:

where Rp, is the earth’s radius. Then the potential V5, due to B-forces of nucleons, forming the earth,
can be calculated as

_ 8MgN, J Pr' gMeN, (2.129)

B~ 7% = > .
3nRImy J -] myr

where the integration is made over the earth’s volume; gz is the coupling constant of B-forces. It is

seen that equation (2.129) is similar to gravitation potential. Thus, the total potential acting upon our

test particle is equal to

m,M, MgN, m,M, 2 N
V=27 27 _ T 5[1—*?’—3 4 ] (2.130)
r myr r G mym,

Thus, the presence of B-forces leads to V # V, where ¥ is the potential acting upon antiparticle p with
the opposite baryon charge: Np = —N,,. In principle, this effect can be observable in the case of
2
LI @.131)
My
However, it is unobservable experimentally; particles and antiparticles fall in the gravitational field
of the earth with the same acceleration (with rather high accuracy). This fact leads to an estimate of
gf; <108 as GmIZV ~ 10738, Even such a small value of gp can be excluded! The equation of motion of
a test particle in the gravitational field can be written as

m,M
rE (2.132)

myg = -G

p§ )
and the mass my, is canceled here, so that free-fall acceleration g does not depend on it (the equivalence
of inertional and gravitational masses). If we neglect the mass of the electrons (compared to nucleons),
we have

m, = myN, - €, (2.133)
where € is the coupling energy in the nuclei of the substance of our test particle. Then,
m €
N, = AL (2.134)
my my

In the presence of B-forces, the Newtonian equation of motion takes the form

m,M 2 M
Mg = - szCJrg% 1:;6’ (2.135)
r romy

where C = G- gf; / mIZV can be identified with the measured gravitational constant Gey,,. In other words,
equation (2.135) can be rewritten as
m,M

2
'pMVE 8B €
m,g = ————G, 1- — . 2.136

pS r2 exp[ GexpM3, My ] ( )
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The second term here breaks the equivalence of inertional and gravitational masses, which is experi-
mentally established with an accuracy of the order of 1078 in classical Eotvos experiments for different
substances. A typical modern estimate from similar experiments gives

88 € 388
GmZ m, Gm,

<1072, (2.137)

where we have taken into account that the difference of €/m,, for different substances is of the order
of 1073, Accordingly,

2

8B

2
Gmy,

<107, (2.138)

Thus, the experimentally established equivalence of inertional and gravitational masses leads to the
following upper bound of B-forces coupling constant: gé <107Y, Accordingly, B-forces (if they exist
at all) are much weaker even than gravitation! Thus, in every practical sense, we can exclude the
existence of any massless gauge fields, except the electromagnetic field. Experimentally observed,
vector mesons are massive and break the local gauge invariance. Thus, it seems that the beautiful idea
of the introduction of new gauge fields becomes rather doubtful. Later we shall see how this problem
is solved in modern particle theory.

2.6 The geometry of gauge fields

Let us make some generalizations. We have seen above that the rotation of the vector
in isotopic space on some small angle A (JA| < 1) can be written as (cf. (2.100d))

p-@=p-Axp, (2.139)

which is an infinitesimal version of the general transformation

P — @' =exp(il - 1), (2.140)
where I are matrix generators:
0O 0 O 0O 0 i 0 -i O
L={0 o -i|, L=[o0o o0 o), E=|i o o (2.141)
0O i O -i 0 O 0O 0 O

Here, the matrix elements can be written as
UDmn = —1€imn > (2.142)

where ¢;,,, is the antisymmetric Levi-Civita symbol. Accordingly, by components,
equation (2.139) can be written as

QD;n =1+ iIiAi)mn(pn = (6mn + eimnAi)(Pn =Pm - gminAi§0n = (¢ - 7\ X (b)m . (2'143)
Local transformations have the form

®— ¢ =exp(il - A(x))p = SXP, (2.144)
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where S(x) denotes the operator of local rotation. The matrices I are the generators of
the vector representation of rotation group O(3) (or SU(2)) and satisfy the well-known
(angular momentum) commutation relations:

[Ii,Ij] = isijklk = Cijka . (2.145)

Here, C;; denotes structural constants of the SU(2) group, in this case Cy;c = gy Natu-
rally, structural constants for other Lie groups are different, but commutation relations
for generators are always written as in equation (2.145).

For an arbitrary Lie group, generators satisfy the Jacobi identity
(U 51 L] + [ B I + [ 1.5 ] = 0, (2.146)
which reduces (for structural constants) to

CijtCiam + CjtaCiim + CiitCijm = 0. (2.147)

So far we have analyzed the isovector field. A more fundamental approach requires
introduction of isospinors for the same SU(2) group.” The rotation of the fundamental

two-dimensional spinor ¢ = ( $ ) can be written as

1
2

W' = exp| 17 o0 oo = S0, (2148)

where S(x) is a 2 x 2 matrix, and 7 are Pauli matrices in isotopic space; t;/2 satisfy
commutation relations (2.145), and from the beginning we are writing the local trans-
formation. For the general n-dimensional case, we have

P(x) — P’ (x) = exp[iM* A (x)|h(x) = SCOP(x), (2.149)

where a takes the values 1, 2, 3 (SU(2) group); here i is the n-component spinor, and
M*% are n x n matrices, satisfying commutation relations, such as (2.145).

If we consider local transformations of fields, the field derivative aylp, as we have
seen above, is transformed in a noncovariant way:

oY = S©@,) + (3,5 (2.150)

The reason for this is purely of a “geometrical” nature. The fields (x) and (x + dx) =
P (x) + d in nearby (infinitesimally close) points of space-time are measured relative
to different (rotated by local gauge transformations) axes in isotopic space, shown in
Figure 2.2(a). Thus, the value of dip contains information not only on field change with

7 Below we shall return to the detailed analysis of spinors. Here, it is sufficient to remember some
elementary information from the standard course on quantum mechanics.
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r+dx

Y(a+de)=y(x)+di(z)

r+dz
P(z)+6(z)

()

Figure 2.2: (a) The value of di contains information both on the change of ¢ and on the transforma-
tion of coordinate axes in isotopic space during the transfer from point x to x + dx. (b) The value of
0y, determined by “parallel” transfer.

distance, as we move from point x to x + dx, but also on the appropriate change due to
the rotation of the axes in isotopic fields. To construct covariant derivative, we have to
compare P(x + dx) not with (x), but with the value which the field y(x) acquires due
to translation from x to x + dx with fixed directions of axes in isotopic space, which is
denoted below as +61, and called the field obtained as a result of “parallel” transfer,
as shown in Figure 2.2(b). Let us assume that 61 is proportional to field i itself and
also to translation dxy, so that it can be written as

& = igM“Apdx*p, (2.151)

where g is some constant, and AZ is the gauge field, which in some sense determines
how axes in isotopic space change during the transfer from one point to the other. The
“true” or covariant derivative of i is now determined by the difference

Dip = (@ + dip) — ( + 6) = dp 8 = dyp - igM“ ALy (2152)
and equal to
D . a a
d_i =Dy = 3 — igM A% (2.153)

The situation here is similar to that in the theory of gravitation [33], where the covariant derivative of
some vector V* is defined as
A
D,V* =,V +T) V", (2.154)
where Christoffel coefficients I"KV connect the components of the vector in a given point with its com-
ponents in a nearby point, from which this vector is transferred by parallel translation in Riemann
space.
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Equation (2.153) gives the general definition of the covariant derivative in the Yang—
Mills theory for an arbitrary field i, which is transformed under some irreducible rep-
resentation of some gauge group with generators M [56]. Consider the following sim-
ple examples:

- U(1) group:
(p—»eiiA(p, (p*_)eiA(p*’ M=-1,
D,=09,+igA, g=e (2.155)
— electrodynamics.
- SU(2) group:
vector representation:

(Ma)mn =iy (aamn=1273),
Dy Pm = 0y Pm ~ 8 (M )y AyPr = 0y Prm ~ 8Eamn Ay P (2.156)
= (3,9 + 8Ay X D) »

where 4 is the same gauge field, which was denoted as W above.
spinor representation:

M* = %T“ (@a=1,23),
Y- ,-%% Ay (2.157)
- Yang-Mills theory.

Thus, under an arbitrary rotation in the isotopic space, the field is transformed as
Y — SOy, (2.158)
and the covariant derivative is transformed as the field itself:
D — D' = S()D, . (2.159)
It is convenient to introduce matrix notations
1 a aa
Ay =M Ay N (2.160)
so that equation (2.153) takes the form
Dy = (0, - igA ). (2.161)

Transformation to a new coordinate system in isotopic space, with the account of
(2.159), gives

(0, - gAY’ = S@, —igA ). (2162)
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Assuming here Y’ = S, we obtain

1 f el -1

A, =SAS - é—,(ayS)S , (2.163)
which gives the general form of the gauge transformations of Yang—Mills fields (gen-
eralized gradient transformation). Consider again the same examples:

- U(Q1) group:

S=e™, 9,S=-i@,0e™,

/ 1 .
A=A+ anA (g=e, M=-1), D,=0,+igA,. (2.164)
—  SU(2) group:
spinor representation:
i, - i, - =

S= exp<§r . A), 9,S = ET -0,AAS, (2.165)

I
Ay = Ay -AXx Ay + gayA s (2.166)

which follows from (2.163) for |7\| <« 1, with the account of commutation relations
(T4 Tpl = 12643 T,, and coincides with (2.104).

Consider now the succession of “parallel transfers” of our field around the closed path
ABCD, shown in Figure 2.3. Let us start from point A, where the field is assumed to be
equal to P, o. Then, its change—due to the transfer to point B—is determined by the
covariant derivative (cf. (2.159), (2.153)), which gives

1
Yp =Y+ Dyl;bA,OAXH + EDyDvlpA,oAXHAXV +ee= (14 AXPD;; + ')lpA,O .
Next, performing transfer to point C, up to the terms of first order, we get

e =Yg +6xX'Dypp = (1+6x"D, g = (1+8x'D, ) (1+ AX*D,) a0 -

D C
6:1:1/
A Azt B

Figure 2.3
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Thereafter, the transfer to point D and the return to initial point A give

Yp=(1-2"Dpy)yc, (2.167)
l;bA,l = (1 - 6X0D0)II)D

= (1-8x"D,)(1-AX"D,,)(1 + 6x"D, )(1+ AX"D, )4 (2.168)

= {1+ 8x"AX"[D,, D, 1} 0 » (2.169)

where the commutator of operators of covariant differentiation appeared:
[D,,D,] = [0, - igA,, 0, - igA,] = -ig{o,A, - 3,4, —ig[A,,A,]}. (2.170)
Let us introduce the field tensor

Gy = 0,4, - 0,4, —ig[A,,A)], (2.171)
so that

[D,.D,] = ~igG

Wy -+ (2.172)

Equation (2.171), in fact, gives the general definition of the tensor of Yang—Mills fields
for an arbitrary gauge group. Accordingly, equation (2.169) can be written as

Y= (1-1gAS" G, ) hag, AS = 8x'Ax, 473)
and we obtain

Va1~ Pao = -80S Gy - (2.174)

Thus, a nonzero gauge field tensor leads to a finite physical result as we go around the
closed path, which is proportional to the flux of the gauge field G, through the path
(contour) area AS": the field y is rotated in isotopic space. It is easy to see that the
field tensor G,,, is invariant relative to gauge transformations:

G,y = SG,S ™, (2175)

so that it cannot be reduced to zero, using only such transformations. At the same
time, if G,,, is zero for some gauge, it remains zero for all other gauges.

Consider again our examples:
— U(1) group (the usual field tensor of electrodynamics):

Guv =

w =04, — A, (2.176)
- SU(2) group:
(M4 M) = iegpcM®, G, = 3,AL — 0,A% + g€ AVAS .177)
which in vector notations in the isotopic space
G =04, -0,A, +gA, x4, (2178)

coincides with definition (2.113) given above.
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Here, we again can note an analogy to the theory of gravitation. The tensor of Yang-Mills fields is, in
some sense, analogous to the Riemann—Christoffel curvature tensor [33]:

Riyw = 0Ty = 0,Th + T T, ~ T3 T, (2.179)

The parallel transfer of an arbitrary vector V¥ around the closed contour in the Riemann space leads
to the following difference between the initial and final components of the vector:

1
AV* = —R* VPAS™, (2.180)
27 poA
where AS?! again denotes the area of the contour. The value of AV* is different from zero only in the

space with finite curvature. In general relativity, this corresponds to the presence of a nontrivial grav-
itational field.

Figure 2.4

Analyzing the transfer around the path forming the parallelepiped shown in Fig-
ure 2.4, Feynman has given a simple derivation of the following identity for the field
G,

1%

D,G,, +D,G,, +D,G,, =0, (2.181)
which in fact determines the second pair of “Maxwell equations” for the Yang—Mills
field (2.122). In the case of U(1) gauge symmetry, this reduces simply to (2.120):

9pFy + 0, F,, +0,F,, =0. (2.182)
Briefly, the derivation goes as follows: In Figure 2.4 we show the path (contour)
ABCDAPSRQPA. There are another two paths of the same type along the borders of
two pairs of opposite facets of the parallelepiped, so that along the borders of all six
facets we can draw the path (ABCDAPSRQPA) + (ADSPABQRCBA) + (APQBADCRSDA).
All parts of this contour are now passed twice in two opposite directions. Accordingly,
the field v is not changed as we go around our closed path, which immediately gives
the identity (2.181).
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Table 2.1: Analogies between gauge field theories and gravitation.

Gauge theories General relativity

Gauge transformations Coordinate transformations

Gauge group Group of all coordinate transformations
Potential of gauge field A,  Christoffel coefficients r;jv

Field tensor G, Tensor of curvature Ry,

In the theory of gravitation there exists the similar Bianchi identity for the Riemann—Christoffel tensor:
DpRﬁyv + D}AR;l{vp + DVRKPH =0. (2.183)

The analogy of gauge field theories and the theory of gravitation can be expressed as in Table 2.1.

All these analogies actually exist on a deeper level. Even during early stages of the development of
gauge field theories, it was shown by Utiyama [68] that the equations of Einstein’s general relativity
theory can be derived using the idea and general scheme of gauge field theory, if we take the Lorentz
group (coordinate transformations of the special theory of relativity) and demand the invariance of
the theory with respect to corresponding local transformations (when parameters of the Lorentz group
are considered as arbitrary functions of coordinate in the Minkowski space).

2.7 Arealistic example: chromodynamics

Let us briefly consider the structure of quantum chromodynamics (QCD) as an exam-
ple of realistic non-Abelian gauge theory. Quantum chromodynamics is based on the
fundamental experimental discovery: each quark of the given “flavor” u, d, s, c, t, b
possesses an additional quantum number, which is called “color”, and which can take
three possible values (1, 2, 3 or R, G, B).® Then, each quark field is represented by the
fundamental spinor of the SU(3) group:’

q
9=\ 94 |- (2.184)
qs
The color symmetry is exact, and QCD Lagrangian should be invariant to SU(3) group
transformations:

q— Ugq, (2.185)
where the 3x3-matrices U are unitary and unimodular:

U'U=1, DetU=1,

8 The necessity of this quantum number was clear from the very beginning of the quark model, as it
allowed lifting certain contradictions with the Pauli principle.

9 A rather clear and compact presentation of irreducible representations of this group, though in re-
lation to the other problem of particle physics (approximate symmetry of hadrons and their quark
structure), can be found in [40].
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U=¢T, T=T", SpT=0. (2.186)

These matrices (transformations) depend on eight parameters (“rotation angles”) €,
and, accordingly, there are eight generators A;/2 (i = 1,...,8):

01 0 0 -i O 1 0 O
Al = 1 O O 5 Az = l 0 0 5 /13 = O —1 O 5

0 0 O 0O 0 O 0O 0 O

0 0 1 0O 0 —i 0 0 O
M=(0 0o o0, As=l0 0 0], A=[0 o0 1],

1 0 O i 0 O 01 0

0 0 O 1 1 0 O
A={0 0 -], Ag=— 1 0 |, (2.187)
7 o . 8 \/§

i O 0O 0 -2

which are a kind of “generalization” of Pauli matrices to three dimensions. These gen-
erators satisfy the following commutation relations:

|:Aa Ab

LA
=, ?] = ifane < (2.188)

where the nonzero structural constants f,. are given by

1
f123 =1, f147 = _f156 =f246 =f257 :f345 = _f367 = 5’
V3
fuss = fers = 5 (2.189)

The basic approach of QCD is to make color symmetry the local gauge symmetry.

As a result, using the recipes of gauge field theory, we introduce eight gauge fields
(gluons), which transfer interactions between quarks. These can be conveniently writ-
ten in the following matrix form (as in (2.160)):

3, 1 48 1 42 4 :,5
o Ay + ﬁAu Ay - IAH Au - zAu
5 a 1, 42 3, 1 48 46 a7
A =M= =S| Ay Ay AL Ay-idy ) (2.190)
4 +a5 6  :a7 2 28
Au + lAy Ay + lAy —\—5Ay
The explicit form of the gluon field tensor can be obtained from (2.171) or from (2.177),
substituting into the last expression instead of €,,., the structural constants f;,. of
the SU(3) group. In accordance with the general ideology of gauge theories, gluons
are massless. The absence of long-range forces due to gluons is explained by the phe-
nomenon of confinement, which will be discussed in the final part of this book.






3 Canonical quantization, symmetries in quantum
field theory

3.1 Photons

3.1.1 Quantization of the electromagnetic field

Now we have to move from classical to quantum field theory. The procedure of canon-
ical field quantization is similar to those procedures for mechanical systems. First of
all, we shall consider the quantum field theory of free (noninteracting) fields, and
we shall start with the case of the electromagnetic field—not the simplest case—but,
nonetheless, physically quite important. We have already seen above that the electro-
magnetic field is an example of an (Abelian) gauge field. This leads to some additional
complications related to the correct account of gauge invariance. For the electromag-
netic field, these problems are solved in a relatively simple way, within the canonical
quantization procedure, whereas for non-Abelian Yang—Mills fields, we need a much
more complicated scheme of quantization, based on functional integration, which
will be discussed much later. The presentation in this chapter is essentially based
on [6].

From a mechanical point of view, the field is represented as the system with an
infinite (continuous) number of degrees of freedom. However, it is convenient to start
from the classical description of the field, which deals with an infinite, but discrete,
set of variables. We shall consider the electromagnetic field in the so-called Coulomb
gauge, when its vector potential A(r, t) satisfies the condition of transversality:

divA=0. 3.1

The scalar potential is taken as ¢ = 0, whereas the electric E and magnetic H field are
defined as'

E=-A, H=rotA. (3.2)

The Maxwell equations reduce, in this case, to the wave equation for the vector poten-
tial A:

2
V’A- — =0. (3.3)
ot?
It is well known that the six components of the electromagnetic field are written in the form of an
antisymmetric tensor:
Y =#aY - 9'AF, (34)

1 Let us recall that we are using the system of units with the speed of light ¢ = 1.

https://doi.org/10.1515/9783110648522-003
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which immediately leads to homogeneous Maxwell equations:
P+ PP+ P — 0. (3.5)
In a vacuum (in the absence of sources) inhomogeneous Maxwell equations are written as
o,F" =0 (3.6)

or
oA’ - 9"(9,4*) = 0. 3.7)

We know that these equations follow from the variational principle with the Lagrangian

L= —LF F (3.8)

16m *

where A* is considered as a dynamic variable. However, for the given values of field strength F,y, the

4-vector potential A is not single-valued, but is determined only up to the gradient transformation
Ay — Ay = Ay + 3,00, (39)

If we require for A(x) the validity of an additional condition OA = —aHA" , we easily obtain for the
field, transformed by (3.9), a,,AP’ = 0. Now we can just drop the prime over A* and write the so-called
Lorentz condition:

9,A" =0. (3.10)
Then (3.7) is transformed to

oA’ =0, (3.11)

that is, the wave function for the 4-vector potential. The Lorentz gauge (3.10) gives one equation for four
components of the potential, reducing the number of independent components of the field to three.
However, this condition still does not make Ay singly defined. For Ay satisfying Lorentz condition, we

may introduce A;’; =A,+ ayA, which also satisfies it due to OA(x) = 0. Let us now choose A(x) to satisfy

%—It\ = —, then obviously ¢’ = 0, so that equation (3.10) gives V - A = div A = 0. Thus, we come to the

Coulomb gauge, with only two independent components of the electromagnetic field (transversality
condition), in agreement with reality.

Transformation to a discrete set of field variables is achieved by considering the field
system in a finite spatial volume V (below, for shortness of notation, we just put V = 1)
[33]. The vector potential is represented by a Fourier expansion over plane waves:

A=Y (ae™ +age™), (3.12)
k

where the expansion coefficients ay depend on time according to
a ~e g =K. (3.13)
Due to transversality condition (3.1), we have
a,-k=0. (3.14)

In (3.12) summation is done over the infinite discrete set of k,, k, k,. As usual, we
can make transformation from summation to integration over k,, ky, k,, introducing
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Pk
(27'[)3 ’
&Pk = dk,dk, dk,. Finally, the state of the field is completely determined by amplitudes

ay, which are considered as the set of classical field variables.
Let us introduce the canonical field variables as

as the number of possible values of k, in the infinitesimal volume of k-space

1 %
Q = ﬁ(ak +ay), (3.15)
Pk = —%(ak - a;) = Qk . (316)

Obviously, these variables are real. Then the series (3.12) can be rewritten as
A= Vin z [Qk coskr - (uiPk sinkr | . (3.17)
Kk k

To determine the field Hamiltonian H, we calculate the total energy:

1 3.2 | pr2
E=—|dr(EE+H 3.18

8n .[ ( " ) ( )
and express it via the variables Qy and Py. To do this, we find E and H from (3.2) and
(3.17), substitute the appropriate expressions into (3.18) and obtain, after the integra-
tion over coordinates,

1
H=> Y (Py + wiQ}) - (3.19)
k

From the condition of transversality, both Py and Qy are orthogonal to vector Kk, so
that they, in fact, possess only two independent components. The directions of these
vectors are defined by the polarization directions of the appropriate wave. Let us de-
note two components of P, and Qy, in the plane orthogonal to k as Py, and Qy,, with
a = 1,2. Then (3.19) can be rewritten as

1
H=> Y (Prg + w3 Qi) - (3.20)
ka

Thus, the Hamiltonian H is represented by the sum of independent terms, each having
the form of the Hamiltonian of the harmonic oscillator.

Now we can perform quantization. The way to quantize an oscillator is well known
from quantum mechanics [35]. Quantization reduces to the change of the generalized
coordinates Qy, and generalized momenta Py, by corresponding operators, satisfying
the standard commutation relations:?

Qkapka - Pkana = [Qkaipka] =1i. (3.21)

2 Note that here we use i = 1.



46 —— 3 Canonical quantization, symmetries in quantum field theory

For different values of ka, the corresponding operators just commute. Accordingly, the
fields A, E, H also become operators.
The eigenvalues of the Hamiltonian (3.20) obviously are

1
E-= Z(Nk,, + §>wk, (3.22)
ka

where Ny, are integer numbers, representing the number of photons in quantum
states, characterized by ka. The matrix elements of operator Qy, are also well known
from quantum mechanics [35]:

N
(Nial QuaNig = 1) = (Nigq = 11 QueelNicg) = \fﬁ : (323)
Kk
The matrix elements Py, = Qy, differ from (3.23) by a factor +iw,.
Let us introduce new operators:

1 1
¢, = ——(w +iPy,), C, = ——(w —iPy,). 3.24
ka m( kQka + 1Pra) > Ciq m( kQxa — 1Prq) (3.24)
Then, from (3.23) and (3.24), we obtain

<Nka - 1|Cka|Nka> = <Nkalclta|Nka - 1) = VNka . (3.25)

From (3.24) and (3.21), we immediately get commutation relations for operators ¢y,
and ¢y :

Ckaclia - Clﬁacka = [Cka’ Clia] =1. (3.26)

For different k and a, these operators simply commute. The operators ¢, and c;,, are
called operators of annihilation and creation of photons in the state with wave vector
(momentum) k and polarization a. The origin of these terms is obvious from (3.25).
For historical reasons, the formalism—based on the use of such operators—is called
second quantization.

The operator of the vector potential (with the use of (3.12), (3.15), (3.16), and (3.24))
can now be written as

A= Z(CkaAka + CltaAlia) > (3.27)
ka
where
e(a) ikr
A = Vir—==e"", (3.28)

\/Z(Uk

where e@ is the unit vector of polarization for the given field oscillator. Obviously, we
have e .k = 0, so that this vector is orthogonal to the photon momentum k. To each
value of k, we have two independent directions of polarization a = 1, 2.
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Likewise, we can write down expansions for electric E and magnetic H field oper-
ators:

E= z(ckaEka + CieaBia) » (3.29)
Kka
H =) (CieHiq + CeaBlia) » (3.30)
Kka
where
Eyq = iwgAyy, Hyy = M xEy,], (3.31)

where n = Kk/w, is the unit vector directed along photon propagation. The vectors Ay,,
introduced in (3.28), satisfy the following orthonormality condition:

" 2
Jd3rAkaAk,a, = aT(SwX/(Skk/ 5 (332)
k

where we have taken into account that two independent polarization vectors are or-
thogonal: e® - e®)* — 0. In fact, the values of Ay, (plane waves) can be treated as
wave functions of a photon with momentum k and polarization e®.>

From (3.32) and (3.31), it is easy to obtain

1 * *
4—7_[ J d3r(EkaEk1a, + HkaHk’a’) = wkSkkl 5aal . (333)
Substituting (3.29) and (3.30) into (3.18) and using (3.33), we find

1 1 3 * *
H = Z E(Ckaclta + Cltacka)ﬁ Jd r(EkaEk’a’ + HkaHk’a’)
ka

1
=2 5 (Ckaia + ClaCica) (3:34)
Kka
or, using commutation relations (3.26),

1
H = Z<C§acka + §>wk, (3.35)
ka

which gives the secondary quantized Hamiltonian of the system of photons. After com-
parison with (3.22) it becomes clear that

Nia = ClaCra (3.36)

3 Let us stress that these wave functions cannot be understood as probability amplitudes of spatial
localization of photon, as there is no sense in defining the coordinate of a particle moving with the
velocity of light.
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represents the operator of the number of photons in ka state, which is diagonal in
occupation number representation, with integer eigenvalues. Note that (3.33) corre-
sponds to the wave function normalization to a “single photon per volume V = 1”.

In classical theory of electromagnetic field, its momentum is defined as [33]

_ 1 (3
P-4ﬂjdr[E><H]. (3.37)

Replacing E and B by operators (3.29) and (3.30), we obtain
P- Z<c§ Cha 1>k, (3.38)
= (74 o 2

which corresponds to each photon carrying the momentum k.

The presence in (3.35) and (3.38) of the terms, independent of occupation num-
bers (1/2 contribution in parenthesis), corresponds to an infinite contribution of vac-
uum fluctuations (“zero-level” oscillations) of the electromagnetic field. This is the
first example we meet of a typical “field theory divergence”. In most cases—in this
situation—we can simply shift the origin of an energy scale (or the origin of momen-
tum scale) and write

H=Y CuCaWk> P=) CraliaK. (3:39)
ka ka

The origin of energy or momentum scale is “renormalized” here by infinite (“vacuum”
constants, which are independent of excitations of the field system. However, we must
stress that the presence of an infinite energy (momentum) of the vacuum (zero-level
oscillations) is absolutely real physically and reflects the quantum nature of the field,
leading to some finite experimental effects. One of the best examples is the so-called
Casimir effect, which we shall discuss below.

3.1.2 Remarks on gauge invariance and Bose statistics

The choice of potentials in electrodynamics, as is well known, is not unique. Above we
have used the Coulomb gauge (3.1). In the general case, components of vector potential
Ay can undergo the gradient transformation, such as

Ay — A+ 0,0 (3.40)

For plane waves, limiting ourselves to transformations, which do not change this form
of potential (that is, its proportionality to exp(—ik"xu)), reduces to the possibility of
adding to the wave amplitude an arbitrary 4-vector proportional to k.
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In the case of an arbitrary gauge, the 4-potential of the field can be written in the
form, generalizing (3.27),

A=Y (i + Clalln) s G41)
ka

where wave functions of photon are

= v
Al = \/4_an_we""v" : (342)

where e is a space-like 4-vector of polarization, which satisfies the condition eye“* =-1.
The space-like nature of the 4-vector of polarization is obvious from the condition of
four-dimensional transversality, as the wave vector (momentum) of a real photon al-
ways belongs to the light cone. In these notations, our gradient (gauge) transformation

reduces to

e

= e, + Ak, (3.43)

where A = A(K") is an arbitrary scalar function of k. Transversality of polariza-
tion means that we always can choose the gauge, guaranteeing three-dimensional
transversality, when we choose

e =(0,e), e-k=0. (3.44)

Four-dimensional transversality, equivalent to the Lorentz condition (3.10), can be
written in an invariant form as
e,k =0. (3.45)
This condition, as well as eye"* = -1, is not violated by transformation (3.43), as for a
real photon, we always have k? = 0 (massless photon on the light-cone!). The measur-
able physical characteristics should obviously be invariant to gauge transformations.
Photons are described by Bose statistics. This is obvious from the fact that the
number of photons N, in ka state may be an arbitrary integer, as well as from the
form of commutation relations (3.26). A Bose field can acquire the classical limit. It is
well known that the properties of the quantum system approach that of the classical,
when quantum numbers, determining the system state, become large. For an electro-
magnetic field, this means that the number of photons Ny, is to be large enough. In
this case, we can neglect unity in the right-hand side of commutation relations (3.26)
(obviously, this corresponds to the limit of # — O for the usual system of units) and
write

CreaCra = CkaCra > (3.46)
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so that operators ¢y, ¢y, can be considered as classical filed amplitudes. However,
some care is needed, as in the case of all Ny, > 1, we shall get the infinity after the
summation over Ka for the field energy (3.22).

In fact, from a physical point of view, it is sensible to consider the values of the
fields, averaged over some finite time intervals At. In Fourier expansion of such an
averaged field E, the main contribution comes from the frequency region wAt < 1. Now,
to derive the conditions of quasiclassicality, we have to consider only field oscillators
with w < 1/At. The number of oscillators with frequencies from zero to w ~ 1/At, by
the order of magnitude, is equal to (V = 1):

3

(%) N @, (3.47)

The energy of the field in the unit volume is of the order of E*. Dividing this energy by
the number of oscillators and by the average photon energy ~ hw, we get the following
estimate for the number of photons:

N~—. (3.48)

Then, from the condition N » 1and (3.47), we obtain

IE| > %, (3.49)

which determines the criterion of quasiclassicality. We see that the field is strong
enough, and stronger for smaller time intervals At. For the time-dependent field At ~
w™!, so that a sufficiently weak alternating field cannot be described quasiclassically.
Only static fields for which At — co can always be treated as classical.

On the measurability of fields in quantum electrodynamics

The existence of a finite limit for velocity of propagation of interactions (speed of light) in relativis-
tic theory leads to a number of additional limitations for the measurability of physical characteristics
(variables). At the early stages of the development of quantum field theory these limitations were dis-
cussed by Landau and Peierls. The qualitative discussion of these limitations can be found in the
Introduction to [6]. During this analysis, Landau and Peierls formulated the fundamental question
of the possibility of measuring an electromagnetic field itself. They claimed that the measurement of
any component of (say) an electric field requires the determination of the momentum of a charged
test particle, so that the imminent action of the field, radiated during this operation, will always lead
to unavoidable limitations of field measurements. They concluded that the precise measurement of
field strength becomes impossible, in contradiction with the basic points of quantum electrodynam-
ics discussed above. This fact, as well as a number of similar difficulties to be discussed later, were the
reason for a long period of Landau’s rather skeptical opinion on quantum field theory in general.

4 For better understanding, here we explicitly write down both ¢ and #.
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The problem of fields measurability was analyzed in more detail by Bohr and Rosenfeld (reference an
interesting review of this problem by Rosenfeld in [49]). It was demonstrated that all the difficulties
are essentially solved (in the spirit of the Copenhagen interpretation of quantum mechanics) if we use
the finite (not point-like) test particles. For example, consider the measurement of the E, component
of an electric field, averaged over some volume and time intervals. Let us use the test particle with
volume V and homogeneous charge density p and measure its momenta p,’( and p,’(’ at the beginning
and end of time interval T. Making this test particle heavy enough, we can achieve its arbitrarily small
displacement during this interval, and obtain for the average value of the field E,,,

EpVT =p) - p). (3.50)

However, the measurement of the momentum of the test particle inevitably leads to some error Ax
in the determination of its position, according to the usual indeterminacy relation: Ap, ~ h/Ax. This
leads to indeterminacy AE, for the field value E,, which is of the order of

AE, ~ lﬁ . (3.51)
However, it is obvious that this error can be made arbitrarily small by just increasing the charge density
of a test particle.

In a similar way, we can analyze the measurability of charges and currents [49]. In the opinion of Bohr
and Rosenfeld, such arguments demonstrate the absence of any contradictions in the basic principle of
quantum electrodynamics. However, we should note that the Copenhagen interpretation of quantum
theory, using the classical concepts as its inevitable part, at present is not commonly accepted (nor is it
considered to be absolutely satisfactory by many researchers). The modern situation with the quantum
limitations of field measurements is discussed in [44)].

Bitte, bitte, Landau, muss ich nur ein Wort sagen!
Discussion between Bohr and Landau in Copenhagen (1931) as pictured
by George Gamow. Figure to the right depicts Pauli.

3.1.3 Vacuum fluctuations and Casimir effect

The reality of vacuum (“zero-level”) fluctuations of an electromagnetic field is beautifully illustrated
by the so-called Casimir effect [28]. Consider two big ideally conducting metallic planes, placed in a
vacuum, at the distance a from each other, as it is shown in Figure 3.1. Let these metallic plates be
squares with sides L and L > a. Consider the modes of an oscillating electromagnetic field in the
volume L?a. Boundary conditions require that the vector of electric field E be perpendicular, whereas
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Figure 3.1

the vector of magnetic field B is parallel to the internal surface of the plate. Only transversal modes
contribute to energy. If the wave vector component k,, orthogonal to the surface of plates, is nonzero,
it can acquire only discrete values k, = nm/a (n = 1,2,...), so that the nodes of the field are at the
plates. We also have to take into account two polarization states. If k, = 0, we remain with only one
mode (the electric field component of this mode is zero, as a tangential electric field is absent on the
surface of an ideal conductor). Then, the energy of zero-level oscillations of electromagnetic field in
the volume between plates is given by

% L g = Z helkyl = "1 j(z )2[|k|l+22\jkz+a]. (3.5)

This expression is obviously infinite. However, let us subtract from (3.52) the similar expression for the
energy of vacuum fluctuations in the same volume, but in the absence of metallic plates:

_hcn dk” dk2[2 2 _ hc d\l [z 22,2
EO_7L J(Zn) J 27_[2 k +kZ J(m)zzjdn k +n’m?/a’. (3.53)
—00

Then, the change of the vacuum energy due to introduction of metallic plates (per unit surface of the
plates) is given by

0 00 (o)
£ = E-Eo _ Z—; Jdkk(g +y \/k2 +n?m?/a® - J dn\/k2 + nzrrz/a2>. (3.54)
n=1

12
0 0

This expression is still infinite, due to ultraviolet (large k) divergences. However, we can take that
into account for wavelengths smaller than atomic size, the approximation of an ideal conductor (con-
sidered as continuous medium) becomes inapplicable. Thus, we have to introduce in the integrand
of (3.54) some smooth cutoff function f(k), which is equal to unity for k < k,, and tends to zero for
k > k,,, where k,, is of the order of the inverse atomic size. Then, we can write
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3
Il
—_

2 ® o)
& :hc% !du[\gﬁf(gx/ﬂ)+ Z u+n2f(g\lu+n2>
- I dn\u + nzf(g\/u + n2>} , (3.55)
0

where we have introduced the dimensionless integration variable u = a’k?/m%. The last expression
can be rewritten as

E= hcﬂ—z 1F(O) +FO)+FQ)+---— Tan(n) (3.56)
4a3 | 2 ) ’ ’

where we have defined the function
(o)

F(n) = Idu\/u+n2f(g\/u+nz>. (3.57)

0

For n — oo, we have F(n) — 0, due to the properties of the cutoff function. To calculate the differ-
ence between the sum and the integral in square brackets in equation (3.56), we may use the Eiler—
Maclaurin summation formula, writing it as

1 T 1 1
SFO + FO) + FQ) + - - J dnF(n) = —iBzF’(o) - EB[,F'”(O) e, (3.58)
0

where B, are Bernoulli numbers, defined by the series

y R
ke > B, (3.59)
v=0
In particular, B, = 1/6, B, = -1/30,.... We have
(o)
F(n) = J du Vﬂf( ’%/ﬂ ) , F'(n)= —2n2f< % ) . (3.60)
2

Assuming that f(0) = 1 and all its derivatives are zero at the same value of its argument, we have
F'(0) = 0, F""'(0) = —4, whereas all higher-order derivatives of F are zero. Thus, the value of the cutoff
does not enter into the final results, and we get

hem? B, n° he
— e S el 3.61
a 4 720 a3 3.61)

Then, the force (per unit square) acting upon the plates is
2
n° hc

F=-___ 3.62
240 a* G62)

The negative sign here corresponds to attraction. It is remarkable that the existence of this (quite
weak) attractive force, due to vacuum fluctuations of the electromagnetic field, was experimentally
confirmed, and the theoretical expression (3.62) was directly checked. It is even more surprising that
the existence of the Casimir force has to be taken into account [32] during construction and work of
modern micromachines! This proves, beyond any doubt, that “zero-level” oscillations of an electro-
magnetic field are quite real.
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Hendrik Brugt Gerhard Casimir (1909-2000)
was a Dutch physicist best known for his research
on the two-fluid model of superconductors (together
with C.]. Gorter) in 1934 and the Casimir effect (to-
gether with D. Polder) in 1948. He studied theoret-
ical physics at the University of Leiden under Paul
Ehrenfest, where he received his Ph. D. in 1931. Dur-
ing that time he also spent some time in Copenhagen
with Niels Bohr. After receiving his Ph. D., he worked
as an assistant to Wolfgang Pauli at ETH Zurich. In
1938, he became a physics professor at Leiden Uni-
versity. At that time, he was actively studying both
heat conduction and electrical conduction, and contributed to the attainment of mil-
likelvin temperatures. In 1942, during World War II, Casimir moved to the Philips
Physics Laboratory in Eindhoven. He became a codirector of Philips Laboratory in
1946 and a member of the board of directors of the company in 1956. He retired from
Philips in 1972. Although he spent much of his professional life in industry, Hendrik
Casimir was one of the great Dutch theoretical physicists. Casimir made many con-
tributions to science during his years in research from 1931 to 1950. These contribu-
tions include: pure mathematics, Lie groups, hyperfine structure, calculation of nu-
clear quadrupole moments, low temperature physics, magnetism, thermodynamics
of superconductors, paramagnetic relaxation, applications of Onsager’s theory of ir-
reversible phenomena. He helped found the European Physical Society and became
its president from 1972 till 1975. In 1946 he became member of the Royal Netherlands
Academy of Arts and Sciences. While at Philips NatLab, in 1948 Casimir, collaborating
with Dirk Polder, predicted the quantum mechanical attraction between conducting
plates now known as the Casimir effect. He was awarded six honorary doctor degrees
by universities outside the Netherlands. He received numerous awards and prizes.

3.2 Bosons

3.2.1 Scalar particles

Consider particles with spin 0. The state of a free spinless particle is completely deter-
mined by its momentum p. Its energy &, is defined by

2 or pP=m’ (3.63)

2 _ .2

Ep =P +m
or, as usually expressed, the particle is on its “mass surface”. Energy-momentum con-
servation follows from the homogeneity of space-time. In quantum mechanics, the
requirement of the symmetry towards an arbitrary translation of a coordinate system
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means that the wave function of a particle with 4-momentum p is multiplied (as a re-
sult of translation) by a phase factor (with modulus 1). This requirement is obeyed only
by the plane wave:

const-eP*, px= gyt — pI. (3.64)

The wave equation for our particles should have (3.64) as a partial solution for any
p, satisfying equation (3.63). This equation should also be linear, expressing the su-
perposition principle: any linear combination of solutions also describes the possible
state of a free particle. And finally, this equation should be of a sufficiently low order
in derivatives.

The spin of a particle is its angular momentum in a coordinate system at rest,
and the state of a particle in a system at rest is described by nonrelativistic quantum
mechanics. Then, if a particle spins in a resting system is equal to s, its wave function
in this coordinate system should have 2s + 1 components (that is, be represented by
a three-dimensional spinor of rank 2s) [35]. The particle with spin s = 0 in a resting
system is described by a three-dimensional scalar. However, this three-dimensional
scalar can have a double four-dimensional “origin” [6]: it can be a four-dimensional
scalar ¢, but it also can be a time component ¥, of some time-like 4-vector ,,, such
that in a system at rest only a ¥, component is different from zero. Tensors of higher
ranks are not to be taken into account, as they will lead to differential equations of
higher orders.

For a free particle, the only differential operator that can enter the wave equation
is the operator of 4-momentum p:

p=id= <i%,—iv>. (3.65)

A wave equation can be written as a differential relation between ¢ and ¥, con-
structed with the help of operator p*, and satisfying the condition of relativistic
invariance. Obviously, the simplest variant of such relation has the following form:

pup =mp,, P, =mo, (3.66)

where m s a scalar, characterizing the particle.’ Substituting ¥, from the first equation
in (3.66) to the second one, we get

P -mp=0, (3.67)

which coincides with the Klein—-Gordon equation (2.10), (2.30) for the scalar field ¢.
Substituting @ ~ e"'P* into (3.67), we obtain p*> = m?, so that (3.63) is satisfied, and the

5 There is no sense in introducing two scalars m;, m,, as they can always be made equal by the ap-
propriate redefinition of ¢, ¥,,.
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scalar m is just the rest mass of our particle. As (3.63) is valid for a relativistic particle
with arbitrary spin, the Klein—Gordon equation is obeyed, in fact, by wave function
components of particles with any spin.

The properties of a scalar field, satisfying the Klein—-Gordon equation, were al-
ready discussed in detail above. For generality, we shall consider here, from the very
beginning, the case of a complex field. Its energy-momentum tensor, similar to (2.51),
is given by

T = (d"9™)(3"p) + (#p)(3"¢") - "L, (3.68)

where the Lagrangian £ is defined in (2.57). In particular,

— a(p* a(p * 2 %
00 = > at+Vga Vo +mp o, (3.69)
_ 09" 0p 0p" 3¢
T0 = 5 ax T od ot (370)
Then, the 4-momentum of the field is determined by the integral
P, = Jd3rTy0. 371

From (3.69), we can see that T, > 0, so that energy is positively defined, which, in
fact, determines the choice of signs in the Lagrangian.

Equation (3.69) can be used to normalize the field. The plane wave normalized to
“single particle in volume V = 1” can be written as

P, = e P (3.72)

=

Calculating (3.69) with (3.72), we obtain T, = &, so that the total energy in the volume
V =1is equal to the energy of a single particle.

Let us now proceed to quantization. Let us consider an expansion of an arbitrary
wave function (field) over the complete set of eigenfunctions of a free particle, example
the plane waves l/)p from (3.72):

=Y ay,, 9" =) ayy,. (.73)
p P

Quantization reduces to the replacement of the coefficients a, a;; by the correspond-
ing operators of annihilation and creation of particles &p, 51;.

The principal aspect of relativistic theory is the existence of two solutions for equa-
tion (3.63), which gives for the energy of a particle

gp = +\p? + m?. (3.74)
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Physically sensible are only &, > 0, as the negative particle energies correspond to
the instability of the system (absence of the ground state). We cannot just drop the
solutions with &, < 0, as the general solution of the wave equation is given by the su-
perposition of all independent partial solutions, and the expansion of the field should
be performed over the complete set of eigenfunctions. Let us write

I T

where—in the first sum—the plane waves correspond to positive, whereas in the sec-

1(pr+s t) (3.75)

ond they correspond to negative frequencies. Here and below, we take g, = \p? + m?,
that is, the positive definite energy of the physical particle.

The recipe for the correct transition to the second quantization can now be formu-
lated in the following way:

aij) — ap is the annihilation operator of a particle with momentum p;

a; ) Efp is the creation operator of an antiparticle with momentum —p.

The last change to be made is due to the time-dependence in the second sum in (3.75)
being e%! = (e7*!)*, which corresponds to the appearance of one “extra” particle
with energy €p in the final state (during the calculation of any matrix element, which
includes ¢). Now, replacing in the second sum p — —p, we write

(2):2 ! (ape bJr ey,

€p

%

Fo Y L (@e? + hye ). (3.76)
p

28

4‘

Now the operators a,, and in in expansion (3.76) are multiplied by “correct” factors,

p
, whereas the operators 61;; and B;; are multiplied by complex conjugate
factors, such as e'®®'. Both types of particles (particles and antiparticles), represented
by the creation and annihilation operators entering the field operator @ have the same
masses.

Substituting operator expansion (3.76) into (3.69) and integral j d3rTOO, determin-

ing the energy of the field, we obtain the Hamiltonian of the field as

such as e !

H =Y ey(aya, +b,by). (3.77)
p

A physically reasonable result for the eigenvalues of this operator (positive definite
energy) is obtained only if the creation and annihilation operators satisfy Bose com-
mutation relations:

=---=0. (3.78)
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In fact, using these commutation relations, we can write the Hamiltonian (3.77) in the
following form:

H = gsp(a;ap +byb, +1). (379)

We have already seen above that in occupation number representation, the eigenval-
ues of Bose operators a; a, and b; bp are given by nonnegative integers, which we shall
denote as N, and Np, respectively (the numbers of particles and antiparticles in the
state with a given momentum). Then, both energy and momentum of the field can be

written (dropping the infinite energy of the vacuum) as

E=) g,(Np +Np), (3.80)
p

P=) pWN,+N,). (3.81)
p

Formal derivation of the last expression can be performed with the help of (3.70) and
(3.71). Assuming anticommutation (Fermi-like) relations for creation and annihilation
operators, we obtain, instead of (3.79), an expression, such as H = Zp sp(a;;ap -
b;;bp + 1), which is not positively defined (leading to the absence of the ground state
of the system). Thus, the particles with spin O (scalar particles) are Bosons. This is
actually a proof of the spin-statistics theorem for this simplest case of the scalar field.

As seen above, for complex scalar field, we have charge conservation (2.66). Re-
placing in the expression (2.64) for current density classical fields ¢, ¢* by the opera-

tors @, @* from (3.76), and making elementary calculations, we obtain from (2.66)
Q=) (apa, - byby) = Y (apa, - bpb, - 1), (3.82)
P P

where, while transforming to the last equality, we have again used the commutation
relations (3.78). The eigenvalues of this operator, without the vacuum contribution,
are written as

Q=Y (N, -N,), (3.83)

so that the charges of particles and antiparticles are opposite in sign. Note that now
(after quantization) the charge can change only in a discrete way.
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Satyendra Nath Bose (1894-1974) was an
Indian theoretical physicist. He is best known
for his work on quantum mechanics in the
early 1920s, providing the foundation for
Bose—Einstein statistics and the theory of
the Bose—Einstein condensate. The class of
particles that obey Bose—Einstein statistics,
bosons, was named after Bose. Bose was born
in Calcutta. While working at the Physics De-
partment of the University of Dhaka, Bose
wrote a paper deriving Planck’s quantum ra-
diation law without any reference to classical
physics by using a novel way of counting states with identical particles. He sent the
article directly to Albert Einstein in Germany. Einstein, recognizing the importance
of the paper, translated it into German himself and submitted it on Bose’s behalf to
the prestigious Zeitschrift fiir Physik. Bose’s formulation is now called Bose—Einstein
statistics. This result derived by Bose laid the foundation of quantum statistics, and
especially the revolutionary new philosophical conception of the indistinguishability
of particles. When Einstein first met Bose face-to-face, he asked him whether he had
been aware that he had invented a new type of statistics, and he very candidly said
that no, he was not that familiar with Boltzmann’s statistics and didn’t realize that he
was doing the calculations differently. Einstein also did not at first realize how radi-
cal Bose’s departure was, but in his second paper using Bose’s method he started to
realize just how radical it was, and he compared it to wave—particle duality, saying
that some particles did not behave exactly like particles. Einstein adopted this idea
and extended it to atoms. Although several Nobel Prizes were awarded for research
related to the concepts of the boson, Bose—Einstein statistics, and Bose—Einstein con-
densate, Bose himself was not awarded a Nobel Prize. When Bose himself was once
asked that question, he simply replied, “I have got all the recognition I deserve”.

3.2.2 Truly neutral particles

Above we have considered the operators a, and Bp as referring to different particles.
This is not always so—we may consider a specific case, when operators entering the
expansion of § refer to the same particles (we have already met this situation in case
of photons). Then,

R 1 R s R .
P = Z —=(¢pe Xy c;e’px), (3.84)
p \[281,

so that the particle just coincides with its antiparticle, and we are dealing with the so-
called truly neutral particles. Now the field operator is Hermitian: ¢ = ¢*, which is an
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analogue of the real field in classical field theory. Naturally, this field possesses twice
less degrees of freedom in comparison with complex field, and its Lagrangian takes
the form as in (2.28). Accordingly, we can calculate the energy-momentum tensor and
obtain for the energy density the following expression:

Then, substituting expansion (3.84) into I d3rT00, we get the Hamiltonian as
H= =Y ep(Cpc, +Cplp)- (3.86)

Again, we see the necessity to quantize using Bose rules, so that commutation rela-
tions for creation and annihilation operators are written as

,€p] = 0. (3.87)

The Hamiltonian is
H- ooyl (3.88)
=2(%%t5 ) .
P
so that, after dropping the vacuum contribution, its eigenvalues are given by

E= éepNP : (3.89)

It is obvious that for a Hermitian (real in classical limit) field, both current density and
charge are zero.

Note that from previously discussed physical particles, an example of a truly neu-
tral particle was the photon, and the Hermiticity of corresponding quantum field was
relevant to the measurability of quantum electric and magnetic fields.

Remarks on the Lorentz group

According to the special theory of relativity, all inertial reference systems are equivalent. If two coor-
dinate systems move relative to each other along direction x; with velocity v, the connection between
corresponding coordinates is expressed by the Lorentz transformation [33]:

X’ :y(xo—ﬁxl) =x"chu-x'shu,

X' = y(xl - on) =x'chu-x°shu, (3.90)
'2:X2, XI3=X3’
where
1 v
y= » B=_, thu=§. (3.91)
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In the general case, we postulate the invariance of physical laws with respect to linear coordinate
transformations (inhomogeneous Lorentz transformations):

o™ = N v d (3.92)
which conserve the square of the interval
=) = 0 -y (=) = g (¢ -y (" - Y). (3.93)

In (3.92), translation is performed after the homogeneous transformation. Inhomogeneous Lorentz
transformations are also called Poincaré transformations.

Among possible coordinate transformations, we may consider not only translations and rotations in
pseudo-Euclidean space-time, but also space and time inversions, which we shall denote by P, T,
and PT:

ka = —xk, PXO = x0 N
Txk = xk N x° = x° N
PTX* = —x*. (3.94)

The interval (3.93) does not change under transformations (3.92) if

NN =6y, N =g,Ne™ . (3.95)

P
B
In matrix form, the last relation is written as
Agh=g, (3.96)
where the tilde denotes matrix transposition. Then, it is clear that
Det A = +1. 3B97)

From (3.95) it also follows that
2 2

() - 3 (%) =1, 698)
k
so that (A%%)% > 1. Correspondingly, there are two possibilities:
A1, A% <1 (3.99)

Thus, the general transformations (3.92) can be divided into four classes:

1. Pl:DetA=1,A%>1
No time and space inversions. Only rotations and translations in pseudo-Euclidean space, which
form a proper orthochronous Poincaré group.

2. PhiDetA=1,A% <1
Here, the T-operation is included. Due to the unimodular nature of transformations, the P-operation
is also included. Any transformation from Pi can be represented by the product Pl and PT. In
particular, 4-inversion PT € Pi, whereas P and T do not enter Pi separately, due to Det A = 1.
PI and Pﬁ transformations together form the proper Poincaré group P, .

3. PliDetA=-1,A%>1
Corresponding transformations have the form PPI. Together with 731, they form an orthochronous
Poincaré group.

4. PhDetA=-1,A% <1
Time direction changes. Any transformation from this class can be written as TPI.
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The general Poincaré group can now be represented by the sum
P=P +PTP! +PP! + TP!. (3.100)

Of all these components of the Poincaré group, only PI contains the unit transformation. Thus, trans-
formations from different classes cannot be connected by the continuous transformation belonging
to 771. Transformations from the same class can be obtained from each other by transformations
from PI.

3.2.3 CPT-transformations

Space inversion

Discrete symmetries, such as space or time inversions and charge conjugation (re-
placement particles by antiparticles), are of major importance in quantum field theory.
For example, space inversion is defined as

Pr=-r. (3.101)
Under this transformation, the scalar field can be transformed as
Po(t,x) = +¢(t,-1), (3.102)

where signs correspond to the usual scalar or pseudoscalar. In nonrelativistic quan-
tum mechanics, the behavior of the wave function of the system under space inversion
is related simply to its coordinate dependence, which leads to the concept of orbital

parity [35]:
Y(t, 1) = 1P(t,1). (3.103)

In quantum field theory we are speaking about behavior of the field at a given point
in space, and equation (3.102) defines the internal parity of corresponding particles.
Total parity of the particle system is equal to the product of their internal parities and
orbital parity of their relative motion. “Internal” symmetry properties of different par-
ticles become manifest only in the processes of particle transmutations during reac-
tion between particles.

For the second quantized fields, internal parity is expressed via appropriate be-
havior of p-operators. For scalar or pseudoscalar fields, we have

Po(t,r) = +(t,-1). (3.104)

The action of the P-operation on the @-operator can be formulated as transformation
rules for creation and annihilation operators of particles, which correspond to (3.104).
Using (3.76), it is easy to find that these rules take the form

— ia_p 5 bp — ib_p >
P (3.105)
a;; - +a’_, b; - ibtp.
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In fact, we can write

pltr) =) L (ape P 4 plelTPT), (3.106)

and after the operation (3.105) and the change of the summation variable p — -p,
we immediately obtain +¢(t, —1).% Note that transformation (3.105) is pretty obvious—
inversion simply changes the sign of polar vector p.

Charge conjugation
Replacement of particles by antiparticles can be made in the field operator (3.76) by
an obvious operation:

b, —a,. (3.107)

Then ¢ — @€, where
PC(tr) = @' (tY). (3.108)

The meaning of this transformation does not change if we introduce an arbitrary phase
factor:

a, — ei“bp, b, — e’i“ap, (3.109)

so that
p— e, ot e, (3.110)

If we perform the charge conjugation twice, we obtain the identical transformation
¢ — @.Symmetry towards the replacement of particles by antiparticles, in the general
case, does not lead to any new particle characteristics, and operator C does not have
eigenstates and eigenvalues. The only exception is the system containing the equal
number of particles and antiparticles. Operator C transforms such a system into itself,
and, in this case, it has eigenvalues C = +1 (as C? = 1, which is obvious). The same is
valid for truly neutral particles, when ¢¢ = +¢, and we can speak of charge parity.

6 Note that below, in most cases, we shall not use the cap-sign of operator for creation and annihi-
lation operators, as well as for other filed operators, hoping that this will not lead to any misunder-
standings.
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Four-dimensional inversion and the inversion of time
Four-dimensional inversion is defined as

X — —x, wherex = (r,t). (3.111)

This operation can be considered as some four-dimensional rotation or, in other
words, as some Lorentz transformation, because the determinant of the transforma-
tion matrix in both cases is equal to unity. The situation here is different from the case
of three-dimensional (spatial) inversion, where the determinant is equal to —1. Thus,
any expression invariant with respect to Lorentz transformations is also invariant to
four-dimensional inversion. With respect to the operator of the scalar field (scalar
with respect to four-dimensional rotations), this means that

o(t,1) — @(-t,-1). (3.112)

In terms of the creation and annihilation operators, transformation (3.112) is achieved
by interchanging the coefficients before e** and " in equation (3.76), which gives

. + +
CPT : a, — bp , bp - ay. (3.113)

Thus, this transformation includes the replacement of particles by antiparticles, so
that in relativistic field theory we automatically obtain the invariance with respect to
transformation, when we simultaneously perform P and T, and also the charge con-
jugation C. This is the content of the so-called CPT-theorem, which is one of the most
general statements of quantum field theory: nothing in nature will change if we simul-
taneously with 4-inversion (inversion of both space coordinates and time) replace all
particles by antiparticles. Transformation (3.113) can be written also in the form

eI (t,1) = p(~t,-1). (3.114)

Then, it is easy to formulate the recipe for T-inversion (inversion of time). This oper-
ation should be defined so that, together with CP, it reduces to CPT-transformation
(3.113). Taking into account (3.105) and (3.107), we find

+ +
T: a, — ta,, bp - J_rbfp, (3.115)

where the signs correspond to the signs in equation (3.105). Thus, time inversion not
only transforms the motion with momentum p to the motion with momentum —p, but
also interchanges the initial and final states in all matrix elements, which leads to
the replacement of the annihilation operators of particles with momentum p by the
creation operators of particles with momentum —p (and vice versa). From (3.115) and
(3.106), with replacement p — —p, we get

@' (t,1) = +p* (-t,1). (3.116)



3.2 Bosons =—— 65

In fact, here we have the full correspondence with time inversion in quantum mechan-
ics [35]: if some state is described by the wave function ¥(t, r), the time-inverted state
is described by y* (~t,r).

Transformations T and CPT-interchange initial and final states, and for these
transformations there are no notions like eigenstates and eigenvalues. They do not
lead to any new characteristics of particles. Due to relativistic invariance, the operator
of CPT-transformation should commute with the arbitrary Hamiltonian (Lagrangian)
of relativistic field theory. As to C and P (that is, also T) separately, this is not so
in general. In particular, weak interactions of elementary particles are not invariant
with respect to spatial inversion P, and even with respect to combined CP transfor-
mation. This last (very small) breaking of symmetry, according to the CPT-theorem,
leads to a weak nonequivalence of time directions in nature, which leads to some sig-
nificant consequences for cosmology. For example, Sakharov proposed an idea that
this symmetry-breaking can explain the overwhelming domination of matter over
antimatter in the modern state of the universe.

Discrete transformations of current

Consider the operator of conserving current of the scalar field, which, with the help of (2.64), can be
written as

P =i(p dp-pde"). (3.117)

Transformation (3.104), with the obvious replacement (dy,9) — (9y, —9), gives
P (1%9),, — (%), (3.118)

as it should be for a true 4-vector.
Likewise, charge conjugation (3.108) gives

C: (%), = (%), (3.119)

if operators ¢ and ¢* commute. Strictly speaking, they do not commute, but this is irrelevant—this
noncommutativity appears only due to the noncommutativity of the creation and annihilation oper-
ators with the same p, which leads to the appearance of terms, independent of occupation numbers,
that is, independent of the state of the field. Dropping these terms, we still obtain (3.119). From (3.119),
it is seen that the change of particles by antiparticles leads to the change of the sign of all the compo-
nents of the current.

The operation of time inversion is accompanied by the interchange of the initial and final states, so
that being applied to the product of operators, it changes the order of the operators in this product,
for example,

T T
(9" 0,0) =@ (0") . (3.120)
According to the remark after equation (3.119), this is irrelevant, and the return to the initial order does

not change the results. Taking into account that under T-inversion (9, 0) — (-0, 0), with the help of
(3.116), we obtain

T (%), = (%) 3.121)

so that the three-dimensional current j changes its sign, in accordance with the classical meaning of
the current, whereas the charge density j® does not change.
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Finally, under 4-inversion (3.112), we easily obtain
et (%), = (%), (3122)

in accordance with the CPT-nature of this transformation.

The operator of electromagnetic interaction is proportional to j},A" and is invariant to CPT, as any
other relativistic interaction. Accordingly, using (3.118), (3.119), and (3.121), it is not difficult to obtain
transformation rules for electromagnetic potential A = (4, A):

C: (Ags Ay — (A0, —A)tys
P: (Ag,A)ry — (Ags—A)¢ s
T: (AO:A)t,r — (Ao, _A)—t,r’
CPT: (Ag;A)y — (Ap,—A) ¢ ;. (3.123)

Similar transformation rules are also valid for Yang—Mills gauge fields.

3.2.4 Vector bosons

The particle with spin 1 in its rest system is described by the three-component wave
function—a three-dimensional vector (vector Boson). By its four-dimensional “origin”,
these may be three spatial components of 4-vector y* (space-like), or three compo-
nents of the antisymmetric second rank tensor ¥**, for which—in a rest system—the
corresponding time-components 1°, °°, and spatial 1/)”‘ components become zero.

The wave equation can again be written as a differential relation between y* and
Y in the form

ill)yv = py’abv - pvlpy > (3.124)
pvl/)yv = imzl/)y > (3-125)

where p,, = id, is the momentum operator. These are Proca equations for a vector field.
Applying p* to both sides of (3.125), we obtain (due to the antisymmetry of V)

P, =0. (3.126)

Then, excluding y,,, from (3.124), (3.125) (substituting the first equation into the sec-
ond) and taking into account (3.126), we obtain

(p* - m’)p, =0, (3.127)

so that m, as usual, represents the particle mass. Thus, the free particle with spin 1
is described by a single 4-vector i, the components of which satisfy the “Klein-
Gordon”-like equation (3.127) and an additional condition, similar to the Lorentz con-
dition (of four-dimensional transversality) (3.126), which excludes from y* a “part be-
longing to spin 0”.
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In the rest system, i, does not depend on spatial coordinates (p = 0), and we
simply have pol,bo = 0; at the same time, taking into account that in the rest system
p° = m, we have p°p, = mip,. Then it is clear that in the rest system 1, = 0, as it
should be for a particle with spin 1. Together with i, in the rest system, both ;;, and
Yoo also become zero.

The particle with spin 1 may have a different internal parity, depending on y*

being a true vector or pseudovector:

Pyt = (°,—p) or PP =(-y° ). (3.128)

The plane wave, normalized to a single particle in volume V = 1, is written as

1 —1 *
P, = —=we ", uut =1, (3.129)

\/gﬂ M

where u,, is a unit 4-vector of polarization, normalized by the requirement of the space-
like nature of ,, also satisfying the condition of four-dimensional transversality:

u,p" =0. (3.130)

Note that, in contrast to the case of photons, vector Bosons with spin 1 have three
independent polarizations.
The Lagrangian of vector field can be written as

£ =-0,;)@"P") + m*pp. (3.131)

The structure of this Lagrangian is similar to the case of a scalar field, but note the dif-
ferent overall sign. Worthy to note is that 1), is the space-like vector, so that l,b; Y <0,
whereas for scalar field, ¢*¢ > 0, so that the sign is chosen to guarantee the positive
definiteness of energy in the classical limit. In fact, the practical use of the Lagrangian
(3.131) reduces not only to the derivation of equations of motion, but also to the intro-
duction of the energy-momentum tensor and current. It is easy to find that

Tyv == ylpA*avlpA - avlp/‘*a],llp}l - ['gyv > (3-132)
Ju = -ilYia.9" - @Y. (3.133)

These expressions are similar to those obtained for scalar field and do not require fur-
ther commenting.

Quantization can be performed similarly to the case of the scalar field. Again, to
guarantee the physically obvious requirement of T, > 0 and the arbitrariness of the
sign of charge density j°, we have to use Bose-like rules of quantization (commutation
relations).

Let us stress that, due to m # 0, gradient (gauge) invariance is absent. Because of
this the massive vector field possesses three independent components. The absence
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of gauge invariance of this theory is most clearly seen from the second of the Proca
equations (3.125): the value of i, is invariant with respect to gradient transforma-
tions, so that the left-hand side of this equation is invariant, whereas the right-hand
side is obviously noninvariant and changes under these transformations.

Particles with arbitrary integer spin

The wave function of a particle with integer spin s is represented by an irreducible 4-tensor of the rank
s, that is, tensor symmetric over all of its indices, which becomes zero under contraction over any pair
of its indices:

lpyv = l/}vy > l/}”y =V. (3.134)
This tensor should satisfy any extra condition of four-dimensional transversality:
P, =0, (3.135)

and any of its components should satisfy the equation
(P -m)p_,. =o. (3.136)

In the rest system, equation (3.135) leads to the zeroes of all the components of the 4-tensor, with any
of the indices equal to 0. Thus, in the rest system, our field is reduced to irreducible three-dimensional
tensor of rank s, with the number of independent components equal to 2s + 1.

The Lagrangian, energy-momentum tensor, and current density for the field with integer spin s dif-

fer from those just written above for the case of s = 1 only by the replacement y, with _,, ,, . The
normalized plane wave is written as
1 i X
ll)w"' _ uyvme ipx , uwmuyv =1, (3.137)
\2&p
with
utp,=0. (3.138)

There are in total 2s + 1 independent polarizations.

Quantization is performed as an obvious generalization of the cases of s = 0O and s = 1.

The scheme presented above is sufficient for the description of free particles with integer spins. For the
interacting case, the situation becomes more complicated. For all integer spins with s > 1, it is actually
impossible to formulate a variational principle, using only one (tensor) field function with the rank
corresponding to this spin. It becomes necessary to introduce additional tensor (or spinor) entities of
lower rank. Then the Lagrangian is chosen in such a way that these additional fields reduce to zero
due to the equations of motion (following from variational principle) for free particles.

Note that the problem of particles with spin s > 11is of rather “academic” interest, as there are no such
elementary particles within the Standard Model (and forgetting about gravitons).

3.3 Fermions

3.3.1 Three-dimensional spinors

Let us recall the description of particles with half-integer spin (Fermions) in nonrel-
ativistic quantum mechanics [35]. A particle with spin s = 1/2 is described by a two-
component wave function—the spinor, which is conveniently written as the following
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column:

()3

where components 1" and 1)? correspond to spin projections s* = +1/2. Under an arbi-
trary rotation of the coordinate system, spinor components are transformed by linear
transformation:

W' =ap by, Y=ot dy?. (3.140)
In other words,
;o _f(a b
W =Up, U= (C d) . (3.141)

Transformation coefficients (matrix elements of U) are, in general, complex and are
functions of the angles of rotation.
Consider a bilinear form

Yo’ -ye’, (3142)
where ¥ and ¢ are two spinors. Simple calculation gives

W' — 9" = (ad - bo)(P'9® - PPol), (3.143)

so that (3.142) under coordinate system rotations (3.140) is transformed into itself. Con-
sider now the bilinear form (3.142) as some wave function of the composite system.
However, if we have a single component wave function, which is transformed under
rotations into itself, it obviously corresponds to spin zero, that is, it is a scalar and can-
not change under rotation at all. Thus, the coefficients of our transformation should
satisfy the condition

ad-bc=1, DetU=1. (3.144)

Then, (3.142) is simply a wave function of a particle with spin s = 0, composed of
two particles with spin s = 1/2. At the same time, we can introduce one more scalar,
composed of spinor components (3.139):

Pyl + PRy, (3.145)

which is just the probability density needed to find a particle in a given point of space.
Transformation, which conserves the sum of squares of modules of transformed vari-
ables, is unitary, so that

Ut = (“ C*) Ut (3.146)
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Taking (3.144) into account, the inverse transformation matrix takes the form

U*z(j:_f>, (3.147)

so that from unitarity, we obtain
a=d*, b=-c". (3.148)

Due to conditions (3.144) and (3.148), of the four complex coefficients a, b, c, d (that s,
of eight real numbers), in fact, only three (real) are independent, which corresponds
to the three rotation angles of three-dimensional coordinate system.

Comparing scalars (3.142) and (3.145), we see that (!* and 1** should transform
correspondingly as 1 and -’

Besides the contravariant spinor components 1/)1, 1/)2, introduced above, we may
define the covariant components:

Y=y’ =y (3.149)
The invariant (3.142) can be written now as the scalar product:
Yor=v'e + P, = Ple’ - Yip'. (3.150)
Now, take into account that
Wor=0'o+ W0, = 90" - o', (3.151)
so that the following antisymmetry condition is always valid:
Yor=-tig'. (3152)
Then, it is obvious that
P =0. (3.153)

We can also define spinors of a higher rank. For example, we can introduce spinors of
the second rank as

P~ P Y~ e, W~ et (3.154)

Higher rank spinors are defined in a similar way.
Transformation from contravariant to covariant spinors can be made with the help
of a “metric tensor”:

0 1
gy =8"= (_1 o) , (3.155)
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as it is easily seen that we can write

U =g ' =g Yy - (3.156)

Consider now the multiplication and contraction of spinors. Multiplication of two
spinors of the second and third ranks l[)AHl[JVpU produces a spinor of the fifth rank.
Construction of l/)XZ “ over the pair of indices u and v gives the spinor of third rank

l/);lﬁ ?. In particular, contraction of l/);l produces the scalar lpj{. Here, we have to take
into account (3.152) and (3.153), so that 1/1’l = —l,bﬁ. Then, it follows that the contrac-
tion over two indices of any symmetric (to permutation of indices) spinor produces
zero. In particular, for the symmetric spinor of the second rank ¥, = ¥,;, we have
l/)ﬁ = 0. A spinor symmetric over all indices of any rank can always be constructed
by the appropriate symmetrization (that is, by taking the sum of the spinors with
all the permutations of the indices). We have shown that the contraction over a pair
of indices of a symmetric spinor can not produce spinors of a lower rank. From a
mathematical point of view, these spinors realize irreducible representations of the
three-dimensional rotation group SU(2).

By definition of the angular momentum (spin) s operator 1 + i6@(n - s) describes
the rotation by infinitesimal angle §¢ around an axis, oriented along the unit vector n
[35]. For spin s = 1/2, we have s = %0, where ¢ is the set of three Pauli matrices:

0 1 0 -i 1 0
B O A e PR G N

The corresponding operator for a finite angle rotation is given by

U, = exp<%(n . 0)(p> , (3.158)
or, in another form,
U, = cos g +i(n-@)sin % . (3.159)

Then, for rotation around the z-axis, we have

0)2
o . .o [ 0
U,(p) = cos 5 +io;sin > = < 0 oon) (3.160)
so that
lp’l _ lplei(p/Z , ll)lz _ lpze—i(p/Z. (3.161)

Now, we can observe an unusual property of a spinor of the first rank; under the rota-
tion by angle 2t its components change sign (nonclassical behavior). A similar property
is characteristic for all spinors of odd rank.
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For rotations around the x-axis and y-axis, in a similar way, we obtain

9 i@
cos? isin?
U, (p) = cos P, io, sin L ( 2 2 ) , (3.162)
2 2 isin? cos?
)
B o . . ¢ (cost sin§
U, () = cos 5 +ioysin = = <_ Sn? cos? ) (3.163)

Spin properties of wave functions for a particle with spin s and the system of n =
2s particles with spin s = 1/2, oriented to obtain the total spin 2s, are identical. The
number of independent components of symmetric spinor of rank 2s is equal to 2s + 1,
as only those of its components are different, which contain 2s indices equal to 1and 0
indices 2; 2s — 1 indices equal to 1, and one index equal to 2,..., 0 indices equal to 1
and 2s indices equal to 2. As we noted above, symmetric spinors are transformed via
irreducible representations of the rotation group.

In particular, spinors of even rank are transformed as tensors of the rank, which
is half of that of spinors. Components of these tensors can be explicitly expressed via
corresponding components of these spinors. As an important example, we present
in explicit form the relation between the components of a second rank spinor and
corresponding vector [35]:

i i

Y = ﬁaz’ Y =- \/j(ax +iay), YPyp= %(ax - iay), (3.164)
2_ 1 u_ .. n_ 1 .
Y= \/zaz, Y \/z(ax ia,), Y \/j(a" +iay) (3.165)

and
A2 L2 o _bem om
aZ - l\/EK)D - \/i(ll) +l/J )’ aX \/i(ll) l/) )’

a, = —%(1/;“ +?). (3.166)

Using Pauli matrices, these relations can be rewritten in a more transparent and com-
pact form:

P = —éa Lo, (3.167)
a= %oﬁlpﬁ, (3.168)

The scalar product of two vectors can be directly expressed via the scalar product
of corresponding spinors as

a-b=yye". (3.169)
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Enrico Fermi (1901-1954) was an Italian and Amer-
ican physicist and the creator of the world’s first nu-
clear reactor. He was one of the very few leading
physicists in history working both theoretically and
experimentally. Born in Rome, Italy, he was bap-
tised a Roman Catholic, though he was an agnos-
tic throughout his adult life. He was awarded the
1938 Nobel Prize in Physics for his work on induced
radioactivity by neutron bombardment and the dis-
covery of transuranic elements. He made significant
contributions to the development of quantum theory,
nuclear and particle physics, and statistical mechan-
ics. After Wolfgang Pauli discovered the exclusion principle in 1925, Fermi followed
with a paper in which he applied the principle to an ideal gas, introducing what is
now known as Fermi—Dirac statistics. Particles that obey the exclusion principle are
called “fermions”. Fermi left Italy in 1938 to escape Italian Racial Laws that affected
his Jewish wife. He emigrated to the United States, where he worked on the Manhat-
tan Project during World War II. Fermi was part of the scientific panel that advised on
target selection for the first atomic bombings. The panel agreed that atomic bombs
would be used without warning against an industrial target. Following the detonation
of the first Soviet fission bomb in August 1949, he strongly opposed the development of
a hydrogen bomb on both moral and technical grounds. He was among the scientists
who testified on Oppenheimer’s behalf at the 1954 hearing that resulted in the denial
of the latter’s security clearance. Fermi also did important work in particle physics, es-
pecially related to weak interactions and physics of pions and muons. Many awards,
concepts, and institutions are named after Fermi, like Fermi liquid, Fermi surface,
Fermi interaction, the Fermi National Accelerator Laboratory, and the synthetic ele-
ment fermium. He died at age 53 of stomach cancer in his home in Chicago.

3.3.2 Spinors of the Lorentz group

Thus, in nonrelativistic theory, a particle with spin s is described by a (2s + 1)-compo-
nent symmetric spinor of rank 2s, that is, by a mathematical object, which is trans-
formed according to the corresponding irreducible representation of rotation group
SU(2). The rotation group is a subgroup of the Lorentz group (rotation group in four-
dimensional space-time). Let us limit ourselves to a proper Lorentz group (without
spatial inversions). The theory of four-dimensional spinors is constructed similarly to
the theory of spinors in three dimensions.

Spinor ¢% is a two-component object, and a = 1,2, in correspondence with two
spin projections s = +1/2. Under the action of an arbitrary Lorentz transformation,
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spinor components are transformed via each other as (binary transformations):

&= ad' g, 7=y 488, (3170)

where complex coefficients a, 3, y, 6 are determined by the rotation angles of four-
dimensional coordinate system and satisfy the condition

ab-fy=1, (3.171)

so that the determinant of transformation (3.170) is equal to 1. Thus, there is a limita-
tion, determined by two equations for four complex coefficients, so that there remain
8 — 2 = 6 independent real transformation parameters, corresponding to the number
of rotation angles of a coordinate system in four-dimensional space-time (rotations in
six coordinate planes).

Due to (3.171), transformations (3.170) leave invariant the following bilinear form:

et g, (3172)

which is constructed from the components of two spinors &% and 2, which corre-
sponds to a scalar particle with spin s = 0, composed of two particles with spins = 1/2.
Besides contravariant spinors £%, we can also introduce covariant spinors &, as

‘ftx = gaﬁ‘{ﬁ > (3.173)

where the “metric tensor” 8aB has the same form as (3.155):

gp =" = ( ?1 é) (3.174)

so that
€] — é—Z , 52 — _51 R (3.175)
5152 B 5251 = £%8, = &5, (3.176)

Up to now, all the expressions are the same as in nonrelativistic theory. The differ-
ence appears when we consider complex conjugate spinors. In nonrelativistic the-
ory, the sum p''* + p?p**, determining the probability density of particle localiza-
tion in space, is scalar. Thus, the components ** are to be transformed as covari-
ant components of a spinor. The corresponding transformation (3.141), as we have
seen, is unitary. In relativistic theory particle density is not a scalar, but the time-
component of a 4-vector, so that there are no limitations on coefficients of transfor-
mation (3.170), except (3.171). Thus, in relativistic theory, complex conjugate transfor-
mations of spinors are essentially different. Correspondingly, here we are dealing with
two types of spinors. The indices of the spinors, transformed by complex conjugate ex-
pressions (3.170), will be supplied by additional dots (dotted indices).
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By definition, we have n ~ £€** (here ~ means “transformed as”) and the rule of
transformation for spinors with dotted indices is written as

!

j *. * )
n =a'n' + B, 7

!

22 y*n‘1 + 8*112 . (3.177)
Operations of the lowering and lifting of indices are written as usual:

ni=nt, my=-n. (3.178)

With respect to three-dimensional rotations, 4-spinors behave as three-dimensional
spinors; as we already noted, that rotation group is a subgroup of the Lorentz group.
However, for three-dimensional spinors i, ~ 1. Thus, n; under rotations behaves as
a contravariant 3-spinor y°.

Spinors of higher rank are defined as objects, which are transformed as products
of the components of several spinors of rank 1. For example, we can introduce three
types of second-rank spinors:

SRS C N LR L (3179)

Accordingly, the rank of a spinor in relativistic theory is denoted by the pair of numbers
(k, 1), that is, the number of nondotted and dotted indices.

Contraction of spinors can be performed only over pairs of indices of a similar
type (two dotted or two nondotted), as summation over the pair of indices of different
types is not an invariant operation. Thus, taking the spinor

CalaZ“'akBIBZ'“BI , (3.180)

symmetric over all k-dotted and I-nondotted indices, we can not obtain the spinor of
the lower rank (contraction over the pair of indices, with respect to which the spinor
is symmetric, gives zero, with the account of (3.176)). Thus, symmetric spinors realize
irreducible representations of the Lorentz group, and each of these representations
is characterized by the pair of numbers (k, I). As each of the spinor indices takes two
values, we have k + 1, essentially different sets’ of numbers a;,a,,...,a; in (3.180)
(containing 0, 1,2,... kvalues equal to 1and k, k-1, ..., 0 values equal to 2) and [+1 sets
of numbers B, B,, ..., ;- Accordingly, the symmetric spinor of rank (k, I) has (k +1)(I +
1) independent components, which defines the dimensionality of the corresponding
irreducible representation.

7 % and < B are just the same, as transformations (3.170) and (3.177) are independent.
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The relationship between spinors and 4-vectors

Spinor ¢ ¥ has2-2 =4 components, the same number as the 4-vector a*. Both real-
ize the same irreducible representation of the proper Lorentz group, and we have the
following linear relations between their components:

a = %((12+(2i)) &= é((u_(zi))
a} — %((11 _ (22) , aO _ %((11 + (22) ) (3.181)

For spatial components, these relations are the same as in the case of the three-dimen-
sional rotation group, taking into account the substitution lpg - % The expression

for a° is obvious from the previous discussion on the probability density of particle
localization as a time-component of a 4-vector. The inverse relation has the form

11 3 0 2 0 3
Mefp=d+d®, (P=g=d-a,
P=—gi=d-id, P=-g,=d+id. (3.182)

The coefficients in these expressions are specially chosen for the scalar product to be
written as

2_1 B _ Lo pap
a = 5 aB(a , ab = E txﬂg . (3.183)
The correspondence between { % and the 4-vector a* is the special case of the general
rule: any symmetric spinor of the rank (k, k) is equivalent to the symmetric irreducible
(thatis, becoming zero after contraction over any pair of indices) 4-tensor of the rank k.

Relations between a spinor of rank (1,1) and the 4-vector (3.181), (3.182) can be
written in compact form using Pauli matrices:

a= % Sp({o) a°= %Spf , (3.184)
{=a-o+a’l, (3.185)

where { is the ¢ % matrix, and 1 is the unit matrix.
Let us write the spinor ¢£* transformation as

s,a = (B&)*, where B-= <(; /;) . (3.186)

Then,?

"’ = @) = B (3.187)

8 For covariant components, we have ED’( = (B"lf Ja = (EB’I),,, ’1& = (nB*_l)a, so that the scalar product
of spinors remains invariant.
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Consequently, the transformation of the spinor of the rank (1, 1) is written as
¢'=B(B". (3.188)

For infinitesimal transformation, we can write B = 1 + A, where A is an infinitesimal
matrix. Then, from (3.188), we have

{=¢+ (A + Q). (3.189)

Consider now a Lorentz transformation to the coordinate system, moving with in-
finitesimal velocity 6v (with no change of direction in the spatial axes). Under this
transformation, 4-vector a* = (a°, a) is transformed as

a—a-a%v, d°=d"-a-év. (3.190)
Let us now use equation (3.184). First of all,
0 o o 1
a =a -adbv=a - 3 Sp({odv). (3.191)
On the other hand,
0 1 r o0, 1 +_ 0,1 +
a —5Sp(—a +§Sp(/1(+(/l)—a +§Sp(()l+/\). (3.192)
Comparing (3.191) and (3.192), we get
A+ A" =—0obv. (3.193)

Likewise, considering the transformation of a, we obtain
oA+ Ao = -6v. (3.194)

Now, equations (3.193), (3.194) give
+ 1

A=A" = —50-6v, (3.195)

so that the infinitesimal Lorentz transformation of spinor £* is done by the matrix
1

B=1- 5(0 -n)év, (3.196)
where n = 6v/6v. Now, we can consider finite transformations. Lorentz transformation
(to the coordinate system, moving with velocity v) has the geometrical meaning of a
rotation of a four-dimensional coordinate system by angle ¢ in the (¢, n)-plane, where

@ is determined by velocity v: v = th ¢ [33]. Infinitesimal transformation corresponds
to the angle 8¢ = dv, and rotation by the finite angle can be achieved by making
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the S¢p-rotation ¢/8¢ times. Raising (3.196) to the power ¢/6¢ and going to the limit
6¢p — 0, we obtain

B-= exp(—%n : 0). (3.197)

Taking into account that even powers of n-¢ are equal to 1, whereas odd powers reduce
ton- o, we get

B=ch%—n~osh%, thp =v. (3.198)

Note that the transformation matrix B = B* is Hermitian. Equation (3.198) finally de-
termines the Lorentz transformation of a 4-spinor of first rank.
Consider now an infinitesimal rotation of some vector in three-dimensional space:

a'—a-[60xa]. (3.199)
In this case, we obtain
B=1+ 50-60, (3.200)

whereas for the finite angle rotation,
B:exp<i§n-o> =cos§ +in-osin§, (3.201)

where n determines the direction of the rotation axis. This matrix is unitary B* = B,
as it should be for spatial rotation.

Inversion of spinors (P-reflection)

In nonrelativistic quantum mechanics, spatial inversion does not change the sign of
an axial vector, such as spin. Thus, its s*-projection also does not change. It follows
then that under inversion each component of the three-dimensional spinor * trans-
forms only via itself:

P& — Pyt (3.202)

Making inversion twice, we return to the initial coordinate system. In the case of
spinors, the return to the initial coordinates can be understood as a rotation by an-
gle 0, or like a rotation by angle 271. However, we have seen that for spinors these
two operations are not the same, since—according to (3.161) spinor components—“®
change sign under rotation by 271. Thus, we obtain two alternatives:

P’=1, ie P
PP=-1, ie P

I
I+

1, (3.203)
i. (3.204)

Il
I+
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Consider now 4-spinors. Inversion commutes with spatial rotations, as it only changes
thesignsof x, y, zin x, y, z, t, but does not commute with transformations dealing with
the t-axis. Consider the Lorentz transformation L to a system, moving with velocity v;
then, PL = L'P, where L' is the transformation to system, moving with velocity —v.
Thus, under the inversion components of a 4-spinor, £* cannot transform via each
other, and inversion transforms £ via some other objects, which may be only n“. As
inversion does not change the sign of s,, the components ¢* and ¢ can be transformed
only into n; and 5, corresponding to the same values of s, = +1/2and s, = -1/2.
Understanding inversion as an operation giving 1 being applied twice, we define it by

fa—”?a» Ua—’5a’
& —-nt, nt o =& (3.205)

for the case of P? = 1. For the alternative variant of P> = -1, we can write:

& =iy My — "
& — —in® - —ig (3.206)

The different sign in the second row of these expressions is connected with the fact that
the lowering or raising of the same index, according to (3.175), (3.178), is performed
with different signs. Below, for precision, we shall use the definition (3.206).

With respect to the subgroup of rotations, as we have seen above, ¢£* and n, are
transformed in the same way. Let us construct the following combinations:

IS (3.207)

It is easily seen that these combinations are transformed under inversion via each
other, as (3.202) with P = +i. However, these combinations do not behave as spinors
with respect to all transformations of the Lorentz group.

Thus, the inclusion of inversion into our group of symmetry requires the simulta-
neous consideration of the pair of spinors (¢%,1,,), the so-called bispinor. Four com-
ponents of the bispinor realize one of the irreducible representations of the extended
Lorentz group. The scalar product of two bispinors can be constructed in two different
ways. The value of

E*E, + nHY (3.208)
does not change under inversion and defines the true scalar. The value of
§°8, —n:H" (3.209)

is also invariant with respect to rotations of the four-dimensional coordinate system,
but it changes its sign under inversion, defining the pseudoscalar.
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Also in two ways, from the components of two bispinors, we can define the corre-
sponding spinor of the second rank % Defining it as

G R (3.210)

we obtain the object, transforming under inversion as ¢’ B {ag> so that the 4-vector
equivalent to this spinor is transformed as (a®,a) — (a°, -a) and represents the true
4-vector (here a is the polar vector). But we can also define { % in another form:

G2 - (3.211)

Then, under inversion ¢’ N —Cap, and this spinor corresponds to the 4-vector, trans-
formed under inversion as (a°,a) — (-a°, a), i.e. 4-pseudovector (here, a is the axial
vector).

