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|
We have no better way of describing elementary particles than quantum field the-
ory. A quantum field in general is an assembly of an infinite number of interacting
harmonic oscillators. Excitations of such oscillators are associated with particles . . .
All this has the flavor of the 19th century, when people tried to construct mechanical
models for all phenomena. I see nothing wrong with it, because any nontrivial idea
is in a certain sense correct. The garbage of the past often becomes the treasure of
the present (and vice versa). For this reason we shall boldly investigate all possible
analogies together with our main problem.

A.M. Polyakov, “Gauge Fields and Strings”, 1987 [51]





Preface

This book is the revised English translation of the 2003Russian edition of “Lectures on
Quantum Field Theory”, which was based on a much extended lecture course taught
by the author since 1991 at the Ural State University, Ekaterinburg. It is addressed
mainly to graduate and PhD students, as well as to young researchers, who are work-
ing mainly in condensed matter physics and seeking a compact and relatively simple
introduction to the major section of modern theoretical physics, devoted to particles
and fields, which remains relatively unknown to the condensed matter community.
The latter is largely unaware of the major progress related to the formulation the so-
called “standard model” of elementary particles, which is—at the moment—the most
fundamental theory of matter confirmed by experiments. In fact, this book discusses
the main concepts of this fundamental theory, which are basic and necessary (in the
author’s opinion) for everyone starting professional research work in other areas of
theoretical physics, not related to high-energy physics and the theory of elementary
particles, such as condensedmatter theory. Actually, an additional point of this book’s
importance is that many of the theoretical approaches developed in quantum field
theory are now actively used in condensed matter theory, and many of the concepts
of condensed matter theory are now widely used in the construction of the “standard
model” of elementary particles. One of the main aims of the book is to illustrate this
unity of modern theoretical physics, widely using the analogies between quantum
field theory and modern condensed matter theory.

In contrast tomanybooks onquantumfield theory [2, 6, 8–10, 13, 25, 28, 53, 56, 59,
60], most of which usually follow rather deductive presentation of the material, here
we use a kind of inductive approach (similar to that used in [59, 60]); the same prob-
lem is discussed several times using different approaches. In the author’s opinion,
such repetitions are useful for a deeper understanding of the various ideas and meth-
ods used for solving real problems. Of course, among the booksmentioned above, the
author wasmuch influenced by [6, 56, 60], and this influence is obvious inmany parts
of the text. However, the choice of material and the form of presentation is essentially
his own. For the present English edition some of the material was rewritten, bringing
the contentmore up-to-date and addingmore discussion on some of themore difficult
cases.

The central idea of this book is the presentation of the basics of the gauge field
theory of interacting elementary particles. As to the methods, we present a rather de-
tailed derivation of the Feynmandiagram technique,which long ago also became very
important for condensed matter theory. We also discuss in detail the method of func-
tional (path) integrals in quantum theory, which is now also widely used in many
aspects of theoretical physics.

We limit ourselves to this relatively traditional material, dropping some of the
more modern (but more speculative) approaches, such as supersymmetry. Obviously,

https://doi.org/10.1515/9783110648522-201



VIII | Preface

wealso drop the discussion of somenew ideas,which are in fact outside the domain of
the quantum field theory, such as strings and superstrings. Also we do not discuss in
any detail the experimental aspects of modern high-energy physics (particle physics),
using only a few illustrative examples.

The second edition of this book has been expanded with boxes presenting brief
summaries of the lives andachievements of themajor founders and contributors to the
field of “Quantum Field Theory”. The biographical details complement the scientific
content of the book and contextualize the discoveries within the framework of global
research in Theoretical Physics. In my personal opinion, this information is useful for
readers and lecturers alike.

Ekaterinburg, 2019 M. V. Sadovskii
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1 Basics of elementary particles

1.1 Fundamental particles

Before we begin with the systematic presentation of the principles of quantum field
theory, it is useful to give a short review of the modern knowledge of the world of ele-
mentary particles, as quantum field theory is the major instrument for describing the
properties and interactions of these particles. In fact, historically, quantum field the-
ory was developed as the principal theoretical approach in the physics of elementary
particles. Below, we will introduce the basic terminology of particle physics, shortly
describe the classification of elementary particles, and note some of the central ideas
used to describe particle interactions. Also, we will briefly discuss some of the prob-
lems which will not be discussed at all in the rest of this book. All of these problems
are discussed in more detail (on an elementary level) in a very well-written book [46]
and a review [47]. It is quite useful to read these references before reading this book!
Elementary presentation of the theoretical principles to be discussed below is given
in [26]. A discussion of the world of elementary particles—similar in spirit—can be
found in [23]. At the less elementary level, the basic results of the modern experimen-
tal physics of elementary particles, as well as basic theoretical ideas used to describe
their classification and interactions, are presented in [24, 50, 29].

During many years (mainly in the 1950s and 1960s and much later in popular
literature) it was a common theme to speak about a “crisis” in the physics of ele-
mentary particles, which was related to an enormous number (hundreds!) of exper-
imentally observed subnuclear (“elementary”) particles, as well as to the difficulties
of the theoretical description of their interactions. A great achievement of modern
physics is the rather drastic simplification of this complicated picture, which is ex-
pressed by the so-called “standard model” of elementary particles. Now it is a well-
established experimental fact, that the world of truly elementary particles1 is rather
simple and theoretically well described by the basic principles of modern quantum
field theory.

According to most fundamental principles of relativistic quantum theory, all ele-
mentary particles are divided in two major classes, fermions and bosons. Experimen-
tally, there are only 12 elementary fermions (with spin s = 1/2) and 4 bosons (with
spin s = 1), plus corresponding antiparticles (for fermions). In this sense, our world is
really rather simple!

1 Naturally, we understand as “truly elementary” those particles which cannot be shown to consist
of some more elementary entities at the present level of experimental knowledge.

https://doi.org/10.1515/9783110648522-001



2 | 1 Basics of elementary particles

1.1.1 Fermions

All the known fundamental fermions (s = 1/2) are listed in Table 1.1. Of their pro-
perties—in this table—we show only the electric charge. These 12 fermions form three
“generations”,2 with two leptons and two quarks.3 For each charged fermion, there is
a corresponding antiparticle, with an opposite value of electric charge. Whether or
not there are corresponding antiparticles for neutrinos is at present undecided. It is
possible that neutrinos are the so-called truly neutral particles.

Table 1.1: Fundamental fermions.

Generations 1 2 3 Q

Quarks u c t +2/3
(“up” and “down”) d s b −1/3

Leptons νe νμ ντ 0
(neutrino and charged) e μ τ −1

All the remaining subnuclear particles are composite and are built of quarks. How this
is done is described indetail, example in [24, 50],4 andwe shall not dealwith this prob-
lem in the following. We only remind the reader that baryons, that is, fermions (such
as protons, neutrons, and various hyperons) are built of three quarks each, whereas
quark–antiquark pairs form mesons, that is, Bosons, for example π-mesons, and
K-mesons. Baryons and mesons form a large class of particles, known as hadrons –
these particles take part in all types of interactions known in nature: strong, elec-
tromagnetic, and weak. Leptons participate only in electromagnetic and weak inter-
actions. Similar particles originating from different generations differ only by their
masses, all other quantum numbers are just the same. For example, the muon μ is in
all respects equivalent to an electron, but its mass is approximately 200 times larger,
and the nature of this difference is unknown. In Table 1.2, we show experimental
values for masses of all fundamental fermions (in units of energy), as well as their

2 In particle theory, there exists a rather well-established terminology. In the following, we use the
standard termswithout quotationmarks. Herewewish to stress that almost all of these accepted terms
have absolutely no relation to any common meaning attributed to the terms.
3 Leptons, such as electron and electron neutrino, have been well known for a long time. Until re-
cently, in popular and general physics texts, quarks were called “hypothetical” particles. This is
wrong — quarks have been studied experimentally for a rather long time. Certain doubts that have
been expressed concerning their existence are related to their “theoretical” origin and impossibility
of observing them in free states (confinement). It should be stressed that quarks are absolutely real
particles, which have been clearly observed inside hadrons in many experiments at high energies.
4 Historical aspects of the origin of the quark model can be easily followed in older reviews [77, 76].
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lifetimes (or appropriate widths of resonances) for unstable particles. We also give the
year of discovery of the appropriate particle.5 The values of quark masses (as well as
their lifetimes) are to be understood with some caution, as quarks are not observed as
free particles, so that these values characterize quarks deep inside hadrons at some
energy scale of the order of several Gev.6

Table 1.2:Masses and lifetimes of fundamental fermions.

νe < 10 eV (1956) νμ < 170KeV (1962) ντ < 24MeV (1975)

e = 0.5MeV (1897) μ = 105.7MeV, 2 ⋅ 10−6 s (1937) τ = 1777MeV, 3 ⋅ 10−13 s (1975)

u = 2.5MeV (1964) c = 1266MeV, 10−12 s (1974) t = 173GeV, Γ = 2GeV (1994)

d = 5MeV (1964) s = 105MeV (1964) b = 4.2GeV, 10−12 s (1977)

It is rather curious that in order to build the entire world around us, which consists of
atoms, molecules, etc., i. e., nuclei (consisting of protons and neutrons) and electrons
(with the addition of stable neutrinos), we need only fundamental fermions of the first
generation! Who “ordered” twomore generations, and for what purpose? At the same
time, there are rather strong arguments supporting the claim, that there are only three
(not more!) generations of fundamental fermions.7

1.1.2 Vector bosons

Besides fundamental fermions, which are the basic building blocks of ordinary mat-
ter, experiments confirm the existence of four types of vector (s = 1) bosons, which
are responsible for the transfer of basic interactions; these are the well-known pho-
ton γ, gluons g, neutral weak (“intermediate”) boson Z0, and charged weak bosons
W± (which are antiparticles with respect to each other). The basic properties of these
particles are given in Table 1.3.

5 The year of discovery is in some cases not very well defined, so that we give the year of theoretical
prediction.
6 Precise values of these and other parameters of the Standard Model, determined during the hard
experimental work of recent decades, can be found in [67].
7 In recent years, it has become clear that the “ordinary” matter, consisting of atoms and molecules
(built of hadrons (quarks) and leptons), corresponds to a rather small fraction of thewhole universewe
live in. Astrophysical and cosmological data convincingly show that most of the universe apparently
consists of some unknown classes of matter, usually referred to as “dark” matter and “dark” energy,
both having nothing to do with the “ordinary” particles discussed here [67]. In this book, we shall
discuss only “ordinary” matter.
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Table 1.3: Fundamental bosons (masses and widths).

Boson γ (1900) g (1973) Z (1983) W (1983)

Mass 0 0 91.2GeV 80.4GeV
Width 0 0 2.5GeV 2.1GeV

The most studied of these bosons are obviously photons. These are represented by
radio waves, light, X-rays, and γ-rays. The photon mass is zero, so that its energy
spectrum (dispersion) is given by8 E = ℏc|k|. Photons with E ̸= ℏc|k| are called vir-
tual; for example the Coulomb field in the hydrogen atom creates virtual photons with
ℏ2c2k2 ≫ E2. The source of photons is the electric charge. The corresponding dimen-
sionless coupling constant is thewell-knownfine structure constantα = e2/ℏc ≈ 1/137.
All electromagnetic interactions are transferred by the exchange of photons. The the-
ory which describes electromagnetic interactions is called quantum electrodynamics
(QED).

Massive vector bosons Z and W± transfer the short-range weak interactions. To-
gether with photons they are responsible for the unified electroweak interaction. The
corresponding dimensionless coupling constants are αW = g2W /ℏc ∼ αZ = g

2
Z/ℏc ∼ α,

of the order of the electromagnetic coupling constant.
Gluons transfer strong interactions. The sources of gluons are specific “color”

charges. Each of the six types (or “flavors) of quarks u, d, c, s, t, b exists in three color
states: red r, green g, blue b. Antiquarks are characterized by corresponding the anti-
colors: ̄r, ḡ, b̄. The colors of quarks do not depend on their flavors. Hadrons are formed
by symmetric or opposite color combinations of quarks—they are “white”, and their
color is zero. Taking into account antiparticles, there are 12 quarks, or 36 if we consider
different colors. However, for each flavor, we are dealing simply with a different color
state of each quark. Color symmetry is exact.

Color states of gluons aremore complicated. Gluons are characterized not by one,
but by two color indices. In total, there are eight colored gluons: 3 × 3̄ = 8 + 1, one
combination – r ̄r + gḡ + bb̄ – is white with no color charge (color neutral). Unlike in
electrodynamics, where photons are electrically neutral, gluons possess color charges
and interact bothwith quarks and among themselves, that is, radiate and absorb other
gluons (“luminous light”). This is one of the reasons for confinement: aswe try to sepa-
rate quarks, their interaction energy grows (in fact, linearly with interquark distance)
to infinity, leading to nonexistence of free quarks. The theory of interacting quarks
and gluons is called quantum chromodynamics (QCD).

8 Up to now we are writing ℏ and c explicitly, but in the following we shall mainly use the natural
system of units, extensively used in theoretical works of quantum field theory, where ℏ = c = 1. The
main recipes to use such system of units are described in detail in Ref. [46]. In most cases, ℏ and c are
easily restored in all expressions, when necessary.
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1.2 Fundamental interactions

The physics of elementary particles dealswith three types of interactions: strong, elec-
tromagnetic, and weak. The theory of strong interactions is based on quantum chro-
modynamics and describes the interactions of quarks inside hadrons. Electromag-
netic and weak interactions are unified within the so-called electroweak theory. All
these interactions are characterized by corresponding dimensionless coupling con-
stants: α = e2/ℏc, αs = g2/ℏc, αW = g2W /ℏc, αZ = g

2
Z/ℏc. Actually, it was already was

recognized in the 1950s that α = e2/ℏc ≈ 1/137 is constant only at zero (or a very small)
square of themomentum q2, transferred during the interaction (scattering process). In
fact, due to the effect of vacuum polarization, the value of α increases with the growth
of q2, and for large, though finite, values of q2 can even become infinite (Landau–
Pomeranchuk pole). At that time this result was considered to be a demonstration of
the internal inconsistency of QED. Much later, after the creation of QCD, it was discov-
ered that αs(q2), opposite to the case of α(q2), tends to zero as q2 → ∞, which is the
essence of the so-called asymptotic freedom. Asymptotic freedom leads to the possi-
bility of describing gluon–quark interactions at small distances (large q2!) by simple
perturbation theory, similar to electromagnetic interactions. Asymptotic freedom is
reversed at large interquark distances, where the quark–gluon interaction grows, so
that perturbation theory cannot be applied: this is the essence of confinement. The
difficulty in giving a theoretical description of the confinement of quarks is directly
related to this inapplicability of perturbation theory at large distances (of the order of
hadron size and larger). Coupling constants of weak interaction αW , αZ also change
with transferred momentum—they grow approximately by 1% as q2 increases from
zero to q2 ∼ 100GeV2 (this is an experimental observation!). Thus, modern theory
deals with the so-called “running” coupling constants. In this sense, the old problem
of the size of an electric charge as a fundamental constant of nature, in fact, lost its
meaning—the charge is not a constant, but a function of the characteristic distance
at which particle interaction is analyzed. The theoretical extrapolation of all coupling
constants to large q2 demonstrates the tendency for them to become approximately
equal to q2 ∼ 1015 − 1016 GeV2, where α ∼ αs ∼ αW ∼

8
3

1
137 ≈

1
40 . This leads to the

hopes for a unified description of electroweak and strong interactions at large q2, the
so-called grand unification theory (GUT).

1.3 The Standard Model and perspectives

The Standard Model of elementary particles foundation is special relativity (equiva-
lence of inertial frames of reference). All processes are taking place in four-dimen-
sional Minkowski space-time (x, y, z, t) = (r, t). The distance between two points
(events) A and B in this space is determined by a four-dimensional interval: s2AB =
c2(tA − tB)2 − (xA − xB)2 − (yA − yB)2 − (zA − zB)2. The interval s2AB ≥ 0 for two events,
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which can be casually connected (time-like interval), whereas the space-like interval
s2AB < 0 separates two events, which cannot be casually related.

At the heart of the theory lies the concept of a local quantumfield—field commuta-
tors inpoints separatedbya space-like interval are always equal to zero: [ψ(xA),ψ(xB)] =
0 for s2AB < 0, which corresponds to the independence of the corresponding fields.
Particles (antiparticles) are considered as quanta (excitations) of the corresponding
fields. Most general principles of relativistic invariance and stability of the ground
state of the field system directly lead to the fundamental spin-statistics theorem:
particles with halfinteger spins are fermions, whereas particles with integer spin are
bosons. In principle, bosons can be assumed to be “built” of an even number of
fermions; in this sense Fermions are “more fundamental”.

Symmetries are of fundamental importance in quantum field theory. Besides the
relativistic invariance mentioned above, modern theory considers a number of exact
and approximate symmetries (symmetry groups) which are derived from the vast ex-
perimental material on the classification of particles and their interactions. Symme-
tries are directly related with the appropriate conservation laws (Noether theorem),
such as energy-momentum conservation, angular momentum conservation, and con-
servation of different “charges”. The principle of local gauge invariance is the key to
the theory of particles interactions. Last but not least, the phenomenon of sponta-
neous symmetry-breaking (vacuumphase transitions) leads to themechanism ofmass
generation for initially massless particles (Higgs mechanism).9 The rest of this book
is essentially devoted to the explanation and deciphering of these and of some other
statements to follow.

The Standard Model is based on experimentally established local gauge SU(3)c ⊗
SU(2)W ⊗ U(1)Y symmetry. Here, SU(3)c is the symmetry of strong (color) interaction
of quarks and gluons, whereas SU(2)W ⊗ U(1)Y describes electroweak interactions.
If this last symmetry is not broken, all fermions and vector gauge bosons are mass-
less. As a result of spontaneous SU(2)W ⊗U(1)Y breaking, bosons responsible for weak
interaction become massive, whereas the photon remains massless. Leptons also ac-
quire mass (except for the neutrino?).10 The electrically neutral Higgs field acquires
a nonzero vacuum value (Bose-condensate). The quanta of this field (the notorious
Higgs bosons) are the scalar particles with spin s = 0, and up to now have not been
discovered in experiments. The search for Higgs bosons was among the main tasks
of the Large Hadron Collider (LHC) at CERN. This task was complicated by rather in-

9 The Higgs mechanism in quantum field theory is the direct analogue of the Meissner effect in the
Ginzburg–Landau theory of superconductivity.
10 The problem of neutrinomass is somehow outside the Standard Model. There is direct evidence of
finite, but very small masses of different neutrinos, following from the experiments on neutrino oscil-
lations [67]. The absolute values of neutrino masses are unknown, are definitely very small (in com-
parison to electron mass): experiments on neutrino oscillations only measure differences of neutrino
masses. The current (conservative) limitation ismνe < 2 eV [67].
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determinate theoretical estimates [67] of Higgs boson mass, which reduced to some
inequalities, such as, mZ < mh < 2mZ . In 2012 the ATLAS and CMS collaborations at
LHC announced the discovery of a newparticle “consistentwith the long-soughtHiggs
boson” with massmh ∼ 125.3±0.6Gev. The brief review of experimental situation can
be found in [55]. That was the major triumph of the Standard Model.

There is an interesting theoretical possibility that the Higgs boson could be a com-
posite particle built of the fermions of the Standard Model (the so-called technicolor
models). However, these ideas meet with serious difficulties of the selfconsistency of
experimentally determined parameters of the Standard Model.

We already noted that the Standard Model (even taking into account only the first
generation of fundamental fermions) is sufficient for complete understanding of the
structure of matter in our world, consisting only of atoms and nuclei. All generaliza-
tions of the StandardModel up to now are rather speculative and are not supported by
the experiments. There are a number of grand unification (GUT) models, where mul-
tiplets of quarks and leptons are described within the single (gauge) symmetry group.
This symmetry is assumed to be exact at very high transferred momenta (small dis-
tances) of the order of q2 ∼ 1015 − 1016 GeV2, where all coupling constants become (ap-
proximately) equal. Experimental confirmation of GUT is very difficult, as the energies
needed to make scattering experiments with such momentum transfers are unlikely
to be ever achievable by humans. The only verifiable, in principle, prediction of GUT
models is the decay of the proton. However, the intensive search for proton instability
during the last decades has produced no results, so that the simplest versions of GUT
are definitely wrong. More elaborate GUT models predict proton lifetime one or two
orders of magnitude larger, making this search much more problematic.

Another popular generalization is supersymmetry (SUSY), which unifies fermions
and bosons into the samemultiplets. There are several reasons for theorists to believe
in SUSY:
– cancellation of certain divergences in the Standard Model;
– unification of all interactions, probably including gravitation (¿);
– mathematical elegance.

In the simplest variant of SUSY, each known particle has the corresponding “super-
partner”, differing (in case of an exact SUSY) only by its spin, for example, a photon
with s = 1 has a corresponding photino with s = 1/2; an electronwith s = 1/2 has a cor-
responding electrino with s = 0; quarks with s = 1/2 have corresponding quarks with
s = 0. Supersymmetry is definitely strongly broken (by mass); the search for super-
partners was also one of the major tasks for LHC. However, up to now the results from
LHC produced no evidence for SUSY, but the search continues. We shall not discuss
supersymmetry in this book.

Finally, beyond any doubt there should be one more fundamental particle, the
graviton, that is, the quantum of gravitational interactions with s = 2. However, grav-
itation is definitely outside the scope of experimental particle physics. Gravitation is
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too weak to be observed in particle interactions. It becomes important only for mi-
croprocesses at extremely high energies, the so-called Planck energies of the order of
E ∼ mPc2 = (ℏc/G)1/2c2 = 1.22 ⋅ 1019 GeV. Here, G is the Newtonian gravitational con-
stant, and mP is the so-called Planck mass (∼ 10−5 Gramm!), which determines also
the characteristic Planck length: ΛP ∼ ℏ/mPc ∼ √ℏG/c3 ∼ 10−33 cm. Experiments at
such energies are simply unimaginable for humans. However, the effects of quantum
gravitation were decisive during the Big Bang and determined the future evolution of
the universe. Thus, quantum gravitation is of primary importance for relativistic cos-
mology. Unfortunately, quantum gravitation is still undeveloped, and for many seri-
ous reasons. Attempts to quantize Einstein’s theory of gravitation (general relativity)
meet with insurmountable difficulties, due to the strong nonlinearity of this theory.
All variants of such quantization inevitably lead to a strongly nonrenormalizable the-
ory, with no possibility of applying the standard methods of modern quantum field
theory. These problems have been under active study for many years, with no signif-
icant progress. There are some elegant modifications of the standard theory of gravi-
tation, such as supergravity. Especially beautiful is an idea of “induced” gravitation,
suggested by Sakharov, when Einstein’s theory is considered as the low-energy (phe-
nomenological) limit of the usual quantumfield theory in the curved space-time.How-
ever, up to now these ideas have not been developed enough to be of importance for
experimental particle physics.

There are even more fantastic ideas, which have been actively discussed during
recent decades. Many people think that both quantum field theory and the Standard
Model are just effective phenomenological theories, appearing in the low energy limit
of the new microscopic superstring theory. This theory assumes that “real” micro-
scopic theory should not deal with point-like particles, but with strings with charac-
teristic sizes of the order of ΛP ∼ 10−33 cm. These strings are moving (oscillating) in
the spaces ofmanydimensions andpossess fermion–boson symmetry (superstrings!).
These ideas are now being developed for the “theory of everything”.

Our aim in this book is a much more modest one. There is a funny terminology
[47], according to which all theories devoted to particles, which have been and will
be discovered in the near future called “phenomenological”, while theories devoted
to particles or any entities, which will never be discovered experimentally, are called
“theoretical”. In this sense, we are not dealing here with “fundamental” theory at
all. However, we shall see that there are too many interesting problems even at this
“low” level.



2 Lagrange formalism. Symmetries and gauge fields

2.1 Lagrange mechanics of a particle

Let us recall first of all somebasic principles of classicalmechanics. Consider aparticle
(material point) with mass m, moving in some potential V(x). For simplicity, we con-
sider a one-dimensional motion. At the time moment t, the particle is at point x(t) of
its trajectory, which connects the initial point x(t1)with the finite point x(t2), as shown
in Figure 2.1(a). This trajectory is determined by the solution of Newton’s equation of
motion:

md2x
dt2
= F(x) = −dV(x)

dx
(2.1)

with appropriate initial conditions. This equation can be “derived” from the principle
of least action. We introduce the Lagrange function as the difference between kinetic
and potential energy:

L = T − V = m
2
(
dx
dt
)
2
− V(x) (2.2)

and the action integral

S =
t2

∫
t1

dt L(x, ẋ) , (2.3)

where as usual ẋ denotes velocity ẋ = dx/dt. The true trajectory of the particle corre-
sponds to the minimum (in general extremum) of the action on the whole set of ar-
bitrary trajectories, connecting points x(t1) and x(t2), as shown in Figure 2.1(b). From
this principle we can immediately obtain the classical equations of motion. Consider
the arbitrary small variation a(t) of the true trajectory x(t):

x(t) → x󸀠(t) = x(t) + a(t) . (2.4)

Figure 2.1: (a) Trajectory corresponding to the least action. (b) The set of arbitrary trajectories of the
particle.

https://doi.org/10.1515/9783110648522-002
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At the initial and final points this variation is naturally assumed to be zero:

a(t1) = a(t2) = 0 . (2.5)

Substituting (2.4) into action (2.3), we obtain its variation as

S → S󸀠 =
t2

∫
t1

dt[m
2
(ẋ + ȧ)2 − V(x + a)]

=

t2

∫
t1

dt[ 1
2
mẋ2 +mẋȧ − V(x) − aV 󸀠(x)] + O(a2)

= S +
t2

∫
t1

dt[mẋȧ − aV 󸀠(x)] ≡ S + δS , (2.6)

where V 󸀠 = dV/dx, so that

δS =
t2

∫
t1

dt[mẋȧ − aV 󸀠(x)] . (2.7)

The action is extremal at x(t) if δS = 0. Integrating the first term in (2.7) by parts, we
get

t2

∫
t1

dt ẋȧ = ẋa
󵄨󵄨󵄨󵄨󵄨󵄨

t2

t1
−

t2

∫
t1

dt aẍ = −
t2

∫
t1

dt aẍ , (2.8)

as variations at the ends of trajectory are fixed by equation (2.5). Then

δS = −
t2

∫
t1

dt a[mẍ + V 󸀠(x)] = 0 . (2.9)

Due to the arbitrariness of variation a, we immediately obtain Newton’s law (2.1):

mẍ = −V 󸀠(x) ,

which determines the (single!) true trajectory of the classical particle.

2.2 Real scalar field. Lagrange equations

The transition from the classical mechanics of a particle to classical field theory re-
duces to the transition from particle trajectories to the space-time variations of field
configurations, defined at each point in space-time. Analogue to the particle coordi-
nate as a function of time x(t) is the field function φ(xμ) = φ(x, y, z, t).
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Notes on relativistic notations

Weuse the following standard notations. Two space-time points (events) (x, y, z, t) and x+dx, y+dy, z+
dz, t + dt are separated by the interval

ds2 = c2dt2 − (dx2 + dy2 + dz2) .

The interval ds2 > 0 is called time-like and the corresponding points (events) can be casually related.
The interval ds2 < 0 is called space-like; the corresponding points (events) cannot be casually related.
The set of coordinates

xμ = (x0, x1, x2, x3) ≡ (ct, x, y, z)
determines the contravariant components of 4-vector, whereas

xμ = (x0, x1, x2, x3) ≡ (ct, −x, −y, −z)

represents the corresponding covariant components. Then the interval can be written as

ds2 =
3
∑
μ=0

dxμdxμ ≡ dx
μdxμ = c

2dt2 − dx2 − dy2 − dz2 .

There is the obvious relation

xμ = gμνx
ν = gμ0x

0 + gμ1x
1 + gμ2x

2 + gμ3x
3 ,

where we have introduced the metric tensor in Minkowski space-time:

gμν = g
μν = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) ; gμνg
νδ = δδμ .

For differential operators, we shall use the following short notations:

𝜕μ ≡
𝜕
𝜕xμ
= (𝜕0, 𝜕1, 𝜕2, 𝜕3) = (

1
c
𝜕
𝜕t
,
𝜕
𝜕x
,
𝜕
𝜕y
,
𝜕
𝜕z
) = (

1
c
𝜕
𝜕t
, ∇) ,

𝜕μ = gμν𝜕ν = (
1
c
𝜕
𝜕t
, −∇) ,

◻ ≡ 𝜕μ𝜕
μ =

1
c2
𝜕2

𝜕t2
− (
𝜕2

𝜕x2
+
𝜕2

𝜕y2
+
𝜕2

𝜕z2
) =

1
c2
𝜕2

𝜕t2
− △ .

For the energy-momentum vector of a particle with massm, we have

pμ = (E
c
, p) , pμ = (

E
c
, −p) ,

p2 = pμp
μ =

E2

c2
− p2 = m2c2 .

For typical combination, usually standing in Fourier integrals, we write

px = pμx
μ = Et − p ⋅ r .

In the following, almost everywhere we use the natural system of units with ℏ = c = 1. The advantages
of this system, besides the obvious compactness of all expressions, and its connectionwith traditional
systems of units, are well described in [46].



12 | 2 Lagrange formalism. Symmetries and gauge fields

Consider the simplest example of a free scalar field φ(xμ) = φ(x, y, z, t), which is at-
tributed to particles with spin s = 0. This field satisfies the Klein–Gordon equation:

(◻ +m2)φ = 0 . (2.10)

Historically this equation was obtained as a direct relativistic generalization of the
Schroedinger equation. If we consider φ(xμ) as a wave function of a particle and take
into account relativistic dispersion (spectrum)

E2 = p2 +m2 , (2.11)

we can perform the standard Shroedinger replacement of dynamic variables by oper-
ators acting on the wave function:

p→ ℏ
i
𝜕
𝜕r
, E → iℏ 𝜕

𝜕t
, (2.12)

which immediately gives (2.10). Naturally, this procedure is not a derivation, and a
more consistent procedure for obtaining relativistic field equations is based on the
principle of least action.

Let us introduce the action functional as

S = ∫ d4xℒ(φ, 𝜕μφ) , (2.13)

where ℒ is the Lagrangian (Lagrange function density) of the system of fields. The La-
grange function is L = ∫ d3rℒ. It is usually assumed thatℒ depends on the fieldφ and
its first derivatives. The Klein–Gordon equation is easily derived from the following
Lagrangian:

ℒ =
1
2
(𝜕μφ)(𝜕μφ) −

m2

2
φ2 =

1
2
[(𝜕0φ)

2 − (∇φ)2 −m2φ2] . (2.14)

This directly follows from the general Lagrange formalism in field theory.

Hermann Minkowski (1864–1909) was a Ger-
man mathematician who developed the geome-
try of numbers and used geometrical methods
to solve problems in number theory, mathemati-
cal physics, and the theory of relativity. Hermann
Minkowski was born in a village near Kovno in
the Russian Empire (now incorporated into the
city of Kaunas, Lithuania). Minkowski was ed-
ucated in East Prussia at the Albertina Univer-
sity of Königsberg. In 1883, while still a student
at Königsberg, he was awarded the Mathematics
Prize of the French Academy of Sciences for his

manuscript on the theory of quadratic forms. Minkowski taught at the universities of
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Bonn, Göttingen, Königsberg, and Zürich. At the Eidgenössische Polytechnikum, to-
day the ETH Zurich, he was one of Einstein’s teachers. Minkowski explored the arith-
metic of quadratic forms, especially concerning n variables, and his research into that
topic led him to consider certain geometric properties in a space of n dimensions. In
1896, he presented his geometry of numbers, a geometrical method that solved prob-
lems in number theory. In 1902, he joined the Mathematics Department of Göttingen
and became a close colleague of David Hilbert, whom he first met at university in
Königsberg. Minkowski is perhaps best known for his work in relativity, in which he
showed in 1907 that his former student Albert Einstein’s special theory of relativity
could be understood geometrically as a theory of four-dimensional space-time, since
known as the “Minkowski spacetime”. Minkowski died suddenly of appendicitis in
Göttingen on 12 January 1909.

Notes on dimensionalities

In our system of units with ℏ = c = 1, dimensionalities of energy, mass, and inverse length are just
the same: [energy] = [mass] = l−1. To understand the last equality, it is important to recall that the
Compton length for a particle with mass m is determined as ℏ/mc. The action S = ∫ d4xℒ has the
dimensionality of ℏ, so that in our system of units it is dimensionless! Then the dimensionality of La-
grangian is [ℒ] = l−4. Accordingly, from equation (2.14) we obtain the dimensionality of the scalar field
as [φ] = l−1. This type of dimensionality analysis will be usedmany times as we proceed with the text.

Now let us turn to the general Lagrange formalism of the field theory. Consider the
field φ filling some space-time region (volume) ℛ in the Minkowski space. As initial
and final hypersurfaces in this space, we can take time slices at t = t1 and t = t2.
Consider now arbitrary (small) variations of coordinates and fields:

xμ → x󸀠μ = xμ + δxμ , (2.15a)
φ(x) → φ󸀠(x) = φ(x) + δφ(x) . (2.15b)

Here, we assume these variations δxμ and δφ(x) to be fixed at zero at the boundaries
of our space-time region ℛ̃:

δφ(x) = 0 , δxμ = 0 , x ∈ ℛ̃ . (2.16)

Let us analyze the sufficiently general case, when the Lagrangian ℒ is explicitly
dependent on coordinates xμ, which may correspond to the situation when our fields
interact with external sources. The total variation of the field can be written as

φ󸀠(x󸀠) = φ(x) + Δφ(x) , (2.17)

where

Δφ = φ󸀠(x󸀠) − φ(x󸀠) + φ(x󸀠) − φ(x) = δφ(x) + δxμ(𝜕μφ) . (2.18)
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Then action variation is given by

δS = ∫
ℛ

d4x󸀠 ℒ(φ󸀠, 𝜕μφ
󸀠, x󸀠μ) − ∫

ℛ

d4xℒ(φ, 𝜕μφ, xμ) . (2.19)

Here, d4x󸀠 = J(x/x󸀠)d4x, where J(x/x󸀠) is the Jacobian of transformation from x to x󸀠.
From equation (2.15a), we can see that

𝜕x󸀠μ

𝜕xλ
= δμλ + 𝜕λδx

μ, (2.20)

and for the Jacobian, we can write down the simple expression according to terms of
the first order in δxμ:

J(x/x󸀠) = Det(𝜕x
󸀠μ

𝜕xλ
) = 1 + 𝜕μ(δx

μ) . (2.21)

Then

δS = ∫
ℛ

d4x[δℒ + ℒ𝜕μδx
μ] , (2.22)

where

δℒ = 𝜕ℒ
𝜕φ

δφ + 𝜕ℒ
𝜕(𝜕μφ)

δ(𝜕μφ) +
𝜕ℒ
𝜕xμ

δxμ . (2.23)

From equation (2.15a), it is clear that δ(𝜕μφ) = 𝜕μδφ, so that from equations (2.22) and
(2.23) it immediately follows that

δS = ∫
ℛ

d4x{𝜕ℒ
𝜕φ

δφ + 𝜕ℒ
𝜕(𝜕μφ)
𝜕μ(δφ) + 𝜕μ(ℒδx

μ)} . (2.24)

The third term in figure brackets reduces to full divergence, so that this contribution is
transformed (using the Gauss theorem) into the integral over the boundary surfaceℛ.
The second term in equation (2.24) can also be transformed to an expression contain-
ing full divergence:

𝜕ℒ
𝜕(𝜕μφ)
𝜕μ(δφ) = 𝜕μ{

𝜕ℒ
𝜕(𝜕μφ)

δφ} − 𝜕μ{
𝜕ℒ
𝜕(𝜕μφ)
}δφ . (2.25)

As a result, we rewrite the action variation (2.24) as

δS = ∫
ℛ

d4x{𝜕ℒ
𝜕φ
− 𝜕μ[
𝜕ℒ
𝜕(𝜕μφ)
]}δφ + ∫

ℛ̃

dσμ{
𝜕ℒ
𝜕(𝜕μφ)

δφ + ℒδxμ} . (2.26)
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Due limitations of equation (2.16), the variationsφ and xμ on the boundary of integra-
tion regionℛ are equal to zero, so that the surface integral in equation (2.26) reduces
to zero. Then, demanding δS = 0 for arbitrary field and coordinate variations, we get

𝜕ℒ
𝜕φ
−
𝜕
𝜕xμ
[
𝜕ℒ
𝜕(𝜕μφ)
] = 0 . (2.27)

This is the general form of Lagrange equations (equations of motion) for the field φ.1

Let us write down the Lagrangian of a scalar field (2.14) as a simplest quadratic
form of the field and its first derivatives:

ℒ =
1
2
gμν(𝜕μφ)(𝜕νφ) −

1
2
m2φ2 . (2.28)

Then we have

𝜕ℒ
𝜕φ
= −m2φ , 𝜕ℒ

𝜕(𝜕μφ)
= gμν(𝜕νφ) = 𝜕

μφ, (2.29)

and Lagrange equation reduces to the Klein–Gordon equation:

𝜕μ𝜕
μφ +m2φ ≡ ◻φ +m2φ = 0 . (2.30)

This is a linear differential equation, and it describes the free (noninteracting) field. If
we add to the Lagrangian (2.28) higher-order (higher-power) invariants of field φ, we
shall obtain a nonlinear equation for self-interacting scalar fields.