3.3.3 The Dirac equation

A particle with spin 1/2—in the rest system—is described by a two-component wave
function, a three-dimensional spinor. By it four-dimensional “origin” this may be both
nondotted or nondotted 4-spinor: £* or ;. The only operator entering the wave equa-
tion is p,, = id,, which in spinor representation is expressed via Do
pll:pzzzpz"'po» pzzzplizpo—pp
P =-Dy=py—ip,, P =-Dp=Dc+iD,. (3212)

From the requirement of relativistic invariance, we can immediately write the follow-
ing system of first-order differential equations:

p¥ny = mg®,
Ppeg" = mny, (3.213)

which is the system of Dirac equations in spinor representation.
Substituting s from the second equation of (3.213) into the first, we get

) 1
vy = apaﬁl’ypf Y =mé. (3.214)
Taking into account p“B Dy = p?6%, we obtain from (3.214)

p*-m)E =0 (3.215)

that is, a Klein—Gordon equation for each of the spinor components. It is clear now
that parameter m s just the particle mass. Note that only the presence of mass requires
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the simultaneous introduction of two spinors: £* and N that is, the bispinor, or we
would not be able to construct relativistically invariant equations containing the di-
mensional parameter m. As a result, our wave equation is automatically invariant with
respect to spatial inversion, if we define it by (cf. (3.206))

P: & —>ing, ng— it (3.216)

Simultaneously, p® — Pag in equations (3.213).
With the help of (3.185) and (3.182), equations (3.213) can be written as

(Do +PO)N =mé,
(Do —PO)§ = mn, (3.217)

where we have introduced the following columns:

£ = @) = (Z;) . (3.218)

For complex conjugate equations, it is convenient to introduce rows
* 1% 2% * P
& =EET), 0 =mln;) (3.219)
and write (taking into account p, = -p,)

n"(po+p0o)=-mé",
&' (po-po)=-mn". (3.220)

The inversion for complex conjugate spinors can be written as
P: & —>-iny, ni— -iE". (3.221)

In the literature, it is more common to use (instead of (3.213) or (3.217)) the so-
called symmetric form of the Dirac equation. To obtain it, we introduce the four-
component Dirac bispinor, which is constructed from the columns of (3.218):

Y= <'€> . (3.222)
n
Then, the system of equations (3.217) can be written as

puYa b = m; (3.223)
or, lowering bispinor indices, as

'p,-myp=0, ie (y9,-myp=0, (3.224)
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where y"py =poy° - p-y = iy°9, + iy - V, and we have introduced the 4 x 4 matrices
(Dirac matrices)

o (O i> <o —6)
= -~ 5 = ~ . .22
Y <1 o)’ Y7\ o (3.225)
In fact, equation (3.217) can be written as
(oo PENer) om
Po—PO 0 n n

which coincides with (3.224) if we take y-matrices as in (3.225).
In the general case, y-matrices should satisfy conditions guaranteeing the identity
p? = m%. To derive these conditions, we multiply (3.224) on the left side by y"p,. Then,

'2) (2 )W = m(y!p, ) = mp. (3.227)

As p,p, is a symmetric tensor (momentum components commute), equation (3.227)
can be rewritten as

%pypv(y”y” Y'Y =my, (3.228)
so that the necessary condition is satisfied if
Yy Y'Y =28 (3.229)
Thus, the pairs of different matrices y* anticommute, whereas their squares are
¥ =02

Under an arbitrary unitary transformation of bispinor ¥’ = U (where U is the unitary
matrix 4 x 4), y-matrices transform as

o2 =1, () =1 (3.230)

y =uyu™ =uyu*, (3.231)

so that (y,p" - m)¥ = 0 is transformed into (y’ s p, —m)y' = 0. Under this transforma-
tion, as it is obvious from (3.225), the following properties are conserved:

Yy =y, =y (3.232)
The complex conjugate of equation (3.224) can be written as
(=Po¥o —PY -m)Pp* = 0. (3.233)

Using 7*y* = ¢*y* and multiplying this equation from the right side by y° (and taking
into account yy° = —y"y), we obtain a conjugate Dirac’s equation as

P(y'p, +m) =0, (3.234)
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where we have introduced
p=97°, P =gy’ (3.235)

— Dirac’s conjugate of bispinor .
It is easy to see that the Dirac’s equation (3.224)

(iy"d,-m)p =0 (3.236)

can be obtained from the Euler-Lagrange equation

ar ar
e ay< a(a“{p)> _o (3.237)

using the following Lagrangian of Dirac’s field:

uﬁ@ﬁ@w—@@wwﬂw¢awﬁiwﬂww (3.238)

where 311 denotes differentiation “to the right” and “to the left”, defined by the given
identity. In Euler-Lagrange equations, i and i are considered as independent fields.
The conjugate Dirac equation (3.234) is obtained from equation (3.237) after the re-
placement ) — . Then, we immediately find the canonical momentum 7(x) of
Dirac’s field as

700 = 25 = (o). (3.239)
oY (x)
Consequently, the Hamiltonian density of Dirac’s field is written as

oy

= 3.240
" (3.240)

H=mp - £ ="y (-iy'd; + mp =ty (iy°0o) = P
where in the second equality we used the Dirac equation (3.224).

Paul Adrien Maurice
Dirac (1902-1984) was
an English theoretical
physicist who is regarded
as one of the greatest
physicists of the 20th
century. Dirac made fun-
damental contributions
to the early development
of both quantum me-
chanics and quantum
electrodynamics. Dirac
shared the 1933 Nobel Prize in Physics with Erwin Schridinger. In 1925, he presented
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a formulation of quantum mechanics in more fundamental and illuminating form
than other authors. Dirac’s “The Principles of Quantum Mechanics”, published in
1930, was a landmark in the history of science. It quickly became one of the stan-
dard textbooks on the subject and is still actively used today. In that book, Dirac
incorporated the previous work of Werner Heisenberg on matrix mechanics and of
Erwin Schrbodinger on wave mechanics into a single mathematical formalism that
associates measurable quantities to operators acting on the Hilbert space of vectors
that describe the state of a physical system. This book also introduced the delta
function. In 1928, he proposed the Dirac equation as a relativistic equation of motion
for the wave function of the electron. This work led Dirac to predict the existence of
the positron, the electron’s antiparticle, which he interpreted in terms of “holes” in
what came to be called the Dirac sea. Dirac’s equation also contributed to explaining
the origin of quantum spin as a relativistic phenomenon. Dirac is regarded as the
founder of quantum electrodynamics, being the first to use that term. In 1931, Dirac
proposed the idea magnetic monopoles, which could also explain the quantization
of electrical charge. Later he studied the quantization of the gravitational field, and
developed a general theory of quantum field theories with dynamical constraints,
which forms the basis of the gauge theories and superstring theories of today. Dirac
was known among his colleagues for his precise nature. When Niels Bohr complained
that he did not know how to finish a sentence in a scientific article he was writing,
Dirac replied, “I was taught at school never to start a sentence without knowing the
end of it.” On poetry he was quoted to say: “The aim of science is to make difficult
things understandable in a simpler way, the aim of poetry is to state simple things in
an incomprehensible way. The two are incompatible.”

Remark on dimensionalities

Using the explicit form of Dirac’s field Lagrangian (3.238) and the standard dimensionalities [£] = 17,
[m]=0" 8] =1, we immediately determine the dimensionality of Dirac’s field as
W] =) =" (3.241)
This result will be used below.
The inversion (3.216) for 1 can be written as
P: Y-y, P -igyP. (3.242)

The invariance of the Dirac equation with respect to (3.242) is obvious. Replacing p —
—pand ) — iy%), we get (poy° + py - m)y°y = 0, so that multiplying this equation on
the left side by y° and taking into account anticommutativity of y° and y, we return to
initial equation.
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Let us multiply (y"py — m)y = 0 on the left side by 1, and lij(y”py +m) = 0 on the
right by 1, then make the sum of both and obtain

Wy () + ) = p,(by*P) = 0, (3.243)
which is the continuity equation for 4-current of Dirac’s particles:
9 =0, =y = .y vy), (3:244)

describing the charge conservation, with the charge density given by j° = Y P > 0.
The Dirac equation can be written in the form of a Schroedinger equation:

i% _ Hp, (3.245)
where the Hamiltonian H has the form
H=ap+fm, (3.246)
with Dirac’s matrices a and f3:
a=yy. B=y", (3.247)

so that (3.246) coincides with (3.240) introduced above. The matrices (3.247) satisfy
the commutation relations

oy + o0y =265, Pa+aB=0, pP=1, (3.248)
and in explicit form
o O 0 1
= > = . -2
a=(7 %) 8-(5 o) (3.249)

Consider the nonrelativistic limit. Performing in equation (3.217) the limit of p — 0,
& - m, we get & = n, so that both spinors of the bispinor coincide, and all four com-
ponents of the bispinor are nonzero. At the same time, it is clear that only two com-
ponents are independent. It is convenient to transform to the so-called standard rep-
resentation, when in the nonrelativistic limit two components of the bispinor will be
zero. Let us introduce
(p) 1 ( 1
= N = — =+ )) = —
Z < ¢=5 §+m, X 75
For the particle at rest, we obviously have y = 0. Adding and subtracting equa-
tions (3.217), we obtain

&-n. (3.250)

pO(p - pOX = m(P >
—PoX + POQ =my, (3.251)
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which allows finding the explicit form of y-matrices in the standard representation [6].
Note that in equation (3.250), we separately sum the first and the second components
of spinors ¢ and 5. Accordingly, in standard representation, as in the spinor represen-
tation considered above, 1;, Y5 corresponds to spin projection s* = +1/2, whereas ),
Y, to projection s = —1/2. The matrix

1 1/0 O
~X== .252
2 2<0 a) (3.252)

gives the three-dimensional operator of the spin in standard representation.

Helicity

In relativistic theory, the orbital moment 1 and spin s of a moving particle are not conserved separately.
Only the total angular moment j = 1 + s is conserved. Accordingly, the projection of the spin on some
direction (z-axis) is also not conserved and cannot be used to classify polarization (spin) states of a
moving particles. However, we may introduce the helicity of a particle, that is, the projection of its spin
on the direction of motion (momentum). In fact, 1 = [r x p] and the product s - n, where n = %, coin-
cides with the conserving product j - n. The eigenvalues of these spin projections are obviously given
by A = —s,...,+s. Accordingly, the wave functions of a free particle with momentum p are character-
ized by helicity: ;). In the rest system the state of a particle is characterized, as usual, by its spin
(projection on z-axis).

For a particle with zero mass, there is no rest system of coordinates; this particle moves with the speed
of light in any coordinate system. However, for such a particle there is always the special direction
in space, the direction of momentum p. In this case, there is no symmetry with respect to arbitrary
three-dimensional rotations, but only the axial symmetry to rotations around this preferred direction.
Accordingly, we have only helicity conservation. If we require symmetry with respect to reflections in
planes, passing through the p-axis, the states differing by the sign of A will be degenerate, and for
A # 0, we have double degeneracy. Thus, in the limit of m — 0, the system of equations for a particle
with spin s splits into independent equations for particles with different helicities +s, +(s — 1),...: for
example, in the case of photon A = +1, which corresponds to right and left polarizations of light.

3.3.4 The algebra of Dirac’s matrices

For practical calculations, it is important to understand algebraic properties of
y-matrices. Here, we present a short summary of the main formulas and definitions,
which will be extensively used in the rest of the book. All the algebraic properties of
Dirac’s matrices are derived from two basic relations:

Yy Yyt =282, (3.253)
gV =y =4 o YVo-yi-vi-Vi=4, (3.254)

that is, from the main anticommutation relation and the scalar product.
If y, and y* in the matrix product are separated by several other y-matrices, Yu
and y* can be placed in neighboring positions with the help of (3.253), after which we
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can perform the summation over y using (3.254). In this way, we can get the following
relations:

vy =2y,
v vy =ag",
v Y'YV = -2y,
v VYV =20V YY) (3.255)

Rather often y* appears in combination with 4-vectors. Let us introduce the standard
notation:

a=yta,. (3.256)
Then, from (3.253), we obtain
ab+ba =2a,bV, aa=d’, (3.257)
and from (3.255), we get
yyizy" =-2a,
y,aby* = 4a,b*,
yH&BE:y = -2cha,
y,abcdy" = 2(dabc + cbad). (3.258)
Traces of y-matrices are widely used. In particular,
Spy* =0. (3.259)
Introducing
™ = %Sp(y“y") (3.260)
and calculating the trace of (3.253), we find
™ =g (3.261)
and, respectively,
J S0(@b) = a'b,. (3.262)

The special case is the matrix y5 , defined as

Yy’ = -iy’y'yy’. (3.263)
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It is easy to see that
Yy ey =0, (P =1, (3.264)
so that y° anticommutes with all other y-matrices. As to a and 8 matrices, we have
ay’ -y’a=0, By’ +yB=0. (3.265)

The y°-matrix is Hermitian:

y5+ — iy3+y2+y1+y0+ _ _l-y3y2y1y0 — y5 , (3.266)

as we can transform the index order 3210 to 0123 by even permutation of y-matrices.
In spinor representation, the explicit form of y° is given by

V= <_oi ?) , (3.267)

whereas in standard representation,

5 0 —1>
= -~ > -2
e (5.268)
and we see that
Spy’ =0, (3.269)

which is obviously independent of the choice of representation.
The set of 16 matrices

' = @y ity ie), (3.270)
where
1
o = i(y"yv -¥'v) (3.271)

represents the “complete set”, over which we can “expand” any 4x4-matrix. In fact,
these matrices have the property

Spy*=0 (A#1),
1
Y'va=1, ,Spv'vs="65. (3.272)

Accordingly, all y-matrices are linearly independent, and any 4 x 4-matrix can be
represented in the form

1
T=Ycy', cs= 25PVal - (3.273)
A
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3.3.5 Plane waves

The state of a free particle with fixed momentum is described by the plane wave, which
can be written as

1 .
P, = —u,e 7, (3.274)

N

where u), is a normalized bispinor. For the wave function with “negative frequency”

(also changing the sign of p), we have

1 .
P, = —=u_,e’. (3.275)

N

In both cases, we write g, = +1/p? + m2. The bispinor components up, and u_, satisfy
the following equations, which are derived by substitution of (3.274) and (3.275) into
the Dirac equation:

@-mu,=0, @+mu_,=0. (3.276)
For conjugated bispinors i, = u;yo, we have

u,(p-m)=0, u_,(p+m)=0. (3.277)
Let us assume the invariant normalization

u

U, =2m,  U_pu_, =-2m. (3.278)

Multiplying (3.276) from the left by &,,,, we obtain (&, ,y"u,,)p, = 2m? = 2p?, that is,
apy“up = ﬂ_py”u_p =2p", (3.279)
so that the 4-vector of the current density for plane waves (3.274); (3.275) is equal to

. < 1 _ M
i = l/)ipyyl/)ip = _uipyyuip - > (3.280)
2e, p
that is, j* = (1,v), where v = 53 is the particle velocity. We see that our choice of
P
normalization corresponds to “one particle in volume V = 1”.
In standard representation, from (3.251), we get the following system of homoge-
neous linear equations:

(Sp—m)(P—pOXZO,
(ep + m)y —poyp = 0. (3.281)
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Then,

po po
L x= 20 . 282
0 X et o (3.282)

q):
€p

The common multiplier before ¢ and y (which is arbitrary until we are simply dealing
with solutions of homogeneous equations) should be chosen from the normalization
condition (3.278). Accordingly, in standard representation, spinors u, and u_,, take the
form

Uy

) <\/e£—pr;?r11:)w> M T ( . (m)rW,> ’ (3.283)
= )

ep T mw
wheren = ﬁ, and w is an arbitrary two-component spinor, satisfying the normaliza-
tion condition

w'w=1. (3.284)

The second expression in (3.283) is obtained from the first one by changing the sign
before m and replacing w — (no)w’. Likewise, we can obtain [6]

i, = (\fep +mw’, —\ep —mw’"(n0),
., = (\/ﬁw'*(no), —\/mw'*). (3.285)
Direct multiplication gives
UyplUyy = £2m.

In the rest frame, that is, for gp = m, we have

u, = @(X) U, = m( 0,) : (3.286)

w

so that w is the three-dimensional spinor to which our plane waves reduce in the non-

relativistic limit:
WOl _ <é> T <(1)> . (3.287)

For fixed momentum, there are two independent states, corresponding to the two pos-
sible values of spin projection. In accordance with the general statements made above,
we are speaking of particle helicity A, that is, spin projection on the direction of p. The
helicity states correspond to the plane waves with spinor w = wP(n), which is an
eigenfunction of operator no:

%(no)ww = Aw? (3.288)
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3.3.6 Spin and statistics

A second quantization of the Dirac field (of particles with spin s = 1/2) can be done as
follows: Let us introduce an expansion of an arbitrary Dirac field over plane waves:

p=) — ! (@poUtpee P + byt e™),
po 4 2€p

p=ypHy’ =) L (@ +b e ), (3.289)

(apaupa pou—p o
PO [2€p

We know Dirac’s Hamiltonian, so we do not need an energy-momentum tensor. Using
(3.240), (3.245), we find the average energy of the Dirac particle in the state with wave
function y:

= Jd3rlp*H¢ JdBn/) W _ =1 J d3rl,by0 "b (3.290)

Substituting here (3.289), taking into account the orthogonality of the functions with
different p, o and ﬂipgyouip)o =2¢, (see (3.280)), we obtain

H= Zf Apop ~ Dpobps) - (3.291)

This expression is obviously the direct consequence of the transformation properties
of the Dirac field and the requirement of relativistic invariance. Now it is clear that we
must quantize our field using Fermion rules, that is, introducing anticommutators:

{80 ape} =1, {bpgs bpot =1. (3.292)

For different indices, as well as for the pairs of “noncrossed” and “crossed” operators,
the corresponding anticommutators are equal to zero. As a result, (3.291) is rewritten
in the form

H= pZep(apGaW bpobps 1), (3.293)
o

so that the eigenvalues of energy (minus the infinite energy of a vacuum) are equal to

E= Zep(N + Npg (3.294)

and are positive definite. If we had instead used Boson quantization, we would have
obtained E = ¥, £5,(Np, — Npa), that is, a nonpositive definite expression.’

9 Here we are using the standard notations, assuming that the general properties of the creation and
annihilation operators are known to the reader [35].
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For the momentum operator, in a similar way, from j d3rlp*fn/), we get

P= Zp(N +Nyy (3.295)

The 4-current density operator j* = y*y in a second quantized form defines the
charge operator as

— [ @YY = Y @ + Bobp) = Y (@pots ~ brabpo +1).  (3:296)
po po

This gives the eigenvalues of charge

Q=) (Npy — Nyy), (3.297)
po

leading to the opposite charges of particles and antiparticles.

Fermion anticommutation rules for creation and annihilation operators immedi-
ately lead [35] to the validity of the Pauli principle, so that the eigenvalues of the parti-
cle number operator in a given state Ny, can only be O or 1: now we see that for particles
with spin 1/2 this directly follows from the general requirements of relativistic invari-
ance and positive definiteness of energy. Then, we are coming to the general theorem
on spin and statistics: all particles with a half-integer spin are fermions, while particles
with integer spin are bosons. This becomes obvious if we take into account that any
particle with spin s can be assumed to be “composed” of 2s particles with spin 1/2.
For the half-integer s, the number 2s is odd, whereas for the integer s, this number
is even. “Composite” particles, consisting of an even number of fermions, is a boson,
and those consisting of an odd number of fermions are fermions. To understand this, it
is sufficient to consider permutations of such “composite” particles. It is understood
that all particles with the same spin obey the same statistics. If we could have had
fermions with spin s = 0, then such fermions as well as fermions with spin 1/2 could
be used to “compose” a particle with spin 1/2, which would be a boson, in contradic-
tion with the general results for s = 1/2 obtained above. This remarkable theorem is
among the most general statements of relativistic quantum field theory and was first
proved by Pauli.!”

10 We would like to stress that in quantum field theory this theorem is really proved, starting from
most general requirements of relativistic invariance (transformation properties of fields) and positive
definiteness of energy, that is, the stability of the ground state of a particle system, and not postulated,
as it is done in nonrelativistic quantum mechanics.
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Wolfgang Ernst Pauli
(1900-1958) was an Aus-
trian-born Swiss theoretical
physicist and one of the pio-
neers of quantum physics. In
1945, Pauli received the No-
bel Prize in Physics for his
“exclusion principle or Pauli
principle”. Only two months
after graduating from gymna-
sium in Vienna, he published
his first paper on Einstein’s
general relativity. He attended the Ludwig—Maximilians University in Munich, under
supervision of Arnold Sommerfeld. Sommerfeld asked Pauli to review the theory of
relativity for the Encyklopddie der Mathematischen Wissenschaften. This monograph
remains a standard reference on the subject to this day. Pauli made many important
contributions to physics. In 1924, he proposed a new quantum degree of freedom
(or quantum number) with two possible values, in order to resolve inconsistencies
in atomic spectra. He formulated the Pauli exclusion principle, which stated that
no two electrons could exist in the same quantum state, including this new two-
valued degree of freedom, which later was identified as electron spin. In 1930, Pauli
considered the problem of beta decay. In a letter to Lise Meitner, he proposed the
existence of a hitherto unobserved neutral particle with a small mass, in order to
explain the continuous spectrum of beta decay. Later it became known as neutrino,
which was experimentally discovered only in 1956. In 1940 Pauli actually proved the
spin—statistics theorem, a critical result of quantum field theory which states that
particles with half-integer spin are fermions, while particles with integer spin are
bosons. In the middle 1950s he also proved the general CPT, theorem of relativistic
quantum field theory. The Pauli effect was named after the anecdotal bizarre ability
of his to break experimental equipment simply by being in the vicinity. He was known
as a severe critic of physical theories and papers, which were unclearly presented.
Famously, he once said of such an unclear paper: “It is not even wrong!” In 1958, he
fellill with pancreatic cancer. When his assistant visited him at the hospital in Zurich,
Pauli asked him: “Did you see the room number?” It was 137; Pauli died in this room.

3.3.7 C, P, T transformations for fermions

Factors of i, = Upy exp(—ipx), entering (3.289) accompanying operators apq, Tepresent wave func-
tions of free particles (for example, electrons) with momentum p and polarization o: zp“’) = Py, Fac-
tors of IZJ_I,_U accompanying operators by, are to be considered as wave functions of the corresponding
antiparticles (for example, positrons) with the same p and 0. However, 1,,, and ¥_,_, differ by their
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transformation properties, and their components satisfy different systems of equations. To overcome
this deficiency, we have to perform a certain unitary transformation of IZLIH,, such that the new wave
function satisfies the same equation as ,,;. We shall call this new wave function the wave function of
antiparticles (positron) with momentum p and polarization o. Thus, we can write

® — Ughyg (3.298)

This operation is called charge conjugation C. It is not limited to plane waves only; in the general case,
we can write

CY(t,x) = Ucd(t,x). (3.299)
Dropping the details of derivation, which can be found in [6], we quote only the final result:
Ue=y°. (3.300)
From = 1*y° = %" = y%y*, we obtain
Cp=yyP=yy". (3.301)
For plane wave solutions, we can easily see that
CY_po =WPpo> (3.302)

so that both electrons and positrons are described by identical wave functions © = p® = Ypos
as it should be, because these functions carry information only on momentum and polarization of
particles.

In a similar manner, we may introduce the operation of time inversion. Changing the sign of time
should be accompanied by the complex conjugation of the wave function [35]. To obtain the fermion
wave function “reversed in time” Ty in the same representation as initial 1), we again have to perform
some unitary transformation of 1)* (or ¥):

TY(x, t) = Up(r, -t). (3.303)
It can be shown [6] that
Ur =iy’yhy°, (3.304)
so that
231075 .31k
Tt y) =iy’y y Y(-t.x) =iy’y " (-t,¥). (3.305)
Spatial inversion of (bi)spinors P was defined above in (3.242):
Py =iy%p, PP=-ipy°. (3.306)

Let us make transformations T, P, C of the Dirac field i one after another:
TY(t, 1) = iy’ (-t.1),
PTY(t,1) = iy° (1Y) = YY" (-t,-1),

cPTY(t,0) = (Y'Y =y Y-t 1) (3.307)

or
CPT(t,x) = iy’ P(—t,—1). (3.308)

Applying these operations to (3.289), we can find the following transformation rules for creation and
annihilation operators [6]:

c _ c
ap(r = bpo > bpo = apo >
P p
A_ps =idps, blps =1ibygs
T .+ T .t
a_, , =20iay;, b_, ,=20ib,;. (3.309)
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3.3.8 Bilinear forms

As bispinors ¥ and 1™ have 4 components each, their multiplication produces 4 x 4 =
16 independent bilinear combinations. In symmetric form, these combinations can be
written as (refer to (3.270), (3.271))

S=yyp, Vi=yyty,
P=ipy’y, A =dy'y’y,
™ =i, (3.310)
where
1
ot = E(y"yv -y (3.311)

These bilinear forms reduce to one scalar S, one pseudoscalar P, the 4-vector V¥, the
4-pseudovector A¥, and the antisymmetric tensor T"".

The scalar nature of S and the pseudoscalar of P are obvious from their spinor
representations (refer to (3.208) and (3.209)):

S=¢&n+n'¢, P=i{"n-n7¢). (3.312)

The vector nature of V* is now clear from the Dirac equation pyy"z,[) = my, which gives
(1/)pyy"l/)) = myp, where scalars are standing in both sides.

The rule of construction of bilinear forms (3.310) is obvious: they are composed
in such a way that y* represents a 4-vector, y° is a pseudovector, whereas ¥ and 1)—
standing on both sides—produce a scalar. The absence of bilinear forms reducing to a
symmetric 4-tensor is clear from the fact that the symmetric combination y*y” +y*y* =
2g", so that the corresponding bilinear form reduces to g"'yn. In practice, bilinear
forms (3.310) are widely used during construction of different interaction Lagrangians
of spinor fields. The transformation rules of the bilinear forms under discrete trans-

formations C, P, T can be found in [6].
3.3.9 The neutrino
We have seen above that the necessity to describe a particle with spin s = 1/2 by the

two spinors ¢ and 7 is directly related to the finite mass of a particle. There is no such
demand if the particle mass is zero.!! A wave equation describing such a particle can

11 Among all the known fermions only the neutrino possesses mass, which is zero or very small: the
experimental limitation is that its mass m, < 2eV [67]. However, experimentally observed neutrino
oscillations definitely show that neutrino mass is definitely finite [67]. Still, zero mass is a very good
approximation to describe most of neutrino physics.
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be constructed using only one spinor, for example, 7:
pn =0 (3313)
or, which is the same,
(po +po)n = 0. (3.314)

This is the so-called Weyl equation.

We have noted before that the wave equation with mass m is automatically invari-
ant with respect to spatial inversion (transformation ¢ < n (3.216)). However, if we
describe our particle by one spinor, this symmetry is lost.

The energy and momentum of a particle with m = O are related by € = |p|. Thus,
for a plane wave 17, ~ e”PX equation (3.314) gives

m-o)my =Ny, (3.315)

wheren = ﬁ. The same equation holds for the wave with “negative frequency” n_, ~
ipx .
e

m-o)n_p=-n_p. (3.316)
The second quantized operators of the field n are represented by
n =2 (1@ +n_pby),
p

n" =Y (nyay+n,by). (3.317)
P
From here, as usual, we see that nfp is the wave function of an antiparticle. A neutrino
is electrically neutral, but—in this formalism—it is not a truly neutral particle.
From the definition of operators p* (3.212), it can be seen that p™* = —p® Then,

the complex conjugate spinor n* satisfies the equation pdﬁng = 0, or, which is the
same,

P’ = 0. (3.318)

Let us denote nﬁ = B as complex conjugation transforms dotted spinors into non-
dotted ones. Thus, the wave functions of antiparticles satisfy the equation

papt’ =0 (3319)
or

(Po-p0)¢ =0. (3.320)
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For the plane wave, we have

(n-0)§, =¢,. (3.321)

Note that %(n -0) represents the operator of spin projection on the particle momentum
(helicity). Thus, equations (3.315) and (3.321) automatically describe the particles with
fixed helicities; spin projection is always oriented parallel to the momentum. The spin
of the particle is opposite to the momentum (helicity is equal to -1/2, “left screw™),
whereas the spin of an antiparticle is oriented along the momentum (helicity +1/2,
“right screw”). Accordingly, for neutrinos and antineutrinos, there is no symmetry
towards reflections in the plane, orthogonal to momentum, as shown in Figure 3.2.
This corresponds to the experimentally observed breaking of spatial parity in weak
interactions. However, symmetry towards CP operation persists, which corresponds
to the conservations of the so-called combined parity.'? This scheme represents the
two-component theory of neutrinos first proposed by Landau.

Figure 3.2: Under mirror reflection (spatial inversion) the left-hand neutrino is transformed into a
nonexistent right-hand neutrino (a). A real physical state is obtained with simultaneous transforma-
tion from particles to antiparticles (charge conjugation), when the left-hand neutrino is transformed
into the right-hand antineutrino (b).

With one spinor n (or &), we can construct only four bilinear combinations, which
together form a 4-vector:
= ("nn"on). (3322)

Using (py + po)n = 0 and n*(p, — p o) = 0, we get the continuity equation ayj" =0,
so that j* represents the 4-vector of the neutrino current density.

12 Infact, weak interactions weakly break also the CP-invariance, which is mainly observed in decays
of K-mesons. This obviously corresponds to the weak breaking of T-invariance. The physical nature
of the breaking of CP-invariance has not been well established up to now, and our description of neu-
trinos simply neglect this small effect.
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Neutrino plane waves are conveniently written as

1 —ipx 1 ipx
Np = \/—gupe , Np= Eu_pe , (3.323)

and spinor amplitudes are normalized by the invariant condition:
uip(l,o)uip =2(&,p). (3.324)

Then particle density and current density are equal to j° = 1, j = Ig—’ =n.

To describe neutrino interactions with other particles, it is convenient to use com-
mon notations and introduce the neutrino “bispinor”, with two components equal to
zero: P = ( 2 ). However, such a form of i, in general, changes after the transformation
to another (nonspinor) representation. We can overcome this difficulty, noting that in
spinor representation

o33 D+ 016 )
2 2 1\0 1 0 1 0 1
1 5, (10
5@ y)—<0 0>, (3.325)
so that we can write the following identities:
1 5 {>_<O> % *1 5 *
a0 (2)= (7). @g30-v)- 00, (.326)

where ¢ is an arbitrary “dummy” spinor. Then, the condition of the true two-compo-
nent nature of a neutrino will also be satisfied in its description by the 4-component
bispinor i in arbitrary representation, if 1 is understood to be the solution of Dirac’s
equation with m = 0:

pY=0 (3.327)

with an additional condition (y5 -invariance)

S0Pz or Yy=p. (3328)

This condition can be taken into account automatically if in all expressions we replace
neutrino bispinors with the following rule:

1 - 51
Yo Sy, PoPs(i-y). (3.329)
For example, the 4-vector of the current density is written as

P = p-y)Wa+y ) = %fpy“(l +y ). (3.330)

-
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From the previous discussion of the helicity of massless fermions, it is clear that—
in the general case—we can introduce “right-hand” and “left-hand” fields as

WSS WS-V =gyt G:331)

These notations are often used not only for neutrinos, but also for any other fermions
with spin s = 1/2, when discussing problems where we can neglect fermion masses.

Hermann Klaus Hugo Weyl (1885-1955) was a Ger-
man mathematician, theoretical physicist and philoso-
pher. Although much of his working life was spent in
Ziirich, Switzerland and then Princeton, New Jersey, he
is associated with the University of Gottingen tradition
of mathematics, represented by David Hilbert and Her-
mann Minkowski. His research has had major signifi-
cance for theoretical physics as well as purely math-
ematical disciplines, including number theory. He was
one of the most influential mathematicians of the twen-
tieth century. Weyl published technical and some gen-
eral works on space, time, matter, philosophy, logic,
symmetry, and the history of mathematics. He was much influenced by Einstein’s gen-
eral relativity from its early days. He tracked the development of relativity physics in
his book “Raum, Zeit, Materie” (Space, Time, Matter). He was one of the first to con-
ceive of combining general relativity with the laws of electromagnetism. In 1918, he
introduced the notion of gauge, and gave the first example of what is now known as
a gauge theory. Weyl’s gauge theory was an unsuccessful attempt to model the elec-
tromagnetic field and the gravitational field as geometrical properties of spacetime.
From 1923 to 1938, Weyl developed the theory of compact groups, and his results are
foundational in understanding the symmetry structure of quantum mechanics, which
he put on a group-theoretic basis. He was one of the creators of spinor algebra. From
this time, and certainly much helped by Weyl’s expositions, Lie groups and Lie alge-
bras became a mainstream part both of pure mathematics and theoretical physics.
In 1929, Weyl proposed a massless fermion particle described by Weyl equation. Neu-
trinos were once thought to be Weyl fermions, but they are now known to have mass.
Such quasiparticles were recently discovered in what is now known as Weyl semimet-
als, a type of topological material.

In recent years, because of the indirect experimental indications of neutrino mass finiteness (such as
neutrino oscillations [67]), there was a revival of interest in a truly neutral model, the so-called Ma-
jorana neutrino, which is transformed to itself under charge conjugation and possesses a finite mass,
which is in some sense different from the usual Dirac’s mass. We have seen that mass term of the Dirac
type in the Lagrangian mixes L and R components of the same field:

Lp =DWrr + Prip;) = DY, (3.332)
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where D denotes Dirac’s mass. The mass term of the Majorana-type mixes L and R components of
charge conjugate fields, so that the corresponding contributions to the Lagrangian can be written as
[13]

Ly = AL, + DL¥r) = AN
Lyp = B(Pxig + Pri) = Bow, (3.333)

where the index C denotes the charge conjugation and the Hermitian (truly neutral or Majorana) fields
we introduced:

x=vr+¥i, x“=x
w=Yr+Ps, o =w. (3.334)

The inverse relations have the form

v= 5=V ¥ =500
be= 510V, U= 5017, 6335

When both Dirac and Majorana terms are present in the Lagrangian, we have
= 5 C 5 C
Lpy = DYryr + APy + Bgipp + hc

1 A 3D\ (x
- -D{w + @ 7X + Baw = (§, @ 2
2D(xa) + @y) + Agx + Bow = (Y, @) (%D N ) (a)) . (3.336)

The mass matrix appearing here is easily diagonalized, and its eigenvalues give

1 1
My = 5(A+B) x> \(A- B)?+D?. (3.337)

Thus, the most general mass term (3.336) with 4-component fermion fields, in fact, describes two Ma-
jorana particles with different masses. The corresponding fields are represented by the following (di-
agonalizing (3.336)) linear combinations of initial fields:

¢ =xcosf-wsinh, ¢, =xsinf+wcosh, (3.338)

where

D
tg20 = ——. .
g B_A (3.339)

It is easy to see that in the case of A = B = 0 (that is, for zero Majorana masses), we obtain the
usual formalism of a 4-component Dirac’s field, so that the Dirac’s fermion corresponds to the “de-
generate” limit A = B = 0 of two Majorana particles. Majorana mass terms in the Lagrangian (3.333)
obviously lead to nonconservation of additive quantum numbers carried by the field , for example
electric charge, so that all the known elementary fermions, except neutrinos, being charged should
have A = B = 0 and should be Dirac’s particles. For the neutrino, there is no such limitation, and it
can be described within the more general Majorana formalism. If the neutrino mass is precisely zero,
Majorana neutrinos become equivalent to two-component Weyl neutrinos, considered above. In case
of finite neutrino masses, the Majorana theory leads to a number of specific predictions, which we
shall not discuss here.
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Ettore Majorana (born 1906; probably died after
1959) was an Italian theoretical physicist. On March
25, 1938, he disappeared under mysterious circum-
stances while going by ship from Palermo to Naples.
The Majorana equation and Majorana fermions are
named after him. Majorana was born in Catania,
Sicily. Mathematically gifted, he was very young
when he joined Enrico Fermi’s team in Rome. Ma-
jorana was known for not seeking credit for his dis-
coveries, considering his work to be banal. He wrote
only nine papers in his lifetime. He became a full
professor of theoretical physics at the University of
Naples in 1937, without needing to take an examination because of his “high fame
of singular expertise reached in the field of theoretical physics”, independently of
the competition rules. In 1937, Majorana predicted that a class of fermions is possi-
ble with particles that are their own antiparticles. These are the so-called Majorana
fermions. Majorana’s idea was to describe neutrinos. In 2012, quasiparticles with
properties Majorana predicted may have been confirmed in experiments on hybrid
semiconductor-superconductor wire devices. There is also a speculation that at least
some part of the “missing mass” in the universe may be composed of Majorana par-
ticles. Subsequent to Majorana’s disappearance in unknown circumstances during a
trip by ship from Palermo to Naples on 25 March 1938, despite several investigations,
his body was not found, and his fate is still uncertain. He had apparently withdrawn
all of his money from his bank account prior to making his trip. In 2011, Italian media
reported that the Rome Attorney’s Office had announced an inquiry into the state-
ment made by a witness about meeting with Majorana in Buenos Aires in the years
after World War II. On 4 February 2015, the Rome Attorney’s Office released a state-
ment declaring that Majorana was alive between 1955 and 1959, living in Valencia,
Venezuela. These last findings, based on new evidence, made the Office declare the
case officially closed, having found no criminal evidence related to his disappearance,
which probably was a personal choice.

Particles with spin s = 3/2

Particles with spin s = 3/2in their rest system are described by a symmetric three-dimensional spinor
of the third rank, possessing 2s+1 = 4 independent components. Accordingly, in the arbitrary Lorentz
system of coordinates, the description of such particles should be done using spinors & apy Nagys> § apy
and x5, each of which is symmetric over all indices of identical nature (that is, dotted or nondotted).
Note that the last pair of spinors do not add anything new to the equations obtained with the help of
the first pair. There exist several equivalent formulations of wave equations for this problem, but we
shall limit ourselves to a short review of only one [6].

We have seen above that to a pair of spinor indices a, we can associate a single 4-vector index .
Thus, we can associate &%/ — 1/),71 and ¥ - ), that is, introduce the “mixed” spinor-tensors.
Then, we can introduce the “vector” bispinor i, (where we have dropped the bispinor indices). The
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wave equation is written as a “Dirac equation” for each of vector components i,:
@-my,=0 (3.340)

with an additional condition

Yy, =0. (3.341)
Multiplying (3.340) by y*, taking into account (3.341), we obtain y*y"p, ¥, = 0, or, due to commutation
rules for y*: 28"p, 1, — y'y*i,, = 0, where the second term gives zero due to (3.341). Then, we have

Py, =0, (3.342)

which guarantees that four-dimensional spinors are transformed to the “right” three-dimensional
spinors in the rest system.

The problem of the correct account of additional conditions for wave equations creates significant
difficulties during the quantization procedure. Note, however, that, as in the case of particles with
higher integer spins, there are no fundamental fermions with s > 3/2 in the Standard Model.



4 The Feynman theory of positron and elementary
quantum electrodynamics

4.1 Nonrelativistic theory. Green’s functions

In this chapter we shall present an elementary introduction in quantum electrody-

namics (QED), which is understood as the theory of the electromagnetic interactions

of elementary leptons, that is, mostly of electrons and positrons. Here, we mainly fol-

low the original papers of Feynman; similar presentations can be found in [18, 60].

However, we will begin with nonrelativistic quantum mechanics, so as to introduce

some basic notions, which are usually not included in traditional courses like [35].
Consider the time-dependent Schroedinger equation

., oY

lhg =Hy. (4.1)
The standard approach to solve this differential equation starts with the wave function
at some initial moment of time (¢, ), the calculation of its change during a small time
interval At, to find (¢, + At), with further continuation of this process of integration.
Feynman proposed writing the solution of equation (4.1) in integral form, so that at
time t, > ¢t;, the wave function at space-time point (¢,,X,) is expressed via the wave
function at space-time point (¢;, x;) as follows:

WYXy, by) = Jd3x1K(x2t2;x1t1)!,b(x1tl), >t 4.2)

Here, the integral kernel K(x,t,; X, t;) represents the propagator (Green’s function), cor-
responding to the linear differential equation (4.1). The physical meaning of propaga-
tor is clear from the form of equation (4.2); this is the quantum mechanical probability
amplitude of particle transition from point x; at time ¢, to point x, at time ¢,.

For simplicity, we consider the case of time-independent Hamiltonian H. In accor-
dance with the superposition principle of quantum mechanics, we can expand Y (x;t;)
in a series over the full set of orthonormalized eigenfunctions u,(x) of the operator H
with eigenvalues E,;:

Hu, = Eu,,
Jd3xu;‘l (XU (X) = (Ups Upy) = By » (4.3)
> up(Xpuy(x') = 6(x - x').
Then,

Pxity) = z Cnun(x1)e_iE”tl/h. (4.4)

https://doi.org/10.1515/9783110648522-004



104 —— 4 The Feynman theory of positron and elementary quantum electrodynamics

The coefficients c, can be obtained by multiplying (4.4) by u;, (x,) and performing in-
tegration over the whole three-dimensional space:

Cp = Jd3xlu;‘l (xl)l/)(xltl)eiE"“/h. (4.5)
The wave function at time ¢, can be written as

PXyty) = . Colty(Xy)e " (4.6)

Substituting (4.5) into (4.6), changing the order of summation and integration, and
comparing with (4.2), we get

Kt xpt) = Z un(xz)u;(xl)e*iE"(tf“)/h, 4.7)
n

and introducing the notation

Xn(%,0) = up ()€ (4.8)
we obtain a shorter expression:
K(Xyty;x187) = Zn:Xn(thz)X; (%1ty). (4.9)
At coinciding times t; = t, = t, from (4.7), we obtain
K(X,t;Xt) = ;un(xz)u; (X)) = 6(x%, - X). (4.10)

This obviously transforms (4.2) for t; = t, into the identity. We are certainly interested
in times t, > t;; thus, it is convenient to put K(x,t,; X;£;) = 0 for ¢, < t;, which guaran-
tees causality, and we define

KXty Xpt1) = 6(t, = 1) Y Xn(Koty)X™ (K1), (4.11)
n

where we have introduced the step-function

1 fort=0
o) = -7 12
© {0 fort < 0. (4.12)
The derivative of the 8-function is given by
do(t)
——= =4(t). 1
T (® (4.13)

Now, we can write the differential equation for Green’s function (propagator) K(xt;
r,t;). As x, represent the solutions of the Schroedinger equation (4.1), (4.3), using
(4.10), (4.11), and (4.13), we have

., 0 . . 0
[lhy - H(xz)]K(xztzixltl) =ih ZXn(thz)X (X1t1)a—t@(t2 -t)
2 n 2
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= ih Y up(Xpuy (xy)e TR, — 1))
n

= ih(s(tz - tl) Z un(XZ)u; (Xl) = ih5(t2 - tl)5(X2 - Xl) . (4.14)

Thus, in the general case (even for time-dependent H) Green’s function (propagator),
K(x,t5;x:t;) is defined as the solution of the inhomogeneous (with §-source in the
right-hand side) differential equation’

2

with the boundary condition
Kxt;xt) =0 for ¢, <¢t. (4.16)

For t, # t;, equation (4.15) reduces to

o)
2

If we integrate equation (4.15) over small time interval fromt, = t; —€to t, = t; + &, we

get

KXyt + &x:t;) - K(Xt; — & X4t)) = 6(X, — X) . (4.18)

The contribution of the second term in the left-hand side of equation (4.15) drops out
as € — O for finite H. Now, take into account that K(x,t; — €, X,¢;) = 0 due to (4.16) and
t; —€ < t;. Then,

lirr(1) KXty + &%) = KXt X4t) = 6(X, — Xq), (4.19)
E—

which coincides with (4.10).

Thus, the use of equation (4.2) is equivalent to the standard quantum mechanical
description. Consider the problem of when we can write H = H, + V and if for H = H,
there is an exact solution. Then, we can try to construct the perturbation theory over
potential V. Let us denote K,(X,t,; X;t;) as the Green’s function of a “free” particle
moving in the absence of perturbation V. We can easily convince ourselves that differ-
ential equation (4.15) and boundary condition (4.16) can be unified in a single integral
equation:

K(2,1) = Ko(2,1) - % J d'x;Ko(2,3) V(3K (3, 1), (4.20)

1 Actually, our definition of Green’s function of the Schroedinger equation coincides with its definition
in mathematical physics [70].
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where the numbers denote space-time points, for example, (2) = (x;,t,), and we have
introduced the four-dimensional integration variable x5 = (X3, t3), where integration
over time ¢; is formally done within infinite limits (the presence of 6-function in the
definition of propagator automatically guarantees the correct finite limits of integra-
tion). To check the validity of equation (4.20), let us act on both of its sides by the
operator [iha% — Hy(2)], so that using equation (4.15) for K, (i. e., for V = 0), we obtain
the differential equation

ihait2 —HO(Z)]K(Z, 1) =ih6(2,1) + V(2)K(2,1),
which, after moving the second term in the right-hand side to the left-hand side, just
coincides with equation (4.15). As K,(2,1) = 0 for ¢, < t;, we also have K(2,1) = O for
t, < ty.

The advantage of integral equation (4.20) is that it is conveniently solved by iter-
ations, so that we obtain the following perturbation series for the propagator:

K1) =Ky(2,1) - % j d*x;K(2,3)V(3)Ky(3,1)

.\ 2
+<_El) ,[d4X3d4X4Ko(2,3)V(3)I<0(3’4)V(4)K0(4’1)+m' (421

The terms of this expansion have an obvious and graphic interpretation: the first term
describes the propagation of a free particle from point 1 to point 2, and the second
describes the propagation of a free particle from point 1 to point 3, where it is scat-
tered by potential ¥V and propagates as a free particle from 3 to 2. Obviously, point 3
is arbitrary, so that we have to integrate over its coordinates. This process continues
in higher orders, so that the series describes all the multiple scattering processes up
to an infinite order in V. Such a perturbation theory can be effectively used for the
solution of concrete problems, and we shall return to it later.

Richard Phillips Feynman (1918-1988) was an
American theoretical physicist, known for his ma-
jor contributions into the path integral formulation
of quantum mechanics (actually a completely new
formulation of quantum mechanics), the theory of
quantum electrodynamics, and the physics of the
superfluidity of liquid helium, as well as to parti-
cle physics, where he proposed the parton model
of hadrons. He also significantly contributed to the
theory of weak interactions. For his contributions
to the development of quantum electrodynamics
(which is probably most precise theory in physics),
Feynman, jointly with Julian Schwinger and Shinichiro Tomonaga, received the Nobel
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Prize in Physics in 1965. Feynman developed a widely used pictorial representation
scheme for the mathematical expressions describing interactions of quantum parti-
cles, known as Feynman diagrams, one of the most widely used methods in modern
theoretical physics. He assisted in the development of the atomic bomb during World
War II, working in Manhattan project. Feynman also has been credited with pioneer-
ing the field on quantum computing and introducing the concept of nanotechnology.
Feynman was a great popularizer of physics through both books and lectures, includ-
ing his famous undergraduate lectures, “The Feynman Lectures on Physics”. Feynman
also became known to general public through his autobiographical books “Surely
You’re Joking, Mr. Feynman!” and “What Do You Care What Other People Think?”
Besides his Nobel prize and numerous other awards, he was elected a Foreign Mem-
ber of the Royal Society in 1965, received the Oersted Medal in 1972, and the National
Medal of Science in 1979. He was also elected to the National Academy of Sciences,
but later resigned.

4.2 Relativistic theory

Now, we are going to construct a similar formalism in relativistic theory. Dirac’s equa-
tion for a free particle is written as

V-myp=0, V=y"9,=y9+y-V, (4.22)

where, in contrast to the previous section, we returned to a “natural” system of units
with # = ¢ = 1. A 4-component wave function (Dirac’s bispinor) ¥ (x,t,) can be ob-
tained from the “initial” one (x;t,) with the help of the propagator (Green’s function)
Ko (X,t5; X1t;), which is a 4x4-matrix. This matrix should satisfy the Dirac’s equation
with the right-hand side, similar to equation (4.15):

iV - mKy(2,1) = i6(2,1), (4.23)

where, as before, we use the obvious number notations for space-time points. In anal-
ogy with (4.4), (4.6), the wave function 1 can be expanded over the complete set of
eigenfunctions u,, corresponding both to positive and negative energies. Instead of
uy, it is convenient to use conjugate spinors i, = u'y® = u'B (where we use Dirac’s
matrices yO =B, ,82 = 1). Repeating the steps used to derive (4.7), we find the desirable
propagator as

K (X5t X1t) = Z un(xz)ﬂn(xl)e’m"(tﬁl) + Z un(xz)ﬂn(xl)e’iE"(tﬂl) fort, > t;,
E, >0 E,<0
KXt X)) =0 fort, <t. (4.24)

It is necessary to do the expansion of i over the complete set of eigenfunctions, in-
cluding those corresponding to negative energies. This may seem bad for physics, as
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the introduction of some external perturbation (potential) can induce quantum tran-
sition of a particle (for example an electron) from positive energy states to the states
with negative energies, which leads to instability of the system (absence of the ground
state). It is well-known that Dirac solved this problem in the following way: Let us
assume that all states with negative energies in the physical ground state (vacuum)
are already filled by electrons, so that the Pauli principle prevents an electron moving
above this vacuum from making a transition to the filled states with negative energies.
In our formalism this reduces to the requirement that for ¢, > ¢, propagator K(x,t,; X;£;)
should be the sum over the eigenfunctions, corresponding to positive energies only.
Mathematically we should write

KXt xpt) = Z Uy (X))it, (X))e B0 fort, > ¢, (4.25)
E, >0

so that from (4.24) we should subtract the sum of terms, such as
Uy, (X))t (X, )€~ Enl270) (4.26)

over the states with negative energies for all moments of time. This can be done, as
such a sum represents the solution of homogeneous (that is, without the right-hand
side of) equation (4.23). As a result, this sum is canceled by the second half of the
solution (4.24), and we obtain the following Green’s function for a free particle:

K. (xt:x1ty) = Z Uy (%), (X)) B fort, > ¢, . (4.27)
E,>0
However, for this function
K, (Xt Xity) == Y up(X)ity(xp)e @™ fort, < fy (4.28)
E,<0

is obviously nonzero for ¢, < t;. Note the minus sign appearing here! This last expres-
sion is conveniently written as

K, (Kot Xyty) = = Y up(X)ity(xp)e P14 fore, <y, (4.29)
E,<0

so that in the exponent, we have only positive energies, and negative energies seem
to disappear.

In the presence of an external potential, we can again write an integral equa-
tion similar to equation (4.20) and its perturbation expansion of equation (4.21), but
with K, replaced everywhere by K,, and the potential V should be considered as a
4 x 4-matrix. The terms of this series can be graphically understood by drawing space-
time Feynman diagrams. The first term of the series (4.21) K, (2, 1) describes free particle



4.2 Relativistic theory = 109

Time — -
[\

Space
=

Figure 4.1

Figure 4.2

propagation from point 1 to point 2 (Figure 4.1). The second term (Figure 4.2) has the
form

(i) J d*x;K, (2,3) V3K, (3,1) (4.30)

and describes single scattering. In the figure, the closed curve denotes the region
where the potential V is different from zero. The third term (Figure 4.3)

(=i)? J dxd'x,K, 2, 3)VEIK, B, 4)VE)K, (4,1) .31)

describes two scattering processes. Diagrams in Figure 4.3(a) and Figure 4.3(b) illus-

trate two variants of such a scattering:

- Case (a). From point 1 to point 2, the electron propagates in such a way that time
grows along its world line; expression for K, contains only sums, such as (4.27),
that is, only states with positive particle energies are accounted for. This is the
usual second-order scattering of an electron with positive energy, as in nonrela-
tivistic theory.

- Case (b). From point 4 to point 3, the electron propagates backwards in time, then
expression for K, contains only sums over negative energy states, such as (4.29).
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Figure 4.3

In the Feynman interpretation this corresponds to a positron (that is, antiparti-
cle) propagation from point 3 to point 4. If time always grows, we can interpret
this sequence of events in the following way: An electron—positron pair is created
at point 3, with the electron propagating in the direction of point 2, whereas the
positron propagates to point 4, where it annihilates with the initial electron com-
ing there from 1.

Thus, according to Feynman, a positron is an electron propagating backwards in time.

This interpretation can also be illustrated from the classical point of view: in equations of motion of a
classical particle in electromagnetic field [33]

ax* dx,
— T —e—YFW, 4.32
s T %as (432

The change of proper time direction s is equivalent to the change of the charge e sign.

Note that for the process shown in Figure 4.3, we certainly have to integrate over all the
possible values of times ¢; and ¢,, so that both cases are described by the single term
of the series (4.31), which can be represented by the single diagram of Figure 4.3(a),
while the diagram of Figure 4.3(b) is just identical. The scattering process shown in
Figure 4.3(b) is in fact in accordance with Dirac’s theory: an electron with negative en-
ergy goes to the state 2 with positive energy (final state), that is, an electron—positron
pair is created, while the hole is filled by the electron coming from 1, which annihi-
lates. As a result, the electron is scattered from state 1 to state 2, and the electron with
positive energy is replaced by one of the electrons from the negative “background”
(vacuum). Thus, we have an exchange of identical particles, and the corresponding
matrix element acquires a negative sign, as it should be for fermions. However, we
never used the Pauli principle. The appearance of a negative sign in (4.28) was due
to a method of construction of propagator K,, thus guaranteeing the correct statis-
tics. The generalization of these arguments to all higher orders of perturbation theory
produces an alternative proof of the spin-statistics theorem [18].
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4.3 Momentum representation

In practice, all calculations are most conveniently done in the momentum represen-
tation. Propagator K, is determined by the equation

iV -m)K,(2,1) = i6(2,1). (4.33)
Let us introduce the Fourier transform of K, , which we shall denote as S, (p), so that

K,(2,1) = j d*pe Peg (p), (4.34)

where d*p = dp0d3p. The operator (iV—m) can be moved under the integral as (p —m),
whereas for the §-function, we can write

'y _ipe-
806 - x)) = J ﬁe o) (4.35)

Then it is easy to find the following equation for S, (p):

i 1

S = —_— 4.36
N (4.36)
This expression can be rewritten as
i p+m 1 i p+m
S, ()= —P P (4.37)

Qip+mp-m  Quppr-m?’

where we have taken into account that p* = p,p* = p§ - p° = p’, so that the denomi-
nator in (4.37) contains no matrices. Then,

i 4 —ip(x,—x;) p+m
K, (2,1) = d T = 4.38
+( ) (2”)4 J pe p2 _ mz ( )

Let us introduce, by definition, the following integral:

1 . eriplan)
1,2,1) = . 4.39
D=5 | e (4.39)

Then, (4.38) can be written as
K, (2,1) = i(iV, + m)I,(2,1). (4.40)

Substituting (4.40) into (4.33), we find that I, satisfies the following equation:

(0+m?)I(2,1) = -6(2,1), (4.41)
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that is, it represents, in fact, Green’s function of the Klein—Gordon equation. Separat-
ing the spatial coordinates and time, we rewrite I, as

1 © 3 e—ipo(tz—tl)eip(l’z—l‘l)
IL(x,-x)=—— | d Jd _ 4.42
06 -x7) ) L Do p R-p-m (4.42)

Here, we have a problem: the integrand contains poles at p3 — p* - m” = 0, that s, for

po = +\p? + m? = £E,. Thus, we have to introduce a certain integration path going
around these poles (the rule to encircle poles). Feynman’s rule is to replace

m-m-i§, §>0, &§—+0. (4.43)

Consequently, our integral is written as

3 @ —ip (t,—
d p eip(l‘z—l'l) J de e ipo(6—-t,)

@n)? 21t (po - Ep +i€) (Do + Ep — i)’ (4.44)

L -x) = J

-0

because the replacement (4.43) adds to E, an infinitesimal imaginary part, which we
denoted ie. Consider now the integrand as a function of a complex variable p,. The
pole p, = —E, is now slightly above the real axis of p, (which is the integration path
in (4.44)), whereas the pole p, = +Ey, is slightly below it, as shown in Figure 4.4. Let us
integrate (4.44), assuming that t, — t; > 0. In this case, integration is easily done using
the Cauchy theorem and closing the integration contour (path) in the lower half-plane
of py. The integral over the semicircle at infinity gives zero, due to fast damping of the
exponential factor in the integrand, and what remains is just the integral along the
real axis we need. But the integral over the closed contour is simply determined by
the residue at the pole +Ep, which is inside the contour (and is encircled clockwise).
Finally we get

2 iyt (4.45)
P

In the case of t,—t; < 0, to make zero the contribution of a semicircle at infinity, we have
to close the integration contour in the upper half-plane. Then, inside the integration

®(-E)

Figure 4.4
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contour we have only the pole at —Ep, which is encircled counterclockwise, so that our
integral is equal to

2 Byt (4.46)
p

Note that Ej, is assumed to be positive by definition, so that the arguments of exponen-
tial factors in both (4.45) and (4.46) are positive (up to a factor of —i). Thus, both the
integral I, and the propagator K, behave in similarly to (4.27) and (4.28); for t,—¢t; > O,
only positive energies contribute, whereas for ¢, — ¢; < 0, only negative ones. In fact,
the replacement (4.43) guarantees the equivalence to our previous definition of the
propagator K, .

We could define integration (4.42) in another way and instead of (4.43) just add an infinitesimal imag-
inary part to py:
Do — Do +16, & — +0. (4.47)

Then, in the integrand of (4.42) two poles appear, both in the lower half-plane of p,. Consequently, for
t, — t; > 0, when the integration contour is naturally closed in the lower half-plane, both positive and
negative energies contribute. At the same time, for ¢, - ¢;, we close the contour in the upper half-plane,
where there are no poles at all, so that the integral is zero. This definition of propagator K gives, in fact,
equation (4.24) (“retarded” Green’s function), that is, Dirac’s theory for electrons only. Feynman’s rule
also has an obvious advantage of the imaginary part being introduced into the relativistic invariant
m, so that all expressions remain covariant, whereas in the theory of “electrons only” the imaginary
part in p, makes it different from other components of 4-momentum.

We shall return to the discussion of these rather fine details of the definition of ana-
lytical properties of Green’s functions several times later on. Here, we only note the
most general property: poles of the propagators (Green’s functions) in momentum
representation determine, in fact, the energy spectrum of the corresponding parti-
cles. In our discussion above, E, = \/p? + m? represents the relativistic spectrum of
an electron (positron). This property of Green’s functions is also widely used in the
modern condensed matter theory. In particular, it is the basis of the whole concept of
quasiparticles—the elementary excitations in many particle systems [1].

4.4 The electron in an external electromagnetic field

Consider an electron interacting with an external electromagnetic field. This inter-
action is described by the expression ej"Ay = epy! YA, so that the interaction “poten-
tial” is conveniently denoted as ey“Ay = eA (eis the electron charge). Dirac’s equation,
taking into account interaction with the electromagnetic field, has an obvious form:

(iV-eA-muy=0, (4.48)

where we introduced the appropriate covariant derivative of electrodynamics.
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Accordingly, the particle propagator in the external field Kf is defined by the equa-
tion

iV, - ed, - mK*(2,1) = i6(2,1). (4.49)

Dirac’s equation (4.48) can also be rewritten in the form of a Schroedinger equation with the appro-
priate Hamiltonian:
oY

IE =Hy = [a~(p—eA)+e(p+m,B]1/), (4.50)

where we have taken into account that Ay = (p,-A). Then, the propagator is defined as the solution
of the following equation:

i% —ep(2) - a- (—iV, - eA,) - mB |K1(2,1) = if5(2,1), (4.51)
2

where the appearance of the § = y0 matrix is related to the use of the Dirac’s conjugated spinors in
equation (4.24) and guarantees the relativistic invariance. Multiplying equation (4.51) by the matrix j,
we write it as

iV, — ed, - mK?(2,1) = i6(2,1) (4.52)
which coincides with (4.49).

The solution of equation (4.49) satisfies the integral equation, similar to equation
(4.20):

K421 =K, (21) -ie J d*x;K, (2,3)AB)KA(3,1), (4.53)
which produces perturbation expansion (by iteration) similar to equation (4.21):
K421 =K,(2,1) —ie J d'x;K,(2,3)A3)K, (3,1)
+ (—ie)? J d*x;d*x,K, (2,3)AG)K, 3, 4)A(BK, (4,1) +--- . (4.54)

It seems that in the relativistic case, the relation between wave functions 1(2) at point
x, and (1) at point x; can be written in analogy with (4.2) as

D) = J P KA DBY(), (4.55)

where d’x, is the volume element of three-dimensional space at fixed time moment t,,
which is illustrated in Figure 4.5(a). Waves radiated from the point of the hyperplane
t; = const form the wave function at point x, at a later moment ¢,. However, this is
all wrong! The thing is that we defined Green’s function (propagator) in relativistic
theory in such a way that it describes the propagation of particles with positive ener-
gies ahead of time, and particles with negative energies backwards in time. Thus, the
analogue of equation (4.2) should be written as

Y(x,t,) = _[ XK (%o, Xy, t)PY(Xy ) — J I, KL (%ot X t)BP(x,t]),  (4.56)
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where t; < t, < tl’. Here, in accordance with Figure 4.5(b), the first term represents the
contribution of states with positive energy and depends on the previous moments of
time, whereas the second term gives the contribution of states with negative energies
and depends on future moments of time. The probability amplitude for the particle
transition to the point Xx,, t, is not defined, if we only know the probability amplitude
to find an electron (or positron) at the earlier moment of time. Even if there was no
positron present at an earlier time, an external field could have created an electron—
positron pair during the system evolution, which leads to the finite probability ampli-
tude to find a positron in the future. In the Feynman approach, contributions to the
propagator corresponding to particles with positive energies are considered as prob-
ability amplitudes for an electron with a negative electric charge, whereas contribu-
tions corresponding to particles with negative energies are considered as the probabil-
ity amplitudes for a positron with energy —E > 0. Thus, to determine the wave function
of a Dirac’s field at some moment of time, we need to know its electronic component
at a previous moment of time and the positron component at some future moment of
time.

Equation (4.56) can be generalized if we note that to define the wave function
Y(x,t,), we need the knowledge of (x;t;) on some four-dimensional hypersurface
surrounding the point x,, t,, as shown in Figure 4.6:

PY(x,t) = I do(x)K* 2, DN(1)(1), (4.57)

where N = Nyy“, with N, being the vector normal to the hypersurface, surround-
ing x,, t,. Integration into equation (4.57) goes over this hypersurface. Then, we can
say that the form of equation (4.55) assumes precisely this. Thus, in the future—for
brevity—we shall use this simplest formulation. We only need to remember that spatial
integration in equation (4.55) should be done over the correctly chosen hypersurface
in four-dimensional space-time.
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Figure 4.6

The formal derivation of equation (4.57) can be done as follows: Let us use the four-dimensional Gauss
theorem: ,
[ % - [ do(' ), () (). (4.58)
Q s S
where F, (x") is some 4-vector function, defined in space-time volume Q limited by hypersurface S, and
n*(x') is an external normal to surface element do(x') at point x'. Let i(x) be the solution of the Dirac’s
equation iy* % — mp(x) = 0. Let us choose F(x') = iK, (x — x")y*i(x'), where x,x' € Q. Then, we
have

oF,(x") & , ,
R L CTE)
oK, (x —x' ,
= [i%yy+ml(+(x—x )]z,b(x')
!
+K+(x —x')[iyy alg)(:f ) _ ml,b(x')} . (4.59)
U

The second term here is equal to zero in accordance with Dirac’s equation. Let us substitute this ex-
pression into the left-hand side of equation (4.58) and take into account that

i%}z_xuyll +mK, (x-x") = -i6(x - x"). (4.60)
Then, we have
$00 = - [ do(x! K, (x =X () (). 4.61)
where n* is an external normal. If we isntroduce internal normal N¥, we get
900 = [ do(x' ). (x = Iy (W (), 462
S

which completes the proof. Equation (4.56) now follows if we choose hypersurface S, consisting of two
space-like hyperplanes t; and t,, and neglect the “side” contributions, taking into account that these
parts of S are moved to infinity. Note that, in this case, N Oyo =B.

The probability amplitude for an electron transition from some state, with wave func-
tion ¥, (x,t;) of a particle with positive energy at the moment ¢;, to the state with wave
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function ¢ (x,t,), also corresponding to states with positive energies at the moment
t, > t;, is given by the following expression:

M = jd3xld3X2‘PS(thz)K+(X2t2;Xltl)ﬁlpo(xltl)
- J P, %P0 2)BK, (2, Do 1) 4.63)

If between moments t; and t, the potential eA acts, the function K, is replaced by Kf.
In the first order, the transition amplitude, according to (4.54), is equal to

M, = —ie j Cx,dP%,d" 300K, (2,3)AB)K, (3, 1)y (1) . (4.64)

With the help of (4.55), we can perform integration over x; and X,, introducing

Yo = [ @K, G, DAY (D), (4.65)
200) = | Pxopo@PK, 2.3, (4.65b)

so that (4.64) becomes
M, = —ie j d*x Po(0OAC)P (). (4.66)

Let the initial wave function correspond to an electron with 4-momentum p,, whereas
the final one corresponds to an electron with 4-momentum p,:

PYox) = u(p)e P, po(x) = u(p,)e?”, (4.67)

where u are spinors corresponding to free particles with positive energy. Introducing
the Fourier transform of Ay (x),

A,00 = | d'ke™ a, 00, (4.68)
and substituting (4.67) and (4.68) into (4.66), we perform integration over x; and get

M, = -ie@m)* [ d“ké(p, - k- ppatou(p)
= —ie(2m)*u(pya(p, - p)u(py), (4.69)

which is depicted by the diagram shown in Figure 4.7. Likewise, we can write the
second-order matrix element for transition from the state with p, into the state with

by as

M, = (—ie)? j dx j d*y poOAGIK, (06 YAV (4.70)
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Then, after the substitution of the Fourier transforms of 4 and K ., from (4.68), (4.38),
and (4.67), we obtain

M, = —ie*(2n)* J d'p j &'k, j d*k8(p, - ky - D)

<8001 + oy ~ PPk 5l utpy) (@71)
or
M, = -ie?n)* [ dkupaw, - py - 10— alou@p), (472
pi+k-m

which can be associated with the diagram in Figure 4.8. It is clear that in a similar

manner, we can write all terms of the higher orders of perturbation theory; as a re-

sult we obtain the following diagrammatic rules to describe electron scattering by the

potential of an external electromagnetic field:

1. the matrix element of transition has the form M = i1, Nuy;

2. to each virtual electron state (internal electron line) with momentum p corre-
sponds in N by a factor +m,

3. to each photon (wavy line) with momentum g corresponds in N by a factor of
—iea(q);

4. over all momenta g; that are not fixed by conservation laws and are obeyed in

d'g;
@my**

interaction vertices, we should perform integration
While calculating integrals, the integration contour for the time component of the mo-
mentum should be chosen according to the Feynman rule of pole encirclement: mass
m in the integrand is replaced by m - m-ié6 (6 — +0).

As a simple example of concrete calculating, we shall briefly consider the scattering of an electron by
the Coulomb field of an atomic nuclei (Rutherford scattering) with electric charge Ze. The potential of
nuclei is given by

Ay =V(r) ==, (4.73)
Then,
1

] 1 : . z
a@) = o7 J’dl'x eyra, = wé(qo)yo J d’xe V() = ﬁé(qo)yo. (4.74)
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The first-order transition amplitude (4.69) has the form

nZe?

M, = -2mi6(E, — E. )[ﬂ(p ) ————V
! ! g g [P

°u(pl)] , (4.75)
where E; and E, are the initial and final energies of an electron. From (4.75), we can see that E; =
E, = E, that is, we are dealing with elastic scattering (static potential). The probability of scattering is

determined by
2

2
4nze 8(E, - E»)5(0). (4.76)

1(py) —— u(py)
P2 — Pyl

Here, we have written [6(E; — Ez)]2 = 8(E; — E;)6(0), which creates obvious problems. However, §(0)
should be interpreted, according to the well-known Fermi recipe, as

My = 2n)°

)2
T . 1 ixt _ 1. 1
0= im lm o | e = @)
_T)2

where T is the interaction time. Then, we can define the transition probability per unit of time w;_,, as

5 2

Wi,y = 211|U(py) (P1)| 6(E; - E,). (4.78)

0
—yu
Ip> - b2

Further calculations (assuming the nonpolarized nature of the beam of initial electrons) require the
averaging over both initial spin polarizations of electrons and the summation over the final polariza-
tions. To perform this averaging and summation, there exists a certain well-developed mathematical
apparatus, which uses the explicit form of spinors u(p) and the properties of Dirac’s matrices. We pass
over these details, which have been well described in [60] and [6]. Finally, from (4.78), it is possible
to obtain a relativistic version of the Rutherford formula (Mott formula) for a differential scattering
cross-section to the element of solid angle dQ [60]:

2 4
do__Ze (1 p2qe2?), (4.79)
dQ  4p?v?sin® g 2

taking into account that |p; — p,| = 2|p| sin 8/2, where 0 is the scattering angle, and we introduced the
velocity v = |p|/E.

4.5 The two-particle problem

As we have seen above, in the Lorentz gauge, the Maxwell equation for potentials ac-
quires the form

DA, = 4mjy, . (4.80)

This equation is easily solved with the help of Green’s function D,, which is defined
by the following equation:

0,D, (2,1) = 4716(2,1). (4.81)



120 —— 4 The Feynman theory of positron and elementary quantum electrodynamics

Making some obvious Fourier transformations, we have

4m J dk e-ktax) 1

DD = "Gy i’

6 — +0. (4.82)

In fact, up to a constant and sign, this expression coincides with the integral I, from
(4.39) if we put m = 0 and use the rule (4.43). Now, we can write the solution of (4.80)
in the almost obvious form

AQ) = J d"'x,D(2,1)j,(1). (4.83)

Here, the possibly inhomogeneous term is absent, which corresponds to the boundary
condition of the absence of free electromagnetic radiation at t = +oo (that is, there are
no solutions AI(‘O) equation 0A,, = 0, which can always be added to the right-hand side
of equation (4.83)).

Consider now the case of two charged (interacting) fermions. Each of the particles
is the source of an electromagnetic field, which acts upon the motion of the other par-
ticle. As a result of this interaction, each particle is scattered by the other. Let us write
an expression for the current, corresponding to the transition of electron “a” from the
state u,(p;)e”P* to the state u,(p,)e P>*:

F(X) = eftg(Dy)y uq(py)e' P Px (4.84)

In accordance with equation (4.83), this current creates electromagnetic potential at
the space-time point x:

Af(x)=e J d*x'D, (x - x')ei(pz’pl)xlﬂa(pz)yZua(pl)
1
k2 +ib6

- _tme J dk— ek + py - it )Y ua0y).- (4.85)
This potential acts upon the motion of the second electron “b”. According to equa-
tion (4.66), the first-order matrix element, corresponding to the transition of electron
“b” from the state with 4-momentum g, into the state with 4-momentum g,, induced
by potential (4.85), has the following form:

M = —ie J dl'xﬂb(qz)eiqzxyZ'Ay(X)ub(ql)e_iqlx

4 up, (qZ)yzub(QI)aa (pz)Yapua (pl)

= 4niez(2n) 3
|p1 — pal

Sp1+q1-Dr—q2)- (4.86)

Consider now the propagator for a system of two particles (two-particle Green’s func-
tion). In a nonrelativistic approximation the system of two particles is described by the
Schroedinger wave function (x,,X;,t), and, as in the previous case of a single par-
ticle, we can define the propagator K (x,, X}, t; X, X;, t'), which determines the proba-
bility amplitude of particle the “a” transition from point x/, at the time moment ¢’ to
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point x, at the moment ¢, while particle “b” propagates from point x; at the moment ¢/
to point x; at the moment ¢. If the particles do not interact, we obviously have

K(Xg Xp, 6 X0, X, t') = Koo (Xt Xt ) Kop (Xpts Xt (4.87)

where K, and K, are the propagators of the free particles “a” and “b”. In the absence
of any interaction, we can also define a more general two-particle Green’s function
with different time moments for particles in initial and final states:

Ko(3,4;1,2) = Koo(3, DKoy (4,2) . (4.88)

Equation (4.86) can now be considered as the matrix element, appearing due to the
first-order correction K to the propagator of two free particles, which is written as

K,(3,4:1,2) = —ie? J dxs j d"X6K 43, 5)VhK 4(5, 1D, (5, 6)K , (4, 6)yp, K , (6, 2)
(4.89)

and can be represented by the Feynman diagram shown in Figure 4.9. In this expres-
sion, D, can be considered as the propagator of the virtual photon. In fact, our deriva-
tion is not completely satisfactory, because we did not quantize the electromagnetic
field itself. However, we shall see later that the same result is reproduced in the rigor-
ous theory.

Figure 4.9

In momentum representation we can rewrite the previous expressions in a more trans-

. L .. A . L
parent way. Assuming the validity of the Lorentz condition 5 = 0, and differentiating
(4.85) over x,,, we get

U (P2)Yhk,ua(p)) = 1(Py) (yok® - ¥ - K)uy(py) = 0. (4.90)

This relation is satisfied, because—due to the presence of §-function in (4.85)—we have
k = p; — p,, whereas u(p,) and u(p,) are free-particle spinors, so that

ity (p2) (D1 — D)u(py) = u(py)[(y — m) — (b, — m)]u(p,) = 0. (4.91)
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Thus, everywhere in (4.86)—where the yg matrix is present—we can use the relation
Yo ko -y, k=0 (4.92)

and express y° as
k
Ya = ym( |k—|> , (4.93)
0

where y,; is the y-matrix “projected on the direction of the propagation” k (let us stress
this the for virtual photon k, # |k|). Thus, denoting the “transverse” components of y

. HoN
as y;, we can rewrite y‘,’(# in (4.86) as

P 0,0 % 2 i
Ya¥y _ Ya¥h ~VaVh— Yia Varbe _ Ya¥o(~ fip) ~ Zict VarVe
2 2 - K2 2 - 12
_ _ngg B Ziz:l YatVbt (4.94)
2 2ok '

The first term in this expression describes in (4.86) and (4.89) the instantaneous Cou-
lomb interaction of two electrons, whereas the second one takes into account the
transversal quanta responsible for the retarded magnetic interaction of particles. The
appearance of instantaneous interaction is connected to the noncovariant separation
of initially the covariant interaction (4.94) into two terms. In fact, the first term gives
the main contribution in the limit of small velocities, whereas the second produces
corrections to the instantaneous Coulomb interaction.

Up to now we have not taken into account that electrons are identical particles
complying to the Pauli principle. This can be taken into account requiring antisym-
metry of the wave function of the particle system, which can be achieved by introduc-
ing the two-particle propagator K(3, 4;1,2) —K(4, 3; 1, 2), which describes the transition
of two particles from points 1 and 2 to points 3 and 4, including the exchange process.
Thus, instead of (4.86), we obtain the matrix element for the scattering of two identical
particles, in the first-order over interaction, in the following form:

ab(%)}’gub(%)aa ©2)Yauta(p1)
Ip1 — p,?
i, (D2) Yoy (1) 14(42)Y gt (P1)
- g, - p,/?

M= lu'tiez(ZJ'[)4 {

]’5@1+Q1—P2—Q2),

which determines, for example, the cross-section of the so-called Moller scattering.
In higher orders of perturbation theory over interaction, an infinite number of cor-
rections appear, which correspond to the exchange of a larger and larger numbers of
virtual photons between interacting particles and particle self-interactions. All such
processes are described by Feynman diagrams, which correspond to the appropriate
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O b=

Figure 4.10

mathematical expressions. Examples of diagrams of the order of e* are shown in Fig-
ure 4.10.
Additional Feynman diagram rules for two-particle scattering are formulated as
follows:
1. the probability amplitude for the radiation of a virtual photon is given by ey*,
which is attributed to an interaction point (vertex) on the diagram;

2. the probability amplitude for a photon transition (propagator, wavy line) from

point 1 to point 2 is given by D, (2,1) or, in momentum representation, —kf‘—fw.

Let us limit ourselves to the so-called “ladder” diagrams (with no intersections of in-
teraction lines) shown in Figure 4.11. Introducing the probability amplitude ¢(x;, x,)
to find two particles at points x; and x, after the exchange of n virtual photons, we can
write the same probability amplitude after the exchange of the next (n + 1)th photon
as

0,1(1,2) = —ie? J d'xs J AN K, o3V K (2 4Dy B )03, 4) . (4.95)
Then, the total probability amplitude in the ladder approximation can be written as
(o]
hxi,x)) = Z Pn(x1,X;) (4.96)
n=0
and, accordingly,
Y(2,1) = @o(2,1) - ie’ J d'x; J d*x,K,o(1,3)VEK (2 8y, D, 3, 03, 4),  (4.97)

where @,(2,1) is the wave function, satisfying Dirac’s equation for the free particle (by
both variables). Applying Dirac’s differential operators for the “a” and “b” particles to

etc.

Figure 4.11
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both sides of equation (4.97), we obtain the differential equation for (2, 1)
(iV, - m)(iV, - m)Pp(2,1) = iezy’;ybyD+(2, DYP(2,1). (4.98)

This is the so-called Bethe—Salpeter equation (in aladder approximation), which is the
relativistic wave equation for a two-particle system. In principle, it allows the complete
analysis of the bound state problem in such a system, for example, the study of the
formation and of the energy spectrum of positronium.



5 Scattering matrix

5.1 Scattering amplitude

Most experiments in high-energy physics (physics of elementary particles) are essen-
tially scattering experiments; studies of reactions between particles and their decays.
Particles usually interact at very small distances and during very short time intervals
(inside a target or at crossings of accelerator beams), whereas practically free reaction
products are registered in detector systems, which are placed rather far from the space
region, where particles interact with each other, producing these reaction products.
Thus, we are usually dealing with a rather general scattering problem; knowing the
initial state of a system of free particles, we have to find the probability of different final
states, which are also the sets of free particles, produced as a result of interactions.

Let |i) be some initial state. The result of an interaction can be represented by a
superposition

DO ISI) (5.1)
f

where the summation is performed over all possible final states |f). The coefficients
S = (fISi) form the so-called scattering matrix or S-matrix.! Now, |S4|* gives the prob-
ability of transition i — f. In the absence of interactions, the S-matrix is obviously a
unit matrix. Then, it is convenient to separate this unit part and write

Sp = 85 +1(2m)*6(P; - P) Ty, (5.2)

where the §-functions simply express the conservation of the 4-momentum. For non-
diagonal elements, we simply have

Sp = i(2m)*8(P; - Py)Ty. (53)

Here, Tj is called the scattering amplitude.

While calculating the square of (5.2), we encounter the badly defined square of
the §-function, which expresses the 4-momentum conservation law. The correct way
to proceed is to introduce the Fourier transform

1 i(Po—P.
8(P; - P)) = o J & xePrPx (5.4)

and dealing with the second such integral, perform calculations for Pf = P;, but with
integration extended to some large, but finite, volume V and time interval T, which

1 The notion of scattering matrix was first introduced by Heisenberg, who suggested considering it as
the most fundamental characteristic of elementary particle interactions.

https://doi.org/10.1515/9783110648522-005
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gives VT/ (2m)*. Thus, we write
ISal* = (21)"8(Py - P)|TH*VT . (5.5)

Now, we can introduce the well-defined probability of transition in unit time (and in
finite volume):?

ws = 2m)*8(P; - P)| TV . (5.6)

Free particles are described by appropriate plane waves with amplitudes u, represent-
ing bispinors for Dirac fermions, 4-vectors for photons, et cetera. Then, we have

Tp=ujuy - Quutty -+, (5.7)

where Q is some matrix over indices of the wave function amplitudes of all particles.

Let us consider the most important cases, where there are only one or two parti-
cles in the initial state, that is, decays of single particles or collisions of two particles.
Let us start from decays. The single particle can decay into several other particles with
momenta p’,, belonging to an element of phase space [],, &p’ o (anumerates here the
particles in the final state). The number of states in this elementary phase space vol-

umeis[], (2 )3 , and we have to multiply (5.6) by this number to obtain the probability
of transition into the final states:
4 vd’p'
dw = (2m)*8(P; - P)| TV ]‘[ o )3“ : (5.8)

Everywhere we use normalization by a “single particle in volume V”, so that the wave
functions of all particles contain the factor of ﬁ, where g, is the particle energy. It
€p

is convenient to move these factors into the scattering amplitude and write the wave
functions in the following as
W = ue P, tiu=2m  (electrons), (5.9)

A, = Vlmeye‘”“ , eye*" =-1, e, k¥ =0 (photons), (5.10)

et cetera, rewriting the scattering amplitude via the new amplitude Mg, defined as
Mﬁ
Tﬁ = 5
25,V --- ZS{V 12

(5.11)

where the denominator contains one factor of (2¢;V) per each initial and final particle.
Then, the decay probability is written as

1 d3 li
dw = Qm)"8(P - P)IMzI"_ | | e (5.12)
a a

2 As we already noted above, this recipe was first proposed by Fermi.
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where ¢ is an energy of the decaying particle. As should be expected, all normaliza-
tion volumes in (5.12) has been canceled. If among final particles we have N identical
ones, the phase volume of the final states should be divided by N!, to account for their
permutations, producing the same state.

Consider in more detail the case of the decay into two particles with momenta p’;, p’, and energies
&1, &. In the rest frame of the decaying particle, p’; = -p’, = p, ¢ + &, = m. Then,

1 ! ! ! ! 3./ 3./
dw = (2n)2| Msl* — o 48, ,S(p 1 +D2)8(e] + & -m)d’p'd’p;. (5.13)

First, the §-function here disappears after integration over & p’,. Consequently, we rewrite d3p’ 1as

ol ! !

d’p' = Ip'*dip’|dQ = |p'|dQ (5.14)

& +e
where we have taken into account €] - m? = £}’ — m2 = |p'|°. Then, integrating over d(e] + &}), we
get rid of the second 6-function in (5.13). Accordingly, for the decay probability into an element of the
solid angle dQ’, we get

dw= s M5 Ip'1dQ . (5.15)
Let us now consider the collision of two particles with momenta p;, p, and energies
&1, &, producing in the final state some set of particles with momenta p’, and energies
e/. Then,

dw = (2m)48 2 1 p'y
w = (2m)"8(P; — P;)|Mj| v I1 (5.16)

< (2m)32el”

The invariant (with respect to Lorentz transformations) scattering cross-section is ob-
tained from (5.16) dividing by [33]

I
= , here = 2-mim3. 5.17
Vere, w. (b1p2) (5.17)

In the center of the mass frame, we have p; = —p, = p, so that I = |p|(&; + &,) and

_ Ipl < ) ity
= , 5.18
Vg Te & %4 (5.18)

which gives the current density of the colliding particles (v;, v, are the particle veloc-
ities). Then finally,

d3 li
= (2m)"8(Pf - P)|Mf| HW' (5.19)

Let us drop the §-functions for the case, where there are two particles in the final state. Consider again
scattering in the center of the mass frame. Let € = &, + &, = £] + &) be the total energy of the colliding
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particles, whereas p; = —-p, = pand p’; = —p’, = p’ are the initial and final momenta. Performing
calculations similarly to the case of a decaying particle, we obtain

do = M2 R L '] e, (5.20)

64712 Mg |ple?
For the case of elastic scattering, we have |p’| = |p|. Let us introduce the kinematic invariant:
_ N2 _ 2 12 N2 12 ' ’
t= (p1 —pl) =m"+m; — 2(p1p1) =my" +m; —2e¢€ +2|pyllp'4lcosb, (5.21)

where 0 is the scattering angle. In the center of the mass reference frame, |p,| = |p| and |[p’;| = |p’| are
determined only by the total energy ¢, so that for its given value, we have

dt = 2|p||p’|d cos . (5.22)

Correspondingly, in equation (5.20), we can write

dpd(-t)
dQ' = —dpdcosf = (5.23)
¢ 2lpllp’|
where ¢ is the asimuthal angle of the vector p’; with respect to p;. Further, for brevity, we write d(t)
as dt and obtain o - 7| it dt dy (5.24)
6um’ 2 2m )
If the cross-section does not depend on the asimuthal angle ¢, we get
dt
d = 5.25
7= 64n ean M =

Werner Karl Heisenberg (1901-1976) was a German
theoretical physicist and one of the pioneers of quan-
tum mechanics. He published his work in 1925 in a break-
through paper. In the subsequent series of papers with
Max Born and Pascual Jordan, during the same year,
this matrix formulation of quantum mechanics was essen-
tially completed. He is known for the Heisenberg uncer-
tainty principle, which he published in 1927. Heisenberg
was awarded the 1932 Nobel Prize in Physics “for the cre-
ation of quantum mechanics”. He also made important
contributions to the theories of the hydrodynamics of tur-
bulent flows, the atomic nucleus, ferromagnetism, cosmic
rays, and elementary particles. He was a principal scientist in the unsuccessful Nazi
German nuclear weapon project during World War II. Heisenberg was the first to rein-
terpret the Dirac equation as a “classical” field equation for any point particle of spin
1/2, itself subject to quantization conditions involving anticommutators. Shortly af-
ter the discovery of the neutron in 1932, Heisenberg published his neutron—proton
model of the nucleus. Within 1943-1944, he published a series of papers on the scat-
tering matrix, or S-matrix, in elementary particle physics. The S-matrix supposedly
described only the states of incident particles in a collision process, the states of those



5.2 Kinematic invariants =— 129

emerging from the collision, and the stable bound states. The S-matrix program was
never fully completed, but the concept itself is widely used in scattering theory and
quantum field theory. In the period after the World War II, Heisenberg briefly returned
to the theory of turbulence and continued his interests in cosmic-ray showers. In the
late 1950s, he tried unsuccessfully to develop the nonlinear fermion quantum field
theory with the aim of building the complete theory of elementary particles. Heisen-
berg was elected a Foreign Member of the Royal Society and of many other Academies
of Sciences.

5.2 Kinematic invariants

Consider now the details of the kinematics of two particles scattering into two particles
in the final state. The conservation law for a 4-momentum can be written in the form
(where we do not predetermine which particles are in initial and which are in final
state)

b1+tPy+p3+p,=0. (5.26)

The scattering amplitude for this process can be represented by a graph (diagram),
as shown in Figure 5.1, where directions of the arrows correspond to the momenta
“entering” the amplitude (refer to equation (5.26)). Two of the momenta correspond to
initial particles, whereas two others to particles in the final state (with moments —p,,).
In these notations, two of p, possess the time component pg > 0, whereas two others
possess the time component pg < 0. For given types of particles participating in the
scattering process, the squares pertaining to the 4-momenta pﬁ are determined by their
masses: pfl = mf, (free particles always belong to their “mass surface”). Depending on
the values, which acquire time components pg, and also on the values of particles
charges, the scattering amplitude in Figure 5.1 can describe three different reactions:

P, P,

Figure 5.1
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~+

1 3 1 Y 3 1 3
s > U —=
2 4 2 4 1 2
14+2—3+4 143—2+4 14+4—3+2
Figure 5.2

(1) 1+2—>3+4 (s-channel),
) 1+3 > 2+4 (t-channel), (5.27)
3) 1+4 —2+3 (u-channel),

where the bars denote the appropriate antiparticles. These scattering processes are
called cross-reactions, which can be represented graphically as in the diagrams in
Figure 5.2. We can also speak of three cross-channels of the same reaction, shown in
Figure 5.1. We go from one reaction to another by changing the sign of the appropriate
time component of momentum pg in (5.26):

py >0, pI>0, p)<0, p)<0 (s-channel),
p? >0, pg <0, pg >0, pg <0 (t-channel), (5.28)
p) >0, pI<0, p)<0, p)>0 (u-channel),

and also the signs of the charges. All initial and final states in (5.29) obviously possess
positive energy. Transformation to the cross-channel reaction particle momentum in
the initial state p, is replaced by the antiparticle momentum -p,, in the final state,
with a corresponding change of charge. Due to the CPT-invariance of the theory, we
can also consider three CPT-conjugate reactions, which are obtained from (5.28) by
replacement of all particles by antiparticles and the interchange of the initial and final
states. If the theory is invariant with respect to charge conjugation C, we can add to
these six reactions six more C-conjugate reactions, where all the particles are replaced
by the corresponding antiparticles.