2.3 The Noether theorem

Let us return to equation (2.26) and rewrite the surface integral in a different form:

δS = ∫
ℛ

d4x{𝜕ℒ
𝜕φ
− 𝜕μ[
𝜕ℒ
𝜕(𝜕μφ)
]}δφ

+ ∫

ℛ̃

dσμ{
𝜕ℒ
𝜕(𝜕μφ)
[δφ + (𝜕νφ)δx

ν] − [
𝜕ℒ
𝜕(𝜕μφ)
(𝜕νφ) − δ

μ
νℒ]δx

ν} , (2.31)

where we just added and subtracted the same term. The expression in the first square
brackets in the surface integral represents the full variation of the field, as defined in

1 This derivation is actually valid for arbitrary fields, not necessarily scalar ones. In the case of vectors,
tensors, or spinor fields, this equation is satisfied by all components of the field, which are numbered
by the appropriate indices.
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equation (2.18). The second square bracket, as we shall demonstrate below, defines
the energy-momentum tensor:

θμν =
𝜕ℒ
𝜕(𝜕μφ)
𝜕νφ − δ

μ
νℒ . (2.32)

Then δS is rewritten as

δS = ∫
ℛ

d4x{𝜕ℒ
𝜕φ
−
𝜕
𝜕xμ
[
𝜕ℒ
𝜕(𝜕μφ)
]}δφ + ∫

ℛ̃

dσμ{
𝜕ℒ
𝜕(𝜕μφ)

Δφ − θμνδx
ν} . (2.33)

Note that the first integral here is equal to zero (for arbitrary variations δφ) due to
the validity of the equations of motion (2.27). Consider now the second term in equa-
tion (2.33). Assume that the action S is invariantwith respect to some continuous group
of transformations of xμ and φ (Lie group). We can write the corresponding infinitesi-
mal transformations as

δxμ = Xμ
ν δω

ν , Δφ = Φμδω
μ , (2.34)

where δωμ are infinitesimal parameters of group transformation (“rotation angles”),
Xμ
ν is some matrix, and Φμ are some numbers. Note that in the general case, indices

here may be double, triple, etc. In particular, wemay consider somemultiplet of fields
φi, so that

Δφi = Φijδωj , (2.35)

where Φ is now also some matrix in some abstract (“isotopic”) space.
Demanding the invariance of the action δS = 0 under transformations (2.34), from

(2.33) (taking into account (2.27)), we obtain

∫

ℛ̃

dσμ{
𝜕ℒ
𝜕(𝜕μφ)

Φν − θ
μ
κX

κ
ν}δω

ν = 0 , (2.36)

which, due to the arbitrariness of δων, leads to

∫

ℛ̃

dσμJ
μ
ν = 0 , (2.37)

where

Jμν =
𝜕ℒ
𝜕(𝜕μφ)

Φν − θ
μ
κX

κ
ν . (2.38)

Using the Gauss theorem, from equation (2.37) we obtain the continuity equation

𝜕μJ
μ
ν = 0 , (2.39)
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so that Jμν represents some conserving current. More precisely, conserving is the gener-
alized charge:

Qν = ∫
σ

dσμJ
μ
ν , (2.40)

where the integral is taken over the arbitrary space-like hypersurface σ. If we take σ
as hyperplane t = const, we simply obtain the integral over the three-dimensional
volume V :

Qν = ∫
V

d3r J0ν . (2.41)

As usual [33], integrating (2.39) over the volume V , we have

∫
V

d3r 𝜕0J
0
ν + ∫

V

d3r 𝜕iJ
i
ν = 0 . (2.42)

The second integral here is transformed—using the three-dimensional Gauss theo-
rem—into the surface integral, which determines the flow of charge through this sur-
face [33]. For the closed system (universe) this flow is zero and we obtain

d
dt
∫
V

d3r J0ν =
dQν
dt
= 0 . (2.43)

This is themain statement of theNoether theorem: invariance of the actionwith respect
to some continuous symmetry group leads to the corresponding conservation law.

Consider the simple example. Let symmetry transformations (2.34) be the simple
space-time translations

δxμ = εμ , Δφ = 0 , (2.44)

so that

Xμ
ν = δ

μ
ν , Φμ = 0 . (2.45)

Then—from equation (2.38)—we immediately obtain

Jμν = −θ
μ
ν , (2.46)

and the corresponding conservation law is given by

d
dt
∫
V

d3r θ0ν = 0 , (2.47)
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which represents the conservation of energy and momentum, and confirms the defi-
nition of the energy-momentum tensor given above. Here,

Pν = ∫
V

d3r θ0ν (2.48)

defines the 4-momentum of our field. This is also clear from the simple analogy with
classical mechanics. In particular, from definition (2.32), it follows that

∫
V

d3r θ00 = ∫
V

d3r{𝜕ℒ
𝜕φ̇

φ̇ − ℒ} , (2.49)

which is similar to the well-known expression relating Lagrange function with the
Hamiltonian of classical mechanics [34]:

H = ∑
i
piq̇i − L , pi =

𝜕L
𝜕q̇i
, (2.50)

so that equation (2.49) gives the energy of the field. Likewise, the value of ∫ d3r θ0i
determines the momentum of the field.

Thus, energy-momentumconservation is valid for any systemwith theLagrangian
(action) independent of xμ (explicitly).

For the Klein–Gordon Lagrangian (2.28) from (2.32), we immediately obtain the
energy-momentum tensor as

θμν = (𝜕μφ)(𝜕νφ) − gμνℒ . (2.51)

This expression is explicitly symmetric over indices θμν = θνμ. However, it is not always
so if we are using the definition of equation (2.32) for an arbitrary Lagrangian. At the
same time, we can always add to (2.32) an additional term like 𝜕λf μλν, where f μλν =
−f λμν, so that 𝜕μ𝜕λf λμν ≡ 0 and conservation laws (2.39), (2.47) are not broken. We can
use this indeterminacy and introduce

Tμν = θμν + 𝜕λf
λμν , (2.52)

choosing some specific f λμν to guarantee the symmetry condition Tμν = Tνμ. In this
case, the energy-momentum tensor is called canonical. Naturally we have

𝜕μT
μν = 𝜕μθ

μν = 0 . (2.53)

The total 4-momentum in this case is also unchanged, as

∫
V

d3r 𝜕λf
λ0ν = ∫

V

d3r 𝜕if
i0ν = ∫ dσif

i0ν = 0 . (2.54)

The first equality in equation (2.54) follows from f 00ν = 0, and the second one follows
from the Gauss theorem. The zero in the right-hand side appears when the surface σ
is moved to the infinity, where fields are assumed to be absent.

Thus, both the energy andmomentumof the field are determinedunambiguously,
despite some indeterminacy of the energy-momentum tensor.
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Amalie Emmi Noether (1882–1935) was a German
mathematician who made important contributions to
abstract algebra and theoretical physics. She invariably
used the name “Emmy Noether” in her life and publi-
cations. She was often described as the most important
woman in the history ofmathematics. As one of the lead-
ing mathematicians of her time, she developed the the-
ories of rings, fields, and algebras. In physics, Noether’s
theorem explains the connection between symmetry and
conservation laws. Noether was born to a Jewish family
in Erlangen, her father was a mathematician. She stud-
ied mathematics at the University of Erlangen. At the

time, women were largely excluded from academic positions. In 1915, she was in-
vited by David Hilbert and Felix Klein to join the mathematics department at the
University of Göttingen. The philosophical faculty objected, however, and she spent
four years lecturing under Hilbert’s name. Noether remained a leading member of
the Göttingenmathematics department until 1933, when Germany’s Nazi government
dismissed Jews from university positions, and Noether moved to the United States.
Noether’s mathematical work is sometimes divided into three “epochs”. In the first
(1908–1919), shemade contributions to the theories of algebraic invariants and num-
ber fields. Noether’s theorem is considered to be one of themost importantmathemat-
ical theorems ever proved in the development of modern physics. In the second epoch
(1920–1926), she began work that changed the face of algebra. In her classic 1921 pa-
per Noether developed the theory of ideals in commutative rings. She made elegant
use of the ascending chain condition, and objects satisfying it are named Noetherian
in her honor. In the third epoch (1927–1935), she published works on noncommutative
algebras and hypercomplex numbers and united the representation theory of groups
with the theory of modules and ideals. In 1935 she underwent surgery for an ovarian
cyst and, despite signs of a recovery, died four days later at the age of 53.

There are certain physical reasons to require the energy-momentum tensor to always be symmetric
[56, 33]. An especially elegant argument follows from general relativity. Einstein’s equations for grav-
itational field (space-time metric gμν) has the form [33]

Rμν −
1
2
gμνR = −

8πG
c2

Tμν , (2.55)

where Rμν is Riemann’s curvature tensor, simplified by two indices (Ricci tensor); R is the scalar cur-
vature of space, and G is the Newtonian gravitational constant. The left-hand side of equation (2.55)
is built of the metric tensor gμν and its derivatives, and by definition it is a purely geometric object. It
can be shown to be always symmetric over indices μ, ν [33]. Then, the energy-momentum tensor in the
right-hand side, which is the source of the gravitational field, should also be symmetric.
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2.4 Complex scalar and electromagnetic fields

Consider now the complex scalar field, which can be conveniently written as

φ = 1
√2
(φ1 + iφ2) , (2.56a)

φ∗ = 1
√2
(φ1 − iφ2) . (2.56b)

In fact, we are considering here two independent scalar fields φ1, φ2, which can be
representing, for example, two projections of some two-dimensional vector on axis 1
and 2 in some isotopic2 space, associated with our field. Requiring the action to be
real, the Lagrangian of our field, similar to (2.28), can be written as

ℒ = (𝜕μφ)(𝜕
μφ∗) −m2φ∗φ . (2.57)

Considering fieldsφ andφ∗ to be independent variables, we obtain from the Lagrange
equations (2.27) two Klein–Gordon equations:

(◻ +m2)φ = 0 , (2.58a)
(◻ +m2)φ∗ = 0 . (2.58b)

TheLagrangian (2.57) is obviously invariantwith respect to the so-called global3 gauge
transformations:

φ→ e−iΛφ , φ∗ → eiΛφ∗ , (2.59)

where Λ is an arbitrary real constant. Equation (2.59) is the typical Lie group transfor-
mation (in this case it is the U(1) group of two-dimensional rotations), accordingly;
for small Λ we can always write

δφ = −iΛφ , δφ∗ = iΛφ∗, (2.60)

that is, as the infinitesimal gauge transformation. Due to the independence of Λ on
space-time coordinates, the infinitesimal transformation of field derivatives has the
same form:

δ(𝜕μφ) = −iΛ𝜕μφ , δ(𝜕μφ
∗) = iΛ𝜕μφ

∗ . (2.61)

2 The term“isotopic’—asusedbyus—is, inmost cases, not related to the isotopic symmetry of hadrons
in nuclear and hadron physics [40]. In fact, we are speaking about some space of internal quantum
numbers of fields (particles), conserving due to appropriate symmetry in this associated space (not
related to space-time).
3 The term “global” means that the arbitrary phase Λ here is the same for fields, taken at different
space-time points.
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In the notations of equation (2.34), we have

Φ = −iφ , Φ∗ = iφ , X = 0 , (2.62)

so that conserving Noether current (2.38) in this case takes the following form:

Jμ = 𝜕ℒ
𝜕(𝜕μφ)
(−iφ) + 𝜕ℒ

𝜕(𝜕μφ∗)
(iφ∗) . (2.63)

With the account of (2.57), we get

Jμ = i(φ∗𝜕μφ − φ𝜕μφ∗) (2.64)

that is, the explicit form of the current, satisfying the equation

𝜕μJ
μ = 0 . (2.65)

This may be checked also directly, using equations of motion (2.58). Accordingly, in
this theory we get the conserving charge

Q = ∫ dVJ0 = i∫ dV(φ∗ 𝜕φ
𝜕t
− φ𝜕φ

∗

𝜕t
) . (2.66)

If the field is real, that is, φ = φ∗, we obviously get Q = 0, so that the concept of con-
serving the charge with dQ/dt = 0 can be defined only for a complex field. This is the
decisive role ofU(1) symmetry of Lagrangian (2.57), (2.59). Note that our entire discus-
sion up to now is purely classical; accordingly, Q may acquire arbitrary (noninteger)
values.

Let us rewrite (2.57), using (2.56) as the additive sum of Lagrangians for fields
φ1, φ2:

ℒ =
1
2
[(𝜕μφ1)(𝜕

μφ1) + (𝜕μφ2)(𝜕
μφ2)] −

1
2
m2(φ2

1 + φ
2
2) . (2.67)

Then, writing the field φ as a vector φ⃗ in the two-dimensional isotopic space,

φ⃗ = φ1
⃗i + φ2
⃗j , (2.68)

where ⃗i, ⃗j are unit vectors along the axes in this space, we can write (2.67) as

ℒ =
1
2
(𝜕μφ⃗)(𝜕

μφ⃗) − 1
2
m2φ⃗ ⋅ φ⃗ , (2.69)

which clearly demonstrates the geometric meaning of this symmetry of the La-
grangian. The gauge transformations (2.59) can be written also as

φ󸀠1 + iφ
󸀠
2 = e
−iΛ(φ1 + iφ2) , φ󸀠1 − iφ

󸀠
2 = e

iΛ(φ1 − iφ2) ,
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or
φ󸀠1 = φ1 cosΛ + φ2 sinΛ ,
φ󸀠2 = −φ1 sinΛ + φ2 cosΛ , (2.70)

which describes the rotation of the vector φ⃗ by angle Λ in the 1–2-plane. Our La-
grangian is obviously invariant with respect to these rotations, described by the two-
dimensional rotation groupO(2), or the isomorphic U(1) group. Transformation (2.59)
is unitary: eiΛ(eiΛ)∗ = 1. Group space is defined as the set of all possible angles Λ,
determined up to 2πn (where n is an integer and the rotation by angle Λ is equivalent
to rotations by Λ + 2πn), which is topologically equivalent to a circle of unit radius.

Now we are going to take a decisive step! We can ask rather the formal question
of whether or not we can make our theory invariant with respect to local gauge trans-
formations, similar to (2.59), but with a phase (angle), which is an arbitrary function
of the space-time point, where our field is defined by

φ(x) → e−iΛ(x)φ(x) , φ∗(x) → eiΛ(x)φ∗(x) . (2.71)

There are no obvious reasons for such a wish. In principle, we can only say that the
global transformation (2.59) does not look very beautiful from the point of view of rela-
tivistic “ideology”, as we are “rotating” our field by the same angle (in isotopic space)
in all space-time points, including those separated by space-like interval (which can-
not be casually related to each other). At the same time, isotopic space is in no way
related to Minkowski space-time. However, we shall see shortly that demanding the
invariance of the theory with respect to (2.71) will immediately lead to rather remark-
able results.

Naively, the invariance of the theory with respect to (2.71) is just impossible. Con-
sider once again infinitesimal transformations with Λ(x) ≪ 1. Then (2.71) reduces to

φ→ φ − iΛφ , δφ = −iΛφ , (2.72)

which is identical to (2.60). However, for field derivatives, the situation is more com-
plicated due to explicit dependence Λ(x) on the coordinate:

𝜕μφ→ 𝜕μφ − i(𝜕μΛ)φ − iΛ(𝜕μφ) , δ(𝜕μφ) = −iΛ(𝜕μφ) − i(𝜕μΛ)φ , (2.73)

which, naturally, does not coincide with (2.61). For a complex conjugate field, every-
thing is similar:

φ∗ → φ∗ + iΛφ∗ , δφ∗ = iΛφ∗ , (2.74)
𝜕μφ
∗ → 𝜕μφ

∗ + i(𝜕μΛ)φ
∗ + iΛ(𝜕μφ

∗) , δ(𝜕μφ
∗) = iΛ(𝜕μφ

∗) + i(𝜕μΛ)φ
∗ . (2.75)

This means that field derivatives ofφ are transformed (in contrast to the field itself) in
a noncovariantway, that is, not proportionally to itself. The problem iswith the deriva-
tive of Λ! The Lagrangian (2.57) is obviously noninvariant to these transformations. Let
us look, however, whether we can somehow guarantee it.
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The change of the Lagrangian under arbitrary variations of fields and field deriva-
tives is written as

δℒ = 𝜕ℒ
𝜕φ

δφ + 𝜕ℒ
𝜕(𝜕μφ)

δ(𝜕μφ) + (φ→ φ∗) . (2.76)

Rewriting thefirst termusing the Lagrange equations (2.27) and substituting (2.72) into
(2.73), we obtain

δℒ = 𝜕μ[
𝜕ℒ
𝜕(𝜕μφ)
](−iΛφ) + 𝜕ℒ

𝜕(𝜕μφ)
(−iΛ𝜕μφ − iφ𝜕μΛ) − (φ→ φ∗)

= −iΛ𝜕μ[
𝜕ℒ
𝜕(𝜕μφ)

φ] − i 𝜕ℒ
𝜕(𝜕μφ)
(𝜕μΛ)φ − (φ→ φ∗) . (2.77)

The first term here is proportional to the divergence of the conserving current (2.63)
and gives zero. The second term, using the explicit form of the Lagrangian, is rewrit-
ten as

δℒ = i(φ∗𝜕μφ − φ𝜕μφ∗)𝜕μΛ = J
μ𝜕μΛ , (2.78)

where Jμ is again the same conserving current (2.64).
Thus, the action is noninvariantwith respect to local gauge transformations. How-

ever, we can guarantee such invariance of the action by introducing the new vector
field Aμ, directly interacting with current Jμ, adding to the Lagrangian the following
interaction term:

ℒ1 = −eJ
μAμ = −ie(φ

∗𝜕μφ − φ𝜕μφ∗)Aμ , (2.79)

where e is a dimensionless coupling constant. Let us require that local gauge transfor-
mations of the field φ (2.71) are accompanied by the gradient transformations of Aμ:

Aμ → Aμ +
1
e
𝜕μΛ . (2.80)

Then we obtain

δℒ1 = −e(δJ
μ)Aμ − eJ

μ(δAμ) = −e(δJ
μ)Aμ − J

μ𝜕μΛ . (2.81)

Now we see that the second term in (2.81) precisely cancels (2.78). But we also need to
eliminate the first term in (2.81). With the help of (2.72) and (2.74), we can get

δJμ = iδ(φ∗𝜕μφ − φ𝜕μφ∗) = 2φ∗φ𝜕μΛ , (2.82)

so that

δℒ + δℒ1 = −2eAμ(𝜕
μΛ)φ∗φ . (2.83)



24 | 2 Lagrange formalism. Symmetries and gauge fields

But let us add to ℒ one more term:

ℒ2 = e
2AμA

μφ∗φ . (2.84)

Then, under the influence of (2.80), we have

δℒ2 = 2e
2AμδA

μφ∗φ = 2eAμ(𝜕
μΛ)φ∗φ . (2.85)

Then, it is easily seen that

δℒ + δℒ1 + δℒ2 = 0 , (2.86)

so that the invariance of the actionwith respect to local gauge transformations is guar-
anteed!

Let us now take into account that the new vector field Aμ should also produce the
appropriate “free” contribution to the Lagrangian. This term should be invariant to
gradient transformations (2.80). It is quite clear howwenowproceed. Let us introduce
the 4-vector of the curl of the field Aμ:

Fμν = 𝜕μAν − 𝜕νAμ , (2.87)

which is obviously invariant with respect to (2.80). Then, we can introduce

ℒ3 = −
1

16π
FμνFμν . (2.88)

Collecting all terms of the new Lagrangian, we get

ℒtot = ℒ + ℒ1 + ℒ2 + ℒ3 = (𝜕μφ)(𝜕
μφ∗) −m2φ∗φ

− ie(φ∗𝜕μφ − φ𝜕μφ∗)Aμ + e
2AμA

μφ∗φ − 1
16π

FμνF
μν , (2.89)

which is rewritten as

ℒtot = −
1

16π
FμνF

μν + (𝜕μ + ieAμ)φ(𝜕
μ − ieAμ)φ∗ −m2φ∗φ . (2.90)

Thus, we obtained the Lagrangian of electrodynamics of the complex scalar field φ!
It is easily obtained from the initial Klein–Gordon Lagrangian (2.57) by the standard
replacement [33] of the usual derivative 𝜕μφ by the covariant derivative:4

Dμφ = (𝜕μ + ieAμ)φ (2.91)

and the addition of the term corresponding to the free electromagnetic field (2.88).

4 The constant emeans the electric charge.
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The Lagrangian of an electromagnetic field (2.88) can be written as ℒ = aFμνFμν [33], where the con-
stant a can be chosen to be different, depending on the choice of the system of units. In the Gaussian
system of units used, for example by Landau and Lifshitz, it is taken as a = −1/16π. In the Heaviside
system of units (see e. g., [56]) a = −1/4. In this system there is no factor of 4π in field equations, but
instead it appears in Coulomb’s law. In a Gaussian system, on the contrary, 4π enters Maxwell equa-
tions, but is absent in Coulomb’s law. In the literature on quantum electrodynamics, in most cases
the Heaviside system is used. However, below we shall mainly use the Gaussian system, with special
remarks, when using Heaviside system.

In contrast to 𝜕μφ, the value of (2.91) is transformed under gauge transformation co-
variantly, that is, as the field φ itself:

δ(Dμφ) = δ(𝜕μφ) + ie(δAμ)φ + ieAμδφ = −iΛ(𝜕μφ + ieAμφ) = −iΛ(Dμφ) . (2.92)

The field φ is now associated with an electric charge e, and the conjugate field φ∗

corresponds to the charge (−e):

(Dμφ)
∗ = (𝜕μ − ieAμ)φ

∗ . (2.93)

It is clear that Fμν, introduced above, represents the usual tensor of electromagnetic
fields [33].

Maxwell equations follow from (2.90) as Lagrange equations for the Aμ field:

𝜕ℒ
𝜕Aμ
− 𝜕ν[

𝜕ℒ
𝜕(𝜕νAμ)

] = 0 , (2.94)

which reduces to

1
4π
𝜕νF

μν = −ie(φ∗𝜕μφ − φ𝜕μφ∗) + 2e2Aμ|φ|2 =

= −ie[φ∗Dμφ − φ(Dμφ)∗] ≡ −e𝒥 μ , (2.95)

where

𝒥 μ = i[φ∗Dμφ − φ(Dμφ)∗] (2.96)

is the covariant form of the current. From the antisymmetry of Fμν, it immediately
follows that

𝜕μ𝒥
μ = 0 , (2.97)

so that in the presence of electromagnetic field the conserved current is 𝒥 μ, not Jμ.

Note that electromagnetic field is massless and that this is absolutely necessary; if we attribute to an
electromagnetic field a finite massM, we have to add to the Lagrangian (2.88) an additional term such
as

ℒM =
1
8π

M2AμA
μ . (2.98)
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It is obvious that such a contribution is noninvariantwith respect to local gauge transformations (2.71),
(2.80).

This way of introducing an electromagnetic fieldwas used apparently for the first time
byWeyl during his attempts to formulate the unified field theory in the 1920s. Electro-
dynamics corresponds to the Abelian gauge group U(1), and the electromagnetic field
is the simplest example of a gauge field.

2.5 Yang–Mills fields

Introducing the invariance to local gauge transformations of theU(1) group,we obtain
from the Lagrangian of a free Klein–Gordon field the Lagrangian of scalar electrody-
namics, that is, the field theory with quite nontrivial interaction. We can say that the
symmetry “dictated” to us the form of interaction and leads to the necessity of intro-
ducing the gauge field Aμ, which is responsible for this interaction. Gauge group U(1)
is Abelian. The generalization of gauge field theory to non-Abelian gauge groups was
proposed at the beginning of the 1950s byYang andMills. This opened theway for con-
struction of the wide class of nontrivial theories of interacting quantum fields, which
were quite successfully applied to the foundations of the modern theory of dynamics
of elementary particles.

The simplest version of a non-Abelian gauge group, analyzed in the first paper
by Yang and Mills, is the group of isotopic spin, SU(2), which is isomorphic to the
three-dimensional rotation group O(3). Previously we considered the complex scalar
field,which is representedby the two-dimensional vector φ⃗ = (φ1,φ2) in the “isotopic”
space. Consider instead the scalar field, which is simultaneously a three-dimensional
vector in some “isotopic” space: φ⃗ = (φ1,φ2,φ3). The Lagrangian of this Klein–Gordon
field, which is invariant to three-dimensional rotations in this “associated” space, can
be written as

ℒ =
1
2
(𝜕μφ⃗)(𝜕

μφ⃗) − 1
2
m2φ⃗ ⋅ φ⃗ , (2.99)

where the field φ⃗ enters only via its scalar products. Invariance with respect to rota-
tions here is global; the field φ⃗ is rotated by an arbitrary angle in isotopic space, which
is the same for fields in all space-time points. For example, we can consider rotation
in the 1–2-plane by angle Λ3 around the axis 3:

φ󸀠1 = φ1 cosΛ3 + φ2 sinΛ3 ,

φ󸀠2 = −φ1 sinΛ3 + φ2 cosΛ3 , (2.100a)
φ󸀠3 = φ3 .

For infinitesimal rotation, Λ3 ≪ 1, and we can write

φ󸀠1 = φ1 + Λ3φ2 ,
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φ󸀠2 = φ2 − Λ3φ1 , (2.100b)
φ󸀠3 = φ3 . (2.100c)

For infinitesimal rotation around an arbitrarily oriented axis, we write

φ⃗→ φ⃗󸀠 = φ⃗ − Λ⃗ × φ⃗ , δφ⃗ = −Λ⃗ × φ⃗ , (2.100d)

where the vector Λ⃗ is directed along the rotation axis, and its value is equal to the
rotation angle.

Consider now the local transformation, assuming Λ⃗ = Λ⃗(xμ). Then, the field
derivative φ⃗ is transformed in a noncovariant way:

𝜕μφ⃗→ 𝜕μφ⃗
󸀠 = 𝜕μφ⃗ − 𝜕μΛ⃗ × φ⃗ − Λ⃗ × 𝜕μφ⃗ ,

δ(𝜕μφ⃗) = −Λ⃗ × 𝜕μφ⃗ − 𝜕μΛ⃗ × φ⃗ . (2.101)

Let us again try to construct the covariant derivative, writing it as

Dμφ⃗ = 𝜕μφ⃗ + gW⃗μ × φ⃗ , (2.102)

where we have introduced the gauge field (Yang–Mills field) W⃗μ, which is the vector
not only in the Minkowski space, but also in an associated isotopic space, and g is the
coupling constant.

Covariance means that

δ(Dμφ⃗) = −Λ⃗ × (Dμφ⃗) . (2.103)

What transformation rules for field W⃗μ are necessary to guarantee covariance? The
answer is

W⃗μ → W⃗ 󸀠μ = W⃗μ − Λ⃗ × W⃗μ +
1
g
𝜕μΛ⃗ ,

δW⃗μ = −Λ⃗ × W⃗μ +
1
g
𝜕μΛ⃗ . (2.104)

To check this, use (2.100d), (2.101), and (2.102) to obtain

δ(Dμφ⃗) = δ(𝜕μφ⃗) + g(δW⃗μ) × φ⃗ + gW⃗μ × (δφ⃗)

= −Λ⃗ × 𝜕μφ⃗ − 𝜕μΛ⃗ × φ⃗ − g(Λ⃗ × W⃗μ) × φ⃗ + 𝜕μΛ⃗ × φ⃗ − gW⃗μ × (Λ⃗ × φ⃗)

= −Λ⃗ × 𝜕μφ⃗ − g[(Λ⃗ × W⃗μ) × φ⃗ + W⃗μ × (Λ⃗ × φ⃗)] . (2.105)

Then use the Jacobi identity:5

(A⃗ × B⃗) × C⃗ + (B⃗ × C⃗) × A⃗ + (C⃗ × A⃗) × B⃗ = 0 . (2.106)

5 This identity is easily proven using the well-known rule (A⃗ × B⃗) × C⃗ = B⃗(A⃗ ⋅ C⃗) − A⃗(B⃗ ⋅ C⃗).
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Making here cyclic permutations, we can obtain

(A⃗ × B⃗) × C⃗ + B⃗ × (A⃗ × C⃗) = A⃗ × (B⃗ × C⃗) . (2.107)

Applying this identity to the expression in square brackets in (2.105), we get

δ(Dμφ⃗) = −Λ⃗ × (𝜕μφ⃗ + gW⃗μ × φ⃗) = −Λ⃗ × Dμφ⃗ , (2.108)

Q. E. D.
Let us now discuss how we should write the analogue of the Fμν tensor of electro-

dynamics.We shall denote it as W⃗μν. In contrast to Fμν, which is a scalarwith respect to
O(2) (U(1))gaugegroup transformations, W⃗μν is the vectorwith respect toO(3) (SU(2)).
Accordingly, transformation rules should be the same, as for the field φ⃗:

δW⃗μν = −Λ⃗ × W⃗μν . (2.109)

In fact, 𝜕μW⃗ν − 𝜕νW⃗μ is not transformed in this way:

δ(𝜕μW⃗ν − 𝜕νW⃗μ) = 𝜕μ(−Λ⃗ × W⃗ν +
1
g
𝜕νΛ⃗) − 𝜕ν(−Λ⃗ × W⃗μ +

1
g
𝜕μΛ⃗)

= −Λ⃗ × (𝜕μW⃗ν − 𝜕νW⃗μ) − (𝜕μΛ⃗ × W⃗ν − 𝜕νΛ⃗ × W⃗μ) . (2.110)

We have here an “extra” second term. Note now that

δ(gW⃗μ × W⃗ν) = g(−Λ⃗ × W⃗μ +
1
g
𝜕μΛ⃗) × W⃗ν + gW⃗μ × (−Λ⃗ × W⃗ν +

1
g
𝜕νΛ⃗). (2.111)

The first and third terms here can be united with the use of (2.107), which gives

δ(gW⃗μ × W⃗ν) = −gΛ⃗ × (W⃗μ × W⃗ν) + (𝜕μΛ⃗ × W⃗ν − 𝜕νΛ⃗ × W⃗μ) . (2.112)

We see that the second term here coincides with the “extra” term in (2.110). Thus, we
have to define the tensor of Yang–Mills fields as

W⃗μν = 𝜕μW⃗ν − 𝜕νW⃗μ + gW⃗μ × W⃗ν , (2.113)

which is transformed in a correct way, that is, according to (2.109).
Now we can write the Lagrangian of Yang–Mills theory:

ℒ =
1
2
(Dμφ⃗)(D

μφ⃗) − 1
2
m2φ⃗ ⋅ φ⃗ − 1

16π
W⃗μν ⋅ W⃗

μν . (2.114)

Equations of motion are derived in the usual way from Lagrange equations:

𝜕ℒ
𝜕(W i

μ)
= 𝜕ν{

𝜕ℒ
𝜕(𝜕νW i

μ)
} , (2.115)
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where i is the vector index in the isotopic space. Then we have

𝜕νW⃗μν + gW⃗
ν × W⃗μν = 4πg[(𝜕μφ⃗) × φ⃗ + g(W⃗μ × φ⃗) × φ⃗] (2.116)

or, taking into account (2.102),

DνW⃗μν = 4πg(Dμφ⃗) × φ⃗ ≡ 4πg ⃗Jμ . (2.117)

These equations are similar to Maxwell equations (2.95), but are nonlinear in the field
W⃗μ. The second equality in (2.117) in fact determines the current of the field φ⃗, which
plays the role of the “source” of the gauge (Yang–Mills) field W⃗μ. In the absence of
“matter”, that is, for φ⃗ = 0, from (2.116), (2.117), we have

DνW⃗μν = 0 or 𝜕νW⃗μν = −gW⃗
ν × W⃗μν , (2.118)

so that the Yang–Mills field (non-Abelian gauge field) is the source of itself6 (“lumi-
nous light”)! This is radically different from the case of the Abelian gauge field (elec-
tromagnetic field), where (Maxwell) field equations are linear [33]:

𝜕νFμν = 0 or divE = 0 , 𝜕E
𝜕t
− rotH = 0 . (2.119)

In standard electrodynamics we also have an additional homogeneousMaxwell equa-
tion [33]:

𝜕λFμν + 𝜕μFνλ + 𝜕νFλμ = 0 , (2.120)

fromwhich, in three-dimensional notations,we get the secondpair of electromagnetic
field equations:

divH = 0 , 𝜕H
𝜕t
+ rotE = 0 . (2.121)

The first of these equations, in particular, signifies the absence of magnetic charges
(monopoles). Similar equations also exist in Yang–Mills theory (its derivation will be
presented a little bit later):

DλW⃗μν + DμW⃗νλ + DνW⃗λμ = 0 . (2.122)

The tensor of Yang–Mills fields W⃗μν can be written via corresponding non-Abelian
“electric” and “magnetic” fields, in a similar way to electrodynamics [33]:

W⃗μν = (

0 E⃗x E⃗y E⃗z
−E⃗x 0 −H⃗z H⃗y
−E⃗y H⃗z 0 −H⃗x
−E⃗z −H⃗y H⃗x 0

) . (2.123)

6 The situation here is similar to general relativity, where the gravitational field is also the source of
itself due to the nonlinearity of Einstein’s equations [33].
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Then, it follows from (2.122) that

div H⃗ ̸= 0 , (2.124)

which directly leads to the existence of the so-called t’Hooft–Polyakov monopoles in
Yang–Mills theory [56]. Due to the lack of space, we shall not further analyze these
interesting solutions of field equations here.

The Yang–Mills field, similar to the electromagnetic field, should bemassless. For
the massive case, we have to add to the Lagrangian (2.114) an additional term such as

ℒM =
1
8π

M2W⃗μ ⋅ W⃗
μ , (2.125)

which will lead to the replacement of equation (2.117) by

DνW⃗μν = 4πg ⃗Jμ +M
2W⃗μ , (2.126)

which is explicitly noninvariant with respect to local gauge transformations.

Yang Chen-Ning (born 1922) is a Chinese and
American physicist who worked on statistical me-
chanics and particle physics. He and Tsung-Dao
Lee received the 1957 Nobel Prize in Physics for
their work on parity nonconservation of weak in-
teraction. The two proposed that one of the basic
quantum-mechanics laws, the conservation of par-
ity, is violated in the so-called weak nuclear reac-
tions. The most important work of Yang is Yang–
Mills field theory, which forms the basis of the Stan-
dardModel of elementary particles. Yang was born
in Hefei, Anhui, China. In 1944 he received his mas-

ter’s degree from Tsinghua University. From 1946, Yang studied at the University of
Chicago, where he received his doctorate in 1948. He remained at the University of
Chicago for a year as an assistant to Enrico Fermi. In 1949 he was invited to do his re-
search at the Institute for Advanced Study in Princeton, New Jersey, where he began a
period of fruitful collaboration with Tsung-Dao Lee. In 1965 he moved to Stony Brook
University, where he was named the Albert Einstein Professor of Physics and the first
director of the newly founded Institute for Theoretical Physics. Today this institute is
known as the C. N. Yang Institute for Theoretical Physics. He has been elected a Fel-
low of theAmerican Physical Society, the ChineseAcademy of Sciences, theAcademia
Sinica, the Russian Academy of Sciences, and the Royal Society. Yang visited China
in 1971 for the first time after the thaw in China–US relations, and has subsequently
made great efforts to help the Chinese physics community rebuild the research atmo-
sphere, which was destroyed by the radical political movements during the Cultural
Revolution. After retiring from Stony Brook, he returned as an honorary director of
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Tsinghua University, Beijing. He was granted permanent residency in China in 2004.
He renounced his U. S. citizenship in 2015 and reclaimed his Chinese citizenship.