From the four 4-momenta entering the reaction, we can construct two indepen-
dent invariants. Due to (5.26), there are only three independent 4-vectors p,; let these
be p;, p,, p3. From these, we can construct six invariants: pf, pg, p%, DP1P2»> D1D3> Pabs3-
The first three reduce to the corresponding squares of masses: mf, mg, m% The other
three are connected by one relation, following from (p; + p, + p—),)2 = pi = mi Usually
the following symmetric notations are used, introducing three kinematic invariants:

s=(p +p2)2 = (p; +p4)2,
t=(p+p3) =y +1s) (5.29)
u=(p;+p,) = 0+p3)°,
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which are called Mandelstam variables. It is easily checked that
s+t+u=h=m}+m+mj+mj. (5.30)

In channel (1), the invariant s represents the square of the total energy of colliding
particles 1and 2 in their center of the mass reference frame. In fact, for p, + p, = 0, we
immediately obtain s = (g, + 52)2. In channel (2), a similar role is played by invariant ¢,
whereas in channel (3) it is played by invariant u. Correspondingly, we are speaking
about the s, t, and u reaction channels.

Let us consider in more detail the s-channel. Let

pl = (81’ ps) > p2 = (82’ _ps) >
p3=(-£3,-P's), Py=(-4,D). (5.31)
Then, it is easy to get
s=g, whereg,=¢g +&=¢6+¢,, (5.32)

4sp; = [s - (my + my)*][s - (my —my)?],

2

4sp's = [s - (m5 +my)*][s — (my —my)°], (5.33)
1

2t=h-s+4psp’s - g(mf -my)(mj -m;),

2u=h-s-4pp's + %(mf -m3)(m} -m;}). (5.34)

In the case of elastic scattering (m; = m3, m, = m,), we have |p,| = |p’s|, so that&; = &5
and &, = g,. Consequently, equations (5.33) simplify to

2
t= _(ps - pls) = _2p§(1 — Cos 6s)
u= —2p§(1 +cosb) + (g - 82)2 (5.35)

where 0, is an angle between pg and p’s, that is, the scattering angle. Thus, in this
case, invariant —t represents the square of the transferred 3-momentum.

Similar expressions for other channels are obtained by the obvious changes of
notation. The transformation to the ¢-channel is achieved by the replacements s « ¢,
2 & 3, whereas the transformation to the u-channel is made by s & u, 2 < 4.

If colliding particles are spinless, the scattering amplitude depends only on the
kinematic invariants s, t, u and, in fact, reduces to the single function

Mg =f(s.0). (536)

For particles with spin, besides s, t, u, there exist invariants that can be constructed
from the amplitudes of the wave functions (bispinors, 4-vectors, 4-tensors, et cetera).
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Then, the scattering amplitude has the form
Mﬁ = an(s) t)Fn > (5-37)
n

where F,, are invariants, linearly dependent on wave function amplitudes of all the
colliding particles, as well as on their 4-momenta. The coefficients f, (s, t) are called
invariant amplitudes.

5.3 Unitarity
The scattering matrix should be unitary: SS* = 1, or

(SS)5 = . SpuSin = 65> (5.38)
n

where n enumerates all the possible intermediate states. The unitarity condition (5.38)
expresses the conservation of normalization and orthogonality of quantum states in
scattering processes. In particular, the diagonal elements of (5.38) represent the sum
of all transition probabilities from the fixed initial state to all the possible final states:

Y ISul” =1. (5.39)
n

Using (5.2), we obtain from (5.38)
Ty - Tjp = iQ2m)" Y 6(P — Py) T Ty - (5.40)
n

The left-hand side is linear, whereas the right-hand side is quadratic over T. If the
interaction contains a small parameter, the left-hand side is “larger” than the right-
hand side, and in the first approximation, neglecting the right-hand side, we can write

Th = T; (5.41)

so that the T-matrix in this approximation is Hermitian.

Consider the collision of two particles. Only in the case of elastic scatterings are
all the intermediate states in (5.40) also two-particle states. The summation over these
states reduces to the integration over the intermediate momenta p’’;, p”, and the sum-
mation over spins (helicities) of both particles, which we denote as A”':

3.1 3.1
Z:depldp Y. (5.42)

n (271)6 A/I

After dropping the §-function, in a way similar to that used above, we may obtain the
“two-particle” unitarity condition as

2
Ipl
Ty — Tf—z(z )2; JTfn n£1€ydq", (543)
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where p is the momentum, and ¢ is the total energy in the center of the mass reference
frame. The normalization volume disappears after transition to amplitudes Mg:

* Ipl J "
My - M; My, M;,dQ 5.44
[~ My = (4n)z; i (5.44)

The diagonal element Tj; is called the zero-angle scattering amplitude. For this ampli-
tude, the unitarity condltlon takes the form

2Im T; = (27)* Z| T, [*6(P; - P,). (5.45)

The right-hand side here is proportional to the total cross-section of all the scattering
processes from the fixed initial state i, which we shall denote as g,;. In fact, summing
(5.6) over f and dividing by the particle current density j, we obtain

2n)*v
ot = 2 ) YT 8@~ P,). (546)
so that
ZJ—VImT = Ot (5.47)

The normalization volume is canceled after the transformation to T; = M;;/(2e,V2¢,V)
(where g, &, are particle energies in the center of the mass reference frame), and sub-
stituting j from (5.18), we get

Im Mj; = 2|pleoyy » (5.48)

which is called the optical theorem.
Due to the CPT-theorem, we have

Ty = Ty, (5.49)

where i and f are states obtained from i and f by changing all the particles with their
antiparticles. For diagonal elements,
Then, it follows from (5.45) and (5.48) that the total cross-section of all possible scatter-
ing processes (with a fixed initial state) is the same for the reactions between particles
and antiparticles. In particular, this means that the total lifetime (decay probability)
of a particle and an antiparticle are equal.

During the period of the late 1950s and early 1960s, when there was a certain dis-
satisfaction in quantum field theory, it was proposed to limit the theory of elementary
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particles to the analysis of the general properties of the S-matrix, such as unitarity
and some general analyticity properties related to causality. This was the basis of the
so-called analytical theory of the S-matrix [14]. Despite some successes and important
theorems, which are proved within this approach, it was insufficient for the construc-
tion of a complete dynamical theory of elementary particles. At the same time, as we
shall see below, modern quantum field theory gives the well-developed formalism for
the calculation of S-matrix via the standard perturbation theory approach.



6 Invariant perturbation theory

6.1 Schroedinger and Heisenberg representations

Let us proceed to a systematic presentation of mathematical apparatus of perturba-
tion theory over interactions in quantum field theory. It is well known that there exist
two main formulations for equations of motion in quantum theory. In Schroedinger
representation the quantum state at a given moment of time ¢ is represented by the
state vector W¢(t), containing the complete set of all possible results of measurements,
applied to the system at this moment of time. The further evolution of the system is
described by the time dependence of this state vector (wave function), described by
the Schroedinger equation

ihaa% = HyW(t). (6.1)

In this representation, the operators of physical variables Fg do not depend on time;
for all ¢, they are the same: dFgs/dt = 0. At the same time, the average value of the
operator

(Fs) = (¥s(0)|Fs|¥s(D)), (6.2)
in the general case, will depend on time as
ih 5 (Fs) = (W5(0)] IFs, HI[¥s(0) (63)
Let us make the following time-dependent unitary transformation of vector W(¢):
O(t) = V(t)¥Ps(t), (6.4)
where
VOV =VIevE =1, VIO =V, (6.5)
Then, the new state vector ®(t) satisfies the equation’

n 220 _ (iha—v
ot

= vt VHSV*1><:D(t) . (6.6)

Let us choose V(t) satisfying the equation

- ih%—‘t/ = (VHsV "V = VHs. 6.7)

o OD(E) _ 1 OV 7
1 We have lh% = ih S Vs (t) +ihV 5E

coincides with (6.6).

= ih 2L V' D(t) + VHs¥s = ih S V' (t) + VHs V' ®(t), which

https://doi.org/10.1515/9783110648522-006
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Then, the transformed state vector will not depend on time, which is directly seen from
(6.6). Due to the unitarity of V(t), the average value of an operator Fj is expressed as

(Fy = (¥5(8)|F|¥s(t)) = (V(E)Ws(t)|V(£)Fs¥s(t))
= (Dy|V(O)FV (1) Dg) (6.8)

where we have defined @y as
Oy = V(O¥s(0), (6.9)
and V(t) satisfies equation (6.7). Let us define Fy(t) as
Fy(t) = V()FsV (1), (6.10)

Consequently, the time-dependent operator Fy(t) has the same average value in the
state defined by the vector @y, which the operator Fs has in the state defined by the
vector W;. Differentiating (6.5) over time, we have

dv(t)

TV O+ V()

dav*(t) _

= 0. (6.11)

Then, from (6.7) and (6.10), we obtain for the time dependence of F H(t)2

OFy(t) oV . vt i
U= = SV F (0 + Fy (V= = =

i
[VHgV*, Fy(t)] = 5 [Hyg, Fy®)], (6.12)
which represents the equation of motion for the operator of the physical variable in a
Heisenberg representation. The Heisenberg-state vector @ does not depend on time:

oD,

=0. 6.1
o (6.13)

We can assume that @y coincides with W4(0) at ¢ = 0.

6.2 Interaction representation

Consider once again the usual Schroedinger equation

ih? = (H, + H)®(0), (6.14)

where H, is the Hamiltonian of noninteracting fields (particles), whereas H; is some
interaction Hamiltonian. The state vector @, in the absence of interactions, that is, for

. -1
2 To obtain (6.12), we take into account that ag—tH = %—‘{FSV'l + VFS% = aa—'t/V_lFH + FHV%.
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H; = 0, describes the motion of the given number of free particles with fixed momenta
and spins. The operator H; describes interactions of these particles.
Let us introduce the state vector

Y(t) = exp< iHTOt )CD(t) . (6.15)

It is easy to see that W(t) satisfies the equation

BP0 _ g o Yy ot
ih ” = exp = H; exp = Y(t) (6.16)
or
n PO _ Rew), (6.17)
ot
where
HIIR(t) = exp(lHTOt>H, exp(—lH?Ot) (6.18)

the operator of the interaction energy in this new representation. This operator ex-
plicitly depends on time, in contrast to the Schroedinger operator H;. In general, an
arbitrary operator Qp(t) in this, the so-called interaction representation, is related to
the Schroedinger operator Qg as

iHyt iHyt
QIR(t) = eXp(TO>QS exp(—T()). (6.19)
Now, itimmediately follows that in interaction representation the dependence of oper-
ators on time is determined by the Hamiltonian of free particles; differentiating (6.19)
by t, we obtain

at = [QIR(t)’HO] . (620)

Note that HéR = Hg . Thus, in interaction representation, field operators satisfy equa-
tions of motion of free fields,? whereas the time-dependence of the state vector ¥(t) is
determined, according to (6.17), only by the interaction energy. Interaction represen-
tation is quite convenient for the construction of perturbation theory.

Consider as an example the theory of Dirac fermions interacting with a scalar field. In Schroedinger
representation, the Hamiltonian of free fields has the form

2
H, = Jd%[{b(x)(—iy -V+myp((x) + %( agoa(tx) > + %(V(p(x))2 + %mz(pz(x) , (6.21)

3 In particular, this means that commutation relations for these operators are the same for arbitrary
moments of time.
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and the interaction Hamiltonian (based on simplest principles of relativistic invariance) is written as
Hy = g [ Prpeopeoeco), 6.2

where g is the dimensionless coupling constant. After transformation to interaction representation,
the field operators @(x) and ¥ (x) satisfy the equations

(iV - mpr(x) = 0, (l:l + mz)(pm(x) =0, (6.23)

and equation (6.17) reduces to

v -
ih—ait) =g I PP OPREOPROOF(L) . (6.24)

ct=xg

Equation (6.17) can be generalized to covariant form. This is achieved by introduction
of an arbitrary hypersurface in space-time instead of the hyperplane t = const. The
only condition for this hypersurface to satisfy is that any vector n,(x) normal to it at
an arbitrary point r should be time-like, that is, ny(r)n“(r) > 0. This means that no
points on this hypersurface can be connected by a light signal, or that any two points
on it should be separated by a space-like interval. Let us denote such surfaces as o.
At an arbitrary point r on this surface, we can introduce time ¢(r), which is called the
local time. In the limit, when this surface becomes just a plane, all points on it possess
the same time t = const. Now, we can generalize ¥(t) by introducing W[t(r)]. The basic
equation (6.17),

YO _ g owe, (6.25)
ot
can now be considered to be the result of the summation of an infinite number of
equations obtained after the introduction of local time at each point of the space-like
hypersurface. If the interaction Hamiltonian is expressed as the sum over small three-
dimensional cells AV, on the space-like hypersurface o, that is,

Hp =) H;(00AV, (6.26)

the equation in a small cell surrounding the space-time point (r, t(r)) can be written as

m%%gzmmwﬂmm (6.27)
which directly generalizes equation (6.17). The variation of ¥(t), corresponding to a
rigid infinitesimal translation of hypersurface ¢t = const as a whole, is determined by
the integral jt H1d3r, so that it becomes clear that the variation of W[t(r)] relative to
point x is determined by the interaction energy in #;(x)AV, with an infinitesimal vol-
ume surrounding x. As the product AVA¢ is a relativistic invariant, we may introduce
the following invariant differentiation procedure. Consider a function defined on the
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Figure 6.1

space-like hypersurface ¥[t(x)] = W(0). Let us compare the values of this function on
two space-like hypersurfaces o and ¢’, which are infinitesimally different from each
other in the vicinity of point x, as shown in Figure 6.1. Now, we define the invariant
operation §/60(x) in the following way:

6¥(0) - lim Wt(r) + At(r)] — P[t(r)]

80(x)  AtAV—0 c jAV ArAt(r)

¥(o') - W) _ ¥ -¥)

= = s 6.28
AAV—0  CAL(X)AV Q()—0 Qx) (628)

where Q(x) is the 4-volume between ¢ and ¢’. Then, in the limit of Q(x) — 0 equa-
tion (6.27) can be rewritten in the form of the so-called Tomonaga—Schwinger equa-
tion:

.. 6¥(0)

h

1 S0

This equation is covariant, as H;(x) is relativistic invariant (scalar), and we do not
need any specific Lorentz reference frame to define the space-like surface ¢. Thus, the
Tomonaga—-Schwinger equation is written with no reference to any system of coordi-
nates. However, in the following, we shall mainly deal with equation (6.17), written in
the fixed reference frame.

= 1,(0)¥(0). (6.29)

Shinichiro Tomonaga (1906-1979) was a Japanese
physicist, who developed quantum electrodynamics,
work for which he was jointly awarded the Nobel Prize
in Physics in 1965 along with Richard Feynman and Ju-
lian Schwinger. Tomonaga was born in Tokyo in 1906.
He entered the Kyoto Imperial University in 1926. Hideki
Yukawa, also a Nobel Prize winner, was one of his
classmates. In 1937, while working at Leipzig Univer-
sity (Leipzig), he collaborated with the research group
of Werner Heisenberg. Two years later, he returned to
Japan due to the outbreak of the Second World War.
During the war he studied meson theory, and his super-
many-time theory. In 1948, he and his students reexamined a 1939 paper by Sidney
Dancoff that attempted, but failed, to show that the infinite quantities that arise in



140 —— 6 Invariant perturbation theory

QED can be canceled with each other. They found that Dancoff had overlooked one
term in the perturbation series. With this term, the theory gave finite results, thus
Tomonaga discovered the renormalization method independently of Julian Schwinger
and calculated physical quantities, such as the Lamb shift. In the next year, he was in-
vited by Robert Oppenheimer to work at the Institute for Advanced Study in Princeton.
He studied the many-body problem and in the following year, after returning to Japan,
he proposed the exactly solvable one-dimensional model, known now as Tomonaga—
Luttinger model. In 1955, he took the leadership in establishing the Institute for Nu-
clear Study, University of Tokyo. He died of throat cancer in Tokyo in 1979.

Julian Shwinger (1918-1994) was a Nobel Prize winning
American theoretical physicist. He is best known for his
work on quantum electrodynamics, in particular, for de-
veloping a relativistically invariant perturbation theory,
and renormalization of QED. During World War II he pro-
vided theoretical support for the development of radar. Ac-
tually, Schwinger had started working with Green’s func-
tions during his radar work, and he used these methods to
formulate quantum field theory in terms of local Green’s
functions in a relativistically invariant way. This allowed
him to calculate unambiguously the first corrections to the
electron magnetic moment in quantum electrodynamics.
Schwinger developed renormalization, formulating quantum electrodynamics un-
ambiguously. Schwinger’s foundational work on quantum field theory constructed
the modern framework of field correlation functions and their equations of motion.
Schwinger always pursued independent research, different from mainstream fash-
ion. In particular, Schwinger developed the source theory, a phenomenological the-
ory for the physics of elementary particles. As a famous physicist, Schwinger is often
compared to Richard Feynman. He was more formally inclined to and favored sym-
bolic manipulations in quantum field theory. He worked with local field operators,
and he felt that physicists should understand the algebra of local fields. By contrast,
Feynman was more intuitive, which gave a particle picture. Schwinger commented
on Feynman diagrams in the following way: “Like the silicon chips of more recent
years, the Feynman diagram was bringing computation to the masses”. He disliked
Feynman diagrams because he felt that they made the student focus on the particles
and forget about local fields, which in his view inhibited understanding. He went so
far as to ban them altogether from his class, although he understood them perfectly
well. Schwinger died of pancreatic cancer, and % is engraved above his name on his
tombstone, referring to his calculation of the “anomalous” magnetic moment of the
electron.
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6.3 S-matrix expansion

The solution of equation of motion in interaction representation (6.17) can be written
in integral form as

t
W(e) = Witg) - J dt'Hy(¢)¥(t'). (6.30)
tO
Here, we take into account the initial condition: for ¢ = ¢, the function ¥ reduces to
Y(t,).
Let us write the relation between ¥(t) and W(t,) as®

W(t) = Ut, t))¥(ty)
W(ty) = U (¢, to)¥(0), (6.31)
U(to, to) = 1 >
where U(t, t,) is a unitary (conserving normalization) operator of evolution. Then,

S = U(+00, —00) (6.32)

defines the S-matrix (scattering matrix), which determines all the possible changes of
the system states due to interaction:

¥ (+00) = S¥(~00), (6.33)

where ¥(—o0) and ¥(+00) are asymptotic state vectors of the system, in particular, the
asymptotic forms of incoming and scattered waves in a typical scattering process.

The operator U(t, t,)) satisfies the following differential equation, which is obvious
from (6.17):

ih% = Hi(OU(t, ) . (6.34)

Likewise,

N
Uk

= UG t)H (D), (6.35)

as H;(t) is Hermitian. From these equations it immediately follows that

%(U*(t, tyU(t,ty)) =0, (6.36)

4 The formalism presented below was developed by Dyson.
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which is equivalent to

Ut(t,ty)U(t, ty) = 1. (6.37)
To prove unitarity, we still have to show that

Ut ty)U"(t,ty) = 1. (6.38)

The evolution operator satisfies the group property

Ut t)U(ty to) = Uty ) . (6.39)
In fact, from
W(t) = Ut t)W(),  W(t) = Ulty, t)¥(ty) (6.40)
it follows that
W(t) = U(t, to)¥(to) = U(t, 1) U(ty, to)¥(to) (6.41)

which is necessary to satisfy (6.39). If in (6.39) we set t = t,,, we get
Ulty, t;) = Uty t,) . (6.42)

From U(ty, t;)U(t;, ty) = 1, multiplying it from the left side by U* (t,, t;) and using (6.37),
we obtain

Ulty, to) = Ut(to, ) = U (to, 1), (6.43)

which proves the unitarity of the evolution operator.

It follows directly from group property (6.39) that any transition of the system dur-
ing the finite time interval can be represented by the multiplication of evolution oper-
ators, corresponding to infinitesimal transitions:

Ut,t") = Ut t)U(ty, t,) - Ult,_1, t)U(tn, '), (6.44)

where U (&, 611) corresponds to an infinitesimal transformation from time moment &
to t] 41
The solution of equation (6.34) can obviously be written also in integral form:

ot
Utt)=1- % JdTHI(T)U(T, t". (6.45)
t!

Thus, for the infinitesimal time difference ¢; - t;,, we have:

G
i
U(t],t]+1) =1- E J dTH](T)U(T, tj+l)

tj+1
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G

~1- % J dt'Hy (Ut tr,0) = 1 - % J dt'Hy(¢') . (6.46)

tj+1

G

ti+1

Increasing the number of time intervals (to infinity) and regrouping the terms in (6.44),
we obtain

.t L2t h
Ut tg) =1+ <%1> J dtHy(t,) + <EI> j dt, J dtH(t)H, (t,)
fo ot

L3t L h
+ (%l) j dt, j dt, J At Hy () H () H () + -+ (6.47)

to to to

Consider the integral, determining the nth-order of perturbation theory:

t 15} ta
[t [at, - [ dttiem ) H@. (648)
tO tO tO

Here, integration is performed essentially over the whole time interval from ¢, to ¢,
but with a limitation: the time moment ¢; is earlier than _; (j < n). Of course, in
equation (6.48), we can arbitrarily rename the integration variables t;,...,t, —
tp>tp, - -ty and the value of integral will not change. Making all permutations of
variables t;,...,t,, summing all the expressions obtained, and dividing by the num-
ber of permutations n, we extend the integration over each of the variables to the
whole time interval from ¢, to t. However, it is necessary to guarantee that the opera-
tors H;(t;) under the integral are placed from left to right in the order of growth of the
time arguments. This can be achieved defining the operator T-ordering, which acts
on the operators, depending on time, and places them in chronological order, that is,
an operator with a larger value of time in the product stands to the left of those with
smaller times:

T(Hf(tl) . HI(tk)) = Hl(tl)HI(t]) . HI(tk) f01‘ ti > t] > > tk 5 (649)

which gives the definition of the chronological or T-product of the operators. Then,
using the symmetry of the integrand (6.48) mentioned above, we get:

t 4 bty
[t [de-- | atmem©) Hie)
to to to
t t t
== j dt, J dty--- J dt, T(H(t)H,(t,) - - - Hy(t)) - (6.50)
to to to



144 — 6 Invariant perturbation theory

t,}

120207028

& t,=t

KX
%%
ol
KRR

b

Figure 6.2

Let us consider in more detail the equivalence of these two forms of integral for the
case n = 2. From the definition of the T-product, we have
t

t
j dt, J dt,T(H(t)H;(t,))
to

to
t t t t

= J’ dt, j dt,H;(t))H(t;) + J dt, J’ dt,H;(t,)H;(t;) . (6.51)
to ty to t

The integration region of the left-hand side is shown in Figure 6.2 as a square. On the
other hand, in the first term in the right-hand side of (6.51), integration is extended
over the region I (nondashed triangle), whereas—in the second term—integration is
performed over the dashed region II. Changing the order of integration in the second
integral, we shall first integrate over ¢;; then, the limits of integration change, and we
get

t tz
j dt, j dt,H, (t,)Hy (t) . (6.52)
tO tO

Now, if we make the change of variables t; — t, and t, — t;, equation (6.52) takes the
form
t t1

J dt, j dtH, (t)H,(6y), (6.53)
bl
so that (6.51) reduces to
t t t 15}
j dt, J dt, T(H, (t,)H;(6)) = 2! J dt, j di,H, (t)H,(t,), (6.54)
to to fo to

which proves the validity of (6.50) for the case of n = 2.
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Thus, expansion (6.47) can be written as

. t
Ult,ty) =1+ (%) J dt, T(H,(t,)) (6.55)
)
1
2!

+

<%1>2 Jt dt, Jt dt, T(H;(t)H;(t,))
to

to

3t ot
1 —
+ _<EI> J dt, j dt, J dtsT(H(t)H; () H (8)) + -

3!
tO tO
© ont t t
1
=y F('%) JdtlJdtzmJdtnT(HI(tl)HI(t2)~~HI(tn)), (6.56)
n=0 " to to to

which can be rewritten as
ot
U(t, ty) = T{exp(—% JH,(t')dt' )} (6.57)
)

where we have performed the symbolic summation of the series (6.56), which reduces
it to the so-called T-exponent.

It can be directly checked that the series (6.56) gives the solution of equation (6.34). Let us differentiate
(6.56) by time ¢:

nt t t
Witty) S 1( i
= nz=1 E(‘E) J dt, tj dt, II Aty nHy(OT (Hy () Hy (6) -+ Hy(ty_))- (6.58)
0 0 0

Writing the right-hand side of (6.58) using the symmetry of the integrand, and the fact that operator
Hy(t) always depends on the time moment ¢, which is later than ¢, . . ., ,,_;, allows us to move operator
H(t) outside the sign of the T-product, putting it to the left of all the other factors. Then, (6.58) can be
rewritten as

n-1 ¢

autt) R 1 (i
i —HI(t)Z(n_l)!< h) tjdtl dt,
0

n=1

-~
S —

t
e I dty T(Hy(t)H;(ty) -+ Hy(ty-1))
to

nt t t
[ 1 .
= Hy(t) ZOE<_%> JdtlJdtzn-Jdt,,T(HI(tl)HI(tZ)~-~H1(tn))
n= ty fo t
= H()U(t, t,), (6.59)

which proves the desired result.
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Recalling that
Hy(t) = j i (x), (6.60)

we can rewrite (6.56) in the form explicitly demonstrating its covariance:

¢ ¢
o0 1 ]
Ut ty) = Z ﬁ<_%> Jd4X1Jd4X2
£

n=0 "

t
~--Jd4an(HI(xl)H1(x2) (), 6.61)
to

where we have used I dt f &r= _f d*x/c. We can generalize (6.61), introducing integra-

tion limits at space-like surfaces ¢ and ¢’. Then, U(o, ¢') will be explicitly invariant,

as both 7{; and the volume element d“x are 4-scalars.

The important point in the justification of the above formalism is the so-called
adiabatic hypothesis. Following the definition of the S-matrix, we have to tend the
initial moment of time ¢, to —co and the final moment ¢ to +co. However, we have to
be cautious; for the nth-order term in expansion (6.56), this can be done in n ways
for each of the limits. Dyson proposed to overcome this difficulty by introducing the
convergence factor e M, multiplying the interaction Hamiltonian, with A — O at the
end of the calculations. This procedure is equivalent to an averaging procedure over all
possible n ways to perform the limit of t — +co. Assuming the validity of this adiabatic
hypothesis, we can consider the initial- and final-state wave functions as eigenstates
of the “free” Hamiltonian Hy; these are usually called the wave functions of “bare”
particles. Then, any scattering process is considered as consisting of the following
stages.

1. Attimet = —oo, the system is in a state described by the wave function ®, which is
an eigenstate of the operator H,,. In this state, there is a given number of particles
with fixed spins and momenta, and these particles are separated from each other
and noninteracting. The vector @ is constant and independent of the time (H; = 0)
vector in interaction representation.

2. The interaction is switched on adiabatically, so that the state with wave function
@ transforms into a state ¥(t,) = U(t,, —00)®, which is assumed to correspond
to the real state of physical particles with the same momenta and spins. At this
stage it is still assumed that particles are well separated and do not interact with
each other. However, switching on H; induces self-interaction, so that the “bare”
particles are “dressed” by virtual quanta and the particles become real physical
particles, which satisfy the condition p? = m?, where m is the observable physical
mass.

3. Further on, the particles interact with each other, that is, are scattered, trans-
form into other type of particles, et cetera. After a long enough time T = ¢ - ¢,
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particles separate again, but their states are now described by the wave function
W(t) = U(t, t5)¥(t,); this state corresponds to the “dressed” (that is, real physical)
particles after scattering.

4. Then interaction is adiabatically switched off and the state with wave function
Y(t) transforms into a state with the wave function @', which corresponds to
“bare” particles after scattering, and @' = U(co, t)¥(¢).

Thus, the real scattering problem ¥(t,) — ¥(t) is replaced by an “equivalent” prob-
lem, which introduces the “bare” particles at t = +co. Consider the relation

W(t) = U(t, tp)¥(to), (6.62)
which can be rewritten as
U (00, ) = U(t, ty)U(ty, —c0)D. (6.63)
Now, we have
@' = U(oo, )U(t, ty)U(ty, —c0)® = U(co, —00)D = SO . (6.64)

This means that @ at t = +oo is the wave function of “bare” particles, which appear
as a result of scattering from the state described by wave function @ at t = —co.

The adiabatic hypothesis leads to results, which are in excellent agreement with
experiments. This may seem strange, as it is clear that interaction between real par-
ticles can not be “switched off” (adiabatically or in any other way). In this respect,
quantum field theory is rather different from quantum mechanics, where we usually
deal with potentials with finite radius (except the Coulomb case, but there we know
the exact wave functions), so that in the scattering problem, the wave functions of the
initial and final states are really corresponding to free particles.

Freeman Dyson (born 1923)
is an English—born American
theoretical physicist. He is
known for his work in quan-
tum electrodynamics, solid—
state physics, astronomy, and
nuclear engineering. He the-
orized several concepts that
bear his name, such as Dyson
equation and Dyson sphere.
In 1949, Dyson demonstrated
the equivalence of two formu-
lations of quantum electrodynamics (QED): Feynman’s diagrams and the operator
method developed by Julian Schwinger and Shinichiro Tomonaga. He was the first
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person after their creator to appreciate the power of Feynman diagrams, and his
paper written in 1948 and published in 1949 was the first to make use of them, devel-
oped rules for calculating the diagrams and completely solved the renormalization
problem in QED. Dyson’s paper and also his lectures presented Feynman’s theories
of QED in a form that other physicists could understand, facilitating the physics com-
munity’s acceptance of Feynman’s work. Later he made significant contributions to
physics of magnetism (spin waves), random matrices, and stability of matter. In 1960,
Dyson wrote a short paper for the journal Science, titled “Search for Artificial Stellar
Sources of Infrared Radiation”. In it, he theorized that a technologically advanced
extraterrestrial civilization might completely surround its native star with artificial
structures in order to maximize the capture of the star’s available energy. Eventu-
ally, the civilization would completely enclose the star, intercepting electromagnetic
radiation with wavelengths from visible light downwards and radiating waste heat
outwards as infrared radiation. Therefore, one method of searching for extraterres-
trial civilizations would be to look for large objects radiating in the infrared range of
the electromagnetic spectrum. Dyson has won numerous scientific awards, but never
a Nobel Prize. He remarked in 2009, “I think it’s almost true without exception if you
want to win a Nobel Prize, you should have a long attention span, get hold of some
deep and important problem and stay with it for ten years. That wasn’t my style.”

6.4 Feynman diagrams for electron scattering in quantum
electrodynamics

In quantum electrodynamics (QED), interaction Hamiltonian density has the form
Hi(x) = j,004%(x), (6.65)

where j, is the current density of Dirac electrons, whereas A*is the vector-potential of
the electromagnetic field. Then, the scattering matrix is written as’

S=T exp{—ie I dl‘xjy(x)A“(x)]» ) (6.66)

where we returned to the system of units with # = c = 1.

Let us consider some specific examples of the calculation of matrix elements of
a scattering matrix. The current density operator j contains the product of two elec-
tronic y-operators. Thus, in the first order of perturbation theory, only the processes
involving three particles—two electrons and one photon—can appear, as shown by the
diagram in Figure 6.3, similar to that of Figure 4.7. However, such processes with free

5 In the following, here and in the next chapter, we mainly follow [6].
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Y23 4

Figure 6.3

particles are impossible because of energy and momentum conservation. In fact, if p;
and p, are the 4-momenta of electrons, and k is the 4-momentum of a photon, conser-
vation law is written as k = p,—p; or k = p; +p,. However, these equalities are impossi-
ble, as for the real photon, we always have k? = 0, whereas the square (p,+p;)* is easily
shown to be nonzero. Let us calculate (p,+p,)* in the rest frame of one of the electrons,
for example, electron 1. Then, (p,+p;)> = 2(m*+p,p,) = 2(m* +&,6, %P, P,) = 2m(m+e,),
and because of &, > m, we have (p, + p;)> > 0 or (p, - p;)* < O.

Thus, the first nonzero matrix elements of the S-matrix can appear only in the
second order of perturbation theory:

2
e ; ;
s@ - =T J d*x J d*x' T(# (04, 005" (x)A, (x")) . (6.67)
As electron and photon operators in interaction representation commute with each
other, (6.67) can be rewritten as

2
S@ = -% J d*x J d*x' T 00" (") T(A, (04, (X)) (6.68)

As a first example, we consider the elastic scattering of two electrons. In the ini-
tial state, we have two electrons with momenta p; and p,, whereas in the final state we
have two electrons with momenta p; and p,. It is assumed that electrons are in some
concrete spin states, but the spin indices in the following are dropped for brevity. We
have to calculate the matrix element between the initial and final states with appropri-
ate particles. As in both states photons are absent, the required matrix element of the
T-product of the photon operators is simply (0] - - - |0), where |0) is a photon vacuum.
Accordingly, from (6.68), we obtain the tensor

D, (x - x") = i(0ITA, (04, (x)|0), (6.69)

which is called the photon propagator or the photon Green’s function.
From the T-product of electron operators in (6.68), the following matrix element
appears:

B4lTi#* (0" (x)112), (6.70)

where |12) and |34) denote states with two electrons with the appropriate momenta.
This matrix element can also be written in the form of a vacuum average if we use the
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relation
(2IF|1) = (Ola,Fa;|0), (6.71)

where F is an arbitrary operator, whereas a; and a, are operators of the creation of
the 1st and annihilation of 2nd electrons. It is clear that instead of (6.70), we have to
calculate

(Olasa, T(#(x)j"(x"))a5 a; |0) . (6.72)

Each of the current operators is written as j = Py, and the 1-operators are repre-
sented by

Y= Z(apwp + b;l/)_p), 'Z’ = Z(a;lﬁp + bpll)_,,), (6.73)
p P

where 1, denotes the appropriate spinors (plane waves). The second terms here con-
tain positron operators, which are irrelevant for the problem under consideration. Tak-
ing (6.73) into account, the product j*(x);j'(x') is represented by the sum of the terms,
each containing the product of two operators ap, and two a;, which are responsible for
the annihilation of electrons 1 and 2 and the creation of electrons 3 and 4. It is clear
that these should be operators a;, a,, a;, az, which are “paired” (or “contracted”) with
the “external” operators af, a;', as, a, according to the obvious equality

<0|apa;|o> =1. (6.74)

The operators disappear, and only the c-numbers remain. Depending on which of
-operators provide a;, a,, a3, a, for pairing (contraction) with external a, a3, a;,
a,, equation (6.72) produces four terms, such as

@By YY) aa Y)Y e
@ (DY VY ey @S By Y e, 675

where = P(x) and ' = P(x'), and the same number of dots denote paired (con-
tracted) fermion operators. Now, in each of these terms it is necessary to make per-
mutations of the “paired” operators a;, a,, ... from 1, written as (6.73), to put them
alongside their external partners aj, a;, ..., so that we can use (6.74) and obtain the
vacuum average as a simple product of averages, corresponding to these pairings (con-
tractions). Taking into account the anticommutativity of these operators (1, 2, 3, 4 are
different states), we find that the matrix element (6.70) is equal to®

GaAIT (05" (X' )12) = (Pay o) WDy 1) + (Dsy"1) Py P3)
= (Ysy" ) Wy v1) = (Pay" ) (W3y*5) s (6.76)

6 Due to the anticommutativity of fermion operators, the current operators j(x) and j(x')—composed
of pairs of these operators—commute, and we can drop the symbol T-product.
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where the i are not operators but rather the corresponding spinors (plane waves with
momenta 1, 2, 3, 4). The total sign here is the subject of agreement; it depends on the
order of placement of the “external” electron operators. The sign of a matrix element
for the scattering of identical particles is, in general, arbitrary. The first and second
terms in (6.76) (as well as the third and fourth) differ from each other only by the per-
mutation of indices u and v and arguments x and x'. But such permutations do not
change the matrix element (6.70), where the order of all factors is determined by the
symbol of T-ordering. Thus, after multiplying (6.76) and (6.69), and integration over
d*xd*x', four terms from (6.76) give

S = ie? | @'xd'x' Dy (x X ) By ) By 1) - By v) ")), (677

Note that the factor of 2 is canceled. Taking into account that the electronic wave func-
tion here are plane waves, we can write the expression in square brackets in (6.77) as

(’7‘4}’““2)(ﬂBYvul)e_i(pz_p4)x_i(pl_p3)X, - (ﬂ4)’uu1)(ﬂayvuz)e_i@rpl')x_i(pz_pm,
= {(@y"uy) (g wy ) 1P PPl 2

_ (a4yuu1)(a3yvuz)e—i[(pl—p4)+(p3—pz)]~f/2} e—i(p1+pz—p3—p4)X’ (6.78)

where we have introduced ¢ = x - x' and X = %(X +x"). The integration in (6.77) over

d*xd*x' isnow replaced by d*¢d*X. The integral over d*X produces 8(p, + p, — D3 —Da)s

corresponding to the conservation of the 4-momentum. Transforming from S, to Mg,
according to (5.2), (5.3), (5.11), we obtain scattering amplitude My as

My; = €*[(#4y" 1) Dy (D4 — P83y 1) = (@4 u) Dy (04 — P)(B3Y )], (6.79)
where
Dyl = [ ™D, 6) (6.80)

is the photon propagator in momentum representation. Each of the contributions to
the scattering amplitude in (6.79) can be represented by an appropriate Feynman di-
agram. For example, the first term corresponds to the diagram in Figure 6.4, where
k = p; — p3 = p, — p,. Similarly, the second term is represented by the diagram in
Figure 6.5, where k' = p, — p, = p; — p,. The rules of diagram construction are similar
to those discussed in Chapter 4:

D3 P
e(ay"n,) D, (k) (Ty'w) = k

Py 2

Figure 6.4
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Py Py
ez(l_%'YMUl)wa(k’)(u:ﬁl/“z): k!

Ps 2

Figure 6.5

1. The full lines “entering” the diagram (incoming lines) and directed towards the
interaction vertex correspond to the initial electrons and are associated with
bispinors u. The full lines “leaving” the diagram (outgoing lines) and directed
outside the vertices correspond to the final electrons and are associated with
bispinors ii. These factors are written from left to right in the order corresponding
to the movement along the full lines against the direction of arrows.

2. With each vertex, we associate the factor (~iey"). The vertices are connected by the
photon line, to which we associate the factor —iD,,, . The 4-momenta of all particles
(lines) in the vertices are conserved. The direction of the photon line is irrelevant;
it only changes the sign of the photon momentum k, but the photon propagator
Duv(k) is an even function of k.

These two diagrams differ from each other because of the exchange of two electrons
with momenta p; and p,,, which corresponds to the exchange of identical particles in
the final state, leading to a sign change of the scattering amplitude (Pauli principle).

Consider now electron—positron scattering. We now denote the initial momenta as
p_ and p,, whereas the final momenta are denoted as p’ and p',. The operators of the
creation and annihilation of positrons enter the field operators (6.73) together with the
corresponding creation and annihilation operators of electrons. In the previous case
of electron—electron scattering, the annihilation of initial particles was done by the
operator 1), whereas the creation of the final particle was achieved by the operator 1.
Now, the roles of these operators change: the conjugate function y)(—p, ) describes the
initial positron, whereas the final positron is described by y(-p. ). With this difference
in mind, we can easily write the scattering matrix as

Mg, = —€*(a(p" )y"u(p_))D,, (p_ - p)(@(-p,)y" u(-p))
+ ez(a(—p+)y”u(p_))Dyv(p_ +p.)(@a(pl )y u(-pl)), (6.81)

which is represented by the diagrams in Figure 6.6. The rules for constructing these
diagrams remain the same as before. The incoming full lines are associated with the
bispinor u, and the outgoing lines with ii. However, now the incoming lines correspond
to the final positrons, whereas the outgoing lines correspond to the initial positrons,
and their momenta are taken with the opposite sign. This is in agreement with the
Feynman interpretation of a positron (discussed in Chapter 4), being an electron prop-
agating backwards in time. In the first diagram of Figure 6.6, in one the vertex cross
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the lines of the initial and final electrons, whereas in the other, they cross the positron
lines, so that this diagram describes electron scattering by positron. In the second dia-
gram, in each of the vertices the electron and positron lines meet. In the upper vertex,
the pair is annihilated and a virtual photon is emitted, whereas in the lower vertex, the
pair is created by this photon. This difference is also reflected in the properties of the
virtual photons. In the first diagram (scattering channel) the 4-momentum of the vir-
tual photon is equal to the difference of the 4-momenta of two electrons (or positrons),
so that k% < O (refer to the footnote at the beginning of this section). In the second di-
agram (annihilation channel), k' = p_ + p,, so that k’ 2 > 0. Note that for a virtual
photon, we always have k* # 0, in contrast to a real photon, for which we always have
K =0.

6.5 Feynman diagrams for photon scattering

Consider now another effect which appears in the second order of perturbation
theory—the photon scattering by electrons (the Compton effect). In the initial state,
we have a photon and electron with 4-momenta k; and p;, respectively, whereas in the
final state they have momenta k, and p, (for brevity, we drop the polarization indices).
During the calculation of the matrix element S(z), between the initial and final states,
the following photon matrix element appears:

QITA,(004,(011) = (0lc,TA,(0A, (x')c}10) , (6.82)
where (refer to (3.41))

Ay = ) (i + Gl - (6.83)
k

In (6.82), we are performing all pairings (contractions) of “external” and “internal”
photon operators and obtain
At Al AT Al * Al A
QAA T+ GAA = Ay Ay + Ay A, (6.84)

Here, we have taken into account the commutativity of ¢, and c; , allowing the symbol
of T-ordering to be dropped.
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Likewise, we can analyze the electronic part of the matrix element:

QTP 007" (x)I1) = (Ola,T(py"$)(P'y'¥')a; 10) (6.85)

Here again, we are dealing with four y)-operators. Only two of them annihilate elec-
tron 1 and create electron 2, that is, paired with operators a; and a,. These may be
operators ',  or ¥', 1, but not 1, P or 1p’, P’, as the creation or annihilation at the
same point x or x' of a pair of real electrons (together with one real photon) obviously
produces zero. Making all the contractions, we obtain in the matrix element (6.85) two
terms, which we first write for the case of t > t':

YY) DYY )al + @y )@y Y ey (6.86)
Contractions in the first term give
ay - a6y, Pa —aay;. (6.87)

The products a,a; and a,a; are diagonal and can be replaced with their vacuum aver-
ages, which, according to (6.74), reduce to unity. For the similar transformation of the
second term in (6.87), we first have to move operator a} to the left and q, to the right,
which can be done using the commutation rules, which gives

{a,, ¥}, =1{ay. 9}, =
{ap ¥}, =y, {ay

where in the right-hand side of the last two expressions spinors appeared, correspond-
ing to plane waves with 4-momentum p (refer to (6.73)). As a result, (6.86) is trans-
formed to the form

Ol W)Wy 1) — Py ) (Poy"Y')I0)  fort > ', (6.89)

where i without index are operators, whereas 1);, i, are again just spinors (plane
waves) with the appropriate momenta. Likewise, for t < t', we obtain an expression
that differs by permutation of the primes and the indices y and v:

(Ol = ('Y 1) (") + (o P ) (hy" )10y fort < ¢'. (6.90)

Both expressions (6.89) and (6.90) can be written in a unified way, introducing the
following definition of chronological (T-ordered) product of Fermion operators:

o YooYy, t<t,
T = 6.91
Wy {—l,_b(x’)l,b(x), t'>t. (5D

Then, the first and second terms in (6.89) and (6.90) are written as

W, ¢p, (6.88)

W,y" OITY' 10)y" ] + Ply” (OI Ty Pl0Yy 1, . (6.92)
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Note that in accordance with definition of (6.91), the products of the operators for t < t'
and t > t' are taken with different signs. This is the main difference of the definition
of the T-product for fermion operators from those given previously, which is related
to the anticommutation of these operators, in contrast to commuting bilinear forms,
entering the interaction Hamiltonian.

Let us define the electron propagator (Green’s function) as a second-rank bispinor
of the form

G(x —x") = —i(0|TY(x)Ph(x")|0) . (6.93)
Then, the matrix element of interest to us is written as
QITF )" (X)) = ihy* G(x = x" )y g + +ithyy" G(x" - x)y*; . (6.94)

After multiplication by the photon matrix element (6.82), (6.84), and integration over
d*xd*x', both terms in (6.94) give the same result, so that

S = —ie” J d'x J d*X" P, 0y*G(x - X )y Py (x')
x [45,004,,(X) + A5, (')A, (0] - (6.95)

Substituting plane waves for the electron and photon wave functions, and separating—
as in previous examples—the §-function, corresponding to the 4-momentum conser-
vation law, we obtain the scattering amplitude as

Mg = —477921_12[()’9;)6(1’1 +ky)(vey) + (ye))G(p; - ky)(ves)]uy , (6.96)

where e; and e, are 4-vectors of photon polarization, and G(p) is the electron propa-
gator in momentum representation. Two terms of this expression are represented by
the Feynman diagrams shown in Figure 6.7.

With the incoming line (initial photon), we associated the factor V4me, to the out-
going line (final photon) the factor v4me*. The full internal line corresponds to the

ky k,
dme’n, & G(f) e, u= (a—
- P 1

V2 P

Ame* 5,8, G(f) & u=

Figure 6.7
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virtual electron with 4-momentum, determined by the 4-momentum conservation law
in the vertices. This line is associated with the electron propagator iG(f). In contrast
to the 4-momentum of a real particle, the square of the virtual electron 4-momentum
does not belong to its mass surface, that is, it is not equal to m?. Writing the invariant
f2 in electron rest frame, it is easy to show that

P +k)y>m’, =@ -k <n. (6.97)

6.6 Electron propagator

Let us calculate explicitly the propagators (Green’s functions) of free particles. By def-
inition (6.93), the electron propagator is given by

G(x —x") = =i(0|Tp(x)P(x")|0) .

Let us act upon it from the right side by the operator y”pu - m, where p, = i0,. As
the free field y(x) satisfies the Dirac equation (y"py -m)P(x) = 0, we shall get zero in
all points x, except those where t = t'. Note that G(x — x') tends to different limits, as
t > t'+0andt — t' - 0, and according to definition (6.93), these limits are given by

—i(O[p(x)P(r't)|0) and +i(ORP(x't)p(xt)|0), (6.98)

so that for t = t', the Green’s function demonstrates finite discontinuity. This leads to
the appearance of an additional term with the §-function in the derivative 0G/ot:

oG

% =" (OlTal'bl/)(X’)|0) +8(t = t')[Glpr40 — Glypro] - (6.99)

Note that in y”py — m, the derivative over t enters as iyoa/at, so that

(Y'p, - m)G(x - x') = 8(t — t")y° (Ol {ip(xt), p(r't)}, 10} . (6.100)

Now calculate the anticommutator. Multiplying the field operators, which we take in
the form of (6.73), and using commutation relations for ap and bp, we obtain

e 0,9}, = Y [, () + Y, ()], (6.101)
p

where ), ,(r) are plane waves (bispinors) without a time-dependent factor. These func-
tions form the full set, so that

3 W, w5 (F) + _,(x0p”, (F')] = 8(x ')y, (6.102)
P
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where §;; is the Kronecker symbol over the spinor indices. The sum in the right-hand
side of (6.101) differs from (6.102) by the replacement of 1* by 1p*y°, so that

Yo, P(x't)}, =y°8(x-r'). (6.103)
Substituting (6.103) into (6.100), we finally get
(V'py -m)G(x - x") = 8(x - x'). (6.104)

Thus, the electron propagator satisfies the Dirac equation with a §-function in the
right-hand side, so that it is really the Green’s function for this equation.”
Consider now the Fourier transform of Green’s function

Glp) = Jd“{e*iﬁ G(&). (6.105)
Calculating the Fourier transforms of both sides of equation (6.104), we get
(V'p, - m)G(p) = 1. (6.106)
Solving this equation, we obtain the result, which we already know from Chapter 4,

Y'pu+m

= (6.107)

G(p)
The components of the 4-vector p in G(p) are independent variables and are not re-
stricted by any relations, such as p? = pé - p? = m?. If we write the denominator of
(6.107) as pé — (p* + m%), we can see that G(p) as the function of D, for a given value

of p has two poles at p, = +¢, where € = \/p? + m?. Then again, during the integration
over dp, in

d4p s 1 . s
G =j—e’p£G =—Jd3 e’prjd e PGy, (r=t-t 6.108
€3) L ®) aor ) 4P Do ®, ( ) (6.108)
we meet the problem of encircling these poles, which we first discussed in Chapter 4.
Again, we shall use Feynman’s approach. Let us return to definition (6.93). Substitute
into it -operators in the form given by (6.73). Note that nonzero vacuum averages
appear only from the following products of creation and annihilation operators:

<0|apa;|o> =1, <0|bpb;|o> =1. (6.109)
Then,

Gx-x") =) P, @), (r't) =iy e‘ig(t‘t')gbp(r)rj)p(r') (6.110)
P

p

7 ltis easy to see that iG(x; — x,) coincides with Feynman’s function K, (2, 1) introduced in Chapter 4.
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fort —t' > 0. Accordingly,

Gx-x)=i) P p(m—zZe’f“‘>¢_p<r)¢_,,( ot (6.111)

p

fort —t' < 0. We see that, as in Chapter 4, for t —t' > 0, only electrons contribute to G,
whereas for t — t' < 0, only positrons. Comparing (6.110) and (6.111) with (6.108), we
see that the integral

J dpoe " G(p) (6.112)

in equation (6.108) must produce a factor e ' for 7 > 0, and e*” for t < 0. This can
be achieved if during the calculation of (6.112) we encircle poles p, = € and p, = —¢ in
the upper and lower half-planes of complex variable p,, correspondingly, as shown in
Figure 6.8. In fact, for 7 > 0, we have (to guarantee convergence) closed the integration
contour to a semicircle at infinity in the lower half-plane of p,, then the value of inte-
gral (6.112) will be determined by the residue at the pole p, = +¢&. For T < 0, we close
the contour in the upper half-plane, and integral is determined by the residue at the
pole py = —¢. Thus, we achieve the desired result. The Feynman rule to deal with the
poles, as we have seen in Chapter 4, can be formulated in another form: integration
over p, is performed along the real axis, but we add an infinitesimally small negative
imaginary part to particle mass m:

m-m-i0. (6.113)

Then,

£—>\/p2+(m—1'0)2= \/p2+m2—i0=£—1'0. (6.114)

Correspondingly, the poles p, = +¢ are moved up and down from the real axis, as
shown in Figure 6.9, so that integration becomes equivalent to integration along the
contour shown in Figure 6.8.8

This rule for dealing with poles is equivalent to the well-known relation

1
x +1i0

= P% Find(x), (6.115)

8 Itis useful to note that this rule of pole encirclement corresponds to G(x —x') acquiring an infinites-
imal damping over |7|. If we write the value of p, in displaced poles as —(¢ — i6) and +(¢ — i§), where
8§ — +0, the time-dependent exponent in integral (6.112) will be equal to exp(-ie|t| — 8|T]).
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which is understood in the sense that integration with some regular function f(x) is done as follows:

T of0 T 0
_L ax T2~ P_L a2 % inf(0), (6.116)

where P denotes the principal value of the integral.

Using Feynman’s rule, we write the electron propagator in momentum representation
as

"
6p) = s (6117)
This Green’s function is the product of the bispinor y"py + m and the scalar
Ol p——— (6.118)
p-—m-+1i0
In coordinate representation G(O)(:;” ) satisfies the equation
(O-m))GP(x-x") = 8(x - x'), (6.119)

being the Green’s function of the Klein—Gordon equation. It is obvious that it deter-
mines the propagator of scalar particles and can be defined via scalar field as

GO (x - x") = =i(0|Tp(x)p* (x')|0), (6.120)

where

(6.121)

ol '
Tp(x)p*(x') = {(P(X)‘P ", t'<t,

P NP0, t' >t

is the definition of the T-product for the Bose field.

6.7 The photon propagator

While analyzing the free electromagnetic field, we used the expansion of the vector-po-
tential over transversal plane waves. This description does not apply in the case of an
arbitrary electromagnetic field. This is obvious, as—for example—in case of electron
scattering, we have to take into account Coulomb interaction, which is described by
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the scalar potential and is not reduced to the exchange of transversal virtual photons.
Thus, it seems that we still do not have the full definition of operators Ay and cannot
calculate the photon propagator directly using the expression

D, (x - x") = i(0|TA, (A, (x)|0) . (6.122)

Besides that, the gauge invariance makes the field operators somehow unphysical.
However, below we shall present some general analysis, which solves all of these prob-
lems [6].

The most general form of the symmetric 4-tensor of the second rank, depending
only on the 4-vector & = x — x', is given by

D,,(¢) = g,,D(¢%) - 9,0,D'(&%), (6.123)

where D and D' are scalar functions of invariant &, Then, in momentum representa-
tion, we have

D,,, (k) = g, D(K°) + kK, D' (i), (6.124)

where D(k?) and D’(kz) are the Fourier components of D(¢ 2) and Dl(.f 2.

The photon Green’s function always enters scattering amplitudes multiplied by
the matrix elements of the transition currents of a pair of electrons, that is, in com-
binations, such as j’z‘lDyvjzg, which is seen, for example, from equation (6.79). Current
conservation gives ayj" = 0, so that the matrix elements of the current satisfy the con-
dition of four-dimensional transversality:

M
ky]21 =0, (6125)

where k = p, — p;. Thus, the physical results do not change after the replacement

D],tv - Duv +X],4kv +xvk (6.126)

e
where Xy are arbitrary functions of k. This arbitrariness corresponds, in fact, to differ-
ent choices of the gauge for field operators. Thus, the choice of the function D' (k%)
in (6.124) is, in fact, arbitrary9 and can be done to make calculations more conve-
nient. Thus, the full definition of the Green’s function reduces to the choice of a sin-
gle gauge invariant function D(k?). Taking the fixed value of k?, and choosing the
z-axis along the direction of k, we can see that transformations (6.126) will not affect
D, =Dy, = -D(K?). Thus, it is sufficient to calculate only one component D,,, using
an arbitrary choice of the gauge for potentials.

9 Consider 8D'(k?), an arbitrary change of D'(k%). Then, we get 8D, = kaVSDl = k,x,, where y, =
k,8D! (k).
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It is convenient to use, as before, the Coulomb gauge div A = 0 when the operator
A is given by

211 . . i
A= kz \ E(ckae(“)e oy of e @), (6.127)
a

where w = |[k|, and a = 1,2 enumerates polarizations. The only nonzero vacuum aver-
age of the product of the operators c, c* is

(OlCyyCiegl0Y = 1. (6.128)

Then, using definition (6.122), we obtain

3 .
Dik(g) _ J %%(; e]{a)eia)* )e—lwl‘rlﬂk{ , (6.129)
where i, k are three-dimensional vector indices. The presence in the exponent of the
modulus of T = t — t' reflects the T-ordering of the field operators in (6.122). From
(6.129), it is clear that the integrand without the factor of e represents the Fourier
component of Dy (rt). For D,, = -D, it is equal to

27 _igiq| @2 _ 2 iy
—e e = —e . 6.130
- ;| = (6.130)

To find D, (k?), we have to Fourier expand this function in time. This gives

. (o]
1M il _ _ j dky  4nm —ikyT

—_— 6.131
w 2 k(z) -Kk%+i0 ( )

—00

As shown above, integration here assumes encirclement of poles k; = +|k| = +w from
below and above, correspondingly, so that, for 7 > 0, the integral is determined by the
residue at the pole k, = +w and, for T < 0, by the residue at the pole k; = —~w. Thus,
we finally find

4

= . 6.132
k2 +i0 ( )

D(k?)

Now, it is obvious that the corresponding function in coordinate representation satis-
fies the equation

oD(x - x') = —4m8(x - x'), (6.133)

so that it is the Green’s function of the wave equation.
In most cases, it is convenient to choose D! = 0, so that the photon propagator has
the form

4t
Dyv = gva(kz) = mgyv > (6.134)
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which coincides with the result obtained in Chapter 4 and corresponds to the so-called
Feynman gauge.
Sometimes it is convenient to choose D' = —D(kz) / kz, so that

4m kykv
DVV = F(gyv - k_2> N (6.135)

corresponding to the so-called Landau gauge. Then, Dw,k" = 0, and this choice is
similar to the Lorentz gauge, where k"Ay =0.
The choice of the gauge div A = 0 leads to a similar gauge for the propagator:

Dik'=0, Dyk'=o0, (6.136)

which, together with D, = -D = —lm/kz, gives
4T kkl 4T
Dil = —m((sil— ?), DOO = —F, DOi = 0, (6.137)
so that D, simply equals to the Fourier transform of the Coulomb potential.

For massive particles with spin s = 1, there is no gauge invariance, and the choice of propagator is
unique. Substituting the appropriate operators i, into the definition

Gy (x = x") = =i(0I T, Oy, (x')10), (6.138)

we obtain an expression which differs from (6.129) only in the form of the sum over polarizations,
which takes into account three independent polarizations of the massive vector field. Dropping the
technical details [6], we only mention that in momentum representation the propagator of the vector

field is equal to
1 puby
Gy = _m<g’” T ) . (6.139)

6.8 The Wick theorem and general diagram rules

From simple examples of calculations of matrix elements of scattering matrix, con-
sidered above, we already can see the advantages of diagrammatic approach. Let us
consider now the general case. Matrix element of S for a transition between arbitrary
initial and final states coincides with vacuum average of operator, which is obtained
by multiplication of S from the right (by creation operators of all initial particles) and
from the left (by annihilation operators of all final particles). Then, in the nth-order of
perturbation theory, this matrix element is written as

. 1 .
(F1IS™ iy = E(—le)" J d'xy - d*x, (Ol .. bybyp -y ooy T

X (PryAr) - PpyApa)cy; - @y by 10y . (6.140)
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The indices 1i, 2i, . .. enumerate the initial particles (electrons, positrons, and photons
separately), whereas 1f, 2f,... enumerate the final ones. The indices 1,2,... of opera-
tors i and A correspond to ; = (x;), et cetera. The operators i and A are represented
by linear combinations of the creation and annihilation operators of the appropriate
particles in different states. Thus, in matrix element, vacuum averages of products of
creation and annihilation operators, as well as their linear combinations appear. All
these operators are taken in interaction representation, so that they satisfy the equa-
tions of motion and the commutation relations for free particles. Calculation of such
averages is done using the Wick theorem, which is proved below.

The Wick theorem
Let us define the normal product of operators

N(ABCD---XYZ), (6.141)

so that all the creation operators are to the left of the annihilation operators, with
their sign corresponding to the parity of the permutation of the Fermion operators,
which transforms the product to the necessary form. Obviously, the vacuum average
of the normal product of operators equals zero, except in the case, where under the
sign of the normal product, we have simply some c-number. Let us call the “pairing”
(“contraction”) of two operators the following difference:

A'B = T(AB) - N(AB). (6.142)

It is easy to see that this expression is a c-number, as its right-hand side is either zero or
coincides (up to a sign) with the commutator (anticommutator) of operators A and B.
The main statement of the Wick theorem is that the T-product of an arbitrary num-
ber of operators can be expressed through all possible N-products with all possible
pairings (contractions):

T(ABCD---XYZ) = N(ABCD---XYZ) + N(ABCD---XYZ)
+N(ABCD---XYZ) +---+ N(AB'C'D---XY'Z"), (6143)

that is, the chronological product of the operators is equal to the normal product, plus
the sum of the normal products with one pairing (the pair can be chosen in all possible
ways), plus the sum of the normal products with two pairings, et cetera. Pairing within
the normal product is the c-number, which is (up to a sign +1) determined by equa-
tion (6.142). The minus sign is chosen, when the permutation needed to bring paired
operators out of the normal product is odd with respect to the Fermion operators.

To prove the theorem, we first note that the simultaneous permutation of the op-
erators in both sides of (6.143) does not change this equality. Then, with no loss of
generality, we may assume that the time ordering of operators corresponds to that in
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(6.143). To obtain the N-product from the T-product, we have to take all the creation op-
erators and interchange their positions with all the annihilation operators on the left
one by one, using the definition (6.142). In this way, we get the sum of the N-products
of the type written in (6.143). However, this will contain only the contractions of those
operators, for which the order in the T-product is different from that in the N-product.
But pairings of operators for which both orders are equal to zero, and we can say that
the right-hand side of (6.143) contain normal products with all possible pairings (con-
tractions), proves the Wick theorem.

The Wick theorem helps to calculate the averages of the products of the operators
over the vacuum state |0). The average of the normal products is obviously zero, so that
a nonzero contribution comes only from those terms in the right-hand side of (6.143),
where all the operators are paired:

(O|T(ABCD---XYZ)|0) = {O|T(AB)|0)(0|T(CD)|0) ---{0|T(YZ)|0)
+ (0|T(AC)|0)(O|T(BD)|0) - -- {O|T(YZ)|0) +--- , (6.144)

where we have taken into account that
(0]A'B’|0) = (O|T(AB)|0) . (6.145)

Thus, the average is represented by the sum of all the possible products of the aver-
ages (over the ground state) of the T-products of the pairs of operators. The sign of
each term corresponds to the parity of permutation of the Fermion operators. From
(6.144), it follows—in particular—that among the operators A, B, C, D, ... there should
necessarily be an even number of operators of each field. Recalling the definition of
the Green’s function, we conclude that the vacuum average of the T-product of an ar-
bitrary (even) number of field operators is expressed via the sum of the products of
the free Green’s functions.

Applying Wick’s theorem to the matrix element (6.140), we can represent it as the
sum of terms, each being the product of some pairwise averages. Among these, we
shall meet pairings of operators ¥, 1, and A, with the “external” operators of the cre-
ation of the initial particles or the annihilation of the final ones. These pairings can be
expressed through the wave functions of the initial and final particles as

(0lAc,10) = A, (Olc,Al0) = Ay,
(Olayloy =y,,  (Ola,pl0) =y, (6.146)
Olb,l0y =9, (O[PbI0) =P,
where A, and i, are photon and electron wave functions with momentum p. The po-
larization indices are dropped here for brevity. There will also be pairings of “internal”

operators, standing under the sign of the T-product. These pairings are replaced by the
appropriate propagators.
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Each of the terms in the sum for the matrix element of the S-matrix, appearing
as a result of the application of Wick theorem, can be represented by the appropriate
Feynman diagram. In the diagram of the n-th order, there are n vertices, each asso-
ciated with the corresponding integration variable x;, X5, . . .. Each vertex is connected
with three lines; two full ones (electrons) and one wavy one (photon), corresponding
to the electron () and 1) and photon (4) operators, as functions of the same variable x.
The operator 1 corresponds to the incoming line, and  to the outgoing line.

To illustrate this, we show several examples of the correspondence between the
terms of the matrix element of third order and the diagrams. Dropping the signs of the
integral and T-ordering, as well as the factors —iey and the arguments of the opera-
tors, we write these terms in symbolic form, as shown in Figure 6.10, where pairings
(contractions) are shown, as often done, by lines connecting the appropriate field op-
erators. Note that for the internal photon pairings the direction of photon lines is of
no importance, because of the even nature of the photon propagator as a function of
x—-x'.

Among the terms obtained in this way, there are some that are equivalent, and
which differ only by the permutation of the numbers of vertices, reflecting the corre-
spondence between the vertices and the number of variables x;,x,,.. ., that is, by a
simple redefinition of the integration variables. The number of such permutations is
n. It cancels the factor of 1/n in (6.140), so that we, in fact, do not need to take into ac-
count diagrams with all the permutations of the vertices. For example, two diagrams
of the second order, shown in Figure 6.11, are equivalent. In Figure 6.10 and Figure 6.11,
we show only internal pairings, corresponding to internal lines in the diagrams (vir-
tual electrons and photons). The remaining free operators are paired with external
operators, which establishes the correspondence between the external “legs” of dia-
grams and the initial or final particles. For example, pairing ¢ with operators ag or b}
gives the line of the final electron or initial positron, whereas ¥ pairing with a;" or by

(a) (l/_)A/I//)(lT’AM)(lT\&L/Y) = v—é&—‘

(b) (FA0)(FAe) @AY §

(@ (PAY)(PAY)(PRY) = ‘—g—‘g—‘g—*
AR/

(d) (WA%’))(@A\:\’U)(T»TKL) = *i:v}_‘é_*

Figure 6.10
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WAY)(PAY) = :

Figure 6.11

€
>
=
<
>
=
I

produces the line of the initial electron or final positron. Free operator A pairing with
¢ or with ¢ may correspond to both the initial or final photon. In this way, we obtain
several “topologically equivalent” (that is, consisting of the same number of lines with
identical configurations of the graphs) diagrams, differing only by the permutations
of the initial and the final incoming and outgoing external legs. Any such permutation
is equivalent to some permutation of external operators a, b, .. .. If among the initial or
final particles there are identical fermions, the relative sign of the diagrams, differing
by the odd permutation of the corresponding free legs, should be opposite.

20N
('(/}A'(/}) ('1/);‘;1/1) = MOW
¢
Figure 6.12

The nonoverlapping sequence of the full lines in the diagrams forms the electron line
with an arrow along it, conserving the continuous direction. It may have two free ex-
ternal legs, or it can form a loop, as shown in Figure 6.12. The conservation of direction
along the electronic line is a graphical expression of the charge conservation law: the
“incoming” charge to every vertex is equal to the “outgoing” one. Placement of the
bispinor indices along the continuous electron line corresponds to writing the matri-
ces from left to right, moving against the arrows. Bispinor indices of different electron
lines never intermix. Along the nonclosed line, the sequence of indices ends at the
free external legs on the electron (or positron) wave functions. On the closed loop, the
sequence of indices also closes, so that the loop corresponds to the trace of the prod-
uct of the matrices along it. It is easy to see that this trace should always be taken with
a minus sign. In fact, the loop with k vertices corresponds to the set of k pairings:

(WA ) (P AY™) - (Y~ AY) (6.147)

or the other similar pairings, differing by permutation of vertices. In the (k — 1)th
pairing, the operators ¥ and ¢ are already in the correct order ( to the right of ),
in which they should stand in an electron propagator. Those operators at the edges
can be moved to become neighbors with the help of an even number of permuta-
tions with other -operators, to get at the end the correct order ). As (0|Ty'1h|0) =
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—(0| Ty’ |0), the replacement of this pairing by the corresponding propagator is re-
lated to the change of the total sign of the whole expression.

Transformation to momentum representation leads to the general 4-momentum
conservation law, and also to the similar conservation law at every vertex. However,
these laws may be insufficient for fixing momenta of all internal lines in a given di-
agram. In these cases, we should perform the integration of all momenta of internal
lines d"p/ (2m)*, which remain indeterminate.

In a similar way, we may analyze the case with an external electromagnetic field (refer to Chapter 4),
that is, the field created by “passive” particles, whose states are not changed during the scattering
process (these may be heavy “classical” charges). Let A®© (x) be the 4-potential of an external field. It
enters the Lagrangian together with the photon operator A as a sum A + A® Because of the classical
nature of A®, it is actually a c-number field containing no operators, and it cannot pair with other
operators. Thus, in Feynman diagrams, external fields may correspond only to external lines. Let us
introduce the Fourier expansion for A,

d'q

A9 ) = I oy e 49,  A%g) = Jd“xe"‘”A(e) ). (6.148)

In expressions for matrix elements in the momentum representation, the 4-vector g will be present
along the 4-momenta of other external lines, corresponding to real particles. To each line of an ex-
ternal field, we associate the factor A(e)(q), with the corresponding line considered as “incoming”, in
accordance with the sign in the exponent e7% in the Fourier expansion for A® (g) (the “outgoing”
line should be associated with A©* (g)). If the 4-momentum conservation law, with given values of
the 4-momenta of all real particles, does not fix the 4-momenta for the lines of external field, we have
to integrate over “free” d*q/(2m)*, as well as over all other nonfixed 4-momenta in the diagram.

If external field does not depend on time, then

A©(q) = 215(¢°)A“ (@), (6.149)
where A“’)(q) is the three-dimensional Fourier component,

MWm:jfm@®ém. (6150)

The external line is now associated with the factor A<e)(q), and the 4-momentum ¢* = (0,q). The
energies of electron lines entering (along with the line of the external field) the vertex are the same,
due to the conservation law. Over the remaining nonfixed three-dimensional momenta p of the internal
lines, we perform the integration d’p/(27)>.

Let us now present the final summary of the diagrammatic rules for scattering ampli-

tude (more precisely for iMﬁ) of QED in momentum representation.

1. Contributions of the nth-order of perturbation theory are represented by diagrams
with n vertices, each with one incoming and one outgoing electron (full) line and
one photon (wavy) line. The scattering amplitude is described by all diagrams
with free external legs (external lines), corresponding to the initial and final par-
ticles.

2. With each external incoming full line (leg), we associate the amplitude of initial
electron u(p) or final positron u(-p). With each outgoing full line, we associate the
amplitude of final electron ii(p) or initial positron ii(-p).
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3. With each vertex, we associate the 4-vector —iey*.

4. With each external incoming wavy line, we associate the amplitude of initial pho-
ton \/4_716”, and with the outgoing wavy line, associate the amplitude \/4_7Te;j of
the final photon. The vector index u coincides with index of the y* matrix in the
corresponding vertex, so that we have the scalar product.

5. With each internal full line, we associate the factor iG(p), and with the internal
wavy line, we associate the factor of —iD,, (p). Tensor indices pv coincide with in-
dices of matrices y*, y¥ in vertices, connected by a wavy line.

6. Along the continuous sequence of electron lines, the arrows have the same direc-
tion, while the positions of bispinor indices correspond to writing matrices from
left to right against the arrows. A closed loop is associated with the trace of the
product of the corresponding bispinor matrices.

7. Ineach vertex, the 4-momenta of the lines entering or leaving it satisfy the conser-
vation law, that is, the sum of the momenta of incoming lines equals the sum of the
momenta of the outgoing lines. The momenta of the external lines (legs) are fixed
(and obey the total conservation law for the scattering process under discussion),
with the positron line associated with the momentum —p. Integration d*p/(2m)* is
performed over all momenta of the internal lines, remaining nonfixed, after taking
into account the conservation laws in all vertices.

8. An incoming external line (leg), corresponding to the external field, is associ-
ated with the factor A®(q), where the 4-vector q is related to the 4-momenta of
other lines in the vertex by the conservation law. If the external field does not
depend on time, this external leg corresponds to the factor of A)(q), and integra-
tion d3p /m)} is performed over nonfixed three-dimensional momenta of internal
lines.

9. With each closed fermion loop, we associate an extra factor of (-1). If among the
initial or final particles there are several electrons or positrons, the relative sign
of the diagrams, differing by odd permutations of the identical particles (that is,
the corresponding external legs), should be opposite.

Finally, let us recall that in the presence of identical fermions, the total sign of the
scattering amplitude is irrelevant.
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Gian Carlo Wick (1909-1992) was an Italian theoretical
physicist who made important contributions to quantum
field theory. In 1930, Wick received his doctoral degree in
Turin under G. Wataghin, with a thesis on the electronic
theory of metals. He then went to Géttingen and Leipzig
to further his study of physics. One of the professors he
got to know there was Werner Heisenberg. Wick became
Enrico Fermi’s assistant in Rome in 1932. In 1946, he went
to the United States, first to the University of Notre Dame,
then to Berkeley. Wick refused a required oath during
the McCarthy era, so he left Berkeley and went to the
Carnegie Institute of Technology in Pittsburgh in 1951. He
remained there until 1957, interrupted by stays at the Institute for Advanced Study in
Princeton and at CERN in Geneva. In 1957, he became chief of the theory department at
Brookhaven National Laboratory. While in the United States, Wick made fundamen-
tal contributions to quantum field theory, such as the Wick theorem in 1950, which
showed how to express calculations in quantum field theory in terms of normally-
ordered products, and thus derive Feynman rules. He also introduced the Wick ro-
tation, in which computations are analytically continued from Minkowski space to
four-dimensional Euclidean space using a coordinate change to imaginary time. In
1967, he received the Dannie Heineman Prize. In 1968, he received the first Ettore Ma-
jorana Prize. He was a member of the United States National Academy of Sciences
and the Academia dei Lincei.






7 Exact propagators and vertices

7.1 Field operators in the Heisenberg representation and
interaction representation

Above, we have expressed the terms of a perturbation series via field operators in the
interaction representation, with time-dependence determined by the Hamiltonian H,,
of free particles. Exact scattering amplitudes are more conveniently expressed via field
operators in the Heisenberg representation, where the time-dependence is determined
by the total Hamiltonian of interacting particles H = H, + H;. According to the general
rule for Heisenberg operators, we have

P(x) = P(rt) = exp(iHt)(r) exp(-iHt) (71)

and similar expressions for 1(x) and A, (x). Here, i(r) are time-independent (Schroe-
dinger) operators. Heisenberg operators, taken at the same moments of time, satisfy
the same commutation rules as Schroedinger operators and operators in the interac-
tion representation. In fact, we have

{Yat), P(r't)}, = expHO{P(x), P(r')}, exp(-iHt) = y°5(r - ). (7.2)
In a similar way, y(rt) and Ay(rt) commute:
[Y@at),A,(x't)] =0. (73)

This is not so for operators taken at different moments of time.
The equation of motion for the Heisenberg ip-operator is written as

- i% = Hp(x) - POOH = [H, ()] (74)

For the Hamiltonian itself, the Schroedinger and Heisenberg representations coincide.

During the calculation of the right-hand side of (7.4), in the Hamiltonian we can drop the part depend-
ing only on the operator A0 (the Hamiltonian of a free electromagnetic field), as it commutes with
Y. Then,

H= J Pry* (xt)(ap + m)(xt) + e I d3rl,71(rt)y“Ay(l’t)lP(l’t)
= J drpat)[y - p+m+ eyt A, (xt) |xt). (75)

Calculating the commutator [H, (x)], using (7.2) and excluding the §-function by &r integration, we
obtain the equation of motion for the operator ) in the explicit form

(Y'py - ey"A, - m)p(xt) = 0, (76)
which naturally coincides with Dirac’s equation in an electromagnetic field.

https://doi.org/10.1515/9783110648522-007
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Equations of motion for electromagnetic potential A, (rt) are obvious in advance from the correspon-
dence with the classical limit (large occupation numbers), when operator equations of motion should
reduce to the usual Maxwell equations for potentials, so that in an arbitrary gauge, we have
0,0" A" (x) - 0"0,4" (x) = 4rej’ (x), 77)
where j¥(x) = l])(x)y"z,b(x) is the current operator satisfying the continuity equation
3,j" =0. (7.8)
The system of equations (7.6), (7.7) is the gauge invariant:
Ay = A0 =X, P = PEOEXY ) — e X Wg(x), (79)

where y(x) is an arbitrary Hermitian operator commuting (at the same moment of time) with 1. Here,
we are dealing with operators in the Heisenberg representation. In interaction representation the
gauge transformation of electromagnetic potential does not act on i operators at all.

Let us now establish the relation between operators in the Heisenberg and interaction
representations. In accordance with the adiabatic hypothesis, we assume that interac-
tion H;(¢) is slowly “switched on” from the time moment ¢ = —co to finite times. Then,
for t — —co, both representations (Heisenberg and interaction) simply coincide. The
corresponding wave functions (state vectors) ® and @, also coincide:

Oyt = —00) = D. (7.10)

On the other hand, the wave function in the Heisenberg representation does not de-
pend on time at all (all time dependence is moved to the operators), whereas in the
interaction representation the time-dependence of the wave function has the form

;i () = S(t, —00)Dj¢ (—00), (711)
where!
6
S(ty ty) = Texp{—i.[dtH,(t)]» (712)
4
with the obvious properties
S(t, t)S(t, ty) = S(t ty), s, t;) =St t). (713)

Comparing (7.11) and (7.10), we find
Dy (t) = S(t, —00)D, (7.14)

which establishes the relation between the wave functions in both representations.
The corresponding expression for the transformation of operators has the form

P(rt) = S7U(t, —co) i (FO)S(E, —00) = S(~00, )i (K)S(E, —00), (715)

and a similar expression also holds for 1 and A,

1 Note that a similar operator in the previous chapter was denoted as U(t,, t;).
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7.2 The exact propagator of photons

The exact photon propagator is defined as

D,

(X —x') = (0| TA, (04, (x')[0), (716)

where A, (x) are the Heisenberg field operators, whereas previously we considered
Dy, (x - x') = {(OITA; ()4} (x')[0) , (717)

built upon the operators in the interaction representation. Green’s function (7.17) is
usually referred to as the propagator of free photons.

Let us now express the exact propagator D, via the operators in the interaction
representation. Consider ¢t > t'; then, from the relation between Ay and AL‘“ of the type
of (7.15), we obtain

Dy (x —x) = i(0|TA, (A, (x')|0) (718)
= 1{0IS(~00, A (X)S(t, ~00)S(~c0, ')A (x')S(t', ~00)|0) .
Using (7.13), we have

S(t,—00)S(~o0,t") = S(t,t'), S(=00,t) = S(-00, +00)S(c0, t) . (7.19)

Consequently, (7.18) is written as
Dy (x = x') = 101" [S(00, DA (0)S(t, ')A (X )S(t', ~00)]10) , (7.20)

where, for brevity, we introduced
S = S(+00, —00) (7.21)

and have taken into account that S~} (co, —00)S(00,t) = S(—00, t). As S(t,, t;) contains
only operators taken at the time moments between ¢, and t,, placed in chronologi-
cal order, it becomes obvious that all operator factors in square brackets in (7.20) are
placed from left to right in the order of decreasing time. Placing the T-ordering sym-
bol before the bracket, in the following we can make any permutations of factors here,
because the T-ordering will, in any case, place everything in the correct order. Then,
we can rewrite the bracket as

T[A (AT (x')S(00, )S(t,£)S(t', ~00)] = T[AF (A (x)S]. (7.22)
Thus, we obtain

Dy (x - x') = (0IS ' TA (0A) (x)S]0) . (7.23)
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Repeating all the previous arguments, we can show that this expression is also valid
for the case of t < t'.

It can be shown that S~ can be moved out of the averaging procedure in the form
of a phase factor. In fact, a Heisenberg wave function of the vacuum @° (as any other
Heisenberg function) coincides, according to (7.10), with the value of the vacuum wave
function @Y, (~00) in the interaction representation. On the other hand, we have

SDY (—00) = S(+00, ~00) D (~c0) = DY (+00) . (7.24)

But a vacuum (ground state) in a stable system is strictly a stationary state, in which
there is no possibility of any spontaneous processes of creation or annihilation of par-
ticles. In other words, as time goes by, the vacuum remains a vacuum. This means that

@Y (+00) can differ from @2, (~co) only by some phase factor e®. Then,

SO (—00) = €2 DY, (~c0) = (0[S|0YDY, (~c0) (7.25)
or, making a complex conjugation and taking into account the unitarity of S,

@2 (~00)S ™! = (015]0) D% (—00). (7.26)

int int
Now, it is clear that (7.23) can be rewritten as

o (OITAM (0A (x')S|0)
Dyy(x-x') =1 01SI0) . (7.27)

Substituting into the numerator and denominator perturbation expansion of the
S-matrix defined by (6.56), and performing averaging with the help of the Wick theo-
rem, we can obtain the expansion of D, in powers of the coupling constant e’

In the numerator of (7.27), the expressions being averaged differ from similar ex-
pressions for the matrix elements of the scattering matrix, as analyzed in the previous
chapter, by the replacement of the “external” creation and annihilation operator of
photons by the operators ALm (x) and Aivnt (x"). As all factors here stand under the sym-
bol of T-product, the pairings of these operators with “internal” operators A;nt(xl),
Ai,“t(xz) will produce photon propagators D, . Thus, the results of averaging will be
expressed by sets of diagrams with two external legs, which are constructed by the
rules, given in the previous chapter, with the only difference that both the external
and internal photon lines are now associated with the propagators D, instead of the
amplitudes of real photons. In a zero-order approximation, when S = 1, the numera-
tor of (7.27) coincides with Dyv (x — x"). The next nonzero terms are of the order of ~e*.
These are represented by diagrams with two external legs and two vertices, as shown
in Figure 7.1. The second of these diagrams consists of two disconnected parts: a wavy
line (corresponding to —iD,,) and a closed loop. This means that analytic expression
for this diagram consists of two independent factors. Adding to the diagrams in Fig-
ure 7.1 the wavy line, corresponding with a zero-order approximation, and moving it



7.2 The exact propagator of photons = 175

«w@w\, +

(2 VAVAA VA VAV Wa Vel
Figure 7.1
NN K1+ @ + \/\/\/\Q\N\/
Figure 7.2

“outside the brackets”, we obtain, up to the terms of the order of ~&?, that the numer-
ator of (7.27) is expressed by the diagrams in Figure 7.2. The expression (0|S|0) in the
denominator of (7.27) represents the amplitude of a “vacuum-vacuum” transition. Its
expansion into the perturbation series contains only diagrams with no external legs.
In the zero-order approximation (0|S|0) = 1, whereas up to terms of the order of ~e?,
this amplitude is expressed diagrammatically, as shown in Figure 7.3. Dividing (up to
the same accuracy ~€?) the numerator of (7.27) by the denominator, we obtain the dia-
grams shown in Figure 7.4, so that the contribution of “vacuum” terms (under the fig-
ure brackets) is completely canceled. Thus, the disconnected diagram in Figure 7.1(b)
drops out of the answer. This result is, in fact, of a quite general nature. A more de-
tailed analysis of the diagrams in the numerator and denominator of (7.27) shows, that
the role of the denominator (0|S|0) reduces to the general cancellation of all discon-
nected diagrams (in any order of perturbation theory), so that the exact propagator
Dy, is expressed only by diagrams without disconnected parts, or by connected dia-
grams only.

Note that diagrams without external legs (closed loops) are of no physical impor-
tance, as these loops represent radiation corrections to the diagonal element of the
S-matrix, describing vacuum-vacuum quantum transitions. We already noted that the

L+

Figure 7.3

J\A/\O/\/\/\/Jr\/\/\/\/‘

Figure 7.4
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sum of all such loops (together with 1 from the zero-th order) produces only an irrele-
vant phase factor, which does not influence physical results.

Transformation from coordinate to momentum representation is done in the usual
way. For example, up to the terms of the order of ~e?, the propagator —iD,, (k) is given
by the diagrams shown in Figure 7.5, where the propagator itself is shown as a “fat”
wavy line in the left-hand side. The analytic expression corresponding to these dia-
grams is

4
Dy (k) = Dy, (k) + iezDM(k) “ (;17? Sp yAG(p +k)y°G(p) Dy, (k). (7.28)
Terms of the higher orders are constructed in a similar way and are graphically rep-
resented by diagrams with two external photon lines and the necessary number of
vertices, corresponding to the order of perturbation theory. For example, terms of the
order of ~e* are represented by diagrams with four vertices, as shown in Figure 7.6.
The diagram shown in Figure 7.7 also contains four vertices, with an electron loop in
its upper part. This loop corresponds to the pairing (contraction) (x)yy(x), that is,
simply to the vacuum average of the current (0|j(x)|0). Even from the definition of the
vacuum itself, it is obvious that this average should identically be zero, and this fact
cannot be changed by any radiation (higher-order) corrections to this loop (though di-
rect calculation, by the way, produces an infinite result here). Thus, no diagrams with
electron loops of this kind should be taken into account in any order of perturbation
theory.

Figure 7.7



7.2 The exact propagator of photons =—— 177

Figure 7.8
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Figure 7.9

Part of the diagram (“block”) between two photon lines (external or internal) is called
a photon self-energy part.” In the general case, such a block can itself be divided
into parts connected by one photon line, as shown in Figure 7.8, where circles denote
blocks, which cannot be further divided in this way. Such blocks are called irreducible
(or single-particle irreducible). Let us denote the sum (of an infinite number) of all
irreducible photon self-energy parts as iP,, /47, and call it the polarization operator.
Classifying diagrams by the number of full irreducible self-energy parts (polarization
operators), we can represent the exact photon propagator D, by the diagrammatic
series shown in Figure 7.9, where each dashed circle represents iP,, /47. The corre-
sponding analytic expression is written as

D=D+D— D DPDPD+
4 U4 4m
=D{1+£[D+D£D+-~”. (7.29)
41 47

It is obvious that the series in square brackets again produces the complete series
for D. Thus, we obtain

D,y () = D,y (k) + Dy (k)P—(k) (K. (730)

Multiplying this equality from the left side by the inverse tensor (D™!)™ and from the
right side by (D™1)"?, we get
1

pl-p! P

uv W an W (7.31)

Everything that was said in the previous chapter about tensor structure and gauge
dependence of the free photon propagator D,, is also valid for the exact propagator
Dy, . Let us write its general form as

2 kK, 2
D (k) = D(k )<gyv—7> D), (732)

2 Or, for brevity, just self-energy.
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where D!(k?) is an arbitrary function determined by the choice of gauge. For the free
propagator, we likewise write

K,k k, k
D, (k) =D(k2)<gw— K V) +DI(K?) ;zv,

2 (733)

which is formally different from the form used in the previous chapter, but is, in fact,
equivalent to it, differing only by the definition of D'(k?). The longitudinal part of the
propagator (the second term in these expressions) is related to unphysical longitudi-
nal part of the 4-potential and does not participate in interactions. Thus, interaction
does not change it and we can always assume that

D(k?) = D'(K?). (7.34)
Let us now introduce inverse tensors, which satisfy the following equalities:
-1VA _ oA -1vA _ oA
D,D"=6,, D,D"=6,. (7.35)

For (7.32) and (7.33), the inverse tensors, taking (7.34) into account, have the form

a1 k,k, 1 kk,

Dy = 5<g"v k)T (736)
41 lde,\ 1 Kk,

Dy = l—)(g,,v T ) D -t

Now, it follows that the polarization operator is actually the transverse tensor:

k kK
Py = 'P(kz)<gyv - ) (738)
where P(k?) = k? - 411/D(k?), so that®
DY) = —— (739)

TR -PU)K]

Thus, in contrast to the photon propagator, the polarization operator is gauge invari-
ant.