Robert Laurence Mills
(1927–1999) was an Amer-
ican theoretical physicist
specializing in quantum
field theory and many-
body theory.While sharing
an office at Brookhaven
National Laboratory in
1954, Chen Ning Yang and
Mills proposed what is
now called Yang–Mills
field theory.Mills was born

in Englewood, New Jersey. He graduated from George School in Pennsylvania in early
1944. He studied at Columbia College from 1944 to 1948, while on leave from the
Coast Guard. Mills demonstrated his mathematical ability by winning the William
Lowell Putnam Mathematical Competition in 1948. The mathematical ability he dis-
played there was evident throughout his career as theoretical physicist. He earned a
master’s degree from Cambridge, and a Ph. D. in Physics from Columbia University
in 1955. After a year at the Institute for Advanced Study in Princeton, New Jersey,
Mills became Professor of Physics at Ohio State University in 1956. He remained at
Ohio State University until his retirement in 1995. Mills and Yang shared the 1980
Rumford Premium Prize from the American Academy of Arts and Sciences for their
“development of a generalized gauge invariant field theory” in 1954.

For a rather long time, the zero mass of Yang–Mills fields under conditions of strict gauge invariance
was considered to be a primary obstacle for physical applications of gauge field theories. The initial
idea of these theories was [75] that—using one or another (exact or approximate and experimentally
confirmed) internal symmetry of elementary particles (e. g., conservation of baryon number or iso-
topic spin)—one can introduce local invariancewith respect to appropriate group transformations and
obtain quite nontrivial interaction Lagrangians with corresponding (Abelian or non-Abelian) gauge
fields.
The gauge principle was proposed as a foundation for the theory of interacting fields. But it seems that
difficulties appeared from the very beginning. The appearance of a massless gauge field immediately
leads to the existence of long range forces, associated with this field. A typical case is electrodynamics
and its long range Coulomb interaction. However, it is rather easily demonstrated that an electromag-
netic field is probably the only long range force in nature (except, obviously, for gravitation). We can
see this using very simple estimates, due to Lee and Yang [39].
Consider the simplest case of an Abelian gauge field, whichmay be related to conservation of a baryon
charge. It will lead to an additional long-range B-force, acting upon baryons. Let us compare the usual
Newtonian gravitation potential with the potential energy of this hypothetical field, due to its inter-
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action with nucleons of the earth. Consider a test-particle p with massmp, which is placed above the
earth’s surface at distance r from the earth’s center. Then

Vgr = −
GmpME

r
, (2.127)

where G is the Newtonian gravitational constant, andME is the earth mass. Let the baryon charge of
our test particle be Np and the nucleon mass be mN . Assume the density of nucleons on the earth to
be constant (and there are no antinucleons at all) and equal to

ρ = ME

mN
4
3 πR

3
E
, (2.128)

where RE is the earth’s radius. Then the potential VB, due to B-forces of nucleons, forming the earth,
can be calculated as

VB =
g2BMENp
4
3 πR

3
EmN
∫

d3r󸀠

|r − r󸀠|
=
g2BMENp

mN r
, (2.129)

where the integration is made over the earth’s volume; gB is the coupling constant of B-forces. It is
seen that equation (2.129) is similar to gravitation potential. Thus, the total potential acting upon our
test particle is equal to

V = −G
mpME

r
+ g2B

MENp

mN r
= −G

mpME

r
[1 −

g2B
G

Np

mNmp
] . (2.130)

Thus, the presence of B-forces leads to V ̸= V̄ , where V̄ is the potential acting upon antiparticle p̄with
the opposite baryon charge: Np̄ = −Np. In principle, this effect can be observable in the case of

g2B
m2
N
∼ G . (2.131)

However, it is unobservable experimentally; particles and antiparticles fall in the gravitational field
of the earth with the same acceleration (with rather high accuracy). This fact leads to an estimate of
g2B < 10

−38 as Gm2
N ∼ 10

−38. Even such a small value of gB can be excluded! The equation of motion of
a test particle in the gravitational field can be written as

mpg = −G
mpME

r2
, (2.132)

and themassmp is canceledhere, so that free-fall acceleration g doesnot dependon it (the equivalence
of inertional andgravitationalmasses). Ifweneglect themass of the electrons (compared tonucleons),
we have

mp = mNNp − ϵ , (2.133)
where ϵ is the coupling energy in the nuclei of the substance of our test particle. Then,

Np =
mp

mN
+

ϵ
mN
. (2.134)

In the presence of B-forces, the Newtonian equation of motion takes the form

mpg = −
mpME

r2
C +

g2B
r2

MEϵ
m2
N
, (2.135)

where C = G−g2B/m
2
N can be identified with themeasured gravitational constant Gexp. In other words,

equation (2.135) can be rewritten as

mpg = −
mpME

r2
Gexp[1 −

g2B
Gexpm2

N

ϵ
mp
] . (2.136)
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The second term here breaks the equivalence of inertional and gravitational masses, which is experi-
mentally establishedwith an accuracy of the order of 10−8 in classical Eotvos experiments for different
substances. A typical modern estimate from similar experiments gives

g2B
Gm2

N

ϵ
mp
∼ 10−3

g2B
Gm2

N
< 10−12 , (2.137)

where we have taken into account that the difference of ϵ/mp for different substances is of the order
of 10−3. Accordingly,

g2B
Gm2

N
< 10−9 . (2.138)

Thus, the experimentally established equivalence of inertional and gravitational masses leads to the
following upper bound of B-forces coupling constant: g2B < 10

−47. Accordingly, B-forces (if they exist
at all) are much weaker even than gravitation! Thus, in every practical sense, we can exclude the
existence of any massless gauge fields, except the electromagnetic field. Experimentally observed,
vector mesons aremassive and break the local gauge invariance. Thus, it seems that the beautiful idea
of the introduction of new gauge fields becomes rather doubtful. Later we shall see how this problem
is solved in modern particle theory.

2.6 The geometry of gauge fields

Let us make some generalizations. We have seen above that the rotation of the vector
in isotopic space on some small angle Λ⃗ (|Λ⃗| ≪ 1) can be written as (cf. (2.100d))

φ⃗→ φ⃗󸀠 = φ⃗ − Λ⃗ × φ⃗ , (2.139)

which is an infinitesimal version of the general transformation

φ⃗→ φ⃗󸀠 = exp(i ⃗I ⋅ Λ⃗)φ⃗ , (2.140)

where ⃗I are matrix generators:

I1 = (
0 0 0
0 0 −i
0 i 0

) , I2 = (
0 0 i
0 0 0
−i 0 0

) , I3 = (
0 −i 0
i 0 0
0 0 0

) . (2.141)

Here, the matrix elements can be written as

(Ii)mn = −iεimn , (2.142)

where εimn is the antisymmetric Levi-Civita symbol. Accordingly, by components,
equation (2.139) can be written as

φ󸀠m = (1 + iIiΛi)mnφn = (δmn + εimnΛi)φn = φm − εminΛiφn = (φ⃗ − Λ⃗ × φ⃗)m . (2.143)

Local transformations have the form

φ⃗→ φ⃗󸀠 = exp(i ⃗I ⋅ Λ⃗(x))φ⃗ = S(x)φ⃗ , (2.144)
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where S(x) denotes the operator of local rotation. The matrices I are the generators of
the vector representation of rotation group O(3) (or SU(2)) and satisfy the well-known
(angular momentum) commutation relations:

[Ii, Ij] = iεijkIk = CijkIk . (2.145)

Here, Cijk denotes structural constants of the SU(2) group, in this case Cijk = iεijk . Natu-
rally, structural constants for other Lie groupsaredifferent, but commutation relations
for generators are always written as in equation (2.145).

For an arbitrary Lie group, generators satisfy the Jacobi identity

[[Ii, Ij], Ik] + [[Ij , Ik], Ii] + [[Ik , Ii], Ij] = 0 , (2.146)

which reduces (for structural constants) to

CijlClkm + CjklClim + CkilCljm = 0 . (2.147)

So far we have analyzed the isovector field. A more fundamental approach requires
introduction of isospinors for the same SU(2) group.7 The rotation of the fundamental
two-dimensional spinor ψ = ( ψ1

ψ2
) can be written as

ψ󸀠 = exp[ i
2
τ⃗ ⋅ Λ⃗(x)]ψ(x) = S(x)ψ(x) , (2.148)

where S(x) is a 2 × 2 matrix, and τ⃗ are Pauli matrices in isotopic space; τi/2 satisfy
commutation relations (2.145), and from the beginning we are writing the local trans-
formation. For the general n-dimensional case, we have

ψ(x) → ψ󸀠(x) = exp[iMaΛa(x)]ψ(x) = S(x)ψ(x) , (2.149)

where a takes the values 1, 2, 3 (SU(2) group); here ψ is the n-component spinor, and
Ma are n × nmatrices, satisfying commutation relations, such as (2.145).

If we consider local transformations of fields, the field derivative 𝜕μψ, as we have
seen above, is transformed in a noncovariant way:

𝜕μψ
󸀠 = S(𝜕μψ) + (𝜕μS)ψ . (2.150)

The reason for this is purely of a “geometrical” nature. The fieldsψ(x) andψ(x + dx) =
ψ(x) + dψ in nearby (infinitesimally close) points of space-time are measured relative
to different (rotated by local gauge transformations) axes in isotopic space, shown in
Figure 2.2(a). Thus, the value of dψ contains information not only on field changewith

7 Below we shall return to the detailed analysis of spinors. Here, it is sufficient to remember some
elementary information from the standard course on quantummechanics.
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Figure 2.2: (a) The value of dψ contains information both on the change of ψ and on the transforma-
tion of coordinate axes in isotopic space during the transfer from point x to x + dx. (b) The value of
δψ, determined by “parallel” transfer.

distance, as wemove from point x to x +dx, but also on the appropriate change due to
the rotation of the axes in isotopic fields. To construct covariant derivative, we have to
compare ψ(x + dx) not with ψ(x), but with the value which the field ψ(x) acquires due
to translation from x to x + dx with fixed directions of axes in isotopic space, which is
denoted below asψ+δψ, and called the field obtained as a result of “parallel” transfer,
as shown in Figure 2.2(b). Let us assume that δψ is proportional to field ψ itself and
also to translation dxμ, so that it can be written as

δψ = igMaAaμdx
μψ , (2.151)

where g is some constant, and Aaμ is the gauge field, which in some sense determines
how axes in isotopic space change during the transfer from one point to the other. The
“true” or covariant derivative of ψ is now determined by the difference

Dψ = (ψ + dψ) − (ψ + δψ) = dψ − δψ = dψ − igMaAaμdx
μψ (2.152)

and equal to

Dψ
dxμ
= Dμψ = 𝜕μψ − igM

aAaμψ . (2.153)

The situation here is similar to that in the theory of gravitation [33], where the covariant derivative of
some vector Vμ is defined as

DνV
μ = 𝜕νV

μ + ΓμλνV
λ , (2.154)

where Christoffel coefficients Γμλν connect the components of the vector in a given point with its com-
ponents in a nearby point, from which this vector is transferred by parallel translation in Riemann
space.
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Equation (2.153) gives the general definition of the covariant derivative in the Yang–
Mills theory for an arbitrary fieldψ, which is transformed under some irreducible rep-
resentation of some gauge group with generatorsMa [56]. Consider the following sim-
ple examples:
– U(1) group:

φ→ e−iΛφ , φ∗ → eiΛφ∗ , M = −1 ,
Dμ = 𝜕μ + igAμ g = e (2.155)

– electrodynamics.
– SU(2) group:

vector representation:

(Ma)mn = −iεamn (a,m, n = 1, 2, 3) ,
Dμφm = 𝜕μφm − ig(M

a)mnA
a
μφn = 𝜕μφm − gεamnA

a
μφn (2.156)

= (𝜕μφ⃗ + gA⃗μ × φ⃗)m ,

where A⃗ is the same gauge field, which was denoted as W⃗ above.
spinor representation:

Ma =
1
2
τa (a = 1, 2, 3) ,

Dμψ = 𝜕μψ − i
g
2
τ⃗ ⋅ A⃗μψ (2.157)

– Yang–Mills theory.

Thus, under an arbitrary rotation in the isotopic space, the field is transformed as

ψ→ S(xμ)ψ , (2.158)

and the covariant derivative is transformed as the field itself:

Dμψ→ D󸀠μψ
󸀠 = S(xμ)Dμψ . (2.159)

It is convenient to introduce matrix notations

Âμ = M
aAaμ , (2.160)

so that equation (2.153) takes the form

Dμψ = (𝜕μ − igÂμ)ψ . (2.161)

Transformation to a new coordinate system in isotopic space, with the account of
(2.159), gives

(𝜕μ − igÂ
󸀠
μ)ψ
󸀠 = S(𝜕μ − igÂμ)ψ . (2.162)
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Assuming here ψ󸀠 = Sψ, we obtain

Â󸀠μ = SÂμS
−1 −

i
g
(𝜕μS)S

−1 , (2.163)

which gives the general form of the gauge transformations of Yang–Mills fields (gen-
eralized gradient transformation). Consider again the same examples:
– U(1) group:

S = e−iΛ , 𝜕μS = −i(𝜕μΛ)e
−iΛ ,

A󸀠μ = Aμ +
1
e
𝜕μΛ (g = e, M = −1) , Dμ = 𝜕μ + igAμ . (2.164)

– SU(2) group:
spinor representation:

S = exp( i
2
τ⃗ ⋅ Λ⃗) , 𝜕μS =

i
2
τ⃗ ⋅ 𝜕μΛ⃗S , (2.165)

A⃗󸀠μ = A⃗μ − Λ⃗ × A⃗μ +
1
g
𝜕μΛ⃗ , (2.166)

which follows from (2.163) for |Λ⃗| ≪ 1, with the account of commutation relations
[τa, τb] = i2εabcτc, and coincides with (2.104).

Consider now the succession of “parallel transfers” of our field around the closed path
ABCD, shown in Figure 2.3. Let us start from point A, where the field is assumed to be
equal to ψA,0. Then, its change—due to the transfer to point B—is determined by the
covariant derivative (cf. (2.159), (2.153)), which gives

ψB = ψA,0 + DμψA,0Δx
μ +

1
2
DμDνψA,0Δx

μΔxν + ⋅ ⋅ ⋅ = (1 + ΔxμDμ + ⋅ ⋅ ⋅)ψA,0 .

Next, performing transfer to point C, up to the terms of first order, we get

ψC = ψB + δx
νDνψB = (1 + δx

νDν)ψB = (1 + δx
νDν)(1 + Δx

μDμ)ψA,0 .

Figure 2.3
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Thereafter, the transfer to point D and the return to initial point A give

ψD = (1 − Δx
ρDρ)ψC , (2.167)

ψA,1 = (1 − δx
σDσ)ψD

= (1 − δxσDσ)(1 − Δx
ρDρ)(1 + δx

νDν)(1 + Δx
μDμ)ψA,0 (2.168)

= {1 + δxμΔxν[Dμ,Dν]}ψA,0 , (2.169)

where the commutator of operators of covariant differentiation appeared:

[Dμ,Dν] = [𝜕μ − igÂμ, 𝜕ν − igÂν] = −ig{𝜕μÂν − 𝜕νÂμ − ig[Âμ, Âν]} . (2.170)

Let us introduce the field tensor

Gμν = 𝜕μÂν − 𝜕νÂμ − ig[Âμ, Âν] , (2.171)

so that
[Dμ,Dν] = −igGμ,ν . (2.172)

Equation (2.171), in fact, gives the general definition of the tensor of Yang–Mills fields
for an arbitrary gauge group. Accordingly, equation (2.169) can be written as

ψA,1 = (1 − igΔS
μνGμν)ψA,0 , ΔSμν = δxμΔxν , (2.173)

and we obtain

ψA,1 − ψA,0 = −igΔS
μνGμνψA,0 . (2.174)

Thus, a nonzero gauge field tensor leads to a finite physical result as we go around the
closed path, which is proportional to the flux of the gauge field Gμν through the path
(contour) area ΔSμν: the field ψ is rotated in isotopic space. It is easy to see that the
field tensor Gμν is invariant relative to gauge transformations:

Gμν = SGμνS
−1, (2.175)

so that it cannot be reduced to zero, using only such transformations. At the same
time, if Gμν is zero for some gauge, it remains zero for all other gauges.

Consider again our examples:
– U(1) group (the usual field tensor of electrodynamics):

Gμν ≡ Fμν = 𝜕μAν − 𝜕νAμ. (2.176)

– SU(2) group:

[Ma,Mb] = iεabcM
c , Ga

μν = 𝜕μA
a
ν − 𝜕νA

a
μ + gεabcA

b
μA

c
ν , (2.177)

which in vector notations in the isotopic space

G⃗μν = 𝜕μA⃗ν − 𝜕νA⃗μ + gA⃗μ × A⃗ν (2.178)

coincides with definition (2.113) given above.
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Here, we again can note an analogy to the theory of gravitation. The tensor of Yang–Mills fields is, in
some sense, analogous to the Riemann–Christoffel curvature tensor [33]:

Rκλμν = 𝜕νΓ
κ
λμ − 𝜕μΓ

κ
λν + Γ

ρ
λμΓ

κ
ρν − Γ

ρ
λνΓ

κ
ρμ . (2.179)

The parallel transfer of an arbitrary vector Vμ around the closed contour in the Riemann space leads
to the following difference between the initial and final components of the vector:

ΔVμ =
1
2
RμρσλV

ρΔSσλ , (2.180)

where ΔSσλ again denotes the area of the contour. The value of ΔVμ is different from zero only in the
space with finite curvature. In general relativity, this corresponds to the presence of a nontrivial grav-
itational field.

Figure 2.4

Analyzing the transfer around the path forming the parallelepiped shown in Fig-
ure 2.4, Feynman has given a simple derivation of the following identity for the field
Gμν:

DρGμν + DμGνρ + DνGρμ = 0 , (2.181)

which in fact determines the second pair of “Maxwell equations” for the Yang–Mills
field (2.122). In the case of U(1) gauge symmetry, this reduces simply to (2.120):

𝜕ρFμν + 𝜕μFνρ + 𝜕νFρμ = 0 . (2.182)

Briefly, the derivation goes as follows: In Figure 2.4 we show the path (contour)
ABCDAPSRQPA. There are another two paths of the same type along the borders of
two pairs of opposite facets of the parallelepiped, so that along the borders of all six
facets we can draw the path (ABCDAPSRQPA) + (ADSPABQRCBA) + (APQBADCRSDA).
All parts of this contour are now passed twice in two opposite directions. Accordingly,
the field ψ is not changed as we go around our closed path, which immediately gives
the identity (2.181).
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Table 2.1: Analogies between gauge field theories and gravitation.

Gauge theories General relativity

Gauge transformations Coordinate transformations
Gauge group Group of all coordinate transformations
Potential of gauge field Aμ Christoffel coefficients Γκμν
Field tensor Gμν Tensor of curvature Rκλμν

In the theory of gravitation there exists the similar Bianchi identity for theRiemann–Christoffel tensor:

DρR
κ
λμν + DμR

κ
λνρ + DνR

κ
λρμ = 0 . (2.183)

The analogy of gauge field theories and the theory of gravitation can be expressed as in Table 2.1.
All these analogies actually exist on a deeper level. Even during early stages of the development of
gauge field theories, it was shown by Utiyama [68] that the equations of Einstein’s general relativity
theory can be derived using the idea and general scheme of gauge field theory, if we take the Lorentz
group (coordinate transformations of the special theory of relativity) and demand the invariance of
the theorywith respect to corresponding local transformations (when parameters of the Lorentz group
are considered as arbitrary functions of coordinate in the Minkowski space).

2.7 A realistic example: chromodynamics

Let us briefly consider the structure of quantum chromodynamics (QCD) as an exam-
ple of realistic non-Abelian gauge theory. Quantum chromodynamics is based on the
fundamental experimental discovery: each quark of the given “flavor” u, d, s, c, t, b
possesses an additional quantumnumber,which is called “color”, andwhich can take
three possible values (1, 2, 3 or R, G, B).8 Then, each quark field is represented by the
fundamental spinor of the SU(3) group:9

q = (
q1
q2
q3
) . (2.184)

The color symmetry is exact, and QCD Lagrangian should be invariant to SU(3) group
transformations:

q → Uq , (2.185)

where the 3×3-matrices U are unitary and unimodular:

U+U = 1 , DetU = 1 ,

8 The necessity of this quantum number was clear from the very beginning of the quark model, as it
allowed lifting certain contradictions with the Pauli principle.
9 A rather clear and compact presentation of irreducible representations of this group, though in re-
lation to the other problem of particle physics (approximate symmetry of hadrons and their quark
structure), can be found in [40].
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U = eiT , T = T+ , SpT = 0 . (2.186)

These matrices (transformations) depend on eight parameters (“rotation angles”) εa,
and, accordingly, there are eight generators λi/2 (i = 1, . . . , 8):

λ1 = (
0 1 0
1 0 0
0 0 0

) , λ2 = (
0 −i 0
i 0 0
0 0 0

) , λ3 = (
1 0 0
0 −1 0
0 0 0

) ,

λ4 = (
0 0 1
0 0 0
1 0 0

) , λ5 = (
0 0 −i
0 0 0
i 0 0

) , λ6 = (
0 0 0
0 0 1
0 1 0

) ,

λ7 = (
0 0 0
0 0 −i
0 i 0

) , λ8 =
1
√3
(
1 0 0
0 1 0
0 0 −2

), (2.187)

which are a kind of “generalization” of Pauli matrices to three dimensions. These gen-
erators satisfy the following commutation relations:

[
λa
2
,
λb
2
] = ifabc

λc
2
, (2.188)

where the nonzero structural constants fabc are given by

f123 = 1 , f147 = −f156 = f246 = f257 = f345 = −f367 =
1
2
,

f458 = f678 =
√3
2
. (2.189)

The basic approach of QCD is to make color symmetry the local gauge symmetry.
As a result, using the recipes of gauge field theory, we introduce eight gauge fields

(gluons), which transfer interactions between quarks. These can be conveniently writ-
ten in the following matrix form (as in (2.160)):

Âμ = A
a
μ
λa

2
=
1
2
(

A3μ +
1
√3A

8
μ A1μ − iA

2
μ A4μ − iA

5
μ

A1μ + iA
2
μ −A

3
μ +

1
√3A

8
μ A6μ − iA

7
μ

A4μ + iA
5
μ A6μ + iA

7
μ − 2

√3A
8
μ

) . (2.190)

The explicit form of the gluon field tensor can be obtained from (2.171) or from (2.177),
substituting into the last expression instead of εabc, the structural constants fabc of
the SU(3) group. In accordance with the general ideology of gauge theories, gluons
are massless. The absence of long-range forces due to gluons is explained by the phe-
nomenon of confinement, which will be discussed in the final part of this book.





3 Canonical quantization, symmetries in quantum
field theory

3.1 Photons

3.1.1 Quantization of the electromagnetic field

Nowwe have to move from classical to quantum field theory. The procedure of canon-
ical field quantization is similar to those procedures for mechanical systems. First of
all, we shall consider the quantum field theory of free (noninteracting) fields, and
we shall start with the case of the electromagnetic field—not the simplest case—but,
nonetheless, physically quite important. We have already seen above that the electro-
magnetic field is an example of an (Abelian) gauge field. This leads to some additional
complications related to the correct account of gauge invariance. For the electromag-
netic field, these problems are solved in a relatively simple way, within the canonical
quantization procedure, whereas for non-Abelian Yang–Mills fields, we need a much
more complicated scheme of quantization, based on functional integration, which
will be discussed much later. The presentation in this chapter is essentially based
on [6].

From a mechanical point of view, the field is represented as the system with an
infinite (continuous) number of degrees of freedom. However, it is convenient to start
from the classical description of the field, which deals with an infinite, but discrete,
set of variables. We shall consider the electromagnetic field in the so-called Coulomb
gauge, when its vector potential A(r, t) satisfies the condition of transversality:

divA = 0 . (3.1)

The scalar potential is taken as φ = 0, whereas the electric E and magneticH field are
defined as1

E = −Ȧ , H = rotA . (3.2)

TheMaxwell equations reduce, in this case, to the wave equation for the vector poten-
tial A:

∇2A − 𝜕
2A
𝜕t2
= 0 . (3.3)

It is well known that the six components of the electromagnetic field are written in the form of an
antisymmetric tensor:

Fμν = 𝜕μAν − 𝜕νAμ , (3.4)

1 Let us recall that we are using the system of units with the speed of light c = 1.

https://doi.org/10.1515/9783110648522-003
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which immediately leads to homogeneous Maxwell equations:

𝜕λFμν + 𝜕μFνλ + 𝜕νFλμ = 0 . (3.5)

In a vacuum (in the absence of sources) inhomogeneous Maxwell equations are written as

𝜕μF
μν = 0 (3.6)

or
◻Aν − 𝜕ν(𝜕μA

μ) = 0 . (3.7)
We know that these equations follow from the variational principle with the Lagrangian

ℒ = − 1
16π

FμνF
μν , (3.8)

where Aμ is considered as a dynamic variable. However, for the given values of field strength Fμν, the
4-vector potential Aμ is not single-valued, but is determined only up to the gradient transformation

Aμ → A󸀠μ = Aμ + 𝜕μΛ(x) . (3.9)

If we require for Λ(x) the validity of an additional condition ◻Λ = −𝜕μAμ, we easily obtain for the
field, transformed by (3.9), 𝜕μAμ

󸀠 = 0. Now we can just drop the prime over Aμ and write the so-called
Lorentz condition:

𝜕μA
μ = 0 . (3.10)

Then (3.7) is transformed to
◻Aν = 0, (3.11)

that is, thewave function for the 4-vector potential. The Lorentz gauge (3.10) gives one equation for four
components of the potential, reducing the number of independent components of the field to three.
However, this condition still does not make Aμ singly defined. For Aμ satisfying Lorentz condition, we
may introduceA󸀠μ = Aμ+𝜕μΛ, which also satisfies it due to ◻Λ(x) = 0. Let us now choose Λ(x) to satisfy
𝜕Λ
𝜕t = −φ, then obviously φ

󸀠 = 0, so that equation (3.10) gives ∇ ⋅ A = divA = 0. Thus, we come to the
Coulomb gauge, with only two independent components of the electromagnetic field (transversality
condition), in agreement with reality.

Transformation to a discrete set of field variables is achieved by considering the field
system in a finite spatial volumeV (below, for shortness of notation, we just putV = 1)
[33]. The vector potential is represented by a Fourier expansion over plane waves:

A = ∑
k
(ake

ikr + a∗ke
−ikr) , (3.12)

where the expansion coefficients ak depend on time according to

ak ∼ e
−iωkt , ωk = |k| . (3.13)

Due to transversality condition (3.1), we have

ak ⋅ k = 0 . (3.14)

In (3.12) summation is done over the infinite discrete set of kx, ky, kz . As usual, we
can make transformation from summation to integration over kx, ky, kz, introducing
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d3k
(2π)3 , as the number of possible values of k, in the infinitesimal volume of k-space
d3k = dkxdkydkz . Finally, the state of the field is completely determined by amplitudes
ak, which are considered as the set of classical field variables.

Let us introduce the canonical field variables as

Qk =
1
√4π
(ak + a

∗
k) , (3.15)

Pk = −
iωk
√4π
(ak − a

∗
k) = Q̇k . (3.16)

Obviously, these variables are real. Then the series (3.12) can be rewritten as

A = √4π∑
k
[Qk coskr −

1
ωk

Pk sinkr] . (3.17)

To determine the field Hamiltonian H, we calculate the total energy:

E = 1
8π
∫ d3r(E2 +H2) (3.18)

and express it via the variables Qk and Pk. To do this, we find E and H from (3.2) and
(3.17), substitute the appropriate expressions into (3.18) and obtain, after the integra-
tion over coordinates,

H = 1
2
∑
k
(P2k + ω

2
kQ

2
k) . (3.19)

From the condition of transversality, both Pk and Qk are orthogonal to vector k, so
that they, in fact, possess only two independent components. The directions of these
vectors are defined by the polarization directions of the appropriate wave. Let us de-
note two components of Pk and Qk in the plane orthogonal to k as Pkα and Qkα, with
α = 1, 2. Then (3.19) can be rewritten as

H = 1
2
∑
kα
(P2kα + ω

2
kQ

2
kα) . (3.20)

Thus, theHamiltonianH is represented by the sumof independent terms, each having
the form of the Hamiltonian of the harmonic oscillator.

Nowwe can perform quantization. Theway to quantize an oscillator is well known
from quantummechanics [35]. Quantization reduces to the change of the generalized
coordinatesQkα and generalizedmomenta Pkα by corresponding operators, satisfying
the standard commutation relations:2

QkαPkα − PkαQkα ≡ [Qkα,Pkα] = i . (3.21)

2 Note that here we use ℏ = 1.
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For different values ofkα, the corresponding operators just commute. Accordingly, the
fields A,E,H also become operators.

The eigenvalues of the Hamiltonian (3.20) obviously are

E = ∑
kα
(Nkα +

1
2
)ωk , (3.22)

where Nkα are integer numbers, representing the number of photons in quantum
states, characterized by kα. The matrix elements of operator Qkα are also well known
from quantummechanics [35]:

⟨Nkα|Qkα|Nkα − 1⟩ = ⟨Nkα − 1|Qkα|Nkα⟩ = √
Nkα
2ωk
. (3.23)

The matrix elements Pkα = Q̇kα differ from (3.23) by a factor ±iωk.
Let us introduce new operators:

ckα =
1
√2ωk
(ωkQkα + iPkα) , c+kα =

1
√2ωk
(ωkQkα − iPkα) . (3.24)

Then, from (3.23) and (3.24), we obtain

⟨Nkα − 1|ckα|Nkα⟩ = ⟨Nkα|c
+
kα|Nkα − 1⟩ = √Nkα . (3.25)

From (3.24) and (3.21), we immediately get commutation relations for operators ckα
and c+kα:

ckαc
+
kα − c

+
kαckα ≡ [ckα, c

+
kα] = 1 . (3.26)

For different k and α, these operators simply commute. The operators ckα and c
+
kα are

called operators of annihilation and creation of photons in the state with wave vector
(momentum) k and polarization α. The origin of these terms is obvious from (3.25).
For historical reasons, the formalism—based on the use of such operators—is called
second quantization.

The operator of the vector potential (with the use of (3.12), (3.15), (3.16), and (3.24))
can now be written as

A = ∑
kα
(ckαAkα + c

+
kαA
∗
kα) , (3.27)

where

Akα = √4π
e(α)

√2ωk
eikr , (3.28)

where e(α) is the unit vector of polarization for the given field oscillator. Obviously, we
have e(α) ⋅ k = 0, so that this vector is orthogonal to the photon momentum k. To each
value of k, we have two independent directions of polarization α = 1, 2.
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Likewise, we can write down expansions for electric E andmagneticH field oper-
ators:

E = ∑
kα
(ckαEkα + c

+
kαE
∗
kα) , (3.29)

H = ∑
kα
(ckαHkα + c

+
kαH
∗
kα) , (3.30)

where

Ekα = iωkAkα , Hkα = [n × Ekα] , (3.31)

wheren = k/ωk is the unit vector directed along photon propagation. The vectorsAkα,
introduced in (3.28), satisfy the following orthonormality condition:

∫ d3rAkαA
∗
k󸀠α󸀠 =

2π
ωk

δαα󸀠δkk󸀠 , (3.32)

where we have taken into account that two independent polarization vectors are or-
thogonal: e(α) ⋅ e(α

󸀠)∗ = 0. In fact, the values of Akα (plane waves) can be treated as
wave functions of a photon with momentum k and polarization e(α).3

From (3.32) and (3.31), it is easy to obtain

1
4π
∫ d3r(EkαE

∗
k󸀠α󸀠 +HkαH

∗
k󸀠α󸀠) = ωkδkk󸀠δαα󸀠 . (3.33)

Substituting (3.29) and (3.30) into (3.18) and using (3.33), we find

H = ∑
kα

1
2
(ckαc
+
kα + c

+
kαckα)

1
4π
∫ d3r(EkαE

∗
k󸀠α󸀠 +HkαH

∗
k󸀠α󸀠)

= ∑
kα

1
2
(ckαc
+
kα + c

+
kαckα)ωk (3.34)

or, using commutation relations (3.26),

H = ∑
kα
(c+kαckα +

1
2
)ωk, (3.35)

which gives the secondary quantizedHamiltonianof the systemof photons. After com-
parison with (3.22) it becomes clear that

N̂kα = c
+
kαckα (3.36)

3 Let us stress that these wave functions cannot be understood as probability amplitudes of spatial
localization of photon, as there is no sense in defining the coordinate of a particle moving with the
velocity of light.
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represents the operator of the number of photons in kα state, which is diagonal in
occupation number representation, with integer eigenvalues. Note that (3.33) corre-
sponds to the wave function normalization to a “single photon per volume V = 1”.

In classical theory of electromagnetic field, its momentum is defined as [33]

P = 1
4π
∫ d3r [E ×H] . (3.37)

Replacing E and B by operators (3.29) and (3.30), we obtain

P = ∑
kα
(c+kαckα +

1
2
)k , (3.38)

which corresponds to each photon carrying the momentum k.
The presence in (3.35) and (3.38) of the terms, independent of occupation num-

bers (1/2 contribution in parenthesis), corresponds to an infinite contribution of vac-
uum fluctuations (“zero-level” oscillations) of the electromagnetic field. This is the
first example we meet of a typical “field theory divergence”. In most cases—in this
situation—we can simply shift the origin of an energy scale (or the origin of momen-
tum scale) and write

H = ∑
kα
c+kαckαωk , P = ∑

kα
c+kαckαk . (3.39)

The origin of energy ormomentumscale is “renormalized”here by infinite (“vacuum”)
constants, which are independent of excitations of the field system.However, wemust
stress that the presence of an infinite energy (momentum) of the vacuum (zero-level
oscillations) is absolutely real physically and reflects the quantum nature of the field,
leading to some finite experimental effects. One of the best examples is the so-called
Casimir effect, which we shall discuss below.

3.1.2 Remarks on gauge invariance and Bose statistics

The choice of potentials in electrodynamics, as is well known, is not unique. Abovewe
haveused theCoulombgauge (3.1). In the general case, components of vector potential
Aμ can undergo the gradient transformation, such as

Aμ → Aμ + 𝜕μΛ . (3.40)

For planewaves, limiting ourselves to transformations, which do not change this form
of potential (that is, its proportionality to exp(−ikμxμ)), reduces to the possibility of
adding to the wave amplitude an arbitrary 4-vector proportional to kμ.
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In the case of an arbitrary gauge, the 4-potential of the field can be written in the
form, generalizing (3.27),

Aμ = ∑
kα
(ckαA

μ
kα + c
+
kαA

μ∗
kα ) , (3.41)

where wave functions of photon are

Aμk = √4π
eμ

√2ω
e−ikνx

ν
, (3.42)

where eμ is a space-like 4-vector of polarization,which satisfies the condition eμeμ∗ = −1.
The space-like nature of the 4-vector of polarization is obvious from the condition of
four-dimensional transversality, as the wave vector (momentum) of a real photon al-
ways belongs to the light cone. In thesenotations, our gradient (gauge) transformation
reduces to

eμ → eμ + Λkμ , (3.43)

where Λ = Λ(kμ) is an arbitrary scalar function of kμ. Transversality of polariza-
tion means that we always can choose the gauge, guaranteeing three-dimensional
transversality, when we choose

eμ = (0, e) , e ⋅ k = 0 . (3.44)

Four-dimensional transversality, equivalent to the Lorentz condition (3.10), can be
written in an invariant form as

eμk
μ = 0 . (3.45)

This condition, as well as eμeμ∗ = −1, is not violated by transformation (3.43), as for a
real photon, we always have k2 = 0 (massless photon on the light-cone!). The measur-
able physical characteristics should obviously be invariant to gauge transformations.