Sometimes it is useful to introduce photon self-energy, defined as the sum of all
(not only irreducible) diagrams. Let us denote it as ill,, /47; then, we have

1144
D}N = D'uv + DVA[‘__]-[D

v (740)

3 Itis useful to note that P(k?) = P}’f(kz)/B.
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Figure 7.10

which is shown by the diagrams in Figure 7.10. Determining now II,;;, we obtain

1

 nldon-l -l
27w = DaDD,, - D, (741)
and, using (7.32), (7.33), (7.36), and (7.37), we get
kK P
2 u'v
I, = TI(k )<gyv - ?>, II= —pie (742)

Now, we see that IT,,,, as well as Puvs is the gauge invariant tensor.

uv?

7.3 The exact propagator of electrons
An exact electron propagator is defined as
G(x —x") = =i(0|TY(x)P(x")|0), (743)
which is different from the case of the free particle propagator
G(x - x") = =i(0| TY™ )™ (x")|0) (744)

by replacement of the i-operators in interaction representation by operators in the
Heisenberg representation. As in the case of photon propagator, discussed above,
equation (7.43) can be transformed to

_(OITY™ )™ (x')S]0)

glx-x) = (01S10)

(7.45)

Expansion of this expression in powers of e? leads to a diagrammatic series for the
G-function. The role of the denominator in (7.45) again reduces to the cancellation of
vacuum-vacuum transitions, so that the diagrammatic expansion for Green’s func-
tion contains diagrams without an isolated vacuum loop. Up to the terms of the order
~e”* diagrams for G are shown in Figure 711, where the exact propagator itself is shown
by a “fat” line. Diagrams like that in Figure 7.12, as noted before, should not be taken
into account. In momentum representation, a “fat” line corresponds to iG(p), and the
usual full and wavy lines represent propagators of free particles iG(p) and —iD(k).

~ e P S e [l fan )8 \

Figure 7.11
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Figure 7.12

Let us present a formal proof of the cancellation of vacuum diagrams. Consider the n-th order cor-
rection to the Green’s function (propagator) of an electron, described by some disconnected diagram,
representing two multiples. The first one includes all H;, contracted with 1(x) and )(x'), that is, cor-
responds to a connected block with external legs. The second one describes the rest of the diagram.
Thus, the analytic expression for this correction takes the form

D"

n!

-1

[ dty--- [ demcorT[w™ c0p™ (x )it Hytw] 0%

x [ dtwr - [ dta OIT (Hyts) - Hil6))I0) .~ (246)

Here, (0| ---|0). and (0| - - - |0) correspond to some definite set of contractions (pairings) described by
the Wick theorem, and the symbol (- - -). denotes that pairings in this expression produce a connected
diagram.

Itis easily seen that some of the diagrams give identical contributions. In fact, if we change the pairings
just by making different permutations of H; between (---). and (: - -), this will simply correspond to
the renaming integration variables and will not change the value of the correction to G. The number
of such diagrams is equal to the number of ways to break n operators in H; into groups of mand n—-m
operators, that is, it will be equal to #lm),

The total contribution of these diagrams is given by

(=)™

m!

[t [ dt O (8™ COF™ (' )+ Hi )00
iy

(n - m)!

[t | deu O (Hyto) - Hye)i0) . (247

Let us sum the contributions of all diagrams of an arbitrary order, containing the definite connected
part and the arbitrary disconnected parts. Obviously, we shall get

(=)™

m!

J dt; - J Aty (OIT(H™ COP™ (X YHy (1) -+ Hy(t) ) 0)
x {1 = 1|t s O )10 = 5 [ s [ i (OIT (i) i) 10)

(=)
~ Jdt,,,+l -~-Jdtm+k(0|T(H,(tm+l)~-~H,(tm+k))|0) fob (748)

Let us return to the initial expression (7.45). If we expand (0|S|0) in the denominator in a series in
powers of Hy, we shall get exactly the same expression, which stands in braces in (7.48). Thus,

©ITY™ o™ (x')S10) = (OITY™ )™ (x)S10)(0ISI0) » (7:49)
so that, according to (7.45),

G(x - x") = =i(0ITY™ GOP™ (x')SI0). » (7.50)
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which completes our proof. This rule is valid for calculations of arbitrary expressions, such as (7.27)
or (7.45), with an arbitrary number of field operators. In practice this means that we can just drop the
factor of (0|S|0) in the denominator and do not take into account disconnected diagrams.

Further simplifications appear due to the fact that all types of pairings in

(=)™

-1
m!

[ dty - j Aty OIT(Y™ COP™ (X )Hy () -+ Hy(6)) 10D » (7.51)

differing only by permutations of Hj, give the same contributions. Because of this, we can drop the
factor of 1/m, and take into account only those pairings which lead to topologically nonequivalent
diagrams, that is, those which can not be obtained from each other by permutation of operators H;.
Now, the contribution of each diagram does not contain a factor with relevant dependence on the order
of diagram m. Due to this fact, each diagram can be separated into elements, which can be considered
separately as corrections to one or another Green’s function. There may be irrelevant dependencies
on m by factors, such as A™, where A is some constant. Such factors do not prohibit separation of the
diagram into different elements (blocks). On the contrary, the presence of a factor, such as 1/m, does
not allow such separation and separate summations within different parts of the diagram.

The block between two electron lines is called the electron self-energy part. As in the
case of photons, it is called irreducible (or single particle irreducible), if it cannot be cut
into two self-energies by cutting one electron line. We denote the sum of all irreducible
self-energy parts as —iM(p), and call M(p) the mass operator. Up to terms of the order
of ~e*, the mass operator is represented by diagrams shown in Figure 7.13. Performing
summation, similar to that done during the derivation of equation (7.30), we obtain
the Dyson equation

G(p) = G(p) + GP)M(D)G (D) (7.52)

or, in terms of inverse matrices,
¢ (p) =G (p) - M(p) = y'p, - m- M(p). (7.53)

Equation (7.30) can also be called the Dyson equation for a photon propagator. Below,
we shall return many times to the discussion of these equations.

Heisenberg y-operators (in contrast to ip-operators in interaction representation),
as previously noted, do change under gauge transformations. In a similar way, the
exact electron propagator G is also not a gauge invariant quantity. It is clear that the
change of G under gauge transformations should be expressible via the same arbitrary
function D', which is added to the photon propagator. It is clear from the fact that,
during the calculations of G via a diagrammatic perturbation series, any term in this
series is expressed via the photon Green’s functions D, and no other terms related to

~ <—€Z}*+«%«+<@<—+~&<—

Figure 7.13
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an electromagnetic field are present at all. We can make some assumptions about the
properties of the operator y in (7.9), with the only limitation that the result be expressed
via D'. Under (79), the propagators D and G transform into

Dy — 10IT[A,(x) - 3,x()][4, - 3x(x")]10), (7.54)
G — —i{0|Tyh(x)e XM e XXy (x")|0) . (7.55)

We shall assume that operators y are averaged over the vacuum independently of oth-
ers, which is natural, as gauge invariance of electrodynamics requires that the “field” y
does not take part in the interactions. Now, put also (O[y(x)|0) = 0. Then, in equa-
tions (7.54) and (7.55), terms containing y are separated, and we obtain

D)y — Dy +1(0ITox(x)0,x (x)10) (7.56)
G — G(O|Te' XWX gy (7.57)

Here, let us stress once again, the y are operators. Next, we consider the case of in-
finitesimal gauge transformations and introduce 8y instead of y. Transformation (7.56),
independently of the smallness of §y, can be written as

Dy — Dy + 6D, 6D, =9,0,d'(x~x'), (7.58)
where
d'(x - x") = i(0| Téy (x)x (x")]0) . (7.59)

Now, we see that d' determines the change of the longitudinal part of the photon prop-
agator D! under the gauge transformation.

In (7.57), we can expand the exponents in powers of §y up to quadratic terms, so
that

(0| Te®X W10 gy < 1 %e2(0|6)(2(x) + 62 (x') = 2T8x ()8 (x')[0) . (7.60)
Taking into account the definition (7.59), we get
G—G+6G, 6G=ie’G(x-x")[d"(©0)-d(x-x")]. (7.61)

In momentum representation,

8G(p) = ie’ J d'q [Gp) -G - Q)]dl(Q) (7.62)
(2m)* ’ )
with
¢’d'(q) = 6D'(g). (7.63)

These expressions give the general gauge transformation rules for exact propagators
in QED.
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7.4 Vertex parts

Besides the self-energy parts—in more complicated diagrams—we can introduce ad-
ditional blocks with special physical meaning. Consider the function

K" (1, %5, X3) = (OITA* ()Y (0)p(x3)10) . (7.64)

Due to the homogeneity of space-time, this function depends only on differences of its
arguments. After transformation to interaction representation, we have

(OITAL  (x)P™ () P™ (x3)S]0)
(01S/0)

I(“(Xl, Xz, X3) = (7-65)

In momentum representation, we can write
I(y(pz,pl, ’()(271)45(191 + k —pz) = J d4xl J d4X2 J d4X3e7ikX1+ip2X27ip1X3Ky(X1> X2> X}) .
(7.66)

In the diagram, the technical function K* is described by a “three leg” graph, shown
in Figure 7.14, with one photon and two electron legs, with the 4-momenta satisfying
the conservation law

p1+k=p;. (7.67)

The zeroth-order term in the perturbation expansion of this function is obviously zero,
whereas the first-order term in coordinate representation is

K'(xp, x5, x3) = e J d"xG(x, — )y, G(x - x3)D™*(x; - X) (7.68)
or, in momentum representation,

K*(py, py;: k) = eG(p,)y, G(p))D™ (k) (7.69)

which is shown by the diagram in Figure 7.15. In higher orders, diagrams become more
complicated due to the addition of extra vertices. For example, in the third order, the
diagrams shown in Figure 7.16 appear. In the first three diagrams of Figure 7.16, we can
separate the obvious self-energy parts of the photon and electrons. However, there are

e

2 Py

2 Py
Figure 7.14

Figure 7.15
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LA A

Figure 7.16

no such blocks in the fourth diagram. This is a general situation: corrections of self-
energy type simply replace in (7.69) Green’s functions G and D by G and D. The sum of
the remaining terms of expansion lead to the change of the factor y* in (7.69). Denoting
this quantity as I'*, we have, by definition,

Ky(pz,Pﬁk) = {ig(pz)[—iel"v(pz,pl;k)]ig(pl)}[—iDV“(k)] . (770)

The block connected with the other parts of diagram by a single photon and two elec-
tron lines is called the vertex part if this block can not be separated into parts, which
are connected to each other by single (electron or photon) lines. Block I*, introduced
above, representing the sum of all possible vertex parts, including the simple vertex
¥, is called the vertex operator (or vertex function). In up terms of the fifth order, it
is expressed by the diagrams shown in Figure 7.17. All three momenta here cannot be
simultaneously related to real particles: we have already seen that absorption (emis-
sion) of a photon by the free electron is impossible because of 4-momentum conser-
vation. Thus, one of the legs in this graph can only be related a virtual particle (or
external field).

We can now introduce the notions of compact and noncompact vertex parts.
Those vertex parts, which do not contain self-energy corrections to internal lines,
are called compact, and we cannot separate the parts representing corrections to the
internal vertices. Among the graphs shown in Figure 7.17, only diagrams (b) and (d)
are compact. Diagrams (g,h,i) contain self-energy corrections either to the electron or

ieIK %}\+ ? + é + é +
@ (b) () (d)
+ g + % + ? + g + g
(e (f) ) (h) @

Figure 7.17
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Figure 7.18

the photon lines. In diagram (c), the upper horizontal wavy line can be considered
as a correction to the upper vertex, whereas the wavy lines at the sides of diagrams
(e) and (f) represent corrections to vertices at these sides. Replacing internal lines in
compact diagrams by “fat” lines representing exact Green’s functions, we obtain the
expansion of the vertex operator in the form, shown in Figure 7.18, which is usually
called a “skeleton” diagram expansion. This expansion, in fact, produces an integral
equation for I', but with an infinite number of terms in the right-hand side; there is no
closed equation for the vertex parts, similar to that of the Dyson equation for Green’s
functions (propagators).

pB pl

/

Py P2

Figure 7.19

We can also introduce vertices with a larger number of external legs, for example, the
“four-leg” vertex shown in Figure 7.19. We can obtain such a vertex considering the
function

K (X1, X3 X3,X4) = (OI TP )Y )P (x3)(x,4)10) (7.71)

which is usually called a two-particle Green’s function. It also depends on differences
of its arguments, and its Fourier transformation can be written as

J d*x, J d*x, J d*x; J d X, K (X1, X3 X3, X, )@ PX1 T PaXa P —P2xs)
= 21)"8(py + P, - p3 ~ PK D3, D45 P1,Py) . (172)

where

K(p3, 04301, 12) = 1) 8(p; - p3)G(01)G(0,) — 21)*6(p, — p3)G(01)G (D)
+ g(p3)g(p4)[—ir(pg,p4;p1,p2)]g(pl)g(pz). (7.73)

The first two terms here exclude from the definition of I'(ps, p4; py, p,) diagrams, such
as those shown in Figure 7.20. Likewise, in the third term in (7.73), the factors G exclude
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Figure 7.20

from the definition of I'-vertex those graphs which represent corrections to external
electron lines. Using the properties of the T-product of fermion operators, we may
easily see that I'(p3, p4; b1, P,) has the following (anti)symmetry properties:

T(D3, P4s P1:02) = T4, D35 P1,02) = -T(03, P45 P2 P1) - (7.74)

This vertex describes, for example, the process of scattering of two electrons; its am-
plitude can be found if we associate with the external legs the amplitudes of the initial
and final particles (instead of propagators G):

iMy; = u(p3)u(p,)[-ieT(p3, Py p1, p2) Ju(pu(@,) , (7.75)

and here, I describes all the possible interaction processes in all orders of perturbation
theory.

7.5 Dyson equations

Exact propagators and vertex parts are connected to each other, as we have already
seen, by certain integral relations. Let us analyze these relations in more detail. Con-
sider diagrams for irreducible self-energies of an electron. It is easy to see that among
the infinite number of these diagrams, only one, shown in Figure 7.21, is compact in the
sense discussed in the previous section, whereas the others can be considered as in-
troducing corrections to one of its vertices. It is clear that all vertex corrections should
be attributed only to one (any of two) vertices of this diagram, whereas the other re-
mains “bare” (to avoid double counting). Correspondingly, the sum of all irreducible
self-energy parts (that is, the mass operator) can be expressed by only one skeleton
diagram, shown in Figure 7.22. The appropriate analytic expression has the form

d*k
(2m)*

M) =6 (p) -G\ (p) = i€’ j Y6+ p + k,p; 0Dy, (k). (776)

Similar expression can be also written for the polarization operator. Among irre-
ducible self-energies for a photon, again only one is compact, and the polarization

e

Figure 7.21
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operator is represented by the diagram shown in Figure 7.23. The corresponding ana-
lytic expression is

1 -1 -1 ) d'p
2 PulK) = D) - Dy 00 = i€ Sp J S
Equations (7.76) and (7.77) give an explicit form of the Dyson equations (7.52) and
(7.30), which are integral equations for exact propagators, expressing them via exact
vertex parts. However, there are no similar “closed” integral equations for vertex parts,
so that—in practical cases—we have to solve the Dyson equations using different types
of approximations for the vertex part, for example, based on partial summation of
Feynman diagrams.

Y9+, @ +kp;k)Gp).  (777)

7.6 Ward identity

There are certain exact relations between propagators and vertices, which are sim-
pler than Dyson-type equations. Consider the electron propagator. Let us make a
gauge transformation (7.9), assuming y(x) = 8y(x), where 6y(x) is an infinitesimal
nonoperator function of the coordinates x. Then, the electron propagator will change
as

8G(x,x") = ieG(x - x")[6x(x) - 6y (x')] . (7.78)

Such a gauge transformation breaks the homogeneity of space-time, and 6G now de-
pends on x and x’ separately, not only on x —x'. Now, we have to make a Fourier trans-
formation over x and x' separately, so that in momentum representation, G becomes
the function of two 4-momenta:

86Dy p;) = J d*x J d*x'8G(x, x" )PP (7.79)

Substituting here (7.78) and integrating over d*xd*¢ or d*x'd*¢, where ¢ = x — x', we
obtain

8G(p +q,p) = iedy(q)[G(p) - Gp + 9)] . (7.80)
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On the other hand, the same gauge transformation applied to the operator of electro-
magnetic vector-potential A, (x) produces

©(y) =~ 9
84,7 (x) = axu‘SX’ (7.81)

which may be considered as an infinitesimal external field. In momentum representa-
tion,

8AY(q) = iq,6x(q). (7.82)

The value of 6G can be also calculated as the change of propagator under the influence
of this field. Up to terms of the first order over dy, this change can be expressed by the
single skeleton diagram shown in Figure 7.24, where the “fat” wavy line denotes the
effective external field

1
54, (9) + 6AY @) P @Dy (@), (7.83)

which takes into account the self-energy corrections. However, the 4-vector 6Afle) (g)is
longitudinal (with respect to g), whereas the tensor PV is transversal (refer to (7.38),
(742)). Thus, the second term here simply gives zero, so what remains is, in fact, the
contribution of the diagram shown in Figure 7.24, where the line of the external field
can be taken as “thin” and equal to SAI(f)(q). In analytic form,

8G(p +4.p) = eG(p + PT*(p + 4. p; DI (PISAY (q) . (7.84)
Substituting here (7.82) and comparing with (7.80), we find
G +9 -6 = -G +9q*p +q.p;95D) (7.85)
or, in terms of inverse matrices,
o+ -7 =g, 0+ a9 (7.86)

For ¢ — 0, comparing the coefficients before infinitesimal g, in both sides of this
relation, we get

d 1.
2 - T(p, p; 0), 7.87
apyg (p) = I"(p, p; 0) (7.87)
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which is called the Ward identity in differential form. Relation (7.86) is also called a
Ward identity, but for finite . From (7.87), we can see that the derivative of G™!(p) over
the momentum coincides with a vertex operator with zero momentum transfer. The
derivative of Green’s function G(p) itself is equal to

- 2ig(p) = iG ()|l 9, p; 0)}iGp). (788)
Py

In zeroth approximation, this identity is obvious, as from G1= y"py — m, we imme-
-1

diately obtain aa% = y*. Now, it is easy to obtain a diagrammatic derivation of Ward
U

identity: from Dyson equation (7.53) it is obvious, that the differentiation of the in-
verse Green’s function over the momentum is equivalent to all possible insertions of
lines of a fictitious external field, with zero momentum transfer, into all diagrams for
irreducible self-energy, which generates all the diagrams for the corresponding ver-
tex part. The Ward identity is of great importance for checking the self-consistency of
concrete approximations in different problems of quantum field theory.

A little more technical is a similar derivation of similar identities for an exact pho-
ton propagator (polarization operator). The details of this derivation can be found
in [6].

John Clive Ward (1924-2000) was a British theoretical
physicist. He introduced the Ward identity in quantum
electrodynamics. This result was inspired by a conjec-
ture of Freeman Dyson, and was disclosed in a one-half-
page letter. He also made significant contributions to
quantum solid-state physics and statistical mechanics.
Ward was one of the authors of the Standard Model of
particle interactions in a series of papers he co-authored
with Abdus Salam. In 1955, Ward was recruited to work
at the Atomic Weapons Research Establishment at Al-
dermaston. There, he independently derived a version of
the Teller—Ulam design, for which he has been called the
“father of the British H-bomb”. “I was assigned”, Ward later recalled, “the improba-
ble job of uncovering the secret of the Ulam-Teller invention. .. an idea of genius far
beyond the talents of the personnel at Aldermaston. ..”. Ward’s total number of pub-
lished papers was only about 20, a fact that reflects a strong sense of self-criticism. He
also expressed scepticism towards the importance attached to having a large number
of citations. He had received some significant awards, including Dirac Medal in 1981
and the Heineman Prize in 1982. He became a fellow of the Royal Society in 1965.






8 Some applications of quantum electrodynamics

8.1 Electron scattering by static charge: higher-order corrections

In this chapter, we shall consider the calculations of some specific effects of quantum
electrodynamics (QED), as well as some conceptual problems related to the founda-
tions of QED. It should be noted that QED is actually an example of the quite successful
theory of interacting elementary particles. It allows exceptionally precise calculations
of different effects due to electromagnetic interactions, which are in an ideal agree-
ment with current. The detailed analysis of the vast number of QED effects can be
found in [2, 6], whereas here, we shall limit ourselves to only few of the most typical
cases. During our discussion, we shall more or less skip the technical details, concen-
trating on the qualitative aspects of the theory.

Let us return to the previously discussed problem (reference Chapter 4) of elec-
tron scattering by static charge of the nuclei (Rutherford scattering). In the first order
of perturbation theory, this scattering process is described by the diagram shown in
Figure 8.1(a), where the static charge is denoted by a cross. According to the general
rules of diagram technique, the corresponding scattering amplitude is written as

My =i [ dx(Flj 0l A", (8.1)
where the matrix element of transition current is
(Fliy Ol = etty,ue™ ™, (8.2)

with g = p; - pr, and we introduced the spinors of initial and final states of an elec-
tron. The vector potential A, (x) describes the electromagnetic field of the static charge.
Then, we can write

M, = —ietiry, u;A(q), (8.3)
where
4@ = [ dxe a0, (84)
e e
p; Py
x A,(z)
(a)
Figure 8.1

https://doi.org/10.1515/9783110648522-008
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For a static charge, the value of A*(x) is time-independent, so that
(8.5)

Ag) = J dt e 1EED J &Fr eiqrAu(r) = 218(E; - E)A¥(q)

The static Maxwell equation is written as
V2AH(r) = —4mi(r). (8.6)
Then, we have
4t
Aq) = —j"(@). 8.7)
lql
Accordingly, from (8.3) and (8.5), we obtain
4
—sj(@). (8.8)

Mﬁ = —2m6(Ef - Ei)eﬂfyyu,- |q|2
To shorten expressions to follow, we drop the §-function for the conservation law and

define the amplitude M by
(8.9

. - 4m
— iM = iellyy,u; Iq?]"(q).

During static charge scattering, an electron changes its momentum, so that p; # py,

but energy is conserved, and E; = E, or g, = 0. Thus,
g =-lq° <0 (8.10)
is a space-like scattering vector, and (8.9) is rewritten as
—4rtig, ..
- )(—u”(q)) : (8.11)

—iM = (ieﬁfy"ui)< >
q
Here, the first factor describes the vertex part, whereas the second represents the pho-
ton propagator. For static nuclei with charge Ze, we have
(8.12)

) = p() = Zed(x), j@¥) =0,

(8.13)

so that
M = (ieﬂfyou,-)< %)(—iZe) ,

which is expressed by the diagram in Figure 8.1(a) and coincides in fact with (4.75).
These expressions describe Rutherford scattering, and the corresponding cross-

section is given by (4.79)
1
(8.14)
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- ey’

B — Ze’)/

— —ij'(g)

Figure 8.2

where 0 is the scattering angle determined by kinematics:
q’ = (p;—pp)° = -2k°(1 - cos ) = —4k° sin’ g , (8.15)

where we have neglected electron mass (in comparison to that of nuclei) and intro-
duced k = |p;| = |pfl.

This is the result of the first-order perturbation theory. Let us discuss higher-order
(radiation) corrections. Let us consider—as an example—the third-order diagram,
shown in Figure 8.2. Using the general rules of diagram technique, we obtain the
corresponding analytic expression

TGy d'p
—iM = (-1)(iettpy"u; )< 7 ) J 2n)’ Sp (8.16)

{(le H );p+m)(leyv') i(@-p+m) }( 47';gvv>( i(@)).

m’ (q-pr-m

In comparison to the first-order result (8.11), here we observe the obvious modification
of the photon propagator by the single-loop polarization “insertion”, so that

~ l_lmgyv N _ilmgw . <_i4niyyf >Iy,vl <_i4ﬂ.§;v'v>

q° 7 q q
ATGy, (=47 . 5. (—4mi)
= —i 7 + 7 L,(q°) pr (8.17)

where

_ d'p i(p+m) . i@=p+m)
Lol@”) = 0 [ 5B sl ter) E R ey) AL (s
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Immediately, we see that for |p| — oo, the integral in va contains the contribution of a

term (from the polarization loop), such as j dpf;—j, which is seems to be quadratically
divergent at the upper limit. This is a typical divergence that appears in higher orders
of perturbation theory, in practically every model of quantum field theory. The physi-
cal origin of this divergence is obviously related to the point-like (local) nature of field
interactions in relativistic theory. In fact, divergence here is weaker (logarithmic), but
the problem remains. Below, we shall discuss its qualitative aspects.

Direct, but rather tedious, calculations show [2] that I, can be written as

L(q%) = —ign @ 1(q*) + -+ , (8.19)
where
2 ® .9 ) 1 3
» € [dp” 2e q’z(1-z)
I(Q)=3—ﬂJF—Fszz(l—z)ln[l—T , (8.20)
m? 0

and the multiple dot in (8.19) replaces the terms proportional to 4,4y, Which give a zero
contribution after tensor contraction of the photon propagator with external charges
(currents). The first term in (8.19) gives precisely the logarithmic divergence of the po-
larization loop.!

It is useful to explicitly write expressions for I(g?) in the limits of large and small
(—g)*. To make the integral sensible, we introduce in the first term of (8.20) the upper
limit cutoff A* (with dimensionality of momentum (mass) A? > m? squared). Then, for
(-¢%) < m?, we have

201 201
ln[l -4 25'112 Z)] ~ -4 Z:;Z 2) (8.21)
and accordingly,
2 2 2 2
e A e q
I(¢®)~—In[ = )+ — L. 8.22
(a) 3 Il<m2>+15nm2 (8.22)
For (—¢°) > m?, we have
201 2
ln[l— %] ~ 1n<m—qz>, (8.23)
so that
2 2 2 2 2 2
e N e —q e JA\
() ~—1In[—)-—1In[ % )=—1In[ — ). 8.2
(') 3n n<m2> 3 n< m2> 3n n(—q2> (8.24)

1 Logarithmic, not quadratic, divergence here is due to some “hidden” algebra of the integrand [2].
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Now, we can write the scattering amplitude with a single-loop correction at
(—qz) <« m? in the form?

. . 47t e? A? e’ q2 4 .
—iM = (1eufy0ui)<—?>[l “3n ln<ﬁ> T +0(e )](—lZe). (8.25)

This expression can be rewritten with the same accuracy as

) 2 9
. L 4 €r 4 :
—iM = (leRufYOui)<_?>|:1 - 15—5_[@](—129}2), (8.26)

where we introduced the renormalized charge

2 2\1/2
ep = e<l _ §—n In %) . (8.27)
Let us assume that the value of e; from (8.27) represents the “true” (experimentally
measurable) electric charge. Then, the scattering amplitude (8.26) becomes finite, and
its divergence is “concealed” in ey, which is taken from the experiment and is not cal-
culable within our theory. Thus, we have explicitly performed the renormalization of
the divergent radiation correction. In the following, we shall see that in QED all diver-
gences, which appear in higher orders of perturbation theory can be likewise “hidden”
in the finite number of parameters, which should be determined experimentally. This
reflects the fundamental property of the renormalizability of this theory. Only renor-
malizable models of quantum field theory are physically sensible.

8.2 The Lamb shift and the anomalous magnetic moment

The first term in equation (8.26) is obviously due to the Coulomb potential

3. 762
d°q g 41 _ _Zeg (8.28)

Volr) =—Ze§[ @n3 g  r

The second term in (8.26) corresponds to quantum corrections to the Coulomb po-
tential, related to the possibility of creating virtual e*e”-pairs. The factor of |q|? there,
after the transformation to coordinate representation, is replaced by —V2. Then, taking
into account (8.28) and the Fourier expansion of §-function

3q
6w = [ 5™, (8.29)

2
2 Perturbation expansion here is in powers of dimensionless parameter e* — % = 13%
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or using the well-known relation [33] Vz% = —476(x), we can see that equation (8.26)
in coordinate representation corresponds to the interaction of the form

2 2 4
2 €x \1  Zex  Zey
V(r) = —ZeR<1 - 60n2m2V >; =T T T o(r). (8.30)

Thus, the creation of virtual e*e™-pairs (vacuum polarization) leads to the modifica-
tion of Coulomb interaction at small distances, corresponding to some additional at-
traction to nuclei. Obviously, this expression is not rigorous, being obtained from the
asymtotics of a single-loop contribution in the limit of (-g)> < m?. However, it is suf-
ficient for simple estimates.

Consider the case of Z = 1 (proton). It is clear that the second term in equa-
tion (8.30) can lead to the shift of energy levels E,; of hydrogen. Considering this term
as perturbation, we easily obtain this shift as

A, = - [P (0)] 81 = 8k ry s (8.31)
nl = T e (¥nl 0= " Iemd Y 00> .

where 1,,;(0) is a hydrogen wave function, corresponding to the main quantum num-
ber n and orbital moment [, and Ry = me*/2 is the Rydberg constant (Ry ~ 13.6eV).
Due to the point-like nature of additional interaction in (8.30), it acts upon only the
wave functions, which are nonzero at the nuclei (proton), that is, upon the s-states
(with I = 0). A corresponding shift of the levels is observed experimentally and mea-
sured with high accuracy. In some first experiments, Lamb measured the energy
difference between the 2s,,, and 2p,, levels, which are degenerate according to the
Schroedinger-Dirac theory, which does not take radiation correction into account.
The observed value of the shift is equal to +1057 MHz. Calculations with equation (8.31)
give the shift of —27 MHz. However, we should note that the contribution of vacuum
polarization is responsible only for the part of the shift between 2s,,, and 2p, ;. The
complete set of Feynman diagrams responsible for the Lamb shift in this order of
perturbation theory (~e®) is shown in Figure 8.3. All divergences appearing in these
diagrams can be “hidden” in electron charge, mass, and wave function renormal-
ization. This allows the calculation of total Lamb shift, giving the result in an ideal
correspondence with the experiment.? This was a triumph of the renormalization ap-
proach in QED. As the value of the Lamb shift is known with an accuracy of the order
of ~0.01%, one is easily convinced of the importance of the contributions of each
of the diagrams in Figure 8.3, including the relatively small contribution of vacuum
polarization expressed by the diagram in Figure 8.3(a). The main contribution is due
to the renormalization of the electron mass (diagram in Figure 8.3(c)). Physically, this
effect is due to the fact that the value (formally infinite) of radiation corrections to the

3 These calculations are very cumbersome, and we refer reader for details to [2, 6].



8.2 The Lamb shift and the anomalous magnetic moment — 197

(@) (b)
T | T

Figure 8.3

mass of a free electron is different from that for an electron bound within an atom
(which is also infinite). The difference of these infinite corrections is finite [18, 60] and
produces the main contribution to the shift of atomic levels.

Consider in more detail the effects connected with the diagram in Figure 8.3(b).
In fact, this diagram modifies the structure of electron transition current (vertex)
—elyy,u;. Calculation of the finite part of this diagram in the limit of small (-¢%) gives
[2, 18, 33]

_ _ e? q2 1 m 3 e’ 1, v
- ellyy,U; — —ellgiy, 1+3_nﬁ nm—y—g - ﬂﬂwuvq

}u,- . (832

where 0, = %(y"y‘” - y'y"). The expression in the first square brackets here gives the
corresponding contribution to the Lamb shift, as this term is similar in form to (8.26).
However, here we also meet the divergence at small momenta, which can be formally
avoided in (8.32) by introducing a small fictitious photon mass m,. This divergence is
related to the so-called infrared catastrophe. In fact, the contribution connected with
the fictitious mass m,, is exactly canceled by similar terms, originating from diagrams
in Figure 8.3(c). Infrared divergences in QED do not lead to major difficulties, such
as in the case of ultraviolet divergences (appearing due to the divergence of Feynman
integrals at the upper limit) discussed above. The infrared catastrophe is related to
the ever-present possibility (for any QED process) of radiation of the large number of
very “soft” photons with very small energy (frequency). Thus, the appearance of the
infrared catastrophe is connected with the somehow inconsistent formulation of the
problem: What is the probability for electron scattering by static nuclei with no photon
being emitted? In reality, we have to determine the scattering amplitude for an elec-
tron without a single photon emission, as well as the amplitudes with the emission of
one, two, three.... “soft” photons with energies less than m, . Each of these amplitudes
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diverges, but an artificial introduction of m, makes them finite. The sum of all these
amplitudes does not diverge, and the fictitious parameter m, cancels. This problem
was analyzed in detail at the early stages of development of QED [2, 6, 18].

We are now interested in the second term in the square brackets in (8.32), which
modifies Yy that is, the structure of the current. In fact, we can convince ourselves
[2, 6, 18] that the contribution of the type oyqu describes the magnetic moment of an
electron u = —%0, which is usually written as p = —g%s, with spin s = %0, and g
being the gyromagnetic ratio for an electron (in Dirac’s theory g = 2). Accordingly, the
second term in (8.32) describes the additional contribution to the magnetic moment
of an electron, so that

e €2
MH= _ﬂ<1 + E)O‘ (8.33)

or
e2
-2+ 2. 8.34
g=2+— (8.34)

Thus, in addition to Dirac’s magnetic moment of an electron, there appears the so-
called anomalous magnetic moment e%/271. A more precise expression for the anoma-
lous contribution to the gyromagnetic ratio, obtained through very tedious calcula-
tions taking into account terms up to the order of ~ e6, has the form
-2 1€ e? 2 e? ’ _
E-2_22._ 0.32848< —) +(1.49+ 0.2)( —> +--- = (1159655.4 £3.3)-10°. (8.35)
2 2n T b4
The uncertainty shown here is related to the difficulty of calculating the very large
number of diagrams of the order of ~ €°. The experimental value of the anomalous
gyromagnetic ratio is

g§-2

= (1159657.7 + 3.5) - 107 (8.36)

exp

This is the reason why QED is considered to be probably the most exact of the the-
ories of interacting elementary particles. To the author’s knowledge—up to now—no
discrepancies between QED predictions and experiments were ever found in purely
electrodynamic phenomena.

The analysis of the radiation corrections using Feynman diagrams, being rigorous, is rather compli-
cated and requires tedious calculations. To understand the physics of these effects, it is useful to refer
to the qualitative approach proposed by Welton, which allows us to obtain their simple interpreta-
tion, based on the picture of the vacuum fluctuations of an electromagnetic field and the role of the
electron—positron vacuum.

First of all, let us discuss the mean-square fluctuations of an electromagnetic field in the arbitrary
point of a physical vacuum. Consider a field in some normalization volume V. Zero-point oscillation
with frequency w has the energy %‘” We can write the obvious relation as

2

E
dVE2 = 22y 8.37
I Y 8 (8.37)

hw 1
5 = gjdv(ﬁgj +H2) =

1
4
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where E,,, and H,, are amplitudes of electric and magnetic fields in a vacuum, corresponding to zero-
point oscillation with frequency w, whereas the line denotes averaging over the oscillation period.
From (8.37), we find the mean-square amplitude of a zero-point oscillation of the field, corresponding

to frequency w, as

2 4hw
B, = U (8.38)

Consider an electron bound within an atom. It is acted upon by a Coulomb field of nuclei and also by
zero-point fluctuations of the electromagnetic field in a vacuum. Thus, the orbital motion of an elec-
tron is superposed with additional chaotic motion due to vacuum fluctuations of the electromagnetic
field. Let V(r) denote the potential energy of an electron at a point r. We can write the electron coor-
dinate as r = r, + ', where r,, denotes the usual coordinate, which is more or less regularly changing
during its orbital motion, whereas r’ is its small displacement under the influence of a random force
from vacuum field fluctuations. Then, we can write the change of the average potential energy of an
electron under these random displacements as

(i)« (120 +7) V) - (M2 L) )

0X;0Xy,
V v{(x ) )= ¢ ly v{(r ) ) (8.39)

Here, the angular brackets denote the average over all the possible values of the random variable r'.
During this averaging, we take into account that (x/) = 0, and (x{x;) = %((r’ )%) due to the spatial
isotropy of these random displacements.

For the Coulomb field of the proton, we have

V2V(ry) = 471e’6(xy) , (8.40)

so that
(Vi) = Vr0)+ 6(1‘0 <r'2>. (8.41)

To estimate the Lamb shift of an atomic level, we have to average (8.41) over the electron state of the
atom, so that

2
AEpgmy = 5 j dV|¢n<ro)| 8(rg)(r'") = —e2|¢n(o>| (), (8.42)
where 1), is the wave function of the relevant atomic state.

. 2 . . . .
To estimate (r'"), we assume that electron displacement under the influence of field fluctuations is
independent of its orbital motion. Let us write the classical equation of motion:

&2r
m dtzw = eE,, = eE,, sin(kr - wt), (843)
which gives
/ eEy, .
r,=-——>sin(kr-wt). (8.44)
mw
Accordingly,
2 e? 2 2ne’h
<(l"w) > = et Ey = BV’ (8.45)

where the line again denotes time averaging, and to get the last equality, we used (8.38).
Zero-point oscillations with different frequencies are independent, so that their contribution to the
mean square displacement of an electron can be written as a simple sum:

2 14 2 22h T dw
() - Wjd‘”‘”z((r'“) )= mj 2. (8.46)
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In the absence of an electron—positron vacuum, the upper integration limit here can be arbitrarily
large, and the integral diverges. In fact, for frequencies of the order of mc?/h zero-point oscillations
of the electromagnetic field begin to interact with the filled negative energy (“background”) states of
the electron—positron vacuum. We can imagine the interaction of current fluctuations, due to random
displacement of electrons with positive energy and similar currents, due to random displacement of
“background” electrons from the filled states. Due to the Pauli principle, all electrons tend to avoid
each other, and these current fluctuations should be in the opposite phase, leading to their effective
compensation. This leads to the effective cutoff in (8.46) for wy,y ~ mc?. The cutoff at the lower limit

in (8.46) is determined by some average frequency of electronic excitation in an atom, which is of the
Ry _ me”

order of the Rydberg frequency: wpi, = wo ~ 5 = e Then, (8.46) reduces to
() = 220 e zez<h>zlnmcz (.47)
acdm?  hw, 7 hc\ mc hwg ’
Now, we obtain for the value of Lamb shift (8.42):
4 ( n ? 2 mc?
Lamb = §%<%> [¥n(0)] ln%. (8.48)

This shift is always positive, and the s-level of hydrogen is higher in energy than predicted by the
standard Schroedinger—Dirac theory. For a hydrogen atom,

3
n(O)F = (L) , (8.49)

nam/3

2
where a = % is the Bohr radius, and we obtain

3
8 [ é? Ry mc?
AF; =—|—)] =Ih_—. .
Lamb 3n(hc> n nhwo (8:50)

More accurate and detailed calculations by Bethe produced more precise result: iw, ~ 18 Ry. Then,
from (8.50) it follows the value of the Lamb shift for 2s-state of hydrogen is AEj 5,(25) = 1040 MHz,
which is very close to the result of rigorous calculations, based upon the general QED formalism and
renormalization theory. Thus, the Lamb shift is another confirmation of the reality of the physical
“vacuum” of quantum field theory.

8.3 Renormalization — how it works

Previous examples of the calculation of radiation corrections in QED demonstrated
the major role of renormalization procedures, allowing us to get rid of the inevitable
divergences of Feynman integrals in the higher orders of perturbation theory. The de-
velopment of the theory of renormalization in QED led to the development of practical
methods for calculating the arbitrary physical effects due to electromagnetic inter-
action, as well as for analyzing some conceptual problems of the theory. The notion
of renormalizability is crucial for modern quantum field theory. Models of interact-
ing fields lacking this property are usually treated as nonphysical. Before moving to a
rigorous treatment of the renormalization procedure, we shall discuss the qualitative
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~
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Figure 8.5

aspects of this approach, using—as an example—the case of charge renormalization
in a single-loop approximation. ,

Let us return to equation (8.27), which contains a In % divergence. The value of
the electric charge enters the theory via the diagram for an elementary vertex, shown
in Figure 8.4. There is an infinite number of corrections to this vertex, with some exam-
ples shown in Figure 8.5, which actually change the value of the charge. The physical
charge is determined by all the corrections of this type, and the result of the sum-
mation of all diagrams for the vertex part is experimentally measured as the charge
of an electron. Let us call the “initial” charge, associated with an elementary vertex
of Figure 8.4, the “bare” charge e,. Then, for the “true” or “dressed” charge e, we
can write the perturbation expansion in powers of the “bare” charge, for example,
built upon the single-loop polarization correction, as represented by the diagrams
in Figure 8.6, where dots replace the similar diagrams of higher orders. The relation
between e® and eé can be established, as shown in Figure 8.6, at some appropriate
(from an experimental point of view) value of transferred (by photon line) momen-
tum” q2 =-Q*= —yz. In most traditional methods, to determine the charge value, we
use the low-energy limit of Q%> « m’. As a result, the expansion shown in Figure 8.6

e &
: I 7 +E+.“

e )
0

Figure 8.6

=u

4 The value of Q? is introduced here instead of (—qz), just for convenience, to deal with Q>>o0.
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e & 1
?/ ~ ?/ - 1 Lo e'f)
for QZ: ,u2

Figure 8.7

can be schematically written as
e’ =e[1-1(Q° = 1) + 0(ey)] (8.51)

where the value of I(Q?) is determined by equations (8.17)-(8.20), that is, by the single-
loop approximation ~ eé. Taking the square root of both sides of equation (8.51), we
obtain

e=¢ey|l- %I(Q2 =) +0(e) ], (8.52)

which coincides with (8.27) after the square root expansion. Expansion (8.52) is shown
in diagrammatic form in Figure 8.7. Accordingly, taking into account all the orders of
perturbation theory, we have

e = eo[1+e5A,(Q%) + €Ay (Q%) + -+ Jpyo - (8.53)

It is clear that A,(Q%), A5(Q?),... are infinite in the limit of A> — co. Consider some
physical scattering process, for example, the one shown in the diagrams of Figure 8.8.
In analytic form:

- iM(ep) = €5[F1(Q%) + egF5(Q%) + O(ep)] - (8.54)

Here, all the terms are also divergent. But now, we are taking a crucial step. Let us
renormalize the value of —iM (ef)), expressing e, via e, by inversing (8.52), or, in other
words, reconstructing the diagrams of Figure 8.7 with the same accuracy, as shown
in Figure 8.9, and substituting this expansion into the vertices of the diagrams in Fig-
ure 8.8. Then, we obtain the diagrammatic expansion shown in Figure 8.10. The first
two diagrams of this expansion originate from the first diagram of Figure 8.8, whereas

Figure 8.8
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Figure 8.9

—iM(e?) = +2 - +0(e")

Q" Qz:“z Q"

Figure 8.10

the factor of 2 appears, because we have to express e via e in every vertex. In the re-
maining diagram of Figure 8.8, we can simply replace e, by e, as inaccuracy here is of
the order of e®. We can rewrite the expansion of Figure 8.10 as shown in Figure 8.11. In
analytic form this expansion is written as

—iM(e?) = e*[F}(Q%) + e2F3(Q%) + O(e)]. (8.55)

Now, we have achieved everything we wanted: comparing (8.54) and (8.55), we can see
that the new scattering amplitude is expressed only via the “experimental” charge e,
defined according to (8.53) and measured at Q= yz. Actually, here we have not added
or dropped anything, but just changed the parameters in (8.54), and in fact M(e?) =
M(ed). At the same time, the term ~ e in (8.54) is infinite, whereas the term ~ e*
in (8.55) is finite. It is clear from the fact that the “experimental” charge e is finite by
definition, whereas two terms in the brackets in Figure 8.11 are of the opposite sign,
so that after summation, we obtain
e—zlnA—z—e—zlnjLZ =e—21n”—2, (8.56)
3 Q> 3m u] 3m @
which is independent of cutoff A. Different choices of parameter y2 (renormaliza-
tion point) lead to different expansions (8.55). However, the observable value of |M |2

—iM(e?) = - — +0(e%)

Figure 8.11
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should not depend on the choice of u. This requirement can be written as the following
differential equation:

dM_( 9 aei)M:o. (8.57)

yd_y = H@ +H@ae

This means that the explicit dependence of M on u, which is contained in the co-
efficients Fi’(QZ, u%), in expansion (8.55), is compensated for by the appropriate
u?-dependence of e?(u?). Equation (8.57) is a typical differential equation of the renor-
malization group, which is of great significance in quantum field theory. Below, we
shall once more return to a discussion of this (renormalization) invariance of the the-
ory, which allows one to analyze conceptual foundations of quantum field theory and
gives an effective formalism to perform calculations of specific effects.

8.4 “Running” the coupling constant

The expansion of Figure 8.6 can be redrawn as shown in Figure 8.12. If we limit our-
selves only to loop diagrams, we obtain geometric a progression, which is easily
summed, as shown in Figure 8.13. We have seen above that divergences can be elim-
inated if we work with the physical (renormalized) charge e, which is determined
by the expansion shown in Figure 8.13 at Q> = p?. Actually, we can use any value
of y%. Different choices of Q° = u,13,... correspond to the perturbation expansion
in powers of numerically different values of the physical charge e(y?). In fact, from
Figure 8.13, we obtain

2
202 €
e =—, 8.58
@)= (859
e & 9
= 1— + —
Figure 8.12
e &y
1
1 +

Figure 8.13
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so that the experimentally observable charge depends on the value of transferred (dur-
ing the scattering) momentum Q°. The value of e(Q?) is called the “running” coupling
constant. In the limits of large Q* = (—¢?), the value of I(¢?) is given by (8.24), and we
get

€

e’(Q%) = (8.59)

2 5
- ()
To exclude, in equation (8.59), the explicit dependence of ez(Qz) on the cutoff param-
eter A, we consider this expression at Q= y2 and express e, via e (yz). As a result, for

large Q%, we can rewrite (8.59) as

)

212
e(Q): 202 .
1——93(Z)1n(g—22)

(8.60)

Here, everything is finite. The “running” coupling constant e(Q?) describes the depen-
dence of the effective charge on the transferred momentum Q?, that is, in fact on the
distance between the charged particles. We shall see later that it is really the observ-
able effect, and the corresponding dependence is precisely logarithmic. However, the
result expressed by equation (8.60) raises a number of conceptual questions on the
consistency of QED. The thing is that from (8.60), we can see that with the growth of
Q? (reduction of distance) the value of effective charge grows, so that sooner or later
perturbation theory becomes invalid at small distances, and for

2_ 2 3
Q =pu exp(—ez(yz)>, (8.61)

we obtain an obviously unphysical divergence (“ghost” pole). For Q? larger than this
value, the charge becomes imaginary. For historical reasons, this behavior is called
“Moscow zero” (or the “zero-charge” problem). In the following, we shall return sev-
eral times to the discussion of this situation and related problems.

Actually, somewhat prematurely, we note that in quantum chromodynamics (QCD) the situation is just
the opposite. There, we also obtain the “running” coupling constant of gluons and quarks, which is
expressed (similarly to (8.60)) as

2

202\ _ g (W

g’(Q%) = T pe——"- (8.62)
121 f w2

where n; is the number of flavors of quarks, whereas the constant factor of 33 is connected to the
non-Abelian nature of gauge symmetry in QCD (in fact, it is calculated as some constant related to
the properties of the matrices of generators of the color group SU(3)). Only for the world with n; > 16,
the sign in the denominator of equation (8.62) will be the same as in QED. In the real world, we have
ng = 6. Thus, the effective charge in QCD does not grow, but diminishes with the growth of Q% and
becomes small at small distances. This behavior is called “asymptotic freedom”. For small enough
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@ (at large distances between quarks), the effective coupling constant (in contrast to QED) becomes
large, which is directly related to the confinement of quarks (“infrared prison”). Let us denote the value
of @2, corresponding to the pole (“ghost pole” again) in (8.62), as A2, so that

12n
A =plexp|l-——— |, (8.63)
K (33— 282G
Then, (8.62) can be rewritten as
12
Q%) = (8.64)

33-2)In(%)

For @° » A2, the effective coupling constant is small, and the interaction of quarks and gluons (at
small distances of large momenta) can be described by perturbation theory, just as in interactions of
electrons and photons in QED (at large distances or small momenta). For 02 ~ Az, such a description
becomes impossible, whereas quarks and gluons form strongly coupled clusters: the hadrons. The
experimental value of A is somewhere in the interval between 0.1 and 0.5 GeV. Then, for experiments
at Q> ~ (30 GeV)?, it follows from (8.64) that g2 ~ 0.1, so that perturbation theory is valid, as in QED.
In the limits of large Q?, we can neglect all quark masses, but there is still a mass scale in the theory,
given by ,uz, which appears in the process of renormalization.

8.5 Annihilation of e*e” into hadrons. Proof of the existence of
quarks

As an interesting illustration of QED applications, let us show how purely electrody-
namic experiments prove the existence of quarks [24]. This becomes possible via stud-
ies of the high-energy annihilation processes of electrons and positrons, with arbitrary
hadrons in the final state. In fact, these reactions are going through the creation of
quark-antiquark pairs, that is, e"e” — qg, which afterwards form hadrons. We can
show that the cross-section for such processes can be obtained from an easily calcu-
lable QED cross-section for electron—positron annihilation into muons: e*e™ — pji.

To calculate the cross-section of this process in QED, it is sufficient to consider
the second of the Feynman diagrams, shown in Figure 6.6, where the final products of
the reaction is the pair yﬁ.5 The standard calculation, using the rules of QED diagram
technique, gives the total cross-section for such process as [24]

4me?

3¢ (8.65)

ole’e” — up) =
where Q* = 4E? is the square of energy in the center of the mass reference frame (Man-
delstam variable s). Then, the cross-section for annihilation into the quark-antiquark

pair is given by

ole'e” - qq) = 3e§o(e+e‘ - uf), (8.66)

5 We remind that muons are similar to electrons, but with larger (about 200 times) rest mass.
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where e, is the g-quark charge. An additional factor of 3 appears here due to three
separate diagrams for different quark colors, which are to be summed, so that appro-
priate cross-sections are also summed. To find the cross-section for the creation of all
possible hadrons, it is necessary to sum over all quark flavors g = u,d,s, .. ., so that

o(e*e” — hadrons) = Y o(e*e” — gq) =3 ) eso(e’e” — pj). (8.67)
q q

Thus, we obtain the very important prediction

R

o(e*e” — hadrons) -3 Z

8.68
o(ete” — up) (8.68)

2
ey -
q
As cross-section g(e*e” — ujt) is well studied (and is in excellent agreement with
equation (8.65)), the experimental measurements of the cross section for e*e™-anni-
hilation into hadrons give direct information on the number of quarks, their flavors,
and their colors. We have
3G+ (3’ + (31 =2 for ud,s.
R=4 2+ 3(%)2 = % for u,d,s,c, (8.69)

? + 3(%)2 = 13—1 for u,d,s,c,b, etc.

These predictions have been well confirmed by experiments. The value of R = 2 is
observed for Q < 2(m. + m,) = 3.7 GeV, that is, below the threshold for creation of
c-quarks. Above the threshold for creation of five quark flavors, that is, for Q > 2m;, =
10 GeV, the experimentally observed value of this ratio is R = 11/3. These experi-
ments directly confirm the existence of three colors of quarks with the appropriate
(fractional) values of the electric charge.

Within QCD, we can also take into account the contributions of diagrams with quarks (or antiquarks)
emitting gluons [24]. In the first order over gz, equation (8.68) is modified as follows:

Vs

2,12
R:3Ze§(1+g(a)>, (8.70)
q

so that the weak (logarithmic) dependence of R on @’ is also observed.

8.6 The physical conditions for renormalization

Let us now discuss more rigorously the basics of renormalizability in QED. It is clear
that the general scheme of invariant perturbation theory and diagrammatic equations
for exact propagators presented above was rather formal. We have operated with all
the entities of the theory, as with the usual finite mathematical expressions, though
explicit calculations of D, G, and T, using perturbation theory, inevitably produce di-
verging integrals. We shall explicitly show below that using certain recipes in QED al-
lows us to perform the well-defined “subtraction” of all infinities and to obtain finite
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expressions for all the measurable physical characteristics. These recipes are based
upon the obvious physical requirements of the photon mass being exactly zero, and
the electron charge and mass are equal to their observable values. Our presentation
will necessarily be a bit schematic, but further details can be found in [6], and in es-
pecially detailed analysis in [2].
A physical photon has zero mass, so that its dispersion is given by k? = 0. This
means that the exact photon propagator should always have a pole at k* = 0, so that
4r
D(IP) = 22 for K- o0, (8.71)
where Z is some constant. According to equation (7.39), the general form of the prop-
agator is expressed via the polarization operator as
4

2y _
D(k%) = A= PIdKD) (8.72)

so that from (8.71), we get for polarization operator
P0)=0. (8.73)
Likewise, the constant Z in equation (8.71) can be defined as

2
1_,_ P@)

. 8.
Z K2 lieso (8.74)

Further limitations on the behavior of P(k?) can be obtained from the analysis of the
physical definition of electric charge. Two classical (very heavy) particles being at rest
at some large distance from each other (r > m~!, where m is electron mass), are inter-
acting according to the Coulomb law: V(r) = €?/r. On the other hand, this interaction
is expressed by the diagram shown in Figure 8.14, where the “fat” wavy line denotes
the exact propagator of the virtual photon and the upper and lower lines correspond
to classical particles. Self-energy corrections for the photon are taken into account in
its exact propagator. Any other self-energy corrections, acting upon the lines of heavy
particles, lead to the corresponding diagrams being zero. In fact, an addition of some
internal line into the diagram of Figure 8.14, for example, joining 1 and 3 or 1 and 2
by a photon line, leads to the appearance in corresponding diagrams of heavy virtual

p3 p|

P4 p 2

Figure 8.14
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particles (due to particle lines under the extra photon lines), with the propagators
containing large mass M of the classical particle in denominators, giving zero contri-
bution in the limit of M — co. Then, it is clear that the factor of e?D(k?) in the diagram
of Figure 8.14 is given (up to a sign) by the Fourier transform of the interaction poten-
tial of our particles. The static nature of interaction (particles at rest) corresponds to
the frequency of virtual photon w = 0, whereas the large distances correspond to the
small wave vectors k. As D depends only on k? = w? — K%, we arrive at the condition

2
D - € o i S0, (8.75)

K2
so that in equation (8.71), we have to put Z = 1. Then, from equation (8.74), it immedi-
ately follows that

P

- — 0 for K= 0. (8.76)

Besides the previously derived condition (8.73), it follows now that

dpP(k?)

'
0) =
P(0) A o

=0. (8.77)

Note that the effective external line of a real photon should be associated with the
factor of V4n[1 + qinP(kz)D(kz)]e},. However, for the real photon, we always have k* =
0, and due to (8.76), we conclude that in the lines of external photons, we can safely
drop all radiation corrections.

Thus, the natural physical requirements lead to definite values (zeroes) for P(0)
and P’(0). At the same time, direct calculation using the diagram rules of perturba-
tion theory leads here to diverging integrals. We can get rid of these divergences if
we attribute the finite values dictated by physical requirements to these divergent ex-
pressions. This is the main idea of renormalization. Another way to formulate this
operation, example for charge renormalization, is as follows. We can introduce the
nonphysical “bare” charge e, as a parameter entering the initial expression for an
operator of electromagnetic interaction, which is used in formal perturbation theory.
After that, the renormalization condition is formulated as the requirement of

2
esD(K) — 4}% for k> -0, (8.78)

where e is the true physical charge of a particle. Then we find the relation
e’ = Zej. (8.79)

Now the unphysical e, is excluded from all expressions, determining the physical ef-
fects (whereas divergence is “hidden” in the renormalization factor Z). If we require
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Z = 1 from the very beginning, we actually perform renormalization “on the fly” [6],
so that there is no need to introduce any fictitious entities into the intermediate calcu-
lations.

Let us now consider the physical conditions for renormalization of the electron
propagator. It is obvious that the exact propagator G(p) should have a pole at p? = m?,
where m is the mass of physical electron. Then, we can write

y'p, +m

Gp) ~ 2y 55— +8(p) forp® —m’, (8.80)
pc-m

+10
where Z; is a scalar constant (renormalization factor) and g(p) is finite for p* - mi.
From (8.80), we immediately obtain the inverse propagator as

- 1
g lp) ~ Z—(y"py -m) - (yY'p, - m)g®)(y*'p, - m) for p”> - m*. (8.81)
1
The mass operator for p?> — m? now has the form

M@P)=G"p)-¢"(p) = (1 - Z%)(y"py -m) +(yY'p, - m)g®)(y'p, -m). (8.82)

We associate the following factor with the effective external electron line (for ex-
ample, incoming) in the scattering diagram:

U(p) = u(p) + GE)M(P)u®), (8.83)

where u(p) is the usual electron bispinor, satisfying the Dirac equation (y"pu -m)u = 0.
Due to relativistic invariance (/ is also the bispinor), the limiting value of ¢4(p) for p*> —
m? can differ from u(p) by a constant scalar factor (wave function renormalization)

Up) =Z'up). (8.84)

It is not difficult to show [6] the validity of a simple relation

7' = \/z—1 . (8.85)

This is almost obvious, since Green’s function (propagator) is quadratic in electron
operators.

Now, after the establishment of the limiting behavior of the electron propagator,
there is no need of any additional conditions for the vertex operators. Consider the di-
agram in Figure 8.15, and let us assume that it describes first-order electron scattering
by an external field A;f)(k), taking into account all radiation corrections. In the limit
of k —» 0, we have p, — p; = p, and the radiation corrections to the line of the external
field vanish (we already noted above that they vanish for arbitrary k* = 0). Then, this
diagram corresponds to the amplitude

Mj; = —ell(p)I* (p, p; OU(P)AL (k — 0). (8.86)
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Py Py

Figure 8.15

But for k — 0, the potential Aff)(k) reduces to a constant independent of coordinates
and time, which does not describe any physical field and cannot lead to any change of
transition current. In other words, in this limit, transition current Z/T*/ should simply
coincide with free current aty*u:

U (p, p; O)U(p) = Zyu(p)IMu(p) = u(p)y"u(p) . (8.87)

This relation is automatically satisfied due to the Ward identity, independent of the
value of Z;. In fact, substituting G 1(p) from (8.81) into (7.87), we obtain

I(p,p; 0) = ley" ~Y'e@(/'py - m) - (¥, ~ m)gw)y* (8.88)

and (8.87) is satisfied, due to (y"py - m)u(p) = 0 and ﬂ(p)(y"py - m) = 0. This again
simply gives us the definition of the physical electron charge. We see that the renor-
malization factor Z; drops from the amplitude of the physical process. We can simply
require

1(p)T*(p, p; O)u(p) = a()y*u(p) forp® = m?, (8.89)

thatis, put Z; = 1. The convenience of such a definition is that now there is no necessity
to introduce any corrections to external electron lines, and we simply have U/(p) = u(p).
It is also clear also that, for Z; = 1, for mass operator (8.82), we have

M(p) = (¥'p, - m)g®)(y'p, - m), (8.90)

so that the second term in (8.83) obviously reduces to zero. Thus, there is no need to
renormalize the external lines of all real particles, both photons and electrons.

8.7 The classification and elimination of divergences

The physical conditions of renormalization introduced above allow us, in principle.
To obtain the finite and definite values for the amplitudes of any QED process in an
arbitrary order of the perturbation theory.

Consider first the character of divergences appearing in different Feynman inte-
grals. First of all, we calculate the powers of the virtual 4-momenta, entering the in-
tegrand. Consider an arbitrary diagram of the nth order (n is the number of vertices),
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containing external lines of N, electron and N, photon. The number N, is always even.
The total number of electron lines is equal to 2n; of these N, are external and I, are in-
ternal. During the calculation of the number of lines, the internal lines are counted
twice, as each of them connects two vertices, so that

2n=N,+2I,. (8.91)

Correspondingly, the total number of internal electron lines in the diagram is
I,=n--t. (8.92)

Each vertex is connected with one photon line, and for Ny vertices, this line is external,
whereas for the remaining n —Ny vertices, this line is internal. As each internal photon
line connects two vertices, the total number of these lines is equal to

n—Ny

5 (8.93)

Each internal photon line is associated with the propagator D(k), which contains
k to the power of —2. Each internal electron line is associated with the propagator
G(p), which behaves like p to power of —1 (for p? > m?). Thus, the total power of the
4-momenta in the denominator of the integrand is

n-N, N N,
2 Y vn-=t-m-—=-N,. 8.94
5 +n 5 n 5 Y (8.94)

The number of integrations over d*p and d*k in the diagram is equal to the number of
internal lines, but the conservation law of the 4-momentum in each vertex leads to an
additional n — 1 constraint on integration momenta (one of these n conservation laws
is connected with external momenta, and it corresponds to the general conservation
law for the scattering process described by this diagram). Correspondingly, taking into
account equations (8.92) and (8.93), we conclude that the total number of internal lines
(both electron and photon) in the diagram is given by

N 3, N N
2 2 2 2

N
n__+g_ X (8.95)

2

which gives the number of integrations, not taking conservation laws into account.
Then, subtracting n—1, we obtain for the number of independent integration momenta

N. N,
n-—=t--—=- nel="41-—e Y (8.96)
2 2 2 2 2 2

Multiplication by 4 gives the total number of integrations

2(n-N, - N, +2). (8.97)
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The difference between the number of integrations and the power of the momenta in
the denominator of the integrand for our diagram is equal to the difference between
(8.97) and (8.94):

r=4- 3N, N,. (8.98)
This number determines whether the appropriate Feynman integral is convergent or
divergent.® Strictly speaking, the situation is more complicated, as the condition of
r < O for the diagram as a whole is not sufficient to guarantee its convergence. We also
have to require the negative values of ' for all internal blocks, which can be contained
within our diagram. The presence of internal blocks with r’ > 0leads to the divergence
of the diagram as a whole, though all other integrals may be convergent. The condition
r < 0 is sufficient to guarantee the convergence of the simplest diagrams.

For r > 0, the integral is always divergent. The power of divergence is not less
than r if r is even, and not less than r - 1if r is odd (the drop of divergence power by 1in
the last case is related to the integration of the product of odd number of 4-vectors over
the whole 4-space giving zero). The power of divergence can grow due to the presence
of internal blocks with r’ > 0.

Note that the divergence power of the diagram r, according to (8.98), does not de-
pend on the diagram order n. This remarkable property, as we shall see later, makes the
theory renormalizable. Briefly speaking, the important thing here is that from (8.98), it
becomes immediately clear that only the finite number of types of divergence exists in
such a theory, because with positivity of both N, and N,,, we can obtain r > 0 for only a
few pairs of the values of these integers, and thus only the finite number of the simplest
primitively diverging diagrams. Correspondingly, we can introduce the finite number
of parameters (to be determined from the experiments) to “hide” all divergences. In
the case of n entering (with positive sign) into (8.98), the number of divergence types
will grow with the growth of n, so that situation will become hopeless. For QED, we
can explicitly list all primitively diverging diagrams. From the very beginning, we can
exclude the cases of N, = N, = 0 (vacuum loops) and N, = 0, N, =1 (the average value
of vacuum current). All other cases are shown in Figure 8.16. For the first of these dia-
grams, we have r = 2, and divergence is formally quadratic; in all other cases r = O or
r = 1, and divergence is logarithmic.

The diagram of Figure 8.16(d) represents the first correction to the vertex. It should
satisfy (8.89), which can be written as

a(p)\¥(p, p; O)u(p) =0 forp® = m?, (8.99)

where
N =TH y*, (8.100)

6 Let us recall that in all cases we are dealing with divergences of integrals at the upper integration
limit.
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Figure 8.16

Let us denote the Feynman integral, written according to diagram rules, as A* (p,, p;; k).
This integral is logarithmically divergent and does not satisfy (8.99). However, we can
obtain the expression satisfying this condition by constructing the difference

N (D2, Py k) = N(py, prs k) = N1, p1s 0oy (8.101)
Divergence in the integral for A¥(p,, p;; k) can be separated if we consider the limit of a very large

4-momentum of the virtual photon f. Then, we obtain

d'f V'V o)y
(m)* A2
which is independent of the values of the 4-momentum of the external lines. Consequently, in the
difference given by (8.101), divergences are canceled, and we obtain the finite expression.

, (8.102)

. d'f )
e’ (zﬂ’;,,y 6Bz~ NGBy~ Ny Dy ) ~ -’ |

Such a procedure for canceling divergence is called the subtraction scheme of renor-
malization. Let us stress that the possibility for canceling divergence in A*(p,, p;; k)
by only one subtraction is guaranteed by (the weakest possible) logarithmic nature of
the divergence.

After determining the first correction for I* (that is, the first term of expansion for
AM), the first correction for the electron propagator (diagram of Figure 8.16(b)) can be
calculated using the Ward identity (7.87), which can be rewritten as

_aM(p)

= N(p,p;0), (8.103)
Py

introducing the mass operator M instead of G and A¥ instead of I'*. This equation can
be easily integrated with the boundary condition

a(p)Mpu(p) =0 for p* =m?, (8.104)

which follows from (8.90).
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In principle, in a similar (though more tedious), way we can cancel divergences
from the polarization operator of Figure 8.16(a) [2, 6], but here we have to make two
subtractions:

P(k*) = P(K*) - P(0) - K*P'(0), (8.105)

where P denotes the Feynman integral, corresponding to this diagram. It is obvious
that (8.105) satisfies the physical requirements given by (8.73) and (8.77).

The next order of the perturbation theory for the vertex operator A)(f) is determined
by the diagrams shown in Figure 7.17(c-i). Of these, only the diagrams shown in Fig-
ure 7.17(d-f) are compact, which can be made finite with the help of one subtraction
(8.101). Internal self-energy and vertex parts, contained within the noncompact dia-
grams, can be directly replaced by the already-known (renormalized) values of the
first order, given by PY MD, and A’(}), so that integrals are again made finite by sub-
traction (8.101). Corrections M® and P are then calculated using the Ward identity
(8.103) and (8.105). The systematic application of such procedure gives, in principle,
the rigorous way to obtain finite expressions for P, M, and A, in an arbitrary order of
the perturbation theory [2, 6]. This makes possible the calculation of the amplitudes
of the physical scattering processes, containing blocks, such as P, M, and A,,. The
physical conditions of renormalizability formulated above are sufficient to cancel di-
vergences from all Feynman integrals. This is the manifestation of the quite nontrivial
property of renormalizability of QED. Below, we shall return several times to the dis-
cussion of renormalizability and its use in other models of quantum field theory.

8.8 The asymptotic behavior of a photon propagator at large
momenta

Let us consider the conceptually very important problem of photon propagator asymp-
totic behavior at large momenta |k?| > m?. In the lowest order of perturbation the-
ory, the polarization operator is determined by the simple loop diagram shown in Fig-
ure 8.17. It is defined by the Feynman integral

L Wy _ 2 d4p u v _
47'[P (k) = —e J n) Spy"Gp)y'Glp-k). (8.106)

However, this integral (over the whole 4-dimensional p-space) diverges (quadratically,
according to a simple power counting of the previous section, but actually only log-

p+k
k D k

Figure 8.17
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arithmically, due to a “hidden” algebra of the integrand). These divergence can be
canceled using the renormalization recipes of the previous sections. Direct calcula-
tions are rather tedious [2]. This analysis is much simplified in the asymptotic limit of
|k?| > m?, which is of major interest to us. As we shall see below, after the renormal-
ization (8.106), in this limit, we have

P(k?) = e—2k2 In Ik? .

8.107
3 m2 ( )

In essence, this gives the first-order correction inverse photon propagator 47D = k?,
and it is valid until the following condition is satisfied:
2 2
k

£ LS| <1, (8.108)

31 m?
which limits the validity region of our approximation at high values of |k|*. In fact,
equation (8.107) can be used even under the much weaker condition of

e . |k

Now, we shall give a proof of this statement and also obtain the result (8.107) itself [6].
First of all, let us note that, although for (8.109) there may be additional contributions
to P(kz), due to the higher orders of perturbation theory, in the n-th order it is sufficient
to take into account only the terms of the order of ~ (€)™ In"( 'r’;—'f ), containing the large
logarithm, appearing in the limit of [k?| > m?. This logarithm should enter with the
same power as e, because terms with lower powers of the logarithm are obviously
smaller due to e® « 1. This is called the approximation of leading logarithms.

Consider now the Dyson equation for polarization operator (7.77)

4tie? d*p
(k) = S J # KT, (p + k, p; k . 8.110
(k%) = ——5Sp T G(p+ k)T, +k p;k)G(p) (8.110)
As we have shown above, P(k?) is gauge invariant, so that calculating it using Feyn-
man diagrams, we can use any gauge for the propagators and vertices. Most conve-
nient is the Landau gauge, when the photon propagator is written as (D' = 0):

4m kykv
D)lv(k) = F(gyv - ?> . (8.111)
A detailed analysis of the correction diagrams for (8.106), which can be found in [6],
shows that in this gauge perturbation theory, series does not contain terms with the
required powers of logarithms at all.
Then, in (8.110) it is sufficient to use the zeroth-order approximations G = G and
¥ = y¥. Then, (8.110) reduces to the integral
_ 4ie?

2 d'p ,
P(k) = =3 Spj o @+ RGP, (8.112)
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as in (8.106). Let us discuss the appearance of the logarithm in this integral. It is easily
seen that it originates from the integration region

P’ K3 for K3 > m?. (8.113)
In fact, in this limit, we can write’

1 Vo
Gp)~—F—=—7", (8.114)
v Yo,  p?

1 1 1, 1
i _yik.  yAp. | yip Y vy
V'pu =V, YPpy VPP VPa
1
+
YEpy
VP R0 P)
- p2 + (p2)2
V') ) ) k) (VP pp)
+ (p2)3 e,

After substitution of these expressions into (8.112), the first term, independent of k,
drops out due to renormalization in accordance with the condition P(0) = O (the first
subtraction in (8.105)). The second term also becomes zero after integration over the
directions of p. The third integral is logarithmically divergent over p?; it can be easily
estimated, making the integration from p? ~ |k?| (lower limit of the region (8.113)) up
to some “cutoff parameter” A%

Glp-k) =

1 1
Yk k +
y vyapayp "y

(8.115)

4 s N s N 1 A2
[dpBs~ [appls - | '~ [’ ~moz. (s
b b b b [k
k2| k2|
Finally, we get
b 2
(k) = _Be_nk2 In % . (8.117)

This is not the end of our derivation; for the final cancellation of the divergence (at
A — ©0), we need to subtract from P(k?)/k? its value at k> = 0 (second subtraction
in (8.105)). However, logarithmic accuracy of our calculations assumes IK?| > m?, so
that it is sufficient to subtract the value of (8.117) at |k2| ~ m?, and A? in the argument
of logarithm is simply replaced by m?. Thus, we obtain the required result (8.107). In
the Landau gauge, there are no corrections to G and I' with the “proper” powers of the

logarithm, and equation (8.107) is actually valid under the condition (8.109).

7 The signs here are determined by the properties of the y-matrices.
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The function D(k?), corresponding to the polarization operator (8.107), has the
form
_4nm 1

Tk _ gl
1 3ﬂlnm2

D(K?) (8.118)

Because of (8.109), there is no need to expand this expression in the powers 2. How-
ever, the validity of (8.118) is limited from the side of large |k?|, due to the diminishing
denominator. The derivation of (8.118) was based on logarithmic approximation and
neglect of infinite sequences of the diagrams of higher orders, which do not contain
leading logarithms. According to (8.118), an addition of each new “fat” photon line
introduces an additional factor of e*D, and the small parameter of the perturbation
theory instead of e’ is given by

eZ

T <1, (8.119)

31 m?
which coincides with the “running” coupling constant (8.60) discussed above. As |k?|
grows, this coupling becomes of the order of unity, so that the small expansion pa-

rameter actually disappears, and perturbation theory can not be further applied.

8.9 Relation between the “bare” and “true” charges

The situation with (8.118), (8.119) can be understood more clearly if, during the deriva-
tion of (8.118), we do not do renormalization “on the fly”, but introduce the first “bare”
charge e, which afterwards is fitted to obtain the correct observable value of charge e
(or e in the notations used above). If the logarithmically divergent integral is cut off
at the upper limit at some A? (above we have also used the notation M? as the cutoff
parameter), the “bare” charge can be considered to be its function: e, = eO(Az), and—
at the end—we have to perform the limit A — oo. In this approach, the polarization
operator takes the form (8.117)

A2
P(K?) = —2K°In —- . 8.120
()=~ n o (8120)
Correspondingly,

2 471 1

D(k ) = Fﬂ . (8.121)
1+ 3 In W
Let us define the physical charge e according to
2012 4me? 2 2

eyD(k") > —— where kK > m", (8.122)

k2
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that is, at distances of the order of m™ (the Compton length of an electron #/mc, which
in quantum field theory defines its effective size). Then, we obtain
2
e
ef=—2 (8.123)
1+ 2 X
3 m?
which, in fact, coincides with (8.59) if we choose the normalization point yz = m’.
Consequently,

eZ

= ———. 8.124

I imE (6124
If we formally consider the limit of point-like charge A — oo in (8.123), we shall obtain
e — 0, independently of the possible form of the function eé (A). This behavior is called
the “zero charge” (or “Moscow zero”). It was first noted by Landau and Pomeranchuk,
and independently by Fradkin in the mid-1950s. In the opinion of Landau [49] this
situation reflected the internal inconsistency of both the renormalization procedure
and QED (and any other model of quantum field theory known at that time) itself.

Let us consider the arguments of Landau and Pomeranchuk, which led them to this rather radical

2
conclusion. Let the ratio ‘Il:—zl be so large that
2 2
e A
3—2 In = * 1, (8.125)

but, at the same time, we still have e, « 1. Then, in equation (8.121), we can neglect unity in the
denominator, so that
1272
D(k) = —— (8.126)
K22 1In &
0 1k
and, correspondingly, from (8.122), we have

L (8.127)

2
vln%

which is independent of the value of “bare” charge e,. Note that here, we divided (8.127) by an ad-
ditional parameter v, which denotes the number of the fundamental fermions, which contribute to
vacuum polarization (the corresponding contributions to polarization loops are additive). Let us now
introduce, instead of the standard 4-potential of electromagnetic field A¥, a new 4-vector A* = ey A¥.
Then, the interaction Hamiltonian H; will not contain the “bare” charge e,, whereas the free elec-
tromagnetic field Hamiltonian H,, (quadratic in A*) will contain e(z, in the denominator. The function
D(k?), defined with the help of A* in the same way that D(k?) is defined via A¥, will be equal to

N 2o 121
D(K*) = egD(K) = ——. (8.128)
Kln &
k2|
This expression does not contain ey, and this means that it corresponds to the neglect in the total
Hamiltonian H = H,, + H; (depending on e,) of the term Hy,. If this neglect of H, in comparison to Hy
is possible (at large A) already for eé < 1, it is natural to assume that it is even more justified at not
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so small eé. Then, equation (8.126), and also equation (8.127), become unrelated to the condition of
eé < 1, so that the limit of A — oo becomes feasible. Consequently, e -0, independent of the form
of the function e3(A).
The cutoff parameter A, guaranteeing the validity of (8.127), is in any case very large. At corresponding
(very small) distances, the effects of gravitation may exceed those of electromagnetism. This leads to
the very attractive idea that the “crisis” of QED happens precisely at those distances (energies), where
gravitation coupling matches that of electromagnetism. Choosing the cutoff parameter of the order of
the Planck length, we have

GyN ~1, (8.129)

where Gy is the Newtonian gravitational constant. If we accept such a point of view, the value of the
physical charge e will be automatically determined by the theory via equations (8.127) and (8.129),
which will lead to the limitation of v =~ 12. In fact, if v < 12, the effects of gravitation will become
important well before the effective charge becomes of the order of unity. In the opposite case of v > 12,
the effects of gravitation will not “save” electrodynamics, becoming important “too late”. Note that,
according to the modern experimental data on elementary particles (see Chapter 1), there are precisely
12 fundamental fermions.

At the same time, we must stress the opinion of the majority of theorists, who believe
that the limit of A — oo in expressions, such as (8.123) and (8.124) cannot be per-
formed without breaking the assumptions made during their derivation. From (8.124)
it is seen that as A grows (with fixed e?), the value of e(z) also grows, and for e(z) ~1,all
these expressions become invalid, as their derivation was based on the assumption of
eé <« 1, which is simply the criterion of the applicability of perturbation theory.

Note that for QED all these difficulties are of a rather “academic” importance,
since they appear at fantastically high energies of no real interest: %zln(fl—zz) =1is
achieved for E ~ 10%>m, which is essentially due to the smallness of e = 1;—7 Much
earlier, as we shall see later, electromagnetic interactions become “intermixed” with
the weak and strong interactions of the elementary particles, so that “pure” electrody-
namics looses its meaning. At the end of this volume we shall return to the discussion
of the problems of consistency of quantum field theory and its asymptotic behavior.

For a better understanding of these problems, we now present a simple qualitative discussion on coor-
dinate space [5]. We can transform our asymptotic expressions of QED to “coordinate representation”
by an obvious (from dimensionality arguments) replacement: m — r~! and A — ral, where r is the
characteristic distance from the “center” of an electron (which can be taken to be of the order of its
Compton wavelength), whereas r, is some fundamental length, characterizing the geometric size of
the “bare” charge, which can be imagined to be a small sphere with radius r,. Then, (8.123) can be
written as

2
2= — 2 (8.130)
14 2200 1 1
312 ro

Let the value of the “bare” charge ez(ro) be fixed. Our aim now is to go to the limit of a point-like
“bare” charge, so we start to diminish r,, with a fixed value of e(z,(ro). Then, sooner or later, we obtain

2
2937(:20) In % > 1, and we can neglect unity in the denominator of (8.130). Correspondingly, we have
2 1
e (r) =5 (8.131)
N
2
3 o
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But now, with a further diminishing of r,, we obtain ez(r) — 0 forry — 0. This is “zero charge”
behavior (or “Moscow zero”). On this ground, Landau and Pomeranchuk claimed®: “We are coming
to the fundamental conclusion that the formal quantum electrodynamics apparently leads to the zero
charge of an electron. The word “apparently” here is related to some lack of rigorousness in the above
arguments”. The physics here is that in this approximation vacuum polarization (due to creation of
virtual electron—positron pairs) is so strong at small distances that, at some distance, the remnant
charge is actually independent of the initial (“bare”) charge. In the limit of the point-like “bare” charge,
nothing remains of it on any finite distance: we have the complete screening. Note that this result is
quite transparent; the phenomenon of screening is well known in plasma and solid state physics [36],
where it is described by quite similar calculations of the polarization operator in many body systems
[1]. But in this situation, how we can understand the magnificent successes of QED?
Let us write (8.130) in the form solved with respect to ez(ro), andputr =4, = m! (the Compton wave
length of an electron):
e’ ()

> .

1- %G in e

e(ry) = (8.132)

Here, ez(/\e) should be understood as the “physical” charge of an electron, that is, the charge that is
measured at large distances (of the order of A,) outside the effective region of vacuum polarization
(screening). When we “enter” this region (ry < A,), the charge grows due to the diminishing screen-
ing inside the “cloud” of electron—positron pairs.9 However, we cannot reach the limit of a very large
charge, due to the existence of the “Landau ghost pole”, close to which equation (8.132) simply be-
comes invalid. From a practical point of view, all this is not important at all, as we are speaking here
about the region of ry ~ A, exp [-(137)(37%)/2]. QEDisa practical theory precisely because we are using
nonexact solutions with point-like interaction and leave open the question of the correct behavior at
small distances, where other interactions become quite important. And who knows; is there not some
physical mechanism cutting off divergences at small distances (for example, related to gravitation;
refer to (8.129)), which is still unknown to us, but which makes interactions in quantum field theory
effectively nonpoint-like? Thus, the pragmatic (majority) point-of-view is that we are dealing with the
experimentally defined “physical” charge e(A,), such that we can work with solutions in the form of a
perturbation series, though modern theory becomes invalid at small distances. Thus, the problem of
the asymptotic behavior of QED still remains unsolved (we shall return to this at the end of the book).
In asymptotically free field theories, for example, in QCD, the situation is different. The sign in the de-
nominators of expressions similar to (8.130) and (8.132) is opposite to that in QED, and the asymptotic
behavior of the interaction “constant” (charge) is also opposite: gz(ro) — 0 forry — 0. Itis not that
the charge at the finite distance is becoming zero, for an arbitrary value of the “bare” charge, but the
zero point-like charge corresponds to a finite charge at the finite distance: gz(r) grows with the growth
of r. In QCD, we are dealing with an effective “antiscreening” of the “bare” charge. However, we do
not know which values of r, and g(r,) should be fixed, and up to what values of r we can use an log-
arithmic expression, such as (8.130). We cannot use it infinitely, as the diminishing (with growth of r)
denominator again makes perturbation theory inapplicable. Qualitatively, it is clear that this growth
of the charge with r corresponds to the confinement force (acting upon quarks). These dependencies
are now measured experimentally, and we shall return later to the discussion of asymptotic freedom
in QCD.

8 Reports of the USSR Academy of Sciences 102, 489 (1955).
9 In fact, this corresponds to the dependence of the “fine structure constant” on momentum, trans-
ferred during the scattering process. We already noted that this effect is experimentally observable.
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Lev Davidovich Landau
(1908-1962) was a Soviet physi-
cist who made fundamental con-
tributions to many areas of theo-
retical physics. His achievements
included the independent co-
discovery of the density matrix
method in quantum mechanics
(alongside John von Neumann),
the quantum mechanical the-
ory of diamagnetism, the the-
ory of superfluidity, the theory of
second-order phase transitions, the Ginzburg—Landau theory of superconductivity,
the theory of Fermi liquid, the explanation of Landau damping in plasma physics, the
Landau “ghost” pole in quantum electrodynamics, and the two-component theory of
neutrinos. He received the 1962 Nobel Prize in Physics for his development of a theory
of superfluidity. Landau was born in Baku, Azerbaijan, in what was then the Russian
Empire. In 1924, he moved to Leningrad and dedicated himself to the study of theo-
retical physics. Landau traveled abroad during the period 1929-1931, when he finally
went to Copenhagen to work at the Niels Bohr’s Institute for Theoretical Physics.
After the visit, Landau always considered himself a pupil of Niels Bohr. Apart from
his theoretical accomplishments, Landau was the principal founder of the “Landau
school” of theoretical physics. He and his friend and collaborator Evgeny Lifshitz,
have written the Course of Theoretical Physics, finally completed by Lev Pitaevskii;
ten volumes that together cover the whole of the subject and are widely used up to
nowadays. From 1937 until 1962, Landau was the head of the Theoretical Division
at the Institute for Physical Problems. In 1938, Landau was arrested and held in
Lubyanka prison until his release in 1939, after the head of the institute Pyotr Kapitsa
wrote a letter to Joseph Stalin, personally vouching for Landau’s behavior. Landau
was rather briefly involved in Soviet atomic and hydrogen bomb projects. However,
for this work he received the Stalin Prize in 1949 and 1953, and was awarded the title
“Hero of Socialist Labour” in 1954. In January 1962, Landau’s car collided with an
oncoming truck. He was severely injured and spent two months in a coma. Finally,
he partly recovered, but his scientific creativity was destroyed, and he never returned
fully to scientific work.

8.10 The renormalization group in QED

Let us show now how equations (8.130) and (8.124) can be derived using simple anal-
ysis, based on dimensional analysis and the notion of renormalizability, which con-
stitute the essence of the so-called renormalization group, introduced in QED by Gell-
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Mann and Low. Consider again the square of the “bare” charge as a function of cutoff
parameter e3(A), and introduce some function d that relates e for two different values
of its argument (cutoff):

eg(A3) = eg(A7)d. (8.133)

For Af, A% > m?, the function d does not depend on m and, being dimensionless, can
depend only on the dimensionless arguments e (A7) and A2/A2, so that we can write

2
&(A2) :eg(Af)d< 2(02), 2 ) (8.134)
1

This is the main relation of the renormalization group. Its physical meaning is quite
clear: in renormalizable theory any change of the cutoff parameter can be compen-
sated for by the appropriate change of the “bare” charge, with no change in the phys-
ical results (in this case, of the physical charge). The functional equation (8.134) can
be conveniently rewritten in a differential form. Consider the infinitesimally close val-
ues of cutoff parameters A2 and A2 Let us denote A2 &and A2 = & + d¢. Then, from
(8.134), we obtain

eB(E + d6) = eB(§) + deb(§) - b1 @)1+ %)

ad(ed(),x)| d
= eg(&) | d(eg(@),1) + —g § —5] , (8.135)
X o ¢
which gives, on account of d(ej(¢),1) =1,
ad(e3(&), 0| d
deg(§) = ey(§) —3 27~ § ?5 (8.136)
x=1
giving the differential Gell-Mann-Low equation
deg 2
dné - PYlep), (8.137)
where we have introduced the Gell-Mann-Low function
od(e,
(ep) = € odleg.x) X)] . (8.138)
ox x=1

Writing (8.137) as wd(zo) =% and integrating it from & = A2 toé = Az, we get
ed(hA3)
e de?
In—2 = J — 8.139
A P(e?) ( )
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If in the entire integration region the value of eé is small, we can use for l/)(e2) the
expression obtained from the first order of perturbation theory. From the general ex-

pression D) = ‘,‘ﬁ—’}(l - LIZ‘Z))_l, it is clear that corrections to the “bare” charge ef) are

k
given by eék"zp(k ). Then, using for the polarization operator its lowest-order expres-

sion (8.120), we find (refer to (8.123))

2 n2 2 2p2 2
2 2042 ep(AD) A } 2/n2 [ ep(Ay) - A5
e =ey(A))|1- In — | =e;(A5)|1- In —=|. 8.140
Then,
2 AZ
A2 1- & n o2 2
d(eé,—g>:32"—|f;|z1+—ol 2. (8.141)
A/ 1-%m o 3N
Correspondingly, using the definition (8.138), we obtain
€
=—, 8.142
W(ep) 3In ( )

so that the Gell-Mann-Low function is quadratically growing with its argument. Now,
we can perform integration in (8.139) explicitly:
1. A3 1 1

—InZ-_—— - — . (8.143)
3N e(A) el

If we define the physical charge as e = limAf_)mz eé(Af), the expression (8.143) re-
duces to (8.123) and (8.124). Thus, the calculation of the Gell-Mann-Low function in
the lowest order of perturbation theory and the subsequent integration of the differen-
tial renormalization group equation give the result obtained above by summation of
the leading logarithms of diagrammatic expansion. In this sense, we can “overcome”
the problems of the rigorous justification of this summation procedure. Sometimes it
is said that the renormalization group provides an “improved” perturbation theory,
where the role of the coupling constant is played by (8.119). However, all the main
questions discussed above actually remain. The result (8.143) was obtained from an
approximate expression for the Gell-Mann-Low function (8.142), which is valid only
for eé < 1.Itis not clear how it is changed by higher-order corrections, and no reliable
analysis of this problem is available. However, later we shall see that the qualitative
analysis of the possible consequences of a differential equation, such as (8.137), based
on certain assumptions on the form of the Gell-Mann-Low function for arbitrary val-
ues of its argument, is actually possible and may be quite useful for the general dis-
cussion on the asymptotic properties of quantum field theory.
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Murray Gell-Mann (born 1929) is an American theo-
retical physicist who received the 1969 Nobel Prize in
physics for his major contributions to the theory of el-
ementary particles. Gell-Mann earned a bachelor’s de-
gree in physics from Yale in 1948 and a PhD in physics
from Massachusetts Institute of Technology (MIT) in
1951. His supervisor at MIT was Victor Weisskopf. Gell-
Mann’s work in the 1950s involved recently discovered
cosmic ray particles that came to be called kaons and
hyperons. Classifying these particles led him to propose
that a quantum number called “strangeness” would be
conserved by the strong and the electromagnetic interac-
tions, but not by the weak interactions. In 1961, he introduced a classification scheme
for hadrons, based on SU(3) symmetry, which he called the “Eightfold Way” (term
taken Buddhism), because of the octets of particles in the classification. In 1964, Gell-
Mann and, independently, George Zweig, went on to postulate the existence of quarks,
particles of which the hadrons of this scheme are composed. The name “quark” was
coined by Gell-Mann, who took it from James Joyce’s novel “Finnegans Wake”. In 1958,
he developed the V-A theory of the weak interaction in collaboration with Richard
Feynman. In 1954, Gell-Mann and Francis Low introduced the differential form of
renormalization group (initially for QED), which became the major tool to investi-
gate the asymptotic behavior in quantum field theory. During the 1990s, Gell-Mann’s
interest turned to the emerging study of complexity. He played a central role in the
founding of the Santa Fe Institute, where he continues to work as a distinguished pro-
fessor.

8.11 The asymptotic nature of a perturbation series

The scheme of renormalization discussed above allows the total cancellation of diver-
gences in separate diagrams, that is, in separate terms of the perturbation expansion
of the scattering matrix in powers of an electron charge, but not in the scattering ma-
trix as a whole. The question arises of whether or not this renormalized perturbation
series is convergent. There is an argument, due to Dyson, which proves that this series
is actually divergent and belongs to the class of the so-called asymptotic expansions.

We have seen that the interaction between two electrons is determined by the
function e,zﬂ)(kz), where ey, is the renormalized (physical) charge. Calculating, with
the help of this function, some physical property F(p; eé), we obtain the infinite series
in powers of e

F(piep) = Y enfu®), (8.144)
n=0
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where f,(p) are some functions of the 4-momenta of the particles. Assume that this
series (with separate terms renormalized according to the procedure discussed above)
is convergent for some value of e,. Then, F(p; elze) =F (eé) is an analytic function of 3122
for e}% ~ 0,sothatF (—elzq) is also an analytic function, expressible as a power series. But
F (—e,ze) represents our property F for the case of particle interaction given by —elzeD(kz),
which corresponds to particle attraction rather than repulsion.

It can be easily seen that—in this case—the usual definition of the vacuum does
not correspond to the state with the lowest possible energy. In fact, imagine the cre-
ation of N electron—positron pairs with all electrons being concentrated in one region
of space and whereas all positrons are in another region. If both regions are small and
well-separated, for large enough N, the negative Coulomb energy of these attracting
regions will become larger than their rest and kinetic energies. Let us call these states
“pathological”.

Assuming that charge interaction is determined by —eIZQD(kZ), consider some usual
state characterized by the presence of several particles. In particular, this may be the
usual vacuum state (state with no particles). This state is separated from the “patho-
logical” state with the same energy by some energy barrier, and the height of this bar-
rier is determined by the minimal energy needed to create N pairs, that is, by the rest
energy of these N particles.

Due to quantum mechanical tunneling, there is a finite probability of transition
from the usual to the “pathological” state. This means that every physical state is ac-
tually unstable towards the spontaneous creation of a large number of particles. The
“pathological” state, to which our system tunnels, will not be stationary, because more
and more particles will be created, so that the vacuum state, in particular, will be de-
stroyed, and there will be no ground state for our system at all. Due to such “pathol-
ogy”, we cannot assume that QED interaction —eIZQD(kz) leads to well-defined analytic
functions. Actually, the function F (—eé) cannot be analytic and the perturbation series
(8.144) can not be convergent for 9123 +0.

Again, we can pose the natural questions: What is the physical meaning of pertur-
bation series (8.144), and why is QED, operating with such expansions, so successful
in explaining experiments? The answer is that expansion (8.144) represents an asymp-
totic series. Such expansions, under certain conditions, can be used to describe the
functions they represent with high (but always finite) accuracy [71]. In contrast to a
convergent series, the terms of the asymptotic series elz{’ (p) first diminish with the
growth of n, but then, starting from some number n,, start to grow (and this growth is,
in general, unlimited). The maximal accuracy for an asymptotic series to the approx-
imate function F is determined by the value of f;, . The less this term is, the higher is
this accuracy. In the case of QED, there are reasons to believe that in the series (8.144),
the values of f, will diminish up to n of the order of ny, = hc/ efe = 137. This value of
ng is so large that the accuracy of the QED series (8.144) in describing reality is very
high. Apparently, the error here can be estimated as exp(-#c/ elze), which is immensely
small. For the practical tasks of QED, such accuracy is overwhelming.
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9.1 Quantum mechanics and path integrals

It is well known that quantum mechanics was initially formulated in two equivalent
forms: matrix Heisenberg mechanics and wave mechanics, based on the Schroedinger
equation. Later Feynman [20] proposed another quite elegant path, integral formula-
tion of quantum mechanics, which will be briefly described in this chapter. Of course,
all these formulations of are equivalent and may be used to solve different practical
problems, choosing those more convenient for the problem at hand. Conceptually,
they stress different aspects of the same universal quantum theory and allow different
ways of generalizing towards the appropriate quantum field theory. Feynman’s formu-
lation is especially convenient for this kind of generalization, as we shall see later.

Let 1(g;, t;) be a wave function of a quantum particle at the initial moment of time
t;, where g; denotes the appropriate coordinate dependence. For simplicity, we shall
consider here only one-dimensional motion. We have seen in Chapter 4 that the value
of the wave function at a later moment of time ¢ can be written as

Yapty) = j dgiK (gt Git)w(aity) (1)

where K(gytf; g;t;) is the appropriate propagator (Green’s function of the Schroedinger
equation). According to standard interpretation, 1(qy, tf) represents the probability
amplitude for finding the particle at spatial point gy at time moment ¢;. Correspond-
ingly, propagator K(gyts; g;t;) represents the probability amplitude of particle transi-
tion from the initial point g; at moment ¢; to the final point g; at moment ¢;. The prob-
ability of this transition is given by

2
P(qsts; qity) = |K(gpts qity)]| (9.2)

Let us divide the time interval between moments ¢; and t into two intervals, separated
by the time moment ¢. Repeated use of (9.1) gives

Wy ty) = | da; | daK(aytrqOK gt at i), ©3)
so that
K(gstys qity) = j dgK(gyt;; gOK (gt gity) (94)

Thus, the g;t; — gyt transition can be considered as the particle transition via all pos-
sible intermediate points (states), as shown in Figure 9.1. As an example, we may recall
the notorious experiment on two-slot electron diffraction. This is schematically shown
in Figure 9.2, where slots are placed at points 2A and 2B. In this case the analogue of

https://doi.org/10.1515/9783110648522-009
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Figure 9.1
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Figure 9.2

equation (9.4) can be written as
K@3;1) = K(3;2A)K(24;1) + K(3; 2B)K(2B; 1) . (9.5)
The intensity distribution at the screen, placed at point 3, is determined by
PGi1) = |[KG D[, (9.6)

with obvious interference contributions. It can be said that in this experiment the elec-
tron simultaneously moves along both paths (trajectories). Registering it somehow at
one of the slots destroys the interference picture.

Let us introduce eigenvectors of the coordinate operator in Dirac’s notations:

qlg) = 4lq) . 9.7)
Then, the wave function of our particle can be written as
Y(gt) = (qly)s, (9.8)

where [);) s is the state vector in the Schroedinger representation, related to the time-
independent state vector in Heisenberg representation i) ; by

We)s = e gy (99)
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Let us define the time-dependent state vector as
gty = e™/q) . (9.10)
Consequently, we can rewrite (9.8) as

Pigt) = (qtlP)y . (9.11)

All these relations are well known from elementary quantum mechanics. Using the
completeness of the set of state vectors (9.7), (9.10), we can write

(arty ) = | dascartylait (@t 912)
which reduces (with the account of (9.11)) to
Y(grty) = Jin(thf|Qiti>lp(Qiti)- (9.13)
Comparing (9.13) with (9.1), we see that the propagator can be written as
K(gsts; gity) = (grtrlgt;) » (9.14)

which (in a slightly different form) we already used in Chapter 4. Below we shall widely
use (9.14) in our discussion.

t
t
J e
— 7 4
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| | -
4 4y q
Figure 9.3

Let us divide the time interval between moments ¢; and ¢ into (n + 1) equal segments
of duration 7. Then, the propagation of particle from g;t; to g¢t; can be considered as
shown in Figure 9.3, which—by repeated use of (9.4)—allows us to write the transition
amplitude (propagator) as

(grtrlg;t;) = J"'JdQ1d42 <+ dqu(qptrlqnty) (Gntnldn-1tn-1) - - {@1t11g;t;) (9.15)

where the multiple integral is taken over all possible trajectories, connecting initial
point g; with final g;. In the limit of n — oo or T — 0, equation (9.15) determines the
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propagator as a Feynman’s path integral (continual or functional integral). Already at
this level, we can see the major difference between classical and quantum mechan-
ics. The classical particle propagates from some initial point to the final point, mov-
ing along the single trajectory determined by the least action principle, whereas in
quantum mechanics the particle motion involves the whole continuum of all possible
trajectories, connecting these points.

The propagator at a small trajectory segment is easily calculated. From equation
(9.10), we get

—iHT/h

<q]+1t]+1|q]t]> = <qj+1|e |q]> = <CI1+1|1 HT + O(T )|q]

=6(g51 - q)) - E(‘]jﬂlqu]')

dp i iT
- J 2nh eXp[ﬁp(qJ‘ﬂ - qi)] - 7 (@ lHlg), (9.16)

where we have used an obvious representation of the §-function via a Fourier integral.
In the general case, the Hamiltonian H is some function of g and p. Consider the most
common case of a particle moving in a potential field when

2

_r
H= o +V(g). (9.17)

Then, the kinetic energy term can be rewritten as
<q,+1| |q,> = J dp' J dp{gjlp") (v’ 5m v —Ip)(plg;) (9.18)
so that using

) .
1 ip q,-+1> L1 (_lpq,-)
<q)+] |p > - \/ﬁ eXp( h > <p|q)> = \/H _h exp _h s

we obtain

dpdp’ i P’
<q]+1| |q,>—ﬂ oy &P 7 (P - pq,)] 8(p-p')

[ dp P’
_Jﬁexp[ gy, - )]Zm' (9.19)

Note that in the left-hand side of this expression, p is represented by operator, whereas
in the right-hand side, it is just a c-number. In a similar way, we can obtain

djv1 t g; djv1 t g;
@tV @ig) = V(2D Nigralay - v( 2L )otgr - 0

dp i _
= J h exp[ —P(Gj41 — Qj)] V(g;), (9.20)
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Figure 9.4

where g; = %(qj +1+g;)- Now, from (9.19) and (9.20), we get

d i _
(gjs11Hlg;) = J ﬁ eXp[ hp(q,-+1 - q,-)]H ».9), (9.21)
so that (9.16) is rewritten as
dp;
(Gjtinalait) = J > exp{ (p;(gj1 — g5) — TH (D}, G;) ]]’ (9.22)

where p; is momentum at the moment between ¢; and t;,; (between g; and gj,,).
The corresponding segments of the trajectory in momentum space are shown in Fig-
ure 9.4. Equation (9.22) defines the propagator on a small segment of one of the paths
(trajectories). The complete propagator is obtained by substitution of (9.22) into (9.15),
so that

1

(grtrlgit;) = lim J]_[dq, —exp{ ZPI(CII+1—‘11)—TH(I71>C—11)]}> (9.23)
1=0

where g, = ¢; and g, = g5. In fact, we are dealing here with a multiple integral of an
infinite order. Usually equation (9.23) is written in the symbolic form

i
<qftf|qiti>=j% p{hjd[pq H(p, q)]} (9.24)
&

where q(t;) = g; and q(tf) = ¢y. This form defines the measure for integration over all
trajectories (g(t), p(t)) in the phase space of a particle, and it has no other meaning, ex-
cept the compact notation for (9.23). The situation here is quite similar to the definition
of the usual integral via the limiting behavior of Riemann sums. This notation (9.24)
introduces the notion of a functional (continual) integral over all trajectories (paths)
in the phase space. Variables p(t) and q(t) entering (9.24) are the usual c-number
functions.
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The definition of the propagator via the functional integral over all trajectories
in phase space (9.24) is absolutely general and is valid for the arbitrary Hamiltonian
H(p, q). In the case of the Hamiltonian given by (9.17), we can make further simpli-
fications and transform the propagator to a functional integral over all the paths in
coordinate space only. In this case, we can write

(il g
(grtrlgit;) = lim J [ ] 44 o0k P17 Y@ -a) - mT Vight|p. (9.25)

j=1 i=0 his

The integrals over p; here are easily calculated using the standard expressions pre-
sented below. Then, we get

n .. n 2
. m 2 iT m(q.1-49 _
(grtrlait;) = r}l{&( 2m'h‘r> J’ [[ dg; exp{ n Z[E(%) - V(Ql)] } . (9:26)

so that in a continuous limit, we can write

&

rtylatd = | Da(o exp{% [ at| 5 - vun”

t;

b ,
=N J Dq(t) exp{% j dtL(q, Q)} =N J Dq(t) exp{ %S} , (9.27)

where L = T - V is the classical Lagrange function of our particle, whereas S =
jff dtL(q, ¢) is the classical action, calculated for an arbitrary trajectory g(t), connect-
iﬁg the initial point g(¢;) with final q(ty). The functional integral (9.27) is taken over
all the possible trajectories, connecting the initial and final points. The normalization
factor AV, introduced here, is formally divergent in the limit of n — oo, but this is irrel-
evant; as we shall see later, it always cancels from physical transition amplitudes.

The remarkable result (9.27) allows, in particular, a qualitative understanding of
the physical origin of the classical principle of least action. We can see that in the
classical limit of i — 0, the Feynman integral (9.27) contains the continuum of rapidly
oscillating factors of exp(iS/h), which “on the average” cancel each other. The only
“surviving” one is the contribution of the most slowly changing factor with S;;,, which
corresponds to the single trajectory described by the least action principle and the
Newtonian equations of motion of classical mechanics.

Remarks on some useful integrals

Below, we present some common integrals, which are useful for practical calculations with functional
integrals. First of all, we have the well-known Gauss—Poisson integral:

[se]

J dxe ™ = \j% a>o0. (9.28)

-0
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This result follows immediately if we write
I dx J dye‘a("zwz) =7

—00 —00

a
which, after the transformation to polar coordinates in the (x, y) plane, reduces to

2 oo , o ,
J de J drre™™ =n J d(rz) e = g .
0o 0

The last equality is obvious and proves (9.28).
Consider now the integral of an exponent, depending on the quadratic form

00 0
2
— b.
J dxe ax+x+cE J- dxeq(x)’
—-00 —00

n

where we assume that a > 0. Then, we have ¢'(x) = —2ax + b, ¢" (x) = -2a,¢""(x) = 0

easily find x, the value of x corresponding to the minimum of g(x):

)‘(—2 ()‘()—b—2+c
T MW Tt

Now, it is convenient to rewrite g(x) as

a(0) = q(®) - alx -x)°.

Then,
(o] (o]
J A %) = 10 J dye~ 0 _ 1) \E ,
a
—00 —00
so that finally, we have
- Vi3
J dxe @ hxee - I 1™ = exp<— +c>\F.
4a a
—00 =00

This expression was used to derive (9.26) and (9.25).
Let us quote also the generalization of (9.35) for the case of n integration variables [56]:

J dxq --- J dxy exp{i}([(xl —a)2+(x2—x1)2+---+(b—xn)2]}

1/2

_ inﬂn il N2
_[(n+1))l"] EXp[m(b a)],

which will be useful in what follows.

(9.29)

(9.30)

(9.31)

..., and we

(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

Equation (9.27), in fact, contains the whole of the quantum mechanics of a particle
and is widely used to solve practical problems [20]. Let us show how the common
Schroedinger equation is derived from this representation. First of all, we write the
basic relation (9.1), which connects the wave function at moment ¢,, with its value at

the previous moment ¢;:

(9.37)
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Let moments ¢, and ¢, be very close, so that t, = ¢; + €, where € — 0. Then, the propa-
gator is determined by the contribution of a single small segment of the trajectory, so
that using (9.26), we can write (9.37) as

exp

o i m(x-y)’
z,b(x,t+e)—AJep[h o

h€V<X 84 >]¢(y, tHdy, (9.38)

where A = (2n e )Y/2. Due to the first exponent, a significant contribution to the integral

originates only from the values y close to x. Making the variable transformation y =
X + 1, we rewrite (9.38) as

Yx t+e)=A T exp( i;r;nz ) exp[—EV<X + = )]l,b(x +n,t)dn. (9.39)

The main contribution here comes from the small values of 1, and expanding both
sides of (9.39), we have

ooty + el - Texp<i’””2>[1—%V(x,t)][lp(x,t)w@ v a—"’]dn. (9:40)

ot 2he ox

Now, we can take into account that

)
A J eiqu/zhsd’,l -1
-c0
(o]

A I eimrlz/zhé‘rldn — 0)

i ihe
A imn?[2he 24 =l_.
[t

=00
Then, (9.40) reduces to

he
2im ox?

oy

Y t) + s (9.41)

—'I)_— ,’b_

This equation is valid (for ¢ — 0) if i satisfies the one-dimensional Schroedinger
equation

a 2 o
alf -f—ma—x‘f V0. (942)

This completes our derivation.
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9.2 Perturbation theory

Let us consider potential V(x) as a small perturbation. More strictly speaking, we re-
quire the smallness (in comparison with ) of the time integral of V (x, t). Consequently,
we can write an expansion:

t 2

. tf . tf
exp{—% JdtV(x, t)} ~1- % JdtV(x, ) - Z'Lhz“dtV(x, t)] feel (OM3)
& oLy

t;

Using this type of expansion in equation (9.27), we can obtain the perturbation expan-
sion for the propagator K (xts; x;t;):

K=Ky +K +Ky+- . (9.44)

The zeroth-order term here represents the free particle propagator:

Ky=N j Dx exp(% J dt%m’%z) . (9.45)

To make an explicit calculation, we return to the definition of the path integral (9.23)
and write (9.45) as a limit of the multiple integral (refer to (9.26)):

n+tl oo
, m \? n im < 3
‘KO = nll»nolo< it > J‘ ]|_:1| dX] exp |: % lzzO(XHl - Xl) :| . (9.46)

Denoting the multiple integral here as I, we can calculate it using (9.36) and obtain

1 (i2nhr\"? im
_ 1 (imht e
' (n+1)1/2< m ) eXp{Zh(n+1)T(Xf *) } (047)

Taking (n +1)7 = t; - t;, from (9.46), we get the explicit form of the free particle propa-
gator

1/2

‘o { im(x - x;)? } (048)

Ko (xstes xit;) = 0(tf — ti)( 2h(t; — t,)
1

m
2nih(ty - t;) )
where we have added a factor of 6(¢; - t;), which guarantees causality. The generaliza-
tion of this expression for a particle moving in three-dimensional space is quite ob-
vious: the corresponding propagator reduces to the product of free propagators (9.48)
along three axes: x, y, z.

In Chapter 4, we have seen that the particle propagator satisfies Schroedinger
equation with the §-source:

[lh% - H(Xf)]K(Xftf,Xltl) = lh&(tf - tl)(S(Xf - Xi) . (9.49)
f
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For one-dimensional free particle motion, H(x) = - Correspondingly, the free

2m a 2
particle propagator satisfies the equation
. 0 h2 0 5 5
1 atf 2 o 2 I(O(Xftf’xlt) =ih (tf - t) (Xf Xl) (9.50)

It can also be checked by direct substitution of (9.48) into this equation.

In equations (9.48) and (9.50), we make the replacements t — —ikt and % — D; Equation (9.50)
transforms into

[i— i ]K (Xrtes xit;) = 8(tr — t;)6( )s (9.51)

oty az oXplpsXily) = ol X = Xi -

and Ko (xytr; x;t;) now represents the Green’s function of the diffusion equation [70], with the diffusion
coefficient D. All the imaginary terms of (9.48) disappear, and this expression describes the diffusion of
particles from the point-like source. In fact, path integrals first appeared in the theory of diffusion pro-
cesses, where these are called Wiener integrals. The disappearance of oscillations from (9.48) (which
are replaced by the rapidly diminishing exponents of diffusion theory) is quite convenient for numeri-
cal calculations, particularly for calculations of path integrals by Monte Carlo algorithms. Such formal
transformation to the imaginary time is widely used in studies of different problems of quantum me-
chanics and quantum field theory.
There is one more aspect of transformation to imaginary time, which is even more fundamental for
physics. Equilibrium statistical mechanics is based of the use of Gibbs canonical distribution, with
the density matrix of the following form [36]:

1 g

=P8, 9.52

p=z (9.52)

where H is the system Hamiltonian, Z is the partition function, and § = 5 is the inverse temperature.

Then, it is easy to get

op

— =-Hp. 9.53

B p (9.53)

But this equation (also called the Bloch equation) can be obtained from the usual Schroedinger equa-
tion: 5
n2? "' — Hy ©.54)

after the formal replacement  — p, t — —zhﬁ. Thus, we may say that all of statistical mechanics
is the same theory as quantum mechanics in “imaginary time”. The calculation of the equilibrium
density matrix of the system of interacting particles can be performed by solving equation (9.53) with
the help of Green’s function formalism (propagators) in imaginary (so-called “Matsubara”) time [1].
These propagators can be represented by Feynman path integrals (Wiener integrals), which allows the
development of an alternative general approach to problems of statistical physics [19].

Now let us calculate K;, the first-order correction over the potential V(x). From (9.26)
and (9.43), we have

n+1
it .. m \? & im & 5
=) 3 [ aare e"p‘{%lg("“l ) }’ e

i=1

where we have replaced integration over ¢t by summation over ¢;. As V depends here
on x;, we break the sum in the exponent in two: one performed fromj=0toj=i-1
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and the other from j = i to j = n. Let us also separate the integral over x;. As a result,
equation (9.55) is rewritten as

n-i+l

L IT m 2 im < 9
K :_rllggoﬁ;jdxi{(ZnihT) dem“'dxnexﬁ’[%;(xm—Xj) ”

m : im &
x V(x;, ti){<%> de1-~-dxi_1 exp[% Z(x},rl —xj)z] ]» (9.56)
j=0

The terms in the figure brackets are equal to Ko (xst; xt) and Ky (xt; x;t;), so that after
the replacement of 7 ); [ dx; by [ dx [ dt, equation (9.56) reduces to

. tf oo
K, = —% Jdt J dx Ko (xptes xt)V (x, )Ko (xt; x;3t;) - (9.57)
t; -oo

Taking into account that K, (xsts; xt) = O for t > ¢, whereas Ky (xt; x;t;) = 0 for t < t;,
we can write equation (9.57) as

K = -% J dt J dx Ko (st OV (6, DKo (Xt Xity) (9.58)

which is the final expression for the first-order correction to the propagator (Green’s
function) of our particle.

In quite a similar manner, but by more tedious calculations, we can find the
second-order correction:

.2 @ 0 [ 00
Ky(xptys xity) = <—%) J dt, J dt, J dx, J dx, (9.59)

X I(O (Xftf’ thz) V(X2t2)1<0 (XZtZ; Xltl)V(Xl tl )KO (Xltl; Xiti) .

Now the structure of the higher orders becomes clear, and we obtain the perturbation
series for the propagator:

i
1
- ﬁ JdtldtzdxldXZKo(Xftf,thz)V(thz)I(O(thz,Xltl)
X V(Xltl)I(O(Xltl;Xiti) +oee, (9-60)

which coincides with the similar expansion introduced in Chapter 4. Note that in equa-
tion (9.59), there is no factor of 1/2!, which is present in expansion (9.43). This is due
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to the fact that two interactions V at different moments of time are equivalent, and we
can write

2!

1 J at' J at" vt yv(t"

dt'

at’"[6(t' - "y vy ot -Vt v(t")]

g——3g g —3

AtV (t)V(6)0(t - t,). (9.61)

(0]

L

()
- EL
For the same reason, the correction of the arbitrary order K, does not contain the factor
of 1/n!. It is clear that expansion (9.60) corresponds to the simple diagram technique:
each term of the series can be expressed by a diagram if we associate the straight line
with the propagator and the wavy lines with the potential, acting at appropriate points
of space, at appropriate moments of time (over which we perform integration).

Substitution of expansion (9.60) into (9.1) gives

WOty = [ dkoytrxitpoat)
= J AxiKo (xpte; x;t) P (x;t;)
- % J dt J dx J dxiKo(Xptps x)V (X, Ko (X, Xt P (Xit;) + - (9.62)

The contribution of higher-order terms, which are not written here, obviously reduces
to the replacement of the last propagator K, by the complete propagator K. Corre-
spondingly, we obtain the exact integral equation for the wave function:

Y(xstp) = J Ko (st xit P (xit;) — % J dt J AxKo (xptys x)V (x, i (xt) (9.63)

which is equivalent to the Schroedinger equation for the problem under discussion.
Assuming that for t; — -oo, the wave function is the solution of the free particle
Schroedinger equation (plane wave), and denoting it by ¢(xt), we may rewrite (9.63)
as

Y(xstr) = P(xpty) — % J dt .[ AxKo (xptys x)V (x, i (xt) (9.64)

because the plane wave remains the plane wave during free particle motion.

For practical tasks, it is more convenient to use the momentum representation. Let
K(p;t;; Poto) be the probability amplitude for a particle with momentum p, at moment
t, to be registered at a later moment ¢; with momentum p;,. This amplitude is given by

i

i
K(p1ti; Polo) = J dx, J‘ dax, eXp(‘gPﬂl)K(Xﬂl;Xoto) exp< 5

P0X0> > (9.65)
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where the free propagator K(X;t;;Xqt,) for a particle moving in three-dimensional
space (in accordance with the remark made after equation (9.48)) has the form

3/2

. 2
exp{ m, —Xo)” ]» . (9.66)

m
Ko (X,t3; Xotg) = 0(t; - to><—> 2h(t; — to)

2mik(t; — t,)
Then, we have

3/2

m
K(pit;; Poto) = 0(t; - to)[m]

i im(x, - x )2
x J dx, J dx, exp[g(pox0 - plxl)] exp[ﬁ] . (9.67)
Let us introduce the new integration variables
X=X)-X;, X=Xg+X;, P=Po—P1» P=py+p;, (9.68)

so that 2(pgX, — p;X;) = Px + pX. The Jacobian of these variables’ transformation is
equal to (1 /2% =1/8. Correspondingly, equation (9.67) is rewritten as

a1 i i -
K(pqty; Poto) = 0(t; — to) el JdXexp %pX jdxexp EPX e, (9.69)
where a = ﬁ The first integral here is equal to 8(2th)>8(p) = 8(27h)>6(p, — Py),
so that

3/2

K(Bytss Poto) = (21160t — t4)5(po ~ po( )

a i . 2
- j dx exp< TS Px + iax ) (9.70)

and using (9.35), we obtain

iP2(t, — t
K@it Poto) = Q616 - 0)3(po - pexp| - | )
where the 8-function expresses momentum conservation. Taking into account P? =

4p3, we finally get

"135“1_‘%)] , 9.72)

K(pits Poto) = (2mh)’0(t; — t)8(po — P1) exp[— i

At last, we can calculate the Fourier transform of the propagator over time:

i

K(p.E;; poEy) = J dt, J dt exp( n

i
Eity >K(P1t1; Polo) exp( _EEOt())
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_ )8y - py) j dt, j dt,6(7)

2 .
ip 1
X exp(—ﬁr) exp| 3 (Eity - Eoto)] , (9.73)

where we have introduced 7 = ¢; - t,. Considering T and ¢, as independent variables,
we obtain

i
K(pE;; poEy) = (2ﬂh)36(p0 -pP) J dt, exp[ﬁ(El - Eo)to]

X T dro(t) exp[%(E1 - %)T] ) (9.74)

-0

The first integral here yields (21h)6(E; - E,), whereas the second one, because of the
presence of 6(t), should be understood as!

(o]

lim J drelErpizmiorn (9.75)
- . .
6-+0 E, - ;—’111 +1i6
Thus, we finally have
ih
K(p1Ey; PoEo) = 2mh)*8(py — P)S(Ey — Ey)—————, 6 — +0, (9.76)
| 21 5
El ~om + 16

which is the Fourier transform of the retarded Green’s function of the free particle,
where §-functions express the momentum and energy conservation laws. Note that
the pole here is in fact determined by the kinetic energy of a particle, which reflects the
general property of Green’s functions [1]: their poles determine the energy spectrum
of the corresponding particles (quasiparticles).

If we introduce the Fourier transform of potential, writing V(x, t) as

_(dw [ @A iqx-wb
V(X, t) = J E J We V(qa)) , (9.77)

perturbation series (9.60) generates the standard diagram technique in momentum
representation for the Green’s function of a particle in an external field [1].

1 The Fourier transform of 6(t) is defined by

OOd .

w _j 1

6(t) = lim J et _—_ |

® 6—+0 2n w+16
—00

which can be easily checked by making the integration along the real axis and closing integration
contour in upper or lower half-planes of complex w, depending on the sign of t.
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9.3 Functional derivatives

The Green’s function (particle propagator), written in the form of Feynman path inte-
gral

. tf
(@rtrlgit) =N j Dy(t) exp{% j dt[%qz - vap”

. tf
- N J Dq(t) exp{ % J dtL(g, q)} (9.78)

introduces the notion of the functional integral: integration is performed here over all
functions (trajectories) g(t), connecting the initial and final points. Thus, the calcu-
lation of (9.78) relates the whole set of functions g(t) with some concrete (complex)
number: the amplitude of quantum mechanical transition in the left-hand side. Thus,
equation (9.78) is the concrete realization of the mathematical notion of functional:
the mapping of the set of functions into the set of numbers:

—  Functional: function = number

In contrast, the usual function defines the mapping of one set of numbers into another
set of numbers.
—  Function: number = number

In particular, the functional is not simply the function of another function (this is
again just a function).

Usually, the functional F of function f(x) is denoted as F[f(x)]. A typical example
of a functional is the definite integral: F[f(x)] = J: dxf (x).

Let us now define the functional derivative. In analogy with the usual differen-
tiation, the functional (or variational) derivative of some functional F[f(x)] over the
function f(y) is defined as

SFIFOO] _ i FUFO + e8(x —y)] - FIF ()]
5f(y) e-0 & '

For example, for F[f(x)] given by the definite integral:

5’;%’;” - lim é “ dx[f () + e8¢ - y)] - J dxf(x)] - J dd(x-y)=1.  (9.80)

As another example, we consider the functional

9.79)

F[f]= J dyf (y)G(x,y) (9.81)

where the variable x in the left-hand side is considered as a parameter. Then, we have
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OF,[f]
of (z)

= lim é “ ay{G.y)[f(y) + &by - 2)]} - J dyG(x, y)f(y)]
- j dyG(x,y)8(y - 2) = G(x,2). (9.82)

These expressions are sufficient for understanding all the expressions related to func-
tional differentiation, which will be used below.

9.4 Some properties of functional integrals

The amplitude of quantum particle transition from initial point g;t; to final gst; is given
by

q(ty)=qy b
rtlat) =X | Dao exp{% [ ae Ba - V(q>]}
q(t)=q; t;
q(ty)=gr b
=N j Dq(t) exp{% J dtL(g,q) } (9.83)
q(t)=q; ti

Let us derive some formal relations, which will be quite useful below during the gener-
alization to quantum field theory. We can add to the Lagrange function of our particle
an extra “source” term:

L - L+Hh(t)q(t), (9.84)

where J(t) is some arbitrary function of time. Let us assume that J(t) is nonzero at
some time interval between moments t and t' (¢ < t'), which is shown in Figure 9.5.
Consider also the moment T, previous to t, and another moment T', which is later
than t'. Then, the transition amplitude of the system, interacting with source, between
arbitrary states (points) in these moments of time is given by

TI

@rery =~ J Dq(t) eXP{% J dt [L(q.q) + hq] } (9.85)
T
On the other hand, using (9.4), we can write
(@r'lary = j dq' j dg(Q'T'|q't )(q't'|atY <qtIQT), (9.86)
T t v T
" -0 J=0 J=0

Figure 9.5
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where (due to our assumption on the form of J(t)) only the “intermediate” propagator
is source-dependent. Using (9.10), we have

(Q'T'|q't") = (Q'|exp<—%HT'> exp(th’>|q’>

= Z(pm ") exp hE (¢ -T )] (9.87)

where {p,,(¢)} is the complete set of the eigenfunctions of the Hamiltonian (energy
operator). In a similar way, we obtain

(@tlaT) = ¥ 9u(@0;(@ exp| -1 Eyc - ). (9.88)

Substituting (9.87) and (9.88) into (9.86) and making the replacement T' — T'e ™ and
T — Te™® (“rotating” the time axis by an arbitrary angle § < 77/2 in a complex plane
of “time”, as shown in Figure 9.5), we perform the limits of T’ — oo and T — —co.
In this case, because of the “damping” factor § in the transition amplitude (9.86), all
the contributions of the states with E, > 0, E,, > O vanish, whereas the term with
E, = 0 survives, which gives the contribution of the ground state level of our particle
in potential V(g).2 Then, we get

lim | tim (Q'T'[Q1) = pj(@po(Q) exp| -1 EolT" - 1)

T'—c0e™® T—-coe™
X J dq' j daey(q't){q't |at) @olqt) (9-89)
or
j dq’ J dap;(a't)(d't' lat) polat)

(@'r'jQry
= lim lim .
T'—00e™ T—-c0e™® @ (Q)po(Q) exp[——Eo(T’ 1)

(9.90)

The left-hand side of this expression represents the transition amplitude (in the pres-
ence of the source), averaged over the ground state (“vacuum”) of the system. Now we
can make t' — oo and t — —oo and introduce (denoting our averaged transition am-
plitude (9.90) as (0, 0|0, —co)’) which corresponds to a “vacuum-vacuum” transition
during the infinite interval of time. The denominator in the right-hand side of (9.90) is
a simple number, and we can write

2 Here, it is important that the eigenlevels of energy can be ordered: Ey < E; < E; <--- < E; <--+,50
that this procedure separates the contribution of the lowest energy level, which may be set as energy
zero (or left explicitly as the most slowly vanishing term). At the end, we may safely go to the limit of
6 — +0, to get rid of “complex” time.
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(0,000,-c0)’ ~ Tim lim (Q'T'|Qr) =211, (9.91)

T' —»o0e™® T——coe™
where we have introduced the following functional of the source:

!

Zy)= lim lm N j DQ(E) EXp{% j dt[L(Q, 0) + h]Q]} . (992
T

T’ —ocoe ® T——coe™

Note that instead of time axis “rotation” in a complex plane to extract a ground state
contribution, we could just add a small negative imaginary part to the Hamiltonian
of our system (9.17), which can conveniently be written as —%isqz(s — +0). In this
case, the entire energy level will acquire small imaginary parts, which in the limit of
T' - 0o, T — —oo will lead to the same effect of the exponential damping of the
contributions of levels with E,, > 0. In a Lagrange function, this L is equivalent to an
addition of the term +%ieq2. Then, we can write

Z[J] = NJDq(t) exp{% J dt[L(q, q) + hJq + %isqz]} , €—+0. (9.93)

We shall see that, thus defined, functional Z[J] possesses a number of useful and in-
teresting properties.

Instead of transition amplitude (gytf|g;t;), we may consider the matrix element of
coordinate operator {gst¢|q(ty)|q;t;), where t; > t,; > t;. Using the well-known general
rules, we can write

<qftle(tn1)|ql‘ti> = qul dqn(‘lftflqntn>(qntnMn—ltnfl)

- AGmtm|qt) | Gni-atm-1) - (ditilqity)- (9.94)

Obviously,

<Q)11tnllq(tnl)Iin—ltnl—1> = q(tm) Gmtmldm-1tm-1? > (9.95)

where, in the right-hand side, q(t,;) is now not an operator, but a c-number (eigen-
value). Then, we can repeat all the arguments used during the transformation from
(9.15) to (9.24), and write (9.94) in the form of a Feynman path integral:

DqDp

. tf
> q(t;) exp{ % J dt[pg - H(p,q)] } . (9.96)

i

(artela(ty|ast;) = J

3 It is obvious that the explicit coordinate dependence ~ %qz introduced here is irrelevant for these
argumentation. However, later we shall see its convenience.
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Now let us calculate the matrix element (gt1g(t,;1)q(t,,)lg;t;). For ty > tpp, we can
write

(@rtrlatn)a(ty)|ait;) = Jd41"'dqn(foantn)(qnfn|Qn71tn71)
Gt |4 | dm-1tni-1)
B <Qn2tn2|Q(tn2)IQHZ—ltn2—1> e <q1t1|qiti> > (9'97)

producing (as limiting behavior) the path integral of the form
&

(tl)q(tz)exp{ Jdt[ pq - H(p,q)]}. (9.98)
tl

arylaealat) = [

Here, we assumed that t; > t,. If we consider the case of t, > ¢t;, the matrix elements
of the coordinate in time moments t; and t, in the right-hand side of (9.94) will inter-
change positions, so that this expression, as well as the path integral in the right-hand
side of (9.98), reduces to (gst¢|G(t,)q(t;)lg;t;). Thus, in the general case, the path inte-
gral in the right-hand side of (9.98) defines the matrix element of the chronological
product of operators (qftflT[E](tl)EI(tz)] |g;t;), where the operation of the T-ordering of
two operators is defined as

_ [A(e)B(t)) fort) > t,,
TAWB(E)] = {B(tz)A(tl) fort, > t,. (599)
Thus, generally, we can write
(gt Tla(tDa(ty) - - q(ty)]|ait;)
t
J Dabp q(tl)q(tz) -q(ty )exp{ Jdt[pq H(p, q)]} (9.100)
ti

which gives the general expression for the average of the chronological product of the
operators via the functional (path) integral. For the case, when the Hamiltonian can
be written in the form given by equation (9.17), we can make additional simplifications
and write

&
(grt|Tla(tDa(ty) - - q(t)]|ait;) = N J Dq q(t;)q(ty) - q(ty) exp{ - J dtL} (9.101)
t.

Using the definition of the functional Z[J] (9.93), we can easily see that its functional
(variational) derivative over the source J is written as

6Z[J]

5t) iNJDq(t) q(ty) exp{ L dt[ (q,q) +Hq + %iquH» ) (9.102)
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In the general case,

8"Z1J] o
IR S jDQ(t)q(tl)
- q(ty) exp{% J dt[L(q, q) + hjq + %ing” . (9103)

Now, putting J = 0 here, we get

_ &z |
81 (t) ... 6] (ty) )= =iN IDq(t)q(tl)
qltyexp] cjodt[l,(q ) + ling] (0104)
" h_ > 2 . 5

Remembering that the term %eq2 allows us to extract the ground-state contribution
from the quantum averages, and using (9.101), we come to the following expression
for the “vacuum” average of chronological product of operators:

8"Z[]]

_vsvlr _an 0, Tlag - D110, - ) 10
8J(t)... 8] (ty) o (0, 00|T[g(ty) -+~ 4(£,)]]0, —00) (9.105)

Thus, the multiple functional differentiation of Z[J] over the source J “generates” the
averages of T-ordered products of the quantum operators, whereas the source itself
can be put to zero at the end of calculations. Thus, the functional Z[J] can be called the
generating functional for these averages. As a byproduct, we obtain the representation
of such averages in the form of functional (path) integrals.

We have seen above that vacuum averages of T-ordered products of field operators
determine the whole set of Green’s functions of quantum field theory. The transition
from quantum mechanics to quantum field theory reduces to the generalization of the
system, with an infinite number of degrees of freedom, when the operators of coor-
dinates are replaced by field operators at each point of space-time. Now, it becomes
clear that the path integral formulation of quantum mechanics can be used for the di-
rect construction of quantum field theory, based on formalism of functional integrals
over field variables. This will be our task in the next chapters.
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10.1 The generating functional for scalar fields

Now we will begin discussing the modern functional formulation of quantum field
theory. Let us first consider the simplest case of the free scalar field ¢(x), interacting
with an arbitrary source J(x). Directly generalizing the analysis given in the previous
chapter, we can introduce the generating functional:

21 = qu)(xﬂ) exp{i j d*x| (@) + T6)p(x) + %sqf(x)]}

~ <0a OO|O) _OO>] > (10.1)

which is proportional to the vacuum-vacuum transition amplitude. Here, L(¢p)
is a Klein—-Gordon Lagrangian, and we replaced integration over the trajectories
of a particle to integration over all possible field configurations! in space-time:
Dq(t) — Dp(x*). The meaning of such integration is rather simple. We can represent
space-time as a set of small four-dimensional cubes (cells) of volume 5% and assume
our field a constant within any of these cells (the average value of the field inside the
cube): ¢ = p(x;, ¥}, z ). Field derivatives can be expressed via finite differences, such
as

ap 1

4+ 8,V 21, ) — = Vis Zis )] 10.2
A 5[(P(Xz+ Y Zio 1) = (X, Yj> 210 )] (10.2)

Replacing the set of indices (i, }, k, l) by a single index n, which enumerates the cells
(cubes), we can write

‘C((pn) ay(pn) = L"n . (10.3)
Any of the indices (i,j, k, ) takes N values; the new index n takes N* values, and we

can write the action as

N4
S= Jd‘*xﬁ =Y 8'c,. (10.4)

n=1

Then, generating functional Z[J] takes the form

N* N* .
. ) i
Z[J] :Iéggojgdfpnexp{z254<£n+<pn]n+iapﬁ)}, (10.5)

n=1

1 In classical field theory, we are dealing with only one configuration of the field in space-time, those
satisfying the Lagrange equations (principle of the least action). In quantum field theory, all kinds of
field configurations are “at work”, each one entering the theory with the “weight” exp{iS}, where S is
the classical action.

https://doi.org/10.1515/9783110648522-010
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which defines the meaning of the formal expression (10.1), and introduces the notion
of the functional integral over field configurations (instead of the particle trajectories
in quantum mechanics).

Let us calculate Z[J] for the free field when

L— Lo= %(aygoa"go - m’p?) (10.6)

is a Klein—-Gordon Lagrangian. Then,
ZolJ1 = J Do exp{i J d"x[%(ay(pa“(p —(m?* —ig)p?) + <p]] } . (10.7)

We can move further even without explicit calculation of the functional integral. Let
us use the obvious identity d,(pd"¢) = 9,00" ¢ + ¢9,0" p and write

J d"xaH(pa"go = J d“xay((pa"(p) - J d*xepnop . (10.8)

Consequently, the first term in the right-hand side is transformed, according to the
Gauss theorem, into a surface integral, which can be made zero if we move this surface
to infinity (where we assume that ¢ — 0). Then,

J d"xaygoa"q) =- j d*xepnp, (10.9)

and the generating functional is rewritten as

ZolJ] = J Do exp{—i J d%{[%(p(u +m?- ic)p - (p]] ]» ) (10.10)

Let us stress that the field ¢ in this expression is arbitrary (integration variable) and
does not satisfy the Klein—-Gordon equation at all. Now we can change the integration
variable as

@) = @o(x) + @x) (10.11)

and use the relation (which is derived similarly to (10.9)):
J d*xp,[0+m’ —ig]p = J d*xp(0+m’ — i), . (10.12)

Then, we have

Jd4x %(p(l:wm2 —is)(p—<p]] - Jd4x 2

1(p(|:1+m —ig)p +

2

. 1 .
+oO+ m’ - i£)po + §<p0(|:1 +m? - ie)po — o] — @oJ | - (10.13)
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Now, we can require that ¢ (x) satisfy the Klein—Gordon equation with the source in
the right-hand side:

(0+m* —ie)po(x) = J(x). (10.14)

As a result, the integral of interest to us reduces to
4 [1 2 . 1
jd X E(p(D +m° —ig)p - E‘POJ . (10.15)
The solution of equation (10.14) has the form

Pox) = — J d*yAr(x -V (), (10.16)

where Ap(x - y) is Feynman’s propagator of a scalar field, satisfying the equation (al-
ready written in Chapter 4)

(O +m? —ig)Ap(x) = -6(x). (10.17)

Substituting (10.16) into (10.15), we see that the expression in the exponent in (10.10)
is equal to

- 1{% J d“x<p(|:| +m? - i) + % j d4xd4y](x)AF(x - y)](y)}. (10.18)

Thus, we obtain?

20011 = exp{ -3 [ dxayicons -y}

X J Do exp{—% J dxo(o+m? - is)(p]» . (10.19)

However, the integral over D¢ is simply some number (it is taken over all the possible
configurations of the field ¢). Denoting this number as A, we finally obtain

i
20111 = N exp{ -3 [ dxayioome - vy )} (10.20)
The value of V is of no special importance: this is just a normalization factor.

The Fourier expansion for Ag(x) has the form

d4 k e—ikX

_— 10.21
Cm* kK2 -m?+ie ( )

800 = |

2 Further, we write—for brevity—dx instead of d“x, et cetera.
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Figure 10.2

The presence of ie — i0* in the denominator here dictates the choice of the integration
contour in the integral over k, in accordance with Feynman rule, to deal with the
poles at k, = + Vk? + m?. The poles are situated at the points (in the complex k, plane)
determined by equation k(z) =K + m® - ig, that is, at

ko=+VK2+m? i = +E ¥ 16, (10.22)

as shown in Figure 10.1. In the limit of § — 0 (¢ — 0), these poles move to the real
axis, and the integration contour goes as shown in Figure 10.2.

We have seen above that this approach corresponds to the “rotation” of the time
axis by a small angle 6 in the complex plane for time. This guarantees us the correct
boundary conditions for the vacuum-vacuum transition amplitude. The same aim can
be achieved by making finite angle rotation by —7/2, so that t — —it (— —ico). Intro-
ducing the notation

X, =1t = ix, (10.23)

we see that this limit corresponds to x, — co. Such space-time (with imaginary time)
is Euclidean, with the invariant interval (distance between two adjacent points) given

by

4
ds? = ~(dx°)’ - (dx)? - (dy)? - (dz)* = - Y ()’ (10.24)
u=1
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In the momentum space, we can similarly introduce
k, = -iky , (10.25)

so that

K =-(G+k+I5+k) = -kg, d'kp = d’kdk, = -id"k, (10.26)

where the index E denotes the Euclidean momentum space. Now the Feynman prop-
agator takes the form

d4 kE e*ikx

Q4 k2 +m?’ (1027)

Ap(x) = —iJ

Note that this expression,3 up to a factor of —i, coincides with the Ornstein—Zernike
correlation function of the theory of critical phenomena in the four-dimensional space
[3, 36, 42] if we take m ~ T - T., where T, is the temperature of the second-order
phase transition (and for simplicity we are dealing with temperatures T > T.). Here,
we meet for the first time the deep interconnections between quantum field theory
and the modern theory of critical phenomena in statistical physics [3, 42]. From equa-
tion (10.7), taking into account d*x = —id“xE and (au<p)2 = —(BZ(p)Z, we obtain the
generating functional of Euclidean field theory as

ZoglJ] = j Do exp{— j d“xEG[(aﬁq’)z +m’p’] - o] )} , (10.28)

which actually coincides with the partition function of the Gaussian model of the
phase transition (that is, the Landau theory [36] with no ~ (p4 and higher-order terms
in Landau expansion) for scalar-order parameter ¢, interacting with the external
field J [3, 42].

10.2 Functional integration

Now, we present the formal discussion of functional integration. Let us start from the
well-known expression for the Poisson-Gauss integral (9.28):

J dxe 2™ = \/27” . (10.29)

-0

3 There is no problem with encircling poles here: both are at the imaginary axis at the points k, =

+iykE +m?.
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In the following, we assume the integration limits to be always from —co to co and do
not write them explicitly. Let us take the product of n such integrals:

(271)”/2
172"
[T a;
Let A be the diagonal matrix with elements a;, a,, . .., a, and x the n-dimensional vec-

tor (column) with components x;, X5, ..., X,,. Then, the expression in the exponent in
(10.30) can be written as a scalar product:

J dx;dx, ...dx, exp(—% z a,,xi) = (10.30)
n

(x,Ax) = Z anx,zl. (10.31)

The determinant of the matrix A is
n
DetA =aqya;---a, = H a;. (10.32)
i=1
Then, (10.30) can be written as

J d'xe 2% = Qm)"2(Det A) V2. (10.33)

This expression is valid for any diagonal matrix; correspondingly, it is also valid for
any real symmetric matrix, as it can always be diagonalized by linear transformation.
Let us define the integration measure as

[dx] = m)"’d"x. (10.34)
Then, (10.33) is rewritten as

J'[dx]e_%(xﬂx) = (DetA)™V2. (10.35)

This relation is easily generalized to the case, when there is a general quadratic form
in the exponent:

Q) = %(X,AX) +(b,x)+c. (10.36)

We can proceed as during the derivation of (9.35). The form (10.36) reaches its mini-
mum for ¥ = —~A™'b and can be rewritten as

Q) = QX) + %[x -x%,Ax -X)]. (10.37)
Consequently, we immediately obtain the analogue of (9.35) as

J[dx] exp[—%(x,Ax) —(b,x) - c] = exp[%(b,A*lb) - c] (DetA)2, (10.38)

where A~! denotes the inverse matrix.
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Consider now the case of Hermitian matrices. Taking the square of (10.29), we
write

dedye_%“("zwz) = %T } (10.39)

Let us introduce z = x + iy and z* = x — iy, so that (calculating the Jacobian of trans-
formation from x, y to z, z*), we have dxdy = —idz" dz/2, so that (10.39) can be written
as

==, (10.40)

J dz* dz o'z 1
(27i)12 (271i)172 a

We can generalize this expression, similarly to the transformation from (10.30) to
(10.35) and (10.38), introducing the positive definite Hermitian matrix A, the complex
vector b, and the integration measure

[dz] = (i) ™2d"z. (10.41)
Then, we obtain
J[dz*][dz]e*(z**Az) = (DetA) . (10.42a)
J[dz*] [dz]e” @ A9-0"2=E"b)=¢ _ axp[(h*, A7'b) - c](Det A) .

All these expressions are quite rigorous and represent the direct generalization of
“one-dimensional” integrals to the case of the vector space of finite dimensionality.
Let us make the formal generalization to the case of infinite-dimensional functional
space. Consider the space of real functions @(x*). We can define the scalar product as

@, 9) = J d*x[p0] . (10.43)

The generalization of equation (10.35) is written as

J Do(x) exp{—% J dX(p(x)Ago(x)} = (DetA)™2, (10.44)

where A is some operator acting upon functions ¢(x):

Ap(x) = J dy A y)e) , (10.45)

and its determinant is naturally defined as the corresponding product of eigenvalues.
Integration measure is D(x) = [dp(x)]. All these expressions should be understood
as the limiting expression, such as (10.5). Expression (10.44) is usually called a Gaus-
sian functional integral.
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If p(x) is a complex function (field), we obtain the natural generalization of
(10.42a)

JDq)* (X)De(x) exp{— J dX(p*(x)Ago(x)} = (DetA)™, (10.46)

where A is a Hermitian operator.
Generalization of (10.38) for the case of real fields ¢(x) has the form

[ Do exp{—% [ ax [ avpcoacyew) - [ adepm - c}

_ exp{ % j dx j dyB()A™ (x, y)B(y) - c}(DetA)*”z, (10.47)

where A7 (x,y) denotes the inverse operator. A similar expression for integration over
complex fields differs from (10.47) by the presence of integration over ¢* and ¢, as
well by the replacement of (DetA)*l/ 2 by (Det A)~L:

| Do" wpproexp|- [ ax [ dyp* wawp0)
- J dx[B* (x)p(x) + ™ (x)B(x)] - c}
= exp{J dx J dyB* (x)A™ (x,y)B(y) - C}(DGtA)fl . (10.48)

Let us return to the discussion of the general expression for generating the func-
tional of a Klein—Gordon field (10.10):

ZolJ] = J Do exp{—i J d4x[%(p(|:| +m? —ig)p - (p]] } . (10.49)

Here, we have precisely the Gaussian functional integral, such as (10.47), with A(x,y) =
i(m+m? —ie)8(x — y), B(x) = —iJ(x), ¢ = 0. Then, from (10.47), we get

ZoU1 = exp{% J dxdyJ (x)(o +m® - is)flj(y)} [i Det(o + m” - is)]fl/2 ) (10.50)

The determinant here can be rewritten using (10.44) as

[iDet(o + m? - ie)]_l/2 = jD(p(x) exp{—% J dxp(x) (O + m? - is)(p(x)}, (10.51)

and the inverse operator is

(o+m’ - i's)_1 =-Ap(x-y), (10.52)
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which follows directly from (10.17). Consequently, equation (10.50) reduces to

ZolJ] = exp{—% j dxdy] (AR (x - y)J(y)}

X J Do exp{—é J dxo(o+m? - ie)(p}, (10.53)

which coincides with (10.19). Thus, the direct calculation using the rules of functional

integration produces the same result obtained above via “indirect” arguments.
The expressions for Gaussian functional integrals will be widely used below.

10.3 Free-particle Green’s functions

Let us now show that Z,[J] is the generating functional for the Green’s functions of
free particles. We can expand (10.20) in the series:

Zo=n{1-1 j dxdy] COAR(x ~ Y)J(¥)
1 < i )2

+ — p—

21\ 2
_1<1)3

31\ 2

Introducing the Fourier representation for the source

2

[ axayroongoc- y)f(y)]

3
“ dxdy] X)Ap(x - y)J (y)] +o } ) (10.54)

J00) = jd‘*p](p)e—fp" (10.55)

and using (10.21), we easily obtain

Jp)J ()

[ R PPNV
K R e e (10.56)

We may associate analytic expressions in these series with graphic elements as shown
in Figure 10.3. Then, equation (10.56) corresponds to the diagram, shown in Fig-

ure 10.4. As a result, the expansion of the generating functional (vacuum-vacuum

P 1 1

(27r)I p—m i

Figure 10.3
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transition amplitude) (10.54) is represented by the diagrams shown in Figure 10.5.*
We see that this series describes the propagation of 1, 2, 3 ... “particles” between
sources, so that we are dealing with a many-particle theory. It is clear that Z,[J] is the
generating functional for the Green’s functions of our field theory.

Let us comment on the formal aspects of this analysis. Consider, for example, the Taylor expansion of
some functions F(y;,...,yy) of k variables y,, ..., y;:

o k
Fiy} =F(r,-.00) ZZ Z T(ll’”"in)Yil"'yi,,r (10.57)
n=0 1=1 1,,—1
where .
F
r,- W (1058)
oy v, |

We may go to the intuitively clear limit, when variables form the continuumi — x,y; (i=1,...,k) —
yx), Y — j dx, and obtain an expansion for the functional

(o]

1
Fyl= Y Idxl e T X YO0 V) (10.59)
n=0 :

where
[ 6

Byba) Byl
In such a case, we call F[y] the generating functional for functions Tn (Xg5- - Xp)-

To(Xps .5 Xy) =

[y] . (10.60)

Our generating functional Z[J] should be normalized. We have seen that it is propor-
tional to vacuum-vacuum transition amplitude in the presence of a source J Natural

4 Normalization factor A is dropped here.
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normalization is Z[J = 0] = 1. Consequently, we can write
ZlJ] = (0, 0010, -00), (10.61)

so that Z[0] = 1is satisfied automatically. Thus, we have to rewrite both (10.10) and
(10.20) as

Z.07] - | Dp exp(-i [ d*x[3p(@+m’ —ie)p - p]1} (10.62)
ov [ Dpexpl-i [ d*xip@+m? —ie)p} '

ZylJ1 = exp{—% J dxdy] (X)Ap(x - y)J] (y)} . (10.63)

These new definitions obviously satisfy the condition of Z[J = 0] = 1, justifying our
dropping of the irrelevant normalization factor . The functional Z,[J], defined by
equation (10.63) in accordance with equation (10.60), is the generating functional of
the functions

1 8%
T(X], .. Xy) = P 50 51 L (10.64)
Recalling equation (9.105), we understand that
8"Zy[J] n
_— =1 (0|T 0), 10.65
6]()(1) 6]()(") -0 t < I <p(X1) ¢(Xn)| > ( )
so that
(X, - - X)) = (0| T(xy) - - (x,)|0) (10.66)

represents the vacuum average of the chronological product of the field operators, that
is, n-point (number of coordinates) Green’s functions of our theory. This definition co-
incides with our previous definition of the Green’s functions in the operator formalism
of quantum field theory. Generating the functional can now be written as

OOl'Yl

ZolJ] = Z o jdx1 e dx J ) - J )T, - X)) (10.67)
n=0 ""*

which means that Z,[J] is the generating functional of the Green’s functions
T(Xy, ..., X,). This expansion is shown graphically in Figure 10.5.

Let us now calculate some simplest n-point Green’s functions in our free scalar
field theory. We start with a 2-point function

5°ZylJ]

ey 10.68
SJ()6](¥) 11=0 1068

T(X,y) =
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Calculations can be done explicitly, using the general definition of the functional
derivative. We have

16Z,(J1 1 6
i 6J(x) i8](x)

=- J dx; Ap(x — x)J (x1) exp[—% J dx,dx,] (x)Ap(x; — xz)](xz)], (10.69)

exp[—é J adx;dxy] () AR (g — Xz)](x2)]

16198
16100 1 8J()

+ J dx;Ap(x = x)J (x7) J AR (y — x0)] (x3) exp(—% J]AF]>, (10.70)

ZyJ] =iAp(x -y) exp(—% J]AF]>

where we use the shortened notations in the exponent. Putting now J = 0, we get

1 6§ 1 6 .
(5w AV iy 1071

or

T(x,y) =iAp(x —y). (10.72)

It is clear that the 2-point Green’s function, in fact, coincides with the Feynman prop-
agator for a scalar particle (single-particle Green’s function of a free scalar particle).
Let us once more consider its physical meaning. We start with operator formalism. By
definition of the chronological product, we have

T(x,y) = (O] Tp(x)p(y)|0)
=0(xo — ¥o){@X)@(y)) + 0(yy — Xo)(@(y)p(x)|0) . (10.73)

Here, the first term represents the probability amplitude of particle creation at point
y at time moment y,, and its annihilation at point x at later moment x,. The second
term gives the probability amplitude of particle creation at point x at moment x, and its
annihilation at point y at time moment y,. These processes are graphically illustrated
in Figure 10.6. The sum of these amplitudes gives the Feynman propagator. We know

time time
Ly Yo
Yo Ly
space space

Figure 10.6
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that in operator formalism, the field ¢ can be written as the sum of the terms with
positive and negative frequencies (reference Chapter 3)

() = 90 + 7 (0), (10.74)
where
Pk 1 »
e x) = J o e o (10.75)
- Pk 1 ;
e = J ﬁ ma;e’“ , (10.76)

where wy, = VK? + m?, and a;; and a,, are the corresponding creation and annihilation
operators. Taking into account the physical meaning of these operators, only terms

such as (p(+)(p(‘) remain in the vacuum average (10.73):

T06,Y) = 00Xy — Y60l ) )10 + By - x) (0l 1) )10y . (10.77)
Substituting here (10.75) into (10.76), we get
IPREK
(27'[)6 \/2wka)k,

[6(x0 - Yo)e Y 1L 0(y, - x0)e ™ * 9 (0layat10)

T(x,y) = J
(10.78)

so that interchanging operators in the vacuum average using commutation relations
(to separate normal product of operators giving zero and nonzero contribution from
6-function), we obtain

&’k

G [60xy - yo)e_ik(x_” +0(y, - xo)eik(x_”] . (10.79)
Kk

(x,y) = J

Actually, this expression can be shown to coincide with iAgp(x — y), where Ap(x —y) is
given by (10.21), and equation (10.21) can be rewritten as

Ao = J d'k e J dkdk, e tkx

Pl emtie-mivie ) ot k-2 +md) +ie
~ J d’kdk, e { 1 ~ 1 } (10.80)
)@t 2wy kg —w +16 kg +w—i6]° )

The integral over k, can be calculated as usual, by contour integration in a complex
plane. Due to the exponential factor e ko%o for Xy > 0, we are closing the integration
contour in the lower half-plane of k, so that the integral is determined by the contri-
bution of the pole at k, = wy — i6. For x,, < 0, we close the integration contour in the
upper half-plane, so that integral is determined by the pole at k, = —wy + i6. Then,
using the Cauchy theorem, we have

de eikx

Q) E[O(XO)(‘U"’_ K0 — B(-xp)ie ] (10.81)

Ap(x) = J
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After the replacement k — -k in the second integral and variable transformation
X — X — Yy, We obtain

&’k

2w, [6(x0 — yo)e KO 1 B(y,y — x0)e ], (10.82)
k

Byc-y) =i |
which coincides with -i7(x, y) from (10.79). Thus, the 2-point Green’s function appear-
ing in the functional approach coincides with single-particle propagator of the opera-
tor formulation of quantum field theory.

But what is the 1-point function? From (10.69), we obviously have

6Z,
7(x) = (0|Tp(x)|0) = (O|p(x)|0) = % 5](2)[(])] B,
T J by x =) () eXP(‘% j]AF] ) L C 0, (10.83)
=0

that is, the vacuum average of the field itself is just zero.
Let us now find the 3-point function. Differentiating (10.70) once more, we get

1.6 1.6 16
16](x;) 18] (xy) 1 6] (x3)

- —iAF(xz—x3)deAF(xl—x)](X)exp< ’ j ]AF]>

[ 787)

—iAp(x3 — X;) J dxAp(xy = X)J (x) exp(—é J]Ap])

Zol]

—iAp (X, — Xx1) I dxAp(x3 — x)J (x) exp<—

- N~

- J dxAp(x; — X)J(x) J dyAr(x3 =Y (y)

X J dzAp(x; - 2)](2) exp(—% j]Aﬂ) , (10.84)

which, for J = 0, obviously gives zero. Thus,
T(X1, X2, X3) = (OlT(x;)p(x;)p(x3)|0) = 0. (10.85)
Similar calculations give

16 1.5
i6J(x) " 16J(xy)

ZolJ]1 = =Dp(x; = x3)Ap (X — X4) exp(—% J]AF]>
- 80 = 18~ xpyexp =3 [ 7T )

- Bp(t ~ X)BE 0 —x@exp(—é jmpf)
+oeee, (10.86)
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Figure 10.7

where multiple dots denote the terms giving zero for J = 0. Accordingly, we obtain

T(X1, X9, X3, X)) = =Ap(Xy = X3)Ap(Xy — X4) — Ap(Xy — X)AR (X3 — Xy4)

= Ap(x3 = x)Dp (X = X4) (10.87)

which is graphically shown by the diagrams in Figure 10.7 and represents the propa-
gation amplitude of two free particles. Here, we have just four space-time points inter-
connected in all possible ways by the lines of free particles.

Going to n-point functions, we can easily be convinced that for the odd value of n,
they are zero:

T(X X5+ . o5 Xoppp) = 0. (10.88)

For even n, each n-point function is factorized into the sum of the products of the
2-point functions (that is, the sum of all “pairings” (contractions), defined by all pos-
sible permutations of the coordinates entering in pairs):

T(X}, X5 -+ - Xop) = Z T(Xp, Xp,) T, 5 Xp, ) (10.89)
P

where
(X, %) = iAp(x —y). (10.90)

This reduces to the Wick theorem we are familiar with, which is now proved in a func-
tional formulation of quantum field theory.

10.4 The Generating functional for interacting fields

So far, we have discussed the case of a free (noninteracting) field. How can this formal-
ism be generalized to the interacting case? Consider the simplest case of interacting
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theory, taking the Lagrangian of a scalar field in the form

1 m’
£=§W¢%¢—-;¢”-%¢4=£o+£m, (10.91)

where g is some coupling constant. This is the so-called gp®*-theory. The interaction
Lagrangian is

8 4

Qm:—m¢- (10.92)

Lagrange equations for such theory are nonlinear (containing the term ~ g¢>), which
reflects the presence of (self)interaction. In the general case, the interaction La-
grangian is some function V(¢). In principle, we could consider even nonpolynomial
functions, but we shall limit ourselves here to the simplest models.

Remarks on the dimensionality of coupling constants

We have seen above that the action S = jd4x£ is dimensionless (we are using natural system units
with £ = 1). Correspondingly, the dimensionality of the Lagrangian [£] = I, where [ is some length.
The dimensionality of energy (mass) is [E] = [m] = I\, From the explicit expression (10.91) for the
Lagrangian, it is clear that [¢] = L. Then, from equation (10.92), it is clear that in g(p[‘-theory, the in-
teraction constant g is dimensionless. This is very important. Due to this property, this theory is renor-
malizable. Intuitively, this can be understood from the following elementary arguments. Consider a
more general interaction Lagrangian

Lin = g@", k>o0. (10.93)

In this case, the dimensionality of the coupling constant [g;] = I¥. However, perturbation expansion
should be always performed in powers of some dimensionless small parameter. In our case, such a
parameter is given by

ol ¥ ~ gm* ~ g EX, (10.94)
which grows with the growth of energy E (or at small distances). This is bad and actually reflects the
nonrenormalizability of such a theory. Roughly speaking, we may say that the dimensionality of the
coupling constant is a necessary (but not sufficient) condition for the renormalizability of any theory
of interacting particles. More precisely, it is necessary that interaction constant be dimensionless, or
that it has the dimensionality of some negative power of length: g ~ "%, a > 0. In this latter case,
the dimensionless parameter of perturbation theory is gE~“, which is harmless at high energies. From
this point of view, ggu3—theory is also satisfactory, but it leads to other problems: it breaks the posi-
tive definiteness of energy (there is no stable ground state). Thus, the ggo4—the0ry is actually the only
“reasonable” theory of a scalar field in the 4-dimensional space-time.’
For the spinor field (s = 1/2), we argue in a similar way. Dirac’s Lagrangian £ ~ ihoy — myp, so that
Wl = Y] = 32, Correspondingly, if we write the interaction Lagrangian of Dirac field with scalar
fields in the obvious form (so-called Yukawa interaction)

Line ~ 8PP0, (10.95)

5 These arguments, including the dependence on spatial dimensionality, will be discussed later in
more detail.
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the appropriate interaction constant g is again dimensionless, and the theory is renormalizable. How-
ever, if we take the 4-Fermion interaction (Fermi)

Line ~ G, (10.96)

the coupling constant G is dimensional: [G] = [m™2] = . Such a theory has “bad” behavior at high
energies and is nonrenormalizable.

Modern quantum field theory deals mainly with renormalizable theories. The dimensionality of the
coupling constant is the crude criterion for choosing between different interaction Lagrangians, sat-
isfying the general requirements of relativistic invariance.

The normalized generating functional for the theory with interactions is defined in a
similar manner to the case of noninteracting theory (reference (10.1), (10.62)):

| D exp(iS +i [ dxJp)
J 'DQD@is

Z[J]] = , (10.97)

where S = j d*xL is the action of our theory, including the contribution from the inter-
action Lagrangian. For £;,; = 0, (10.97) naturally reduces to the case of the free theory.
In the general case, we can write S = S + S;p,;, where S;,; = f d*XLipy.

Performing functional differentiation explicitly, we have

1 6Z [ Doexp(s +i [ dJp)p(x)

1 _ , 10.98

i 85/(x) [ Dpe’s o
é 8z j D(pexp(is+ijdfcl<p)<p(x)<P(Y), (10.99)
2 51(00] (y) [ Dpe’s

et cetera. Putting here J = 0, we generate all the Green’s functions of our theory, such
as

OITpp)[0) = 1 L2 EXPIDPXPY) (10.100)
| Dpe's
(0l TP () P(x3)p(x,)|0) = [Py EXp(lS)(})(;ifgz)(p(XB)(p(x‘*). (10.101)

We see that Green’s functions are represented by the functional “averages” of the prod-
ucts of an even number of fields, and “averaging” is performed with “weight” e'S. If
we write here S = S + S;,; and perform an expansion of the exponent in powers of S;;
(that is, consider the perturbation series in powers of the coupling constant) and use
Wick theorem (proven above), we can build a diagram technique for calculating ar-
bitrary Green’s functions, similarly to the case of operator formalism. The “averages”
of the pairs of fields in different points will be “averaged” with €. These “averages”
are easily calculated (Gaussian integrals) and reduced to the appropriate free Green’s
functions. However, below we shall use a more formal approach, based on the analysis
of the general relations for generating the functional of interacting theory (10.97).
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Note that

1 6
ezjdx](p _

i 0 i [dxjp
15700 p(x)e . (10.102)

As J and @ here are independent (functional) variables, a similar equality also is valid
for an arbitrary function of ¢:

1.6 \ifave _ i [ dxjp
V< i 5J(x) >e = V(p)e' ' %, (10.103)

which is easily proven by making the Taylor expansion of V(¢). Then, we have

ot V@) i [dp _ i [ AV (i g05) i [ ddp (10.104)

Now, taking for V(¢p) the interaction Lagrangian £;,;(¢), we can write the generating
functional of interacting theory as

ZU =N J D exp ij dx[%awpa"w - %(mz —i€)p” + Lin() +I<p]}

=N [po exp i [ axtyuion]

X exp {i J dx V%ay(pa"(p - %(m2 — ig)¢? +]<p”
= N exp {i J dxﬁim< % %)}ZD Ul (10.105)

or, using (10.20),

Z[J] = N exp

. 1 6 i
i J dein,<;m>] exp{—% J dxdyJ (x)Ap(x - y)](y)}. (10.106)

Thus, we have obtained the general expression for generating functional of interacting
theory, which will be used below to construct a diagram technique.

10.5 ¢* theory

Let us return to the theory with the interaction Lagrangian

£ 4

Ling =~ 4% (10.107)

The normalized generating functional for this theory is written as

expli [ dzLy (3 5255 exp[- 1 [ dxdyI 0AR(x = ) ()]

- . (10.108)
{expli [ dzLin(§ g5)] exp[ 5 [ dxdy] OMr(x =T WY

ZJ] =
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Perturbation theory is constructed by expanding this expression into the series in
powers of the interaction constant g. Let us write the first terms of this expansion for
the numerator:

1- 14‘—%: sz(%%)l‘ +0(g%)

Making all the necessary differentiations, we get

exp ——jdxdyf(xmp(x y)f(y)] (10109)

1 6
T p[ [ axayroongc- y)](y)}

deAF(z x)J(x) exp[—— dedy](x)AF(x y)](y)} (10.110)

2
(35705 ) exp|-5 [ dxamoonsix-yon|
2
{IAF<0> [ [Jaxarz- x>1<x>] }
X exp[—§ J dxdy] (X)Ap(x - y)] (y)] , (10.111)

3
) xp[——jdxdy](x)AF(x y)](y)}

<? 8 (2)
3

= {3[—iAF(0)] J dxAp(z — x)] (x) - “ AxAp(z - X)J(X)] }

xexp[ ’jdxdy](x)AF(x y)J(y)] (10112)

(1 5](2)) exp| - dxdy](x)AF(x—y)J(y)]

2
= «[—3[AF(O)]2 + 6iAp(0) “ dxAp(z - )] (x)

4

+ U dxAp(z - x)J (x)] ]» exp[—— dedy] ()Ap(x = y)] (y)] (10.113)

These expressions can be associated with diagrams. Let us draw function —iAg(x — y)
(propagator) by the straight line, connecting points x and y. The value of —iAz(0) =
—iAp(x — x) will be drawn as closed loop, connected with point x. Then, equa-
tion (10.113) is graphically represented as shown in Figure 10.8. The origin of coef-
ficients 3, 6, 1 here can be understood from symmetry considerations. For example,
coefficient 3 corresponds to three ways to connect two pairs of lines to draw diagram
with two loops. Likewise, in the second term, there are 6 ways to connect two lines
to obtain the diagram shown in Figure 10.8. These coefficients are called symmetry
factors, and we later shall discuss the general algorithm for finding them. Note that
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Figure 10.8

the first term in (10.113) and in Figure 10.8 represent the typical vacuum contribution
(diagram) with no external lines.

Consider now the denominator of (10.108). We can simply put J = 0 in (10.113),
which excludes the second and third terms in Figure 10.8. Thus, up to the terms of
the order of g, generating the functional is expressed by the diagrams shown in Fig-
ure 10.9, where the second equality is obtained by expanding the denominator to the
same accuracy, so that the vacuum diagram from the denominator is “lifted upwards”
and cancels the vacuum diagram from the numerator. This reflects the general rule of
cancellation of vacuum diagrams valid for normalized generating functionals in quan-
tum field theory.

2-point function
The 2-point function is defined as

_&z1)
808 0) o

From Figure 10.9, it is clear that contribution of the first term of Z[J] into 7(x;,x,) is
equal to iAp(x; — X,), that is, the free propagator. The diagram in Figure 10.9 with four
“legs” contains four factors of ] and does not contribute (J = 0) to the 2-point function.
The contribution of the diagram with loop in Z[J] is equal to

T(Xl, X2) = (10.114)

 r(0) [ dxdyte(z - 0T OM - YT ) exp(—é jmpf) . (10.115)

[1_% (_300 +6i_o_+><)dz] exp(——;fJAFJ)
1—% (-300) dz

_ [1_% (6,-_O_+><) dz] exp<~—;fJAFJ)

Figure 10.9

7J)=
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Figure 10.10

Differentiating this expression twice, we get

TR xete - )
;5]()(1)(...) =% AF(O)ZdedZAF(Z xX)Ar(z =) Y) eXp( > J]AF]> o,
(10.116)
1 6 1 6 _ 8 B B _1. N
a5 ) 3O [ dztirtz - 2z - 30 exp< g IAFJ> e
(10.117)
where we have dropped the terms giving zero for ] — 0. Finally, we have
00, 30) = iBr (3 - 1) - S80(0) [ Aoz - )z - x) + O, (1018)

which is shown by the diagrams in Figure 10.10. For the free particle, we have

d'k ™
TX)=iAgX) =1 | ——5——— 10.119

() = e x) .[(271)4k2—m2+i£ ( )
and the Fourier transform of the free propagator has the pole at k* = m?, which deter-
mines the spectrum of the corresponding particle. It is easy to see that in the presence
of interactions, the particle mass becomes different from m. In fact, we can write the

second term of Figure 10.10 as

- £ 00(0) [ ey - 22050 - 2)

4o g4 —ip(x;-z) —ig(x,~z)
_ —gAF(O)J d'pdiqdz e ‘ e '
2 @m)8 pr-m?+iicq? -m?+ic
g d4pd4q e—ip(xl—xz)
= —2AR(0 8
i )J ot P mriep P
g d4p efip(xlfxz)
) : 10.120
d )J(Zn)‘*(pz—mzﬂ'e)z ( )
so that (10.118) reduces to
([ d'p ePaX) i Ap0)
> = — 11+ 8 ———F. 10.121
%) lJ(Zﬂ)4p2—m2+ie{ T3 pz—m2+ie} ( )

For g < 1, the term in the figure brackets in (10.121) can be rewritten (with the same
accuracy) as

-1

{1 - igLo)_} . (10.122)
2p2-m?+ie
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Then,
4 —ip(x;—x;)
T, %) = ij dp - € . (10.123)
Q)" p? —m? - SgAp(0) +ie
We see that now the Fourier transform of 7(x;, x,) has the pole at
p2 =m’+ %gAF(O) =m’+6m? = mf (10.124)
where
sm? = %gAF(O), (10.125)

and m, here represents the physical (or renormalized) mass of the particle. Thus, in-
teraction changes the mass. Unfortunately, the value of &6m? cannot be calculated,
as it is formally infinite, as Ap(0) ~ % ~ [dki®/k* ~ [ dkk, and this integral is
quadratically divergent at the upper limit. This is again a typical example of “ultra-
violet” divergence in quantum field theory. The situation here is the same as in QED.
The physical origin of divergence is the point-like nature of interaction in local field
theory. We do not know whether or not any “realistic” mechanism of the “cutoff” of
these divergences exists. In the theory of condensed matter, in similar situations, the
upper limit of integration in momentum space is usually ~1/a, where a is some “mini-
mal” length of the order of the average interatomic distance or lattice constant. There
is no known analogue of such “minimal” length in quantum field theory. Its intro-
duction (for example, by assuming a kind of lattice structure of space-time at small
distances) explicitly breaks the relativistic invariance of the theory. The problem is
solved for renormalizable theories, where all such divergences can be “hidden” in the
finite number of parameters to be determined from experiments. For renormalizable
g¢"-theory, we shall return to the discussion of these problems later.

4-point function

We have
ANl
T(Xq, X9, X3, Xs) = . (10.126)
002025 X0) = G 6708 ()T 0xs) o
The term of the order of go was considered above, and from (10.87), we have
T(X1, X9, X3, X)) = =Ap(Xy = X3)Ap(X1 — X4) — Ap(Xy — X1)Ap(X3 — Xy4)
—Ap(x3 = x)Ap 06 — X4) (10.127)

which is shown diagrammatically in Figure 10.7 and corresponds to the free propaga-
tion of two particles without any scattering. Consider the contribution of the first order
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g
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Figure 10.11

in g. From the diagrammatic form of generating a functional, shown in Figure 10.9, it
is clear that one of the contributions of this type, which is due to differentiation of the
loop graph in Z[J], is shown in Figure 10.11 and is equal to

g 5 { _ _
4 87 0,)8] (02)8] (3)8] (xz) AF(O)I dxj dy j dzbp(x = 2)Ap(y - 2)

<1y exp(-5 [18,7)}

J=0
= —%AF(O) j dz[Dr(z - X;)Ap(z — %) AR (X5 - X,)

+Ap(z — x1)Ap(z — X3)Ap(X; — X4)

+Ap(z = x7)Ap(z — x4)Ap(X; = X3)

+Ap(Z = X)Ap(z — x3)Ap(X; — Xx4)

+ Ap(z — )Ap(z — X)) AR (X] — X3)

+ Ap(z — x3)Ap(z — X, )Ap(x; — %5)] (10.128)
which is shown by the diagram in Figure 10.12, which replaces six terms in this expres-

sion. The other contribution of the first order in g is obtained by differentiation of the
“four leg” graph in Z[J], which gives

4

- g ] o] -4 )

= -ig J dzAp(x; — 2)Ap (X, — 2)Ap (X3 — 2)Ap(X, — 2), (10.129)

which may be expressed graphically by a point with four “legs”, where the point rep-
resents the elementary (“bare”) interaction vertex.

Thus, the 4-point function up to terms of the order of g is expressed by the dia-
grams in Figure 10.13. Here, the first term of the order go, as we noted above, does not

—3ig

(]

Figure 10.12
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ot ] ] 2) ()
AR () ()

Figure 10.13

R XK X

Figure 10.14

contribute to scattering, the second term describes the self-interaction of one particle,
and scattering itself is described only by the third term.

The numerical coefficients in Figure 10.13, as well as in other similar cases, can be
understood from simple combinatorics. Consider an arbitrary diagram of the order g"
for a 4-point function. It contains n vertices, as shown in Figure 10.14. A 4-point func-
tion has 4 external “legs”, as shown in Figure 10.15 (“prediagram”). Now, we have to
connect these “legs” in all possible ways with n vertices, using the rules of diagram
technique. For example, in the first order in g, there exist three topologically differ-
ent types of Feynman diagrams, shown in Figure 10.16. To obtain the diagram of Fig-
ure 10.16(a), we have to connect x; in the prediagram of Figure 10.15 with one of the
legs of the vertex; there are four ways to do this. Afterwards, there remain only three
ways to connect x, with one of the remaining legs, et cetera. In total, there are 4! = 24
ways to obtain this diagram from the prediagram, leading to the corresponding coef-
ficient in Figure 10.13. To obtain the diagram of Figure 10.16(b), we have to connect
x; with one of the external legs x,, x5, x,, which will produce a single line: there are
three ways to do this. Then, we take one of the vertex legs and connect it with one of
remaining external points: this can be done in 4 x 2 ways. After that, we connect one

T,
1 NS 3
<
AN
T, AN z,
Figure 10.15

(a) (b) (]

Figure 10.16
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of the three remaining legs of the dotted vertex to the last remaining point, which can

be done in three ways. Finally, we connect the two remaining legs with each other. As

a result, we obtain a multiplicity factor of 3 x 4 x 2 x 3 = 12 x 6, which gives the coeffi-

cient before the diagram in Figure 10.13. It is clear that the multiplicity of the diagram

in Figure 10.16(c) is equal to 3 x 3 = 9, but this (vacuum) diagram is not present in

Figure 10.13, being canceled by the corresponding contribution from the denominator

of the normalized functional Z[J].

Finally, we formulate the following diagram rules for gp*-theory (in coordinate
representation):

— The free particle propagator —iAp(x — y) is associated with the continuous line
connecting points x and y.

— The elementary interaction vertex is expressed by a point connected with four
continuous lines and associated with factor —ig. There is integration over the ver-
tex coordinates.

- Each diagram is multiplied by the corresponding symmetry factor S(1/4!)", where
S is the number of ways to construct this diagram from the corresponding pre-
diagram.

10.6 The generating functional for connected diagrams

We can introduce the generating functional W{[J], which generates only connected
Feynman diagrams, that is, diagrams which can not be represented by indepen-
dent “blocks”.® Connected diagrams are important, because only these diagrams
contribute to the nontrivial part of the S-matrix (scattering). The functional W[J] is
defined as

W{J]=-ilnZ[J], (10.130)

so that
Z[]] = exp(iW[]]). (10.131)

Let us consider, for example, 2-point and 4-point functions and show that W[J] gen-
erates only connected diagrams. We have

5w i 62 67 i 5z

= — - = . 10.132
SJ(x)0J(xy)  Z%2 6] (xy) 6](xy)  Z 6] (x1)6] (x) ( )
For J = 0, we have
6Z]]
=0, Z[0]=1, 10.133
5700 b6 (0] ( )

6 An example of a nonconnected diagram is shown in Figure 10.16(b).
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so that
8w 8z
_ =] — =iT(X1, %) . (10.134)
J)T ) .o T8I () o b
We see that W determines the propagator in all orders of g.
Now for the 4-point function: let us differentiate (10.132) two more times and put
J = 0. Consequently, we have

s'w
5]()(1)5]()(2)6](7(3)5]()(4)
IR £z 1 &z 8z
zZ? 0] (x1)6] (x3) 5](X3)6](X4) Z? 5](X1)5](X3) 5](X2)6](X4)
L1 0z &z 1 5z ]
Z2 6] ()8] (x4) 8] (x2)6] (x3)  Z% 6] (x1)8] (x2)6] (x3)8] (x4) 11

= i[T(x, %) T(X5, X4) + T(Xp, X3)T(Xo, Xg) + T(Xp, X4 )T(X5, X3) — T(Xq, X5, X3, X4) ] -
(10.135)

It is easily seen that this expression does not contain nonconnected diagrams. Substi-
tuting (10.118) and (10.129) into (10.135), with an accuracy up to the terms of the order
g, we obtain Figure 10.17. We see that only connected diagrams contribute here.

Let us briefly discuss the n-point function

1 8"Z[J]

T(X{5ee 9 Xp) = = —— . (10.136)
0o X0) = G 5760y 8 0cy) 1o
The irreducible (connected) n-point function ¢(x;, ..., x,,) can be defined as
1 "W
XiseosXp) = = —— . (10.137)
PO %) = ST 100 o

In fact, from Figure 10.13 and equation (10.136) there directly follow the expressions
shown in Figure 10.18. From (10.135), it follows that

Xy, .. X)) = T(Xg, .05 Xg) = T(X, X0)T (X3, X4) — T(Xp, X3)T(Xp, Xg) — T(Xy, X4)T (X0, X3) .
(10.138)
As T(x1,X5) = ip(xy, X;), we have:

T(Xp5 .. 5 Xy) = 10(Xq, ..., Xy) — Z PG, X,) P, x;,) 5 (10.139)
P

where the sum is taken over all the possible combinations of the indices (1, ..., 4) into
the pairs (i}, 1), (i3, i,). Thus, the 4-point function breaks into an “irreducible” (or con-
nected) part and reducible parts, as shown in Figure 10.19. In the first order over g, we
have the diagrams shown in Figure 10.20. For the case of n-points functions, the ap-
propriate generalization has the form shown in Figure 10.21.
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8w
8J(2)6J(2,)6 () 80(z,) | ;_,

B
(e pa)
=)

+(11 glo4 3_%20 3)

“7|<a
+

igf 1,2 1.3
+ %( X 4+ X+ (24 tems))]
1 3 4 4 \3 42

—gf1..2 1_3
g
= —= + +...(24 terms)
4l <3><4 2><4 )
:—gX

Figure 10.17

(2, ... y3)=—1g >< —3ig O -3

i‘p(xlv ,$4):—ig ><

Figure 10.18

Figure 10.19

%X+ -

Figure 10.20
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P ==

Figure 10.21

10.7 Self-energy and vertex functions

Let us continue our discussion of the general structure of equations in quantum field
theory in the functional formulation, limiting ourselves mainly to the gg“-theory.
From the generating functional Z[J], we can determine the n-point functions
T(Xy,...,X,) (Green’s functions G"(x, ..., x,)) by

1 §"Z[]]

1_6zy] | 10.140
in 5](X1)5](Xn) =0 ( ! )

(X2 Xp) = G (xp, .., Xp) =

These functions contain both connected (irreducible) and nonconnected (reducible)
parts, as shown, for example, for the case of G* in Figure 10.22. The scattering pro-
cesses are determined only by connected diagrams, which are generated by functional
W = —iln Z, so that the connected Green’s functions are defined as

1 "W

- - v . 10.141
1 6106) - 8] () o (10141

iP5 %) = G (X, Xy) =

Then, of all the graphs shown in Figure 10.22 only the third one remains, which deter-
mines G in the first order over g.