Photons are described by Bose statistics. This is obvious from the fact that the
number of photons Nkα in kα state may be an arbitrary integer, as well as from the
form of commutation relations (3.26). A Bose field can acquire the classical limit. It is
well known that the properties of the quantum system approach that of the classical,
when quantum numbers, determining the system state, become large. For an electro-
magnetic field, this means that the number of photons Nkα is to be large enough. In
this case, we can neglect unity in the right-hand side of commutation relations (3.26)
(obviously, this corresponds to the limit of ℏ → 0 for the usual system of units) and
write

c+kαckα ≈ ckαc
+
kα , (3.46)
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so that operators ckα, c
+
kα can be considered as classical filed amplitudes. However,

some care is needed, as in the case of all Nkα ≫ 1, we shall get the infinity after the
summation over kα for the field energy (3.22).

In fact, from a physical point of view, it is sensible to consider the values of the
fields, averaged over some finite time intervals Δt. In Fourier expansion of such an
averagedfieldE, themain contribution comes from the frequency regionωΔt < 1. Now,
to derive the conditions of quasiclassicality, we have to consider only field oscillators
with ω < 1/Δt. The number of oscillators with frequencies from zero to ω ∼ 1/Δt, by
the order of magnitude, is equal to (V = 1):

(
ω
c
)
3
∼

1
(cΔt)3
. (3.47)

The energy of the field in the unit volume is of the order of E2. Dividing this energy by
the number of oscillators and by the average photon energy ∼ ℏω, we get the following
estimate for the number of photons:

N ∼ E
2c3

ℏω4 . (3.48)

Then, from the condition N ≫ 1 and (3.47), we obtain

|E| ≫
√ℏc
(cΔt)2
, (3.49)

which determines the criterion of quasiclassicality.4 We see that the field is strong
enough, and stronger for smaller time intervals Δt. For the time-dependent field Δt ∼
ω−1, so that a sufficiently weak alternating field cannot be described quasiclassically.
Only static fields for which Δt →∞ can always be treated as classical.

On the measurability of fields in quantum electrodynamics

The existence of a finite limit for velocity of propagation of interactions (speed of light) in relativis-
tic theory leads to a number of additional limitations for the measurability of physical characteristics
(variables). At the early stages of the development of quantum field theory these limitations were dis-
cussed by Landau and Peierls. The qualitative discussion of these limitations can be found in the
Introduction to [6]. During this analysis, Landau and Peierls formulated the fundamental question
of the possibility of measuring an electromagnetic field itself. They claimed that the measurement of
any component of (say) an electric field requires the determination of the momentum of a charged
test particle, so that the imminent action of the field, radiated during this operation, will always lead
to unavoidable limitations of field measurements. They concluded that the precise measurement of
field strength becomes impossible, in contradiction with the basic points of quantum electrodynam-
ics discussed above. This fact, as well as a number of similar difficulties to be discussed later, were the
reason for a long period of Landau’s rather skeptical opinion on quantum field theory in general.

4 For better understanding, here we explicitly write down both c and ℏ.
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The problem of fields measurability was analyzed in more detail by Bohr and Rosenfeld (reference an
interesting review of this problem by Rosenfeld in [49]). It was demonstrated that all the difficulties
are essentially solved (in the spirit of the Copenhagen interpretation of quantummechanics) if we use
the finite (not point-like) test particles. For example, consider the measurement of the Ex component
of an electric field, averaged over some volume and time intervals. Let us use the test particle with
volume V and homogeneous charge density ρ and measure its momenta p󸀠x and p

󸀠󸀠
x at the beginning

and end of time interval T. Making this test particle heavy enough, we can achieve its arbitrarily small
displacement during this interval, and obtain for the average value of the field Ēx,

ĒxρVT = p
󸀠󸀠
x − p
󸀠
x . (3.50)

However, the measurement of the momentum of the test particle inevitably leads to some error Δx
in the determination of its position, according to the usual indeterminacy relation: Δpx ∼ ℏ/Δx. This
leads to indeterminacy ΔĒx for the field value Ēx, which is of the order of

ΔĒx ∼
ℏ

ρVTΔx
. (3.51)

However, it is obvious that this error canbemade arbitrarily small by just increasing the charge density
of a test particle.
In a similar way, we can analyze themeasurability of charges and currents [49]. In the opinion of Bohr
andRosenfeld, suchargumentsdemonstrate the absenceof any contradictions in thebasic principle of
quantum electrodynamics. However, we should note that the Copenhagen interpretation of quantum
theory, using the classical concepts as its inevitable part, at present is not commonly accepted (nor is it
considered to be absolutely satisfactory bymany researchers). Themodern situationwith the quantum
limitations of field measurements is discussed in [44].

Bitte, bitte, Landau, muss ich nur ein Wort sagen!
Discussion between Bohr and Landau in Copenhagen (1931) as pictured
by George Gamow. Figure to the right depicts Pauli.

3.1.3 Vacuum fluctuations and Casimir effect

The reality of vacuum (“zero-level”) fluctuations of an electromagnetic field is beautifully illustrated
by the so-called Casimir effect [28]. Consider two big ideally conducting metallic planes, placed in a
vacuum, at the distance a from each other, as it is shown in Figure 3.1. Let these metallic plates be
squares with sides L and L ≫ a. Consider the modes of an oscillating electromagnetic field in the
volume L2a. Boundary conditions require that the vector of electric field E be perpendicular, whereas
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Figure 3.1

the vector of magnetic field B is parallel to the internal surface of the plate. Only transversal modes
contribute to energy. If the wave vector component kz , orthogonal to the surface of plates, is nonzero,
it can acquire only discrete values kz = nπ/a (n = 1, 2, . . .), so that the nodes of the field are at the
plates. We also have to take into account two polarization states. If kz = 0, we remain with only one
mode (the electric field component of this mode is zero, as a tangential electric field is absent on the
surface of an ideal conductor). Then, the energy of zero-level oscillations of electromagnetic field in
the volume between plates is given by

E = ∑
kα

1
2
ℏωkα = ∑

kα

1
2
ℏc|kα| =

ℏc
2
L2 ∫

d2k‖
(2π)2
[

[
|k‖| + 2

∞

∑
n=1
√k2‖ +

n2π2

a2
]

]
. (3.52)

This expression is obviously infinite. However, let us subtract from (3.52) the similar expression for the
energy of vacuum fluctuations in the same volume, but in the absence of metallic plates:

E0 =
ℏc
2
L2 ∫

d2k‖
(2π)2

a
∞

∫
−∞

dkz
2π

2√k2‖ + k
2
z =
ℏc
2
L2 ∫

d2k‖
(2π)2

2
∞

∫
0

dn√k2‖ + n
2π2/a2 . (3.53)

Then, the change of the vacuum energy due to introduction of metallic plates (per unit surface of the
plates) is given by

ℰ =
E − E0
L2
=
ℏc
2π

∞

∫
0

dk k( k
2
+
∞

∑
n=1
√k2 + n2π2/a2 −

∞

∫
0

dn√k2 + n2π2/a2) . (3.54)

This expression is still infinite, due to ultraviolet (large k) divergences. However, we can take that
into account for wavelengths smaller than atomic size, the approximation of an ideal conductor (con-
sidered as continuous medium) becomes inapplicable. Thus, we have to introduce in the integrand
of (3.54) some smooth cutoff function f (k), which is equal to unity for k < km and tends to zero for
k ≫ km, where km is of the order of the inverse atomic size. Then, we can write
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ℰ = ℏc π2

4a3

∞

∫
0

du[
[

√u
2
f(π

a
√u) +

∞

∑
n=1

√u + n2f(π
a
√u + n2)

−
∞

∫
0

dn√u + n2f(π
a
√u + n2)]

]
, (3.55)

where we have introduced the dimensionless integration variable u = a2k2/π2. The last expression
can be rewritten as

ℰ = ℏc π2

4a3
[

[

1
2
F(0) + F(1) + F(2) + ⋅ ⋅ ⋅ −

∞

∫
0

dn F(n)]
]
, (3.56)

where we have defined the function

F(n) =
∞

∫
0

du√u + n2f(π
a
√u + n2) . (3.57)

For n → ∞, we have F(n) → 0, due to the properties of the cutoff function. To calculate the differ-
ence between the sum and the integral in square brackets in equation (3.56), we may use the Eiler–
Maclaurin summation formula, writing it as

1
2
F(0) + F(1) + F(2) + ⋅ ⋅ ⋅ −

∞

∫
0

dn F(n) = − 1
2!
B2F
󸀠(0) − 1

4!
B4F
󸀠󸀠󸀠(0) + ⋅ ⋅ ⋅ , (3.58)

where Bν are Bernoulli numbers, defined by the series

y
ey − 1
=
∞

∑
ν=0

Bν
yν

ν!
. (3.59)

In particular, B2 = 1/6, B4 = −1/30, . . .. We have

F(n) =
∞

∫

n2

du√uf(π
√u
a
) , F󸀠(n) = −2n2f(πn

a
) . (3.60)

Assuming that f (0) = 1 and all its derivatives are zero at the same value of its argument, we have
F󸀠(0) = 0, F󸀠󸀠󸀠(0) = −4, whereas all higher-order derivatives of F are zero. Thus, the value of the cutoff
does not enter into the final results, and we get

ℰ = ℏcπ
2

a3
B4
4!
= −

π2

720
ℏc
a3
. (3.61)

Then, the force (per unit square) acting upon the plates is

ℱ = − π
2

240
ℏc
a4
. (3.62)

The negative sign here corresponds to attraction. It is remarkable that the existence of this (quite
weak) attractive force, due to vacuum fluctuations of the electromagnetic field, was experimentally
confirmed, and the theoretical expression (3.62) was directly checked. It is even more surprising that
the existence of the Casimir force has to be taken into account [32] during construction and work of
modern micromachines! This proves, beyond any doubt, that “zero-level” oscillations of an electro-
magnetic field are quite real.
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Hendrik Brugt Gerhard Casimir (1909–2000)
was a Dutch physicist best known for his research
on the two-fluid model of superconductors (together
with C. J. Gorter) in 1934 and the Casimir effect (to-
gether with D. Polder) in 1948. He studied theoret-
ical physics at the University of Leiden under Paul
Ehrenfest, where he received his Ph. D. in 1931. Dur-
ing that time he also spent some time in Copenhagen
with Niels Bohr. After receiving his Ph. D., he worked
as an assistant to Wolfgang Pauli at ETH Zurich. In
1938, he became a physics professor at Leiden Uni-
versity. At that time, he was actively studying both

heat conduction and electrical conduction, and contributed to the attainment of mil-
likelvin temperatures. In 1942, during World War II, Casimir moved to the Philips
Physics Laboratory in Eindhoven. He became a codirector of Philips Laboratory in
1946 and a member of the board of directors of the company in 1956. He retired from
Philips in 1972. Although he spent much of his professional life in industry, Hendrik
Casimir was one of the great Dutch theoretical physicists. Casimir made many con-
tributions to science during his years in research from 1931 to 1950. These contribu-
tions include: pure mathematics, Lie groups, hyperfine structure, calculation of nu-
clear quadrupole moments, low temperature physics, magnetism, thermodynamics
of superconductors, paramagnetic relaxation, applications of Onsager’s theory of ir-
reversible phenomena. He helped found the European Physical Society and became
its president from 1972 till 1975. In 1946 he became member of the Royal Netherlands
AcademyofArts andSciences.While at PhilipsNatLab, in 1948Casimir, collaborating
with Dirk Polder, predicted the quantum mechanical attraction between conducting
plates now known as the Casimir effect. He was awarded six honorary doctor degrees
by universities outside the Netherlands. He received numerous awards and prizes.

3.2 Bosons

3.2.1 Scalar particles

Consider particles with spin 0. The state of a free spinless particle is completely deter-
mined by its momentum p. Its energy εp is defined by

ε2p = p
2 +m2 or p2 = m2 (3.63)

or, as usually expressed, the particle is on its “mass surface”. Energy-momentum con-
servation follows from the homogeneity of space-time. In quantum mechanics, the
requirement of the symmetry towards an arbitrary translation of a coordinate system
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means that the wave function of a particle with 4-momentum p is multiplied (as a re-
sult of translation) by a phase factor (withmodulus 1). This requirement is obeyed only
by the plane wave:

const ⋅ e−ipx , px = εpt − pr . (3.64)

The wave equation for our particles should have (3.64) as a partial solution for any
p, satisfying equation (3.63). This equation should also be linear, expressing the su-
perposition principle: any linear combination of solutions also describes the possible
state of a free particle. And finally, this equation should be of a sufficiently low order
in derivatives.

The spin of a particle is its angular momentum in a coordinate system at rest,
and the state of a particle in a system at rest is described by nonrelativistic quantum
mechanics. Then, if a particle spins in a resting system is equal to s, its wave function
in this coordinate system should have 2s + 1 components (that is, be represented by
a three-dimensional spinor of rank 2s) [35]. The particle with spin s = 0 in a resting
system is described by a three-dimensional scalar. However, this three-dimensional
scalar can have a double four-dimensional “origin” [6]: it can be a four-dimensional
scalar φ, but it also can be a time component ψ0 of some time-like 4-vector ψμ, such
that in a system at rest only a ψ0 component is different from zero. Tensors of higher
ranks are not to be taken into account, as they will lead to differential equations of
higher orders.

For a free particle, the only differential operator that can enter the wave equation
is the operator of 4-momentum p:

pμ = i𝜕μ = (i 𝜕
𝜕t
, −i∇) . (3.65)

A wave equation can be written as a differential relation between φ and ψμ, con-
structed with the help of operator pμ, and satisfying the condition of relativistic
invariance. Obviously, the simplest variant of such relation has the following form:

pμφ = mψμ , pμψμ = mφ , (3.66)

wherem is a scalar, characterizing theparticle.5 Substitutingψμ from thefirst equation
in (3.66) to the second one, we get

(p2 −m2)φ = 0 , (3.67)

which coincides with the Klein–Gordon equation (2.10), (2.30) for the scalar field φ.
Substituting φ ∼ e−ipx into (3.67), we obtain p2 = m2, so that (3.63) is satisfied, and the

5 There is no sense in introducing two scalars m1, m2, as they can always be made equal by the ap-
propriate redefinition of φ, ψμ.
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scalarm is just the rest mass of our particle. As (3.63) is valid for a relativistic particle
with arbitrary spin, the Klein–Gordon equation is obeyed, in fact, by wave function
components of particles with any spin.

The properties of a scalar field, satisfying the Klein–Gordon equation, were al-
ready discussed in detail above. For generality, we shall consider here, from the very
beginning, the case of a complex field. Its energy-momentum tensor, similar to (2.51),
is given by

Tμν = (𝜕μφ∗)(𝜕νφ) + (𝜕μφ)(𝜕νφ∗) − gμνℒ , (3.68)

where the Lagrangian ℒ is defined in (2.57). In particular,

T00 =
𝜕φ∗

𝜕t
𝜕φ
𝜕t
+ ∇φ∗ ⋅ ∇φ +m2φ∗φ , (3.69)

Ti0 =
𝜕φ∗

𝜕t
𝜕φ
𝜕xi
+
𝜕φ∗

𝜕xi
𝜕φ
𝜕t
. (3.70)

Then, the 4-momentum of the field is determined by the integral

Pμ = ∫ d
3rTμ0 . (3.71)

From (3.69), we can see that T00 > 0, so that energy is positively defined, which, in
fact, determines the choice of signs in the Lagrangian.

Equation (3.69) can be used to normalize the field. The plane wave normalized to
“single particle in volume V = 1” can be written as

ψp =
1
√2εp

e−ipx . (3.72)

Calculating (3.69)with (3.72), we obtainT00 = εp, so that the total energy in the volume
V = 1 is equal to the energy of a single particle.

Let us now proceed to quantization. Let us consider an expansion of an arbitrary
wave function (field) over the complete set of eigenfunctions of a freeparticle, example
the plane waves ψp from (3.72):

φ = ∑
p
apψp , φ∗ = ∑

p
a∗pψ
∗
p . (3.73)

Quantization reduces to the replacement of the coefficients ap, a
∗
p by the correspond-

ing operators of annihilation and creation of particles âp, â
+
p.

Theprincipal aspect of relativistic theory is the existence of two solutions for equa-
tion (3.63), which gives for the energy of a particle

εp = ±√p2 +m2 . (3.74)
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Physically sensible are only εp > 0, as the negative particle energies correspond to
the instability of the system (absence of the ground state). We cannot just drop the
solutions with εp < 0, as the general solution of the wave equation is given by the su-
perposition of all independent partial solutions, and the expansion of the field should
be performed over the complete set of eigenfunctions. Let us write

φ = ∑
p

1
√2εp

a(+)p ei(pr−εpt) +∑
p

1
√2εp

a(−)p ei(pr+εpt) , (3.75)

where—in the first sum—the plane waves correspond to positive, whereas in the sec-
ond they correspond to negative frequencies. Here and below, we take εp = √p2 +m2,
that is, the positive definite energy of the physical particle.

The recipe for the correct transition to the second quantization can now be formu-
lated in the following way:
– a(+)p → âp is the annihilation operator of a particle with momentum p;
– a(−)p → b̂+−p is the creation operator of an antiparticle with momentum −p.

The last change to be made is due to the time-dependence in the second sum in (3.75)
being eiεpt = (e−iεpt)∗, which corresponds to the appearance of one “extra” particle
with energy εp in the final state (during the calculation of any matrix element, which
includes φ). Now, replacing in the second sum p→ −p, we write

φ̂ = ∑
p

1
√2εp
(âpe
−ipx + b̂+pe

ipx) ,

φ̂+ = ∑
p

1
√2εp
(â+pe

ipx + b̂pe
−ipx) . (3.76)

Now the operators âp and b̂p in expansion (3.76) are multiplied by “correct” factors,
such as e−iεpt, whereas the operators â+p and b̂

+
p are multiplied by complex conjugate

factors, such as eiεpt . Both types of particles (particles and antiparticles), represented
by the creation and annihilation operators entering the field operator φ̂ have the same
masses.

Substituting operator expansion (3.76) into (3.69) and integral ∫ d3rT00, determin-
ing the energy of the field, we obtain the Hamiltonian of the field as

H = ∑
p
εp(â
+
pâp + b̂pb̂

+
p) . (3.77)

A physically reasonable result for the eigenvalues of this operator (positive definite
energy) is obtained only if the creation and annihilation operators satisfy Bose com-
mutation relations:

[âp, â
+
p] = [b̂p, b̂

+
p] = 1 , [âp, b̂p] = [âp, b̂

+
p] = ⋅ ⋅ ⋅ = 0 . (3.78)
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In fact, using these commutation relations, we can write the Hamiltonian (3.77) in the
following form:

H = ∑
p
εp(a
+
pap + b

+
pbp + 1) . (3.79)

We have already seen above that in occupation number representation, the eigenval-
ues of Bose operatorsa+pap andb

+
pbp are givenbynonnegative integers,whichwe shall

denote as Np and N̄p, respectively (the numbers of particles and antiparticles in the
state with a given momentum). Then, both energy and momentum of the field can be
written (dropping the infinite energy of the vacuum) as

E = ∑
p
εp(Np + N̄p) , (3.80)

P = ∑
p
p(Np + N̄p) . (3.81)

Formal derivation of the last expression can be performed with the help of (3.70) and
(3.71). Assuming anticommutation (Fermi-like) relations for creation and annihilation
operators, we obtain, instead of (3.79), an expression, such as H = ∑p εp(a

+
pap −

b+pbp + 1), which is not positively defined (leading to the absence of the ground state
of the system). Thus, the particles with spin 0 (scalar particles) are Bosons. This is
actually a proof of the spin-statistics theorem for this simplest case of the scalar field.

As seen above, for complex scalar field, we have charge conservation (2.66). Re-
placing in the expression (2.64) for current density classical fields φ, φ∗ by the opera-
tors φ̂, φ̂+ from (3.76), and making elementary calculations, we obtain from (2.66)

Q = ∑
p
(a+pap − bpb

+
p) = ∑

p
(a+pap − b

+
pbp − 1) , (3.82)

where, while transforming to the last equality, we have again used the commutation
relations (3.78). The eigenvalues of this operator, without the vacuum contribution,
are written as

Q = ∑
p
(Np − N̄p) , (3.83)

so that the charges of particles and antiparticles are opposite in sign. Note that now
(after quantization) the charge can change only in a discrete way.
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Satyendra Nath Bose (1894–1974) was an
Indian theoretical physicist. He is best known
for his work on quantum mechanics in the
early 1920s, providing the foundation for
Bose–Einstein statistics and the theory of
the Bose–Einstein condensate. The class of
particles that obey Bose–Einstein statistics,
bosons,wasnamedafter Bose. Bosewasborn
in Calcutta. While working at the Physics De-
partment of the University of Dhaka, Bose
wrote a paper deriving Planck’s quantum ra-
diation lawwithout any reference to classical

physics by using a novel way of counting states with identical particles. He sent the
article directly to Albert Einstein in Germany. Einstein, recognizing the importance
of the paper, translated it into German himself and submitted it on Bose’s behalf to
the prestigious Zeitschrift für Physik. Bose’s formulation is now called Bose–Einstein
statistics. This result derived by Bose laid the foundation of quantum statistics, and
especially the revolutionary new philosophical conception of the indistinguishability
of particles. When Einstein first met Bose face-to-face, he asked him whether he had
been aware that he had invented a new type of statistics, and he very candidly said
that no, he was not that familiar with Boltzmann’s statistics and didn’t realize that he
was doing the calculations differently. Einstein also did not at first realize how radi-
cal Bose’s departure was, but in his second paper using Bose’s method he started to
realize just how radical it was, and he compared it to wave–particle duality, saying
that some particles did not behave exactly like particles. Einstein adopted this idea
and extended it to atoms. Although several Nobel Prizes were awarded for research
related to the concepts of the boson, Bose–Einstein statistics, and Bose–Einstein con-
densate, Bose himself was not awarded a Nobel Prize. When Bose himself was once
asked that question, he simply replied, “I have got all the recognition I deserve”.

3.2.2 Truly neutral particles

Above we have considered the operators âp and b̂p as referring to different particles.
This is not always so—we may consider a specific case, when operators entering the
expansion of φ̂ refer to the same particles (we have already met this situation in case
of photons). Then,

φ̂ = ∑
p

1
√2εp
(ĉpe
−ipx + ĉ+pe

ipx) , (3.84)

so that the particle just coincides with its antiparticle, and we are dealing with the so-
called truly neutral particles. Now the field operator is Hermitian: φ̂ = φ̂+, which is an
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analogue of the real field in classical field theory. Naturally, this field possesses twice
less degrees of freedom in comparison with complex field, and its Lagrangian takes
the form as in (2.28). Accordingly, we can calculate the energy-momentum tensor and
obtain for the energy density the following expression:

T00 =
1
2
{(
𝜕φ
𝜕t
)
2
+ (∇φ)2 +m2φ2} . (3.85)

Then, substituting expansion (3.84) into ∫ d3rT00, we get the Hamiltonian as

H = 1
2
∑
p
εp(ĉ
+
p ĉp + ĉpĉ

+
p) . (3.86)

Again, we see the necessity to quantize using Bose rules, so that commutation rela-
tions for creation and annihilation operators are written as

[ĉp, ĉ
+
p] = 1 , [ĉp, ĉp] = [ĉ

+
p , ĉ
+
p] = 0 . (3.87)

The Hamiltonian is

H = ∑
p
εp(c
+
pcp +

1
2
) , (3.88)

so that, after dropping the vacuum contribution, its eigenvalues are given by

E = ∑
p
εpNp . (3.89)

It is obvious that for a Hermitian (real in classical limit) field, both current density and
charge are zero.

Note that from previously discussed physical particles, an example of a truly neu-
tral particle was the photon, and the Hermiticity of corresponding quantum field was
relevant to the measurability of quantum electric and magnetic fields.

Remarks on the Lorentz group

According to the special theory of relativity, all inertial reference systems are equivalent. If two coor-
dinate systems move relative to each other along direction x1 with velocity v, the connection between
corresponding coordinates is expressed by the Lorentz transformation [33]:

x󸀠
0
= γ(x0 − βx1) = x0 ch u − x1 sh u ,

x󸀠
1
= γ(x1 − βx0) = x1 ch u − x0 sh u , (3.90)

x󸀠
2
= x2 , x󸀠

3
= x3 ,

where
γ = 1

√1 − β2
, β = v

c
, th u = β . (3.91)
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In the general case, we postulate the invariance of physical laws with respect to linear coordinate
transformations (inhomogeneous Lorentz transformations):

xμ → x󸀠
μ
= Λμνx

ν + aμ , (3.92)

which conserve the square of the interval

(x − y)2 = (xμ − yμ)(x
μ − yμ) = gμν(x

μ − yμ)(xν − yν) . (3.93)

In (3.92), translation is performed after the homogeneous transformation. Inhomogeneous Lorentz
transformations are also called Poincaré transformations.
Among possible coordinate transformations, we may consider not only translations and rotations in
pseudo-Euclidean space-time, but also space and time inversions, which we shall denote by P, T,
and PT:

Pxk = −xk , Px0 = x0 ,

Txk = xk , Tx0 = −x0 ,

PTxμ = −xμ . (3.94)

The interval (3.93) does not change under transformations (3.92) if

ΛνμΛ
μ
σ = δ

ν
σ , Λνμ = gμρΛ

ρ
βg

βν . (3.95)

In matrix form, the last relation is written as

Λ̃gΛ = g , (3.96)

where the tilde denotes matrix transposition. Then, it is clear that

Det Λ = ±1 . (3.97)

From (3.95) it also follows that
(Λ00)

2
−∑

k
(Λ0k)

2
= 1 , (3.98)

so that (Λ00)2 ≥ 1. Correspondingly, there are two possibilities:

Λ00 ≥ 1 , Λ00 ≤ −1 . (3.99)

Thus, the general transformations (3.92) can be divided into four classes:
1. 𝒫↑+: Det Λ = 1, Λ

00 ≥ 1
No time and space inversions. Only rotations and translations in pseudo-Euclidean space, which
form a proper orthochronous Poincaré group.

2. 𝒫↓+: Det Λ = 1, Λ
00 ≤ −1

Here, theT-operation is included.Due to theunimodularnature of transformations, theP-operation
is also included. Any transformation from 𝒫↓+ can be represented by the product 𝒫↑+ and PT. In
particular, 4-inversion PT ∈ 𝒫↓+, whereas P and T do not enter 𝒫↓+ separately, due to Det Λ = 1.
𝒫↑+ and 𝒫↓+ transformations together form the proper Poincaré group 𝒫+.

3. 𝒫↑−: Det Λ = −1, Λ
00 ≥ 1

Corresponding transformationshave the formP𝒫↑+. Togetherwith𝒫
↑
+, they formanorthochronous

Poincaré group.
4. 𝒫↓−: Det Λ = −1, Λ

00 ≤ −1
Time direction changes. Any transformation from this class can be written as T𝒫↑+.
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The general Poincaré group can now be represented by the sum

𝒫 = 𝒫↑+ + PT𝒫
↑
+ + P𝒫

↑
+ + T𝒫

↑
+ . (3.100)

Of all these components of the Poincaré group, only𝒫↑+ contains the unit transformation. Thus, trans-
formations from different classes cannot be connected by the continuous transformation belonging
to 𝒫↑+. Transformations from the same class can be obtained from each other by transformations
from 𝒫↑+.

3.2.3 CPT -transformations

Space inversion
Discrete symmetries, such as space or time inversions and charge conjugation (re-
placement particles by antiparticles), are ofmajor importance in quantumfield theory.
For example, space inversion is defined as

Pr = −r . (3.101)

Under this transformation, the scalar field can be transformed as

Pφ(t, r) = ±φ(t, −r) , (3.102)

where signs correspond to the usual scalar or pseudoscalar. In nonrelativistic quan-
tummechanics, the behavior of thewave function of the systemunder space inversion
is related simply to its coordinate dependence, which leads to the concept of orbital
parity [35]:

ψ(t, −r) = ±ψ(t, r) . (3.103)

In quantum field theory we are speaking about behavior of the field at a given point
in space, and equation (3.102) defines the internal parity of corresponding particles.
Total parity of the particle system is equal to the product of their internal parities and
orbital parity of their relative motion. “Internal” symmetry properties of different par-
ticles become manifest only in the processes of particle transmutations during reac-
tion between particles.

For the second quantized fields, internal parity is expressed via appropriate be-
havior of φ̂-operators. For scalar or pseudoscalar fields, we have

Pφ̂(t, r) = ±φ̂(t, −r) . (3.104)

The action of the P-operation on the φ̂-operator can be formulated as transformation
rules for creation and annihilation operators of particles, which correspond to (3.104).
Using (3.76), it is easy to find that these rules take the form

P :
ap → ±a−p , bp → ±b−p ,

a+p → ±a
+
−p , b+p → ±b

+
−p .

(3.105)
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In fact, we can write

φ(t, r) = ∑
p

1
√2εp
(ape
−iεpt+ipr + b+pe

iεpt−ipr) , (3.106)

and after the operation (3.105) and the change of the summation variable p → −p,
we immediately obtain ±φ(t, −r).6 Note that transformation (3.105) is pretty obvious—
inversion simply changes the sign of polar vector p.

Charge conjugation
Replacement of particles by antiparticles can be made in the field operator (3.76) by
an obvious operation:

C : ap → bp , bp → ap . (3.107)

Then φ→ φC, where

φC(t, r) = φ+(t, r) . (3.108)

Themeaningof this transformationdoesnot change ifwe introduce anarbitrary phase
factor:

ap → eiαbp , bp → e−iαap , (3.109)

so that

φ→ eiαφ+ , φ+ → e−iαφ . (3.110)

If we perform the charge conjugation twice, we obtain the identical transformation
φ→ φ. Symmetry towards the replacement of particles by antiparticles, in the general
case, does not lead to any new particle characteristics, and operator C does not have
eigenstates and eigenvalues. The only exception is the system containing the equal
number of particles and antiparticles. Operator C transforms such a system into itself,
and, in this case, it has eigenvalues C = ±1 (as C2 = 1, which is obvious). The same is
valid for truly neutral particles, when φC = ±φ, and we can speak of charge parity.

6 Note that below, in most cases, we shall not use the cap-sign of operator for creation and annihi-
lation operators, as well as for other filed operators, hoping that this will not lead to any misunder-
standings.
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Four-dimensional inversion and the inversion of time
Four-dimensional inversion is defined as

x → −x , where x = (r, t) . (3.111)

This operation can be considered as some four-dimensional rotation or, in other
words, as some Lorentz transformation, because the determinant of the transforma-
tionmatrix in both cases is equal to unity. The situation here is different from the case
of three-dimensional (spatial) inversion, where the determinant is equal to −1. Thus,
any expression invariant with respect to Lorentz transformations is also invariant to
four-dimensional inversion. With respect to the operator of the scalar field (scalar
with respect to four-dimensional rotations), this means that

φ(t, r) → φ(−t, −r) . (3.112)

In terms of the creation and annihilation operators, transformation (3.112) is achieved
by interchanging the coefficients before e−ipx and eipx in equation (3.76), which gives

CPT : ap → b+p , bp → a+p . (3.113)

Thus, this transformation includes the replacement of particles by antiparticles, so
that in relativistic field theory we automatically obtain the invariance with respect to
transformation, when we simultaneously perform P and T, and also the charge con-
jugation C. This is the content of the so-called CPT-theorem, which is one of the most
general statements of quantumfield theory: nothing in naturewill change if we simul-
taneously with 4-inversion (inversion of both space coordinates and time) replace all
particles by antiparticles. Transformation (3.113) can be written also in the form

φCPT (t, r) = φ(−t, −r) . (3.114)

Then, it is easy to formulate the recipe for T-inversion (inversion of time). This oper-
ation should be defined so that, together with CP, it reduces to CPT-transformation
(3.113). Taking into account (3.105) and (3.107), we find

T : ap → ±a
+
−p , bp → ±b

+
−p , (3.115)

where the signs correspond to the signs in equation (3.105). Thus, time inversion not
only transforms the motion with momentum p to the motion with momentum −p, but
also interchanges the initial and final states in all matrix elements, which leads to
the replacement of the annihilation operators of particles with momentum p by the
creation operators of particles with momentum −p (and vice versa). From (3.115) and
(3.106), with replacement p→ −p, we get

φT (t, r) = ±φ+(−t, r) . (3.116)
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In fact, herewe have the full correspondencewith time inversion in quantummechan-
ics [35]: if some state is described by the wave function ψ(t, r), the time-inverted state
is described by ψ∗(−t, r).

Transformations T and CPT-interchange initial and final states, and for these
transformations there are no notions like eigenstates and eigenvalues. They do not
lead to any new characteristics of particles. Due to relativistic invariance, the operator
of CPT-transformation should commute with the arbitrary Hamiltonian (Lagrangian)
of relativistic field theory. As to C and P (that is, also T) separately, this is not so
in general. In particular, weak interactions of elementary particles are not invariant
with respect to spatial inversion P, and even with respect to combined CP transfor-
mation. This last (very small) breaking of symmetry, according to the CPT-theorem,
leads to a weak nonequivalence of time directions in nature, which leads to some sig-
nificant consequences for cosmology. For example, Sakharov proposed an idea that
this symmetry-breaking can explain the overwhelming domination of matter over
antimatter in the modern state of the universe.

Discrete transformations of current

Consider the operator of conserving current of the scalar field, which, with the help of (2.64), can be
written as

jμ = i(φ+𝜕μφ − φ𝜕μφ+) . (3.117)

Transformation (3.104), with the obvious replacement (𝜕0, 𝜕) → (𝜕0, −𝜕), gives
P : (j0, j)t,r → (j

0, −j)t,−r , (3.118)

as it should be for a true 4-vector.
Likewise, charge conjugation (3.108) gives

C : (j0, j)t,r → (−j
0, −j)t,r , (3.119)

if operators φ and φ+ commute. Strictly speaking, they do not commute, but this is irrelevant—this
noncommutativity appears only due to the noncommutativity of the creation and annihilation oper-
ators with the same p, which leads to the appearance of terms, independent of occupation numbers,
that is, independent of the state of the field. Dropping these terms, we still obtain (3.119). From (3.119),
it is seen that the change of particles by antiparticles leads to the change of the sign of all the compo-
nents of the current.
The operation of time inversion is accompanied by the interchange of the initial and final states, so
that being applied to the product of operators, it changes the order of the operators in this product,
for example,

(φ+𝜕μφ)
T
= (𝜕μφ)

T(φ+)
T
. (3.120)

According to the remark after equation (3.119), this is irrelevant, and the return to the initial order does
not change the results. Taking into account that under T-inversion (𝜕0, 𝜕) → (−𝜕0, 𝜕), with the help of
(3.116), we obtain

T : (j0, j)t,r → (j
0, −j)
−t,r , (3.121)

so that the three-dimensional current j changes its sign, in accordance with the classical meaning of
the current, whereas the charge density j0 does not change.
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Finally, under 4-inversion (3.112), we easily obtain

CPT : (j0, j)t,r → (−j
0, −j)
−t,−r (3.122)

in accordance with the CPT-nature of this transformation.
The operator of electromagnetic interaction is proportional to jμAμ and is invariant to CPT, as any
other relativistic interaction. Accordingly, using (3.118), (3.119), and (3.121), it is not difficult to obtain
transformation rules for electromagnetic potential Aμ = (A0,A):

C : (A0,A)t,r → (−A0, −A)t,r,

P : (A0,A)t,r → (A0, −A)t,−r,

T : (A0,A)t,r → (A0, −A)−t,r,

CPT : (A0,A)t,r → (−A0, −A)−t,−r . (3.123)

Similar transformation rules are also valid for Yang–Mills gauge fields.

3.2.4 Vector bosons

The particle with spin 1 in its rest system is described by the three-component wave
function—a three-dimensional vector (vectorBoson). By its four-dimensional “origin”,
these may be three spatial components of 4-vector ψμ (space-like), or three compo-
nents of the antisymmetric second rank tensor ψμν, for which—in a rest system—the
corresponding time-components ψ0, ψ00, and spatial ψik components become zero.