=3 —3ig O — —ig X +0(g%

Figure 10.22

Connected (irreducible) 2-point Green’s function, up to the terms g>, is determined by
the diagrams shown in Figure 10.23. The complete sum of such diagrams gives the
“dressed” propagator Gf:z) (x,y), which is usually depicted by a “fat” line. We can per-
form the usual procedure, extracting single-particle irreducible diagrams (which can-
not be cut over the single-particle line), and introduce their sum, as shown in Fig-
ure 10.24. This sum defines the irreducible self-energy part. The exact (dressed) prop-
agator is now determined by the Dyson equation

62 (B) = Go(p) + Go(p)1ZP)Go) + Gop) ;ZP)Go () 5BIGo ) +

= Go{l + %ZGO + %ZGO%ZGO +]»
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a’ = + g @)

+gﬁm+ 8 + O

+gx:QQQ+ S0 . 50

8.8 .qp

+

Figure 10.23

+—— _—t
Figure 10.24
11" 1. 17t
- Gol1-1%6o| = |65’ - 12| (10142
or
T P — 10.143
O T (10.143)
where we have taken into account that
i
Go(p) = m . (10.144)

The Dyson equation is shown in diagrammatic form in Figure 10.25. Defining the phys-

ical mass of a particle my,  from the pole of the dressed propagator’

@y _ i
G (p) = 2 _m2
p phys

(10.145)

7 The energy spectrum of a freely propagating “dressed” particle is determined from p’= mf)hys.



276 —— 10 Functional integrals: scalars and spinors

= | @ |
| @ @ |

Figure 10.25

we obtain

mlz)hys =m’ +3(p” = méhys) . (10.146)

From equation (10.142), we have
-1 - 1
[6Pm)] " =Gy (p) - X0), (10.147)

so that the inverse 2-point function contains (besides an inverse “bare” propagator)
only single-particle irreducible diagrams. Formally, we can define the 2-point vertex
function T®(p) by

G2 prPm) =i, (10.148)
which, according to (10.147), reduces to
IP0p)=p*-m’-3(p). (10.149)

In fact, the nontrivial part of this construction reduces simply to Z(p), but this new
notation is convenient within the framework of some universal notation system, which
introduces the general notion of vertex functions.®

We can also introduce the generating functional for n-point single-particle irre-
ducible vertices I'". This is denoted as I'[¢] and is usually called the effective action.
This functional is defined by the so-called Legendre transformation of the functional

W{Jjl:

W[J] =T[p] + J dxJ (x)p(x) . (10.150)
Now, we immediately obtain
SW[J] oTlpl
500 o(x), —&0 00 " J(x). (10.151)

Then as propagator, we have

2
Gooy) - OWUI__8p00)

- - . 10.152
SJ)8Jy)  6(y) ( )

8 It is convenient to exclude the imaginary i from the definition of ng)(p), so that the right-hand side
of (10.148) is equal simply to 1. Correspondingly, in the Dyson equation, we replace %Z — 2. These
notations are most common in the literature.
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Let us define I'(x, y) as

2
oy = oL@l 91t (10.153)

" 5p(06p(y)  89(y)’

which is inverse to the propagator:

SwWyl 8Tl
8] ()] (z) 6p(2)6¢(y)
_ J’ L5000 8](2) _ Sp(0) _

0] (z) 6p(y)  bp(y)

J axG(x,z)I'(z,y) = - J dz

S(x-vy), (10.154)

Differentiating both sides of (10.154) by J(x"'), replacing y by z, and using the relation

6 _ " &P(Z") 5 _ " "o_n 6

o Idz 51607 B = sz G(x .z )75(p(z”)’ (10.155)

we then obtain

J dz sw 5T - J’ dz x sz"ﬂG(x" z")L =
8] (x)8] (x')6] (z) bp(z)bep(2") I)8I(z) Y 7T/ bp(2)bp(z)bp")
(10.156)
so that
sw ' n "no_n 8T _

J’d276](x)6](x”)6](2) F(z,z ) + szdz G(x, z)G(x ,Z )—&p(z)&p(z’)&p(z”) =0. (10.157)

Multiplying both sides of the last equation by G(x',z'), integrating by z’, and taking into account
(10.154), we get

5w B 8T
8] (x)6] (x")6] (x'") 8¢p(2)8p(z")6p(z'")

Thus, the connected 3-point function reduces to a single-particle irreducible 3-point vertex function,

- J dzdz'dz”G(x,z)G(x',z')G(x”,z”) (10.158)

with external lines given by exact propagators. Correspondingly, 3 represents the com-

&5r
8p(2)6p(z")8p(z"
plete three-leg vertex. All this is shown graphically in Figure 10.26. Equation (10.158) can be inverted
with the help of (10.154), so that

(SBF J‘ ! " ol n " 63 W
———— = — | dxdx'dX" T, Y)L(x,y' )TI(x", Yy ) ——————~ . (10.159)
Sp(y)6p(y")op(y') () ) 8] (x)8] (x")8] (x"")
In the right-hand side, the external legs of (10.158) are “amputated”.
Differentiating (10.158) once more, we obtain the 4-point function represented by the diagrams in Fig-
ure 10.27, where a 4-leg irreducible vertex and a three single-particle reducible contributions appeared,
corresponding to the three cross-channels of the reaction.

Figure 10.26
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D

Figure 10.27

Thermodynamic analogy
There is a deep analogy between quantum field theory and statistical mechanics,
which is expressed by the following table:

Quantum field theory Statistical mechanics
Z - generating functional Z - partition function
z=¢e" Z-eT

Wyl =Tl + [Jo F - free energy

In the following section, we shall consider an explicit example of the application of the
methods of quantum field theory to the theory of the critical phenomena at second-
order phase transitions.

10.8 The theory of critical phenomena

Let us consider briefly one of most successful applications of quantum field theory
methods to problems of statistical physics: the theory of critical phenomena in the
vicinity of the critical temperature of the second-order phase transitions. This problem
remained unsolved by the traditional methods of statistical physics for a long time.
The essence of the problem is well known: in the rather narrow (so-called critical) re-
gion near the phase transition temperature T,, the critical exponent describing the
singular behavior of physical properties at T, is not satisfactory, as described by the
general Landau theory of second-order phase transitions [36]. The reason for this de-
ficiency is also quite clear; close to a phase transition point, strong fluctuations of the
order parameter develop in the system, which strongly interact with each other [36, 42].
Significant progress in the theory was achieved with the introduction of the important
concept of scale invariance, or scaling [42, 48]. However, the rigorous derivation of this
concept and the explicit calculations of the critical exponents became possible only
after the development of the appropriate quantum field theory methods, which led to
the successes of the modern theory of critical phenomena [3, 42, 48]. Below, we shall
give a very short presentation of the main ideas and results of this theory, which illus-
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trate a deep relationship between quantum field theory and statistical physics. Many
important details of the calculations will, however, be skipped.
The Landau functional of free energy can be written in the standard form as [3,
42, 48]°
d n 1 n 2
[qb(r) J d r<| = Z;‘ (V¢j)2 + ‘r¢]2] + §g<zl ¢]2> ]» , (10.160)

where T is the temperature, and the parameter 7 = T;TC determines the size of the
critical region close to the phase transition point. We shall limit ourselves to the tem-
peratureregion T > T, (symmetric phase). The order parameter ¢; is represented by an
n-component vector in some “isotopic” space with dimensionality n. Equation (10.160)
is quite general. In fact, we are dealing with an O(n)-symmetric (isotropic) model of
phase transition, which well describes a rather wide class of real systems. The case of
n = 1 corresponds to the Ising model, n = 2 describes the so-called XY-model (super-
fluidity, superconductivity), n = 3 corresponds to isotropic Heisenberg ferromagnet,
et cetera [42, 48].

In the Landau theory, which completely neglects fluctuations of the order param-
eter (mean-field theory), ¢ = 0 for T > T, [36]. However, even for T > T,, fluctuations
may lead to the appearance of regions in the system with ¢(r) # 0. The probability of
such fluctuations is defined by [36, 42]

Plpm)] = %exp{—%F[(p(r)]}, (10.161)

where the partition function Z is determined by a functional integral:

J D(r) exp{—— [¢(r)]} (10.162)
The free energy of the whole system is given by
F=-TInZ. (10.163)

The correlation function of the order parameter is defined as

Gy(r.1') = 7! jD¢(r)¢j(r)¢,( )exp{—— [q,')(r)]} = (p;(Ngy(r)) - (10.164)

An analogy with the results of the previous sections is obvious: the theory of critical
phenomena is equivalent to the Euclidean quantum theory of an n-component scalar

9 From the very beginning, we shall consider the space of dimension d, because of the important
dependence of critical phenomena on spatial dimensionality [36, 42].
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field in d-dimensional space. Equation (10.164) is simply the propagator (Green’s func-
tion or 2-point function) of such a field theory. In the simplest variant of the so-called
Gaussian model of critical phenomena, we have already met this theory in connection
with equation (10.28).

The structure of the perturbation theory over the coupling constant g for fluctu-
ations of the order parameter is quite similar to that in the gp®*-theory with a single-
component scalar field discussed above. The free Green’s function coincides with
Ornstein—Zernike correlator (reference (10.27)):

Goy(p) = o (10.165)

The correlation function of interacting fluctuations is determined by the Dyson equa-
tion

G () =Gy (p) - (), (10.166)

where the self-energy part X(p) is represented by the diagrams in Figure 10.28. The

vertex part (“four-leg” vertex) determines the 4-point correlator (¢;(r;)@;(r,)¢;(r3)
Pm(rs)), et cetera.

S(p)= 2, S —

Figure 10.28

+k
p 1: :p bs p 1: : by P b,
e = j21 ps D, D4 : Ds
(1) ©) ®3)
Figure 10.29

Nontrivial physics of critical phenomena is connected with interaction of fluctuations.
Let us consider the lowest-order perturbation theory corrections to the “bare” inter-
action, defined by the coupling constant g. In Figure 10.29, we show diagrams ~ g2,
corresponding to the three cross-channels of “two-particle scattering”, determined by
three sums of incoming momenta:!°

10 Arrows on lines define the directions of incoming and outgoing momenta.
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1. p1+py
2. p1-Ds3;
3. P1-Ds-

Naturally, we have the conservation of the total momentum

DP1+Dy=D3+Dy- (10.167)

In the problem with an n-component field, it is convenient to use the symmetrized
(over “isotopic” indices) form of the “bare” interaction

* = 8(836) + 6By + 6ybji) = 8lijyq - (10.168)

Then, the interaction term in (10.160) is ~ Ijiy$;$; i), where we assume summation
over the repeating indices from 1 to n.

:x+><><+><([ RO+

Figure 10.30

To find the full vertex part of a two-particle scattering, we need to perform the summa-
tion of all the diagrams, such as those shown in Figure 10.30. Obviously, in the general
case, this problem is unsolvable. However, we can introduce some topological clas-
sification of diagrams, which allows us to write the general system of the so-called
“parquet”(integral) equations, which determines this full vertex part [17]. It is clear
that the full vertex I' can be written as

T=R+T,+T,+T;, (10.169)

where the “blocks” I';, I',, I'; are built of diagrams, which can be cut over two lines in
channels 1,2,3, whereas the block R consists of all diagrams that cannot be cut in this
way in either of these channels. Then, for blocks I';, I';, I';, we can construct diagram-
matic equations, which are shown in Figure 10.31. Here, we introduced the blocks

L=R+)Tj, (10.170)
j#

which cannot be cut over two lines in channel i. The structure of the diagrams, deter-
mining block R, is clear from the diagrams shown in Figure 10.32.
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o
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Figure 10.31

Figure 10.32

This system of integral equations is very complicated. However, there is a case, where
the solution is more or less simple. This is the so-called approximation of the “leading
logarithms”. To understand the main idea, let us estimate Diagram 1 in Figure 10.29."!
Analytically, the contribution of this diagram is determined by the integral

dp 1 1
Qmepr+t(p+k2+1’

g’ (n+8) J (10.171)
The factor n + 8 here originates from the product of two factors (10.168), standing at
the vertices

LimnImnia + Titannmnjt + TimnImnjic = (1 + 8)(856)q + 8By + 865 - (10.172)

Now, consider our theory in the 4-dimensional space, d = 4. Then, we can estimate
our integral as

A A
Jap o L dp’ _ [
pPr+tp+k)2+t p* P
Max(k,VT) Max(k,VT)
A

“ln— 2o 10.1
nMax(k, VT) (10.173)

where we have introduced upper limit cutoff A ~ % Here, in contrast to quantum field
theory, we do not have any problem with logarithmic divergence at the upper limit;

11 In the following, in most cases, we drop irrelevant numerical constants, such as symmetry factors.
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Landau expansion (10.160) is valid only on the length scale, which is much larger
than the interatomic distances a, and there is simply no fluctuation with shorter wave-
lengths. The value of a plays the role of “minimal length”, which is absent in quantum
field theory. However, the presence of logarithmic divergence in (10.173) is of prime im-
portance. This logarithm becomes very large in the vicinity of a phase transition point,
when we are dealing with k, +/T <« A. Here, we have “infrared” divergence for 7 or k
tending to zero. In fact, with an accuracy up to second-order terms in g, we now have

Tk)~g-g°(n+8)In (10.174)

A
Max(k, V1) T
We see that the first correction to the interaction vertex for r — 0, k — 0 can become
much larger than the bare coupling constant g; fluctuations become strongly interact-
ing as we move to the transition point. This is the essence of the problem: we need
some relevant corrections everywhere, and this is not an easy problem to solve. For
d = 3, this seems to be a hopeless task; however, for d = 4, due to the relatively weak
logarithmic singularity, we can perform the summation of a certain set of diagrams,
corresponding to the “leading logarithm” approximation. The logarithm appears from
momentum integration in the loop graph. In higher orders, higher powers of logarithm
appear, with their powers determined by the number of loops in the corresponding di-
agram. For example, considering in a similar way Diagrams 2 and 3 in Figure 10.30,

we estimate their contribution to be ~ g3 In? m, whereas for Diagram 4, we get
~g*ln’ m At the same time, the estimate of Diagram 6 gives ~ g* In m

whereas for Diagram 7, we have ~ g° In m, which is much smaller than contri-
butions of 2, 3, 4, due to the assumption of weakness of the “bare” coupling g « 1.
Thus, we can limit ourselves to the “leading logarithms”, that is, take into account only
those diagrams, which give the power of the logarithm as equal to the power of cou-
pling constant g minus 1; in Figure 10.30 these are Diagrams 2, 3, and 4. The topology
of these diagrams is quite clear: in the given order they contain the maximal number
of loops, like Figure 10.29. This set of graphs is typically called “parquet” diagrams.
“Parquet” takes into account all the vertex corrections of the order of ~ g"In", but
neglects contributions such as ~ g””‘ In". Moreover, we can neglect the contributions
without logarithms. In particular, block R—introduced above—now reduces to the first
term in Figure 10.32, that is, simply to the “bare” interaction g. In such an approxima-
tion, the “parquet” equations of Figure 10.31 can be solved. However, the procedure of
this solution is rather complicated, and we shall not discuss it. The correct answer for
the full vertex can be obtained using a more “naive” analysis, which will be used here.
Consider the simple one-dimensional set of diagrams shown in Figure 10.33. This is a

) = x 1+ XX+ O+ KOO -

Figure 10.33
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simple progression, which is easily summed (in contrast to a two-dimensional “par-
quet”):

A A
Tk =g-g°m+8)In—— + g +8°In*  —— +...
(k)=g-g(n+ )nMaX(k,ﬁ)+g(n+ ) In Max(k,\/?)+
- g —. (10.175)
1+g(n+8)In RG]

The rigorous solution of “parquet” equations gives the same answer (for external mo-
menta of the same order of magnitude).!? “Parquet” equations for such vertices are
reduced to the differential equation

dr(s)
ds

with the boundary condition I'(s) — g for s — 0. Here, we introduce the logarithmic
variable

= —(n+8)(s), (10.176)

A
=In———. 10.177
Max(k, V1) ( )
Integration of (10.176) gives
g
I's) = ——, 10.178
() 1+g(n+38)s (10178)

which coincides with (10.175). In fact, this result is completely similar to expressions
for physical charge obtained in Chapter 8 during our discussion on the asymptotic
properties of QED, which lead to the problem of the “Moscow zero” or the Landau
“ghost pole”.®

Consider the case of k = 0 (interaction of fluctuations with very long wave-
lengths). Then, (10.175) reduces to

g . 1

1+g(n+8)ln% (n+8)ln%

I'(k=0)= fort - 0. (10.179)
Now, as we approach the point of phase transition, the dependence on the “bare”
coupling constant g cancels, whereas the effective interaction tends to zero (typical
“zero-charge” behavior!).14 But here, in contrast to relativistic field theory, this behav-
ior does not lead to any problem and, in fact, completely clarifies the situation. Equa-
tion (10.179) corresponds to the effective interaction of fluctuations becoming weaker

12 This coincidence with the correct answer is pretty accidental; the rigorous solution was first ob-
tained in [17].

13 A result of the type of (10.175) was first obtained from the analysis of “parquet” equations during
the studies of asymptotic properties of relativistic scalar field g(,o4 -theory [17]. In the theory of critical
phenomena for d = 4, it was obtained much later by Larkin and Khmelnitskii [38].

14 Let us stress that in the theory of critical phenomena, we have g > 0, so that here we have no
problems such as “ghost poles”.
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as we approach the phase transition. We can explicitly calculate the influence of this
weak interaction on all physical characteristics, which are singular at the phase tran-
sition point, and we can see that it leads only to some insignificant (logarithmic) tem-
perature corrections to the critical behavior described by the Landau theory. These log-
arithmic corrections do not change the powers of the temperature singularities, that
is, critical exponents. Thus, for d = 4, the critical indices (exponents) are simply equal
to their values of the Landau theory.

Definitions of critical exponents

The theory of critical phenomena usually considers the following standard set of physical charac-
teristics of the system and critical exponents (indices), determining the singular behavior of these
characteristics for t = % — 0.

c

Order parameter:
p~Irf, T-T.-o0, (10.180)
1
p~hs, T=T,, (10.181)
where h is the external field interacting with the order parameter.
Susceptibility:
7, T—>T.+0,
x~1 (10.182)
1Y, T-T.-o0.
The correlation function of the order parameter (d is the spatial dimensionality):
exp (-r/¢)
G(r) ~ W , (10.183)
where the correlation length is
v, T—>T,+0,
&~y (10.184)
7™V, T—->T.-0.
At the critical point itself,
1
G(n) pracEE (10.185)
G(p) ~ =E (10.186)
In a similar way, we introduce the critical index of specific heat a:
A+
C(t,h=0)= 7[T‘“-1]+B*, T—T.+0, (10.187)
A o _
Ct,h=0)=—[lfI™ -1]+B", T—-T.-0, (10.188)
a

so that a = O corresponds to a logarithmic singularity.

It is important to note that in Landau theory (mean-filed theory), the values of the
critical indices are [36]

, 6=3 (10.189)
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and satisfy the standard scaling relations [36, 42]

ot
2-1n

a=2-vd, (10.190)
B=vd-2+m)

in the 4-dimensional space, d = 4. In this sense, we can say that Landau theory gives
a correct description of critical phenomena for d = 4. The same statement is actually
valid for all d > 4; it can be easily seen that corrections of the type of (10.171) do not
lead to any divergences for d > 4 and are small, due to the assumption of g « 1. The
spatial dimensionality d = 4 is called the upper critical dimension of the theory.

For the physically most interesting case of d = 3, there is no possibility of choos-
ing the “leading” (dominating) diagrams in a perturbation series; actually, all the di-
agrams are of the same order. This was the main obstacle for constructing a rigorous
theory of critical phenomena. Wilson has proposed an original method for calculat-
ing critical exponents, which is based on the idea of the introduction of an artificial
small parameter of the perturbation theory € = 4 — d: a deviation from the upper criti-
cal dimensionality d = 4, for which all critical indices coincide with the predictions of
the mean-field theory (¢-expansion). The idea of “fractional” spatial dimensionality is
rather simple. In all the Feynman integrals above, we have dealt with integration over
the volume of d-dimensional momentum space, with the volume element in spherical
coordinates (for the integrand depending only on the absolute value of momentum)
written as

dip = ded_ldp, (10.191)

where Q; is the surface of the d-dimensional sphere of the unit radius,

22

Ok

d (10.192)

where we use the usual definition of the I'-function. In this expression, we already can
consider d as an arbitrary (noninteger) real parameter. Then, we can write

dp Qq J d-1 d-1
~ 2 = d ...=K Jd . 10.193
J 20 i | PP a|dpp ( )
where we introduce the standard notation

-1

K, = 2*(d*1>n*d/2[r<§>] . (10.194)

In particular, K, = (87%)7L. Previously, during our estimates of (10.173), this constant
was dropped. In the following, we shall also drop it.
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Let us estimate once again the contribution of Diagram 1 in Figure 10.29 for the
space dimensionality d = 4 — €. Instead of (10.173), we have

A A

1 _
g2 (n+8)K, J dpp* 1; ~ g’ n+8) J dpp®®
Max(k, V1) Max(k,\T)
~ gAn+8)= 1 pi !
d-4 Max(k, V)
~gn+ 8)%{[Max(k, VT) - AE) (10.195)

The changes in comparison to the case of d = 4 reduce the replacement of logarithm
(10.173) by a “logarithmic variable”

5= L{[Max(k, VO] “ - A7}, (10196)

which gives the same logarithm in the limit of & — 0. Thus, during the solution of
“parquet” equations, we can again use the approximation of the “leading logarithms”
and the differential equation, since the vertex (10.176) conserves its form. Its solution
(10.178) for the case of k = 0 in a space with d = 4 — £ can now be written as

£/2
I'(k=0)= ig — ! — = e fort - 0.
1+gn+8) (T2 -A*] (n+8)_— (n+8)

(10.197)

We see that the effective interaction of fluctuations is small, due to the assumed small-
ness of our artificial parameter € = 4 — d.

Equation (10.176) can also be considered as a differential equation over cutoff pa-
rameter A, which enters the variable s (10.196), (10.177): ds = A"*9dA. In this case,
this equation describes the renormalization of the vertex I' under infinitesimal trans-
formation of the cutoff parameter A — A’ = A + dA. Essentially this is the differential
equation of the renormalization group introduced first by Gell-Mann and Low and al-
ready known to us in the case of QED. Renormalization group ideology is the basis of
the modern theory of phase transitions [3, 42, 69].

Let us schematically present how critical exponents are calculated in e-expansion.
Consider a correlation function of the order parameter (Green’s function) G(pt). We
have by definition:

Gp=0m)=x(0)~17,
G(pr =0) ~ p>*. (10.198)

Let us limit ourselves to indices y and 1, as all others can be determined from scaling
relations, such as (10.190) [42, 48].
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! l n

Figure 10.34

In this theory, we may prove two Ward identities:

ddp! )

2 .

39 01 7 = 0) = P8 - 2[ 2yaPaGnm(P'O) i (PPP'P'), (10.199)
a

a _ dd !

=Gy (1 =0) =8 - J —(273,1 G (D' 0) i (pPD'P") - (10.200)

Introducing the “triangular” vertex 7; = %G]T,l(pr = 0), we can draw the second of
these identities as shown in Figure 10.34. This identity can be derived by differenti-
ation of diagrams for self-energy (inverse propagator), as is shown schematically in
Figure 10.35. Differentiation of the inverse free propagator (10.165) (Figure 10.35(a))
gives the first term, whereas differentiation of the simplest contribution to self-energy
(Figure 10.35(a)) gives lowest-order contributions to the vertex with two linked “legs”,
that is, the lowest-order contribution to the second term. The full series of “differenti-
ated” graphs is summed to the full vertex. The identity (10.199) is derived in a similar
way, differentiating by p,,.

Dawm = -6on = A @
.

S <
SRR =RX
Figure 10.35

Let us substitute into (10.199) the “parquet” solution for ['(ppp’p’). We have not derived
it explicitly, but it is sufficient to know that (just as I'(k) derived above) it depends only
on the absolute values |p| and |p’|, so that the integral in the right-hand side of (10.199)
gives zero after integration over the polar angle. Thus, we simply have

3G (pT = 0)
= T 2 op,, (10.201)
0Py “
so that
G(pr = 0) ~ ;% , (10.202)

which gives the value of the critical exponent n = 0.
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| B

Figure 10.36

Let us use now the Ward identity (10.200). In a “parquet” approximation, we can re-
sume the diagrams in such a way that this identity reduces to an integral equation
for a “triangular” vertex, shown in Figure 10.36. Using logarithmic variables, we can

rewrite this equation as
S
7}1(3) = 6] - Jdtfﬂmn(t)ﬁnn(t) .
0

Using 7;; = T 6; and (10.168), we obtain
Ijlmnsmn =(n+ 2)6}'1)

and (10.203) reduces to

T(s) =1-(n+2) J AT O T ).
0

Differentiating by s, we reduce this integral equation to a differential one:

d7(s)
ds

=—-(n+2I(s)T(s),

with boundary condition 7 (s = 0) = 1. Then, we find
S
T(s) = exp{—(n +2) J dtl“(t)]» )
0

Using here (10.178), we finally obtain

n+2

T(s)=[1+g(n+8)s] ™.
Consequently, we have

O 1 o _ (D _ ez
8TG (p=01) = e =[1+g(n+8)s] ™.

Integrating with the necessary accuracy, we get

ne2
n+8 £ n+2 )

X(T) ~ %{1 +gn+ S)E[T—s/z _ A—e]} N T—(l+z n+8

(10.203)

(10.204)

(10.205)

(10.206)

(10.207)

(10.208)

(10.209)

(10.210)
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for T — 0. Thereafter, for the susceptibility critical exponent, we find

n+2e
-+
n+82

y=1+ (10.211)
This expression, and the previous result = 0, are valid up to the terms of the first
order in &, and represent the first terms of the e-expansion of critical indices. More
tedious calculations allow the derivation of higher-order corrections.

One remarkable result of the modern theory following from these expressions is
the universality of critical behavior; the values of the critical exponents in quite differ-
ent physical systems are determined only by the dimensionality of space (or system)
and the number of components n of the order parameter (that is, in fact, the type of
the symmetry broken during the phase transition).

Figure 10.37

Expansion (10.160) may, in principle, contain higher powers of the order parameter.
What is their role in critical behavior? Why have we limited ourselves only to g¢*?
Consider a possible term, such as /1(].')6, and the simplest diagram due to such an in-
teraction, shown in Figure 10.37. By the order of magnitude, it is determined by the
integral

. A A P2
A J &’p, J I ~ X j dp, J Ay 555
pip3(v; +p3) pip3(®; +p3)
A
~AIn—. 10.212
W= ( )
For d > 3, this correction converges (at the lower limit, for t — 0), so that for d =
4 — g, an interaction of the type of A¢® is actually irrelevant. Quite analogous is the
situation with the higher-order terms of the Landau expansion, which justifies the
analysis made above.
In conclusion, let us quote the values of critical indices up to the terms of the order
of ~ €2 for the theory with an n-component order parameter [3, 42]:

n+2§+ n+2n2+22n+52£_2+
n+82 n+8 m+8?2? 4
n+2§ n+2n+23n+60 &

+ +
n+82 n+8 (n+8?2 4

=1+

v=1+
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n+2 - n+2 [6(3n+l4) 1]3

n=2(n+8)28+2(n+8)2 n+8)2 4 ’
6:3+£+[1_n—-'—2]82+...)
2 (n+8)?

ﬁ:l_ 3 ¢ (n+2)(2n+1)2+_“

>

2 n+82 2(n + 8)3
4-neg

_ € 10.213
n+82Jr ( )

It is interesting to compare the values calculated from these expressions for d = 3
(¢ = 1) and n = 1 (the Ising case), with the results of numerical calculations (high-
temperature expansion) for the three-dimensional Ising model. In the table, we also
show the values derived from the mean-field theory (Landau). We see that e-expansion
gives rather a satisfactory agreement with the results of numerical analysis.' (See Ta-
ble 10.1.)

Kenneth Geddes Wilson
(1936-2013) was an Amer-
ican theoretical physicist
with major contributions
to quantum field theory
and the theory of criti-
cal phenomena in type II
phase transitions. He was
also a pioneer in the devel-
opment of computer stud-
ies in particle physics. He
was awarded the 1982 No-
bel Prize in Physics for his work on the use of renormalization group in the theory
phase transitions. He went on to Harvard College at age 16 and earned his PhD from
Caltech in 1961, studying under Murray Gell-Mann. He did post-doc work at Harvard
and CERN. Wilson’s work in physics involved formulation of a comprehensive theory
of scaling: how fundamental properties and forces of a system vary, depending on the
scale over which they are measured. His novel formulation of renormalization group
theory provided profound insights into the field of critical phenomena and phase tran-
sitions in statistical physics enabling calculations of critical exponents (the so called
e-expansion). An example of an important problem in solid—state physics he solved

15 Another effective method for calculating critical indices is based on the expansion in powers of the
inverse number of components of the order parameter 1/n [3, 42]; as for n — oo, it can be shown that
the indices also reduce to their values in the mean-field approximation (Landau theory). Calculations
are based on the summation of loop diagrams, as each loop contribution is ~ n.
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using the renormalization group is the so called Kondo problem, related to the un-
usual behavior of magnetic impurities in metals. He extended his methods on scaling
to answer fundamental questions on the nature of quantum field theory, including the
physical meaning of the renormalization group. He also pioneered our understanding
of the confinement of quarks inside hadrons, utilizing lattice gauge theory, where he
initiated an approach permitting strong — coupling calculations on computers. Be-
side his Nobel prize he was awarded numerous international awards, such as Dannie
Heineman Prize for Mathematical Physics (1973), Boltzmann Medal (1975), Wolf Prize
(1980), and Franklin Medal (1982).

Table 10.1: Critical indices for the Ising model (n = 1).

Index Wilson Numerical Landau
v 0.626 0.642 0.5
n 0.037 0.055 0
¥ 1.244 1.250 1
o 0.077 0.125 0
B 0.340 0.312 0.5
o 4.460 5.15 3

Modern methods of the calculation of critical exponents significantly improve the re-
sults of simple e-expansion; taking into account higher-order diagrams, they give the
values of the indices, which practically coincide with the results of numerical calcu-
lations and experiments [69].

10.9 Functional methods for fermions

Generalization of the functional integral approach to quantization to fermions is not
obvious. In the Bose case, functional integration is performed over all possible clas-
sical (c-number) field configurations. For fermion fields, the classical limit is absent,
and it is not clear what kind of field configurations we can introduce at all. The clas-
sical limit is achieved as # — 0. In this case, the nontrivial right-hand side of all
Bose field operators, as considered in Chapter 2, tends to zero, and the operators be-
come c-numbers. For fermion fields, quantization is done with anticommutators, so
that for 4 — 0 in the Fermi case, we get some anticommuting variables, with no ob-
vious “common-sense” meaning. However, it happens that these variables lead to a
correct solution of our problem. Such variables were introduced in mathematics by
Grassmann in the middle of 19th century and are called Grassmann variables. A func-
tional formulation in quantum field theory for fermions, using Grassmann variables,
was proposed by Berezin, who introduced the notion of integration over these vari-
ables [7].
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Consider first the mathematical definitions. Generators C; of n-dimensional Grass-
mann algebra satisfy the anticommutation relations

{Ci’ C]} = ClC) + C}Cl =0, (10.214)
wherei =1,2,...,n. In particular,

c?=o0. (10.215)

1

Thus, the series expansion of an arbitrary function f(C;) can contain only a finite num-
ber of terms. For example, in the case of one-dimensional algebra, we have

f(C)=a+bC, (10.216)

where a and b are usual numbers. The quadratic and higher-power terms of this ex-
pansion are equal to zero.

For the general n-dimensional case, the analogue of (10.216) takes the form
F(C) = Py + PiC; + PYC,Cj + -+ PyCiCy - Cy s (10.217)
where each summation index takes values from 1 to n, and coefficients P are antisymmetric with re-

spect to the permutation of any pair of indices i,j,.... Expansion is cut to a finite number of terms
because of (10.214).

Consider the notion of differentiation over Grassmann variables. We can introduce two
types of derivatives, left and right. The left derivative of the product C,;C, is defined as

ot
E(Cl(:z) = 51'1C2 - 51'2C1 . (10.218)
1
Correspondingly, the right derivative is given by
oR
%(Clc‘z) = 5i2C1 - (SilCZ . (10.219)
1

Then, we have the following equalities:

{%,c,} -5, (10.220)

1

{%, %} ~ 0. (10.221)
t )

In particular, for one-dimensional algebra,

d
{E’ c} 1, (10.222)
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and we always have
<i>2 -0 (10.223)
oc;) '

All these relations are rather natural.

In contrast, the definition of an integral over Grassmann variables is rather for-
mal. In particular, it is impossible to introduce it as the inverse operation to differen-
tiation. However, it can be defined in such a way that it possesses some general prop-
erties characteristic of the usual integral. For example, we can require our integral to
be invariant towards the shift of the integration variable by a constant:

j dcf(C) = J ACF(C +a). (10.224)

This is always so for the usual integral with infinite limits of integration, but here our
new definition of integration has nothing in common with the usual definition (except
the notation j), and there is no limit of integration here in the usual sense. Using the
explicit form of f(C) (10.216), we obtain

JdC(a +bC) = JdC[a +b(C +a)], sothat

J dchC = J dCh(C +a), (10.225)
from which it follows that
J dCha =0 (10.226)
or, due to arbitrariness of ba,
J dc=o. (10.227)

Here, a is another element of Grassmann algebra, independent of and anticommuting
with C. The remaining integral j dC C can be defined by the condition

J dCC=1. (10.228)

Equations (10.227) and (10.228) completely determine integration over Grassmann
variables.

Naturally, integration thus defined has nothing in common with the usual notion
of an integral. Moreover, in the case of one-dimensional Grassmann algebra, we have
% = b and j dCf(C) = b, so that the operation of integration acts upon a function in
the same way as differentiation.
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In the n-dimensional case, we assume that
JdCi =0, JdCiCi =1. (10.229)

Let n and 7] be independent Grassmann variables, so that

Idnzjdﬁzo, Jdnnzjdﬁﬁzl. (10.230)
Asn? = 7> = 0, we have
eM=1-7n, (10.231)
so that
J dijdn e ™M = J didn - j didnin =0 + J didnni = 1. (10.232)

Let us find a generalization of this expression for the case of a larger number of di-
mensions. Consider the two-dimensional case, introducing for convenience the new

notations
_(™m > ; :< M > (10.233)
1 < 1 1 b}

The exponent 771 (or more precisely 77 ) has the form

n =Ny + M1, (10.234)
Then,

(’7’1)2 = (MM + M) (Mg + M)
= MiMniLN, + Moo = 201N » (10.235)

where we have taken into account that )ﬁ = n% = ﬁfﬁ% = 0. The higher powers of i
are equal to zero, and we get

e M =1 (7 + M) + mfin, - (10.236)
Applying our integration rules, we see that
| diane = [ dnydmdnpdnaimnon, = 1. (10237)
as in the one-dimensional case. Let us transform the integration variables as

n=Ma, #§=Na, (10.238)
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where M and N are 2x2-matrices, whereas a and a are new Grassmann variables. Then,
we have

MM = (M@ + Mip0) (M 07 + Myra)

where we have taken into account the anticommutativity of Grassmann variables. To
conserve the integration rules

J dndnnin, = J da;day,oq; , (10.240)

we have to require that

dn,dn, = (Det M) 'da,da, (10.241)

which differs from the usual rule for an integration variable change by the power of
the determinant. Taking into account that

fin = NaMa = NaaM" = -aM"Na = aM" Na, (10.242)
we write (10.237) as
(Det MN)™" j dadae ™ N = 1. (10.243)
As Det MN = Det MY N, we obtain the general result
Idadae_aA“ - DetA, (10.244)

which represents the Gaussian integral over Grassmann variables.
To describe fermion fields, we make a transition to Grassmann algebra with infi-
nite dimensions, with the appropriate generators denoted as C(x):

{cx),c} =0, (10.245)
L.R
aa CZE;( ) 8(x—y), (10.246)
J AC(x) =0, j AC)C() = 1. (10.247)

As a result, we obtain functional integrals over Grassmann (Fermion) fields.
As we already know, Dirac’s Lagrangian has the form

L = ihy*o,pp — mpyp. (10.248)
Then, the normalized generating functional for the free Dirac field can be written as

Zoln.iil = < [ DIDY exp{i [ axtpeoy'a, - mupeo + ieawed + pooneol }
(10.249)
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where the normalization factor is
N = leZ)Dl/) exp[i J dxp(x)(iy"9, — m)p(x) | . (10.250)

Here, we introduced the Grassmannian source 7j(x) for field y(x) and n(x) for field (x).
To shorten the notations, we introduce

st =iy9, -m. (10.251)
Then,
1 - . S
Zyln, ] = % J DYDY eXp[l J dx(YS~ Y + Y +yn) | . (10.252)
Consider the quadratic form
Q. Y) = PSP+ Y + Y. (10.253)

Let us find the value of ¢, “minimizing” this form from the condition
I
a—?:s*lpw:o, Z==yPSst+q=0, (10.254)
P
which gives

Ym=-S1, Ypn=-7S, (10.255)

where we have assumed the existence of the inverse operator S7L. At the “minimum”,
we have

Q=0Qp = QW Yy =-1S. (10.256)

As a result, our quadratic form can be written as

Q=Qu+@-P)S" W —1hy). (10.257)
Correspondingly,'®
Zoln) = - [ DIDwexp{i [ axl0y + (- s -y
- Ai/ exp[—i J dx j A0SO — y)n(y)] Det(~is™), (10.258)

16 The second equality in (10.258) is the fermion analogue of equation (10.48) for a complex boson
field.
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where the last expression was derived extracting the factor expli f Q,,] outside the
integral, as Q,, does not depend on i and l]) and used the obvious functional general-
ization of (10.244)

J DPDpe ¥ = DetA. (10.259)

In a similar way, we may show that A/ = Det(-iS™!), so that finally, we obtain the
generating functional of the free Dirac field as

Zoln. ) = exp| i [ dx [ dynsee -y (10.260)
It is easy to see that operator S really exists. It has the form
S(x) = (iy"9, + m)Ap(x), (10.261)

where Ap(x) is the well-known Feynman propagator of a scalar field. In fact, using
(10.251), we have

sls = (iy"9, - m)(iy*d, + m)Ap(x) = (-0 - m?)Ap(x) = 6(x). (10.262)

Now, we can define the free propagator of the Dirac field as

- 5220[11,?1]‘
") = S00870) by
6 6
=- 2 i ax | dynooso-
5100 51’1()/){ ] ax | aymoosix y)”(”)H,F,,:O
=iS(x-y), (10.263)

where we have used exp(-Sn) = 1 - 1Sn.
Let us summarize the main expressions related to the free scalar and spinor fields.
For the scalar field, we have

Lo = la @' - lmz(p2 = —1(p(l:| +m’)p. (10.264)
2K 2 2
We have seen above that
T(X,y) = iAp(x —y), (10.265)
where Ap is the Feynman propagator satisfying the equation
(@ +m)Ap(x ~y) = -8(x - y). (10.266)
For the spinor (Dirac) field, we have

Lo =ipy*p - mnp = PS ', (10.267)
T(X,y) =iS(x -y). (10.268)
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In both cases, we see that the propagator is inverse (operator) to the coefficient be-
fore the quadratic term in the Lagrangian. We can take this as the definition of a free
propagator in the functional formulation for an arbitrary field.

The generating functional of interacting Dirac fields can be defined in a similar
manner to the case of scalar fields:

Z[n,n) = exp [i J dxz:,-,,t< % %, %%)]ZD (n.7]. (10.269)
From this expression, we can derive all the rules of diagram technique for Fermi fields,
in the same way how this was done above for the scalar field. The only important dif-
ference, due to the Grassmann nature of fermion fields, is the necessity of associating
an additional factor of (-1) with each fermion loop."” We shall not give details of the
diagrammatic rules for purely fermion models of particle interaction, as all such the-
ories are nonrenormalizable in the 4-dimensional space-time.

Felix Aleksandrovich Berezin (1931-1980) was a Soviet
mathematical physicist. He studied mathematical physics
under direction of Israel Gelfand and joined the Depart-
ment of Mathematics at the Moscow State University at the
age of 25. Since the 1950s, he was involved in the studies of
functional approaches in quantum field theory and quan-
tum mechanics. He was first to introduce functional integral
over Grassmannian anticommuting variables to describe
Fermions in quantum field theory, which is called after him,
as is the closely related construction of the Berezinian,
which may be regarded as the “super”-analog of the Jaco-
bian. His ideas were of exceptional importance for founda-
tions of “super”-mathematics and supersymmetry in the theory of elementary parti-
cles. In 1980 he drowned during a tourist trip in the region of Kolyma river in Eastern
Siberia.

As an example of a fermion interaction model, which is really applicable to particle interactions, we
only mention the so-called Fermi (4-fermion) interaction. This is quite successful as a description of
low-energy interactions of leptons. The corresponding interaction Lagrangian (for two lower genera-
tions of leptons) is written in the standard form [40]

G

Lint = $i3vjw, (10.270)

17 It can be shown [56] that the origin of this factor is related to the functional generalization of

. 2 5
(10.221), which has the form D) = " e
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where j, is a lepton-weak current operator:

jﬁ/ = l;_beral;bve + lz)uralpvp >

j3v+ = lz)vel-‘otl/)e + li}v‘ural/)y > (10.271)

where 1
=-(1-YW(1+y°), 10.272
SA=v W (+y) (10.272)

and the lower indices of the field operators denote the corresponding particles (electron e, muon y,
electron neutrino v,, muon neutrino Vu)'

From simple dimensional analysis it becomes clear that the Lagrangian corresponds to nonrenormal-
izable theory: the coupling constant G is dimensional, with the dimensionality of squared length or the
inverse square of the mass. Its numerical value is well known from experimental data on low-energy
processes (well-described by first order of perturbation theory over G), such as muon decay and is

written usually as
3

G=10- 10*5)&1T =143-10 "% erg:em®, (10.273)
myc

where my, is the proton mass, introduced here just as a dimensional parameter. Its appearance in
(10.273) is rather artificial, and later we shall see how such interaction appears as effective in the
modern theory of weak and electromagnetic interactions, and which mass scale is actually at work
here.
Due to the nonrenormalizability of field theory with the interaction Lagrangian (10.270), it cannot be
considered as fundamental, and it is rather senseless to write higher-order corrections of perturbation
theory over G.

10.10 Propagators and gauge conditions in QED

In QED we can write down the generating functional of Maxwell field as
2l = j DA, exp{i j dx(L + ]“Ay)]» , (10.274)
where J# is an external source current, and

1
L=-—F,F". 10.275
16m° M ( )
Making partial integration over dx and dropping the surface integrals, we can rewrite
this Lagrangian as

L= %A" (8,00 - 0,0,]4". (10.276)
The Lagrangian of the electromagnetic field is invariant to gradient (gauge) transfor-
mations Ay - A+ BHA. At the same time, the functional integral in (10.274) is taken
over all A, including those connected with each other by gauge transformations. Ob-
viously this leads to the appearance of an infinite contribution to Z and to Green’s
functions. It is clear that it is necessary to fix some gauge, so that the integral over 4,
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is not calculated over the field configurations, which are obtained from each other by
gauge transformations. Physically these configurations are just equivalent! Here we
meet a problem which becomes especially difficult for non-Abelian gauge theories. In
fact, this problem can be rigorously solved, as it will be shown in the next chapter.
Here we just limit ourselves to several technical remarks.

If we use the Lorentz gauge ayA" = 0, the Lagrangian (10.276) becomes

1
L= Alg,nA”. (10.277)

The inverse operator for g*o is represented by the Feynman propagator (see, e. g.,
Chapter 4)

Dpy(X,y) = g 4mAp(x, y;m = 0). (10.278)

In momentum representation, the operator —gw,kz, originating from (10.277), has an
inverse operator written as —g"" %, so that the Feynman propagator of the electromag-

netic field in the Lorentz gauge has the form

4

R (10.279)

DF],tv(k) = 8w

In the general case we can add to the Lagrangian an extra term, fixing the gauge, with
an arbitrary coefficient a:

1 1 2 1 1
L=- P (@A) = oA [gwu + (& - 1>auav]AV. (10.280)

161 8na

In momentum representation, the coefficient before the square of the field is
% D\ 0.2
~ kg + l—a ks (10.281)
and the corresponding inverse operator produces the propagator

(10.282)

4t k,k
Dy (k) = -5 [gw +(@-1) sz ] .
For a — 1, we obtain the Feynman propagator (Lorentz—Feynman gauge), whereas for
a — 0, we obtain the propagator in a Landau gauge.
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11.1 Non-Abelian gauge fields and Faddeev—-Popov quantization

Let us consider the quantum theory of non-Abelian gauge fields. For a long time, quan-
tization of Yang—Mills fields remained an unsolved problem due to difficulties related
to the necessity of a correct account of gauge invariance. In particular, attempts to
quantize this theory along the lines of the traditional (operator) approach in quan-
tum field theory were mostly unsuccessful, despite the successes of Abelian QED. The
complete solution of the problem was achieved by Faddeev and Popov, who used func-
tional methods. In the following, we mainly follow the presentation of [13].

The heuristic idea

We have seen above that the value of the generating functional Z, defined in the usual
way, in the case of gauge theory (even QED) is—in general—infinite, as it contains in-
tegration over all fields A, including those connected with each other by gauge trans-
formations, which leave an integrand invariant.

Before we start the analysis, allowing separation of the corresponding infinite
“volume” factor from the (infinite-dimensional) functional integral over the gauge
field, we shall consider a simple illustration of the main idea of our general method
for the case of the usual two-dimensional integral:

W= J dx J dyelSo) — J dreS® (11.1)

where r = (r,60) defines the polar coordinates of a point on the plane. Assume that
the function S(r) (analogue to the action) is invariant with respect to rotations in the
two-dimensional space:

S(r) = S(ry) (11.2)

ast = (r,0) — r4 = (1,0 + ¢). This means, that S(r) is constant at the circles (“orbits”)
in the (x,y)-plane, as shown in Figure 11.1(a). In this trivial example, if we want to
take into account only contributions from nonequivalent values of S(r), we need to
extract a “volume factor”, corresponding to integration over angular variable! J ao =
2m. To formalize this, we shall use the following “recipe”, to be generalized for more
complicated cases later. Let us put inside our integral a factor 1, written in the form?

1= J dp6(6 - ). (11.3)

1 Angular integration is assumed to be done from 0 to 277, and we drop these integration limits below.
2 Here it is assumed that 0 is within the interval (0, 277).

https://doi.org/10.1515/9783110648522-011
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Figure 11.1

Then, we have
W= J dep J dreS06(0 — ¢) = J dpW,, (11.4)
where
Wy = j dré(6 — ¢)e® (11.5)

is calculated for the given value of ¢ = 6. Thus, first of all, we calculate W at the
fixed value of ¢ = 0 (constraint!), and afterwards integrate over all values of ¢ (see
Figure 11.1(a)). Using the invariance of S (11.2), we have

W¢ = W¢/ . (11.6)
We see that the “volume” of the orbit can be extracted as a factor:
w = [ dgw, - w, [ dg = 2nw,. (11.7)

In the general case, we can use a more complicated constraint (instead of ¢ = 6),
which can be represented by some curve g(r) = 0, crossing each orbit only once, as
shown in Figure 11.1(b), so that the equation g(r¢) = 0 has the unique solution for ¢
at a fixed value of r. Taking such a general constraint, we define, instead of simple
equation (11.3), the “representation of unity” of the form

1=Ag(r) J dpé [g(r¢)] ) (11.8)
In other words, we define the function Ag(r) as
(850" = [ dgeletry)]. (119)
Using the general rule
[ axsifool - [ af f} —8(f) = f} — LO , (11.10)
we obtain
Ay(r) = %8%0) (11.11)

00 g=0 ’
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and Ag (1) here is invariant with respect to two-dimensional rotations:

Ay " = J dps[g(t s, y)) = j de"8[g(xy)] = [0 . (11.12)

Then, repeating arguments similar to those used during the transformation from (11.4)
to (11.7), we can again extract from our integral the “volume factor” 27

W = [ dg [ drs,05[g (e = [ gy, (11.13)
where
Wy = [ dren, 5gxy)). (11.14)

The entire nontrivial part of the integral is here. The “volume factor” is equal to 27,
which is the formal outcome of the invariance of Wy, with respect to the rotations:

Wy = Jdreis(')Ag(r)G[g(rd,,)] - Jdr’e"s"')Ag(r’d,) = W, (11.15)

where we have introduced the variable t' = (r, ¢') and used the rotational invariance
A (1) of S(r) and the integration measure dr. Thus, our “recipe” for extracting the “vol-
ume factor” is to introduce into the integrand the constraining §-function, which is
multiplied by A,, defined by (11.9).

Extracting the “volume factor” in a functional integral
Now let us discuss non-Abelian gauge fields. To be concrete, we consider here the case
of Yang-Mills fields for a SU(2) gauge group. The Lagrangian of this theory is written as

1
L= By F™, a=123, (11.16)

where (reference equation (2.113))
Fy, = 9,A; — 3,4y + ge AjAT . (11.17)

Here, g is the Yang—Mills coupling constant. We define the generating functional as
usual:

Z[) = J Diiy exp{i J dx[L(x) + fy -Zi“(x)]} ) (11.18)
The action is invariant with respect to gauge transformations

- A9, (11.19)



306 —— 11 Functionalintegrals: gauge fields

where (reference equations (2.157), (2.160), and (2.163))

T _veli, Tl -1
-E—U(O)[Au 3tV (B)BHU(B)]U ). (11.20)

Here,

-

U@ = exp[ié(x) : (11.21)

is the spinor transformation of SU(2). Near the unit transformation, we can write
U(0) as

U®l)=1+i6-

N~

+0(6%). (11.22)

The values of 6(x) represent the group parameters, depending on the point of space-
time, whereas 7 are Pauli matrices in isotopic space.

The action of our theory is constant (invariant) on the orbit of the gauge group,
consisting of all Az, obtained from some fixed field configuration Zly by transforma-
tion U(0), which encompasses all elements of the group SU(2). For the correct quan-
tization procedure, functional integration should be done over the “hypersurface” in
functional space, which crosses each orbit only once. Thus, if we write the equation
for this hypersurface as

faA) =0, a=1,23, (11.23)

the equation

f.(A% =0 (11.24)

should have a unique solution 6 for the given field configuration Ziy. This condition
fixes the gauge.
Let us define integration over the gauge group parameters as

3
[d6) =[] d6,. (11.25)
a=1

If we make two gauge transformations fand @', the corresponding matrixis U()U(@'),
and the transformation parameters are summed: 6+, Thus, the integration measure
defined as in (11.25) is gauge invariant; if 6 angles encompass all possible values, the
shift by a constant 6’ is irrelevant. Symbolically, we write this as d(66') = d6" = d6.

Now, we can act as above (in the case of usual integral) and introduce Ar [Zlu] as
follows:

87,1 = [[dBeolelf. ). (11.26)
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Then, we have

Ar[A,] = Det My, (11.27)

which is called the Faddeev—Popov determinant, where

a

59 (11.28)

(Mf)ab

In more detail, making the usual discretization of space (followed by the continuous limit), we can
write

3(6,(x), 6,(x), 85(x))
o Ay J [11 1 d6.005]fa00] = Ulydf“(x)a[f“(x)] 3, 00> 00, F5(0)

06,(x) } [ 86,(x) ]
= = Det . 11.29)
H [ ofp(x) f=0 6fp(x) f=0 (
In the last equality (after transformation to continuous x), the functional determinant (Jacobian) of

the matrix with continuous indices 6? ((X) appeared, which is defined as the product of eigenstates of
this matrix.

The matrix M is related to the infinitesimal gauge transformations of the function

falA,):

f,(x)
59 6%)

= fulA, 0] + J dy[M;(6,)] ,0() + 0(6%) . (11.30)

Fl500) = £a[Ay00) + [ dy o 10,0+ 0(6?)

Then, demanding the uniqueness of the solution of equation (11.24) fa(ﬁﬁ) = 0, with

respect to 6, we conclude that Det Mg should be nonzero. The explicit form of My is
naturally dependent on the choice of specific gauge condition (the form of function
f,); concrete expressions for the case for Lorentz gauge will be presented below.

The Faddeev-Popov determinant Ay [Au] is gauge invariant. In fact, we can write
1= - Spl
871 = [ (a8 00]s[fa(A7)]. (11.31)

Then,

-

7 [A) = [[a8 olelsa(3 )] = [[dbood olols ()]
)] =814, (11.32)

- [[a8" cos[sa(4

which completes the proof. Actually, this situation is similar to (11.12).

Let us substitute the “unity representation” following from (11.26),

J[d@(x)]Af 18[£,(A%)], (11.33)
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into (11.18). Then, denoting the integration measure over the Yang—Mills fields as
[dﬁy (x)], we obtain

J[dﬁy(x)] exp{i J dxc(x)}
- [1dbeo) [1dA, 01813, 100, A exp i [ dxeco]
_ j[de(x)] J[diiy(x)]Af[A},(x)]tﬁ[fa(ﬁu)] exp{i j dxﬁ(x)} . (11.34)

To obtain the last equality, we used the invariance of As [Zly] and expf{i f dxL(x)} to
gauge transformations Ziz — Zly. Then, we see that the integrand does not depend on
6(x), and [[dO(x)] = [ TT, d6(x) simply gives infinite “volume” of the orbit, which we
wanted to separate. Thus, dropping this irrelevant factor, we can write the generating
functional for gauge field Zly as

ZlJ] = J[dﬁy]Af[Ay]s[fa(Ay)] exp{ijdx[c(x) +J* .Zly]}

- J[dﬁy](Det M)6[f,(A,)] exp{i j dx[L(x) + J* -ny]} . (11.35)

This is the essence of the so-called Faddeev—-Popov Ansatz; we isolate and cancel
all the irrelevant integrations, introducing into the integration measure the factor of
Deth(S[fa(Ay)].

Abelian gauge theory (QED)
Consider the simplest example, QED. In this case, the infinitesimal gauge transforma-
tion is written as

0 1
A =A,00- ga}ﬂ(x) . (11.36)
For any choice of the gauge condition (11.23) linear over field A, (x), the matrix My
(11.28) is independent of field A, (x). Then, the Faddeev-Popov determinant is unim-

portant from a physical point of view and can be moved outside functional integral
over 4, (x) and dropped.’ Then, we can write the generating functional as

ZUl = J[dAH]S[f(A”)] exp{i J dx[L(x) +]H(X)AH(X)]} , (11.37)

where 6[f(A,)] fixes the gauge, and we obtain the usual formulation of QED.

3 In terms of general case, discussed below, we can say, in QED Faddeev-Popov “ghosts” do not inter-
act with field Ay and are irrelevant.
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11.2 Feynman diagrams for non-Abelian theory

Consider now the details of the diagram technique for non-Abelian theory. Let us
rewrite the generating functional (11.35) as

ZlJ] = J[diiy] exp{iseff +i J dxj* .AH} , (11.38)

where we have rewritten the factor Det Mf6 lfs (Ay)] as exp In(Det Mf6 [f, (ﬁy)] ), and in-
cluded i In(Det M;6[f, (A'y)]) into the definition of effective action S.. Naturally, the
presence of such a term in effective action complicates the construction of the diagram
technique. First, we shall try to write this term in a more natural and convenient form.

Faddeev-Popov “ghosts”
We can write Det My as an exponential, using the expression

Det M; = exp[SpIn M;]. (11.39)
The proof of (11.39) is trivial. The equality In Det My = SpIn My is obvious for any matrix: Det My is
represented by the product of eigenvalues of My, so that In Det My gives the sum of the logarithms of
all eigenvalues of My, that is, precisely Sp In M.
Writing the matrix M as
Mf =1+L (11.40)

and expanding the logarithms, we have
1o D™
exp[SpInMy] = exp|SpL - 3 SpL™+---+ Y SpL" +---

1
= exp{J dxL,,(x,x) - 5 J dx J dyL (%, Y)Lpa (v, X) + - } (11.41)
We see that the Faddeev—-Popov determinant can be represented as a loop expansion,”
as shown in Figure 11.2, where lines denote the propagators of some fictitious particles
(Faddeev—Popov “ghosts™), forming a triplet of complex scalar (spinless) fields ¢(x).
These fields and their interactions can be described by the generating functional

Det M; = J[dé] [deT] exp{ iJ dxdy z Cq (0 [Mp(x, y)]abcb(y)} ) (11.42)
ab

Here, integration is done over Grassmannian ¢(x), ¢'(x), as the use of common
c-number fields will lead to (Deth)"ll Thus, our scalar fields ¢(x), ¢*(x) obey Fermi

4 This expansion is similar to the loop expansion of free energy in the theory of condensed matter [1].



310 — 11 Functional integrals: gauge fields

L b L
b c
+1 L+ +
L L
a a a
Figure 11.2

statistics, and the Faddeev—-Popov “ghosts” are fermions with spin. There is no con-
tradiction with the spin and statistics theorem here, because these “ghosts” are purely
fictitious particles, which are introduced to the theory just “for convenience”. As their
contribution to the generating functional reduces to the loop series (11.41), there are
no diagrams with external “ghost” lines.

Gauge-fixing terms
Now, we shall transform to the exponential form the term 6[fa(iiy)]. First of all, we
generalize the gauge-fixing condition, writing it as

falA ] =B,(0), a=1,23, (11.43)

where B,(x) is some arbitrary function of space-time point, independent of gauge
field Ziy. Correspondingly, we define A¢ by the condition

Af[A,) J[d@'(x)]&[ (&%) - B,(x)] =1. (11.44)

Obviously, because of the independence of B,(x) from Ziy, this is the same function
Af defined in (11.26);5 in fact, there is no dependence on B,(x) here at all. Thus, the
generating functional (11.35) can be rewritten as

2171 - | A, )1dB)Det MBI, () - B,

X exp{i J dx[ﬁ(x) .y -Ziy - 8_711532()()” , (11.45)

where we have included in the integrand the constant term, such as

, i -

dB]e -— deB X } 11.46

JaBrexp| -5 [ axoo (1146

where ¢ is an arbitrary constant coefficient, which is usually called the gauge pa-
rameter. As a result, the generating functional (11.45) differs from (11.35) by an irrel-
evant constant factor, which can be hidden into normalization. But now, using the

5 This is simply the analogue of (11.6) in the case of usual integration.
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6-function, entering (11.45), we can lift integration over [dB(x)]. Finally, taking into
account also (11.42), we obtain

Z[j] = J[dA 1(de][de*] exp(iSelJ1) , (11.47)
where
SestlJ] = SUT + Stix + Sghost » (11.48)
where S [7] = j dx[L(x) + i A'y] is the usual action of our theory,
Sox = gz J dx{f,[A, 001 (11.49)
is the so-called gauge fixing term, and

Sehost = J dxdy Z o ) [Mr (%, )] 1y (¥) (11.50)
ab

is “ghosts” action.

The Lorentz gauge
In the Lorentz gauge, we have

faA,) =945 =0, a=123. (11.51)
Under infinitesimal gauge transformations,
U®) =1+ i) - g +0(6%), (11.52)

so that

A% = A%(0) - 76" ()AL () + éa}ﬂ“(x) : (11.53)
Substituting (11.53) into (11.51), we have
(&) = f,(A,) - & [e"”fe”(x)A;(x) - éaye"(x)
~ )+ [y, 8, (11.54)
where, in the last equality, we have used (11.30). Then, we see that—in this case—

[Mp(6,Y)] 5 = éa" (60, - g™ AS]6(x - y). (11.55)
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Now, substituting everything into (11.49) and (11.50), we obtain

1 2 \2
Sfix = —% de(a“Ay) s (1156)
1
Sghost = E j dx Z CZ (X)au [5aba}1 - ggabCA;]Cb(X) . (11.57)
ab

We see that now “ghosts” are interacting with the gauge field Ziw which is described
by the second term in square brackets in (11.57). In similar expressions in QED, such a
term was absent.’

Let us also introduce the sources )];, n, for “ghost” fields c,, c:; and write the gen-
erating functional of gauge theory as

2[7.71") = [[dA, dede”) exp{i | dx[c(x) - %(aﬂﬁy)z

+ €0 (8ap0y — 8€ancAy)Cy + JyAY + 1" ¢ + nac’”} } , (11.58)

where we redefined fields c,, c; in an obvious way by including the factor 1/g.

Perturbation expansion
Let us write the action of our theory as

Seff = So + 57 (11.59)
where
So = J dx[—é(ayAﬁ ~9,4%)" - Simf(a"A;j)2 +ChPe, + JOAT 4 e |,
(11.60)

and the interaction term containing fields in powers higher than two has the form
1 a a abc by scv
S[ = | dx —g(ayAv - avAy)gs A"A
1 5 abc_ade zb 4c dy pev a+ abc ,c b
“ S AAAFAT — g H e A | (1161)

The generating functional can now be written as

. [ 6 6 & e 0rm
Z[L "] = exp{lsl[ﬁ, 57 W] }ZXU]Z?[)],)f] ) (11.62)
7t

6 Inthe non-Abelian case it is also possible to choose a special, so-called axial, gauge, where “ghosts”
are completely excluded [13], but this gauge is rather inconvenient for practical calculations, due to a
very complicated form of the gauge field propagator.
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where
07 7 . 1 a ay2 1 a\2 | ra pau
200 = j[dAy] exp zjdx “Ter WAL~ ~ g @A A | (16
Z2[n.1") = J[dE*] [d¢] exp{i J dx[c™*c® - e - q“c‘”]} . (11.64)

These expressions allow the direct derivation of perturbation theory. We shall not give
the detailed derivation here, but limit ourselves to the summary of the main rules of
the diagram technique. Readers interested in details can find such in a number of
books, for example, [56, 53, 28, 13, 25].

Propagators
To find the propagator of field Ziy, we rewrite ZX as

- - 1 a \ -1 \2 a ,q,
2007 = J[dAy]exp{inx[gﬁabAy<gﬁ 2 %aﬂa )Aﬁ +]0A u”
= J[dﬁy] exp{i J dx[%AZKZ}‘;AIV’ + ]ZA“"] } , (11.65)
where
K = [g’”62 - (1 - %)a“a”]aab. (11.66)

Integration over [ley] can be performed using the well-known Gaussian integral
(10.47), which—in this case—can be written as

J[d(p] exp[—%((pK(p) + (]go)} ~ (DetK) " exp(JK ), (11.67)

where angular brackets denote the appropriate integrals. Application of this expres-
sion to (11.65) gives

n i
Zalll = exp{—z J dxdy],; ()Gl (x - y)]f(y)} , (11.68)
where
'k e Ik KK 4m
G x - v) = SabJ ik(x y)[_( W _ )_ ) 11.6
X ~Y) @y © & e ) e ieve (11.69)
It is easy to check that
j dyK™ (x - y)GLs (y - 2) = gh858(x - 2), (11.70)

so that the propagator G is the inverse of K.
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Likewise, we find

Z0m.0"] = exp{—i j dxdyn™ (x)G™ (x - y)n“(y)} , (11.71)
where
ab d4k e—ik(x—y)
V= == . 11.72
G-y J(27'[)4 K+ie P 172

This directly corresponds to the fact that “ghosts” are scalar particles with zero mass
(obeying Fermi statistics).

Finally, we have:
1. the propagator of massless vector bosons

k,k 4
.aab .
iy (k) = =gy | 8y — (1= &) sz e (11.73)
denoted in diagrams by a wave-like line;
2. the propagator of Faddeev-Popov “ghosts”
4
A (k) = —i6 4 ——— 11.74
1) = ~ia k2 +ie (11.74)

which is denoted by a dashed line with an arrow (a “ghost” is different from an
“antighost™).

Elementary vertices
In non-Abelian gauge theories, there are two types of self-interactions, which can be
written as

eli(ky)ey (ky)eh (k) Tane (ky, kyy K3) (11.75)
el (ky)ey (ko) (k3)ehy (ki Tance (ky, Ky ks Ky (11.76)

where we also explicitly show the corresponding polarization vectors. The Feynman
rules are derived directly from (11.61), (11.62). In momentum representation, the first
term in (11.61) can be written as

%A“"(kl AP (e A% (e T2 (ke ey ) (1177)

The vertex part lev’}f should be completely antisymmetric with respect to permutations
of fields A. The structure related to SU(2) gauge group is already fixed:

Tt (ks Ky, k3) = €T ks, Ky, k) (11.78)
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whereas the Lorentzian (relativistic) structure of this function can be obtained as fol-
lows: From (11.61), it is clear that F}M(kl, k,, k3) consists of terms, such as k.8 A pre-
cise combination of these terms can be established from the requirement of antisym-
metry of FIM(kl, k,, k3), with respect to permutations of the indices: y, v, 1, 2, et cetera,
taking into account the total antisymmetry of the tensor €. Thus, we find

abc

,uv/l - lggabc[(kl kZ)/lgyv + (kZ kB)ygvA + (k3 kl)vgy/\] (11'79)

where k; + k, + k3 = 0. The corresponding diagram for a “triple” vertex is shown in
Figure 11.3.

k“la/J?a k3,/\,C

kyv,b

Figure 11.3

Likewise, we can find the vertex of “quartic” interaction of the gauge field correspond-
ing to the second term in (11.61):

zl"ze/fg ig’[e

abe cde ace bde

(gy/\gvp gv/\gyp)"'e (gyvg/lp g/lvgyp)

ade cbe

+& (gy/lgpv gp/lg],lv)] (1180)

which is expressed by the diagram in Figure 11.4. Here, k; + k, + k3 + k, = O.

kowa  kp.d

kzal/ab ks, A c

Figure 11.4

For the vertex connecting the “ghosts” and gauge fields with polarization vector £ (q),
we have

T2 = ige™ky, (11.81)
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Figure 11.5

where k, = k; + q. This vertex is shown in Figure 11.5; it is antisymmetric over the
isospin indices. Let us recall that “ghost” lines enter diagrams only in loops. Besides
each diagram containing a closed loop of the gauge field, there is a corresponding
diagram with a closed “ghost” line. As in the case of the usual fermion fields, each
“ghost” loop can be multiplied by an additional (-1).

The propagator of gauge field (11.69) depends on the gauge parameter £. Its value
is chosen for the convenience of explicit calculations in solving concrete problems. For
example, & = 1 corresponds to the so-called t’"Hooft-Feynman gauge, whereas & = 0
gives the Landau gauge.

The introduction of fermions into the Yang—Mills theory is not difficult: it is suffi-
cient to add to the Lagrangian gauge invariant terms, such as

Ly = p(iy*D, - my (11.82)
where
D =93 - igT Ay (11.83)

Here, T is the gauge group generator in the given representation. For example, if i
is a SU(2) doublet, we have T® = 7%/2. Thus, we obtain additional Feynman rules for
fermions (with group indices n,m, .. .):

1. the fermion propagator has the standard form

1

iN,, (k) =6,py———F— 11.84
Byon () "yt —m +ie ( )
and is expressed by continuous line;
2. the fermion-gauge field interaction vertex has the form
il = 1g(T) " (11.85)

This is shown diagrammatically in Figure 11.6.

The structure of the diagram technique described above is also conserved for the
other gauge groups, such as the very important SU(3) describing the color symmetry of
quarks. The only difference is in the dimensionality of the corresponding irreducible
representations and the explicit form of generator matrices.
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Figure 11.6

So far, we have already studied the basics of the modern theory of quantum gauge
fields, which forms the foundations of the standard model of elementary particles.
Now, we will begin our discussion on specific models of interactions. However, some
conceptual problems, which we have discussed from the beginning, still remain. In
particular—so far—it is still unclear how we should deal with the problem of the mass-
less nature of Yang—Mills fields, which is in striking contrast to experiments, which
clearly demonstrate that the only long-range interaction in nature (except gravitation)
is electromagnetism. In the next chapter, we shall see how this problem is solved in
the unified theory of weak and electromagnetic interactions. The remarkable fact is
that this solution is completely based on the ideas and methods originating from the
modern theory of condensed matter.

Ludwig Dmitrievich Faddeev
(1934-2017) was a Soviet and
Russian theoretical physicist and
mathematician. He is known for
the discovery of the Faddeev
equations in the theory of the
quantum mechanical three-body
problem and for the develop-
ment of path integral methods in
the quantization of non-Abelian
gauge field theories, including
the introduction (with Victor
Popov) of Faddeev—Popov ghosts. He led the Leningrad School, in which he, along
with many of his students, developed the quantum inverse scattering method for
studying quantum integrable systems in one space and one time dimension. Faddeev
was born in Leningrad to a family of mathematicians. His father, Dmitry Faddeev,
was a well known algebraist, professor of Leningrad University and member of the
Russian Academy of Sciences. His mother, Vera Faddeeva, was known for her work
in numerical linear algebra. Faddeev attended Leningrad University, receiving his
undergraduate degree in 1956. He enrolled in physics, rather than mathematics, to
be independent of his father. Nevertheless, he received a solid education in mathe-
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matics as well, due to the influence of V. A. Fock and V. I. Smirnov. From 1976 to 2000,
Faddeev was head of the St. Petersburg Department of Steklov Institute of Mathe-
matics of Russian Academy of Sciences. He was an invited visitor to the CERN Theory
Division for the first time in 1973 and made several further visits there. Faddeev was a
member of the Russian Academy of Sciences since 1976, and was a member of a num-
ber of foreign academies, including the US National Academy of Sciences, the French
Academy of Sciences, the Austrian Academy of Sciences, the Brazilian Academy
of Sciences, the Royal Swedish Academy of Sciences, and the Royal Society. He re-
ceived numerous honors, including USSR State Prize (1971), Dannie Heineman Prize
(1975), Dirac Prize (1990), Max Planck Medal (1996), Demidov Prize (2002), Henri
Poincare Prize (2006), and Lomonosov Gold Medal (2013). He was the president of
the International Mathematical Union (1986-1990).



12 The Weinberg-Salam model

12.1 Spontaneous symmetry-breaking and the Goldstone
theorem

As we have already noted, the significant progress in modern theory of elementary
particles was achieved using some fundamental concepts of the modern theory of the
condensed state. Most important was the introduction into quantum field theory of the
idea of the possibility of phase transitions, when the symmetry of the ground state be-
comes lower than the symmetry of the Lagrangian. This allowed the effective solution
of the problem of mass generation for gauge fields without breaking local gauge invari-
ance, directly leading to quite rich and nontrivial foundations of the Standard Model.
Moreover, the picture of possible “vacuum” phase transitions form the basis of mod-
ern cosmology and physics of matter at very high densities and temperatures. Here,
we shall limit ourselves to a presentation of some of the main ideas, which played a de-
cisive role during the construction of the unified theory of weak and electromagnetic
interactions.!

Let us again begin with the simplest example of the real scalar self-interacting
field p(x), described by the Lagrangian

£= 3007 - Vp) = 5@ - 570 - V(@), (12.)

where V(¢) is some function of field invariants. The first term in this expression may be
considered to be kinetic energy density, and all the others represent potential energy

density.
From (12.1), we obtain the equations of motion
V()
R =-——1.
V(p)
2o -Vp=-——"" 12.2
t P @ 30 (12.2)

The character of the solutions of these field equations depends essentially on the
form of “potential energy” of self-interaction V(¢). Consider first the case of the tra-
ditional field theory, which was analyzed before. Let V(¢) be of the form shown in
Figure 12.1(a). Then, our system has the “stable equilibrium” state with ¢ = 0 and can
oscillate around it. Close enough to this equilibrium state, we can always write

}12
V() = 34)2, (12.3)

1 In this chapter we mainly follow [5].

https://doi.org/10.1515/9783110648522-012
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(@) (b)

Figure 12.1

where pi% = ( 57 )q, 0> SO that (12.2) reduces to

aﬁ<p +1p=0, (12.4)

that is, to the Klein—Gordon equation. If we are looking for the plane-wave solution of
this equation ¢ ~ e™ from (12.4), the usual relativistic dispersion of a particle with
mass p: kf) = K? + y? immediately follows. The higher-order terms of expansion of
V() lead to nonlinear terms in field equations, describing interactions of these plane
waves or particle scattering. Let us limit ourselves to

1 1
V(p) = Eyz(pz + Z}l(p[‘. (12.5)

There is no cubic term here, as V(¢) should be symmetric with respect to ¢ — —¢, so
that there is always a minimum of V(¢) at ¢ = 0. Limitation to powers not higher than
~" is of conceptual importance, as the coupling constant A > 0 is dimensionless, and
the theory is renormalizable. Thus, in this case, we are dealing with the well-known
¢"-theory.

Consider now the case of u* < 0. This can seem strange, as from the naive point
of view, we are dealing with imaginary mass. However, we need to be more accurate.
Now ¢ = 0 is no longer a stable equilibrium, as the potential energy has the form
shown in Figure 12.1(b).> We now see two stable equilibrium states, corresponding to

2
(p=n:i\%. (12.6)

Expanding V(¢) around points (12.6) up to the quadratic terms, we have

'1

V(p) = - W(p-n’= ” - 12(69)%, (12.7)

2 The situation here is completely analogous to the Landau theory of phase transitions, where yu* ~
T - T, so that yz < Ofor T < T, that is, below the phase transition temperature.
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where 8¢ = @ — and —*(6¢)* > 0, because of y* < 0. Now, we see that field equa-
tions (12.2) will have plane-wave solutions for 6@ with wave-vector k, satisfying the
condition (determining dispersion) k? = 2| ylz, so that these waves will correspond to

particles with real positive mass m = \/2|;1_|2

In fact, here we are dealing with a phase transition in quantum field theory. The
system chooses one of two equilibrium positions in Figure 12.1(b), and the field oscil-
lates close to this new ground state.

In quantum mechanics the system with two such minima of potential energy does not only oscillate
around the single minimum, because of the possibility of quantum tunneling between these two equi-
librium positions. The quantum state is split in two: the symmetric and the antisymmetric (with respect
to these minima) states. The ground state corresponds to the symmetric state [35]. Thus, in quantum
mechanics the symmetry of the ground state is in complete agreement with the symmetry of the La-
grange function (in our case even in ¢). Quantum field theory, in this sense, is reminiscent of classical
mechanics. Actually, the probability of quantum tunneling transition becomes less with the growth
of the number of degrees of freedom, and becomes zero in the case of their number being infinite. In
fact, let us consider the field in a finite volume Q. Then, the Lagrange function is L = _[ BxL ~ LQ,
so that the corresponding kinetic energy ~ Q(pz, whereas the potential is ~ QV(¢). Thus, our problem
is equivalent to the tunneling of a particle with mass M ~ Q through the potential barrier of width
|x| ~ n and height V ~ sznz. The probability of such tunnelling transition [35] is of the order of
exp(—V2MV|x|) ~ exp(—quz) — 0 for Q — co. We can say that our field in the ground state is rep-
resented by a macroscopic “string” or “rope” of infinite length, lying in the left or right valley of the
potential in Figure 12.1(b), along the whole valley, which is perpendicular to the plane in the figure.
Naturally, such an object cannot tunnel between the valleys of the potential.

In quantum field theory the ground state is called a vacuum. Thus, we have to choose
the single ground state: one definite vacuum. The presence of another vacuum (phys-
ically equivalent to the first one) is now irrelevant. Two minima of V(¢) correspond to
two separate vacuums of the theory, which are orthogonal to each other, two orthog-
onal Hilbert spaces of excited states, two separate “worlds”.

Traditional quantum field theory, corresponding to the potential V(¢) shown in
Figure 12.1(a), is constructed, as we know, as follows: The field is represented by the
sum of the oscillators, which are described by the creation and annihilation operators
a' and a, and the vacuum is the state without the particles a|0) = 0, so that

{(Olp|0) = 0. (12.8)

In the case of potential V(¢), shown in Figure 12.1(b), the sum over the oscillators
represents not the field ¢ itself, but its deviation from the equilibrium ¢ = ¢ — 1. In
this case,

(Olpl0) =n, (12.9)

that is, the vacuum average of the field operator is nonzero: the system acquires the
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Bose-condensate> of particles corresponding to field ¢. The initial Lagrangian (12.1),
(12.5) is symmetric with respect to ¢ — —¢. However, for u*> < 0, it leads to a non-
symmetric ground state (vacuum), which is expressed by (12.9). Excitations above this
vacuum also do not possess the symmetry of the initial Lagrangian, as V(¢) from Fig-
ure 12.1(b) is nonsymmetric with respect to ¢ = 1. This phenomenon in quantum field
theory is called spontaneous symmetry-breaking, whereas in condensed matter theory
this is the well-known situation of phase transition into the state with lower symmetry.

The mechanism of mass generation

The existence of the nonzero vacuum average of a scalar field can automatically lead
to the generation of mass of an initially massless particle, which interacts with this
field. Consider as an example Dirac’s field of massless particles with spin 1/2. The La-
grangian of this field has the form

L =)0, +ihroy, (12.10)

where 9 = y“a,,, and we introduced “left” and “right” components of bispinor y:

b= S+ W = 3(-VW =y, (1211

Now, we can introduce the interaction of fields y; , i with our scalar field ¢, breaking
the symmetry of the ground state. Let us add to the Lagrangian (12.10) the term

Line = —x[Pripg + YY1, (1212)

where an expression in square brackets represents the only scalar, which can be con-
structed from 1; and i, whereas x is a dimensionless coupling constant (so that
this interaction is renormalizable). Let us replace field ¢ in (12.12) by its vacuum aver-
age n; this means that we are not taking into account the particle creation processes
for field ¢. Consequently, we have

Ling = 2 + Yripy) = 2o, (12.13)
so that the sum of (12.10) and (12.13) gives
L = oy - mpy, (12.14)
which corresponds to the Dirac Lagrangian for fermions with mass

m=. (12.15)

3 Compare with Bogolyubov’s approach to nonideal Bose gas.
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Thus, we can start with the model of initially massless “left” and “right” fermions,
which interact with scalar field ¢, undergoing the phase transition and transforming
“left” particles into “right” ones and vice versa, and leading to the generation of mass.

Above, we considered the simplest example of a Lagrangian with discrete sym-
metry with respect to ¢ — —¢. Let us now consider the case of continuous symmetry-
breaking. To do this, we introduce the complex scalar field ¢, which is equivalent to
two real fields ¢,, ¢, related by (see Chapter 2)

1
x) = —[@1(x) +ip,(x)]. 12.16
p(x) ﬁ[fpl( ) + i, (x)] (12.16)
The Lagrangian of this field can be written as

L= %(By(pl)z + %(ap<p2>2 = V(g1 92 = 0,0)(Fp") — V(g1 p2). (1217)

Let us assume that the potential V(¢;, ¢,) depends only on the absolute value of ¢,
that s, on p? = (pf + (pg =2¢p™ @, so that V = V(p). This is equivalent to the requirement
of an additional (“internal”) symmetry of the theory with respect to transformations
of group U(1):

Q- eia(p (12.18)

or, which is just the same, the invariance of the Lagrangian with respect to rotations
in an “isotopic” plane:

@ - P cosa—@,sina,

@, > @ysina + @, cosa. (12.19)
We have seen (see Chapter 2), that this symmetry determines the conservation of some
charge, such as electric and barion. Fields ¢ and ¢* have the opposite values of this
charge.

Consider now the potential V(p), shown in Figure 12.2, which can be modeled, for
example, by

1 1
Vip) = 510" + 2 4p" (12.20)

with p? < 0. Writing the field as (modulus-phase representation)
L
V2

where p(x) and 9(x) are real functions, we can see that V(p) has the minimum at p =

P00 = —p(x)e?™, (12.21)

n= "ij, that is, for field values

1 i
=—ne 12.22
9="5N (12.22)



324 — 12 The Weinberg-Salam model

Figure 12.2

with arbitrary a! Here, we have continuous degeneracy of the ground state with differ-
ent values of a. Each value of a corresponds to its own vacuum (ground state) with the
same (minimal) energy V(n). All these vacuums are physically equivalent, but we have
to choose the only one, for example, corresponding to a = 0, and the Hilbert space of
states associated with this single vacuum, where we already have no U(1) symmetry
(12.18), (12.19).

Let us see which particles are describe by the Lagrangian (12.17). Using (12.21), we can
rewrite the Lagrangian as

c-1m )Z—V(p)+p—2(a 9)? (12.23)
EPaC 2w '

If we limit ourselves in (12.23) to terms which are quadratic in a field, we have to ex-
pand V(p) around p = 1 in powers of p’ = p — 17, and in third term of (12.23) replace p
by 1. As a result, we obtain the free-particle Lagrangian as

m2

— 1a 12 12 ’12882
ﬁ—const+§( yp) _TP +?( L9, (12.24)

where m? = 2|p?|. From here, we immediately obtain the equations of motion
@ +m’)p'=0, 39=0. (12.25)

Thus, we obtained two neutral (real) fields p’ and 9, where the first one describes parti-
cles with mass m, whereas the second one corresponds to massless particles. In equa-
tion (12.25), we have dropped the terms of higher orders describing the interactions of
these particles.



12.2 Gauge fields and the Higgs phenomenon =— 325

The appearance of massless particles due to the spontaneous breaking of con-
tinuous symmetry is the essence of the Goldstone theorem; these particles are called
Goldstones.*

It is not difficult to generalize the Goldstone theorem to the case of higher symme-
tries. Consider ¢(x) with n components. Then, group transformations can be written as

d=5d, (12.26)

where @ and @' are columns with n components (¢, ... .p,), and S is an n x n-matrix.
Let the potential V(®) be dependent only on p* = (pf ot ‘sz and suppose that there
are no other invariants. Consequently,

1 o
L= 5@‘13)2 ~V(p). (12.27)

In this case, we can again make the transformation to “polar” coordinates for field
@, when the field is determined by the modulus p(x) and n — 1 “angular” variables
(phases) a;(x) (i =1,2,...,n—1). As a result, the Lagrangian is written as
1 ) p2 n-1
L=50p)+5 Y O3, a0, - V(p). (12.28)
i,k=1

Assume V(p) having its minimum at p = n, i. e., (0|p|0) = 1. The angular components
@; can be fixed by the condition (0|a;|0) = O (the choice of vacuum) and by 6;;, for
a; = 0 having the form 6;.(0) = ;. Then, again introducing p’ = p — 1, we have

1 : om? 2 1,
L = const + E(ayp') - Tp' + §r12 ;(ayai)z. (12.29)

We see that particles corresponding to fields a; have zero masses, so that there are now
n — 1 Goldstones. This is the general form of the Goldstone theorem.

12.2 Gauge fields and the Higgs phenomenon

It may seem that the appearance of Goldstone particles with zero mass creates addi-
tional difficulties, as our main task is actually to solve the problem of zero mass of

4 In condensed matter theory, the situation is just the same. For example, phase transition into the
ferromagnetic state breaks the continuous symmetry of a rotation group—the Heisenberg exchange
Hamiltonian is invariant to rotations (it contains scalar products of spins on lattice sites), whereas in
the ground state we have a special direction: that of the vector of spontaneous magnetization (sym-
metry is lower). Analogue of Goldstones, in this case, are acoustic spin waves.
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gauge bosons. But this is not the case. The unification of the main idea of gauge the-
ories with the concept of spontaneous symmetry-breaking allows us to formulate the
natural strategy for the construction of realistic models of interacting particles.
Consider the interaction of scalar field ¢, breaking symmetry, with gauge field 4,
in its simplest Abelian (Maxwell) variant. The Lagrangian invariant with respect to

local transformations of U(1) has the form®

1

L =1[(9, - ieAd,)p"][(0" + ieA")p] 4

Fvayv - V((P, (P*) >

where F, = 0,A, - 9,4,

* * % \2
V(g 9") =19 o +A(9"p), 1 <O0.

Let us again introduce modulus-phase representation of field ¢:

_1 19(x)
p(x) = ﬁp(X)e :

But now, we can consider (12.32) as a local gauge transformation of U(1):
P(x) = %N’ (x),
where

L
V2

Then, the covariant derivative, entering (12.30), is transformed as follows:

1
X0 = 2900, @' (x) = —=p(x).
Dy =9, + ieAy)eieX(p' = eiex(ay +ied,x +ieA,)p' = e"eX(ay +ied,)p’,
where
!
A=A, +0x
or, taking into account (12.33), (12.34),

(3, +ieA,)p = —€”(9, +ieA))p,

Sil-

where

1
!
A}l =A]1 + anlg

5 Later in this chapter we use the Heaviside system of units.

(12.30)

(12.31)

(12.32)

(12.33)

(12.34)

(12.35)

(12.36)

(12.37)

(12.38)
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As a result, our Lagrangian is rewritten as

1 . T 1
L= E[(a’* —ieA,)p][(&* + ieA")p] - V(p?) - ZFWF’“’
1 2 € oy 2 1 "y
= E(ayp) + Ep A A}l - V(p ) - ZFHVF . (12.39)

We see that the phase component 9 of field ¢ disappeared from the Lagrangian (so
that the possibility of Goldstone also disappeared); it “gauged-out” into a redefined
vector-potential.
Let us expand (12.39) in powers of deviation p’ = p — n from vacuum average 1,
limiting ourselves only to quadratic terms. As a result, we get
1 > m? 2 1 1 u
L= E(ayp’) - 7p' - ZFWF‘”V + EeznzA' A}, + const, (12.40)
where m? = 2|i%|. This Lagrangian describes a pair of free fields: the field p’ of particles
with mass m and the vector field A;’; with mass

my =en, (12.41)

which is due to the presence of a nonzero vacuum average of the scalar field. The equa-
tions of motion for these fields are

ap' +mp' =0, 9" +muA’" =0. (12.42)

The second equation here has the form of a Proca equation.

Thus, in the initial Lagrangian, we had the two-component field ¢ and the vector
Maxwell (massless) field Au' For ,uz > 0, retaining only terms quadratic over fields, we
obtain the Lagrangian of two free fields; one describing the charged particles with spin
0, whereas another corresponding to a photon with zero mass and two polarizations,
that is, four particles in total. For u> < 0, the total number of particles remains the
same (conservation of the degrees of freedom), but their character has changed: now
we have one neutral scalar field with spin 0 and three independent components of a
massive vector boson with spin 1. Initially, we had QED of a scalar field, whereas after
the reconstruction of the field, we have a “completely different” theory. However, it
should be stressed that all transformations were done exactly, and the initial gauge
invariance of the theory is conserved (and was used during the derivation), despite
the appearance of gauge field mass. Renormalizability of the theory is also conserved.

The appearance of the vector gauge field mass due to its interaction with scalar
field, breaking the symmetry of the ground state, is called the Higgs phenomenon,
whereas field p is usually called a Higgs field, and the corresponding scalar particles
are called Higgs bosons.
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Peter Higgs (born 1929) is a British theoreti-
cal physicist and Nobel Prize laureate. In the
1960s, he proposed that broken symmetry could
explain the origin of mass of elementary parti-
cles in general and of the W and Z bosons, in par-
ticular, for the case of electroweak interactions.
This so-called Higgs mechanism, which was pro-
posed by several physicists in addition to Higgs
at about the same time, predicts the existence of
a new particle, the Higgs boson, the detection of
which became one of the great goals of physics. In
2012, CERN announced its discovery at the Large
Hadron Collider.The Higgs mechanism is generally accepted as an important ingredi-
ent in the Standard Model of particle physics. Higgs was elected Fellow of the Royal
Society (FRS) in 1983. In addition to having been awarded the Nobel prize, Higgs has
been honored with a number of awards in recognition of his work, including the 1981
Hughes Medal from the Royal Society, the 1984 Rutherford Medal from the Institute of
Physics, the 1997 Dirac Medal and Prize for outstanding contributions to theoretical
physics, the 1997 High Energy and Particle Physics Prize by the European Physical
Society, and the 2004 Wolf Prize in Physics. Higgs is an atheist. He was displeased
that the Higgs particle is nicknamed the “God particle”. Usually this nickname for the
Higgs boson is attributed to Leon Lederman, the author of the book “The God Parti-
cle”, but the name is the result of the suggestion of Lederman’s publisher; Lederman
had originally intended to refer to it as the “goddamn particle”.

Remarks on the Ginzburg-Landau theory

Let us show that our theory is the precise analogue of the Ginzburg-Landau theory of superconducting
transition, which was formulated long before the discovery of the Higgs phenomenon.

Consider the static case of the Higgs model, when d,¢ = 0, d,A* = 0. The electromagnetic field will
be considered in a Coulomb gauge: A¥ = (¢ = 0,A), V - A = 0. Then, the Lagrangian (12.30) is written
as

1 . . * 1 1 1
L= —i[w —ieA)p|[(V +ieA)p”] - im2|<p|2 - Z/1|<p|“ -5V % A)?. (12.43)

Consequently,

F=-L= %(v x A)? + |(V — ieA)p|* + %m2|<p|2 + %/\I(pll' (12.44)

4
2
is precisely the free-energy density of Ginzburg-Landau theory [37] if we put m? = a(T - T,.), where T,
is the temperature of the superconducting transition.® In this case, we have m? > 0 for temperatures

6 In contrast with standard notations [37], here we put the electron mass and velocity of light equal
to 1. More importantly, in the Ginzburg-Landau theory e — 2e in (12.44), in accordance with the value
of the Cooper pair charge. But these slight differences are irrelevant for our discussion.
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T > T,and m* < 0 for T < T,. For T < T,, the minimum of F is at

2

lpl* = —mT >0, (12.45)

which defines the equilibrium value of the superconducting order parameter, which is the precise
analogue of the vacuum average of a Higgs field introduced above (ground state of the Higgs field,
T =0).

The Ginzburg-Landau free energy is invariant with respect to a gauge transformation:

i 1
p—et®p ASA+ EVA(X), (12.46)

and the corresponding conserved current is
. ie, . *
j= _5((’) Vo - Ve ) - ezltple. (12.47)

For T < T, and for the spatially homogeneous order parameter ¢, only the second term in (12.47)

contributes 5
j= % , (12.48)

which is the so-called London equation. If we also take into account Maxwell equations V x H = 4rj,
V - H = 0 and calculate curl of both sides of equation (12.48), we obtain the equation for the magnetic
field inside the superconductor:

e’m?

A

which describes the Meissner effect: the exclusion of the magnetic field from interior of the supercon-
ductor. The field is exponentially decreasing inside the superconductor on characteristic length |k|™
(penetration depth) [37].

Finally, from (12.49), it follows that V2A = k%A, which is an analogue of the relativistic equation oA, =
—kZAH: the “photon” inside the superconductor acquires “mass” |k|, which is equivalent to the Higgs
effect. Thus, the Higgs model is the relativistic analogue of the Ginzburg-Landau theory, and the Higgs
vacuum is similar to the ground state of a superconductor.

VH=KH, K=- >0, (12.49)

Vitaly Lazarevich Ginzburg (1916-2009) was a So-
viet and Russian theoretical physicist, astrophysicist,
Nobel laureate, a member of the Soviet and Russian
Academies of Sciences and one of the most active de-
fendants of science in modern Russia. He was the suc-
cessor to Igor Tamm as head of the Department of
Theoretical Physics of the Lebedev Physical Institute
in Moscow, and an outspoken atheist. He was born in
Moscow in 1916 and graduated from the Physics Faculty
of Moscow State University in 1938. Among his achieve-
ments are a phenomenological theory of superconduc-
tivity, the Ginzburg—Landau theory (developed with Lev
Landau in 1950), the theory of electromagnetic wave propagation in plasmas, a the-
ory of the origin of cosmic radiation, and various aspects of the theory of phase transi-
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tions. He was an active proponent of the idea of high-temperature superconductivity
long before it was discovered experimentally in cuprates. He was awarded the Nobel
prize in 2003 for his part in the development of Ginzburg—Landau theory of supercon-
ductivity, which actually forms the basis of many modern theories in physics, such as
the Standard Model of elementary particles. In late 1940s and early 1950s, he also
worked in Soviet atomic project, contributing some major ideas on hydrogen bomb
design (the use of LiD). Ginzburg was an atheist and criticized clericalism in the press
and in his books on religion and science. His regular seminar in Lebedev Institute had
attracted the scores of theorists for more than 40 years. In addition to his Nobel prize,
he had numerous scientific awards, such as Stalin (1953) and Lenin (1966) prizes,
Wolff prize in physics (1994), and Lomonosov Gold Medal of the Russian Academy of
Sciences (1995). He was also a member of a number of foreign Academies, including
the Foreign membership of the Royal Society (1987).

12.3 Yang-Mills fields and spontaneous symmetry-breaking

Let us now consider the Higgs mechanism in non-Abelian gauge theories. First of all,
we shall recall the main facts related to Yang—Mills fields, using the example of the
SU(2) gauge group.

Interaction of scalar field ¢ with Yang—Mills field Ziy (the arrow denotes a vector
in isotopic space) is described by the replacement of the usual derivative 9, ¢ by the
covariant derivative

D =0,-igT 4,9, (12.50)

where T is the gauge group generator; for SU(2) we have T = %?.

The Gauge invariance of the Lagrangian puts constraints on the field Zly. If ¢ corre-
sponds to some isotopic multiplet, its transformation under rotations in isotopic space
can be written as

@ =S¢, (12.51)

where the operator S depends on the three parameters (angles) of the rotation vector
@(x). As a result, we write the covariant derivative as

D,g =S9,¢" +(,S)¢' —igT - A,S¢’
=50, +57'9,S-igS"'T-A,S)¢". (12.52)

This expression should be the same as

D, =5(,-igT-A)¢', (12.53)
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so that we have to require
=S5 A)S+=5T3,S. (12.54)
g

For small &, we have

S=1+iT-®. (12.55)

Then,

-

SUT-A)S=0-iT-&)T 4,0+iT @)
T4 -

A —i[T-&T-A T, (12.56)

u

where we have used [T;, T;] = ig Ty the commutation relations for generators of
SU(2). Taking into account s*lays =iT- a,@, (12.54) and (12.55) give the general trans-
formation rule

<= . 1.,
A=A +[0xA]- gaya), (12.57)

so that, in addition to gradient transformation, the Yang—Mills field is rotated in iso-
topic space.
The tensor of the Yang—Mills fields has the form

Fyv = a}lAV - avAy + g[Ay X Av] . (12.58)

Using (12.57), we can easily show that under infinitesimal rotations in isotopic space,
F,, is transformed like an isovector:

Fl, =Fp +[@xEy,]. (12.:59)

The Yang-Mills Lagrangian is written as

= >

Lyy = —ZFW CFW, (12.60)

which is invariant under local gauge group transformations.

Consider now the Yang—Mills field interacting with scalar Higgs field breaking
symmetry. Let the Higgs field ¢ be an isospinor having two complex (four real) com-
ponents

¢ - @) , (12.61)

which transform under rotations in isotopic space as
p=S¢', S§=e5N (12.62)

For small @, we have S = 1 + ig7/2.
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The Lagrangian for fields ¢ and Ay is written as

L= D,p)(D'p)" - V() - —F B (12.63)
where
D,=9,- 'gg wo (12.64)
Vg) = 12" p + A ). (12.65)
Then, for y° < 0, (12.65) has a minimum at
¢ ¢>—% ? rfz"jlj. (12.66)

The vacuum state has infinite degeneracy, but we have to choose a single definite vac-
uum (break symmetry), for example, taking

1 /0
oigior - (7). (12.67)
w00 =5\y
where 7 is real and positive. Let us transform to “polar” coordinates:
¢x) = e’ég(")qb’(x) = <cosg +1i(n-7)sin = )qb x), (12.68)
where
0 3 o
4ok W( (x)) f=nd (1269

and 7 is unity vector in the direction of the rotation axis in isospace.

Equations (12.68) and (12.69) define the parameterization of isospinor ¢ = ( q,l ) by four real functions
p, 9,0, p, where 9, 6, ¢ are polar angles determining the direction of vector # in isospace:

Y i
1 ipsin 5 cos 6e'?
_ , 12.70
¢ V2 <p(cos g —isin g cos 0) (12.70)

so that ¢ ¢ = p?/2, (0lp|0) = 1, (019]0) = (0[]0} = (0l¢|0) = 0

Note that (12.68) is equivalent to (12.62) if we put @ = 9/g. The Lagrangian is invariant
with respect to such transformations and has the form

1 12, =uv
£=3(Dp)(D"%p )’ —V(p)—ZF}’NF’ , (12.71)

where in D/, and F}, we replaced A, — A/, which corresponds to the gauge transfor-
mation (12.57). We see that only one of the four components of the field ¢, that is, p
remains in the Lagrangian; the other three have gauged out.
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1

Taking into account the form of the spinor ¢’ = (2 ), we rewrite the Lagrangian

as (the prime over Zlu is now dropped) v
1 2 & 2 g 1o =
£=5@p)" + TP A Ay V() - L F P, (12.72)
where
V(p) = %yzpz + %/\pl‘. (12.73)

For small deviations from the vacuum state, making again an expansion of V(p) in
powers of p' = p — n and retaining only quadratic terms, we obtain
2

2 m 2 1- =0 1 - >
p') - —=p - ZFOFO" . ggznzA“ Ay, (12.74)

1
L =const + =(0d
+3 2P T

u
where m? = 2|y?| and F";’V = ayAV - avﬁy. This Lagrangian describes four free fields: the

real scalar field p and the triplet vector fields Zlu. The scalar field describes particles
with mass m, and the vector field describes particles with mass

m, = 81 (12.75)

2
Thus, symmetry-breaking has again created masses for particles described by vector
(gauge) field Zly. Gauge invariance of the theory is conserved, despite the appearance
of these masses. The total number of degrees of freedom has not changed: instead of
the three components of field ¢ (Goldstones) which “disappeared”, we got longitudi-
nal polarization components of Zly. In this model, all the components of the Yang-
Mills field acquired mass.

However, to construct the realistic unified theory of weak and electromagnetic
interactions, we have to guarantee the massiveness of vector bosons, responsible for
the weak interactions (short range forces), whereas the electromagnetic field should
remain massless. This can be done by some generalization of our SU(2)-model. We
note that the invariant ¢* ¢ of the scalar field automatically satisfies an additional
symmetry, different from SU(2) used above. We can multiply ¢ by an arbitrary phase
factor, such as exp [ig/l(x)] , and nothing will change. This is the transformation of U(1),
so that we shall now consider the theory with SU(2) ® U(1) symmetry. This additional
Abelian symmetry U(1) allows us to associate with the particles of the field ¢p—except
isospin—some new “hypercharge”, which leads to the introduction of an additional
(Abelian) gauge field, which will be denoted as B,,. As a result, the full symmetry of
our model corresponds to the invariance to local gauge transformations

¢ =S¢, (12.76)
where
S= exp(igdl(x) . % + if@) , (12.77)
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with the Lagrangian of the model having the form

1

* 1- =
£= D)D) ~V(p) = L FuF" ~ 26", (12.78)
where
LT,
D, =0, - lgz A, - lgBu, (12.79)
Gy =9,B, ~0,B,. (12.80)

Further analysis, in fact, repeats the previous analysis, so we drop the details. It is

convenient to introduce, instead of fields Aul’ Ayz s A}B, and By, thelinear combinations
1 .
W, = ﬁ(Ayl +1A)), (12.81)
Z,=Apcosa-B;sina, A= Z,cosa+A,sina,
Au = A}B sina + Bu cosa, By = —Zy sina + Au cosa, (12.82)
where
cosazg, sina:é gz\/ﬁ, tga:g (12.83)

Consequently, our Lagrangian (12.78) is rewritten in terms of these new fields as

1 2 . 3’ 1o o 1
L= - Vip)+ % gwHw, + 72"2}1} = P = 2GuG . (12.84)

Here, it is important that field A, from (12.82) does not enter the square bracket term,
so that after the appearance of the nonzero vacuum average for field p (spontaneous
symmetry-breaking) this field remains massless and can be identified with the usual
electromagnetic field. At the same time, the fields W, and Z, acquire the mass

g m
. =8 Mw (12.85)
2 2 cosa
This is immediately seen if we rewrite the Lagrangian (12.84) up to the quadratic terms

inp' =p-n, W,,and Z;:

1 2 1 2 1 % *
L= E(a}zp’) - Emzp’ - E(a‘uwv - ava)(ava - ava)
1 N 1 1.
+ Zg2n2Wy wH - Z(auzv - ava)2 + §g2nzZ;
- 10,4, ~0,4)° + const, (12.86)

where m? = 2|,uz|.
The field Wu defined in (12.81) is complex, that is, charged, whereas the fields Ay
and Z, (12.82) are real (neutral). From the definition of Fyv, (12.58), (12.81), and (12.82),
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it follows that
(F' +iF?),, = D,W, - D,W,, (12.87)

Sl

where
D, =0, +igA,;3 =0, +igsinaA, +igcosaz, . (12.88)

If we identify field 4, with the Maxwell electromagnetic field, from (12.88) we get
the following relation between Yang—Mills coupling constant g and the usual electric
charge e:

e=gsina. (12.89)

An important property of this theory is its renormalizability. Renormalizability of
QED is guaranteed by the masslessness of the photon and also by its neutrality. We can
drop one of these properties, but the theory will still be renormalizable. For example,
we can work with the renormalizable theory of fermions interacting with a massive
vector neutral field. Thus, we do not worry much whether or not the photon has very
small (undetected up to now) mass. The theory will not change much. Also renormal-
izable is the Yang—Mills theory of two charged and one neutral massless fields interact-
ing with fermions. Due to the Higgs phenomenon, the charged Yang—Mills fields may
become massive: in the following we shall call them charged intermediate W-bosons.
They transmit weak interactions, whereas Z-bosons are similar neutral particles. The
electromagnetic field A, remains massless. The question arises whether or not our the-
ory will remain renormalizable after the Higgs phenomenon (spontaneous symmetry-
breaking). We can expect it to remain renormalizable, as the initial Lagrangian is def-
initely renormalizable, and all further results were obtained by clear transformations
and change in notations. These expectations are actually confirmed by the rigorous
proof, which we shall not consider here.

Steven Weinberg (born 1933) is an Amer-
ican theoretical physicist and Nobel laure-
ate in Physics for his contributions—with Ab-
dus Salam and Sheldon Glashow—to the uni-
fication of the weak force and electromag-
netic interaction between elementary parti-
cles. Steven Weinberg was born in 1933 in
New York City. He graduated from Bronx High
School of Science in 1950. He was in the same
graduating class as Sheldon Glashow, whose
own research, independent of Weinberg’s,
would result in their (and Abdus Salam) shar-
ing the 1979 Nobel in Physics. Weinberg received his bachelor’s degree from Cornell
University in 1954. He then went to the Niels Bohr Institute in Copenhagen, where he
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started his graduate studies and research. After completing his PhD, Weinberg worked
as a postdoctoral researcher at Columbia University (1957-1959) and University of
California, Berkeley (1959-1966). He did research in a variety of topics of particle
physics, such as the high-energy behavior of quantum field theory, symmetry break-
ing, pion scattering, infrared photons, and quantum gravity. In 1966, Weinberg left
Berkeley and went to Harvard. In 1967, he was a visiting professor at MIT. It was in that
year at MIT that Weinberg proposed his model of unification of electromagnetism and
of nuclear weak forces, with the masses of the force-carriers of the weak part of the in-
teraction being explained by spontaneous symmetry-breaking. One of its fundamen-
tal aspects was the prediction of the existence of the Higgs boson. Weinberg’s model,
now known as the electroweak unification theory, had the same symmetry structure
as that proposed by Glashow in 1961: both models included the then-unknown weak
interaction mechanism between leptons, known as neutral current and mediated by
the Z boson. The 1973 experimental discovery of weak neutral currents (mediated by
this Z boson) was the first verification of the electroweak unification. The paper by
Weinberg, in which he presented this theory, is one of the most cited works ever in
high-energy physics. Weinberg is an atheist.

Abdus Salam (1926-1996)
was a Pakistani theoretical
physicist. He shared the 1979
Nobel Prize in Physics with
Sheldon Glashow and Steven
Weinberg for his contribu-
tion to the electroweak uni-
fication theory. He obtained
a PhD degree in theoretical
physics from the Cavendish
Laboratory at Cambridge.
Early in his career, Salam
made an important and significant contribution in quantum electrodynamics and
quantum field theory. In 1957, he was invited to take a chair at Imperial College, Lon-
don, and he and Paul Matthews went on to set up the Theoretical Physics Department
at Imperial College. As time passed, this department became one of the prestigious
research departments that included well-known physicists, such as Steven Weinberg,
Tom Kibble, and John Clive Ward. In 1961, Salam began to work with John Ward
on symmetries and electroweak unification. In 1964, Salam and Ward worked on a
gauge theory for the weak and electromagnetic interaction, subsequently obtaining
SU(2) x U(1) model. Salam was convinced that all the elementary particle interac-
tions are actually the gauge interactions. In 1968, Salam and Weinberg incorporated
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the Higgs mechanism into this earlier theory, giving it a modern form in electroweak
theory, and thus introduced the Standard Model. In 1964, Salam founded the Interna-
tional Centre for Theoretical Physics (ICTP) in Trieste, Italy and served as its director
until 1993. In 1997, the scientists at ICTP commemorated Salam and renamed ICTP
as “Abdus Salam International Centre for Theoretical Physics”. Abdus Salam was a
Muslim, who saw his religion as a fundamental part of his scientific work.

12.4 The Weinberg—Salam model

The correct scheme for the unified description of weak and electromagnetic interac-
tions was proposed (independently) by Weinberg and Salam.This model is well con-
firmed by experiments and forms the basis of the Standard Model. The main idea of
the theory of electroweak interactions is that weak interactions are mediated by gauge
bosons (W*, Z), which are “initially” massless, whereas their masses (short range na-
ture of weak forces) are acquired as a result of the Higgs mechanism. The electromag-
netic field obviously remains massless. This scheme for gauge fields was presented in
the previous section. Now, we have to include the leptons: the electron and the neu-
trino,” which are also assumed to initially be massless. The Higgs mechanism (sponta-
neous symmetry-breaking) should generate the mass of an electron, leaving the neu-
trino massless.®
The Dirac Lagrangian

L = ihy*0,p — mpyp (12.90)

for m = 0 transforms to ilZJy”a”l,[). Let us introduce, as is usual for massless fermions,

1 1
Yr=50-VW, dp=50+Y), =t +g, (1291)
where y° = —iy°y'y?y>. Then,
iy 9, = ihry* 0, g + Py 0,y (12.92)

as y® anticommutes with y*. The electron (just as the muon and the 7-lepton) has both
L and R components, whereas the neutrino, according to the two-component neutrino
model, that is, v, (and also Vi Vv,), has only L-components. Consequently, the initial
Lagrangian of the leptons can be written as

L = iegy"0,ep +iepy o ey + iy o,v, + (e — ) + (e — 1), (12.93)

7 The other generations of leptons are described precisely in the same way.
8 Here, we neglect the possibility of very small neutrino mass.
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where the fermion fields are denoted by the symbols of the appropriate particles. The
contribution of the higher generations can be written in a similar form, but we skip it
here for brevity.

The transformations of a gauge group should be applied to particles with the same
space-time properties, that is, the only possibility is to mix e; and v,. We introduce the
isospinor

Py = <:i> (12.94)

and associate with this doublet the non-Abelian charge (“weak” isospin) Iy, = 1/2,
with its projections corresponding to its two components: neutrino v, corresponds to
I;’V = +1/2, whereas the “electron” e; corresponds to I3, = —1/2. The remaining

l/)R = eR 5 (12-95)
is considered to be an isosinglet: I}, = 0. As a result, we can write the Lagrangian as

L= l‘l])Ryyayl/JR + il,_bLyyayl/)L s (12.96)

which is invariant with respect to the SU(2) group of isospin transformations:

Y — e_%?al/’u Yr — Yg (12.97)
or, in more detail,
Ve _ifa Ve
e 2 0
e - e . 12.98
L < 0 1) L (12.98)
€Rr er

The electric charge Q and the third component of the weak isospin Ia, for the left and
right fields are connected by the obvious relations

1
L: Q:Ii,,—i; R: Q=1;,-1. (12.99)

If we make this symmetry a local gauge symmetry, that is, put a = a(x), this will lead to
the appearance of three massless Yang—Mills fields. However, the photon will not be
there, as the right electron ey, being an isosinglet, will not interact with these fields,
whereas it is obviously interacting with the usual photons. To solve this problem, we
can use the fact that SU(2) is not the maximal possible symmetry of our Lagrangian.
We can additionally transform ey by simple U(1):

eg — e eg. (12.100)

But this can be the only common transformation for all the fields of our model. Then,
v, and e; should also acquire the common phase factor, but its phase is not necessarily
the same as for R. Thus, we can write
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e” o0 o v

Ve X e
e |=| 0o & o ||le |, (12.101)
er 0 0 eiﬁ er

where n is some number to be determined later. This U(1)-symmetry leads to the ex-

istence of some conserving charge, with e; having one value of this charge, whereas

both v, and e; have another value. This is obviously not the electric charge Q, as v,

and e; in reality have different values of Q. The gauge field corresponding to this U(1)

symmetry is not the usual electromagnetic field. Weinberg proposed to consider this

symmetry as the conservation of the “weak hypercharge” Yy, defined by the relation’
Yy

Q=1+ - (12.102)

Comparing this expression with (12.99), we see that for the left and right leptons, it is
necessary to introduce

L: Yy=-1; R: Yy =-2. (12.103)

Thus, in equation (12.101), we have to put n = 1/2, so that the coupling constant for
interaction of the hypercharge gauge field for left fields is twice as small as the corre-
sponding constant for right fields. As a result, the U(1) group transformation is finally
written as

Ve ef2 o 0 Ve
e, | = o €% o ||e |. (12.104)
er 0 0 elﬁ er

Thus, the Lagrangian (12.93), (12.96) is invariant to the direct product of groups SU(2)®
U(1). The Yang-Mills theory regarding such a symmetry was already examined in the
previous section. We have introduced four gauge fields: isotriplet Zly and isosinglet B,,.
For all of them, Yy, = 0.

Lepton fields ; and i interact with fields A'”, By, and the Higgs field ¢. First of
all, let us consider this last interaction. The corresponding term in Lagrangian is writ-
ten in a form similar to equation (12.12), which was already discussed in connection
with the mass generation mechanism for fermions:

Ly =-V2a(Prpr + Yriprd”), (12.105)

where a is the dimensionless coupling constant of this renormalizable interaction. We
write the Higgs field as an isospinor:

¢= ("i) . 9 =(97.0™), (12.106)

9 This expression is written in analogy with the Gell-Mann-Nishijima formula for the hypercharge of
hadrons [40].
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with components corresponding to projections of weak isospin Iﬁ,, = +1/2. From
(12.102), we find the corresponding quantum numbers

Both ¢" and ¢° fields are complex, so that we can write

+ 1 1
¢ = <¢o> = < ?(% i l.(p4)> ; (12.108)
¢ \—fz(‘Pl +19,)

where @, ..., @, are real fields.
The covariant derivative describing the interaction of the Higgs field with the
gauge fields has the form

i, - i
Dyh= <ay et A, - Efo)qb_ (12.109)
Finally, the part of the Lagrangian containing field ¢ is equal to

Ly = (D¢)” Dud) - Wt - /‘((75’*(75’)4 - V2a(Prrep + Prprd”) . (12.110)

The part of the Lagrangian corresponding to Higgs field interaction with the leptons
is written in more detail as

~ V2a(V,egp* + e egp’ + exv,” + eger ). (12.112)
Further, we have
% * * 1
¢ P =(0") 0"+ (0°) 0" = S (0] + 03+ 95 + 9}). (12.112)
For i* < 0, the Higgs field Bose condenses and the minimum energy corresponds to
2 112
Ol(p*p)I0y =n° = R (12.113)

Let us choose a vacuum to satisfy

©O1p10) =11, (01@,10) = (0l510) = (Ol [0) = 0. (12.114)
that is,
1 /0
0|d|0) = — . 12.115
(0110 ﬁ<n) (12415)

Then, the lowest-order (over excitations) interaction is written as

Ly = V2a(r g + Pripr)d = a(ereg + egep)n = anpip, (12.116)
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so that the Higgs condensate 1 interacts only with electrons. Thus, we achieved what
was desired: the electron acquired the mass

m, =an, (12.117)

whereas the neutrino remained massless.
Consider now lepton interactions with gauge fields, which is described by the co-
variant derivatives

S
Dy = <8H -igT-A, - leBy>lp, (12.118)

where Y is the weak hypercharge of field 1, and g and f are the corresponding coupling
constants. For i;, we have T= %?, Y = -1, whereas for i, we have T=0andY =-2.
Then, the part of the Lagrangian corresponding to the interaction between the leptons
and the gauge fields has the form

. N . ,
L= u/)Ly”<aH -ig3 Ay + lgBu>l/)L + ithpy* (0, + ifBy)Yg - (12.119)

The gauge fields entering these expressions, as we have seen in (12.81), (12.82), (12.83),
can be divided into three types: a field of charged heavy bosons W, a field of neutral
heavy bosons Z,, and an electromagnetic field A,,. Separately, let us write the parts of
Lagrangian Ly, £, £, corresponding to the interaction with these fields. First, we
write

Ly = S0y Ay + TA ), = Sy (0, W, e + &, W'V,). (12.120)

P H i 2 eV uve

This is the Lagrangian of the weak interaction of the leptons due to the exchange by
W=*-bosons (the so-called charged currents). There are also interactions with fields Ay3
and Bw from (12.119); these are written as

1- _
El/)Ly" (g734,3 - fBYL - frY'B,g (12.121)
or, using (12.82), (12.83),
%y"[f/e(cos aA,; - sinaB,)v, - &;(cos aA,; + sinaB)e; — 2sinaégByeg], (12.122)

so that, expressing A,; and B, via Z, and A, according to (12.82), we get

L, = %y"(f/eZyve ~ C08 208, Z,e; +25in’ aggZ,ep), (12.123)

the weak interaction due to the exchange by neutral Z-bosons (the so-called neutral
currents), and

Ly = -gsinay"(e A e, +ezA,ep), (12.124)
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the usual electromagnetic interaction. Note that (12.124) once more confirms the rela-
tion for the electric charge (12.89). Thus, the model under discussion gives a unified
description of weak and electromagnetic interactions, where the fields correspond-
ing to W*- and Z-bosons and to the electromagnetic field appear from the funda-
mental requirement of invariance, with respect to the local gauge transformations of
SUQ2)® U(1).

1 Yy

Figure 12.3

During the first years since the construction of Weinberg—Salam model, weak interac-
tion processes due to neutral currents (12.123) were not known, which was considered
to be a shortcoming of the model. The experimental discovery of such processes in
1973 in CERN was actually the first serious confirmation of the theory of electroweak
interactions. One of the simplest processes due to weak interactions is muon yu de-
cay, described by the diagram shown in Figure 12.3. If the mass of the W- boson is
a significantly larger muon mass, its propagator is simply proportional to 2 , and
the appropriate transition amplitude is equivalent to the amplitude derived from the
phenomenological (nonrenormalizable) 4-fermion interaction introduced by Fermi
(10.96), (10.270):

2

W(éLyave)(f/yy’*,u) ) (12.125)
w

Comparing with (10.270), we obtain the following expression for Fermi coupling:

G_g2

V2 8mj,

(12.126)

The value of G is well known experimentally (10.273). We see, that its smallness
(“weakness” of the weak interactions) is actually due to the large mass of the inter-
mediate boson in the denominator of (12.125), whereas the fundamental coupling
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constant is actually g ~ e ! Using (12.89) and the experimental values of e and G, we
can, with the help of (12.85) and (12.126), find the following estimates for the masses
of intermediate gauge bosons:

e _ 37GeV m my  74GeV

- - i - - AV 12127
2/4G2sina sina 27 cosa  sin2a ( )

My

so that my, > 37 GeV and m, > 74 GeV. Using (12.85) and (12.127), we can write

g Mw _37GeV
g

=122GeV. (12.128)

Then, from (12.117), we have

a= % ~5.107°, (12.129)

so that the coupling constant of leptons with the Higgs field is very small.
Experimental studies of the weak interactions due to neutral currents had already
led in the early 1980s to the following estimate of “angle” a:

sina = 0.47. (12.130)
Then, from (12.127), we have
my =~ 78.6GeV, my =~89.3GeV. (12.131)

The triumph of the theory was the experimental discovery in 1983 of W*- and Z-bosons
in CERN with masses my, =~ 80GeV and m, = 92GeV, respectively. Since then, the
theory has been confirmed in numerous experiments, and at present it is the com-
monly accepted scheme for describing electroweak interactions. The constants of the
theory are known with high accuracy. The present-day experimental situation is well
described in [67].

For many years, the main unsolved problem was the absence of any direct exper-
imental observation of Higgs bosons. One of the difficulties was due to the inability
to make definite predictions for Higgs boson mass within the Weinberg—Salam model;
only a rather wide interval of possible values were theoretically predicted. However,
as we already mentioned in Chapter 1, in 2012 it was announced in CERN that a particle
with the properties expected for the Higgs boson was discovered in a number of LHC
experiments, with mass around 125-126 GeV. Later it was finally confirmed by further
studies, and this is definitely the final triumph of the theory and the Standard Model.
A brief discussion of the situation related to the experimental discovery of the Higgs
boson can be found in [55].
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The Standard Model

The “Standard Model” of elementary particles is the combination of the Weinberg’s
and Salam’s electroweak theory and quantum chromodynamics (QCD), which we dis-
cussed above. The full gauge symmetry is given by the direct product of color symme-
try and the symmetries of weak isospin and weak hypercharge: SU(3) ® SU(2) ® U(1).
If we limit ourselves to the most important first generation of fermions, the fermion
sector of the model is defined by

L= <Ve> > €Rs QL = <;IX> > URg> dRa’ (12132)
e L a’L

where u and d denote the corresponding quarks (a is the color index). The covariant
derivative, which determine the fermion interactions with Yang—Mills fields has the
form

i

.Y T A
D}l = ay - lgliBll - lngW; - lg3_Ga

>G> (12.133)

where A? are the generators of the color group SU(3) (reference Chapter 2) and GZ are
the vector fields of gluons. The Higgs sector of the theory was described above. Gluons
remain massless, but they are not observed as free particles, due to the phenomenon
of “confinement”, which we shall discuss later. This theory is sufficient, in principle,
to describe the entire world (or universe) surrounding us. At present all the predic-
tions of this theory are rather satisfactorily confirmed by existing experiments.'° The
attempts of the real unification of all known interactions within some single gauge
group, which includes symmetries SU(3) ® SU(2) ® U(1) of the Standard Model as a
subgroup, are usually called “great unification theories” (GUT). We shall briefly dis-
cuss such attempts in the next chapter.

Phase transitions in quantum field theory at finite temperatures

Finally, let us briefly discuss one very interesting direction of research in modern
quantum field theory. We have seen that the basis of the unified theory of electroweak
interactions is the phenomenon of spontaneous symmetry-breaking and the Higgs
mechanism. We already noted that this is a typical phase transition, like that taking
place, for example, in superconductors. From the theory of condensed matter, we
know that any symmetry-breaking disappears at high enough temperature T > T,
when the system goes to a symmetric phase. The same phenomenon takes place in
the models of quantum field theory introduced above. This was clearly demonstrated

10 Abriefreview of experimental situation with the Standard Model, before the discovery of the Higgs
boson, can be found in [22], whereas the importance of this theory for everyday life is well described
in [12].
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for the first time by Kirzhnitz and Linde [41]. An appropriate theoretical analysis can
be performed using the standard (Matsubara) formulation of quantum field theory
at finite temperatures, which is widely used in statistical physics [1]. We have no
room for a detailed discussion of these interesting problems here and, therefore, limit
ourselves only to formulating some of the main conclusions.

The vacuum average of the Higgs field, which plays the role of the order parameter,
becomes zero for T > T, where

RElS 2. 103
T.= x ~1n(0) ~10° =+ 10° GeV . (12.134)

For T < T,, the order parameter behaves in the more or less usual way:

2 |

n(T) = yu (1), (12.135)
where @(T) is some increasing function of temperature. As a result, we obtain the
order parameter dependence shown in Figure 12.4(a). But we have seen above that
masses appearing due to spontaneous symmetry-breaking are proportional to the vac-
uum average n at T = 0. Correspondingly, as temperature increases, the masses of the
gauge bosons, leptons, and other particles diminish, and at T = T, become zero, as
shown in Figure 12.4(b). Already, at this elementary level of discussion, it becomes
clear that the disappearance of the masses of the elementary particles creates strong
long-range forces, which may play a decisive role in cosmology, because in the first mo-
ments after the “Big Bang” the temperature of the universe was extremely high. These
conclusions were followed by explosive developments of new approaches in cosmol-
ogy [41, 16]. Similar effects may be important for experiments with very high energy
collisions of heavy nuclei, when very high temperatures can also be generated.

n 4 @) 2 (b)

Figure 12.4

At present, the analysis the effects of temperature in quantum field theory is an im-
portant part of elementary particles theory, which again stresses the unity of quantum
field theory and modern statistical physics.
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Andrei Dmitrievich Linde (born 1948) is a Soviet
and American theoretical physicist. He graduated from
Moscow State University and in 1975 was awarded a
Ph. D. from the Lebedev Physical Institute in Moscow. He
moved to the United States in 1990 to Stanford Univer-
sity. During 1972 to 1976, under the guidance of his su-
pervisor David Kirzhnits in Lebedev Institute, Linde de-
veloped a theory of cosmological phase transitions. Ac-
cording to this theory, there was not much difference be-
tween weak, strong, and electromagnetic interactions in
the very early universe. These interactions became dif-
ferent from each other only gradually, after the cosmo-
logical phase transitions, which happened when the temperature in the expanding
Universe became sufficiently small. In 1974, Linde found that the energy density of
scalar fields that break the symmetry between different interactions can play the role
of the vacuum energy density (the cosmological constant) in the Einstein equations.
These observations led to formulation of the inflationary universe theory proposed
by Alan Guth in 1980. In 1981, Linde developed another version of inflationary the-
ory, demonstrating that the exponentially rapid expansion of the universe could oc-
cur not only in the false vacuum, but also during a slow transition away from the false
vacuum. In 1983, Linde proposed even more general inflationary theory, chaotic infla-
tion. Chaotic inflation occurs in a much broader class of theories, without any need
for the assumption of initial thermal equilibrium. In 1986, Linde found that in many
versions of the chaotic inflation scenario, the process of exponential expansion of the
universe also continues forever. He called this process eternal inflation. In 2002, he
was awarded the Dirac Medal; in 2004, he received the Gruber Prize in Cosmology
for the development of inflationary cosmology. In 2012, he—along with Alan Guth—
was an inaugural awardee of the Fundamental Physics Prize. In 2014, he received the
Kavli Prize in Astrophysics together with Alan Guth and Alexei Starobinsky. In 2018,
he received the Gamow Prize.



13 Renormalization

13.1 Divergences in ¢*

The concept of renormalizability plays an absolutely fundamental role in modern
quantum field theory. Only renormalizable theories are considered to be physical. In
Chapter 8 we briefly discussed the renormalizability of QED. Now, we will return to a
more detailed discussion of the general situation for different field theory models.

Below, we shall mainly consider the simplest scalar field gg* theory, which was
already discussed above in Chapter 10. There we already met with typical divergences,
such as in equation (10.125). Now, we shall present a more serious analysis of diver-
gences. Using the rules of diagram technique, we can once again write the first-order
(~g) correction to self-energy corresponding to the diagram in Figure 13.1. The corre-
sponding analytic expression is

4
. 1J d'q 1 (13.1)

gl e 1

i 2) en)t g2 -m2’
where we have taken into account the symmetry factor 1/2. Here, in the integrand we
have the fourth power of g, whereas in the denominator we have g squared, so that
our integral diverges quadratically at large g (that is, at the upper limit, “ultraviolet
divergence”).

» Ps

D, p—q Py

Figure 13.1 Figure 13.2

Another typical divergence arises in the order ~g? from the diagram shown in Fig-
ure 13.2, where p; + p, = g and p; + p, + p3 + p, = 0. The corresponding analytic
expression is

(13.2)

2 J d'p 1 1
flanp-mp-gr-n
Here, we have the fourth power of p both in the numerator and denominator of the
integrand, which leads to logarithmic divergence.!

1 In fact, we have already considered such diagrams during our discussion of the theory of critical
phenomena in four-dimensional space, where the problem of divergence was solved by the introduc-
tion of a natural cutoff A of the order of the inverse lattice constant.

https://doi.org/10.1515/9783110648522-013
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Let us show how we can determine the divergence power of an arbitrary dia-
gram. A similar analysis was already performed for QED in Chapter 8. But here, we
shall present more details. It is obvious that in an arbitrary diagram, each propagator
contributes ~p? (for large p, we can neglect m) in the denominator of the integrand,
whereas each vertex contributes ~p* in the numerator and the §-function expressing
momentum conservation in this vertex. The number of independent integration mo-
menta is equal to the number of closed loops in the diagram. For the diagrams shown
above, this number is 1 (one-loop diagrams). Consider a diagram of the order of ~g",
that is, with n vertices. Suppose it has E external lines, I internal lines, and L loops.
For generality, we consider space-time with dimensionality d; in this case, the vertices
contribute p? to the numerator. Let us define the conditional degree of divergence D of
the given diagram as

D=dL-2I. (13.3)

For the diagrams shown above, we have D = 2 and D = 0. Now, we can express D via
E and n, excluding I and L. In fact, we have in total I internal momenta. In each of the
n vertices, we have momentum conservation, and we also have the total momentum
conservation law for the scattering process described by our diagram (external mo-
menta are fixed). As a result, there are in total n — 1 relations between the integration
momenta. Thus, there are only I — n + 1 independent integration momenta. But this
number is equal to L:

L=I-n+1. (13.4)

In ¢*-theory, each vertex is entered by four lines, so that we have in total 4n lines
in the diagram, but part of the lines are internal and another part external. During
these calculations the internal lines are counted twice, as each of them connects two
vertices. Therefore, we have

4n=FE+2I. (13.5)

From (13.3), (13.4), (13.5), we immediately get
D:d—<g—1>E+n(d—4). (13.6)
In particular, for d = 4, we have

D=4-E, 13.7)

which, by the way, gives the correct answers for the simplest diagrams discussed
above. From (13.7), we can see that the degree of divergence diminishes with the
growth of the number of external lines (and depends only on this number!).?

2 It may seem that all diagrams with the number of external lines greater than 4 are convergent. For
example, for E = 6, we have D = —2. However, this is a wrong conclusion, as we shall see below.
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Let us return to the discussion of the general formula (13.6), and consider the last
term in this expression. If the coefficient before n is positive, the situation is hopeless:
the degree of divergence D grows with the growth of n, so that the full theory (summed
over all n) will contain an infinite number of terms containing divergences (in each or-
der of perturbation theory) with a higher degree of divergence than in the previous or-
der. This is equivalent to the nonrenormalizability of the theory. In ¢*-theory atd = 4,
the degree of divergence depends only on E and does not depend on the order of per-
turbation theory, so that we have the finite number of the types of divergences. We
can, therefore, hope that the corresponding infinite contributions can be hidden in
a finite number of (infinite) renormalizations of the appropriate physical characteris-
tics (renormalized theory). A finite number of the types of divergences is the necessary
condition for renormalizability.

It is useful to analyze similar formulas for the theory with the general interac-
tion ¢". Equations (13.3) and (13.4) do not change, whereas equation (13.5) transforms
into

m=E+2, (13.8)

so that equation (13.6) is rewritten as

D=d—<g—1>E+n[£(d—2)—d}. (13.9)

Now, for d = 4, we have
D=4-E+n(r-4). (13.10)

For (p6-theory, we have D = 4 — E + 2n, and it is nonrenormalizable. On the other
hand, for <p3-theory, we have D = 4 — E — n, and the degree of divergence diminishes
with the increase of n, so that for fixed E there is only the finite number of divergent
diagrams, and we are dealing with the so-called super-renormalizable theory.> Note
that for d = 2, we have D = 2 — 2n and independent of r.

Let us return to equation (13.7) and discuss the convergence or divergence of di-
agrams with E > 4. In ¢"*-theory, the number E is always even. Consider the exam-
ples of diagrams shown in Figure 13.3. Here, E = 6, so that—according to criterion
(13.7)—all of these diagrams seem to be convergent. This is correct for the diagram in
Figure 13.3(a), but obviously wrong for diagrams (b) and (c), which contain “hidden”
divergences from loops (considered above). It is because of such cases that we called
Dthe conditional degree of divergence. It is important, however, that the inverse state-
ment is always correct: the Feynman diagram converges if its degree of divergence D
and the degrees of divergence of all its subdiagrams are negative (Weinberg theorem).

3 However, this theory is actually bad: there is a stable ground state.
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(a)

Figure 13.3

The two divergent diagrams shown above in Figures 13.1 and 13.2, are called primi-
tively divergent. These are the only primitively divergent diagrams of ¢*-theory (types
of divergences).

Dimensional analysis
Let us perform dimensional analysis in d-dimensional space. The action S = j dixcis
dimensionless. Therefore, we easily find

[c1=L7, [£]=nY, (13.11)

where L is some length, and A is the corresponding momentum. From the term
~0,d" ¢ in £, taking into account [0, ] = L', we have

(]
=A2"", (13.12)

Consider the interaction gg'. If we define the dimensionality of the coupling constant
as [g] = L% =A% we obviously get -6 + r(1 - ‘51) = —d, so that

6:d+r—r§. (13.13)

Thus, the dimensionality of the coupling constants in different theories is

gp*: S=4-d, [g)=A*9, &>0 ford<4,
g9’ 6=3-4, [g]=N>%, 520 ford<é, (13.14)
gp®: 6=6-2d, [g]=A", §>0 ford<3.

Excluding the r-form equations (13.9) and (13.13), we obtain

D=d—<g—1>E—n6. (13.15)

In particular, for d = 4, we have D = 4 — E — né. Now, it is clear that the necessary
condition for the renormalizability of the theory is § > 0. Previously, for simplicity we
have spoken of the dimensionless coupling constants (6§ = 0) as the necessary condi-
tion for renormalizability. From (13.14), we can see when this condition is fulfilled for
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the simplest models of interaction. These results show that the dependence on spatial
dimensionality is also very important.

In conclusion, we present the table of “canonical” dimensions for different
Green’s functions and vertices [56]:

Field function Dimensionality in units of A Dimensionality atd = 4
41 1

G (ysenxy) N -1) n

g“’)(pl,...,pn) —nd+g(%—1)=—n(%+1) -3n

6" (p1,....pp1)  d-n(d+1) 4-3n

@ -y) 2+d 6

T (xy,. .. X,) n(g+1) 3n

[(”)(p1,...,pn) —dn+n(%d+ 1):n(1—%) -n

M (py,..., pn1)  d+n(1-3) 4-n

In addition to the Green’s functions and vertices already known to us, we introduce
here G™ and T™, defined as

G sPn) = GOy s Pu)BD1 + -+ + D),
T®h.s0) =T Ors . s D)8+ + D) » (13.16)

where the §-function of the total momentum conservation is explicitly shown (in units
of A, it has dimensionality —d).

Gerard t’Hooft (born 1946) is a Dutch theoretical physi-
cist and professor at Utrecht University, the Netherlands.
He shared the 1999 Nobel Prize in Physics with his the-
sis advisor Martinus Veltman. In 1969, t’ Hooft started his
doctoral research on the renormalization of Yang—Mills
theories. In 1971, his first paper was published. In it he
showed how to renormalize massless Yang—Mills fields.
A period of intense collaboration with Veltman followed,
in which they developed the technique of dimensional reg-
ularization. Soon, t’Hooft’s second paper was published,
in which he showed that Yang—Mills theories with massive
fields due to spontaneous symmetry breaking could be
renormalized. This paper earned them worldwide recognition and ultimately earned
the pair the 1999 Nobel Prize in Physics. t’Hooft further refined his methods for Yang—
Mills theories. He became interested in the possibility that the strong interaction could
be described as a massless Yang—Mills theory: one of a type that he had proved to
be renormalizable, and hence be susceptible to detailed calculation and comparison
with experiment. According to t’Hooft’s calculations, this type of theory possessed
just the right kind of scaling properties (asymptotic freedom) that this theory should
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have according to deep inelastic scattering experiments. This was contrary to pop-
ular perception of Yang—Mills theories at the time, that—like electrodynamics—their
intensity should decrease with increasing distance between the interacting particles.
When t’Hooft mentioned his results at a small conference at Marseilles in 1972, Kurt
Symanczik urged him to publish this result, but t’ Hooft did not, and the result was even-
tually rediscovered and published by Hugh David Politzer, David Gross, and Frank
Wilczek in 1973, which led to their earning the 2004 Nobel Prize in Physics. t’ Hooft is a
member of the Royal Netherlands Academy of Arts and Sciences since 1982. He is also
a foreign member of many other science academies, including the French Académie
des Sciences and the American National Academy of Sciences.

13.2 Dimensional regularization of ¢*-theory

To analyze divergences of Feynman diagrams, first of all we have to formulate well-
defined rules to separate the divergent parts of integrals. This is achieved by one or an-
other method of regularization of Feynman integrals. Above (for example, during our
discussion of divergences in QED in Chapter 8), we used the simplest regularization
procedure, introducing the upper integration limit cutoff A. This method explicitly
breaks relativistic invariance, as it is equivalent to the introduction of some “minimal
length”. Now, we shall discuss a more modern and elegant method of the so-called
dimensional regularization (t'Hooft and Veltman). The main idea of this method is
somehow similar to the analysis of critical phenomena in the space withd = 4 — ¢
dimensions (Wilson) and considers divergent integrals in space-time with continuous
d < 4, with further limiting procedure of d — 4. We shall see that the singularities of
single-loop diagrams considered above are simple poles over the variable € = d - 4.
First, we have to generalize the Lagrangian of 4-dimensional theory

1 m 5, g 4
L—anq)a”q) SRRl (13.17)

to d dimensions. As field ¢ has dimensionality ‘—21 — 1, whereas the dimensionality of
the Lagrangian £ is d, the coupling constant g is dimensionless for d = 4, and to make
it dimensionless in d dimensions we have to multiply it y“*d, where u is an arbitrary
parameter of dimensionality of mass (or momentum).” Thus, in the following, we shall
consider the theory with the Lagrangian

L= 23,00 - ﬁzfpz _ Lt (13.18)
2% 2? " w ' '

4 The arbitrariness of parameter u is obvious, because at the end we have to perform the limit of
d— 4.
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Let us calculate the simplest self-energy correction shown by the diagram in Fig-
ure 13.1. Similarly to (13.1), it is determined by the integral

d
1 ‘**dj dp 1 (13.19)

) ondpom

This integral should be calculated at arbitrary d.

Integration in d-dimensions

We are working in the d-dimensional “Minkowski space” with one time and d — 1 spatial dimensions
(d < 4). Consider an integral of the general form

1

L@ =|dp———, 13.20
@ - | T (13.20)
where p = (pg, 1). Let us introduce polar coordinates (py, 7, @, 0, 6,,...,04_3), so that
dp = dpordfzdrd(p sin 6,d0, sin® 0,do, --- sin®3 04-3d0,_3
d-3
= dpordfzdrd(p H sin® 0,do;
k=1
(—co<py<oo, 0<r<oo, 0<@<2m, 0<6 <m). (13.21)
Then,
(o] +00 s d-3 .k
_ 0,do
Ii(q) =21 I dp, J drrd? J s iy sin” 6,45, —. (13.22)
. 3 ] (g -1+ 2049, — 2rldl cosedf3 -m°)
Direct calculations [56] give
Ta-% 1
1) 2
latg) = i —o EpE—TE (13.23)
Using (13.23), for (13.19) we obtain
2 2_E d
ig  of 4mu ) 2 < )
-——m| - rf1-=1. 13.24
3212 < m?2 2 ( )

The I'-function has poles at zero and at negative integers. We see that the divergence
of (13.24) is reflected in the simple pole for d — 4. It can be shown that

D"

n!

I'(-n+e¢) = E +P(n+ 1)+ O(e)] , (13.25)
where ;(2) = dInT(2)/dz = T'(z)/T(z) is the logarithmic derivative of the T-function,
for which ;(n+1) =1+ 3 +---+ 1 —y, wherey = -, (1) = 0.577 is the Euler constant.
Taking € = 4 — d, we obtain

d £ 2
r<1—§>:r<—1+§>=—5—1+y+0(8). (13.26)
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As aresult, using a® = 1+&lna+-- -, we obtain the following expansion of (13.24) near
d=4:

. 2 2
ﬂ[_% -1l+y+ O(e)] [1+ gln<—4ﬂ—1u>]
£ 2 m

32 2
. 2 . 2 2
_igm igm 4ty
~ l6n% | 32 [1 - Y+ln<_ m? )] + Ofe)
)
= 115::25 + finite expression. (13.27)

The finite contribution here is of no special importance, but we note that it depends on
the arbitrary factor y. The important point is that we succeeded in a correct separation
of the divergent part. For € > 0, this contribution is finite, and we can deal with it in a
normal way.

Let us now calculate a 4-point function up to the terms of the order of ~g2. Simi-
larly to (13.2), we obtain the contribution of the diagram in Figure 13.2 as

(13.28)

1 2 2)4—dj dp 1 1
2* @mdp*-m’ (p-qy -m*>
Denominators in the integrand here can be joined with the help of Feynman’s formula

1

1 dz
— = — 13.2
ab 6[ [az + b(1 - 2)]? (13.29)
This formula is derived from
1 1 1 1 1 { d
X
3 5l 5) ral v (13.30)

a

taking x = az + b(1 — z), with a and b complex, to exclude singularity at a = b. Now,
we have

1
! | de (13.31)
0

p?-m?(p-q)?-m? -m?-2pq(1-2z) + ¢?(1-2)]>°

Changing variables to p’ = p — q(1 — z), we see that the denominator of the integrand
is the square of p'2 - m? + ¢°z(1 - z). We have d%' = dp, so that after the change of
notations p’ — p, (13.28) takes the form

1
1 5, 2\4-d ddp 1
- 28202) J dz J A T PO (13.32)
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Using (13.23), we now have

)
E(y )4 d<4ﬂ> F(2 da/2) sz[qzz(l—z)—mz]d/zfz
0

2 I'Q)
. 2 d 1 2 (1 ) 2 %‘2
ig” , \2-dJ2 qgz(1-2z)-m
.- r(2-2)|az| 2122222 . 13.
3212 ) ( 2 > 6[ Z[ 4rru? (13.33)
In the limit of d — 4, from (13.25), we get
r(z- g) _ f —y+0G), (13.34)

so that after writing a® =~ 1 + ln a, (13.33) takes the form

. 2. € 1

ig?u® (2 £ q’z(1- Z)

32ﬂz(g—y+O(e)><[1—§szln[ ” ” =
0

. 2 g . 2 ¢ 1 2 2
ig’w  ig'p qz(l-z)-m
loms ﬁ{“ J | P | (13.35)

In this expression, the main (diverging) term depends on p, whereas the finite part
depends on the square of (p; + p,)* = ¢° = s (Mandelstam variable). Let us define the
function

H[M] . (13.36)

1
F(s,m,p) = jdzl e

0

Consequently, the final expression for the contribution of the diagram of Figure 13.2is
written as
. 2 € . 2 € 527/,
K L BH 187U
- + F(s,m,
16n% 322 Ly + K wl= 16m2%

+ finite expression. (13.37)

Thus, we have explicitly written the lowest-order corrections to 2-point and 4-point
functions in @*-theory. Let us now write the corresponding irreducible vertices I'? (p)
andT™ (p;)- Equation (13.27), according to (13.1), reduces to %Z, so thatin the first order
over g, we have

2

_sm + finite expression. (13.38)
6m2e

X(p) =

Accordingly, from the definition I (p) = G (p)G(p)G 1 (p) = p* - m* — X(p), we have

M) =67p) -p*-m(1- £ ). (13.39)
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Figure 13.4

Obviously, for € — 4, this expression diverges.
Further on, the 4-point vertex ™ (p1>---»p4) in momentum representation is writ-
ten as

r® (D1:P2:P3:Py) = 671@1)671@2)6(4) (p1>P2»P3’P4)Gfl(p3)G71 (4) (13.40)

and is expressed by the sum of the diagrams shown in Figure 13.4, taking into account
contributions of all the cross-channels, which are obtained from (13.37) and another
two similar terms obtained from (13.37), changing the Mandelstam variable s to t and
u (reference Chapter 5):

s=(m +Pz)2> t=(m +P3)2 , u=(@ +P4)2~ (13.41)

The action of G‘l(pi) in (13.40) reduces to the “amputation” of the external lines. Fi-
nally, we obtain

) 31- 2. i 2..&
F(4)(pi) = —igu® - 157155 + 35;7’:2 [By + F(s,m,p) + F(t,m,p) + F(u,m, )]
= —ig;f(l + 16352%:) + finite expression. (13.42)

The main contribution here is also infinite for ¢ — 0. To make vertices T® and I'¥
physically sensible, we should make them finite. This is done by renormalization.

Loop expansion

Note that above, we analyzed diagrams with the same number of loops equal to 1 (single-loop approx-
imation). Actually, we can present arguments showing that loop-expansion is, in some sense, even
more interesting than the usual perturbation expansion in powers of g. Expansion in the number of
loops L is equivalent to expansion in the powers of the Planck constant #. In fact, restoring # in all
expressions, we can write the generating functional as

Z[Je)] = J Dy exp{ é J Ax[L(x) + B ()@ } : (13.43)
Introducing £ = Ly + L;y, We can write
Zl] = exp{ %z;,m { % 5% ] }ZO Ul (13.44)

where

Zyll=N exp[—%ih J dx J dyJ ()Ap(x - y)](y)] . (13.45)
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From (13.44), it follows that every vertex introduces the factor of 7~ into an arbitrary diagram of the
n-th order of the usual perturbation theory, whereas from (13.45) it follows that each propagator con-
tributes the factor of #. Thus, the given diagram contains the factor of ™ = ! (where we have
used the previously derived relation (13.4): L = I — n + 1, where [ is the number of internal lines of this
diagram). Then, we conclude that the expansion over the number of loops is actually an expansion in
the powers of A, that is, the expansion “around” the classical theory.

13.3 Renormalization of ¢*-theory

Our aim now is to make all physical quantities finite. In a single-loop approximation,
we can easily explicitly make renormalization. After the regularization, all the quan-
tities we are dealing with are finite, and we can act in a direct way. From the definition
of the physical mass of the particle, it is clear that the inverse propagator must be of
the form

') =T?p)=p*-m? or m’=-1%0)=-6"0), (13.46)

where the physical mass m, is finite. The initial (“bare”) mass m entering the La-
grangian does not have any direct physical meaning and can even be infinite in the
limit of d — 4. This is a mass that characterizes a particle in the absence of interac-
tions, which is unobservable; only m, is physically sensible, and it should be finite.
From (13.39) and definition (13.46), we have

2 2 g
= 1- . 13.47
= < 167128) ( )

In the second term in the right-hand side, we may—with the same accuracy ~g—
replace m by my, which gives

2 2 g 2
- -2 m?, 13.48
m;=m 16ngm1 (13.48)
so that we get
2 2 g
m=m;|1+—+|. 13.49
1< 167128) ( )

This is the value of the “bare” mass, guaranteeing the finite value m; of the physical
mass in single-loop approximation. We see that for € — 0, the value of m diverges, but
m, is finite.
We can similarly analyze the vertex part I“), We rewrite (13.42) as
2.
6
SH IO 3y F(s,mp)— Ft,mp) - Fu,m,p) |- (13.50)

iT™ (p,) = guf
i (p;) = gu "3 |

Let us define the renormalized (finite) coupling constant g; as

g =i, =0), (13.51)
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that is, as the vertex part for particles with zero momenta. Then, from (13.50), we ob-
tain
2.€
gufe
- -3y -3F(0,m, . 13.52
22| s Y~ 3FOmp) (13.52)

g =gu +

Considering g; to be fixed and finite, we immediately see that the “bare” coupling con-
stant g should be infinite (for € — 0). In fact, rewriting equation (13.52), replacing g by
g1~ ¢ and mby m, everywhere (which always can be done with an accuracy up to terms
~g?), we can obtain an expression for g, expressed via 81, similar to equation (13.49):

3gi 12
33022 e

g=gu ‘- y-FO,my, ) |. (13.53)

As a result, we can express I'”) (13.50) via g as

gt

3212

i) = g [F(s,my, ) + F(t,my, p) + F(u, my, ) = 3F(0,my, )] .~ (13.54)
From here, (13.51) follows directly; as for p; = p, = p; =p, =0, wehaves =t =u = 0.
Thus, the physical (renormalized) coupling constant g; coincides with ir™, with all
external momenta equal to zero.” Now everything is finite! We completed renormal-
ization in a single-loop approximation.

S - X7
= SoX >8<
(b) (c) (d) (e)

(a)

Figure 13.5

Now, how does this look in two-loop approximation? In this case, we have to con-
sider the diagrams shown in Figure 13.5. Appropriate analysis shows that in this case,
G 1(p) = T'®(p) acquires an additional divergence due to the diagram of Figure 13.5(b).
This divergence is not canceled by mass and coupling constant renormalization. It
is hidden into an additional multiplicative factor, which is introduced by redefining
2-point function as

r

G,' =T = Z, (g, m, WI?(p.my). (13.55)

5 This is not the only way to define the renormalized coupling constant. Sometimes g; is defined via
ir'™ at the so-called symmetric point pf =m?, pipj = —m?/3 (i # j), which corresponds tos = t = u =
4m?/3.
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Here, Fﬁz) is finite, whereas the factor Zq, is infinite. The factor of Z;)/ 2 is called wave
function renormalization. For Z,, it is possible to write an expansion in the number
of loops, which has the form

Zy=1+8Z1+8Zy+ - =1+82Zy+ ", (13.56)

because the single-loop contribution is absent. Wave function renormalization (renor-
malization of the field amplitude) cannot be merely arbitrary. To define it, we need to
require that at some point; for example, at p? = 0, we have
0 . 0

—G'p)| =-5I? =1 (13.57)

ap p2=0 ap p2=0
The choice of p? = 0 is more or less arbitrary.

The divergence of Z, means that in a two-loop approximation the value of m; de-

fined above is actually infinite (in the limit of ¢ — 0). However, renormalized G, 1(p) =
T'? gives the finite value of renormalized mass m,:

m; = Z,m; . (13.58)

In other words, divergences of Z(p and mf cancel each other. The value of renormalized
coupling constant changes similarly. For Fﬁ“), we have the relation similar to (13.55):

I = ZoT (p,my, p) (13.59)

and the new renormalized coupling constant g,, defined by the relation similar to
(13.46), has the form

N (p;=0)=g =28 (13.60)

The factor Z,, is the function of gu®, so that writing this dependence explicitly, we
obtain the renormalized n-particle vertex part as

I 3, g, my. 1) = Zy/ (@ )T (03, g, m) (13.61)

or

I (p;,8,m) = Z,"*(gu )T (03, g My ). (13.62)

Thus, in two-loop approximation, we can also make our theory finite. Is it so in any or-
der? This is the problem of the proof of renormalizability. This proof is tedious enough,
but it can actually be done in all orders of perturbation theory (Dyson). A detailed pre-
sentation of this proof for different models of quantum field theory can be found in [9].
Note that the proof of renormalizability in ¢*-theory is actually more difficult than the
similar proof for QED, which is made more simple due to the gauge invariance.
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Counter-terms

There is an alternative way to introduce renormalizability, which became popular af-
ter the publication of [9]. The point is that, from the start, we can consider parameters
mand g in an initial Lagrangian as the physical mass and charge (coupling constant).
The fact that this Lagrangian does not produce finite Green’s functions now leads to
the requirement that we introduce into the Lagrangian some additional terms, which
cancel the divergences. These terms are called counter-terms. Renormalized theory
can be made finite by the introduction of the finite number of counter-terms. Let us
briefly describe how this is done.

.2

Q — tgm -+ finite part
167’

Figure 13.6

Consider again mass renormalization in a single-loop approximation, which is defined
by equations (13.46)—(13.49). This may be described as follows: A single-loop correc-
tion to a free propagator is shown in Figure 13.6 and diverges for € — 0. Let us add to
the initial Lagrangian £ the term

=" =-mp. (13.63)

This may be considered as an additional interaction, which we shall denote by the
“cross” on the diagrams:

X = — = —ibm*. (13.64)

Then, up to terms of the order of ~g, the total inverse propagator is represented by
diagrams in Figure 13.7 and is equal to

@) = iG(p)™
I1, 5 5 <igm21 . ) igmz]
=il (p® - m?) - | == - + finite part
1[i(p m°) 6n? + finite part | + e’
—p-m, (13.65)

where we have dropped the finite contribution (alternatively we can include it into m?).
Here, m? is considered to be the finite physical mass, which in corresponding order of

x
[

_@__1:[ L 0O 4

Figure 13.7
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Figure 13.8

Figure 13.9

perturbation theory is equal to —-T®(0). The Lagrangian is now £ + 6L, where 6L, is
a diverging counter-term.

The meaning of the introduction of a mass term in the Lagrangian as an additional interaction is rather
simple. Consider noninteracting theory, where

1 1
L=50,0)(0) - imqu, (13.66)

and assume that it describes a massless field (first term in Lagrangian) with interaction determined
by the second terms. The corresponding Feynman rules are shown in Figure 13.8. The full propagator
is determined now by the diagrams shown in Figure 13.9. Then, the perturbation series reduces to the
simple geometric progression
i i, . i [ N RV N | i
Gp) = = + 5 (-im") = + = (-im" ) 5 (-im" ) 5 + - = 55—, (13.67)
P pz( )pz pz( )pz( )pz P —m?

which gives the usual propagator of the massive field. We actually used this while considering the
mass counter-term as perturbation.

In a similar way, we can also deal with I¥). From (13.42), it is seen that T®, corre-
sponding to diagrams ~g? shown in Figure 13.10, diverges for ¢ — 0. Consequently,
we can add to the Lagrangian the counter-term

2, & £
1 3g U 4 Bgll (p4 , (13.68)

27 wiene? T a

corresponding to the additional interaction shown in Figure 13.11. As a result, I¥), as
shown in Figure 13.12, becomes finite. The divergence of I® in a two-loop approxi-

N 4 N . N ’
AN / N 7 N /
N4 N v
% - A + L0 + 2 crossterms =
LSRN / AN
/ AN 7 N ’ N
/ N ’ N
:—igﬂ,e (1+ 392 )+ finite part
167°

Figure 13.10
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mation, qualitatively described above and leading to the necessity to multiply I™ by
Z;/ 2, is equivalent to the addition to the Lagrangian of the counter-term

A
8L = E(a,;p)z, (13.69)

wherel+A = Z¢,.
Thus, finite expressions for Green’s functions and vertices can be obtained by
adding to the Lagrangian

1 1. 55 1 4.4 4
L= an(pa"(p — M- s e (13.70)
the counter-term L¢t:
_A u o lo 55 1. 444
Lot = 5 WP P — E(Sm Q- ZBgy Q. (13.71)
The total Lagrangian, which is usually called the “bare” Lagrangian L, is equal to
1+A 1 1 _
Lg=L+Ler = +Tay(pa"(p - E(m2 +6m%)p? - E(l +B)gu* " (13.72)

Thus, the addition of counter-terms is equivalent to the multiplication of ¢, m, and g
by some renormalization factors Z (multiplicative renormalization). If we define the
“bare” quantities

gDB:\/Z—(pq)r) Z(P:1+A’

2 2
> m-+6m
mB=me,, ZmZW, (13.73)
1+B
=uZ. g, Zo=——
§g=H ggr g (1+A)2

the “bare” Lagrangian (13.72) is written as

1 1 1
Lp= iay(pBaH ®p— 5’"12340123 - EngP? (13.74)
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Note that here, there is no explicit dependence on p. The values of A, B, and sm? are
assumed to be chosen in such a way as to make Green’s functions finite (for ¢ — 0). In
terms of the counter-terms approach, the theory is renormalizable if the counter-terms
needed to cancel the divergences in every order of perturbation theory have the same
form as the terms entering the initial Lagrangian. If this is so, the “bare” quantities can
be defined with (infinite) renormalization factors, as was done above, and the “bare”
Lagrangian has the same form as the initial Lagrangian.

Lagrangian Lz leads to finite theory, in contrast to initial £. This means that,
“hiding” all divergences into ¢g, mg, and gz, we can make the theory finite: the di-
vergences are absorbed by renormalization. All “bare” quantities are divergent for
€ — 0,% whereas renormalized quantities are finite for ¢ — 0, but their values are
more or less arbitrary and should be taken to be equal to the physical parameters of
the theory.

Equation (13.62) is also obvious from the counter-terms approach. From equa-
tions (13.73) and (13.74), it is clear that, taking (13.74) as the initial Lagrangian, we
have to replace m — mg, g — gg, ¢ — @p in all expressions for Green’s functions. But
now, we can (and need to) express the “bare” parameters via physical m,, g,, and @,
according to expressions (13.73). Then, we obtain

I3 (o8 M5) = Z," T (03, 8 1,0 0) (13.75)

which is equivalent to (13.62) (index B can now be dropped). The absence of explicit
dependence of the left-hand side of this equation on y is obvious from the form of the
Lagrangian (13.74), where it is also absent.

13.4 The renormalization group

In Chapter 8, we already discussed briefly the renormalization group in QED. Renor-
malization groups play a major role in quantum field theory [9, 56, 28] and statistical
physics [42, 3], and in some other fields of theoretical physics. Below, we shall present
a more detailed discussion. There are several (more or less equivalent) formulations
of this method. For example, in Chapter 8, the renormalization group was related to
transformations from one value of the cutoff parameter (for divergent integrals) to an-
other. In the theory of critical phenomena [42] Wilson’s formulation is quite popular,
which is based on integrating out regions of momentum space, corresponding to large
momenta, that is, restricting the analysis of fluctuations to long enough wavelengths
et cetera. Here, we shall use the most common (though probably more formal) ap-
proach used in quantum field theory literature, which is based on dimensional regu-
larization [56].

6 For finite &, there are no divergences at all!
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Within the framework of dimensional regularization, we have introduced an ar-
bitrary parameter y with dimensionality of the mass. Dependence of renormalized ir-
reducible vertices on y is determined, according to equation (13.61), by a correspond-
ing p-dependence of renormalization factor Z,,. In other words (cf. (13.62), (13.75)), the
nonrenormalized (“bare”) function I'™ does not depend on e

I (0, 8:m) = Z,"(gu" )T 0y, &, My ) (13.76)

and, in this sense, is invariant towards the group of transformations

u—eu or u=e‘y, i.e. s=In Ly (13.77)

Ho

These transformations represent the renormalization group. Introducing the dimen-
sionless differential operator y%, we get

9 ()
—I'""=0 13.78
u n (13.78)
or, taking into account (13.76),
0
Ma[ z," (@ I (py, g, my, )] = (13.79)

where g, and m, depend on u. Making a differentiation and multiplying the result by
Z;/ 2 we obtain

0 ag 0 am 0 (n)
Iz r r™_o. 13.80
[ o ‘P+”ay+”ay o, M owom |’ (13:80)

In the following, for brevity, we shall—in all cases—write g instead of g, and m instead
of m,, assuming that we are dealing only with renormalized quantities. In general,
only renormalized quantities enter equation (13.80), which are finite for € — 0.

Let us define the following functions:

om
mYm(g) = I’la 5
0
y(g) = ”5 In\Z,, (13.81)
B8) = u ay

As a result, equation (13.80) takes the form

) ) )
Mt B(g)% = ny(g) + mym(8) - ™ =o. (13.82)
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This is the main differential equation of the renormalization group, usually called
a Callan-Symanzik equation. It reflects invariance of the renormalized vertex I to
changes of the regularization parameter .’

Let us write a similar equation expressing the invariance of I to changes of the
momentum scale (mass). Consider the replacement p; — tp;, m — tm, u — tu. The
vertex I™ has mass dimensionality D, determined according to the table presented
above, by the expression

D:d+n<1—§>:4—n+e<g—1>, (13.83)
where d = 4 — €. Then, we have

I (tp;, tm, tw) = T (p;, m, )., (13.84)

which, after the simple variable changes tm — m, m — m/t, m — m, and ty — fi,
U — fi/t, i —> p, is rewritten as

I (tp;, m, ) = T (p,, m/t, u/t) . (13.85)

Thus, T™ is actually the homogeneous function of its variables of the power D.

Homogeneous functions. The Euler theorem
Let us recall the basic facts about homogeneous functions. The function u = f(xy,x,, ..., x,,) is called
a homogeneous function of power p if for any ¢, we have

U=ftxgs. . ) = P (Xps s X)) - (13.86)

For homogeneous functions, we have the Euler theorem

ou ou
Xy 4o Xy —— = DU. 13.87
1ax, ™ X P ( )
To prove this, consider u = f (txgJ s tx?n), where (x? s ,x,(:,) is an arbitrary point, from the region of
the definition of our function. Then, we have

du ou o ou o
Tl T e Xt o Xy 13.88
dt le=1 axlxl T axmx'" (13.88)
On the other hand,

du p-1g( 0 0

o Pt f(x{s....xy),  sothat

du

Gl = PO ) = pu. (13.89)

Comparison of (13.88) with (13.89) gives (13.87).

7 To avoid misunderstanding, we note that here we are dealing with the vertex defined in (13.16) and
denoted previously by T™.
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From (13.85), using the Euler theorem, we have

9, 90 0 \w _
(tat + mam +Hay D)F (tp;, g, m,u) = 0. (13.90)

Excludmg y from (13.82) and (13.90), we obtain another form of the Callan-Syman-
zik equatlon

T (tp;, g, m, ) = (13.91)

5] 5]
|35 + B~ (@) + m(yn(®) ~ D)+ D

which directly expresses the result of the scale change of momenta in T™ by the fac-
tor of ¢t. Note that for 5(g) = y(g) = 0, y,,(g) = 1. This result reduces to the canonical
dimension D, which is determined by the “naive” dimensional analysis. The neces-
sity of renormalization and nontrivial values of 5(g), y(g), ym(g) is directly related to
interactions, which lead to anomalous dimensions.

Let us find the solution of equation (13.91). In fact, this equation reflects the fact
that the change of ¢ can be compensated by an appropriate change of m and g and of
the common factor. Suppose the existence of functions g(t), m(t), and f(t) such that

I (tp,m, g, ) = FOT™ (0, m(t), g(¢), ) . (13.92)
Differentiating by t, we obtain

om or™ .02 or®
ot om ' ot og

df(l‘)

9 pw (tp,m,g, u) = ™ (p, m(t), g(t), ¥) +f(t)( ) (13.93)

ot

or, taking into account (13.92),

df (t) om o og 0 n
r(") > S :( — )r( ) > > >
(tp,m,g, ) =  t=5= +f (Ot == =+ f(D)E = % (p,m(t),g(t), )
df(t) om 0o ag 0 ) 1
=7 5 r > » S > 1 .
(LR 05 o+ OB S ) T ame), (1394
which, after the regrouping, reduces to
a t df(t) om o ag a> ) _
< f(t) T +t > 3m +t %3 (tp,m,g,u) =0. (13.95)

Compare now (13.91) with (13.95). Equating the coefficients at d/0g, we obtain the Gell-
Mann-Low equation

ag (t) - B(g). (13.96)

The function g(t) is called the “running” coupling constant, and the B(g)-function is
called the Gell-Mann-Low function. This equation is of basic importance in the study



13.4 The renormalization group —— 367

of asymptotic properties in quantum field theory. The knowledge of 5(g) allows us to
find g(t). Of major interest, as we shall see, is the asymptotics of g(t) at t — oo. The
initial condition for equation (13.96) is g(1) = g.

Comparison of the coefficients before 0/0m in (13.91) and (13.95) gives

taa—r;l =mly,(g) - 1], (13.97)

and comparison of the remaining terms gives

tdfe) _

The latter equation can be integrated to obtain

t
F() = 60 exp[— J dt "y(f () ] ; (13.99)
0

substituting this into (13.92) and taking D = 4 —n + e(g —1), in the limit of ¢ — 0, we
get

t

I (tp,m,g,p) = t* " exp [—n J dt@ ] ™ (p,m(t),g(t), ). (13.100)
0

This is the solution of (13.91), expressed via the “running” coupling constant g(t)
and the “running” mass m(t). The exponential determines the anomalous dimension.
Thus, the physics at high momenta is determined by functions g(t) and m(t). Rela-
tions, such as (13.100), in some sense allow us to analyze the situation outside the
region of applicability of perturbation theory.

In the limit of very large momenta, we can neglect particle masses. Thus, we can
usually limit our analysis to studies of the Gell-Mann-Low equation (13.96). Consider
the possible qualitative behavior which may appear. We shall be interested in the be-
havior of g(t) for t — oo. The Gell-Mann-Low equation is written as (13.96), and the
possible variants of the qualitative behavior of the B(g)-function are shown in Fig-
ure 13.13. We always have (g = 0) = 0, which corresponds to free theory without
interactions. Perturbation theory allows us to determine the behavior of f(g) close to
g = 0; it is always (as we shall see below) quadratic in g. In principle, where zeroes of
B(g) at finite g, may be, it is sufficient to consider only one, say at g = g,, to understand
the consequences of its existence. Consider first 8(g), shown in Figure 13.13(a). The ze-
roes of this function at g = 0 and g = g, correspond to the so-called fixed points of the
Gell-Mann-Low equation. It is easy to see that, for t — co and initial values of g close
to gy, the value of g(t), determined from (13.96), tends to g,. In fact, for initial g < g,
we have B(g) > 0, so that g grows with the growth of t and tends to g, (where further
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Figure 13.13

growth is just stopped). Likewise, for initial g > g,, we have (g) < 0, and g dimin-
ishes with the growth of ¢, that is, also tends to g, moving in a negative direction. Thus
g(o0) = gy, and we have an ultraviolet stable fixed point: the fixed value of the cou-
pling constant (charge) at very large momenta. For small initial values of g in the limit
of t — 0, we always obtain g = 0, the infrared stable fixed point (“Moscow zero”). If
the zeroes of the Gell-Mann-Low function at finite g are absent, equation (13.96) leads
to the continuous growth of g for t — oo, and a fixed value of charge does not appear.
If for the large values of argument B(g) ~ g* and a > 1, the theory becomes internally
inconsistent: the inevitable divergence of g appears at the finite value of t (the Landau
“ghost pole”). For a < 1, we obtain the monotonous growth of g for t — co; the theory
is consistent, but for t — co, we have a crossover to “strong coupling”.

Consider now the B(g)-function shown in Figure 13.13(b). Again, we have two fixed
points, but the sign of (g) is now opposite, so that g = g, is not the infrared stable
fixed point at (¢t — 0), whereas g = 0 is the ultraviolet stable fixed point at (t — co). In
the latter case, g — 0 for t — oo, and effective interaction diminishes with the growth
of energy (momentum) becoming zero in the limit. This is called asymptotic freedom.
With the absence of zero of f(g) at finite values of g, we have problems at small mo-
menta; interaction grows and can produce unphysical divergence. In any case, here
we obtain the transition to “strong coupling” at large distances (confinement?).

These possibilities, in fact, represent all the variants of asymptotic behavior in any
reasonable model of quantum field theory. As a concrete example, we can consider
the gp* (g > 0)-theory. Let us take the result of the single-loop approximation (13.52)
for the renormalized coupling constant. Dropping irrelevant finite corrections, we can

write
3g
=gl 1 > 13.101
8 gu( * Tone ( )
Then, we have
2
y% =egu’ + g ue. (13.102)

ou 1672
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For finite £, everything is finite, and we can (with the same accuracy) rewrite (13.102)
as

3g?

—&

98
= =g +
M ou 81
and then drop the index 1, assuming that we are working with a renormalized cou-
pling constant. Consequently, from (13.103), for € — 0, we obtain the Gell-Mann-Low
function as

og 38

_y= === 13.104
"ay 1672 (13104)

Bg)

0

. 2 2
Introducings = Int = In uﬁo’ so thatya = =t

5> Wecan rewrite equation (13.103) as
% _ 3¢

= . 13.105
os  16m? ( )

Now, without any calculations we can see that the “running” coupling constant of
(p‘*-theory grows with the growth of s, that is, with the growth of momentum, so that
this theory is not asymptotically free. The Gell-Mann-Low function is ~g2. The ele-
mentary integration of equation (13.105) with initial condition g(s = 0) = g, gives

g=—25 - 5o 5o . (13.106)

3 - 3 - 3 H
1—@3'05 1—@golnt 1—@golny—0

With the growth of t (or u) the coupling constant grows, and finally we meet the un-
physical singularity (“ghost pole”) at 1 = #go ln(uﬂo), which corresponds to y =

Mo exp(%). The situation here is quite similar to that in QED, which we discussed

in Chapter 8. The same behavior was discussed in Chapter 10 in relation to critical
phenomena.

Of course, this behavior of the Gell-Mann-Low function is completely based on a
single-loop approximation and is formally valid only for small enough values of the
coupling constant g. The problem of the (g) behavior for large values of g and the
related question of the consistency of go“-theory remains open. Many researchers ob-
tain for g — oo the asymptotic behavior of S(g), which is practically the same as the
result of a single-loop approximation, which is equivalent to the internal inconsis-
tency of the theory in accordance with the initial Landau claim, discussed above in
Chapter 8. Alternative suggestions will be discussed in Chapter 14.

Note that the g(p‘*—theory is “easily” made asymptotically free if we assume g < 0. Then, we obviously
have to change the sign before the logarithm in the denominator of equation (13.106) and the effective
coupling constant will drop with the growth of ¢ and u. However, such a theory is unstable: there is
no ground state (potential energy can be arbitrarily negative), and this model is usually not consid-
ered in quantum field theory. However, the specific variant of such models, which is reduced to the
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generalized Landau functional (10.160), with the number of field components n = 0, describes the mo-
tion of an electron in the random potential field of impurities with point-like potential V, chaotically
distributed in space with fixed average density p if in (10.160), we put g = —pV? and T = —E, where
E is the electron energy. This problem is basic for the theory of electrons in disordered systems and
related to the still unsolved problem of electron localization in such systems (Anderson localization,
the basic mechanism of metal-insulator transitions). These problems are deeply connected with the
description of the infrared region of asymptotically free models in quantum field theory. We shall not
discuss these problems in more detail here, referring the readers to existing reviews [57, 64].

13.5 Asymptotic freedom of the Yang—Mills theory

Now let us consider the asymptotic properties of gauge theories. The situation in QED
was discussed in Chapter 8, where it was shown that this theory is not asymptotically
free, which leads to a “zero-charge” problem and pathological behavior at large mo-
menta (energy). Remarkably, in non-Abelian theories the situation is different, and in
these theories we can obtain asymptotic freedom. The discovery of this phenomenon
by Gross and Wilczek opened the way for the development of quantum chromody-
namics and guaranteed the possibility of reliable calculations of QCD effects at high
energies using perturbation theory.

ptk \ er/f p+/€
RPN N
a ps VP b a p D b
MW, MWW
H “ood . v 2 v
~ 3 N3
Figure 13.14 Figure 13.15 Figure 13.16

Here, we limit ourselves to the main results for the case of SU(3) gauge theory (QCD)
and a qualitative interpretation of asymptotic freedom, referring the reader for details
to existing textbooks [56, 53, 13]. The key to finding asymptotic behavior is the Gell-
Mann-Low S(g)-function. Addressing QED in Chapter 8, we used the simplest single-
loop approximation for vacuum polarization. In single-loop approximation of QCD we
have additional contributions related to the non-Abelian nature of the theory (self-
interaction). We have to take into account the contribution to charge renormalization
from the simple loop graphs for gluon—-gluon interaction, shown in Figure 13.14, from
gluon—ghost interaction, shown in Figure 13.15, and the QED-like contribution from
gluon—quark interaction, shown in Figure 13.16. After some tedious calculations [56],
we obtain the renormalized QCD coupling constant in a single-loop approximation,
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similar to (13.101), in the form®

2 2n
£/2 g f
-1+ —2 ||, 13.10
81 =8HU [ 4n€< +3>] (13.107)

where n; is the number of quark “flavors” (type of quarks). A similar single-loop cor-

rection for electrons in QED is Z—Z ——) The sign of the fermion loop contribution in
QCD is the same as in QED. However, the combined contribution from the diagrams of
Figures 13.14 and 13.15 has the opposite sign. Correspondingly, for ny < 16, the sign of
the full polarization correction in (13.107) is opposite to that in QED (“antiscreening”).
The physical reasons for such behavior will be explained below, whereas now, acting
just as in transformations leading from (13.101) to (13.104), in the limit of ¢ — 0, we
obtain

3

B(g) = D33+ 2m). (13.108)

Ma;u 1
For ny < 16, from (13.108) it follows that B(g) < 0 and the coupling constant g dimin-
ishes with the growth of the momentum (mass) scale, in accordance with the quali-
tative picture discussed above. We see that, in this case, the theory is asymptotically
free. In nature, we have ng = 6.

Let us obtain the expression for the “running” coupling constant. Introducing

once agains = Int = ln o ],1 B 5 , we obtain the Gell-Mann-Low equation
ag 3 33 - 2nf
= =- , h = . 13.109
3¢ — 18", where 7 o ( )
Let us rewrite it as
d, _
= %)= 2. (13.110)
It is easy to see that the solution of this equation has the form
iz - iz - s (13.111)
g &
or
2 2
g’ fo__ _ £o (13.112)

- 1+2g2ns  1+2g2nlnt’
Introducing t = Q/p and defining g, at Q = p, we obtain the result already quoted in
Chapter 8,

2
Q) = ) (13.113)

+ €963 -2 In(%)

8 Here we use the Gaussian system of units.
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Only in the experimental world with ny > 16, the sign in the denominator of (13.113)
will be the same as in QED. In the real world, the effective charge of QCD does not
grow, but drops with the growth of Q? and becomes small at small distances. In con-
trast, for small enough Q? (at large distances between quarks) the effective coupling
constant becomes large, which is reflected in confinement of quarks (“infrared jail”).
For the value of Q?, corresponding to the “ghost pole” in (13.113), we can introduce the
notation AéCD:

12
A =plexp|l-———— |, (13.114)
acp (33 - 2n)82(u2)
so that (13.113) is rewritten as
12
2@ d (13.115)

)= 33-2n)In(%)’

For Q> » AéCD, the effective coupling constant is small, and quark-gluon interaction
(at small distances or large momenta) can be described by perturbation theory, just
as electron—photon interactions in QED (at big distances of small momenta). For Q> ~
AéCD, such a description becomes impossible, and quarks and gluons form strongly
interacting clusters, hadrons. The experimental value of Agcp is somewhere in the
interval between 0.1 and 0.5 GeV. Then, for experiments being done at Q* ~ 30 GeV)z,
from (13.115) we obtain g° ~ 0.1, so that the perturbation theory is applicable as in QED.
In the limit of large Q?, we can neglect all quark masses, but the theory still contains
the mass scale 2, which appeared during the renormalization procedure.

Let us stress that the theoretical result (13.115) is well confirmed by experiments. In
Figure 13.17, we show the experimental data for the effective coupling constant of QCD
as a function of the characteristic energy-momentum scale if with different scattering
processes, studied at different experimental installations.” We see a rather convincing
agreement between the theory and experiments.

Antiscreening - the paramagnetism of Yang-Mills vacuum

We have seen that asymptotic freedom appears due to charge antiscreening in a Yang-Mills vacuum.
This phenomenon has a rather simple explanation, based upon analogies with condensed matter the-
ory.0
Charge antiscreening means that a vacuum acts like a dielectric medium with dielectric permeability
€ < 1. The vacuum of quantum field theory differs from the usual polarizable medium in one important
aspect: it is relativistically invariant. This means that its magnetic permeability u is related to dielectric
and both satisfy

ue=1. (13.116)

9 M. Schmelling. ArXiv: hep-ex/9701002.
10 Below, we shall follow mainly F. Wilczek. Asymptotic Freedom. ArXiv: hep-th/9609099.
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In fact, € is the coefficient before the electric field term in action E - D oc €F,F "i, whereas y’l is the

coefficient before the magnetic field term B - H o y'lFi]-F ¥, The sum of these terms is relativistically

invariant only if the condition € = y'l is satisfied. This relation allows us to connect electric properties
of the medium with their magnetic properties, which may be of two types:

1. Landau diamagnetism (u < 1). Charged particles in the medium respond to the magnetic field
creating the current, which itself induces the magnetic field with the direction opposite to the
external field.