The wave equation can again be written as a differential relation between ψμ and
ψμν in the form

iψμν = pμψν − pνψμ , (3.124)

pνψμν = im
2ψμ , (3.125)

where pμ = i𝜕μ is themomentumoperator. These are Proca equations for a vector field.
Applying pμ to both sides of (3.125), we obtain (due to the antisymmetry of ψμν)

pμψμ = 0 . (3.126)

Then, excluding ψμν from (3.124), (3.125) (substituting the first equation into the sec-
ond) and taking into account (3.126), we obtain

(p2 −m2)ψμ = 0 , (3.127)

so that m, as usual, represents the particle mass. Thus, the free particle with spin 1
is described by a single 4-vector ψμ, the components of which satisfy the “Klein–
Gordon”-like equation (3.127) and an additional condition, similar to the Lorentz con-
dition (of four-dimensional transversality) (3.126), which excludes fromψμ a “part be-
longing to spin 0”.
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In the rest system, ψμ does not depend on spatial coordinates (p = 0), and we
simply have p0ψ0 = 0; at the same time, taking into account that in the rest system
p0 = m, we have p0ψ0 = mψ0. Then it is clear that in the rest system ψ0 = 0, as it
should be for a particle with spin 1. Together with ψ0 in the rest system, both ψik and
ψ00 also become zero.

The particle with spin 1 may have a different internal parity, depending on ψμ

being a true vector or pseudovector:

Pψμ = (ψ0, −ψ) or Pψμ = (−ψ0,ψ) . (3.128)

The plane wave, normalized to a single particle in volume V = 1, is written as

ψμ =
1
√2εp

uμe
−ipx , uμu

μ∗ = −1 , (3.129)

where uμ is a unit 4-vector of polarization, normalized by the requirement of the space-
like nature of ψμ, also satisfying the condition of four-dimensional transversality:

uμp
μ = 0 . (3.130)

Note that, in contrast to the case of photons, vector Bosons with spin 1 have three
independent polarizations.

The Lagrangian of vector field can be written as

ℒ = −(𝜕μψ
∗
ν )(𝜕

μψν) +m2ψ∗μψ
μ . (3.131)

The structure of this Lagrangian is similar to the case of a scalar field, but note the dif-
ferent overall sign. Worthy to note is thatψμ is the space-like vector, so thatψ∗μψ

μ < 0,
whereas for scalar field, φ∗φ > 0, so that the sign is chosen to guarantee the positive
definiteness of energy in the classical limit. In fact, the practical use of the Lagrangian
(3.131) reduces not only to the derivation of equations of motion, but also to the intro-
duction of the energy-momentum tensor and current. It is easy to find that

Tμν = −𝜕μψ
λ∗𝜕νψλ − 𝜕νψ

λ∗𝜕μψλ − ℒgμν , (3.132)

jμ = −i[ψ
∗
λ 𝜕μψ

λ − (𝜕μψ
∗
λ )ψ

λ] . (3.133)

These expressions are similar to those obtained for scalar field and do not require fur-
ther commenting.

Quantization can be performed similarly to the case of the scalar field. Again, to
guarantee the physically obvious requirement of T00 > 0 and the arbitrariness of the
sign of charge density j0, we have to use Bose-like rules of quantization (commutation
relations).

Let us stress that, due tom ̸= 0, gradient (gauge) invariance is absent. Because of
this the massive vector field possesses three independent components. The absence
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of gauge invariance of this theory is most clearly seen from the second of the Proca
equations (3.125): the value of ψμν is invariant with respect to gradient transforma-
tions, so that the left-hand side of this equation is invariant, whereas the right-hand
side is obviously noninvariant and changes under these transformations.

Particles with arbitrary integer spin

Thewave function of a particle with integer spin s is represented by an irreducible 4-tensor of the rank
s, that is, tensor symmetric over all of its indices, which becomes zero under contraction over any pair
of its indices:

ψ...μ...ν... = ψ...ν...μ... , ψμ...
...μ... = 0 . (3.134)

This tensor should satisfy any extra condition of four-dimensional transversality:

pμψ...μ... = 0 , (3.135)

and any of its components should satisfy the equation

(p2 −m2)ψ...μ... = 0 . (3.136)

In the rest system, equation (3.135) leads to the zeroes of all the components of the 4-tensor, with any
of the indices equal to 0. Thus, in the rest system, our field is reduced to irreducible three-dimensional
tensor of rank s, with the number of independent components equal to 2s + 1.
The Lagrangian, energy-momentum tensor, and current density for the field with integer spin s dif-
fer from those just written above for the case of s = 1 only by the replacement ψμ with ψ...μ...ν.... The
normalized plane wave is written as

ψμν... =
1

√2εp
uμν...e−ipx , u∗μν...u

μν = −1 , (3.137)

with
u...μ...pμ = 0 . (3.138)

There are in total 2s + 1 independent polarizations.
Quantization is performed as an obvious generalization of the cases of s = 0 and s = 1.
The scheme presented above is sufficient for the description of free particles with integer spins. For the
interacting case, the situation becomesmore complicated. For all integer spinswith s > 1, it is actually
impossible to formulate a variational principle, using only one (tensor) field function with the rank
corresponding to this spin. It becomes necessary to introduce additional tensor (or spinor) entities of
lower rank. Then the Lagrangian is chosen in such a way that these additional fields reduce to zero
due to the equations of motion (following from variational principle) for free particles.
Note that the problem of particles with spin s > 1 is of rather “academic” interest, as there are no such
elementary particles within the Standard Model (and forgetting about gravitons).

3.3 Fermions

3.3.1 Three-dimensional spinors

Let us recall the description of particles with half-integer spin (Fermions) in nonrel-
ativistic quantum mechanics [35]. A particle with spin s = 1/2 is described by a two-
component wave function—the spinor, which is conveniently written as the following



3.3 Fermions | 69

column:

ψ = (ψ
1

ψ2) = (
ψ(1/2)
ψ(−1/2)

) , (3.139)

where componentsψ1 andψ2 correspond to spin projections sz = ±1/2. Under an arbi-
trary rotation of the coordinate system, spinor components are transformed by linear
transformation:

ψ󸀠1 = aψ1 + bψ2 , ψ󸀠2 = cψ1 + dψ2 . (3.140)

In other words,

ψ󸀠 = Uψ , U = (a b
c d
) . (3.141)

Transformation coefficients (matrix elements of U) are, in general, complex and are
functions of the angles of rotation.

Consider a bilinear form

ψ1φ2 − ψ2φ1 , (3.142)

where ψ and φ are two spinors. Simple calculation gives

ψ󸀠1φ󸀠2 − ψ󸀠2φ󸀠1 = (ad − bc)(ψ1φ2 − ψ2φ1) , (3.143)

so that (3.142) under coordinate system rotations (3.140) is transformed into itself. Con-
sider now the bilinear form (3.142) as some wave function of the composite system.
However, if we have a single component wave function, which is transformed under
rotations into itself, it obviously corresponds to spin zero, that is, it is a scalar and can-
not change under rotation at all. Thus, the coefficients of our transformation should
satisfy the condition

ad − bc = 1 , DetU = 1 . (3.144)

Then, (3.142) is simply a wave function of a particle with spin s = 0, composed of
two particles with spin s = 1/2. At the same time, we can introduce one more scalar,
composed of spinor components (3.139):

ψ1ψ1∗ + ψ2ψ2∗, (3.145)

which is just the probability density needed to find a particle in a given point of space.
Transformation, which conserves the sum of squares of modules of transformed vari-
ables, is unitary, so that

U+ = (a
∗ c∗

b∗ d∗
) = U−1 . (3.146)
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Taking (3.144) into account, the inverse transformation matrix takes the form

U−1 = ( d −b
−c a

) , (3.147)

so that from unitarity, we obtain

a = d∗ , b = −c∗ . (3.148)

Due to conditions (3.144) and (3.148), of the four complex coefficients a, b, c, d (that is,
of eight real numbers), in fact, only three (real) are independent, which corresponds
to the three rotation angles of three-dimensional coordinate system.

Comparing scalars (3.142) and (3.145), we see that ψ1∗ and ψ2∗ should transform
correspondingly as ψ2 and −ψ1.

Besides the contravariant spinor components ψ1, ψ2, introduced above, we may
define the covariant components:

ψ1 = ψ
2 , ψ2 = −ψ

1 . (3.149)

The invariant (3.142) can be written now as the scalar product:

ψλφλ = ψ
1φ1 + ψ

2φ2 = ψ
1φ2 − ψ2φ1 . (3.150)

Now, take into account that

ψλφλ = ψ
1φ1 + ψ

2φ2 = −ψ2φ
2 − ψ1φ

1 , (3.151)

so that the following antisymmetry condition is always valid:

ψλφλ = −ψλφ
λ . (3.152)

Then, it is obvious that

ψλψλ = 0 . (3.153)

We can also define spinors of a higher rank. For example, we can introduce spinors of
the second rank as

ψλμ ∼ ψλφμ , ψλμ ∼ ψλφμ , ψμ
λ ∼ ψλφ

μ . (3.154)

Higher rank spinors are defined in a similar way.
Transformation fromcontravariant to covariant spinors canbemadewith thehelp

of a “metric tensor”:

gλμ = g
λμ = (

0 1
−1 0
) , (3.155)
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as it is easily seen that we can write

ψλ = gλμψ
μ , ψλ = gμλψμ . (3.156)

Consider now the multiplication and contraction of spinors. Multiplication of two
spinors of the second and third ranks ψλμψνρσ produces a spinor of the fifth rank.
Construction of ψνρσ

λμ over the pair of indices μ and ν gives the spinor of third rank
ψμρσ
λμ . In particular, contraction of ψμ

λ produces the scalar ψ
λ
λ. Here, we have to take

into account (3.152) and (3.153), so that ψλ
λ = −ψ

λ
λ. Then, it follows that the contrac-

tion over two indices of any symmetric (to permutation of indices) spinor produces
zero. In particular, for the symmetric spinor of the second rank ψλμ = ψμλ, we have
ψλ
λ = 0. A spinor symmetric over all indices of any rank can always be constructed

by the appropriate symmetrization (that is, by taking the sum of the spinors with
all the permutations of the indices). We have shown that the contraction over a pair
of indices of a symmetric spinor can not produce spinors of a lower rank. From a
mathematical point of view, these spinors realize irreducible representations of the
three-dimensional rotation group SU(2).

By definition of the angular momentum (spin) s operator 1 + iδφ(n ⋅ s) describes
the rotation by infinitesimal angle δφ around an axis, oriented along the unit vector n
[35]. For spin s = 1/2, we have s = 1

2σ, where σ is the set of three Pauli matrices:

σx = (
0 1
1 0
) , σy = (

0 −i
i 0
) , σz = (

1 0
0 −1
) . (3.157)

The corresponding operator for a finite angle rotation is given by

Un = exp(
i
2
(n ⋅ σ)φ) , (3.158)

or, in another form,

Un = cos
φ
2
+ i(n ⋅ σ) sin φ

2
. (3.159)

Then, for rotation around the z-axis, we have

Uz(φ) = cos
φ
2
+ iσz sin

φ
2
= (

eiφ/2 0
0 e−iφ/2

) , (3.160)

so that

ψ󸀠1 = ψ1eiφ/2 , ψ󸀠2 = ψ2e−iφ/2 . (3.161)

Now, we can observe an unusual property of a spinor of the first rank; under the rota-
tion by angle 2π its components change sign (nonclassical behavior). A similar property
is characteristic for all spinors of odd rank.
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For rotations around the x-axis and y-axis, in a similar way, we obtain

Ux(φ) = cos
φ
2
+ iσx sin

φ
2
= (

cos φ
2 i sin φ

2

i sin φ
2 cos φ

2
) , (3.162)

Uy(φ) = cos
φ
2
+ iσy sin

φ
2
= (

cos φ
2 sin φ

2

− sin φ
2 cos φ

2
) . (3.163)

Spin properties of wave functions for a particle with spin s and the system of n =
2s particles with spin s = 1/2, oriented to obtain the total spin 2s, are identical. The
number of independent components of symmetric spinor of rank 2s is equal to 2s + 1,
as only those of its components are different, which contain 2s indices equal to 1 and 0
indices 2; 2s − 1 indices equal to 1, and one index equal to 2, . . ., 0 indices equal to 1
and 2s indices equal to 2. As we noted above, symmetric spinors are transformed via
irreducible representations of the rotation group.

In particular, spinors of even rank are transformed as tensors of the rank, which
is half of that of spinors. Components of these tensors can be explicitly expressed via
corresponding components of these spinors. As an important example, we present
in explicit form the relation between the components of a second rank spinor and
corresponding vector [35]:

ψ12 =
i
√2

az , ψ11 = −
i
√2
(ax + iay) , ψ22 =

i
√2
(ax − iay) , (3.164)

ψ12 = −
i
√2

az , ψ11 =
i
√2
(ax − iay) , ψ22 = −

i
√2
(ax + iay) (3.165)

and

az = i√2ψ
12 =

i
√2
(ψ12 + ψ21) , ax =

i
√2
(ψ22 − ψ11) ,

ay = −
1
√2
(ψ11 + ψ22) . (3.166)

Using Pauli matrices, these relations can be rewritten in a more transparent and com-
pact form:

ψμ
λ = −

i
√2

a ⋅ σμλ , (3.167)

a = i
√2

σλμψ
μ
λ . (3.168)

The scalar product of two vectors can be directly expressed via the scalar product
of corresponding spinors as

a ⋅ b = ψλμφ
λμ . (3.169)
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EnricoFermi (1901–1954)was an Italian andAmer-
ican physicist and the creator of the world’s first nu-
clear reactor. He was one of the very few leading
physicists in history working both theoretically and
experimentally. Born in Rome, Italy, he was bap-
tised a Roman Catholic, though he was an agnos-
tic throughout his adult life. He was awarded the
1938 Nobel Prize in Physics for his work on induced
radioactivity by neutron bombardment and the dis-
covery of transuranic elements. He made significant
contributions to the development of quantum theory,
nuclear andparticle physics, and statisticalmechan-

ics. After Wolfgang Pauli discovered the exclusion principle in 1925, Fermi followed
with a paper in which he applied the principle to an ideal gas, introducing what is
now known as Fermi–Dirac statistics. Particles that obey the exclusion principle are
called “fermions”. Fermi left Italy in 1938 to escape Italian Racial Laws that affected
his Jewish wife. He emigrated to the United States, where he worked on the Manhat-
tan Project duringWorldWar II. Fermi was part of the scientific panel that advised on
target selection for the first atomic bombings. The panel agreed that atomic bombs
would be usedwithout warning against an industrial target. Following the detonation
of the first Soviet fission bomb inAugust 1949, he strongly opposed the development of
a hydrogen bomb on both moral and technical grounds. He was among the scientists
who testified on Oppenheimer’s behalf at the 1954 hearing that resulted in the denial
of the latter’s security clearance. Fermi also did importantwork in particle physics, es-
pecially related to weak interactions and physics of pions and muons. Many awards,
concepts, and institutions are named after Fermi, like Fermi liquid, Fermi surface,
Fermi interaction, the Fermi National Accelerator Laboratory, and the synthetic ele-
ment fermium. He died at age 53 of stomach cancer in his home in Chicago.

3.3.2 Spinors of the Lorentz group

Thus, in nonrelativistic theory, a particle with spin s is described by a (2s + 1)-compo-
nent symmetric spinor of rank 2s, that is, by a mathematical object, which is trans-
formed according to the corresponding irreducible representation of rotation group
SU(2). The rotation group is a subgroup of the Lorentz group (rotation group in four-
dimensional space-time). Let us limit ourselves to a proper Lorentz group (without
spatial inversions). The theory of four-dimensional spinors is constructed similarly to
the theory of spinors in three dimensions.

Spinor ξ α is a two-component object, and α = 1, 2, in correspondence with two
spin projections s = ±1/2. Under the action of an arbitrary Lorentz transformation,
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spinor components are transformed via each other as (binary transformations):

ξ 󸀠1 = αξ 1 + βξ 2 , ξ 󸀠2 = γξ 1 + δξ 2 , (3.170)

where complex coefficients α, β, γ, δ are determined by the rotation angles of four-
dimensional coordinate system and satisfy the condition

αδ − βγ = 1 , (3.171)

so that the determinant of transformation (3.170) is equal to 1. Thus, there is a limita-
tion, determined by two equations for four complex coefficients, so that there remain
8 − 2 = 6 independent real transformation parameters, corresponding to the number
of rotation angles of a coordinate system in four-dimensional space-time (rotations in
six coordinate planes).

Due to (3.171), transformations (3.170) leave invariant the following bilinear form:

ξ 1Ξ2 − ξ 2Ξ1 , (3.172)

which is constructed from the components of two spinors ξ α and Ξα, which corre-
sponds to a scalar particlewith spin s = 0, composed of two particleswith spin s = 1/2.

Besides contravariant spinors ξ α, we can also introduce covariant spinors ξα as

ξα = gαβξ
β , (3.173)

where the “metric tensor” gαβ has the same form as (3.155):

gαβ = g
λμ = (

0 1
−1 0
) , (3.174)

so that

ξ1 = ξ
2 , ξ2 = −ξ

1 , (3.175)

ξ 1Ξ2 − ξ 2Ξ1 = ξ αΞα = −ξαΞ
α . (3.176)

Up to now, all the expressions are the same as in nonrelativistic theory. The differ-
ence appears when we consider complex conjugate spinors. In nonrelativistic the-
ory, the sum ψ1ψ1∗ + ψ2ψ2∗, determining the probability density of particle localiza-
tion in space, is scalar. Thus, the components ψα∗ are to be transformed as covari-
ant components of a spinor. The corresponding transformation (3.141), as we have
seen, is unitary. In relativistic theory particle density is not a scalar, but the time-
component of a 4-vector, so that there are no limitations on coefficients of transfor-
mation (3.170), except (3.171). Thus, in relativistic theory, complex conjugate transfor-
mations of spinors are essentially different. Correspondingly, herewe are dealingwith
two types of spinors. The indices of the spinors, transformed by complex conjugate ex-
pressions (3.170), will be supplied by additional dots (dotted indices).
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By definition, we have ηα̇ ∼ ξ α∗ (here ∼means “transformed as”) and the rule of
transformation for spinors with dotted indices is written as

η󸀠
̇1
= α∗η ̇1 + β∗η2̇ , η󸀠 2̇ = γ∗η ̇1 + δ∗η2̇ . (3.177)

Operations of the lowering and lifting of indices are written as usual:

η ̇1 = η
2̇ , η2̇ = −η

̇1 . (3.178)

With respect to three-dimensional rotations, 4-spinors behave as three-dimensional
spinors; as we already noted, that rotation group is a subgroup of the Lorentz group.
However, for three-dimensional spinorsψ∗α ∼ ψ

α. Thus, ηα̇ under rotations behaves as
a contravariant 3-spinor ψα.

Spinors of higher rank are defined as objects, which are transformed as products
of the components of several spinors of rank 1. For example, we can introduce three
types of second-rank spinors:

ξ αβ ∼ ξ αΞβ , ζ αβ̇ ∼ ξ αηβ̇ , ηα̇β̇ ∼ ηα̇H β̇ . (3.179)

Accordingly, the rankof a spinor in relativistic theory is denotedby thepair of numbers
(k, l), that is, the number of nondotted and dotted indices.

Contraction of spinors can be performed only over pairs of indices of a similar
type (two dotted or two nondotted), as summation over the pair of indices of different
types is not an invariant operation. Thus, taking the spinor

ζ α1α2 ...αk β̇1β̇2 ...β̇l , (3.180)

symmetric over all k-dotted and l-nondotted indices, we can not obtain the spinor of
the lower rank (contraction over the pair of indices, with respect to which the spinor
is symmetric, gives zero, with the account of (3.176)). Thus, symmetric spinors realize
irreducible representations of the Lorentz group, and each of these representations
is characterized by the pair of numbers (k, l). As each of the spinor indices takes two
values, we have k + 1, essentially different sets7 of numbers α1, α2, . . . , αk in (3.180)
(containing 0, 1, 2, . . . k values equal to 1 and k, k−1, . . . ,0 values equal to 2) and l+1 sets
of numbers β̇1, β̇2, . . . , β̇l. Accordingly, the symmetric spinor of rank (k, l) has (k + 1)(l +
1) independent components, which defines the dimensionality of the corresponding
irreducible representation.

7 ζ αβ̇ and ζ β̇α are just the same, as transformations (3.170) and (3.177) are independent.
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The relationship between spinors and 4-vectors
Spinor ζ αβ̇ has 2 ⋅ 2 = 4 components, the same number as the 4-vector aμ. Both real-
ize the same irreducible representation of the proper Lorentz group, and we have the
following linear relations between their components:

a1 = 1
2
(ζ 12̇ + ζ 2 ̇1) , a2 = i

2
(ζ 12̇ − ζ 2 ̇1) ,

a3 = 1
2
(ζ 1 ̇1 − ζ 22̇) , a0 = 1

2
(ζ 1 ̇1 + ζ 22̇) . (3.181)

For spatial components, these relations are the same as in the case of the three-dimen-
sional rotation group, taking into account the substitution ψα

β → ζ αβ̇. The expression
for a0 is obvious from the previous discussion on the probability density of particle
localization as a time-component of a 4-vector. The inverse relation has the form

ζ 1 ̇1 = ζ22̇ = a
3 + a0 , ζ 22̇ = ζ1 ̇1 = a

0 − a3 ,

ζ 12̇ = −ζ2 ̇1 = a
1 − ia2 , ζ 2 ̇1 = −ζ12̇ = a

1 + ia2 . (3.182)

The coefficients in these expressions are specially chosen for the scalar product to be
written as

a2 = 1
2
ζαβ̇ζ

αβ̇ , ab = 1
2
ζαβ̇ξ

αβ̇ . (3.183)

The correspondence between ζ αβ̇ and the 4-vector aμ is the special case of the general
rule: any symmetric spinor of the rank (k, k) is equivalent to the symmetric irreducible
(that is, becoming zero after contractionover anypair of indices) 4-tensor of the rank k.

Relations between a spinor of rank (1, 1) and the 4-vector (3.181), (3.182) can be
written in compact form using Pauli matrices:

a = 1
2
Sp( ̂ζ σ) a0 = 1

2
Sp ̂ζ , (3.184)

̂ζ = a ⋅ σ + a0 ̂1 , (3.185)

where ̂ζ is the ζ αβ̇ matrix, and ̂1 is the unit matrix.
Let us write the spinor ξ α transformation as

ξ 󸀠α = (Bξ )α , where B = (α β
γ δ
) . (3.186)

Then,8

η󸀠β̇ = (B∗η)β̇ = (ηB+)β̇ . (3.187)

8 For covariant components, we have ξ 󸀠α = (B̃
−1ξ )α = (ξB−1)α, η󸀠α̇ = (ηB

∗−1)α, so that the scalar product
of spinors remains invariant.
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Consequently, the transformation of the spinor of the rank (1, 1) is written as

ζ 󸀠 = BζB+ . (3.188)

For infinitesimal transformation, we can write B = 1 + λ, where λ is an infinitesimal
matrix. Then, from (3.188), we have

ζ 󸀠 = ζ + (λζ + ζλ+) . (3.189)

Consider now a Lorentz transformation to the coordinate system, moving with in-
finitesimal velocity δv (with no change of direction in the spatial axes). Under this
transformation, 4-vector aμ = (a0, a) is transformed as

a󸀠 = a − a0δv , a󸀠0 = a0 − a ⋅ δv . (3.190)

Let us now use equation (3.184). First of all,

a󸀠0 = a0 − aδv = a0 − 1
2
Sp(ζσδv) . (3.191)

On the other hand,

a󸀠0 = 1
2
Sp ζ 󸀠 = a0 + 1

2
Sp(λζ + ζλ+) = a0 + 1

2
Sp ζ (λ + λ+) . (3.192)

Comparing (3.191) and (3.192), we get

λ + λ+ = −σδv . (3.193)

Likewise, considering the transformation of a, we obtain

σλ + λ+σ = −δv . (3.194)

Now, equations (3.193), (3.194) give

λ = λ+ = − 1
2
σ ⋅ δv , (3.195)

so that the infinitesimal Lorentz transformation of spinor ξ α is done by the matrix

B = 1 − 1
2
(σ ⋅ n)δv, (3.196)

wheren = δv/δv. Now,we can consider finite transformations. Lorentz transformation
(to the coordinate system, moving with velocity v) has the geometrical meaning of a
rotation of a four-dimensional coordinate system by angleφ in the (t,n)-plane, where
φ is determined by velocity v: v = thφ [33]. Infinitesimal transformation corresponds
to the angle δφ = δv, and rotation by the finite angle can be achieved by making
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the δφ-rotation φ/δφ times. Raising (3.196) to the power φ/δφ and going to the limit
δφ→ 0, we obtain

B = exp(−φ
2
n ⋅ σ) . (3.197)

Taking into account that evenpowers ofn⋅σ are equal to 1,whereas oddpowers reduce
to n ⋅ σ, we get

B = ch φ
2
− n ⋅ σ sh φ

2
, thφ = v . (3.198)

Note that the transformation matrix B = B+ is Hermitian. Equation (3.198) finally de-
termines the Lorentz transformation of a 4-spinor of first rank.

Consider nowan infinitesimal rotation of somevector in three-dimensional space:

a󸀠 = a − [δθ × a] . (3.199)

In this case, we obtain

B = 1 + i
2
σ ⋅ δθ , (3.200)

whereas for the finite angle rotation,

B = exp(i θ
2
n ⋅ σ) = cos θ

2
+ in ⋅ σ sin θ

2
, (3.201)

where n determines the direction of the rotation axis. This matrix is unitary B+ = B−1,
as it should be for spatial rotation.

Inversion of spinors (P-reflection)
In nonrelativistic quantum mechanics, spatial inversion does not change the sign of
an axial vector, such as spin. Thus, its sz-projection also does not change. It follows
then that under inversion each component of the three-dimensional spinor ψα trans-
forms only via itself:

ψα → Pψα (3.202)

Making inversion twice, we return to the initial coordinate system. In the case of
spinors, the return to the initial coordinates can be understood as a rotation by an-
gle 0, or like a rotation by angle 2π. However, we have seen that for spinors these
two operations are not the same, since—according to (3.161) spinor components—ψα

change sign under rotation by 2π. Thus, we obtain two alternatives:

P2 = 1 , i. e. P = ±1 , (3.203)
P2 = −1 , i. e. P = ±i . (3.204)
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Consider now4-spinors. Inversion commuteswith spatial rotations, as it only changes
the signs of x, y, z in x, y, z, t, but does not commutewith transformations dealingwith
the t-axis. Consider the Lorentz transformation L to a system, moving with velocity v;
then, PL = L󸀠P, where L󸀠 is the transformation to system, moving with velocity −v.
Thus, under the inversion components of a 4-spinor, ξ α cannot transform via each
other, and inversion transforms ξ α via some other objects, which may be only ηα̇. As
inversion does not change the sign of sz, the components ξ 1 and ξ 2 can be transformed
only into η ̇1 and η2̇, corresponding to the same values of sz = +1/2 and sz = −1/2.
Understanding inversion as an operation giving 1 being applied twice, we define it by

ξ α → ηα̇ , ηα̇ → ξ α ,

ξα → −η
α̇ , ηα̇ → −ξ α (3.205)

for the case of P2 = 1. For the alternative variant of P2 = −1, we can write:

ξ α → iηα̇ ηα̇ → iξ α

ξα → −iη
α̇ ηα̇ → −iξ α. (3.206)

Thedifferent sign in the second rowof these expressions is connectedwith the fact that
the lowering or raising of the same index, according to (3.175), (3.178), is performed
with different signs. Below, for precision, we shall use the definition (3.206).

With respect to the subgroup of rotations, as we have seen above, ξ α and ηα̇ are
transformed in the same way. Let us construct the following combinations:

ξ α ± ηα̇ . (3.207)

It is easily seen that these combinations are transformed under inversion via each
other, as (3.202) with P = ±i. However, these combinations do not behave as spinors
with respect to all transformations of the Lorentz group.

Thus, the inclusion of inversion into our group of symmetry requires the simulta-
neous consideration of the pair of spinors (ξ α, ηα̇), the so-called bispinor. Four com-
ponents of the bispinor realize one of the irreducible representations of the extended
Lorentz group. The scalar product of two bispinors can be constructed in two different
ways. The value of

ξ αΞα + ηα̇H
α̇ (3.208)

does not change under inversion and defines the true scalar. The value of

ξ αΞα − ηα̇H
α̇ (3.209)

is also invariant with respect to rotations of the four-dimensional coordinate system,
but it changes its sign under inversion, defining the pseudoscalar.
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Also in two ways, from the components of two bispinors, we can define the corre-
sponding spinor of the second rank ζ αβ̇. Defining it as

ζ αβ̇ ∼ ξ αH β̇ + Ξαηβ̇ , (3.210)

we obtain the object, transforming under inversion as ζ αβ̇ → ζα̇β, so that the 4-vector
equivalent to this spinor is transformed as (a0, a) → (a0, −a) and represents the true
4-vector (here a is the polar vector). But we can also define ζ αβ̇ in another form:

ζ αβ̇ ∼ ξ αH β̇ − Ξαηβ̇ . (3.211)

Then, under inversion ζ αβ̇ → −ζα̇β, and this spinor corresponds to the 4-vector, trans-
formed under inversion as (a0, a) → (−a0, a), i. e. 4-pseudovector (here, a is the axial
vector).

3.3.3 The Dirac equation

A particle with spin 1/2—in the rest system—is described by a two-component wave
function, a three-dimensional spinor. By it four-dimensional “origin” thismay be both
nondotted or nondotted 4-spinor: ξ α or ηα̇. The only operator entering the wave equa-
tion is pμ = i𝜕μ, which in spinor representation is expressed via pαβ̇:

p1 ̇1 = p22̇ = pz + p0 , p22̇ = p1 ̇1 = p0 − pz ,

p12̇ = −p2 ̇1 = px − ipy , p2 ̇1 = −p12̇ = px + ipy . (3.212)

From the requirement of relativistic invariance, we can immediately write the follow-
ing system of first-order differential equations:

pαβ̇ηβ̇ = mξ
α ,

pβ̇αξ
α = mηβ̇ , (3.213)

which is the system of Dirac equations in spinor representation.
Substituting ηβ̇ from the second equation of (3.213) into the first, we get

pαβ̇ηβ̇ =
1
m
pαβ̇pγβ̇ξ

γ = mξ α . (3.214)

Taking into account pαβ̇pγβ̇ = p
2δαγ , we obtain from (3.214)

(p2 −m2)ξ γ = 0 (3.215)

that is, a Klein–Gordon equation for each of the spinor components. It is clear now
that parameterm is just the particlemass. Note that only the presence ofmass requires
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the simultaneous introduction of two spinors: ξ α and ηβ̇, that is, the bispinor, or we
would not be able to construct relativistically invariant equations containing the di-
mensional parameterm. As a result, ourwave equation is automatically invariantwith
respect to spatial inversion, if we define it by (cf. (3.206))

P : ξ α → iηα̇ , ηα̇ → iξ α . (3.216)

Simultaneously, pα̇β → pαβ̇ in equations (3.213).
With the help of (3.185) and (3.182), equations (3.213) can be written as

(p0 + pσ)η = mξ ,
(p0 − pσ)ξ = mη , (3.217)

where we have introduced the following columns:

ξ = (ξ
1

ξ 2
) , η = (η ̇1

η2̇
) . (3.218)

For complex conjugate equations, it is convenient to introduce rows

ξ∗ = (ξ 1∗, ξ 2∗) , η∗ = (η∗̇1 , η
∗
2̇ ) (3.219)

and write (taking into account p∗μ = −pμ)

η∗(p0 + pσ) = −mξ
∗ ,

ξ∗(p0 − pσ) = −mη
∗ . (3.220)

The inversion for complex conjugate spinors can be written as

P : ξ α∗ → −iη∗α̇ , η∗α̇ → −iξ
α∗ . (3.221)

In the literature, it is more common to use (instead of (3.213) or (3.217)) the so-
called symmetric form of the Dirac equation. To obtain it, we introduce the four-
component Dirac bispinor, which is constructed from the columns of (3.218):

ψ = (ξ
η
) . (3.222)

Then, the system of equations (3.217) can be written as

pμγ
μ
ikψk = mψi (3.223)

or, lowering bispinor indices, as

(γμpμ −m)ψ = 0 , i. e. (iγμ𝜕μ −m)ψ = 0 , (3.224)
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where γμpμ = p0γ0 − p ⋅ γ = iγ0𝜕0 + iγ ⋅ ∇, and we have introduced the 4 × 4 matrices
(Dirac matrices)

γ0 = (0
̂1

̂1 0
) , γ = (0 −σ̂

σ̂ 0
) . (3.225)

In fact, equation (3.217) can be written as

(
0 p0 + pσ

p0 − pσ 0
)(

ξ
η
) = m(ξ

η
) , (3.226)

which coincides with (3.224) if we take γ-matrices as in (3.225).
In the general case, γ-matrices should satisfy conditions guaranteeing the identity

p2 = m2. To derive these conditions, we multiply (3.224) on the left side by γνpν. Then,

(γνpν)(γ
μpμ)ψ = m(γ

μpμ)ψ = m
2ψ . (3.227)

As pμpν is a symmetric tensor (momentum components commute), equation (3.227)
can be rewritten as

1
2
pμpν(γ

μγν + γνγμ)ψ = m2ψ , (3.228)

so that the necessary condition is satisfied if

γμγν + γνγμ = 2gμν . (3.229)

Thus, the pairs of different matrices γμ anticommute, whereas their squares are

(γ1)2 = (γ2)2 = (γ3)2 = −1 , (γ0)2 = 1 . (3.230)

Under an arbitrary unitary transformation of bispinorψ󸀠 = Uψ (whereU is the unitary
matrix 4 × 4), γ-matrices transform as

γ󸀠 = UγU−1 = UγU+ , (3.231)

so that (γμpμ −m)ψ = 0 is transformed into (γ󸀠μpμ −m)ψ󸀠 = 0. Under this transforma-
tion, as it is obvious from (3.225), the following properties are conserved:

γ+ = −γ , γ0+ = γ0 . (3.232)

The complex conjugate of equation (3.224) can be written as

(−p0γ̃0 − pγ̃ −m)ψ
∗ = 0 . (3.233)

Using γ̃μψ∗ = ψ∗γμ andmultiplying this equation from the right side by γ0 (and taking
into account γγ0 = −γ0γ), we obtain a conjugate Dirac’s equation as

ψ̄(γμpμ +m) = 0 , (3.234)
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where we have introduced

ψ̄ = ψ∗γ0, ψ∗ = ψ̄γ0 (3.235)

– Dirac’s conjugate of bispinor ψ.
It is easy to see that the Dirac’s equation (3.224)

(iγμ𝜕μ −m)ψ = 0 (3.236)

can be obtained from the Euler–Lagrange equation

𝜕ℒ
𝜕ψ̄
− 𝜕μ(

𝜕ℒ
𝜕(𝜕μψ̄)
) = 0 (3.237)

using the following Lagrangian of Dirac’s field:

ℒ =
i
2
[ψ̄γμ(𝜕μψ) − (𝜕μψ̄)γ

μψ] −mψ̄ψ ≡ iψ̄γμ
↔
𝜕μ ψ −mψ̄ψ , (3.238)

where
↔
𝜕μ denotes differentiation “to the right” and “to the left”, defined by the given

identity. In Euler–Lagrange equations, ψ̄ and ψ are considered as independent fields.
The conjugate Dirac equation (3.234) is obtained from equation (3.237) after the re-
placement ψ̄ → ψ. Then, we immediately find the canonical momentum π(x) of
Dirac’s field as

π(x) = 𝜕ℒ
𝜕ψ̇(x)
= iψ+(x) . (3.239)

Consequently, the Hamiltonian density of Dirac’s field is written as

ℋ = πψ̇ − ℒ = ψ+γ0(−iγi𝜕i +m)ψ = ψ
+γ0(iγ0𝜕0ψ) = ψ

+i𝜕ψ
𝜕t
, (3.240)

where in the second equality we used the Dirac equation (3.224).