2. Pauli paramagnetism (u > 1). If particles possess magnetic moments, these are oriented along the
field direction.

Then, the property of antiscreening of a Yang—Mills vacuum can be interpreted as u > 1, that is, para-
magnetism.11 The thing is that non-Abelian gauge fields are Bose fields and, in contrast to Abelian
photons, possess a gauge charge. Let us stress that the terminology of electromagnetism is used here,
based on the analogy with U(1) gauge theory (QED), whereas—in reality—we mean charges, corre-
sponding to gauge SU(3) (color) symmetry and color charges. Electric and magnetic fields are under-
stood as electric-like and magnetic-like components of a non-Abelian gauge field, corresponding to
SU(3) symmetry of QCD. When we are speaking about Yang—Mills fields in QCD (gluons), possessing
charge and a magnetic moment, we mean that these fields possess a color charge and a color magnetic
moment. Gluons are, of course, electrically neutral in the usual (electrodynamic) sense.

The well-known result of the theory of metals is that for an ideal gas of electrons, Landau diamag-
netism is overtaken by Pauli paramagnetism, so that the total response is paramagnetic [36]. We shall
see that for non-Abelian gauge theories, the situation is similar.

11 The usual polarizable medium, in contrast, can simultaneously be screening (¢ > 1) and paramag-
netic (i > 1). But still, there is some historical irony that the physical behavior leading to asymptotic
freedom was, in fact, known to Landau, who made some fundamental contributions to the quantum
theory of magnetism, but—at the same time—criticized the basics of quantum field theory, because of
the pathological behavior of interactions at high momenta.
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The standard classical Lagrangian of non-Abelian gauge theory has the form

L= —%G&Gmﬁ +(iy’D, -m)p + ¢'(-D,D" - y2)¢ + other contributions, (13.117)
where the field tensor is defined as Gy = 0,A5 — 9pA; — gf”bCAZAfg, and f%° are the structural con-
stants of the gauge group; the covariant derivative D, = 9, + igAJ - T%, and T are the generators of
the group (for example, Pauli matrices % for the fundamental representation of SU(2), or Gell-Mann
matrices % for fundamental representation of SU(3)). “Other contributions” are assumed to originate
from Yukawa-type interactions and self-interactions of scalar fields. It is important that these contri-
butions are independent of gauge fields. It is convenient to redefine gA — A, so that the Yang—Mills
constant g enters only the “free” part of the gauge field Lagrangian:

L= 16ng —— G, Ga“ﬂ +(iy’D, - m)p + ¢'(-D,D" - u*)$ + other contributions, (13.118)
where now, Gl = 3,Af - 9gA% — f*"AJAG, D, = 3, + A} - T, and g now enters only as a coefficient in
the first term.

To calculate the magnetic susceptibility of a vacuum, we need to know the change of its energy density
due to a change of the external magnetic field. It may seem that everything is determined only by the
first term in (13.118): —ng But this is only the classical contribution to energy; in quantum theory,
we need also to consider the charge of zero-point energy of all fields entering (13.118) under the change
of the external magnetic field. In fact, everything is similar to the theory of metals, where the vacuum
corresponds to the filled Fermi sphere.

Before starting explicit calculations, we shall write the correct answer and analyze its meaning and
consequences. As we shall show, with the additional contribution of the zero-point oscillations A&,
the vacuum energy density in the external magnetic field B can be written as'?

1 1 A2
E+NE= —— B - —nBZ In{ — |+ finite contributions, (13.119)
8mg2(A?) 8m B
where 1 was defined above in (13.109):
_ B (13.120)
=g ’

and the neglected terms are finite in the limit of g — 0 and A — oco. Here, we introduced the usual
cutoff A, that is, dropped the contribution of all oscillations with wave vectors exceeding A. The origin
of the notation gZ(Az) will soon become clear.
Consider the case when the cutoff A in (13.120) is changed to a smaller value A’. Then, it is easy to
see that all oscillation modes with wave vectors in the interval between A’ and A give the following
contribution to the change of vacuum energy:

8(E +AE) = BIn <A2 ) (1 —1>LB2 (13.121)
n A o Jeng? '

where, in the second equality, we introduced the contribution to vacuum magnetic susceptibility (per-
meability) from these modes, thus giving, in fact, its definition.
Now, for small g, we get

A2
-1=ng ln< G ) (13.122)

12 In our system of units, [B] = [L72] = [A?], and we are using here the Gaussian system of units of
electrodynamics.
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where we explicitly wrote the contribution to susceptibility from modes with energies (momenta) in
the interval between A’ and A. From equation (13.120), it is clear that here (as in the theory of met-
als) we have two contributions: the first is connected with the tendency of spins to orient along the
field (paramagnetism), whereas the second is due to the orbital motion of charged particles (diamag-
netism). For electron gas, the paramagnetic response is three times greater than the diamagnetic one
[36]. The result (13.122) shows that in QCD the situation is similar and p > 1, which, as we have seen,
corresponds to the antiscreening of the charge (¢ < 1). To determine the correct sign, we have to take
into account the fact that particles with spin 1 (gluons) have only two polarizations and also that the
fermion (quark) contribution to vacuum energy is negative (reference Chapter 3), which leads to partial
cancellation of the paramagnetic effect. In particular, in QED, where the Abelian electromagnetic field
is not self-interacting, the entire effect is due to fermions, and we have the usual vacuum screening of
the charge.

What are the consequences of equation (13.119) for physical observables? First of all, we have to deal
with the problem of arbitrary cutoff A. We define the effective coupling constant in such a way that the
right-hand side of (13.119) becomes independent of A. To achieve this, we require

1 A2
const = W -nln 5 ) (13.123)

which is equivalent to (13.111). It is better to write this condition in a differential form:

d 1

dmn) g2y " (13124)

which is the same as the Gell-Mann-Low equation (13.110). Now, we see that the effective coupling
constant drops with the growth of cutoff A, going to zero as the inverse logarithm of A for A — oo,
when there are not too many quarks, that is, until > 0. This is what we call asymptotic freedom.
Now let us proceed with the derivation of equation (13.119). A paramagnetic contribution to n from spin
projections +sis easily calculated as follows: Let the electric charge be 1 and the gyromagnetic ratio g,,,.
As we are interested in the contribution of modes with very large momenta, the cutoff parameter A is
much larger than the masses of all the particles, and we can consider all of them as massless (ignoring
infrared divergences, which we may regularize, introducing a low momentum cutoff ~B). Switching on
the magnetic field leads to the energy shift of the relativistic particle [6]: E? = k7 + k3 + k2 — E? +g,,,Bs.
Thus, the corresponding change of zero-point energy is

3
é‘:Jdkl

)} 5(\/’<2 + 8B+ k2 - gpsB - 2VA2). (13.125)

Expanding here up to terms quadratic in B and making angular integrations, we get

AZ
1 [ di? 1, A
AE = —B(g,s 23? j " —Bz(g,,,s)z327 In—. (13.126)
0

This gives the paramagnetic contribution to (13.119). The precise value of the numerical coefficient in
(13.119) is related to group constants of SU(3), and we shall not derive it here.

Calculation of diamagnetic contribution to 1 is more difficult. Let us take the vector potential of a
magnetic field in the Landau gauge: A, = Bx. The Klein—Gordon equation for orbital motion of a
relativistic particle in a magnetic field is

2
0 o . o
[EerﬁJr(a*y”B") +£]¢=0, (13.27)



376 —— 13 Renormalization

and its solutions are written as

b= ei(k2y+k3z>)(n<x - %) (13.128)

with corresponding eigenvalues E,Zl = k§ + B(2n +1). Here, y,, is the usual oscillator wave function [35].
Energy levels are characterized by the integer n and momentum ks, but are degenerate over k,, as for
the usual Landau levels in a magnetic field [35]. If we consider the states in the cube with side L, the
coordinate of the center of the oscillator k,/B should satisfy the inequality O < k,/B < L, which means
that in the interval Ak, we have Ak,Aks/ (27'1)2 = %Ah states with fixed n (for unit volume L= 1).
Then, the corresponding contribution to the energy of zero-point modes is given by

A1
21
o= 2% I disB[A2 - I - B@n + )] I + Ban + 1) Z f<n+ ) (13.129)
m)? =5 2

This is a rather complicated expression because of the sum over n. For us, it is sufficient to take into
account the first nontrivial contribution using the Euler-Maclaurin summation formula:

p+1

p
Z g(n + %) = J dng(n) — i(g’(p +1) —g'(O)) T (13.130)
n=0 0

as the next terms lead to contributions of higher orders in B/A>. Applying (13.130) to (13.129), we see
that the integral term is independent of B, whereas the significant contribution comes from the deriva-
tive at zero:

A
1 B B , 1 A?
—f ©) == —=> j dky—— =B 2. (13.131)
24 472 2 9mn? B
» V8
This gives the diamagnetic part of (13.119), which is smaller than paramagnetic term (13.126) for any
reasonable values of g,,, and s.

As we noted many times, the discovery of asymptotic freedom in non-Abelian gauge
theories played a revolutionary role in modern quantum field theory, transforming
QCD into a “respectable” theory and foundation of the Standard Model. During the
last thirty-five or so years, this theory was tested in many experiments and was al-
ways confirmed. We shall not discuss this. Many aspects of QCD are discussed in [13].
A rather detailed presentation of the mathematical apparatus of QCD can be found
in [62]. Among the unsolved problems, it is relevant that we mention the problem of
confinements, which is deeply related to the problem description of the strong cou-
pling (nonperturbative) effects of QCD in the infrared region (large distances). We shall
briefly discuss these problems in the next chapter.

In recent years, there has been an intensive development of the theory of quark-
gluon matter under extreme conditions of high temperatures and densities, important
for problems of astrophysics and cosmology and for the study of heavy nuclei colli-
sions in accelerator experiments. Here, we meet some remarkable analogies with the
physics of condensed matter. In particular, great attention is devoted to the study of
the so-called color superconductivity, appearing in quark-gluon matter due to Cooper
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pairing of quarks, induced by the attraction due to gluon exchange. A detailed and
clear presentation of these problems can be found in [54, 72].

Frank Wilczek (born 1951) is an American
theoretical physicist. Along with David Gross
and Hugh David Politzer, he was awarded the
Nobel Prize in Physics in 2004 for their dis-
covery of asymptotic freedom in the theory of
strong interactions. In 1973, while a graduate
student working with David Gross at Prince-
ton University, Wilczek discovered asymptotic
freedom, which states that the closer quarks
are to each other, the more the strong inter-
action between them decreases. When quarks
are in extreme proximity, the nuclear (color
charge) force between them is so weak that they behave almost as free particles. This
theory, which was independently discovered by H. David Politzer, was key for the de-
velopment of quantum chromodynamics. Wilczek also worked on axions, anyons, the
color superconducting phases of quark matter, and other aspects of quantum field
theory. He also worked on condensed matter physics, astrophysics. Wilczek holds the
Herman Feshbach Professorship of Physics at MIT Center for Theoretical Physics. He
also worked at the Institute for Advanced Study in Princeton and the Institute for The-
oretical Physics at the University of California, Santa Barbara, and was also a visiting
professor at NORDITA. Wilczek became a foreign member of the Royal Netherlands
Academy of Arts and Sciences in 2000. He was awarded the Lorentz Medal in 2002.
He won the Lilienfeld Prize of the American Physical Society in 2003. In the same year,
he was awarded the Faculty of Mathematics and Physics Commemorative Medal from
Charles University in Prague. He was the corecipient of the 2003 High Energy and Par-
ticle Physics Prize of the European Physical Society. Wilczek was also the corecipient
of the 2005 King Faisal International Prize for Science.

13.6 “Running” coupling constants and the “grand unification”

In Chapter 12, we considered the SU(2) ® U(1) symmetric unified theory of electroweak
interactions, which is in remarkable agreement with experiments related to the SU(3)
invariant QCD. But is it really a unified theory? In fact, SU(2) ® U(1) represents the
direct product of two disconnected groups of gauge transformations: the SU(2) group
of weak isospin with coupling constant g and the U(1) group of weak hypercharge

13 An elementary presentation of the successes of modern QCD is given in a minireview [74].



378 =— 13 Renormalization

with coupling constant f. The ratio of these two coupling constants, introduced in
equation (12.83) as

tga = j: (13.132)
g

is to be determined from experiments. However, if we consider groups SU(2) and U(1)
as subgroups of some larger gauge group

G>SUQ)eU(), (13.133)

the constants g and f can be related to each other by group relations, which will de-
termine the Weinberg angle a. Some of the transformations of the wider group G will
connect previously disconnected subsets of groups SU(2) and U(1). It is natural to try
to unify electroweak symmetries SU(2) and U(1) with the color gauge SU(3) symmetry
of QCD:

G>SUB)eSUR)eUQ1). (13.134)

Then, the gauge transformations of the group G will connect electroweak constants g
and f with QCD coupling. As a result, all known interactions will be described by a
single gauge group with the single coupling constant g, whereas all observable con-
stants of known interactions will be unambiguously defined by the group structure of
G. This type of model is usually called grand unified theories (GUT). There are a num-
ber of such models under discussion for possible verification. Below, we shall briefly
discuss some aspects of this approach.

The foundation for such a description can be guessed from the real behavior of
“running” coupling constants for known interactions. We shall denote these constants
as g1(Q), 8,(Q), and g3(Q), corresponding to gauge groups U(1), SU(2), and SU(3). Let
us introduce the following standard notations relating g; (i = 1, 2, 3) with the coupling
constants used above:

SUB): g%(Q) = 471g2(Q),
SU): 5(Q) =2,(Q), (13.135)

VD f@= Q.

Here, we also introduced (not very important for us in the future) the coefficient C,
which is usually defined by some group constants of G. In particular, the angle a from
(13.132) becomes a function of Q:

_12(Q)
C gz(Q) .

tga(Q) (13.136)

Figure 13.18 shows the behavior of “running” coupling constants of the Standard
2
Model ¢; = f—;’T as functions of log;,(1/GeV), obtained from scattering experiments and
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Figure 13.18

(at very large momenta) from single-loop expressions, which were discussed above in
some detail for QED and QCD. We see that the QCD constant g; drops with the growth
of momentum (asymptotic freedom), whereas the constants of electroweak theory
g; and g, grow. However, we clearly observe the tendency for effective constants to
become more or less equal in the region of Q ~ 10" GeV. It can be expected that in the
true theory of elementary particles at some large value of Q ~ My (at small distances)

all three constants become just one universal constant of “grand unification”:

8i(Q) =gs(Q) for Q= My, (13.137)

corresponding to gauge group G. For Q < My, constants g;(Q) separate and at large
distances tend to the phenomenological constants g;, describing the observable inter-
actions roughly corresponding to Q ~ u ~ 10 GeV. Such behavior of coupling constants
is also obtained in some supersymmetric generalizations of the Standard Model.”® An
example of the “running” couplings behavior obtained in such models is shown in
Figure 13.19. Such behavior of effective coupling constants is considered a strong ar-
gument for theories with supersymmetry. However, it should be noted that supersym-
metry is, in any case, strongly broken in the real world. Also, up to now, there is no
experimental evidence for its existence. In particular, it is not known whether or not
any “superpartners” of the known elementary particles exist.

Assuming the existence of the GUT group G and using the phenomenological val-
ues of coupling constants determined at Q ~ u ~ my,, we can make a more accurate

14 In this region the Weinberg angle, in accordance with (13.136), is determined by group coefficient C.
15 We recall that supersymmetry transforms fermions into bosons and back.
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estimate of My. For the QCD constant, using (13.109)—(13.113), we can write

1 1 Q
- _42bin 2, 13.138
2w 20 T (13138)

where we have introduced

= ﬁ(gnf_n), (13.139)

which differs from n, introduced above, by its sign and constant factor. For Q = My,
we have g; = g;;, so that from equation (13.138), we get

M
! 1 b "X, wherei=3, (13.140)

gw g

The same relation can be applied to coupling constants g; and g, of gauge groups SU(2)

and U(1), with
1 (4
b=——( = ,
! (4n)2<3"g>

1 22

b= o <_?> by, (13.141)
1

by = (D b, (13.142)

where n, is the number of fermion flavors for the given model. In the general case of
SU(N) gauge group, we have

1 11 4
N = (47_[)2 <—ZN + §ng>, (13.143)
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where the first term is connected with loop contribution of gauge bosons, whereas the
second one with fermion loops.

Excluding n, and g;; from three equations, such as (13.142), and using (13.143), we
can compose the following linear combination:

C_2+i_1+C2
g g g

=2[C?b; + by - (1+ C*)bs]In % , (13.144)

where g7 = g?(u). The left-hand side here is chosen in such a way that it can be ex-
pressed via e? and gg. In fact, we have

¢ 1 1 1 1
e - (13.145)
g & [f° g e

where we have used (13.135) and electroweak theory relation e = gsina = f cosa.
Substituting the coefficients b; from (13.142) into (13.144), we obtain

M 2 2
My __36m) [l _1+C (13.146)
U 2201+3C?) | e? g
For y ~ 10 GeV, we have e’ ~10~%2 and g% ~0.1. Assuming16 = 5/3, we have
My ~5-10" GeV. (13.147)

This estimate is not very sensitive to the choice of u and the precise value of C. Actually,
the mass My is very large, but we can still neglect the gravitation effects.”
A minimal group satisfying the condition of

G>SUB)eSUQ)e U(1) (13.148)

is SU(5), leading to the simplest GUT model (Georgi—Glashow). What kinds of gauge
bosons appear in this theory? In the general case of a SU(N)-symmetric gauge group,
we have N° - 1 gauge bosons. Then, for SU(5), we have

24 = (8, Dguons + [(1L3) + (L. D]y 2, +[3:2) + 3,2y y - (13.149)

16 This follows from (13.136) and sin’a ~ 0.2. In the general case, from (13.136), we have sina =
2

%. If we take C? = 5/3, then for Q = My, that is, for g, = g, we get sin” a = 3/8. However, for

g(Q+C%g(Q

Q = p, the value of sin? a is different because of g; # g,.

G%V’z | _n ~ Mc?, which gives the Planck mass
~MC

17 The account of gravitation becomes important for

5
Mpc? ~ (P)!2 ~ 1.2-10" GeV.
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Thus, in this model, superheavy bosons X and Y appear. They have color and are in-
termediate bosons for interactions, transforming quarks into leptons:

w,d) — e +(V,X), (13.150)

which inevitably leads to proton decay.'®
Fermions in the SU(5) model belong to fundamental representations 5 and 10. Ex-
plicitly, for left-handed states we have

5=(1,2)+(3,1) = (Vee), +dp,
10=(LD+GBD+(3,2)=¢€ +u; +wd). (13.151)

Theoretical estimates for the lifetime of proton give

4
T, ~ IL’S‘ (13.152)
my
Itis seen that its numerical value is not very sensitive to the precise value of My and is
within the interval of 10°°~10*” years. The present-day experimental limit is 7, > 10%
years. This contradicts the simplest SU(5) GUT model. However, in more complicated
GUT models, the proton lifetime can be made much larger. Unfortunately, at present
there is no clear experimental way to search for proton decay with a lifetime exceeding
1032 years. In this sense, and also because of the immense scale of the My masses,
all GUT models represent a kind of theoretical “game”. However, purely theoretical
considerations stimulate further work in this direction [73].

18 Proton decay is not so unexpected as it may seem. Conservation of electric charge is related to
the existence of a massless photon, but apparently there are no particles responsible for conservation
of the baryon charge (reference Chapter 2). For Q ~ M y, the strong color interaction is mixed with
electroweak interaction, and a clear distinction between color quarks and colorless leptons vanishes.
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14.1 The lattice field theory

Our previous presentation of the theory of interacting quantum fields was based on
perturbation theory. In fact, it is the only universal method to deal with interactions.
However, it is clear that there is are number of problems in quantum field theory,
which cannot be solved without the use of methods outside perturbation theory. In
particular, we are meeting such problems in studies of the asymptotic properties of
quantum field theory, where we have to use nonperturbative approaches in our at-
tempts to find the correct behavior of the Gell-Mann-Low function. Among the physi-
cal problems of interest here, we mention—first of all—the problem of quark confine-
ment. It is obvious that there is no universal way to move outside the framework of
perturbation theory. At the same time, a number of specific approaches were devel-
oped in the literature allowing us to analyze certain nonperturbative effects. This has
led to some general concepts, which are currently important not only in quantum field
theory, but also in other fields, such as condensed matter theory. In this chapter, we
shall discuss a number of such problems, concentrating mainly on these conceptual
aspects.

An important part of modern quantum field theory is lattice gauge theory. It was
proposed by Wilson, and—so far—is the only method allowing a more or less complete
solution of the confinement problem. In this approach, instead of the usual space-time
continuum, we introduce discrete space-time.! Now, we do not have any problem with
ultraviolet divergences, as we have a natural cutoff: wavelengths in a discrete lattice
cannot be smaller than the double lattice constant a, whereas the momentum pro-
jection can change from zero up to g (that is, within the first Brillouin zone of solid
state theory). In this formulation, quantum field theory becomes similar to the statisti-
cal mechanics of lattice models, where we have well-developed methods, which allow
us—sometimes—to solve problems outside the limits of perturbation theory. In partic-
ular, in lattice models, we can effectively use numerical approaches, such as Monte
Carlo simulations. Below, we follow mainly [13]; a more detailed presentation of the
lattice models in quantum field theory can be found in [30, 31].

Here, we shall deal only with the Euclidean formulation of lattice quantum field
theory, though there are methods allowing the explicit treatment of time dependence.
We shall consider only the simple cubic lattice with the lattice constant a in the four-
dimensional space. The lattice sites will be parameterized by a 4-vector n. Then, four-

1 The introduction of the lattice obviously breaks the relativistic invariance of the theory, but it is
not very important for problems under discussion; our main interest will be QCD behavior at large
distances, where we can forget about the discrete lattice.

https://doi.org/10.1515/9783110648522-014
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dimensional integration is replaced by summation:

JdAX"'_)aAZ"" (14.1)

Scalar fields
Consider the simplest case of scalar field ¢p(x). The action in the continuous Euclidean
space has the form

s9) - [ d'x| 3007 + v 14.2)
where
V(g) = tmig? + Lot (14.3)
S22 47 )

To go to the lattice representation, we note that a scalar field is now defined at every
lattice site n:

Px) = ¢y (14.4)

The derivative of the field on the lattice is defined as
1
ay¢(x) 4 E((pm—ﬂ - ¢n) > (14-5)

where ji is the 4-vector of length a in direction p.
Then, for the lattice action, we have

2 4 2
S(¢p) = Z{% Z(¢n+,;—¢n)2+a4<m7¢§l+ %d)ﬁ)}. (14.6)
n u:]

It is useful to transform to momentum representation and define the excitation spec-
trum of free theory (A = 0). Let us use the Fourier transformation:

4 -
by = J (jn’)l X (k). (14.7)

Integration in (14.7) is performed over the Brillouin zone of the inverse lattice, that is,

sky

L

/A
< =
a

forevery u=1,...,4. (14.8)

Here, k, = k - fi. After the substitution of (14.7) into (14.6), we can write the terms
originating from “kinetic” energy as
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4 411 . , X L
4 ZJ’ (gﬂl): J g,:; QHHK I gl _ 1) glak, _ gy
n

[ d'k —iak _ d'k . ofak,
—Jw(e “—1)(6’ “—1)—4‘[(2]_[)45111 (7

) . (49)

so that free action takes the form

1 J d*k

K
So#) =5 | S| > 4 sin2<a—2") +m2]¢(—k)¢(k). (14.10)

2
o a

Thus, each mode gives the following contribution to action:

1 4 . of aky ) 2]
Sk) = = —sin( — | +m 14.11
0=1 [; = sin?( S )+ (14.11)
instead of standard %(k2 + m?). However, both expressions have the same continuous
limit (the limit of small k), so that everything is consistent. The spectrum obtained is
shown in Figure 14.1(a).

—7/a 0 w/a

Figure 14.1

The theory with lattice action (14.6) can be quantized using functional integral formal-
ism, when the vacuum average is defined as?

<0|¢n1¢n2 e ¢nl|0> = % j H[d¢n](¢nl¢n2 Tt ¢n1)e_5[¢] > (14.12)

where

7- J U[d¢n]e_s[¢] . (14.13)

This is a typical statistical mechanics of the field (order parameter) ¢,, on a lattice.
The value of S[¢] corresponds to fluctuation-free energy. Equation (14.12) represents

2 In Euclidean theory there is no sense in introducing T-ordering.
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the correlation function of this order parameter at different lattice sites. It is useful to
compare these expressions with equations (10.160), (10.162), and (10.164), used above
in the theory of critical phenomena.

Let us change the variable (change the field scale):

b = VAg,. (14.14)

Consequently, the lattice action takes the form

1
S(¢) = 35'(¢"). (14.15)
where
a 2 m 2 1,4
S@)-Y[E S - a0 (Bone 2] o
n

In

so that the coupling constant A becomes the common factor for the whole action. As a
result, (14.12) and (14.13) are rewritten as

Olfladra 9410 = 7 [ TTIa0 @tro--drexe]-38' 191}, )
Z' = J ]:[[d%] em{—%}. (14.18)

If we change here
% —B= % (14.19)

where T is the temperature, the strong coupling expansion of quantum field theory,
which is to be done over the inverse powers of coupling constant A, becomes equivalent
to the high-temperature expansion of statistical mechanics. This opens wide prospects
for studying such expansions, as the high-temperature expansions are widely used in
lattice models of statistical mechanics (for example, to study critical phenomena) and
are fairly well developed [21, 63].

Fermion fields
Let us consider fermions. The same procedure as we used for scalar fields leads to
Euclidean action of free fermions in the form

3 4
So(l/)) = Z{ a? Z 'J)nyu(lpnﬂ] - ’pn—ﬂ) + maﬂj’nd’n}) (14.20)
u=1

n

where the y-matrices of Euclidean theory satisfy anticommutation relations:

V=26, . (14.21)
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In momentum representation, the action (14.20) is written as

sin aky

d'k :
So) = [ X piofi v ot mbwio. (14.22)
(2m) 7
As compared with the continuous case, we have the replacement y,k, — yy% sinak,,.
Asin the usual (Euclidean) Dirac’s theory, the operator Yk, +m produces the spectrum
k? + m?; here, we obtain the excitation spectrum

)
_ sin aky

S(k) = +m? (14.23)

a? ’

shown in Figure 14.1(b). We see that now we have two equivalent minima of the spec-
trum in the Brillouin zone. One is at k = 0 and leads to the correct continuous limit.
The other mode, corresponding to the minimum at k,, = i%, corresponds (in the limit
of a — 0) to infinite momentum, but can be excited in the case of finite a. Correspond-
ingly, we have to modify the theory in such a way that we exclude the contribution of
the second minimum without changing the continuous limit. To achieve this, Wilson
proposed adding to the lattice Lagrangian the term

AL = il])n(l,[)nﬂ) + P — 20), (14.24)

so that in the Euclidean space, the action of free fermions takes the form

3
SO(lp) = Z{ % ;J)n[(l + Yy)lpnﬂ} +(1- yy)ll)n—ﬁ - 2%] + ma4'pn¢n}' (14.25)

n
In momentum representation, we have

%@FJEZW*ﬁgu

sin aky cos aky -1

+m-) T}lp(k). (14.26)

U

(2mm)

This action leads to the shift of the second minimum to finite energies, whereas the
behavior at small k does not change. Then, in the continuous limit, we remain only
with the contribution from the “correct” minimum at k = 0.

Local gauge invariance

Let us now construct the lattice gauge theory. For concreteness, we shall deal with
SU(3)-symmetric QCD. Local (depending on the site) gauge transformation is writ-
ten as

Y — Opthy, ’;bn - J)nCD;, (14.27)
where

i
D, = exp{i%@’n}. (14.28)
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Here, A (i = 1,2,...,8) are Gell-Mann matrices (generators of SU(3)), reference equa-
tions (2.187).

Now, we introduce the so-called link variable defined on the lattice link, connect-
ing the nearest-neighbor sites:

. A
Un+j,n) = exp{zgaEAny}, (14.29)
where A;y is the lattice field of the gluons, and g is the Yang—Mills coupling constant.
The gauge transformation for this matrix is defined as
Un+p,n) — @p, U+ pm) @, . (14.30)

From (14.27) and (14.30), it follows that the combination ¥,,U(n, n+ )y, +u 1s the gauge
invariant. Then, it becomes clear how we should modify the action (14.25) to obtain
the quark part of SU(3)-symmetric action of QCD:

Sqep = S(q) + S(4), (14.31)
3 -
S(q) = Z {a? Z [n(1+ Yy)U(n) n+ ﬂ)lpnﬂl
o (1432)

+ (1 - yUumn-py,_; - 2] + ma["abnlpn} .

In the continuous limit of a — 0, the expansion of (14.32) in powers of a gives the
usual expression for fermion action with the covariant derivatives of gauge theory.

n+u n+ia+v
n n+fl
Figure 14.2

How should we write the action for gauge (gluon) field itself? It is clear that it should
be built of link variables. The simplest gauge invariant combination is defined on the
elementary square of plaquette of the lattice, shown in Figure 14.2. Let us compose the
matrix product of link variables taken along the links of the plaquette p:

Uy=Umnn+pUn+pn+p+v)Un+p+v,n+0)UMn+v,n). (14.33)

This combination is obviously invariant with respect to transformations (14.30). Let
us define the action of the gauge field as the following sum over all plaquettes on the
lattice:

1
S(A)=-——— ) SpU,. 14.34
(A4) sngzgpp (14.34)
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Here, the trace of the product is taken over the SU(3) matrix indices. If we expand the
exponents in (14.33), (14.34) in powers of a and neglect the terms of the order of o),
equation (14.34) can be rewritten as

1 .
S(A) = ——— " Splexp(iga’Fyy)} (14.35)
8ng” 5
where
Fopy = 0Any — 0yAn, — i8[An, Ap)] s (14.36)

where we have introduced the notation

0 Ap, =

ISHIC

(An+f1v - Anv) > (1437)

and where 4, = AL/V/Z is the gluon field at lattice site n. This expression immediately
gives the correct continuous limit:
2ad"

SA) =-——Y{1-2 = F Fw } const + —— Jd‘* FL R 14.38
@ 8mg? 5 { 2 W " - * 167 X ( )

where, during the derivation, we used SpA' = 0 and Sp(AIV) = 267,

The criterion for confinement. The Wilson loop

To define the confinement criterion for quarks in QCD, we shall find the energy of the
system consisting of a quark at point x = (¢,0) and an antiquark at x = (¢,R). In the
absence of confinement, we obviously have

E(R) - 2m for R — o0, (14.39)

where m is the quark mass. Confinement corresponds to the infinitely growing (with
interquark distance) interaction potential:

E(R) > 00 for R — 0. (14.40)

We shall denote the fermion quark field as g(x) and introduce the gauge-invariant
qg-operator:

T[x,x';C] = g(x" )UK, x; C)q(x), (14.41)

where U(x', x; C) is the ordered product of link variables along some path (trajectory)
C, connecting points x and x’ on the lattice.? Consider the gauge-invariant correlator

] i .
3 In a continuous limit, U(x',x) = Pexp{ig j: dy" %A;l(y)}, where P is the ordering operator along
path C.
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describing the overlap of qg at the moment of (Euclidean) time t = 0 and gq at the
time moment ¢ = T:

Q(T,R) = (0|T*[(0,0), (0,R); C]T[(T, 0), (T,R); C]|0) . (14.42)

Inserting between operators the unity representation (completeness condition) via the
sum over the complete system of the energy eigenstates of our system, we obtain (com-
pare the similar treatment in Chapter 9)

Q(T,R) = ) [{OT*[(0,0), (0, R); C]Im)[’e"" . (14.43)

We see that for large T, the main contribution here comes from the state with the small-
est E,,. This minimal eigenvalue of energy obviously corresponds to the potential en-
ergy of the static qgq system, with a quark and antiquark placed at distance R from each
other:

Jlim O(T,R) ~ e ERT (14.44)
—00
In terms of quark fields, we have

Q(T,R) = (0lg(0,R)U[(0,R), (0, 0); C]q(0,0)4(T, 0)U[(T, 0), (T, R); Clq(T,R)|0) .
(14.45)

Considering quarks as very heavy (classical c-number) external sources and path
C, represented by closed rectangle, shown in Figure 14.3, we may rewrite equa-
tion (14.45) as

Q(T,R) ~ e "W (C) ~ e E®T (14.46)

where

W(C) = (0 Sp U[x,x’; C]|0) (14.47)

defines the so-called Wilson loop. The behavior of the correlator W(C) determines the
presence or absence of confinement. In fact, from (14.46), it is clear that

lim W(C) ~ exp{~T[E(R) - 2m]}. (14.48)

(T:0) (T.R)

(0,0) (0,R)

Figure 14.3
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As we shall see below, in the limit of the strong coupling (g — co) of the lattice theory,
the Wilson loop satisfies the so-called area law, so that for large enough contour C, we
have

W(C) ~ exp{-KA(C)}, (14.49)

where K is some constant, and A(C) is the area encircled on the lattice by contour C
(that is, the minimal area of the surface, with its border defined by C). For the rectan-
gular contour shown in Figure 14.3, we have

A(C)=TR. (14.50)
Then, from (14.48), (14.49), and (14.50), we obtain
T[E(R) - Zm] ~KTR or E(R)-2m~KR, (14.51)

thatis, linearly growing with R interaction potential in the gg system, which obviously
corresponds to the confinement. Coefficient K is called the string tension (the force of
confinement). This term is connected with the picture of gluon fields between quarks
being in a tube—“string’—to produce linearly growing potential. This string connects
quarks, and its tension grows when quarks move from each other, thus preventing
their separation at large distances.

Area law in strong coupling expansion

Let us present a schematic derivation of area law in the limit of strong coupling. Link
variables associated with gauge fields can be used as the main dynamic degrees of
freedom in lattice theories. This allows us to write (14.47) in the form of “functional”
integral®

W(C) = % J [JaUum n+pSpUx,x;C) exp{— ! > Sp Up} , (14.52)
mu 8ng p
where
Z = IHdU(n,nﬂl)exp{—%ZSp Up}. (14.53)
m,u 8ng D

Note that, here, there is no need of additional gauge fixing terms, as the link vari-
ables change in the limited interval. Correspondingly, the volume of field configura-
tions space generated by gauge transformations is actually finite.

Link variables, as was shown above, are the elements of the SU(3) group. The
unitary matrices of SU(3) are parameterized by eight generalized Euler angles, so that

4 On a lattice this is just the usual multiple integral.
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the group integrals in (14.52), (14.53) can be explicitly written via these angles. We shall
not do so, limiting ourselves to the quotation of the following orthogonality conditions
[13]:

JdU(n,n+ﬁ)[U(n,n+ﬂ)]ii =0,
JdU(n n+)[Un, n+y)]u[U (n,n+]y, 8,6k (14.54)

J du(n,n+[Umn+@];[Unn+ )], =0

Equations (14.54) mean that during the computation of the integrals determining
(14.52), the only nonzero contributions are from the lattice links, which are passed
in opposite directions. Then, if we consider two neighboring plaquettes of the same
orientation, after integration over the variables defined on their common link, these
plaquettes are “joined” in one rectangle, as shown in Figure 14.4.

n+fi

de(n,nJrﬂ) =

n

Figure 14.4

In the strong coupling limit, the value of % is considered to be a small parameter.
Thus, the exponent in (14.52) can be expanded as

W) = JndU(n n+ ) SpUGex;0)|1

1
8ng ZZSpUp
1<8ﬂg > ZZSPU SpUy +--+|. (14.55)

For simplicity, we can consider a rectangular path C. According to equations (14.54),
in this expansion a nonzero contribution comes only from those terms in the expan-
sion in powers of giz, for which the plaquettes completely fill the surface encircled by
the path C. Only in this case is each link in group integral passed twice in opposite
directions (or is not passed at all), so that the corresponding integrals over the link
variables give finite contributions. Thus, the nonzero contribution to W(C) in the low-
est order comes from the term of the order of (g Mo, where N, is the minimum number
of plaquettes necessary to fill the surface encircled by C:

N,

W(C) ~ <§> B (14.56)
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This corresponds to area law, as the surface area of C is given by
A(C) = &’N,. (14.57)
Then,

W(C) - (gZ)—A(C)/a

= exp{-(TRIng?)/a’}. (14.58)
Comparing this expression with (14.49) and (14.51), we obtain the linearly growing
potential

E(R)=KR, where K = %m g%, (14.59)

which corresponds to g%(a) ~ ek’

We can also consider the weak coupling expansion for a Wilson loop, transform-
ing to the continuous limit and taking the action in a Gaussian approximation. In this
case, the perimeter law is obtained, which corresponds to Coulomb potential E(R) ~ %.

Does all this mean that we have proved the confinement? No! All our argumenta-
tion can actually be repeated also for the Abelian SU(1) theory, inasmuch as we never
used a non-Abelian nature of SU(3). Strong coupling and weak coupling regimes can
be separated by one or several phase transitions taking place at different values of
coupling constant g. There is no general proof of the absence of such transitions in
QCD. This problem was thoroughly studied numerically using Monte Carlo simula-
tions. These calculations has shown that in QCD, there are no phase transitions at
intermediate values of g, and there is continuous crossover from g*(a) ~ ke depen-
dence of equation (14.59) in the strong coupling region to weaken the coupling region
with asymptotically free behavior g%(a) ~ # valid for a — 0. The interaction poten-
tial of quarks, following from these calculations, is well approximated by the superpo-
sition of the Coulomb potential dominating at small distances, and linearly growing
potential, determining confinement at large distances: V(R) = 1% + KR. A typical re-
sult of such calculations is shown in Figure 14.5 [61], where we show the potential
acting between two static quarks calculated for the lattice with 32" sites, with the link
a = 0.055 - 1072 cm. The continuous line shows the fit with the superposition of the
Coulomb and linear potentials. It is clearly seen that the linear growth of V(R) takes
place at distances R > 0.25 - 107> cm. At smaller distances, we have the usual per-
turbation theory dynamics and asymptotic freedom. A typical value of string tension
following from these calculations is K ~ 0.2GeV? = 1.0 - 10*> GeVem ™ = 14 tons. This
effectively proves the confinement.

The details of Monte Carlo calculations for the lattice field theories are well de-
scribed in [11, 43]. The current situation with analytical models of confinement is re-
viewed in [61].

The study of lattice models has become one of the most important and actively de-
veloping directions in quantum field theory. As an illustration, we show in Figure 14.6
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[4] the early results of Monte Carlo calculations of the masses of light hadrons, con-
sidered as bound states of quarks and gluons, which demonstrates a rather satisfac-
tory agreement with experiments. Current results on hadron masses are well described
in [11].
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Confinement is not absolute, and at some very high temperature T, (deconfine-
ment temperature), or at some very high density, there is a phase transition from the
phase of hadron matter to quark-gluon plasma [72]. Physically this is rather clear. If A
is some characteristic momentum scale characterizing the transition to asymptotically
free behavior, then at T > A the transferred momentum in scattering processes will
almost always satisfy the inequality Q* > A?. Correspondingly, we can apply the usual
perturbation theory. But in the perturbative approach to QCD, both quarks and gluons
are physical states of the theory. This means that at T > A, we have nearly an ideal gas
of quarks and gluons (quark—gluon plasma). This phase transition is quite important
in astrophysics for neutron stars and cosmology. Experimentally, this transition can
be observed in collisions of heavy nuclei, and there are already some indications for
it in CERN experiments. The value of T. was calculated by Monte Carlo in lattice QCD.
Typical values obtained show that T, is somewhere in the interval of 0.15-0.20 MeV.
A detailed review of phase transitions in QCD can be found in [45].

14.2 Effective potential and loop expansion

The convenient concept in the study of theories with spontaneous symmetry-breaking
is the so-called effective potential. It allows a universal analysis of these theories and
calculation of quantum corrections to the classical picture of spontaneous symmetry-
breaking, which was discussed above.

Let us once again discuss the simplest case of a scalar field:

1 m?
L=, -Vip), Vip)=—0"+ %qr“, Slp] = jd"*xc. (14.60)

This Lagrangian is invariant with respect to ¢ — —¢, but in the case of spontaneous
symmetry-breaking this property is absent for the solutions of the equation

d—V =0, (14.61)
dplyy,

where @, # 0. This is already obvious from our previous analysis.

Quantum corrections, as we have seen above, appear from loop expansion con-
taining divergences, which require renormalization. The conditions for renormaliza-
tion were formulated in terms of irreducible vertices I™. The generating functional
for F(")(xl, ..., X,) is the effective action I'(¢p), defined in (10.150). The meaning of this
term will be clarified below.

The generating functional for connected diagrams W{J] is defined, according to
(10.131), as

eVl = (00, . (14.62)
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Then, the classical field ¢, (in the presence of source J) is determined from (10.151):

Wil (0lp()]0);

x) = = (14.63)
P = 5100 = (olo),
The vacuum average (¢) is by definition
(p) = lim g, (14.64)
According to (10.150), the effective action I'[¢,] is given by
Tge) = WU - [ dg0opco (14.65)
and, in accordance with (10.151), it satisfies the equation
6T
D] _ 5y, (14.66)
69 (x)

For J(x) — 0, the value of ¢, becomes constant, equal to (@), so that the vacuum
average of ¢ is the solution of the equation

dr'le.]

=0. (14.67)
do.

0.={(p)

The usual expansion of the functional I'[¢,] in powers of ¢, is written as
el i [ anr P x)pet) - gl (14.68)
S n
or, equivalently, in momentum representation,
Ilp ] = i % Jdpl--'dpﬁ(pl oA PO Dy, D)PDr) - Pe(Pn) . (14.69)

n=0 """

Alternatively, we can expand I'[¢,] over field ¢, and its derivatives:

Mgl = [ dx[-Ulpe0)} + 50,00Z(0c0). (14.70)

In this case, the function (not a functional) U(¢,) is called an effective potential. Below,
we shall see that in classical limit it coincides with the potential V(¢). In the case,
when ¢ (x) = (p) = ¢ = const, all terms of the latter expansion except for the first one
are zero, so that

T'le] = -QU(ep), (14.71)
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where Q is the total volume, filled by the field in space-time. Comparing (14.69) and
(14.71), we have
(o]
Up)=- ¢'T"(p;=0). (14.72)
n=0

The normalization conditions for I'® (p; = 0) and I'® (p; = 0) can be reformulated in
terms of potential U:

dU(p.) = m? (14.73)
dZ(pC ‘Pc:<(l’)

d*u

UG — (14.74)
d (pC ‘Pc=(lP>

Additionally, condition (14.67) for the vacuum average takes the form

au(e.)

=0. (14.75)
de.

Q.=(p)

To study the properties of the theory with spontaneous symmetry-breaking, it is con-
venient to define the new field ¢':

o' =p-(p), (14.76)

for which the vacuum average is simply zero.

Note that all divergences of the theory were hidden in counter-terms before we ap-
ply normalization conditions (14.73), (14.74), so that in the theory with spontaneous
symmetry-breaking no new divergences appear (in addition to the theory without
symmetry-breaking), and the structure of the divergences in renormalized field the-
ory is not changed by spontaneous symmetry-breaking.

Let us calculate the effective potential. We shall use (14.65) and start with calcula-
tions of the functional W[J] by the stationary phase (or steepest descent method). Let
us recall what steepest descent calculation is in the case of the usual integral of the
form

o0
I= j dxe 14.77)

Assume that the function f(x) has a minimum at some point x,,. Then, we have
1
f00) = Fxo) + 5 00 =X f"0x0) ++++, (14.78)

so that we can write

(o8]
[~ ¢f00 J dx e 30X (o). (14.79)
(9]
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and the problem reduces to the calculation of the well-known Gaussian integral,
which is an easy task.
Restoring the Planck constant in the definition of the functional W{[J], we have

e WUl _ JDgoe%S[W], (14.80)
where
Slp,J] = J d*x[L(p) + hp(x)] (x)] . (14.81)

From (14.60) and (14.61), it follows that

8S(.J]
6p(x) 1y,

=hJ(x). (14.82)

For J — 0, this reduces to the condition of extremal action. Let us expand the action
in the vicinity of ¢,:

Sl J) = Sigo.J1 + [ axlo) ~ o] 5o
Po
1 5°S
+ de I dy §[§0(X) - %]W‘% [p(y) — o] +---
= SlpoJ] + j dx[p(0) - 9o T ()
1 2
ts5 jdxjdy[q)(x)—(po] 5000500 , o) = o] +---, (14.83)

where we have used (14.82). By performing functional differentiation, we can under-
stand that

5°S

Sotse) | = TIB TV @olslx-y). (14.84)

Po

If we take @' = ¢ — @, the expansion (14.83) takes the form

Slp,J] = Slgo.J1 +h J dxe' ()] (x) - % JdX(p’(X)[D +V"(@o)]@ () +--- . (14.85)

Substitution of this expression into (14.80), to use the stationary phase approach,
gives (here we write ¢ instead of ¢')

exp(%W) = exp{%s[%,l]} JD(p exp{—%% deqo[u 4 V"((po)]qo}, (14.86)

where we have dropped the contribution of the second term in (14.85), as in the fol-
lowing we shall make the transition to the limit of ] — 0. To obtain the loop expan-
sion (equivalent, as we have seen, to the expansion in ), we replace ¢ — 1'/?¢p, thus
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excluding # from the second exponent in (14.86). Let us transform the integral to Eu-
clidean space so that i also vanishes. Now, calculating the functional integral, we can
use the usual Gaussian expression and obtain

exp(%w) - EXPJ[ %5 [9o.] 1}(Det[ﬂ + V(o)) 2. (14.87)
Using the relation Det A = exp Sp1ln A, we get
i
W] = Slog] + h J dxpo(0J() + = Splnlo + V" (py)] (14.88)

This expression gives W[J] with a single-loop correction, whereas the terms O(#?) are
dropped. Now, we can substitute (14.88) into (14.65). But first, we express S[¢p.] via
Sl@o]. Taking @, = ¢, — ¢y, we have

Slpo] = Sle. — ¢4] (14.89)

=Slp.] - de¢1(x) %| +-e-
P

=Slpl-h j dxp ()] (x) + -+ . (14.90)

Consequently, the substitution of (14.88) and (14.90) into (14.65), in the limit of ] — 0,
yields

Tlge] = Sipel + 5 Spln(o+ V" (gp), (1491

which is the effective action with a single-loop quantum correction. Take now ¢.(x) =
¢ = const. Then, I'[¢p] is determined by (14.71), whereas from (14.60), it follows that
S[p] = -QV (). Correspondingly, from (14.91), we obtain the effective potential of the
form

Ulp) =V(p) - %Q‘l Spln[o+ V" (¢)]. (14.92)

Now, we see that for # — 0 (in the classical limit), the effective potential coincides with

the classical potential V(¢), whereas the effective action (14.91) reduces to the classical

action (14.60). A trace of an operator gives the sum (integral) over all eigenvalues, and

we can (after the transformation to Euclidean momentum space) rewrite (14.92) as
d*kg

_ h 2
Up)=Vig)+5 | &8 nliG + V" ()

hjf@

=V(p) + 3 2n)*

ln(ki- +m’+ %g(p2>. (14.93)
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This type of expression can be used to study spontaneous symmetry-breaking, taking
into account the quantum corrections. In the classical limit we used above, for m? >0,
the vacuum is nondegenerate, whereas for m? < 0, there was spontaneous symmetry-
breaking and the appearance of degeneracy of the vacuum (phase transition). What
will happen, taking into account the quantum corrections—in particular—at m? = 0?
From the single-loop expression for effective potential, it follows that the nontrivial
minimum ¢ # 0 already appears at m> = 0, so that we have spontaneous symmetry-
breaking due to quantum corrections. Unfortunately, the single-loop approximation
is insufficient for a complete understanding of this problem [13, 56]. A more detailed
discussion of effective potential formalism, its relation to the renormalization group,
and the other aspects of the theory are presented in [27].

The loop expansion, considered above, is—in fact—the expansion in powers of A, not in powers of
the coupling constant g. In this sense, it is nonperturbative, but—in fact—this is not precisely so! In
classical theory, g is irrelevant by itself. It can be easily understood if we make the transformation to
@' = gg. As aresult, the Lagrangian of go“—theory can be rewritten as

1/1 ' 1 5 2 14
L==(2-0,0'd¢ - -mp" - , 14.94

e < PP —sme -9 > ( )
and g drops from the classical equations of motion, becoming irrelevant. This is obviously not the case
in quantum theory, which is essentially due to the appearance of #. In quantum theory, we are always

dealing with the ratio:

1 1 (1. o,

“L=—|20,0"0 + ), 14.95
Lo (L) s
and the relevant parameter is g?4. Thus, the quasi-classical approximation (small %) is, in fact, inti-
mately connected with the weak coupling approximation (small g).

14.3 Instantons in quantum mechanics

Nontrivial nonperturbative effects can arise in quantum field theory even for small val-
ues of the coupling constant, and perturbation theory may become inadequate when
naively it should be applicable.” A simple example is quantum tunneling, which we
shall consider below.

Let us start with quantum mechanics. Consider a particle with unit mass moving
in one-dimensional potential:

H-= %pz -VX). (14.96)

Below, we shall derive the well-known results of quantum mechanics, but in a rather
unusual way, which will be further generalized for the case of quantum field theory.

5 Below, we follow mainly lectures by Coleman [15]; these problems are discussed in more detail in
the book by Rajaraman [52].
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Euclidean path integrals
Consider the Euclidean (imaginary time) version of the Feynman path integral:

xple™™ M) = & J[dx]e_s/h : (14.97)

Here, |x;) and |xf) are eigenstates of the coordinate operator of the particle, and H is
its Hamiltonian. Here, the integration measure, which we previously denoted as Dx,
is written as [dx]; T is considered to be positive.

Let us introduce, as usual, the complete set of eigenstates of the Hamiltonian:

Hin) = E,|n) (14.98)
and write

Ople™ gy = 3 e BT M ixelny(nlx;) (14.99)

Then, in the limit of T — oo, only the contribution of the ground state survives.
In the right-hand side of (14.97) there is the Euclidean action:

T/2

- Tj/zdt[;@_;)iv]. (4100

Integration [dx] is performed over all trajectories, with boundary conditions x(-T/2) =
Xi» X(T/2) = X¢. In more detail, if X(t) is the given function and satisfies these condi-
tions, the arbitrary function satisfying the same conditions, can be written as

X(£) =X(t) + ) cux(t), (14.101)

where x,,(t) is the complete set of orthonormalized functions, being zero at the bound-
aries:

T/2
J Atx, (X, (6) = 6> X, (£T/2) = 0. (14.102)
-T/2

Then, the integration measure [dx] can be defined as

[dx] = [ [@rh) ™ dc, . (14.103)

It is obvious, that acting in this way, we take into account all the paths, and this defi-
nition differs from that of Feynman only by the normalization constant.
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The right-hand side of equation (14.97) is easily calculated in quasi-classical ap-
proximation (small /). The main contribution to the action comes from the vicinity of
the extremal trajectory, defined by

8S  d*x

== +V'(®) =0, (14.104)

Euclidean Newton equations. Let us choose x,, as the eigenfunctions of the second
variational derivative of action S at x:

d’x,,

" V" (%)X, = A,x,, - (14.105)

Just as the analysis carried out at the beginning of Chapter 2, the first variation of the action, due to
variation of trajectory x — X + a, in this case, reduces to
T/2
d*x ' _
6S = dta —F+V(x) =0 for x=x, (14.106)
-T2

which leads to the Newton law (14.104). If we vary once again x — X + a, we get

)2 2k T2
o5 | dta[— (X+a)+v’(z+a)]: | ata[-5-a+v'@+ V"]

~T/2 at? =T/2
T/2

= J dta[-a+ V" (0a], (14.107)
~T/2

where during the transformation to the last equality, we used equations of motion (14.104). Now, it
is clear that the second variational derivative of action S is determined by the left-hand side of equa-
tion (14.105).

Then, in the limit of small A, after substituting (14.101) into (14.100), we can limit our-
selves to quadratic deviations from the classical trajectory X, so that the integrals over
¢, become Gaussian, and we find

(xple™™ ;) = Ne SO TT A1+ 0]
n
= Ne SO Det(-a2 + V"' ()] *[1+ 0(h)] . (14.108)

If there are several stationary points of action, the corresponding contributions should
be summed.

Note that the Euclidean equation of motion (14.104) is equivalent to the usual
Newtonian equation for a particle with unit mass, moving in the inverted potential
minus V. For such an equation, we have the integral of motion:

1/dx\" .
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Figure 14.7

Consider the potential V shown in Figure 14.7(a). Let x; = xs = 0. The inverted potential
is shown in Figure 14.7(b). It is obvious that the only solution of classical equations of
motion in this potential, satisfying boundary conditions, is

x =0, (14.110)

that is, the particle stays at rest at the top. For this solution, we have S = 0. Then, from
(14.108), we have

(0le” 710y = N'[Det(-3? + w?)] *[1+ 0()], (14.111)

where zeroes denote transition from the origin to the origin of our coordinate system,
whereas w? = V"' (0) is the square of the frequency of the small oscillations around the
minimum of potential V. It can be shown [15] that for large T,

1/2

N[Det(@? + )] = (%) e T2, (14.112)
As a result, from (14.111) and the discussion around (14.99), we immediately see that
the ground-state energy in this problem is given by

Ey = %hw[l +0(h)], (14.113)

that is, the zero-point energy of the oscillator near the minimum of V. The probability
for a particle to be at the origin of the coordinate system, when it is at its ground state,
is given by

1/2
I(x = Oln = 0) = (%) [1+0(m)]. (14.114)

These are the well-known results of the quasi-classical approximation of quantum
mechanics. Actually, from this correspondence, we immediately see the validity of
(14.112). The physics is also quite clear: in the limit of small &, the particle is in the
ground state of oscillator near the origin of coordinate system.
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Figure 14.8

Double-well potential and instantons

Let us consider now a more interesting example: the double-well potential, shown
in Figure 14.8(a). Here, we have V(x) = V(-x), and the potential minima are at points
x = +a. We can also introduce w? = V" (+a): the square of the frequency of the classical
oscillations of a particle in the vicinity of the minima. Let us calculate the transition
amplitudes:

—HT/h|

(-ale - a) = (aleMay, (14.115)

HIR _ gy = (—ale™®T™|ay, (14.116)

(ale
making a quasi-classical approximation for the path integral, similar to the case of
a particle in single well. As a first step, we shall again look for the solutions of the
classical Euclidean equations of motion (14.104), satisfying the appropriate bound-
ary conditions. There are two obvious solutions: one corresponding to the case of the
particle remaining the entire time at the top of the left or right hill in Figure 14.8(b).
However, there may be also another more interesting solution, when the particle starts
from one of the tops (for example, the left one) at the moment —T/2 and rolls to the
right top, reaching it at the moment +T/2 (T — o). Here, we are dealing with solu-
tions of equations of motion, corresponding to energy E = 0 (because E = O in the
initial states x = +a). Correspondingly (reference (14.109)),

% —\3V, (14.117)

and the solution of this equation has the form

X
1
t=t + j dx'ﬁ , (14.118)

where t; is the integration constant (time at which x = 0). This solution obviously
has the form shown in Figure 14.9. This solution is called an instanton,6 centered at
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Figure 14.9

point ¢;. A mirror reflection of this solution can be called an anti-instanton. It is im-
portant to stress that an instanton has a finite action:

T/2 d 2 T/2 dx 2 a
So = J dt[%(d—’;) +V] - J dt<d—’;> - jdxw/ﬁ, (14.119)
) a

where we have used (14.117). For large t, we have X — a, so that (14.117) can be approx-

imated by
% = VW% - a)? = w(a - X), (14.120)

so that at large t,
(a-x)~e™ (14.121)

and the instanton is “localized in time” (at times ~ %), which clarifies its name.

It is clear that for large T, the instanton and anti-instanton are not the only
solutions of equations of motion; approximate solutions can be built as chains of
well-separated instantons and anti-instantons. An example of such a configuration
is shown in Figure 14.10, with n objects (instantons and anti-instantons), centered at
points t;,..., t,:

§>tl>t2>~-~>tn>—§. (14.122)

Correspondingly, in the path integral, we have to sum the contributions from all such
configurations.

6 The origin of this term is related to the obvious analogy with soliton, but stresses the fact that we
are dealing here with solutions of Euclidean equations of motion.
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—T/2 t, t, |t T/2

Figure 14.10

Now, let us calculate! Obviously, n well-separated objects contribute additively to the
actions giving S = nS,, which in the path integral give the contribution of the order
~ exp(—nS,). To find the determinant, we need the more complicated procedure. Con-
sider the time evolution operator e 7 as the product of the operators of evolution
between the points, where instantons and anti-instantons are placed. In the absence
of these, on all time axes, we have V"' = w?, and we get the same result as above for
the case of single-well potential (14.112):

12
(ﬂ ) e T2, (14.123)
h

Intervals with instantons and anti-instantons lead to a correction, which we can
write as

1/2
( @ > e vTlgn (14.124)
h

where K can be determined from the requirement of a correct answer for the case of a
single instanton. Later, we shall give the appropriate explicit expression, whereas for
the moment, we note that in order to take into account all the possible contributions
to the path integral, we have to integrate over the arbitrary positions of all centers:

/2 4 - -
J dt, J dt, --- j dty = . (14.125)
T2 -T)2 -T2 '

We should also take into account the fact that we are not completely free in placing
the instantons and anti-instantons. For example, if we start from —a, the first object
we meet is to be an instanton, the next one an anti-instanton, et cetera. If we finally
return to —a, n should be even, whereas if we end at +a, n should be odd. Thus, we
obtain

2 tn o (Ke STy
eore y K D7

(—ale”HT/"| — q) = <%> [1+0()], (14.126)

Even n
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whereas (ale’HT/ hl—a) is given by the same expression, but with summation over
odd n. The sums are elementary, and we obtain

1/2

-HT/h_ _ [ W
(ale™™|_q) (nh)

Recalling (14.99),

&L exp(Ke ST) 5 exp(-Ke S T)]. (1427)

Ople™ gy = 3 e BT ixeny(nlxy) (14.128)
n
we understand that the two lowest energy levels correspond to energies
1 _
E, = Shw + hKe Solht (14.129)

If we denote the corresponding states as |+) and |-), we see that

1/2
(@) = (-1 = @)@ = <@ -0 = 3( ) aaa30)
These are the well-known results of quantum mechanics [35]: we just obtained the
splitting of the level in the double-well potential due to tunneling (degeneracy lifting
of two levels in two potential wells). The size of this splitting is ~e>/". The lowest state
|-) is an even combination of wave functions, corresponding to a particle localized in
each of the wells, whereas the first excited state |+) is described by antisymmetric
combination of these functions.

Now let us calculate the factor K. First, let us study the properties of the solutions

of equation (14.105):
dzxn

-t V" (%)x, = A%, » (14.131)

where X denotes a single instanton solution. Due to invariance with respect to the time-
shift (the instanton center can be placed at an arbitrary point on the time axis), this
equation has an eigenfunction with zero eigenvalue (the so-called zero translation
mode). Explicitly this function is written as

X =8, (14.132)

The normalization factor here appears from (14.119):

dz\>
J dt( E) =Sy, (14.133)

The existence of zero-mode can be confirmed as follows: The instanton x(t) satisfies equation (14.104):

2

- % +V' (%) =0. (14.134)
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But x(t + T), with arbitrary T, is also the solution of this equation:
_dX(t+T)
dr?

Differentiating this equation by T, we obtain

+V'(x(t+ 1)) =0. (14.135)

dle ",
- — + V' (xX)x =0, 14.136
Vo (14.136)

which proves our statement on (14.132).

The existence of zero-mode with A; = 0 seems to lead to a problem. If we calculate the
Gaussian integral around the extremal trajectory (instanton), as described in connec-
tion with (14.101), (14.103), and (14.108), integration over c; will lead to divergence.
However, we have already done the appropriate integration by integrating over the
centers of the instantons (anti-instantons) in (14.125). In fact, the change of x(t) under
the small shift of the instanton center ¢, is equal to

dx
dx = — |dt;. 14.137
x= (5 )a (14,137
At the same time, the corresponding change due to variation of the coefficient c; in
(14.101) is

dx = xdc; . (14.138)

Then, writing (%)dl‘1 = \/Sox;dt; in (14.137) and comparing this with (14.138), we get
dc, = \/Sydt,, or
S 1/2

21th) Vdc, = <—°> dt,, 14.139

(2mth) 1 h 1 ( )
where # is introduced to make normalization dimensionless. Thus, during the calcu-
lation of the determinant in the Gaussian integral in expressions, such as (14.108), we
do not need to include the zero eigenvalue, but instead we have to include in K the

factor (;T—Oh)l/ 2. Then, the single-instanton contribution to the matrix element is given
by
S 12 1/2
(ale™™-ay, et = /\/T<ﬁ> e oM Det' (<02 + V" (0)] ", (14.140)

where the prime over the determinant corresponds to dropping the zero eigenvalue.
Comparing (14.140) with the single-instanton contribution to (14.126), we find

_( So
K= <2nh>

This completes our calculation.

1/2 1/2

Det(—at2 +w?)

Det' (-2 + V() (14.141)
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Let us make some comments:

1. It can be shown that the results obtained are equivalent to the standard results of
quantum mechanics [35].

2. We assumed that all A, > O (except A; = 0). This is really so, as the lowest state
x; (as is easily seen from its explicit form) does not have zeroes, as it should be
for the solution of a one-dimensional Schroedinger equation. This is clear from
the fact that our instanton is monotonously growing (anti-instanton: decreasing)
function of ¢, so that its derivative x; ~ % has no zeroes.

3. The coefficient K is proportional to #~/2, which is related to the contribution of the
zero-mode. In fact, this is a general rule: each zero-mode (there may be several
such modes) produces the factor of mY2,

In a similar way, we can analyze the problem of a particle moving in a periodic potential, as shown
in Figure 14.11. The difference from the previous case is that now, we have no restriction of alternating
the placement of the instantons and anti-instantons, which is connected with the existence here of
the multitude of equivalent potential minima. At the same time, the total number of instantons minus
the total number of anti-instantons should now be equal to the change of x between the initial and
final coordinates. Then, from (14.127), we obtain

1/2

_HT/h W\ et v 1 ~So/h
Gole ™M) = Z D —r_l(Ke )" 6,,_,-,_14”1;, (14.142)
n=0 n=0
where n is the number of instantons, whereas 7 is the number of anti-instantons. Using now
2 d@
8ap = | =D, 14.14
w=| 5 (14143)
0
we rewrite (14.142) as
T
. -HT/h. \ _ [ @ ~wT/2 ~So/h ns .
G, le i) = <%> e J o exp|2KT cos 6e>°""] exp[-i6(j, - j)] - (14.144)
0
-1 0 1 2
(a)
—1 ’O 1 2

Figure 14.11
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In this case, we have the continuum of energy eigenvalues (band), parameterized by an “angle” 6:
1 _
E®©) = ihw — 2hKe 50/ c0s 0. (14.145)
The matrix elements

1/4
6lj) = (%) (2m) V2 (14.146)

represent, in fact, the appropriate Bloch wave.

Instantons and metastable states

Consider the potential shown in Figure 14.12(a). If we neglect tunneling, there will be a
bound state at the origin. The reflected potential is shown in Figure 14.12(b). Classical
equations of motion have the obvious solution corresponding to a particle starting
from the top of the hill at x = 0, which is then reflected from the classical point of
return o and returns back to the top, as shown in Figure 14.13. Let us calculate the
matrix element of transition from x = 0 to x = 0, summing over all the well-separated
instantons of Figure 14.13. We can proceed as above (with obvious redefinition of S,
W, etc.), but with no limitation on the number of instantons being even or odd. Then,
the summation produces the full exponent:

1/2

(0le” /M0y = <%> e T2 exp[KTe 5/, (14.147)

and the ground-state energy eigenvalue is
1 -
Eq = hw - hKe Solh, (14.148)
But this is wrong! In fact, in this situation we have tunneling and the appearance of
an unstable state. From the form of the instanton in Figure 14.13 it is clear that the

eigenfunction x; ~ % has zero and cannot be the ground-state wave function. But its
energy is zero, and now we understand that there is another state with A, < 0 and

v -V

: [
L— o

(a) (b)

Figure 14.12



14.4 Instantons and the unstable vacuum in field theory =— 411
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e

Figure 14.13

an eigenfunction without zeroes. Then, the factor K, containing the square root of the
product of the eigenvalues, is imaginary. Thus, in fact, we obtain

ImE, = g ~ hIK|e™5/", (14.149)

which corresponds to the finite-level width, corresponding to the metastable state.

14.4 Instantons and the unstable vacuum in field theory

Consider now Euclidean scalar field theory with the action

S- J dl‘x[%(ayqb)z U@, (14.150)

where potential U(¢) is shown in Figure 14.14. Here, we have two nonequivalent min-
ima at ¢, and ¢_, and ¢_ is an absolute minimum. Let us choose the origin of the
energy scale, so that U(¢,) = 0. In quantum theory, the minimum at ¢ = ¢, plays
the role of a “false” (metastable) vacuum. The description of the decay of such “false”
vacuums is similar to the description of nucleation in statistical physics (for exam-
ple, during the boiling of a superheated liquid). In quantum field theory this prob-
lem is of importance for cosmology [41]. Who knows whether our vacuum is stable or
metastable!

We have to calculate the value of %, the probability of metastable vacuum decay
in units of time per unit volume. First, we have to find the corresponding instanton ¢

AR

Figure 14.14
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as a solution of the Euclidean equations of motion:
0,0'¢=U'(¢), (14.151)
satisfying the boundary conditions

Jim DX, x,) =, . (14.152)

It is easily seen that to guarantee the finiteness of the action at instanton, we have to
satisfy the condition

| xllim DX x,) = P, . (14.153)

If an instanton is found, then in the leading approximation in %, we have

r -5
—_— = Ke 0 5 14.1 4
v (14.154)

where S, = S(¢b), whereas the preexponential factor K is determined by the appropri-
ate determinant.

The trivial solution ¢ = ¢, is not interesting; for g%ﬁ does not have negative eigen-
values, so that it does not contribute to the vacuum decay. Equations (14.151)—(14.153)
are invariant with respect to four-dimensional rotations (O(4) group). We assume that
an instanton is also O(4) invariant,” so that the corresponding ¢ is the function of r
only. As a result, equation (14.151) reduces to

& 3dp -
A , 14.1
ar " rdr v (14155)
and, from (14.152) and (14.153), it follows that
lim () = ¢, . (14.156)
Obviously, we also have to require
ao|  _ (14.157)
dr r=0

or ¢ will be singular at the origin.

Equation (14.155) can be interpreted as an equation of motion (considering r as
time) of a particle moving in potential minus U, shown in Figure 14.15, and under the
action of a time-dependent friction force (~%>< velocity). The particle can start from
the state of rest (reference (14.157)) at the moment r = O from the appropriate initial
position and stops at r — oo at point ¢, : such motion precisely corresponds to an
instanton. Obviously, such a solution exists.

7 This assumption can be rigorously justified: a spherically symmetric instanton has the minimal ac-
tion.
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— The particle starting to the right of ¢, will not reach ¢, ; it will not have enough
energy because of friction.

— If we choose the initial point correctly to the left of ¢, but to the right of ¢_, we
can guarantee that for large r, the particle will reach ¢, and stop there.

In fact, for ¢ close to ¢_, we can linearize the equation of motion and write it as

2
< d , 3d —pz)(gb -¢)=0, (14.158)

ar T rar
where > = U”(¢_). This equation can be solved rather easily [15], and its solution
is expressed via the modified Bessel function. Thus, we see that choosing ¢(0) close
enough to ¢_, we can guarantee that for large-enough r, the particle will remain as
close as possible to ¢_. But for large-enough r we can neglect friction, as it is ~ 1/r.
But in absence of friction, the particle will overshoot the top at ¢, . This means that in
our problem there is always an intermediate point (between ¢_ and ¢,), starting from
which the particle will at r — oo stop at ¢,.

Let U, (¢) be some even function of ¢:

Uy(p) = U, (-9) (14.159)
with minima at points +a:
Ui(+a)=0. (14.160)
Let us define
W =U!(+a). (14.161)

Let us add to U, a small term, breaking the symmetry between the minima:

U=U,+e(@p-a)/2a, €>0. (14.162)

-U

Figure 14.15
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In the first order in &, we have

¢, = +a. (14.163)

The value of € defines the energy difference between the “true” and “false” vacuum.
Let us choose the initial position of the particle ¢(0) very close to ¢p_. Consequently,
the particle remains close to ¢p_ up to some large moment of time r = R; then after-
wards, it rapidly passes through the valley and slowly approaches ¢, forr — co.
Thus, our instanton looks like a large four-dimensional spherically symmetric “bub-
ble” of radius R with a thin wall separating the “false” vacuum ¢, (outside the bubble)
from the “true” vacuum ¢_ (inside the bubble). Correspondingly, our bubble (instan-
ton) represents the nuclei of a new (“true”) vacuum inside the metastable (“false”)
vacuum.

For r ~ R, we can neglect the friction and the e-dependent term in U. Then, the
equation of motion has the form

5o
% =U.(p), (14.164)

which corresponds to the classical equation of motion of a particle in a double-well po-
tential, which was analyzed in detail above. This equation has as its solution the sim-
plest one-dimensional instanton of Figure 14.9, which we studied above (and which
describes the transition from —a to +a at “moment” R with the growth of r). This is the
approximate description of an instanton in our field problem.

Up to now, we have not yet defined R. The action of the instanton is given by

00 5.2

S:an(!drﬁ[%(%) +U(q'b)]. (14.165)

Here, we have three regions of integration: outside the bubble, close to its surface, and
inside. Outside, we can take ¢ = ¢», and U = 0, so that this contribution to the inte-
gral is zero (which actually guarantees the finiteness of the instanton action). Inside
the bubble, we have ¢ = ¢_, U = —¢, so that the corresponding contribution to the
integral is

_ %,TZ Ric. (14.166)

Close to the bubble surface, that is, for r ~ R, we can neglect ~¢ in U, so that the
integral reduces to

T\ 2
21°R’ j dr [ % < Z-‘f) + U+] = 21°R’S,, (14.167)
where

a
S, = Jd(,b U, (14.168)
—-a
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is the action of the one-dimensional instanton (14.119). Finally, we get
1
S= —EnZR“e +21°R%S, . (14.169)

Let us now define R from the requirement of extremal action:

g_; - 2R + 6m°R%S, = 0, (14.170)
which gives
R= 3T51 . (14.171)
Then, we have®
- 27;;5? (14.172)

The bubble radius (14.171) can be found from the elementary considerations used in nucleation the-
ory of statistical mechanics: the energy gain within the bubble should compensate the energy loss
connected with the surface tension of the bubble:

§HR3£ = 47‘[R20, which gives R = 3?0 R (14.173)

where 0 is the surface energy of the bubble well. In our case, 0 = S;.

Finally, we obtain the probability of “false” vacuum decay as

; ~ exp(=S,). (14.174)

Determinants and renormalization

The preexponential factor in (14.174) should be defined in the same way as in the quan-

tum mechanical problem discussed above. But there are some important differences

and questions:

1. In quantum mechanics, we had only one zero translational mode; here, there are
four.

2. Itwas very important that there was only one negative energy eigenvalue, leading
to an imaginary contribution. Is this also the case in the present problem?

3. In quantum field theory, we have ultraviolet divergences, and it is necessary to
perform renormalization. What is the role of renormalization here?

8 Our analysis is valid in the limit of small € and in the limit when the bubble radius is much larger
than the width of its wall: R > p!, which reduces to 35, > ¢.



416 —— 14 Nonperturbative approaches

Consider first the zero modes. Here, we have four directions for instanton transla-
tion (the instanton can be placed at an arbitrary point of four-dimensional Euclidean
space); correspondingly, we have four eigenfunctions of a differential operator related
to the second variational derivative of action with zero eigenstates. These functions are
~ a}l&;. The normalization condition reduces to

J d"x0,$0,¢ = %zsw J d'x0,¢"¢ = 6,5, . (14.175)

As a result, the preexponential in (14.174) contains four factors of (g—i‘;)l/ 2 instead of
one.

The proof of the latter equality in (14.175) goes as follows: Consider ¢, (x) = (i)(x//l). Then, the action is
1 - -
S = 51 I d'x(@,P) + 1 I dxU@). (14.176)
As ¢ is the solution of equations of motion, we should satisfy the condition of stationarity of the action
(14.176) at A = 1. This yields
J d*x(9,9)° = 4 J d*xU(@) (14.177)

or
So= 5 | dx@d? > 0. (14.178)

Finally, we obtain the preexponential factor as

-1/2

Det'[-0,9, + U"(¢)] 1a179)

Det[-0,, + U"(¢,)]

_ 5
T 42

assuming there are no problems with negative eigenvalues and renormalization.

As to negative eigenvalues, this is really so. It is clear that ;%SZ (at the instanton)
has at least one negative eigenstate. It can be rigorously proved that there is only one
negative eigenstate in this problem [15]. Thus, equation (14.179) gives the correct prob-
ability of vacuum decay.

We shall not discuss in detail the problem of the renormalization of (14.174). In principle, it is clear
that in theories with renormalizable U(¢p), all expressions, including (14.179), can be rewritten via
renormalized parameters, and everything should be finite. Some additional details can be found in
[15].

The bubble expanding in the real Minkowski space-time can be obtained as the ana-
lytical continuation of the instanton:

B0, %) = P(r = \IXI> - x3) . (14.180)

Thus, at small €, we have a thin wall at r = R, separating the two vacuums, and ex-
pansion of the bubble is determined by

x> - x5 ~ R”. (14.181)
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The value of R is determined, as we have seen, by the microscopic parameters of the
theory and is itself microscopic. Then, equation (14.181) means that the expanding sur-
face of the bubble moves practically with the speed of light (v ~ 1). The wall transports
the energy (per unit surface) Si_ At the moment, when the bubble radius reaches

Vi-2®
|x|, the wall energy becomes
E ~ 47'[|x|281 (14.182)
wall — /—1 2 . .

From (14.181), it is easy to find that
dx| R?
v —=1\1-—. 14.183
dt |x|2 ( )

4m|x)S,  4melx)
Eya = —p— = 3| ", (14.184)

Then, the wall energy is

so that, practically, the whole energy released during the “false” vacuum decay goes
to the wall acceleration. No particles are created; from both sides of the wall we have
the corresponding vacuum states. In this sense, the “observer” will never know that
the wall passed through him; he will also just “decay” in the corresponding micro-
scopic time.

Examples of applications of this formalism to problems of relativistic cosmology
can be found in [41].

The concept of instantons plays a major role in many problems of quantum field
theory and statistical mechanics. As an example, we can again mention the gop* with
g < 0 and the number of field components n = 0, which describes the motion of an
electron in the random field of impurities in solid state theory. In this model, with an
unstable ground state, there are t instanton solutions which determine the electron
density of the states in the so-called “tail” region, appearing due to electron localiza-
tion by random field fluctuations [57, 64].

Especially important are nontrivial instanton solutions in non-Abelian gauge the-
ories, which are related to the topological properties of gauge transformations and
the complicated structure of a Yang—Mills vacuum [15, 51, 52]. Here, we shall neither
discuss these aspects of the theory, nor their importance for particle physics (QCD).
A detailed presentation can be found in [52, 58].

14.5 The Lipatov asymptotics of a perturbation series

At the end of Chapter 8, we briefly discussed the asymptotic nature of a perturbation
series in quantum field theory. Here, we shall consider it in more detail, describing
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the elements of the elegant approach proposed by Lipatov. The idea of the Lipatov
method is as follows: If we have some physical function F(g), which is expanded in a
perturbation series in powers of coupling constant g,

(oe)
F(g)= ) Fyg", (14.185)
N=0

the coefficients of this expansion Fy can be determined as

dg F(g)
Fo= | % , 14.186
N JZni gh+l (14.186)

where integration contour C encircles the point g = 0 in the complex plane of the
coupling constant. Rewriting the denominator here as exp{—(N + 1) In g} for large N,
we can use the steepest-descent (stationary phase) approach to estimate (14.186).

We know that all problems solved by the diagram technique can be reformulated
in terms of functional integrals, such as

Z(g) = jDso exp(~So 1} - 8Simcl}), (14.187)

and we can write the coefficients of perturbation expansion as

d
N = J 2n§g JD‘P exp(=So{¢} — 8Sin{p} - N1ng). (14.188)
C

The Lipatov idea is to search for the steepest descent in (14.188) not simply over g, but
over g and ¢ simultaneously:

55(¢)

50 | =0 (14.189)
P
S0 _ (14.190)
g

The solution of these equations exists for all interesting models and is realized on a
spatially localized instanton ¢.(x). The steepest descent approach is applicable here
for large N, independent of its applicability to the initial functional integral (14.187).
This fact is of prime importance; in the general case, an exact calculation of the func-
tional integrals is impossible, but they are easily calculated by steepest descent.

This allows us to determine the general form of large N asymptotics of the pertur-
bation theory coefficients for any physical characteristics (such as Green’s functions
and vertex parts) for different models of quantum field theory. The typical form of Li-
patov asymptotics for the perturbation coefficients of an arbitrary function F(g) has
the form

Fy = cT(N +b)a", (14.191)
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where I'(x) is the I'-function, and parameters a, b, ¢ depend on the specific problem
under discussion. In a concrete model of field theory the constant a is universal, the
parameter b depends on the physical function F(g) under study, and ¢ contains de-
pendence on external momenta (or coordinates). The appearance of (N + b) ~ N!in
(14.191) simply reflects the factorial growth of the number of diagrams with the order
N of perturbation theory. Obviously, such asymptotic behavior of perturbation theory
coefficients corresponds to the divergent series.

The knowledge of Lipatov asymptotics in combination with the exact results for
a few lowest orders of perturbation theory, obtained by direct diagrammatic calcu-
lations, gives information on the perturbation series as a whole. Approximating the
complete series by the sum of lowest-order contributions with asymptotics of higher
orders, and applying the mathematical methods of the summation of the divergent
series, we can obtain approximate solutions of an arbitrary physical problem.

The most common method to deal with a divergent (asymptotic) series of pertur-
bation theory is to use so-called Borel transformation. We can divide and multiply
each term of the series by N! and use the integral representation of the I'-function, so
that after the interchange of summation and integration, we can write

(oe) (o)
F@=) Fyg"= ) % J dxxNe™ gV = de ey %(gx)N ) (14.192)
N=0 N=0 " o o N=0 1V*

The power series in the right-hand side is—in most cases—converging (it actually has
factorially improved convergence) and defines the Borel transform B(z) of the function
F(g), which can now be determined from the following integral transformation:

F(g) = J dxe™B(gx), B(z)= NZO %ZN ) (14.193)
] =

The Borel transformation gives the natural method of summation of a factorially di-
vergent perturbation series of quantum field theory.’

14.6 The end of the “zero-charge” story?

In Chapter 13, we stressed the importance of the asymptotic behavior of the Gell-
Mann-Low function B(g) at large values of the coupling constant g for the internal
consistency of quantum field theory. However, until recently, only perturbation theory
estimates of §(g) were available, and no definite conclusions on its behavior at large

9 A detailed discussion of methods to deal with divergent series of perturbation theory can be found
in the review paper [65].
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g could be drawn. Below, we shall present some nonperturbative arguments due to
Suslov, allowing us to find this asymptotic behavior in analytic form [66].

For simplicity, we shall consider the O(N) symmetric Euclidean ¢* theory in the
d-dimensional space with the action'®

2

N N N
S{p} = J ddx{% Z(V(p,,()2 + %mé z (p,f + éu(Z (p,f) } , (14.194)
a=1 a=1

a=1

where u = goA€ and € = 4 — d. Actually, this is the direct analogue of equation (10.160)
used in the theory of critical phenomena. Here, we are using lattice regularization of
ultraviolet divergences, introducing the cut-off A ~ a~', where a is the lattice constant.
Following the usual renormalization group formalism, we consider the “amputated”
vertex I'™ with n external lines of field ¢. The multiplicative renormalizability of the
theory means that we may write the direct analogue of equation (13.76) as

I (380 Mo, A) = Z°TY (pizg.m) (14.195)

so that divergence at A — oo disappears after extraction of the proper Z-factors and
their transfer to the renormalized charge and mass, which are denoted here as g and m.
We shall accept the renormalization conditions at zero momentum:

rg)(p;g) m)‘p_}() = m2 +p2 i O(pll) i
Iy sgm),_, =gm*, (14.196)

which are typical for applications in the phase transitions theory. From equations
(14.196) and (14.195), we can obtain expressions for renormalized g, m, Z in terms of
the “bare” quantities:
-1
Z(g0,mo, ) = ( =25 T (s g0 mo, )|
0> Mo, apz 580> Mop> p=0 >
m’ = Z(go.mo, ) T (93 g6, Mo, M| -

g =m Z2(g5,mg, ) T (03 26, mO,A)'p:O . (14.197)
Applying the differential operator d/d In m to (14.195) for fixed g, and A gives the di-

rect equivalent of the Callan-Symanzik equation (13.82), which for large momenta
|p;|/m > 1has the form

9 My o )
SInm +B(g) 5 ny(g) Tz (p8,m) =0, (14.198)

10 Generalization to QED is more or less straightforward.
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where the functions (g) and y(g) are defined as

din VZ
y(g) =
d ln mig,,A= const dinm go,A=const

B(g) = , (14.199)

and according to the general theorems depend only on g.
Now, we shall show how the renormalization group functions are expressed via
functional integrals. The functional integrals of ¢*-theory are determined as

Zgl‘?aM (X5 v s Xpy) = JD(p P, 1) Pa, (00) - - g, (Xar) €Xp(=S{0p}) . (14.200)
The Fourier transform of equation (14.200) can be written as

M
( )aM(plw-"pM)N Di++Dy

= Ky 0)la,..a0, Op, +tpyy> (14.201)

where N is the number of sites on the lattice, which is implied in the definition of the
(regularized) functional integral, and the symmetry factors I, .., are similar to those
discussed in Chapter 10 in relation to critical phenomena. Now, we have

79 =Ky, Z3(0,-p) = KoD)sg,  Zipsbi} = Kilbi}agyss (14.202)

where I, is given by an expression similar to that in equation (10.168). Consequently,
we can introduce the vertex part I by the usual relation for two-particle (4-point)
Green’s function:

Gupya(Pr--+-Pa) = Cg POGG @I NG, + Gy (PG5 0 Ny,
+ Gy ()G (P3) NG,
= Gy (PG (020G, ) (03) Gy 045Dy Dy), - (14.203)

where Gfxzﬁ) (p;) are single-particle (2-point) Green’ functions. Extracting the factors

Iy, .a,» We have

Gep®) = Go(D)8ap,  Glypstpi = Galbillagyss  Tips(Pi) = Talpillogys.  (14.204)

Now, we can write

K G K.K2
Gy=-2, T,=-——2=_420 14.205
“T K, G4 K4 ( )
and
K>(p) Ko _Ko KoK,
G 20 (p) = + p, (14.206)
TRy Gz(p) ko) KK
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where for small p, we have written
Ky(p) = Ky —Kop” + . (14.207)

Expressions for the Z-factors, renormalized mass, and charge follow from (14.197):

1 2
) K
Z= [—r ] =—2 14.208)
p K,
m’® = ZT,(0) = =2, (14.209)
K,
dj2
KK
g=m*°ZT, = _<K_2> . (14.210)
K, K2
and
2 ! 127 7dA
KK, - K,K
dm” :<K_2> _ Nl - (14.211)
dm} \K, K3

where the prime denotes the derivatives over m%. The parameters g, and A are consid-
ered to be fixed, whereas m’ is a function of mj only, and the derivative dmj/dm? is
defined by the expression inverse to (14.211). Using the definitions (14.199), we have

dj2 ! ! ! %
K K,K, K, K, + K,K,)K, — 2K, K,K K
B(g) _ <~_2> ‘{—d 420 + 2( 420 4 0)2 2 402 _ 2 _ } (14.212)
K, K5 K5 KzKé - KéKz
KK K. K K
y(g) = —— 2k [2_2__0 _~_2]. (14.213)
KzKé - KéKZ K, K, K,

These equations determine f(g) and y(g) in parametric form: for fixed g, and A, the
right-hand side of these equations are functions of mé only, whereas dependence on
the specific choice of g, and A is absent due to general theorems.

Any infinities in the right-hand sides of equations (14.212) and (14.213) can be in-
duced only by the zeroes of functional integrals." It is clear from equation (14.210) that
the limit g — oo can be achieved by two ways: tending to zero either K, or K,. For
K, — 0, equations (14.210) and equations (14.212), (14.213) give

dj2 dj2
K2> KK, <K2> KK,
=_(=2 , =—dl =2) =22, -1, 14.214)
g ( %, 1@ B(g) %, 1@ y(8) (
and the parametric representation is resolved as
Blg)=dg, y@Eg =1 (g— 00). (14.215)

11 This is the most nontrivial moment of our discussion. Actually, it can be shown that zeroes of the
functional integrals can be obtained by a rather subtle compensation of the contributions of the trivial
vacuum and some instanton configuration with finite action.
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For K, — 0, the limit of g — oo can be achieved only for d < 4:

Blg)=d-Bg, yiEg -2 (g 00). (14.216)

The results (14.215) and (14.216) probably correspond to different branches of the func-
tion B(g). It is easy to understand that the physical branch is the first one. Indeed,
it is commonly accepted in phase transitions theory that the properties of ¢*-theory
change smoothly as a function of space dimension, and the results for d = 2,3 can be
obtained by analytic continuation from d = 4 — €. All the available information indi-
cates the positivity of f(g) for d = 4, and consequently its asymptotics at g — oo is
also positive. The same property is expected for d < 4 by continuity. The result (14.215)
does obey such a property, whereas the branch (14.216) does not exist for d = 4 at all.

According to our discussion in Chapter 13, the behavior of the Gell-Mann-Low
function given by equation (14.215) corresponds to the continuous growth of the renor-
malized charge as we go to the region of strong coupling at small distances, and signi-
fies the consistency of quantum field theory without “pathologies”, such as a Landau
“ghost pole” (or a “zero-charge” problem). However, it should be clearly understood
that during our discussion here, we have skipped many subtle details, which are to be
looked for in original papers, and the difficulties which are making this point-of-view
less than commonly accepted.
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