Paul Adrien Maurice
Dirac (1902–1984) was
an English theoretical
physicist who is regarded
as one of the greatest
physicists of the 20th
century. Dirac made fun-
damental contributions
to the early development
of both quantum me-
chanics and quantum
electrodynamics. Dirac

shared the 1933 Nobel Prize in Physics with Erwin Schrödinger. In 1925, he presented
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a formulation of quantum mechanics in more fundamental and illuminating form
than other authors. Dirac’s “The Principles of Quantum Mechanics”, published in
1930, was a landmark in the history of science. It quickly became one of the stan-
dard textbooks on the subject and is still actively used today. In that book, Dirac
incorporated the previous work of Werner Heisenberg on matrix mechanics and of
Erwin Schrödinger on wave mechanics into a single mathematical formalism that
associates measurable quantities to operators acting on the Hilbert space of vectors
that describe the state of a physical system. This book also introduced the delta
function. In 1928, he proposed the Dirac equation as a relativistic equation of motion
for the wave function of the electron. This work led Dirac to predict the existence of
the positron, the electron’s antiparticle, which he interpreted in terms of “holes” in
what came to be called the Dirac sea. Dirac’s equation also contributed to explaining
the origin of quantum spin as a relativistic phenomenon. Dirac is regarded as the
founder of quantum electrodynamics, being the first to use that term. In 1931, Dirac
proposed the idea magnetic monopoles, which could also explain the quantization
of electrical charge. Later he studied the quantization of the gravitational field, and
developed a general theory of quantum field theories with dynamical constraints,
which forms the basis of the gauge theories and superstring theories of today. Dirac
was known among his colleagues for his precise nature. When Niels Bohr complained
that he did not know how to finish a sentence in a scientific article he was writing,
Dirac replied, “I was taught at school never to start a sentence without knowing the
end of it.” On poetry he was quoted to say: “The aim of science is to make difficult
things understandable in a simpler way, the aim of poetry is to state simple things in
an incomprehensible way. The two are incompatible.”

Remark on dimensionalities

Using the explicit form of Dirac’s field Lagrangian (3.238) and the standard dimensionalities [ℒ] = l−4,
[m] = l−1, [𝜕] = l−1, we immediately determine the dimensionality of Dirac’s field as

[ψ] = [ψ̄] = l−3/2. (3.241)

This result will be used below.

The inversion (3.216) for ψ can be written as

P : ψ→ iγ0ψ , ψ̄→ −iψ̄γ0 . (3.242)

The invariance of the Dirac equation with respect to (3.242) is obvious. Replacing p→
−p andψ→ iγ0ψ, we get (p0γ0 +pγ−m)γ0ψ = 0, so that multiplying this equation on
the left side by γ0 and taking into account anticommutativity of γ0 and γ, we return to
initial equation.
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Let us multiply (γμpμ −m)ψ = 0 on the left side by ψ̄, and ψ̄(γμpμ +m) = 0 on the
right by ψ, then make the sum of both and obtain

ψ̄γμ(pμψ) + (pμψ̄)γ
μψ = pμ(ψ̄γ

μψ) = 0, (3.243)

which is the continuity equation for 4-current of Dirac’s particles:

𝜕μj
μ = 0 , jμ = ψ̄γμψ = (ψ∗ψ,ψ∗γ0γψ) , (3.244)

describing the charge conservation, with the charge density given by j0 = ψ∗ψ > 0.
The Dirac equation can be written in the form of a Schroedinger equation:

i𝜕ψ
𝜕t
= Hψ , (3.245)

where the Hamiltonian H has the form

H = αp + βm , (3.246)

with Dirac’s matrices α and β:

α = γ0γ , β = γ0 , (3.247)

so that (3.246) coincides with (3.240) introduced above. The matrices (3.247) satisfy
the commutation relations

αiαk + αkαi = 2δik , βα + αβ = 0 , β2 = 1 , (3.248)

and in explicit form

α = (σ 0
0 −σ
) , β = (0 1

1 0
) . (3.249)

Consider the nonrelativistic limit. Performing in equation (3.217) the limit of p → 0,
ε → m, we get ξ = η, so that both spinors of the bispinor coincide, and all four com-
ponents of the bispinor are nonzero. At the same time, it is clear that only two com-
ponents are independent. It is convenient to transform to the so-called standard rep-
resentation, when in the nonrelativistic limit two components of the bispinor will be
zero. Let us introduce

ψ = (φ
χ
) , φ = 1

√2
(ξ + η) , χ = 1

√2
(ξ − η) . (3.250)

For the particle at rest, we obviously have χ = 0. Adding and subtracting equa-
tions (3.217), we obtain

p0φ − pσχ = mφ ,
−p0χ + pσφ = mχ , (3.251)
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which allows finding the explicit form of γ-matrices in the standard representation [6].
Note that in equation (3.250), we separately sum the first and the second components
of spinors ξ and η. Accordingly, in standard representation, as in the spinor represen-
tation considered above, ψ1, ψ3 corresponds to spin projection sz = +1/2, whereas ψ2,
ψ4 to projection sz = −1/2. The matrix

1
2
Σ = 1

2
(
σ 0
0 σ
) (3.252)

gives the three-dimensional operator of the spin in standard representation.

Helicity

In relativistic theory, the orbitalmoment l and spin s of amoving particle are not conserved separately.
Only the total angular moment j = l + s is conserved. Accordingly, the projection of the spin on some
direction (z-axis) is also not conserved and cannot be used to classify polarization (spin) states of a
moving particles. However, wemay introduce the helicity of a particle, that is, the projection of its spin
on the direction of motion (momentum). In fact, l = [r × p] and the product s ⋅ n, where n = p

|p| , coin-
cides with the conserving product j ⋅ n. The eigenvalues of these spin projections are obviously given
by λ = −s, . . . , +s. Accordingly, the wave functions of a free particle with momentum p are character-
ized by helicity: ψpλ. In the rest system the state of a particle is characterized, as usual, by its spin
(projection on z-axis).
For a particle with zeromass, there is no rest system of coordinates; this particle moves with the speed
of light in any coordinate system. However, for such a particle there is always the special direction
in space, the direction of momentum p. In this case, there is no symmetry with respect to arbitrary
three-dimensional rotations, but only the axial symmetry to rotations around this preferred direction.
Accordingly, we have only helicity conservation. If we require symmetry with respect to reflections in
planes, passing through the p-axis, the states differing by the sign of λ will be degenerate, and for
λ ̸= 0, we have double degeneracy. Thus, in the limit ofm → 0, the system of equations for a particle
with spin s splits into independent equations for particles with different helicities ±s, ±(s − 1), . . .: for
example, in the case of photon λ = ±1, which corresponds to right and left polarizations of light.

3.3.4 The algebra of Dirac’s matrices

For practical calculations, it is important to understand algebraic properties of
γ-matrices. Here, we present a short summary of the main formulas and definitions,
which will be extensively used in the rest of the book. All the algebraic properties of
Dirac’s matrices are derived from two basic relations:

γμγν + γνγμ = 2gμν , (3.253)

gμνγ
μγν = γμγ

μ = 4 or γ20 − γ
2
1 − γ

2
2 − γ

2
3 = 4 , (3.254)

that is, from the main anticommutation relation and the scalar product.
If γμ and γμ in the matrix product are separated by several other γ-matrices, γμ

and γμ can be placed in neighboring positions with the help of (3.253), after which we
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can perform the summation over μ using (3.254). In this way, we can get the following
relations:

γμγ
νγμ = −2γν ,

γμγ
λγνγμ = 4gλν ,

γμγ
λγνγργμ = −2γργνγλ ,

γμγ
λγνγργσγμ = 2(γσγλγνγρ + γργνγλγσ) . (3.255)

Rather often γμ appears in combination with 4-vectors. Let us introduce the standard
notation:

â ≡ γμaμ . (3.256)

Then, from (3.253), we obtain

âb̂ + b̂â = 2aμb
μ , ââ = a2 , (3.257)

and from (3.255), we get

γμâγ
μ = −2â ,

γμâb̂γ
μ = 4aμb

μ ,

γμâb̂ĉγ
μ = −2ĉb̂â ,

γμâb̂ĉd̂γ
μ = 2(d̂âb̂ĉ + ĉb̂âd̂) . (3.258)

Traces of γ-matrices are widely used. In particular,

Sp γμ = 0 . (3.259)

Introducing

Tμν = 1
4
Sp(γμγν) (3.260)

and calculating the trace of (3.253), we find

Tμν = gμν (3.261)

and, respectively,
1
4
Sp(âb̂) = aμbμ . (3.262)

The special case is the matrix γ5, defined as

γ5 = −iγ0γ1γ2γ3. (3.263)
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It is easy to see that

γ5γμ + γμγ5 = 0 , (γ5)2 = 1 , (3.264)

so that γ5 anticommutes with all other γ-matrices. As to α and βmatrices, we have

αγ5 − γ5α = 0 , βγ5 + γ5β = 0 . (3.265)

The γ5-matrix is Hermitian:

γ5+ = iγ3+γ2+γ1+γ0+ = −iγ3γ2γ1γ0 = γ5 , (3.266)

as we can transform the index order 3210 to 0123 by even permutation of γ-matrices.
In spinor representation, the explicit form of γ5 is given by

γ5 = (−
̂1 0

0 ̂1
) , (3.267)

whereas in standard representation,

γ5 = ( 0 −
̂1

− ̂1 0
) , (3.268)

and we see that

Sp γ5 = 0 , (3.269)

which is obviously independent of the choice of representation.
The set of 16 matrices

{γA} = {1̂, γ5, γμ, iγμγ5, iσμν} , (3.270)

where

σμν = 1
2
(γμγν − γνγμ) (3.271)

represents the “complete set”, over which we can “expand” any 4×4-matrix. In fact,
these matrices have the property

Sp γA = 0 (A ̸= 1) ,

γAγA = 1 ,
1
4
Sp γAγB = δ

A
B . (3.272)

Accordingly, all γA-matrices are linearly independent, and any 4 × 4-matrix can be
represented in the form

Γ = ∑
A
cAγ

A , cA =
1
4
Sp γAΓ . (3.273)
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3.3.5 Plane waves

The state of a free particlewith fixedmomentum is described by the planewave,which
can be written as

ψp =
1
√2εp

upe
−ipx , (3.274)

where up is a normalized bispinor. For the wave function with “negative frequency”
(also changing the sign of p), we have

ψp =
1
√2εp

u−pe
ipx . (3.275)

In both cases, we write εp = +√p2 +m2. The bispinor components up and u−p satisfy
the following equations, which are derived by substitution of (3.274) and (3.275) into
the Dirac equation:

(p̂ −m)up = 0 , (p̂ +m)u−p = 0 . (3.276)

For conjugated bispinors ūp = u∗pγ
0, we have

ūp(p̂ −m) = 0 , ū−p(p̂ +m) = 0 . (3.277)

Let us assume the invariant normalization

ūpup = 2m , ū−pu−p = −2m . (3.278)

Multiplying (3.276) from the left by ū±p, we obtain (ū±pγμu±p)pμ = 2m2 = 2p2, that is,

ūpγ
μup = ū−pγ

μu−p = 2p
μ , (3.279)

so that the 4-vector of the current density for plane waves (3.274); (3.275) is equal to

jμ = ψ̄±pγ
μψ±p =

1
2εp

ū±pγ
μu±p =

pμ

εp
, (3.280)

that is, jμ = (1, v), where v = p
εp

is the particle velocity. We see that our choice of
normalization corresponds to “one particle in volume V = 1”.

In standard representation, from (3.251), we get the following system of homoge-
neous linear equations:

(εp −m)φ − pσχ = 0 ,
(εp +m)χ − pσφ = 0 . (3.281)
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Then,

φ = pσ
εp −m

χ , χ = pσ
εp +m

φ . (3.282)

The commonmultiplier before φ and χ (which is arbitrary until we are simply dealing
with solutions of homogeneous equations) should be chosen from the normalization
condition (3.278). Accordingly, in standard representation, spinors up and u−p take the
form

up = (
√εp +mw
√εp −m (nσ)w

) , u−p = (
√εp −m (nσ)w󸀠

√εp +mw󸀠
) , (3.283)

where n = p
|p| , and w is an arbitrary two-component spinor, satisfying the normaliza-

tion condition

w∗w = 1 . (3.284)

The second expression in (3.283) is obtained from the first one by changing the sign
beforem and replacing w → (nσ)w󸀠. Likewise, we can obtain [6]

ūp = (√εp +mw∗, −√εp −mw∗(nσ)) ,

ū−p = (√εp −mw󸀠∗(nσ), −√εp +mw󸀠∗) . (3.285)

Direct multiplication gives

ū±pu±p = ±2m .

In the rest frame, that is, for εp = m, we have

up = √2m(
w
0
) , u−p = √2m(

0
w󸀠
) , (3.286)

so thatw is the three-dimensional spinor to which our plane waves reduce in the non-
relativistic limit:

wσ=1/2 = (
1
0
) , wσ=−1/2 = (

0
1
) . (3.287)

For fixedmomentum, there are two independent states, corresponding to the two pos-
sible values of spinprojection. In accordancewith the general statementsmade above,
we are speaking of particle helicity λ, that is, spin projection on the direction of p. The
helicity states correspond to the plane waves with spinor w = w(λ)(n), which is an
eigenfunction of operator nσ:

1
2
(nσ)w(λ) = λw(λ) . (3.288)
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3.3.6 Spin and statistics

A second quantization of the Dirac field (of particles with spin s = 1/2) can be done as
follows: Let us introduce an expansion of an arbitrary Dirac field over plane waves:

ψ = ∑
pσ

1
√2εp
(apσupσe

−ipx + b+pσu−p−σe
ipx) ,

ψ̄ ≡ ψ+γ0 = ∑
pσ

1
√2εp
(a+pσ ūpσe

ipx + bpσ ū−p−σe
−ipx) . (3.289)

We know Dirac’s Hamiltonian, so we do not need an energy-momentum tensor. Using
(3.240), (3.245), we find the average energy of the Dirac particle in the state with wave
function ψ:

E = ∫ d3rψ∗Hψ = i∫ d3rψ∗ 𝜕ψ
𝜕t
= i∫ d3rψ̄γ0 𝜕ψ

𝜕t
. (3.290)

Substituting here (3.289), taking into account the orthogonality of the functions with
different p, σ and ū±pσγ0u±p,σ = 2εp (see (3.280)), we obtain

H = ∑
pσ

εp(a
+
pσapσ − bpσb

+
pσ) . (3.291)

This expression is obviously the direct consequence of the transformation properties
of the Dirac field and the requirement of relativistic invariance. Now it is clear that we
must quantize our field using Fermion rules, that is, introducing anticommutators:

{apσ , a
+
pσ} = 1 , {bpσ , b

+
pσ} = 1 . (3.292)

For different indices, as well as for the pairs of “noncrossed” and “crossed” operators,
the corresponding anticommutators are equal to zero. As a result, (3.291) is rewritten
in the form

H = ∑
pσ

εp(a
+
pσapσ + b

+
pσbpσ − 1) , (3.293)

so that the eigenvalues of energy (minus the infinite energy of a vacuum) are equal to

E = ∑
pσ

εp(Npσ + N̄pσ) (3.294)

and are positive definite. If we had instead used Boson quantization, we would have
obtained E = ∑p εpσ(Npσ − N̄pσ), that is, a nonpositive definite expression.9

9 Here we are using the standard notations, assuming that the general properties of the creation and
annihilation operators are known to the reader [35].
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For the momentum operator, in a similar way, from ∫ d3rψ∗p̂ψ, we get

P = ∑
pσ

p(Npσ + N̄pσ) . (3.295)

The 4-current density operator jμ = ψ̄γμψ in a second quantized form defines the
charge operator as

Q = ∫ d3rψ̄γ0ψ = ∑
pσ
(a+pσapσ + bpσb

+
pσ) = ∑

pσ
(a+pσapσ − b

+
pσbpσ + 1) . (3.296)

This gives the eigenvalues of charge

Q = ∑
pσ
(Npσ − N̄pσ) , (3.297)

leading to the opposite charges of particles and antiparticles.
Fermion anticommutation rules for creation and annihilation operators immedi-

ately lead [35] to the validity of the Pauli principle, so that the eigenvalues of the parti-
cle number operator in a given stateNpσ canonlybe0or 1: nowwe see that for particles
with spin 1/2 this directly follows from the general requirements of relativistic invari-
ance and positive definiteness of energy. Then, we are coming to the general theorem
on spin and statistics: all particles with a half-integer spin are fermions, while particles
with integer spin are bosons. This becomes obvious if we take into account that any
particle with spin s can be assumed to be “composed” of 2s particles with spin 1/2.
For the half-integer s, the number 2s is odd, whereas for the integer s, this number
is even. “Composite” particles, consisting of an even number of fermions, is a boson,
and those consisting of an oddnumber of fermions are fermions. To understand this, it
is sufficient to consider permutations of such “composite” particles. It is understood
that all particles with the same spin obey the same statistics. If we could have had
fermions with spin s = 0, then such fermions as well as fermions with spin 1/2 could
be used to “compose” a particle with spin 1/2, which would be a boson, in contradic-
tion with the general results for s = 1/2 obtained above. This remarkable theorem is
among the most general statements of relativistic quantum field theory and was first
proved by Pauli.10

10 We would like to stress that in quantum field theory this theorem is really proved, starting from
most general requirements of relativistic invariance (transformation properties of fields) and positive
definiteness of energy, that is, the stability of the ground state of a particle system, and not postulated,
as it is done in nonrelativistic quantummechanics.
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Wolfgang Ernst Pauli
(1900–1958) was an Aus-
trian-born Swiss theoretical
physicist and one of the pio-
neers of quantum physics. In
1945, Pauli received the No-
bel Prize in Physics for his
“exclusion principle or Pauli
principle”. Only two months
after graduating from gymna-
sium in Vienna, he published
his first paper on Einstein’s

general relativity. He attended the Ludwig–Maximilians University in Munich, under
supervision of Arnold Sommerfeld. Sommerfeld asked Pauli to review the theory of
relativity for the Encyklopädie derMathematischenWissenschaften. Thismonograph
remains a standard reference on the subject to this day. Pauli made many important
contributions to physics. In 1924, he proposed a new quantum degree of freedom
(or quantum number) with two possible values, in order to resolve inconsistencies
in atomic spectra. He formulated the Pauli exclusion principle, which stated that
no two electrons could exist in the same quantum state, including this new two-
valued degree of freedom, which later was identified as electron spin. In 1930, Pauli
considered the problem of beta decay. In a letter to Lise Meitner, he proposed the
existence of a hitherto unobserved neutral particle with a small mass, in order to
explain the continuous spectrum of beta decay. Later it became known as neutrino,
which was experimentally discovered only in 1956. In 1940 Pauli actually proved the
spin–statistics theorem, a critical result of quantum field theory which states that
particles with half-integer spin are fermions, while particles with integer spin are
bosons. In the middle 1950s he also proved the general CPT, theorem of relativistic
quantum field theory. The Pauli effect was named after the anecdotal bizarre ability
of his to break experimental equipment simply by being in the vicinity. He was known
as a severe critic of physical theories and papers, which were unclearly presented.
Famously, he once said of such an unclear paper: “It is not even wrong!” In 1958, he
fell ill with pancreatic cancer. When his assistant visited him at the hospital in Zurich,
Pauli asked him: “Did you see the room number?” It was 137; Pauli died in this room.

3.3.7 C, P, T transformations for fermions

Factors of ψpσ = upσ exp(−ipx), entering (3.289) accompanying operators apσ , represent wave func-
tions of free particles (for example, electrons) with momentum p and polarization σ: ψ(e) = ψpσ . Fac-
tors of ψ̄−p−σ accompanying operators bpσ are to be considered aswave functions of the corresponding
antiparticles (for example, positrons) with the same p and σ. However, ψpσ and ψ̄−p−σ differ by their
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transformation properties, and their components satisfy different systems of equations. To overcome
this deficiency, we have to perform a certain unitary transformation of ψ̄−p−σ , such that the new wave
function satisfies the same equation asψpσ . We shall call this newwave function the wave function of
antiparticles (positron) with momentum p and polarization σ. Thus, we can write

ψ(p)pσ = UCψ̄−p−σ . (3.298)

This operation is called charge conjugation C. It is not limited to planewaves only; in the general case,
we can write

Cψ(t, r) = UCψ̄(t, r) . (3.299)
Dropping the details of derivation, which can be found in [6], we quote only the final result:

UC = γ
2γ0 . (3.300)

From ψ̄ = ψ∗γ0 = ̃γ0ψ∗ = γ0ψ∗, we obtain

Cψ = γ2γ0ψ̄ = γ2ψ∗ . (3.301)

For plane wave solutions, we can easily see that

Cψ−p−σ = ψpσ , (3.302)

so that both electrons and positrons are described by identical wave functions ψ(e) = ψ(p) = ψpσ ,
as it should be, because these functions carry information only on momentum and polarization of
particles.
In a similar manner, we may introduce the operation of time inversion. Changing the sign of time
should be accompanied by the complex conjugation of the wave function [35]. To obtain the fermion
wave function “reversed in time” Tψ in the same representation as initialψ, we again have to perform
some unitary transformation of ψ∗ (or ψ̄):

Tψ(r, t) = UT ψ̄(r, −t) . (3.303)

It can be shown [6] that
UT = iγ

3γ1γ0 , (3.304)
so that

Tψ(t, r) = iγ3γ1γ0ψ̄(−t, r) = iγ3γ1ψ∗(−t, r) . (3.305)
Spatial inversion of (bi)spinors P was defined above in (3.242):

Pψ = iγ0ψ , Pψ̄ = −iψ̄γ0 . (3.306)

Let us make transformations T, P, C of the Dirac field ψ one after another:

Tψ(t, r) = −iγ1γ3ψ∗(−t, r) ,

PTψ(t, r) = iγ0(Tψ) = γ0γ1γ3ψ∗(−t, −r) ,

CPTψ(t, r) = γ2(γ0γ1γ3ψ∗)
∗
= γ2γ0γ1γ3ψ(−t, −r) (3.307)

or
CPTψ(t, r) = iγ5ψ(−t, −r) . (3.308)

Applying these operations to (3.289), we can find the following transformation rules for creation and
annihilation operators [6]:

aCpσ = bpσ , bCpσ = apσ ,

aP−pσ = iapσ , bP−pσ = ibpσ ,

aT−p−σ = 2σia
+
pσ , bT−p−σ = 2σib

+
pσ . (3.309)
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3.3.8 Bilinear forms

As bispinorsψ andψ∗ have 4 components each, their multiplication produces 4× 4 =
16 independent bilinear combinations. In symmetric form, these combinations can be
written as (refer to (3.270), (3.271))

S = ψ̄ψ , Vμ = ψ̄γμψ ,

P = iψ̄γ5ψ , Aμ = ψ̄γμγ5ψ ,
Tμν = iψ̄σμνψ , (3.310)

where

σμν = 1
2
(γμγν − γνγμ) . (3.311)

These bilinear forms reduce to one scalar S, one pseudoscalar P, the 4-vector Vμ, the
4-pseudovector Aμ, and the antisymmetric tensor Tμν.

The scalar nature of S and the pseudoscalar of P are obvious from their spinor
representations (refer to (3.208) and (3.209)):

S = ξ∗η + η∗ξ , P = i(ξ∗η − η∗ξ ) . (3.312)

The vector nature ofVμ is now clear from the Dirac equation pμγμψ = mψ, which gives
(ψ̄pμγμψ) = mψ̄ψ, where scalars are standing in both sides.

The rule of construction of bilinear forms (3.310) is obvious: they are composed
in such a way that γμ represents a 4-vector, γ5 is a pseudovector, whereas ψ̄ and ψ—
standing on both sides—produce a scalar. The absence of bilinear forms reducing to a
symmetric 4-tensor is clear from the fact that the symmetric combination γμγν+γνγμ =
2gμν, so that the corresponding bilinear form reduces to gμνψ̄ψ. In practice, bilinear
forms (3.310) are widely used during construction of different interaction Lagrangians
of spinor fields. The transformation rules of the bilinear forms under discrete trans-
formations C, P, T can be found in [6].

3.3.9 The neutrino

We have seen above that the necessity to describe a particle with spin s = 1/2 by the
two spinors ξ and η is directly related to the finite mass of a particle. There is no such
demand if the particle mass is zero.11 A wave equation describing such a particle can

11 Among all the known fermions only the neutrino possesses mass, which is zero or very small: the
experimental limitation is that its mass mν < 2 eV [67]. However, experimentally observed neutrino
oscillations definitely show that neutrino mass is definitely finite [67]. Still, zero mass is a very good
approximation to describe most of neutrino physics.
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be constructed using only one spinor, for example, η:

pαβ̇ηβ̇ = 0 (3.313)

or, which is the same,

(p0 + pσ)η = 0 . (3.314)

This is the so-called Weyl equation.
We have noted before that the wave equation withmassm is automatically invari-

ant with respect to spatial inversion (transformation ξ ↔ η (3.216)). However, if we
describe our particle by one spinor, this symmetry is lost.

The energy and momentum of a particle with m = 0 are related by ε = |p|. Thus,
for a plane wave ηp ∼ e−ipx, equation (3.314) gives

(n ⋅ σ)ηp = −ηp , (3.315)

where n = p
|p| . The same equation holds for the wave with “negative frequency” η−p ∼

eipx:

(n ⋅ σ)η−p = −η−p . (3.316)

The second quantized operators of the field η are represented by

η = ∑
p
(ηpap + η−pb

+
p) ,

η+ = ∑
p
(η∗pa
+
p + η
∗
−pbp) . (3.317)

Fromhere, as usual, we see that η∗−p is the wave function of an antiparticle. A neutrino
is electrically neutral, but—in this formalism—it is not a truly neutral particle.

From the definition of operators pαβ̇ (3.212), it can be seen that pαβ̇∗ = −pα̇β. Then,
the complex conjugate spinor η∗ satisfies the equation pα̇βη∗β̇ = 0, or, which is the
same,

pα̇βη
β̇∗ = 0 . (3.318)

Let us denote ηβ̇∗ = ξ β, as complex conjugation transforms dotted spinors into non-
dotted ones. Thus, the wave functions of antiparticles satisfy the equation

pα̇βξ
β = 0 (3.319)

or

(p0 − pσ)ξ = 0 . (3.320)
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For the plane wave, we have

(n ⋅ σ)ξp = ξp . (3.321)

Note that 1
2 (n ⋅σ) represents the operator of spin projection on the particle momentum

(helicity). Thus, equations (3.315) and (3.321) automatically describe the particles with
fixed helicities; spin projection is always oriented parallel to themomentum. The spin
of the particle is opposite to the momentum (helicity is equal to −1/2, “left screw”),
whereas the spin of an antiparticle is oriented along the momentum (helicity +1/2,
“right screw”). Accordingly, for neutrinos and antineutrinos, there is no symmetry
towards reflections in the plane, orthogonal to momentum, as shown in Figure 3.2.
This corresponds to the experimentally observed breaking of spatial parity in weak
interactions. However, symmetry towards CP operation persists, which corresponds
to the conservations of the so-called combined parity.12 This scheme represents the
two-component theory of neutrinos first proposed by Landau.

Figure 3.2: Under mirror reflection (spatial inversion) the left-hand neutrino is transformed into a
nonexistent right-hand neutrino (a). A real physical state is obtained with simultaneous transforma-
tion from particles to antiparticles (charge conjugation), when the left-hand neutrino is transformed
into the right-hand antineutrino (b).

With one spinor η (or ξ ), we can construct only four bilinear combinations, which
together form a 4-vector:

jμ = (η∗η, η∗ση) . (3.322)

Using (p0 + pσ)η = 0 and η∗(p0 − pσ) = 0, we get the continuity equation 𝜕μjμ = 0,
so that jμ represents the 4-vector of the neutrino current density.

12 In fact, weak interactionsweakly break also the CP-invariance, which ismainly observed in decays
of K-mesons. This obviously corresponds to the weak breaking of T-invariance. The physical nature
of the breaking of CP-invariance has not been well established up to now, and our description of neu-
trinos simply neglect this small effect.
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Neutrino plane waves are conveniently written as

ηp =
1
√2ε

upe
−ipx , η−p =

1
√2ε

u−pe
ipx , (3.323)

and spinor amplitudes are normalized by the invariant condition:

u∗±p(1, σ)u±p = 2(ε,p) . (3.324)

Then particle density and current density are equal to j0 = 1, j = p
ε = n.

To describe neutrino interactions with other particles, it is convenient to use com-
mon notations and introduce the neutrino “bispinor”, with two components equal to
zero:ψ = ( 0η ). However, such a form ofψ, in general, changes after the transformation
to another (nonspinor) representation. We can overcome this difficulty, noting that in
spinor representation

1
2
(1 + γ5) = 1

2
{(
̂1 0
0 ̂1
) + (
− ̂1 0
0 ̂1
)} = (

0 0
0 ̂1
) ,

1
2
(1 − γ5) = (

̂1 0
0 0
) , (3.325)

so that we can write the following identities:

1
2
(1 + γ5) (ξ

η
) = (

0
η
) , (η∗, ξ∗) 1

2
(1 − γ5) = (η∗,0) , (3.326)

where ξ is an arbitrary “dummy” spinor. Then, the condition of the true two-compo-
nent nature of a neutrino will also be satisfied in its description by the 4-component
bispinor ψ in arbitrary representation, if ψ is understood to be the solution of Dirac’s
equation withm = 0:

p̂ψ = 0 (3.327)

with an additional condition (γ5-invariance)

1
2
(1 + γ5)ψ = ψ or γ5ψ = ψ . (3.328)

This condition can be taken into account automatically if in all expressionswe replace
neutrino bispinors with the following rule:

ψ→ 1
2
(1 + γ5)ψ , ψ̄→ ψ̄ 1

2
(1 − γ5) . (3.329)

For example, the 4-vector of the current density is written as

jμ = 1
4
ψ̄(1 − γ5)γμ(1 + γ5)ψ = 1

2
ψ̄γμ(1 + γ5)ψ . (3.330)
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From the previous discussion of the helicity of massless fermions, it is clear that—
in the general case—we can introduce “right-hand” and “left-hand” fields as

ψR =
1
2
(1 + γ5)ψ , ψL =

1
2
(1 − γ5)ψ , ψ = ψR + ψL . (3.331)

These notations are often used not only for neutrinos, but also for any other fermions
with spin s = 1/2, when discussing problems where we can neglect fermion masses.

Hermann Klaus Hugo Weyl (1885–1955) was a Ger-
manmathematician, theoretical physicist and philoso-
pher. Although much of his working life was spent in
Zürich, Switzerland and then Princeton, New Jersey, he
is associated with the University of Göttingen tradition
ofmathematics, represented by David Hilbert andHer-
mann Minkowski. His research has had major signifi-
cance for theoretical physics as well as purely math-
ematical disciplines, including number theory. He was
one of themost influentialmathematicians of the twen-
tieth century. Weyl published technical and some gen-
eral works on space, time, matter, philosophy, logic,

symmetry, and the history of mathematics. He wasmuch influenced by Einstein’s gen-
eral relativity from its early days. He tracked the development of relativity physics in
his book “Raum, Zeit, Materie” (Space, Time, Matter). He was one of the first to con-
ceive of combining general relativity with the laws of electromagnetism. In 1918, he
introduced the notion of gauge, and gave the first example of what is now known as
a gauge theory. Weyl’s gauge theory was an unsuccessful attempt to model the elec-
tromagnetic field and the gravitational field as geometrical properties of spacetime.
From 1923 to 1938, Weyl developed the theory of compact groups, and his results are
foundational in understanding the symmetry structure of quantummechanics, which
he put on a group-theoretic basis. He was one of the creators of spinor algebra. From
this time, and certainly much helped by Weyl’s expositions, Lie groups and Lie alge-
bras became a mainstream part both of pure mathematics and theoretical physics.
In 1929, Weyl proposed amassless fermion particle described byWeyl equation. Neu-
trinos were once thought to be Weyl fermions, but they are now known to have mass.
Such quasiparticles were recently discovered in what is now known asWeyl semimet-
als, a type of topological material.

In recent years, because of the indirect experimental indications of neutrino mass finiteness (such as
neutrino oscillations [67]), there was a revival of interest in a truly neutral model, the so-called Ma-
jorana neutrino, which is transformed to itself under charge conjugation and possesses a finite mass,
which is in some sense different from the usual Dirac’s mass.We have seen that mass term of the Dirac
type in the Lagrangian mixes L and R components of the same field:

ℒD = D(ψ̄LψR + ψ̄RψL) = Dψ̄ψ , (3.332)
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where D denotes Dirac’s mass. The mass term of the Majorana-type mixes L and R components of
charge conjugate fields, so that the corresponding contributions to the Lagrangian can be written as
[13]

ℒMA = A(ψ̄
C
LψL + ψ̄Lψ

C
L) = A ̄χχ ,

ℒMB = B(ψ̄
C
RψR + ψ̄Rψ

C
R) = Bω̄ω , (3.333)

where the index C denotes the charge conjugation and the Hermitian (truly neutral or Majorana) fields
we introduced:

χ = ψL + ψ
C
L , χC = χ ,

ω = ψR + ψ
C
R , ωC = ω . (3.334)

The inverse relations have the form

ψL =
1
2
(1 − γ5)χ , ψC

L =
1
2
(1 + γ5)χ ,

ψR =
1
2
(1 + γ5)ω , ψC

R =
1
2
(1 − γ5)ω . (3.335)

When both Dirac and Majorana terms are present in the Lagrangian, we have

ℒDM = Dψ̄LψR + Aψ̄
C
LψL + Bψ̄

C
RψR + h.c

=
1
2
D( ̄χω + ω̄χ) + A ̄χχ + Bω̄ω = ( ̄χ, ω̄) ( A

1
2D

1
2D B

)(
χ
ω
) . (3.336)

The mass matrix appearing here is easily diagonalized, and its eigenvalues give

m1,2 =
1
2
(A + B) ± 1

2
√(A − B)2 + D2 . (3.337)

Thus, the most general mass term (3.336) with 4-component fermion fields, in fact, describes two Ma-
jorana particles with different masses. The corresponding fields are represented by the following (di-
agonalizing (3.336)) linear combinations of initial fields:

ϕ1 = χ cos θ − ω sin θ , ϕ2 = χ sin θ + ω cos θ , (3.338)

where
tg 2θ = D

B − A
. (3.339)

It is easy to see that in the case of A = B = 0 (that is, for zero Majorana masses), we obtain the
usual formalism of a 4-component Dirac’s field, so that the Dirac’s fermion corresponds to the “de-
generate” limit A = B = 0 of two Majorana particles. Majorana mass terms in the Lagrangian (3.333)
obviously lead to nonconservation of additive quantum numbers carried by the field ψ, for example
electric charge, so that all the known elementary fermions, except neutrinos, being charged should
have A = B = 0 and should be Dirac’s particles. For the neutrino, there is no such limitation, and it
can be described within the more general Majorana formalism. If the neutrino mass is precisely zero,
Majorana neutrinos become equivalent to two-component Weyl neutrinos, considered above. In case
of finite neutrino masses, the Majorana theory leads to a number of specific predictions, which we
shall not discuss here.
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Ettore Majorana (born 1906; probably died after
1959) was an Italian theoretical physicist. OnMarch
25, 1938, he disappeared under mysterious circum-
stances while going by ship from Palermo to Naples.
The Majorana equation and Majorana fermions are
named after him. Majorana was born in Catania,
Sicily. Mathematically gifted, he was very young
when he joined Enrico Fermi’s team in Rome. Ma-
jorana was known for not seeking credit for his dis-
coveries, considering his work to be banal. He wrote
only nine papers in his lifetime. He became a full
professor of theoretical physics at the University of

Naples in 1937, without needing to take an examination because of his “high fame
of singular expertise reached in the field of theoretical physics”, independently of
the competition rules. In 1937, Majorana predicted that a class of fermions is possi-
ble with particles that are their own antiparticles. These are the so-called Majorana
fermions. Majorana’s idea was to describe neutrinos. In 2012, quasiparticles with
properties Majorana predicted may have been confirmed in experiments on hybrid
semiconductor-superconductor wire devices. There is also a speculation that at least
some part of the “missing mass” in the universe may be composed of Majorana par-
ticles. Subsequent to Majorana’s disappearance in unknown circumstances during a
trip by ship from Palermo to Naples on 25 March 1938, despite several investigations,
his body was not found, and his fate is still uncertain. He had apparently withdrawn
all of his money from his bank account prior to making his trip. In 2011, Italian media
reported that the Rome Attorney’s Office had announced an inquiry into the state-
ment made by a witness about meeting with Majorana in Buenos Aires in the years
after World War II. On 4 February 2015, the Rome Attorney’s Office released a state-
ment declaring that Majorana was alive between 1955 and 1959, living in Valencia,
Venezuela. These last findings, based on new evidence, made the Office declare the
case officially closed, having foundno criminal evidence related to his disappearance,
which probably was a personal choice.

Particles with spin s = 3/2
Particles with spin s = 3/2 in their rest system are described by a symmetric three-dimensional spinor
of the third rank, possessing 2s+ 1 = 4 independent components. Accordingly, in the arbitrary Lorentz
system of coordinates, the description of such particles should be done using spinors ξ αβ̇ ̇γ, ηα̇βγ, ζ αβγ,
and χα̇β̇ ̇γ, each of which is symmetric over all indices of identical nature (that is, dotted or nondotted).
Note that the last pair of spinors do not add anything new to the equations obtained with the help of
the first pair. There exist several equivalent formulations of wave equations for this problem, but we
shall limit ourselves to a short review of only one [6].
We have seen above that to a pair of spinor indices αβ̇, we can associate a single 4-vector index μ.
Thus, we can associate ξ αβ̇ ̇γ → ψ ̇γμ and ηβ̇αγ → ψγ

μ, that is, introduce the “mixed” spinor-tensors.
Then, we can introduce the “vector” bispinor ψμ (where we have dropped the bispinor indices). The
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wave equation is written as a “Dirac equation” for each of vector components ψμ:

(p̂ −m)ψμ = 0 (3.340)

with an additional condition
γμψμ = 0 . (3.341)

Multiplying (3.340) by γμ, taking into account (3.341), we obtain γμγνpνψμ = 0, or, due to commutation
rules for γμ: 2gμνpνψμ − γνγμψμ = 0, where the second term gives zero due to (3.341). Then, we have

pμψμ = 0 , (3.342)

which guarantees that four-dimensional spinors are transformed to the “right” three-dimensional
spinors in the rest system.
The problem of the correct account of additional conditions for wave equations creates significant
difficulties during the quantization procedure. Note, however, that, as in the case of particles with
higher integer spins, there are no fundamental fermions with s ≥ 3/2 in the Standard Model.



4 The Feynman theory of positron and elementary
quantum electrodynamics

4.1 Nonrelativistic theory. Green’s functions

In this chapter we shall present an elementary introduction in quantum electrody-
namics (QED), which is understood as the theory of the electromagnetic interactions
of elementary leptons, that is, mostly of electrons and positrons. Here, we mainly fol-
low the original papers of Feynman; similar presentations can be found in [18, 60].
However, we will begin with nonrelativistic quantum mechanics, so as to introduce
some basic notions, which are usually not included in traditional courses like [35].

Consider the time-dependent Schroedinger equation

iℏ𝜕ψ
𝜕t
= Hψ . (4.1)

The standard approach to solve this differential equation startswith thewave function
at some initial moment of timeψ(t1), the calculation of its change during a small time
interval Δt, to find ψ(t1 + Δt), with further continuation of this process of integration.
Feynman proposed writing the solution of equation (4.1) in integral form, so that at
time t2 > t1, the wave function at space-time point (t2,x2) is expressed via the wave
function at space-time point (t1,x1) as follows:

ψ(x2, t2) = ∫ d
3x1K(x2t2;x1t1)ψ(x1t1) , t2 ≥ t1 . (4.2)

Here, the integral kernelK(x2t2;x1t1) represents thepropagator (Green’s function), cor-
responding to the linear differential equation (4.1). The physical meaning of propaga-
tor is clear from the form of equation (4.2); this is the quantummechanical probability
amplitude of particle transition from point x1 at time t1 to point x2 at time t2.

For simplicity, we consider the case of time-independent HamiltonianH. In accor-
dancewith the superposition principle of quantummechanics, we can expandψ(x1t1)
in a series over the full set of orthonormalized eigenfunctions un(x) of the operator H
with eigenvalues En:

Hun = Enun ,

∫ d3xu∗n (x)um(x) ≡ (un, um) = δnm , (4.3)

∑
n
un(x)u

∗
n(x
󸀠) = δ(x − x󸀠) .

Then,

ψ(x1t1) = ∑
n
cnun(x1)e

−iEnt1/ℏ . (4.4)

https://doi.org/10.1515/9783110648522-004
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The coefficients cn can be obtained by multiplying (4.4) by u∗n (x1) and performing in-
tegration over the whole three-dimensional space:

cn = ∫ d
3x1u
∗
n (x1)ψ(x1t1)e

iEnt1/ℏ . (4.5)

The wave function at time t2 can be written as

ψ(x2t2) = ∑
n
cnun(x2)e

−iEnt2/ℏ . (4.6)

Substituting (4.5) into (4.6), changing the order of summation and integration, and
comparing with (4.2), we get

K(x2t2;x1t1) = ∑
n
un(x2)u

∗
n (x1)e

−iEn(t2−t1)/ℏ , (4.7)

and introducing the notation

χn(x, t) = un(x)e
−iEnt/ℏ , (4.8)

we obtain a shorter expression:

K(x2t2;x1t1) = ∑
n
χn(x2t2)χ

∗
n (x1t1). (4.9)

At coinciding times t1 = t2 = t, from (4.7), we obtain

K(x2t;x1t) = ∑
n
un(x2)u

∗
n (x1) = δ(x2 − x1) . (4.10)

This obviously transforms (4.2) for t1 = t2 into the identity. We are certainly interested
in times t2 > t1; thus, it is convenient to put K(x2t2;x1t1) = 0 for t2 < t1, which guaran-
tees causality, and we define

K(x2t2;x1t1) = θ(t2 − t1)∑
n
χn(x2t2)χ

∗(x1t1) , (4.11)

where we have introduced the step-function

θ(t) = {1 for t ≥ 0,
0 for t < 0.

(4.12)

The derivative of the θ-function is given by

dθ(t)
dt
= δ(t) . (4.13)

Now, we can write the differential equation for Green’s function (propagator) K(r2t2;
r1t1). As χn represent the solutions of the Schroedinger equation (4.1), (4.3), using
(4.10), (4.11), and (4.13), we have

[iℏ 𝜕
𝜕t2
− H(x2)]K(x2t2;x1t1) = iℏ∑

n
χn(x2t2)χ

∗(x1t1)
𝜕
𝜕t2

θ(t2 − t1)
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= iℏ∑
n
un(x2)u

∗
n (x1)e

−iEn(t2−t1)/ℏδ(t2 − t1)

= iℏδ(t2 − t1)∑
n
un(x2)u

∗
n (x1) = iℏδ(t2 − t1)δ(x2 − x1) . (4.14)

Thus, in the general case (even for time-dependent H) Green’s function (propagator),
K(x2t2;x1t1) is defined as the solution of the inhomogeneous (with δ-source in the
right-hand side) differential equation1

[iℏ 𝜕
𝜕t2
− H(x2t2)]K(x2t2;x1t1) = iℏδ(t2 − t1)δ(x2 − x1) (4.15)

with the boundary condition

K(x2t2;x1t1) = 0 for t2 < t1 . (4.16)

For t2 ̸= t1, equation (4.15) reduces to

[iℏ 𝜕
𝜕t2
− H(x2t2)]K(x2t2;x1t1) = 0 . (4.17)

If we integrate equation (4.15) over small time interval from t2 = t1 − ε to t2 = t1 + ε, we
get

K(x2t1 + ε;x1t1) − K(x2t1 − ε;x1t1) = δ(x2 − x1) . (4.18)

The contribution of the second term in the left-hand side of equation (4.15) drops out
as ε → 0 for finite H. Now, take into account that K(x2t1 − ε,x1t1) = 0 due to (4.16) and
t1 − ε < t1. Then,

lim
ε→0

K(x2t1 + ε;x1t1) = K(x2t1;x1t1) = δ(x2 − x1) , (4.19)

which coincides with (4.10).
Thus, the use of equation (4.2) is equivalent to the standard quantummechanical

description. Consider the problem of when we can write H = H0 + V and if for H = H0
there is an exact solution. Then, we can try to construct the perturbation theory over
potential V . Let us denote K0(x2t2;x1t1) as the Green’s function of a “free” particle
moving in the absence of perturbation V . We can easily convince ourselves that differ-
ential equation (4.15) and boundary condition (4.16) can be unified in a single integral
equation:

K(2, 1) = K0(2, 1) −
i
ℏ
∫ d4x3K0(2, 3)V(3)K(3, 1) , (4.20)

1 Actually, our definition ofGreen’s function of the Schroedinger equation coincideswith its definition
in mathematical physics [70].
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where the numbers denote space-time points, for example, (2) = (x1, t2), and we have
introduced the four-dimensional integration variable x3 = (x3, t3), where integration
over time t3 is formally done within infinite limits (the presence of θ-function in the
definition of propagator automatically guarantees the correct finite limits of integra-
tion). To check the validity of equation (4.20), let us act on both of its sides by the
operator [iℏ 𝜕𝜕t2 −H0(2)], so that using equation (4.15) for K0 (i. e., for V = 0), we obtain
the differential equation

[iℏ 𝜕
𝜕t2
− H0(2)]K(2, 1) = iℏδ(2, 1) + V(2)K(2, 1) ,

which, after moving the second term in the right-hand side to the left-hand side, just
coincides with equation (4.15). As K0(2, 1) = 0 for t2 < t1, we also have K(2, 1) = 0 for
t2 < t1.

The advantage of integral equation (4.20) is that it is conveniently solved by iter-
ations, so that we obtain the following perturbation series for the propagator:

K(2, 1) = K0(2, 1) −
i
ℏ
∫ d4x3K0(2, 3)V(3)K0(3, 1)

+ (
−i
ℏ
)
2
∫ d4x3d

4x4K0(2, 3)V(3)K0(3, 4)V(4)K0(4, 1) + ⋅ ⋅ ⋅ . (4.21)

The terms of this expansion have an obvious and graphic interpretation: the first term
describes the propagation of a free particle from point 1 to point 2, and the second
describes the propagation of a free particle from point 1 to point 3, where it is scat-
tered by potential V and propagates as a free particle from 3 to 2. Obviously, point 3
is arbitrary, so that we have to integrate over its coordinates. This process continues
in higher orders, so that the series describes all the multiple scattering processes up
to an infinite order in V . Such a perturbation theory can be effectively used for the
solution of concrete problems, and we shall return to it later.

Richard Phillips Feynman (1918–1988) was an
American theoretical physicist, known for his ma-
jor contributions into the path integral formulation
of quantummechanics (actually a completely new
formulation of quantum mechanics), the theory of
quantum electrodynamics, and the physics of the
superfluidity of liquid helium, as well as to parti-
cle physics, where he proposed the parton model
of hadrons. He also significantly contributed to the
theory of weak interactions. For his contributions
to the development of quantum electrodynamics
(which is probablymost precise theory in physics),

Feynman, jointly with Julian Schwinger and Shinichiro Tomonaga, received the Nobel
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Prize in Physics in 1965. Feynman developed a widely used pictorial representation
scheme for the mathematical expressions describing interactions of quantum parti-
cles, known as Feynman diagrams, one of the most widely used methods in modern
theoretical physics. He assisted in the development of the atomic bomb during World
War II, working in Manhattan project. Feynman also has been credited with pioneer-
ing the field on quantum computing and introducing the concept of nanotechnology.
Feynman was a great popularizer of physics through both books and lectures, includ-
ing his famousundergraduate lectures, “TheFeynmanLectures onPhysics”. Feynman
also became known to general public through his autobiographical books “Surely
You’re Joking, Mr. Feynman!” and “What Do You Care What Other People Think?”
Besides his Nobel prize and numerous other awards, he was elected a Foreign Mem-
ber of the Royal Society in 1965, received the OerstedMedal in 1972, and the National
Medal of Science in 1979. He was also elected to the National Academy of Sciences,
but later resigned.

4.2 Relativistic theory

Now, we are going to construct a similar formalism in relativistic theory. Dirac’s equa-
tion for a free particle is written as

(i∇̂ −m)ψ = 0 , ∇̂ = γμ𝜕μ = γ
0𝜕0 + γ ⋅ ∇ , (4.22)

where, in contrast to the previous section, we returned to a “natural” system of units
with ℏ = c = 1. A 4-component wave function (Dirac’s bispinor) ψ(x2t2) can be ob-
tained from the “initial” oneψ(x1t1)with the help of the propagator (Green’s function)
K0(x2t2;x1t1), which is a 4×4-matrix. This matrix should satisfy the Dirac’s equation
with the right-hand side, similar to equation (4.15):

(i∇̂2 −m)K0(2, 1) = iδ(2, 1) , (4.23)

where, as before, we use the obvious number notations for space-time points. In anal-
ogy with (4.4), (4.6), the wave function ψ can be expanded over the complete set of
eigenfunctions un, corresponding both to positive and negative energies. Instead of
u∗n , it is convenient to use conjugate spinors ūn = u

†γ0 = u†β (where we use Dirac’s
matrices γ0 = β, β2 = 1). Repeating the steps used to derive (4.7), we find the desirable
propagator as

K(x2t2;x1t1) = ∑
En>0

un(x2)ūn(x1)e
−iEn(t2−t1) + ∑

En<0
un(x2)ūn(x1)e

−iEn(t2−t1) for t2 > t1 ,

K(x2t2;x1t1) = 0 for t2 < t1 . (4.24)

It is necessary to do the expansion of ψ over the complete set of eigenfunctions, in-
cluding those corresponding to negative energies. This may seem bad for physics, as
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the introduction of some external perturbation (potential) can induce quantum tran-
sition of a particle (for example an electron) from positive energy states to the states
with negative energies, which leads to instability of the system (absence of the ground
state). It is well-known that Dirac solved this problem in the following way: Let us
assume that all states with negative energies in the physical ground state (vacuum)
are already filled by electrons, so that the Pauli principle prevents an electronmoving
above this vacuum frommaking a transition to the filled states with negative energies.
In our formalism this reduces to the requirement that for t2 > t1 propagatorK(x2t2;x1t1)
should be the sum over the eigenfunctions, corresponding to positive energies only.
Mathematically we should write

K(x2t2;x1t1) = ∑
En>0

un(x2)ūn(x1)e
−iEn(t2−t1) for t2 > t1 , (4.25)

so that from (4.24) we should subtract the sum of terms, such as

un(x2)ūn(x1)e
−iEn(t2−t1) (4.26)

over the states with negative energies for all moments of time. This can be done, as
such a sum represents the solution of homogeneous (that is, without the right-hand
side of) equation (4.23). As a result, this sum is canceled by the second half of the
solution (4.24), and we obtain the following Green’s function for a free particle:

K+(x2t2;x1t1) = ∑
En>0

un(x2)ūn(x1)e
−iEn(t2−t1) for t2 > t1 . (4.27)

However, for this function

K+(x2t2;x1t1) = − ∑
En<0

un(x2)ūn(x1)e
−iEn(t2−t1) for t2 < t1 (4.28)

is obviously nonzero for t2 < t1. Note the minus sign appearing here! This last expres-
sion is conveniently written as

K+(x2t2;x1t1) = − ∑
En<0

un(x2)ūn(x1)e
−i|En||t2−t1| for t2 < t1 , (4.29)

so that in the exponent, we have only positive energies, and negative energies seem
to disappear.

In the presence of an external potential, we can again write an integral equa-
tion similar to equation (4.20) and its perturbation expansion of equation (4.21), but
with K0 replaced everywhere by K+, and the potential V should be considered as a
4×4-matrix. The terms of this series can be graphically understood by drawing space-
timeFeynmandiagrams. Thefirst termof the series (4.21)K+(2, 1)describes freeparticle
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Figure 4.1

Figure 4.2

propagation from point 1 to point 2 (Figure 4.1). The second term (Figure 4.2) has the
form

(−i) ∫ d4x3K+(2, 3)V(3)K+(3, 1) (4.30)

and describes single scattering. In the figure, the closed curve denotes the region
where the potential V is different from zero. The third term (Figure 4.3)

(−i)2 ∫ d4x3d
4x4K+(2, 3)V(3)K+(3, 4)V(4)K+(4, 1) (4.31)

describes two scattering processes. Diagrams in Figure 4.3(a) and Figure 4.3(b) illus-
trate two variants of such a scattering:
– Case (a). From point 1 to point 2, the electron propagates in such a way that time

grows along its world line; expression for K+ contains only sums, such as (4.27),
that is, only states with positive particle energies are accounted for. This is the
usual second-order scattering of an electron with positive energy, as in nonrela-
tivistic theory.

– Case (b). From point 4 to point 3, the electron propagates backwards in time, then
expression for K+ contains only sums over negative energy states, such as (4.29).
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Figure 4.3

In the Feynman interpretation this corresponds to a positron (that is, antiparti-
cle) propagation from point 3 to point 4. If time always grows, we can interpret
this sequence of events in the following way: An electron–positron pair is created
at point 3, with the electron propagating in the direction of point 2, whereas the
positron propagates to point 4, where it annihilates with the initial electron com-
ing there from 1.

Thus, according to Feynman, a positron is an electron propagating backwards in time.

This interpretation can also be illustrated from the classical point of view: in equations of motion of a
classical particle in electromagnetic field [33]

md2xμ

ds2
= edxν

ds
Fμν . (4.32)

The change of proper time direction s is equivalent to the change of the charge e sign.

Note that for the process shown in Figure 4.3,we certainly have to integrate over all the
possible values of times t3 and t4, so that both cases are described by the single term
of the series (4.31), which can be represented by the single diagram of Figure 4.3(a),
while the diagram of Figure 4.3(b) is just identical. The scattering process shown in
Figure 4.3(b) is in fact in accordance with Dirac’s theory: an electronwith negative en-
ergy goes to the state 2 with positive energy (final state), that is, an electron–positron
pair is created, while the hole is filled by the electron coming from 1, which annihi-
lates. As a result, the electron is scattered from state 1 to state 2, and the electron with
positive energy is replaced by one of the electrons from the negative “background”
(vacuum). Thus, we have an exchange of identical particles, and the corresponding
matrix element acquires a negative sign, as it should be for fermions. However, we
never used the Pauli principle. The appearance of a negative sign in (4.28) was due
to a method of construction of propagator K+, thus guaranteeing the correct statis-
tics. The generalization of these arguments to all higher orders of perturbation theory
produces an alternative proof of the spin-statistics theorem [18].
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4.3 Momentum representation

In practice, all calculations are most conveniently done in the momentum represen-
tation. Propagator K+ is determined by the equation

(i∇̂ −m)K+(2, 1) = iδ(2, 1) . (4.33)

Let us introduce the Fourier transform of K+, which we shall denote as S+(p), so that

K+(2, 1) = ∫ d
4pe−ip(x2−x1)S+(p) , (4.34)

where d4p = dp0d3p. The operator (i∇̂−m) can bemoved under the integral as (p̂−m),
whereas for the δ-function, we can write

δ(x2 − x1) = ∫
d4p
(2π)4

e−ip(x2−x1) . (4.35)

Then it is easy to find the following equation for S+(p):

S+(p) =
i
(2π)4

1
p̂ −m
. (4.36)

This expression can be rewritten as

S+(p) =
i
(2π)4

p̂ +m
p̂ +m

1
p̂ −m
=

i
(2π)4

p̂ +m
p2 −m2 , (4.37)

where we have taken into account that p̂2 = pμpμ = p20 − p
2 = p2, so that the denomi-

nator in (4.37) contains no matrices. Then,

K+(2, 1) =
i
(2π)4
∫ d4pe−ip(x2−x1) p̂ +m

p2 −m2 . (4.38)

Let us introduce, by definition, the following integral:

I+(2, 1) =
1
(2π)4
∫ d4pe

−ip(x2−x1)

p2 −m2 . (4.39)

Then, (4.38) can be written as

K+(2, 1) = i(i∇̂2 +m)I+(2, 1) . (4.40)

Substituting (4.40) into (4.33), we find that I+ satisfies the following equation:

(◻ +m2)I+(2, 1) = −δ(2, 1), (4.41)



112 | 4 The Feynman theory of positron and elementary quantum electrodynamics

that is, it represents, in fact, Green’s function of the Klein–Gordon equation. Separat-
ing the spatial coordinates and time, we rewrite I+ as

I+(x2 − x1) =
1
(2π)4

∞

∫
−∞

dp0 ∫ d
3pe
−ip0(t2−t1)eip(r2−r1)

p20 − p2 −m2 . (4.42)

Here, we have a problem: the integrand contains poles at p20 − p
2 −m2 = 0, that is, for

p0 = ±√p2 +m2 ≡ ±Ep. Thus, we have to introduce a certain integration path going
around these poles (the rule to encircle poles). Feynman’s rule is to replace

m→ m − iδ , δ > 0 , δ → +0 . (4.43)

Consequently, our integral is written as

I+(x2 − x1) = ∫
d3p
(2π)3

eip(r2−r1)
∞

∫
−∞

dp0
2π

e−ip0(t2−t1)

(p0 − Ep + iε)(p0 + Ep − iε)
, (4.44)

because the replacement (4.43) adds to Ep an infinitesimal imaginary part, which we
denoted iε. Consider now the integrand as a function of a complex variable p0. The
pole p0 = −Ep is now slightly above the real axis of p0 (which is the integration path
in (4.44)), whereas the pole p0 = +Ep is slightly below it, as shown in Figure 4.4. Let us
integrate (4.44), assuming that t2 − t1 > 0. In this case, integration is easily done using
the Cauchy theorem and closing the integration contour (path) in the lower half-plane
of p0. The integral over the semicircle at infinity gives zero, due to fast damping of the
exponential factor in the integrand, and what remains is just the integral along the
real axis we need. But the integral over the closed contour is simply determined by
the residue at the pole +Ep, which is inside the contour (and is encircled clockwise).
Finally we get

−
2πi
2Ep

e−iEp(t2−t1) . (4.45)

In the case of t2−t1 < 0, tomake zero the contributionof a semicircle at infinity,wehave
to close the integration contour in the upper half-plane. Then, inside the integration

Figure 4.4



4.4 The electron in an external electromagnetic field | 113

contour we have only the pole at −Ep, which is encircled counterclockwise, so that our
integral is equal to

−
2πi
2Ep

e+iEp(t2−t1) . (4.46)

Note that Ep is assumed to be positive by definition, so that the arguments of exponen-
tial factors in both (4.45) and (4.46) are positive (up to a factor of −i). Thus, both the
integral I+ and the propagatorK+ behave in similarly to (4.27) and (4.28); for t2−t1 > 0,
only positive energies contribute, whereas for t2 − t1 < 0, only negative ones. In fact,
the replacement (4.43) guarantees the equivalence to our previous definition of the
propagator K+.

We could define integration (4.42) in another way and instead of (4.43) just add an infinitesimal imag-
inary part to p0:

p0 → p0 + iδ , δ→ +0 . (4.47)

Then, in the integrand of (4.42) two poles appear, both in the lower half-plane of p0. Consequently, for
t2 − t1 > 0, when the integration contour is naturally closed in the lower half-plane, both positive and
negative energies contribute. At the same time, for t2− t1, we close the contour in the upper half-plane,
where there are no poles at all, so that the integral is zero. This definition of propagatorK gives, in fact,
equation (4.24) (“retarded” Green’s function), that is, Dirac’s theory for electrons only. Feynman’s rule
also has an obvious advantage of the imaginary part being introduced into the relativistic invariant
m, so that all expressions remain covariant, whereas in the theory of “electrons only” the imaginary
part in p0 makes it different from other components of 4-momentum.

We shall return to the discussion of these rather fine details of the definition of ana-
lytical properties of Green’s functions several times later on. Here, we only note the
most general property: poles of the propagators (Green’s functions) in momentum
representation determine, in fact, the energy spectrum of the corresponding parti-
cles. In our discussion above, Ep = √p2 +m2 represents the relativistic spectrum of
an electron (positron). This property of Green’s functions is also widely used in the
modern condensed matter theory. In particular, it is the basis of the whole concept of
quasiparticles—the elementary excitations in many particle systems [1].

4.4 The electron in an external electromagnetic field

Consider an electron interacting with an external electromagnetic field. This inter-
action is described by the expression ejμAμ = eψ̄γμψAμ, so that the interaction “poten-
tial” is conveniently denoted as eγμAμ ≡ eÂ (e is the electron charge). Dirac’s equation,
taking into account interaction with the electromagnetic field, has an obvious form:

(i∇̂ − eÂ −m)ψ = 0 , (4.48)

where we introduced the appropriate covariant derivative of electrodynamics.
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Accordingly, the particle propagator in the external fieldKA
+ is definedby the equa-

tion

(i∇̂2 − eÂ2 −m)K
A
+ (2, 1) = iδ(2, 1) . (4.49)

Dirac’s equation (4.48) can also be rewritten in the form of a Schroedinger equation with the appro-
priate Hamiltonian:

i 𝜕ψ
𝜕t
= Hψ = [α ⋅ (p − eA) + eφ +mβ]ψ , (4.50)

where we have taken into account that Aμ = (φ, −A). Then, the propagator is defined as the solution
of the following equation:

[i 𝜕
𝜕t2
− eφ(2) − α ⋅ (−i∇2 − eA2) −mβ]K

A
+ (2, 1) = iβδ(2, 1) , (4.51)

where the appearance of the β = γ0 matrix is related to the use of the Dirac’s conjugated spinors in
equation (4.24) and guarantees the relativistic invariance. Multiplying equation (4.51) by the matrix β,
we write it as

(i∇̂2 − eÂ2 −m)K
A
+ (2, 1) = iδ(2, 1) (4.52)

which coincides with (4.49).

The solution of equation (4.49) satisfies the integral equation, similar to equation
(4.20):

KA
+ (2, 1) = K+(2, 1) − ie∫ d

4x3K+(2, 3)Â(3)K
A
+ (3, 1) , (4.53)

which produces perturbation expansion (by iteration) similar to equation (4.21):

KA
+ (2, 1) = K+(2, 1) − ie∫ d

4x3K+(2, 3)Â(3)K+(3, 1)

+ (−ie)2 ∫ d4x3d
4x4K+(2, 3)Â(3)K+(3, 4)Â(4)K+(4, 1) + ⋅ ⋅ ⋅ . (4.54)

It seems that in the relativistic case, the relation between wave functionsψ(2) at point
x2 and ψ(1) at point x1 can be written in analogy with (4.2) as

ψ(2) = ∫ d3x1K
A
+ (2, 1)βψ(1) , (4.55)

where d3x1 is the volume element of three-dimensional space at fixed timemoment t1,
which is illustrated in Figure 4.5(a). Waves radiated from the point of the hyperplane
t1 = const form the wave function at point x2 at a later moment t2. However, this is
all wrong! The thing is that we defined Green’s function (propagator) in relativistic
theory in such a way that it describes the propagation of particles with positive ener-
gies ahead of time, and particles with negative energies backwards in time. Thus, the
analogue of equation (4.2) should be written as

ψ(x2t2) = ∫ d
3x1K

A
+ (x2t2,x1, t1)βψ(x1t1) − ∫ d

3x1K
A
+ (x2t2,x1t

󸀠
1)βψ(x1t

󸀠
1) , (4.56)
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Figure 4.5

where t1 < t2 < t󸀠1. Here, in accordance with Figure 4.5(b), the first term represents the
contribution of states with positive energy and depends on the previous moments of
time, whereas the second term gives the contribution of states with negative energies
and depends on future moments of time. The probability amplitude for the particle
transition to the point x2, t2 is not defined, if we only know the probability amplitude
to find an electron (or positron) at the earlier moment of time. Even if there was no
positron present at an earlier time, an external field could have created an electron–
positron pair during the system evolution, which leads to the finite probability ampli-
tude to find a positron in the future. In the Feynman approach, contributions to the
propagator corresponding to particles with positive energies are considered as prob-
ability amplitudes for an electron with a negative electric charge, whereas contribu-
tions corresponding to particleswith negative energies are considered as the probabil-
ity amplitudes for a positronwith energy−E > 0. Thus, to determine thewave function
of a Dirac’s field at some moment of time, we need to know its electronic component
at a previous moment of time and the positron component at some futuremoment of
time.

Equation (4.56) can be generalized if we note that to define the wave function
ψ(x2t2), we need the knowledge of ψ(x1t1) on some four-dimensional hypersurface
surrounding the point x2, t2, as shown in Figure 4.6:

ψ(x2t2) = ∫ dσ(x1)K
A
+ (2, 1)N̂(1)ψ(1) , (4.57)

where N̂ = Nμγμ, with Nμ being the vector normal to the hypersurface, surround-
ing x2, t2. Integration into equation (4.57) goes over this hypersurface. Then, we can
say that the form of equation (4.55) assumes precisely this. Thus, in the future—for
brevity—we shall use this simplest formulation.Weonly need to remember that spatial
integration in equation (4.55) should be done over the correctly chosen hypersurface
in four-dimensional space-time.
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Figure 4.6

The formal derivation of equation (4.57) can be done as follows: Let us use the four-dimensional Gauss
theorem:

∫
Ω

d4x󸀠
𝜕Fμ(x󸀠)
𝜕x󸀠μ
= ∫

S

dσ(x󸀠)Fμ(x
󸀠)nμ(x󸀠) , (4.58)

where Fμ(x󸀠) is some 4-vector function, defined in space-time volumeΩ limited by hypersurface S, and
nμ(x󸀠) is an external normal to surface element dσ(x󸀠) at point x󸀠. Letψ(x) be the solution of the Dirac’s
equation iγμ 𝜕ψ(x)𝜕xμ − mψ(x) = 0. Let us choose F(x

󸀠) = iK+(x − x󸀠)γμψ(x󸀠), where x, x󸀠 ∈ Ω. Then, we
have

𝜕Fμ(x󸀠)
𝜕x󸀠μ
= i 𝜕
𝜕x󸀠μ
[K+(x − x

󸀠)γμψ(x
󸀠)]

= [i
𝜕K+(x − x󸀠)
𝜕x󸀠μ

γμ +mK+(x − x
󸀠)]ψ(x󸀠)

+ K+(x − x
󸀠)[iγμ
𝜕ψ(x󸀠)
𝜕x󸀠μ
−mψ(x󸀠)] . (4.59)

The second term here is equal to zero in accordance with Dirac’s equation. Let us substitute this ex-
pression into the left-hand side of equation (4.58) and take into account that

i
𝜕K+(x − x󸀠)
𝜕x󸀠μ

γμ +mK+(x − x
󸀠) = −iδ(x − x󸀠) . (4.60)

Then, we have
ψ(x) = −∫

S

dσ(x󸀠)K+(x − x
󸀠)γμψ(x

󸀠)nμ(x󸀠) , (4.61)

where nμ is an external normal. If we introduce internal normal Nμ, we get

ψ(x) = ∫
S

dσ(x󸀠)K+(x − x
󸀠)γμψ(x

󸀠)Nμ(x󸀠) , (4.62)

which completes the proof. Equation (4.56) now follows if we choose hypersurface S, consisting of two
space-like hyperplanes t1 and t2, and neglect the “side” contributions, taking into account that these
parts of S are moved to infinity. Note that, in this case, N0γ0 = β.

The probability amplitude for an electron transition from some state, with wave func-
tionψ0(x1t1) of a particle with positive energy at the moment t1, to the state with wave
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function φ0(x2t2), also corresponding to states with positive energies at the moment
t2 > t1, is given by the following expression:

M = ∫ d3x1d
3x2φ
∗
0(x2t2)K+(x2t2;x1t1)βψ0(x1t1)

= ∫ d3x1d
3x2φ̄0(2)βK+(2, 1)βψ0(1) . (4.63)

If between moments t1 and t2 the potential eÂ acts, the function K+ is replaced by KA
+ .

In the first order, the transition amplitude, according to (4.54), is equal to

M1 = −ie∫ d
3x1d

3x2d
4x3φ̄0(2)βK+(2, 3)Â(3)K+(3, 1)βψ0(1) . (4.64)

With the help of (4.55), we can perform integration over x1 and x2, introducing

ψ0(3) = ∫ d
3x1K+(3, 1)βψ0(1) , (4.65a)

φ̄0(3) = ∫ d
3x2φ̄0(2)βK+(2, 3) , (4.65b)

so that (4.64) becomes

M1 = −ie∫ d
4x φ̄0(x)Â(x)ψ0(x) . (4.66)

Let the initial wave function correspond to an electron with 4-momentum p1, whereas
the final one corresponds to an electron with 4-momentum p2:

ψ0(x) = u(p1)e
−ip1x , φ̄0(x) = ū(p2)e

ip2x , (4.67)

where u are spinors corresponding to free particles with positive energy. Introducing
the Fourier transform of Aμ(x),

Aμ(x) = ∫ d
4ke−ikxaμ(k), (4.68)

and substituting (4.67) and (4.68) into (4.66), we perform integration over x3 and get

M1 = −ie(2π)
4 ∫ d4k δ(p2 − k − p1)ū(p2)â(k)u(p1)

= −ie(2π)4ū(p2)â(p2 − p1)u(p1) , (4.69)

which is depicted by the diagram shown in Figure 4.7. Likewise, we can write the
second-order matrix element for transition from the state with p1 into the state with
p2 as

M2 = (−ie)
2 ∫ d4x∫ d4y φ̄0(x)Â(x)K+(x, y)Â(y)ψ0(y) . (4.70)
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Figure 4.7 Figure 4.8

Then, after the substitution of the Fourier transforms of Â and K+, from (4.68), (4.38),
and (4.67), we obtain

M2 = −ie
2(2π)4 ∫ d4p∫ d4k1 ∫ d

4k2δ(p2 − k1 − p)

× δ(p1 + k2 − p)ū(p2)â(k1)
1

p̂ −m
â(k2)u(p1) (4.71)

or

M2 = −ie
2(2π)4 ∫ d4k ū(p2)â(p2 − p1 − k)

1
p̂1 + k̂ −m

â(k)u(p1) , (4.72)

which can be associated with the diagram in Figure 4.8. It is clear that in a similar
manner, we can write all terms of the higher orders of perturbation theory; as a re-
sult we obtain the following diagrammatic rules to describe electron scattering by the
potential of an external electromagnetic field:
1. the matrix element of transition has the formM = ū2Nu1;
2. to each virtual electron state (internal electron line) with momentum p corre-

sponds in N by a factor i
p̂−m ;

3. to each photon (wavy line) with momentum q corresponds in N by a factor of
−ieâ(q);

4. over all momenta qi that are not fixed by conservation laws and are obeyed in
interaction vertices, we should perform integration d4qi

(2π)4 .

While calculating integrals, the integration contour for the time component of themo-
mentum should be chosen according to the Feynman rule of pole encirclement: mass
m in the integrand is replaced bym→ m − iδ (δ → +0).

As a simple example of concrete calculating, we shall briefly consider the scattering of an electron by
the Coulomb field of an atomic nuclei (Rutherford scattering) with electric charge Ze. The potential of
nuclei is given by

A0 = V(r) =
Ze
r
. (4.73)

Then,
â(q) = 1
(2π)4
∫ d4x eiqxγμAμ =

1
(2π)3

δ(q0)γ
0 ∫ d3x e−iqrV(r) = Ze

2π2q2
δ(q0)γ

0 . (4.74)
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The first-order transition amplitude (4.69) has the form

M1 = −2πiδ(E1 − E2)[ū(p2)
4πZe2

|p2 − p1|2
γ0u(p1)] , (4.75)

where E1 and E2 are the initial and final energies of an electron. From (4.75), we can see that E1 =
E2 = E, that is, we are dealing with elastic scattering (static potential). The probability of scattering is
determined by

|M1|
2 = (2π)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ū(p2)

4πZe2

|p2 − p1|2
γ0u(p1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

δ(E1 − E2)δ(0) . (4.76)

Here, we have written [δ(E1 − E2)]2 = δ(E1 − E2)δ(0), which creates obvious problems. However, δ(0)
should be interpreted, according to the well-known Fermi recipe, as

δ(0) = lim
T→∞

lim
x→0

1
2π

T/2

∫
−T/2

dt eixt = lim
T→∞

T
2π
, (4.77)

where T is the interaction time. Then, we can define the transition probability per unit of timew1→2 as

w1→2 = 2π
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ū(p2)

4πZe2

|p2 − p1|2
γ0u(p1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

δ(E1 − E2) . (4.78)

Further calculations (assuming the nonpolarized nature of the beam of initial electrons) require the
averaging over both initial spin polarizations of electrons and the summation over the final polariza-
tions. To perform this averaging and summation, there exists a certain well-developed mathematical
apparatus, which uses the explicit form of spinors u(p) and the properties of Dirac’smatrices.We pass
over these details, which have been well described in [60] and [6]. Finally, from (4.78), it is possible
to obtain a relativistic version of the Rutherford formula (Mott formula) for a differential scattering
cross-section to the element of solid angle dΩ [60]:

dσ
dΩ
=

Z2e4

4p2v2 sin4 θ
2

(1 − v2 sin2 θ
2
) , (4.79)

taking into account that |p1 −p2| = 2|p| sin θ/2, where θ is the scattering angle, and we introduced the
velocity v = |p|/E.

4.5 The two-particle problem

As we have seen above, in the Lorentz gauge, the Maxwell equation for potentials ac-
quires the form

◻Aμ = 4πjμ . (4.80)

This equation is easily solved with the help of Green’s function D+, which is defined
by the following equation:

◻2D+(2, 1) = 4πδ(2, 1) . (4.81)
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Making some obvious Fourier transformations, we have

D+(2, 1) = −
4π
(2π)4
∫ d4k e−ik(x2−x1) 1

k2 + iδ
, δ → +0 . (4.82)

In fact, up to a constant and sign, this expression coincides with the integral I+ from
(4.39) if we putm = 0 and use the rule (4.43). Now, we can write the solution of (4.80)
in the almost obvious form

Aμ(2) = ∫ d
4x1D(2, 1)jμ(1) . (4.83)

Here, the possibly inhomogeneous term is absent, which corresponds to the boundary
condition of the absence of free electromagnetic radiation at t = ±∞ (that is, there are
no solutions A(0)μ equation ◻Aμ = 0, which can always be added to the right-hand side
of equation (4.83)).

Consider now the case of two charged (interacting) fermions. Each of the particles
is the source of an electromagnetic field, which acts upon the motion of the other par-
ticle. As a result of this interaction, each particle is scattered by the other. Let us write
an expression for the current, corresponding to the transition of electron “a” from the
state ua(p1)e−ip1x to the state ua(p2)e−ip2x:

jμ(x) = eūa(p2)γ
μ
aua(p1)e

i(p2−p1)x . (4.84)

In accordance with equation (4.83), this current creates electromagnetic potential at
the space-time point x:

Aμ(x) = e∫ d4x󸀠D+(x − x
󸀠)ei(p2−p1)x

󸀠
ūa(p2)γ

μ
aua(p1)

= −4πe∫ d4k 1
k2 + iδ

e−ikxδ(k + p2 − p1)ūa(p2)γ
μ
aua(p1) . (4.85)

This potential acts upon the motion of the second electron “b”. According to equa-
tion (4.66), the first-order matrix element, corresponding to the transition of electron
“b” from the state with 4-momentum q1 into the state with 4-momentum q2, induced
by potential (4.85), has the following form:

M = −ie∫ d4xūb(q2)e
iq2xγμbAμ(x)ub(q1)e

−iq1x

= 4πie2(2π)4
ūb(q2)γ

μ
bub(q1)ūa(p2)γaμua(p1)
|p1 − p2|2

δ(p1 + q1 − p2 − q2) . (4.86)

Consider now the propagator for a system of two particles (two-particle Green’s func-
tion). In a nonrelativistic approximation the systemof twoparticles is described by the
Schroedinger wave function ψ(xa,xb, t), and, as in the previous case of a single par-
ticle, we can define the propagator K(xa,xb, t;x󸀠a,x

󸀠
b, t
󸀠), which determines the proba-

bility amplitude of particle the “a” transition from point x󸀠a at the time moment t󸀠 to
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point xa at themoment t, while particle “b” propagates frompoint x󸀠b at themoment t󸀠

to point xb at the moment t. If the particles do not interact, we obviously have

K(xa,xb, t;x
󸀠
a,x
󸀠
b, t
󸀠) = K0a(xat;x

󸀠
at
󸀠)K0b(xbt;x

󸀠
bt
󸀠) , (4.87)

whereK0a andK0b are the propagators of the free particles “a” and “b”. In the absence
of any interaction, we can also define a more general two-particle Green’s function
with different time moments for particles in initial and final states:

K0(3, 4; 1, 2) = K0a(3, 1)K0b(4, 2) . (4.88)

Equation (4.86) can now be considered as the matrix element, appearing due to the
first-order correction K(1) to the propagator of two free particles, which is written as

K+(3, 4; 1, 2) = −ie
2 ∫ d4x5 ∫ d

4x6K+a(3, 5)γ
μ
aK+a(5, 1)D+(5, 6)K+b(4, 6)γbμK+b(6, 2)

(4.89)

and can be represented by the Feynman diagram shown in Figure 4.9. In this expres-
sion, D+ can be considered as the propagator of the virtual photon. In fact, our deriva-
tion is not completely satisfactory, because we did not quantize the electromagnetic
field itself. However, we shall see later that the same result is reproduced in the rigor-
ous theory.

Figure 4.9

Inmomentum representationwe can rewrite the previous expressions in amore trans-
parentway. Assuming the validity of the Lorentz condition 𝜕Aμ

𝜕xμ = 0, anddifferentiating
(4.85) over xμ, we get

ūa(p2)γ
μ
akμua(p1) = ūa(p2)(γ

0
ak

0 − γ ⋅ k)ua(p1) = 0 . (4.90)

This relation is satisfied, because—due to thepresence of δ-function in (4.85)—wehave
k̂ = p̂1 − p̂2, whereas u(p2) and u(p1) are free-particle spinors, so that

ū1(p2)(p̂1 − p̂2)u(p1) = ū(p2)[(p̂1 −m) − (p̂2 −m)]u(p1) = 0 . (4.91)
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Thus, everywhere in (4.86)—where the γ0a matrix is present—we can use the relation

γ0a ⋅ k0 − γa ⋅ k = 0 (4.92)

and express γ0a as

γ0a = γal(
|k|
k0
) , (4.93)

where γl is the γ-matrix “projected on the direction of the propagation” k (let us stress
this the for virtual photon k0 ̸= |k|). Thus, denoting the “transverse” components of γ
as γit, we can rewrite

γμaγ
μ
b

k2 in (4.86) as

γμaγ
μ
b

k2
=
γ0aγ

0
b − γ

l
aγ

l
b − ∑

2
i=1 γ

i
atγ

i
bt

k20 − k2
=
γ0aγ

0
b(1 −

k20
|k|2 ) − ∑

2
i=1 γ

i
atγ

i
bt

k20 − k2

= −
γ0aγ

0
b

k2
−
∑2i=1 γ

i
atγ

i
bt

k20 − k2
. (4.94)

The first term in this expression describes in (4.86) and (4.89) the instantaneous Cou-
lomb interaction of two electrons, whereas the second one takes into account the
transversal quanta responsible for the retarded magnetic interaction of particles. The
appearance of instantaneous interaction is connected to the noncovariant separation
of initially the covariant interaction (4.94) into two terms. In fact, the first term gives
the main contribution in the limit of small velocities, whereas the second produces
corrections to the instantaneous Coulomb interaction.

Up to now we have not taken into account that electrons are identical particles
complying to the Pauli principle. This can be taken into account requiring antisym-
metry of the wave function of the particle system, which can be achieved by introduc-
ing the two-particle propagatorK(3, 4; 1, 2)−K(4, 3; 1, 2), which describes the transition
of two particles from points 1 and 2 to points 3 and 4, including the exchange process.
Thus, instead of (4.86), we obtain thematrix element for the scattering of two identical
particles, in the first-order over interaction, in the following form:

M = 4πie2(2π)4 {
ūb(q2)γ

μ
bub(q1)ūa(p2)γaμua(p1)
|p1 − p2|2

−
ūb(p2)γ

μ
bub(q1)ūa(q2)γaμua(p1)
|q1 − p2|2

} δ(p1 + q1 − p2 − q2) ,

which determines, for example, the cross-section of the so-called Möller scattering.
In higher orders of perturbation theory over interaction, an infinite number of cor-

rections appear, which correspond to the exchange of a larger and larger numbers of
virtual photons between interacting particles and particle self-interactions. All such
processes are described by Feynman diagrams, which correspond to the appropriate
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Figure 4.10

mathematical expressions. Examples of diagrams of the order of e4 are shown in Fig-
ure 4.10.

Additional Feynman diagram rules for two-particle scattering are formulated as
follows:
1. the probability amplitude for the radiation of a virtual photon is given by eγμ,

which is attributed to an interaction point (vertex) on the diagram;
2. the probability amplitude for a photon transition (propagator, wavy line) from

point 1 to point 2 is given by D+(2, 1) or, in momentum representation, − 4π
k2+iδ .

Let us limit ourselves to the so-called “ladder” diagrams (with no intersections of in-
teraction lines) shown in Figure 4.11. Introducing the probability amplitude φ(x1, x2)
to find two particles at points x1 and x2 after the exchange of n virtual photons, we can
write the same probability amplitude after the exchange of the next (n + 1)th photon
as

φn+1(1, 2) = −ie
2 ∫ d4x3 ∫ d

4x4K+a(1, 3)γ
μ
aK+b(2, 4)γbμD+(3, 4)φn(3, 4) . (4.95)

Then, the total probability amplitude in the ladder approximation can be written as

ψ(x1, x2) =
∞

∑
n=0

φn(x1, x2) (4.96)

and, accordingly,

ψ(2, 1) = φ0(2, 1) − ie
2 ∫ d4x3 ∫ d

4x4K+a(1, 3)γ
μ
aK+b(2, 4)γbμD+(3, 4)ψ(3, 4) , (4.97)

whereφ0(2, 1) is the wave function, satisfying Dirac’s equation for the free particle (by
both variables). Applying Dirac’s differential operators for the “a” and “b” particles to

Figure 4.11
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both sides of equation (4.97), we obtain the differential equation for ψ(2, 1)

(i∇̂a −m)(i∇̂b −m)ψ(2, 1) = ie
2γμaγbμD+(2, 1)ψ(2, 1) . (4.98)

This is the so-calledBethe–Salpeter equation (in a ladder approximation),which is the
relativisticwave equation for a two-particle system. Inprinciple, it allows the complete
analysis of the bound state problem in such a system, for example, the study of the
formation and of the energy spectrum of positronium.



5 Scattering matrix

5.1 Scattering amplitude

Most experiments in high-energy physics (physics of elementary particles) are essen-
tially scattering experiments; studies of reactions between particles and their decays.
Particles usually interact at very small distances and during very short time intervals
(inside a target or at crossings of accelerator beams), whereas practically free reaction
products are registered in detector systems, which are placed rather far from the space
region, where particles interact with each other, producing these reaction products.
Thus, we are usually dealing with a rather general scattering problem; knowing the
initial state of a systemof free particles,wehave to find theprobability of different final
states, which are also the sets of free particles, produced as a result of interactions.

Let |i⟩ be some initial state. The result of an interaction can be represented by a
superposition ∑

f
|f ⟩⟨f |S|i⟩ , (5.1)

where the summation is performed over all possible final states |f ⟩. The coefficients
Sfi = ⟨f |S|i⟩ form the so-called scatteringmatrix or S-matrix.1 Now, |Sfi|2 gives the prob-
ability of transition i → f . In the absence of interactions, the S-matrix is obviously a
unit matrix. Then, it is convenient to separate this unit part and write

Sfi = δfi + i(2π)4δ(Pf − Pi)Tfi , (5.2)

where the δ-functions simply express the conservation of the 4-momentum. For non-
diagonal elements, we simply have

Sfi = i(2π)4δ(Pi − Pf )Tfi . (5.3)

Here, Tfi is called the scattering amplitude.
While calculating the square of (5.2), we encounter the badly defined square of

the δ-function, which expresses the 4-momentum conservation law. The correct way
to proceed is to introduce the Fourier transform

δ(Pf − Pi) = 1(2π)4 ∫ d4xei(Pf−Pi)x , (5.4)

and dealing with the second such integral, perform calculations for Pf = Pi, but with
integration extended to some large, but finite, volume V and time interval T, which

1 The notion of scattering matrix was first introduced by Heisenberg, who suggested considering it as
the most fundamental characteristic of elementary particle interactions.

https://doi.org/10.1515/9783110648522-005
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gives VT/(2π)4. Thus, we write|Sfi|2 = (2π)4δ(Pf − Pi)|Tfi|2VT . (5.5)

Now, we can introduce the well-defined probability of transition in unit time (and in
finite volume):2

wfi = (2π)4δ(Pf − Pi)|Tfi|2V . (5.6)

Free particles are described by appropriate plane waves with amplitudes u, represent-
ing bispinors for Dirac fermions, 4-vectors for photons, et cetera. Then, we have

Tfi = u∗1 u∗2 ⋅ ⋅ ⋅Qu1u2 ⋅ ⋅ ⋅ , (5.7)

where Q is some matrix over indices of the wave function amplitudes of all particles.
Let us consider the most important cases, where there are only one or two parti-

cles in the initial state, that is, decays of single particles or collisions of two particles.
Let us start from decays. The single particle can decay into several other particles with
momentap󸀠a, belonging to an element of phase space∏a d3p󸀠a (a numerates here the
particles in the final state). The number of states in this elementary phase space vol-
ume is∏a Vd3p󸀠a

(2π)3 , andwehave tomultiply (5.6) by this number to obtain theprobability
of transition into the final states:

dw = (2π)4δ(Pf − Pi)|Tfi|2V∏
a

Vd3p󸀠a(2π)3 . (5.8)

Everywhere we use normalization by a “single particle in volume V”, so that the wave
functions of all particles contain the factor of 1

√2εpV
, where εp is the particle energy. It

is convenient to move these factors into the scattering amplitude and write the wave
functions in the following as

ψ = ue−ipx , ūu = 2m (electrons) , (5.9)

Aμ = √4πeμe−ikx , eμe
∗μ = −1 , eμk

μ = 0 (photons), (5.10)

et cetera, rewriting the scattering amplitude via the new amplitudeMfi, defined as

Tfi = Mfi(2ε1V ⋅ ⋅ ⋅ 2ε󸀠1V ⋅ ⋅ ⋅)1/2 , (5.11)

where the denominator contains one factor of (2εiV) per each initial and final particle.
Then, the decay probability is written as

dw = (2π)4δ(Pf − Pi)|Mfi|2 12ε∏a d3p󸀠a(2π)32ε󸀠a , (5.12)

2 As we already noted above, this recipe was first proposed by Fermi.
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where ε is an energy of the decaying particle. As should be expected, all normaliza-
tion volumes in (5.12) has been canceled. If among final particles we have N identical
ones, the phase volume of the final states should be divided byN!, to account for their
permutations, producing the same state.

Consider in more detail the case of the decay into two particles with momenta p󸀠1, p󸀠2 and energies
ε󸀠1, ε
󸀠
2. In the rest frame of the decaying particle, p󸀠1 = −p󸀠2 ≡ p󸀠, ε󸀠1 + ε

󸀠
2 = m. Then,

dw = 1
(2π)2
|Mfi|

2 1
2m

1
4ε󸀠1ε
󸀠
2
δ(p󸀠1 + p

󸀠
2)δ(ε
󸀠
1 + ε
󸀠
2 −m)d

3p󸀠1d
3p󸀠2 . (5.13)

First, the δ-function here disappears after integration over d3p󸀠2. Consequently, we rewrite d3p󸀠1 as

d3p󸀠 = |p󸀠|2d|p󸀠|dΩ = |p󸀠|dΩ󸀠
ε󸀠1ε
󸀠
2d(ε
󸀠
1 + ε
󸀠
2)

ε󸀠1 + ε
󸀠
2
, (5.14)

where we have taken into account ε󸀠1
2
− m2

1 = ε
󸀠
2
2
− m2

2 = |p
󸀠|2. Then, integrating over d(ε󸀠1 + ε

󸀠
2), we

get rid of the second δ-function in (5.13). Accordingly, for the decay probability into an element of the
solid angle dΩ󸀠, we get

dw = 1
32π2m2 |Mfi|

2|p󸀠|dΩ󸀠 . (5.15)

Let us now consider the collision of two particles with momenta p1, p2 and energies
ε1, ε2, producing in the final state some set of particles withmomentap󸀠a and energies
ε󸀠a. Then,

dw = (2π)4δ(Pf − Pi)|Mfi|2 1
4ε1ε2V
∏
a

d3p󸀠a(2π)32ε󸀠a . (5.16)

The invariant (with respect to Lorentz transformations) scattering cross-section is ob-
tained from (5.16) dividing by [33]

j = I
Vε1ε2
, where I = √(p1p2)2 −m2

1m2
2 . (5.17)

In the center of the mass frame, we have p1 = −p2 ≡ p, so that I = |p|(ε1 + ε2) and
j = |p|

V
( 1
ε1
+ 1
ε2
) = v1 + v2

V
, (5.18)

which gives the current density of the colliding particles (v1, v2 are the particle veloc-
ities). Then finally,

dσ = (2π)4δ(Pf − Pi)|Mfi|2 14I ∏a d3p󸀠a(2π)32ε󸀠a . (5.19)

Let us drop the δ-functions for the case, where there are two particles in the final state. Consider again
scattering in the center of the mass frame. Let ε = ε1 + ε2 = ε󸀠1 + ε

󸀠
2 be the total energy of the colliding
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particles, whereas p1 = −p2 ≡ p and p󸀠1 = −p󸀠2 ≡ p󸀠 are the initial and final momenta. Performing
calculations similarly to the case of a decaying particle, we obtain

dσ = 1
64π2
|Mfi|

2 |p󸀠|
|p|ε2

dΩ󸀠. (5.20)

For the case of elastic scattering, we have |p󸀠| = |p|. Let us introduce the kinematic invariant:

t ≡ (p1 − p
󸀠
1)
2
= m1

2 +m󸀠1
2
− 2(p1p

󸀠
1) = m1

2 +m󸀠1
2
− 2ε1ε

󸀠
1 + 2|p1||p

󸀠
1| cos θ , (5.21)

where θ is the scattering angle. In the center of the mass reference frame, |p1| ≡ |p| and |p󸀠1| ≡ |p󸀠| are
determined only by the total energy ε, so that for its given value, we have

dt = 2|p||p󸀠|d cos θ . (5.22)

Correspondingly, in equation (5.20), we can write

dΩ󸀠 = −dφd cos θ = dφd(−t)
2|p||p󸀠|

, (5.23)

where φ is the asimuthal angle of the vector p󸀠1 with respect to p1. Further, for brevity, we write d(−t)
as dt and obtain

dσ = 1
64π
|Mfi|

2 dt
I2

dφ
2π
. (5.24)

If the cross-section does not depend on the asimuthal angle φ, we get

dσ = 1
64π
|Mfi|

2 dt
I2
. (5.25)

Werner Karl Heisenberg (1901–1976) was a German
theoretical physicist and one of the pioneers of quan-
tum mechanics. He published his work in 1925 in a break-
through paper. In the subsequent series of papers with
Max Born and Pascual Jordan, during the same year,
thismatrix formulation of quantummechanicswas essen-
tially completed. He is known for the Heisenberg uncer-
tainty principle, which he published in 1927. Heisenberg
was awarded the 1932 Nobel Prize in Physics “for the cre-
ation of quantum mechanics”. He also made important
contributions to the theories of the hydrodynamics of tur-
bulent flows, the atomic nucleus, ferromagnetism, cosmic

rays, and elementary particles. He was a principal scientist in the unsuccessful Nazi
German nuclear weapon project duringWorldWar II. Heisenberg was the first to rein-
terpret the Dirac equation as a “classical” field equation for any point particle of spin
1/2, itself subject to quantization conditions involving anticommutators. Shortly af-
ter the discovery of the neutron in 1932, Heisenberg published his neutron–proton
model of the nucleus. Within 1943–1944, he published a series of papers on the scat-
tering matrix, or S-matrix, in elementary particle physics. The S-matrix supposedly
described only the states of incident particles in a collision process, the states of those
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emerging from the collision, and the stable bound states. The S-matrix program was
never fully completed, but the concept itself is widely used in scattering theory and
quantum field theory. In the period after theWorldWar II, Heisenberg briefly returned
to the theory of turbulence and continued his interests in cosmic-ray showers. In the
late 1950s, he tried unsuccessfully to develop the nonlinear fermion quantum field
theory with the aim of building the complete theory of elementary particles. Heisen-
bergwas elected a ForeignMember of the Royal Society and ofmany other Academies
of Sciences.

5.2 Kinematic invariants

Consider now thedetails of the kinematics of twoparticles scattering into twoparticles
in the final state. The conservation law for a 4-momentum can be written in the form
(where we do not predetermine which particles are in initial and which are in final
state)

p1 + p2 + p3 + p4 = 0 . (5.26)

The scattering amplitude for this process can be represented by a graph (diagram),
as shown in Figure 5.1, where directions of the arrows correspond to the momenta
“entering” the amplitude (refer to equation (5.26)). Two of themomenta correspond to
initial particles, whereas two others to particles in the final state (with moments −pa).
In these notations, two of pa possess the time component p0a > 0, whereas two others
possess the time component p0a < 0. For given types of particles participating in the
scatteringprocess, the squarespertaining to the4-momentap2a aredeterminedby their
masses: p2a = m2

a (free particles always belong to their “mass surface”). Depending on
the values, which acquire time components p0a, and also on the values of particles
charges, the scattering amplitude in Figure 5.1 can describe three different reactions:

Figure 5.1
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Figure 5.2

(1) 1 + 2→ 3 + 4 (s-channel) ,(2) 1 + 3̄→ 2̄ + 4 (t-channel) , (5.27)(3) 1 + 4̄→ 2̄ + 3 (u-channel) ,
where the bars denote the appropriate antiparticles. These scattering processes are
called cross-reactions, which can be represented graphically as in the diagrams in
Figure 5.2. We can also speak of three cross-channels of the same reaction, shown in
Figure 5.1. We go from one reaction to another by changing the sign of the appropriate
time component of momentum p0a in (5.26):

p01 > 0 , p02 > 0 , p03 < 0 , p04 < 0 (s-channel) ,
p01 > 0 , p02 < 0 , p03 > 0 , p04 < 0 (t-channel) , (5.28)
p01 > 0 , p02 < 0 , p03 < 0 , p04 > 0 (u-channel) ,

and also the signs of the charges. All initial and final states in (5.29) obviously possess
positive energy. Transformation to the cross-channel reaction particle momentum in
the initial state pa is replaced by the antiparticle momentum −pa in the final state,
with a corresponding change of charge. Due to the CPT-invariance of the theory, we
can also consider three CPT-conjugate reactions, which are obtained from (5.28) by
replacement of all particles by antiparticles and the interchange of the initial and final
states. If the theory is invariant with respect to charge conjugation C, we can add to
these six reactions sixmore C-conjugate reactions, where all the particles are replaced
by the corresponding antiparticles.

From the four 4-momenta entering the reaction, we can construct two indepen-
dent invariants. Due to (5.26), there are only three independent 4-vectors pa; let these
be p1, p2, p3. From these, we can construct six invariants: p21, p

2
2, p

2
3, p1p2, p1p3, p2p3.

The first three reduce to the corresponding squares of masses: m2
1, m

2
2, m

2
3. The other

three are connected by one relation, following from (p1 + p2 + p3)2 = p24 = m2
4. Usually

the following symmetric notations are used, introducing three kinematic invariants:
s = (p1 + p2)2 = (p3 + p4)2 ,
t = (p1 + p3)2 = (p2 + p4)2 , (5.29)
u = (p1 + p4)2 = (p2 + p3)2 ,
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which are calledMandelstam variables. It is easily checked that

s + t + u = h ≡ m2
1 +m2

2 +m2
3 +m2

4 . (5.30)

In channel (1), the invariant s represents the square of the total energy of colliding
particles 1 and 2 in their center of the mass reference frame. In fact, for p1 +p2 = 0, we
immediately obtain s = (ε1 + ε2)2. In channel (2), a similar role is played by invariant t,
whereas in channel (3) it is played by invariant u. Correspondingly, we are speaking
about the s, t, and u reaction channels.

Let us consider in more detail the s-channel. Let

p1 = (ε1,ps) , p2 = (ε2, −ps) ,
p3 = (−ε3, −p󸀠s) , p4 = (−ε4,p󸀠s) . (5.31)

Then, it is easy to get

s = ε2s , where εs = ε1 + ε2 = ε3 + ε4 , (5.32)

4sp2s = [s − (m1 +m2)2][s − (m1 −m2)2] ,
4sp󸀠2s = [s − (m3 +m4)2][s − (m3 −m4)2] , (5.33)

2t = h − s + 4psp󸀠s − 1s (m2
1 −m2

2)(m2
3 −m2

4) ,
2u = h − s − 4psp󸀠s + 1s (m2

1 −m2
2)(m2

3 −m2
4) . (5.34)

In the case of elastic scattering (m1 = m3,m2 = m4), we have |ps| = |p󸀠s|, so that ε1 = ε3
and ε2 = ε4. Consequently, equations (5.33) simplify to

t = −(ps − p󸀠s)2 = −2p2s(1 − cos θs)
u = −2p2s(1 + cos θs) + (ε1 − ε2)2 (5.35)

where θs is an angle between ps and p󸀠s, that is, the scattering angle. Thus, in this
case, invariant −t represents the square of the transferred 3-momentum.

Similar expressions for other channels are obtained by the obvious changes of
notation. The transformation to the t-channel is achieved by the replacements s↔ t,
2↔ 3, whereas the transformation to the u-channel is made by s↔ u, 2↔ 4.

If colliding particles are spinless, the scattering amplitude depends only on the
kinematic invariants s, t, u and, in fact, reduces to the single function

Mfi = f (s, t) . (5.36)

For particles with spin, besides s, t, u, there exist invariants that can be constructed
from the amplitudes of the wave functions (bispinors, 4-vectors, 4-tensors, et cetera).
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Then, the scattering amplitude has the form

Mfi = ∑
n
fn(s, t)Fn , (5.37)

where Fn are invariants, linearly dependent on wave function amplitudes of all the
colliding particles, as well as on their 4-momenta. The coefficients fn(s, t) are called
invariant amplitudes.

5.3 Unitarity

The scattering matrix should be unitary: SS+ = 1, or(SS+)fi = ∑
n
SfnS
∗
in = δfi , (5.38)

where n enumerates all the possible intermediate states. The unitarity condition (5.38)
expresses the conservation of normalization and orthogonality of quantum states in
scattering processes. In particular, the diagonal elements of (5.38) represent the sum
of all transition probabilities from the fixed initial state to all the possible final states:∑

n
|Sni|2 = 1 . (5.39)

Using (5.2), we obtain from (5.38)

Tfi − T∗if = i(2π)4∑
n
δ(Pf − Pn)TfnT∗in . (5.40)

The left-hand side is linear, whereas the right-hand side is quadratic over T. If the
interaction contains a small parameter, the left-hand side is “larger” than the right-
hand side, and in the first approximation, neglecting the right-hand side, we canwrite

Tfi = T∗if , (5.41)

so that the T-matrix in this approximation is Hermitian.
Consider the collision of two particles. Only in the case of elastic scatterings are

all the intermediate states in (5.40) also two-particle states. The summation over these
states reduces to the integration over the intermediatemomentap󸀠󸀠1,p󸀠󸀠2 and the sum-
mation over spins (helicities) of both particles, which we denote as λ󸀠󸀠:∑

n
= V2 ∫ d3p󸀠󸀠1d3p󸀠󸀠2(2π)6 ∑

λ󸀠󸀠
. (5.42)

After dropping the δ-function, in a way similar to that used above, we may obtain the
“two-particle” unitarity condition as

Tfi − T∗if = i V2(2π)2 ∑λ󸀠󸀠 |p|ε ∫TfnT∗inε󸀠󸀠1 ε󸀠󸀠2 dΩ󸀠󸀠 , (5.43)
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where p is themomentum, and ε is the total energy in the center of themass reference
frame. The normalization volume disappears after transition to amplitudesMfi:

Mfi −M∗if = i(4π)2 ∑λ󸀠󸀠 |p|ε ∫MfnM
∗
indΩ
󸀠󸀠 . (5.44)

The diagonal element Tii is called the zero-angle scattering amplitude. For this ampli-
tude, the unitarity condition takes the form

2 ImTii = (2π)4∑
n
|Tin|2δ(Pi − Pn) . (5.45)

The right-hand side here is proportional to the total cross-section of all the scattering
processes from the fixed initial state i, which we shall denote as σtot. In fact, summing
(5.6) over f and dividing by the particle current density j, we obtain

σtot = (2π)4Vj
∑
n
|Tin|2δ(Pi − Pn) , (5.46)

so that

2V
j
ImTii = σtot . (5.47)

The normalization volume is canceled after the transformation to Tii = Mii/(2ε1V2ε2V)
(where ε1, ε2 are particle energies in the center of the mass reference frame), and sub-
stituting j from (5.18), we get

ImMii = 2|p|εσtot , (5.48)

which is called the optical theorem.
Due to the CPT-theorem, we have

Tfi = T ̄i ̄f , (5.49)

where ̄i and ̄f are states obtained from i and f by changing all the particles with their
antiparticles. For diagonal elements,

Tii = T ̄i ̄i . (5.50)

Then, it follows from (5.45) and (5.48) that the total cross-section of all possible scatter-
ing processes (with a fixed initial state) is the same for the reactions between particles
and antiparticles. In particular, this means that the total lifetime (decay probability)
of a particle and an antiparticle are equal.

During the period of the late 1950s and early 1960s, when there was a certain dis-
satisfaction in quantum field theory, it was proposed to limit the theory of elementary
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particles to the analysis of the general properties of the S-matrix, such as unitarity
and some general analyticity properties related to causality. This was the basis of the
so-called analytical theory of the S-matrix [14]. Despite some successes and important
theorems, which are proved within this approach, it was insufficient for the construc-
tion of a complete dynamical theory of elementary particles. At the same time, as we
shall see below, modern quantum field theory gives the well-developed formalism for
the calculation of S-matrix via the standard perturbation theory approach.



6 Invariant perturbation theory

6.1 Schroedinger and Heisenberg representations

Let us proceed to a systematic presentation of mathematical apparatus of perturba-
tion theory over interactions in quantum field theory. It is well known that there exist
two main formulations for equations of motion in quantum theory. In Schroedinger
representation the quantum state at a given moment of time t is represented by the
state vectorΨS(t), containing the complete set of all possible results ofmeasurements,
applied to the system at this moment of time. The further evolution of the system is
described by the time dependence of this state vector (wave function), described by
the Schroedinger equation

iℏ𝜕ΨS
𝜕t
= HSΨS(t) . (6.1)

In this representation, the operators of physical variables FS do not depend on time;
for all t, they are the same: dFS/dt = 0. At the same time, the average value of the
operator

⟨FS⟩ = ⟨ΨS(t)
󵄨󵄨󵄨󵄨FS
󵄨󵄨󵄨󵄨ΨS(t)⟩, (6.2)

in the general case, will depend on time as

iℏ d
dt
⟨FS⟩ = ⟨ΨS(t)

󵄨󵄨󵄨󵄨[FS ,H]
󵄨󵄨󵄨󵄨ΨS(t)⟩ . (6.3)

Let us make the following time-dependent unitary transformation of vector ΨS(t):

Φ(t) = V(t)ΨS(t) , (6.4)

where

V(t)V+(t) = V+(t)V(t) = 1 , V+(t) = V−1(t) . (6.5)

Then, the new state vector Φ(t) satisfies the equation1

iℏ𝜕Φ(t)
𝜕t
= (iℏ𝜕V
𝜕t

V−1 + VHSV
−1)Φ(t) . (6.6)

Let us choose V(t) satisfying the equation

− iℏ𝜕V
𝜕t
= (VHSV

−1)V = VHS . (6.7)

1 Wehave iℏ 𝜕Φ(t)𝜕t = iℏ
𝜕V
𝜕t ΨS(t)+ iℏV

𝜕ΨS
𝜕t = iℏ

𝜕V
𝜕t V
−1Φ(t)+VHSΨS = iℏ

𝜕V
𝜕t V
−1Φ(t)+VHSV−1Φ(t), which

coincides with (6.6).

https://doi.org/10.1515/9783110648522-006



136 | 6 Invariant perturbation theory

Then, the transformed state vectorwill not dependon time,which is directly seen from
(6.6). Due to the unitarity of V(t), the average value of an operator FS is expressed as

⟨F⟩ = ⟨ΨS(t)
󵄨󵄨󵄨󵄨FS
󵄨󵄨󵄨󵄨ΨS(t)⟩ = ⟨V(t)ΨS(t)

󵄨󵄨󵄨󵄨V(t)FSΨS(t)⟩

= ⟨ΦH
󵄨󵄨󵄨󵄨V(t)FSV

−1(t)󵄨󵄨󵄨󵄨ΦH⟩ , (6.8)

where we have defined ΦH as

ΦH = V(t)ΨS(t) , (6.9)

and V(t) satisfies equation (6.7). Let us define FH (t) as

FH (t) = V(t)FSV
−1(t) . (6.10)

Consequently, the time-dependent operator FH (t) has the same average value in the
state defined by the vector ΦH , which the operator FS has in the state defined by the
vector ΨS. Differentiating (6.5) over time, we have

dV(t)
dt

V+(t) + V(t)dV
+(t)
dt
= 0 . (6.11)

Then, from (6.7) and (6.10), we obtain for the time dependence of FH (t)2

𝜕FH (t)
𝜕t
=
𝜕V
𝜕t

V+FH (t) + FH (t)V
𝜕V+

𝜕t
=

i
ℏ
[VHSV

+, FH (t)] =
i
ℏ
[HH , FH (t)] , (6.12)

which represents the equation of motion for the operator of the physical variable in a
Heisenberg representation. The Heisenberg-state vector ΦH does not depend on time:

𝜕ΦH
𝜕t
= 0 . (6.13)

We can assume that ΦH coincides with ΨS(0) at t = 0.

6.2 Interaction representation

Consider once again the usual Schroedinger equation

iℏ𝜕Φ(t)
𝜕t
= (H0 + HI )Φ(t) , (6.14)

where H0 is the Hamiltonian of noninteracting fields (particles), whereas HI is some
interaction Hamiltonian. The state vector Φ, in the absence of interactions, that is, for

2 To obtain (6.12), we take into account that 𝜕FH𝜕t =
𝜕V
𝜕t FSV

−1 + VFS
𝜕V−1
𝜕t =

𝜕V
𝜕t V
−1FH + FHV

𝜕V−1
𝜕t .
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HI = 0, describes themotion of the given number of free particles with fixedmomenta
and spins. The operator HI describes interactions of these particles.

Let us introduce the state vector

Ψ(t) = exp( iH0t
ℏ
)Φ(t) . (6.15)

It is easy to see that Ψ(t) satisfies the equation

iℏ𝜕Ψ(t)
𝜕t
= exp( iH0t

ℏ
)HI exp(−

iH0t
ℏ
)Ψ(t) (6.16)

or

iℏ𝜕Ψ(t)
𝜕t
= HIR

I (t)Ψ(t) , (6.17)

where

HIR
I (t) = exp(

iH0t
ℏ
)HI exp(−

iH0t
ℏ
), (6.18)

the operator of the interaction energy in this new representation. This operator ex-
plicitly depends on time, in contrast to the Schroedinger operator HI . In general, an
arbitrary operator QIR(t) in this, the so-called interaction representation, is related to
the Schroedinger operator QS as

QIR(t) = exp(
iH0t
ℏ
)QS exp(−

iH0t
ℏ
) . (6.19)

Now, it immediately follows that in interaction representation thedependence of oper-
ators on time is determined by the Hamiltonian of free particles; differentiating (6.19)
by t, we obtain

iℏ𝜕QIR(t)
𝜕t
= [QIR(t),H0] . (6.20)

Note that HIR
0 = H

S
0 . Thus, in interaction representation, field operators satisfy equa-

tions of motion of free fields,3 whereas the time-dependence of the state vector Ψ(t) is
determined, according to (6.17), only by the interaction energy. Interaction represen-
tation is quite convenient for the construction of perturbation theory.

Consider as an example the theory of Dirac fermions interacting with a scalar field. In Schroedinger
representation, the Hamiltonian of free fields has the form

H0 = ∫ d
3r[ψ̄(x)(−iγ ⋅ ∇ +m)ψ(x) + 1

2
(
𝜕φ(x)
𝜕t
)

2

+
1
2
(∇φ(x))

2
+
1
2
m2φ2(x)] , (6.21)

3 In particular, this means that commutation relations for these operators are the same for arbitrary
moments of time.
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and the interaction Hamiltonian (based on simplest principles of relativistic invariance) is written as

HI = g ∫ d
3rψ̄(x)ψ(x)φ(x) , (6.22)

where g is the dimensionless coupling constant. After transformation to interaction representation,
the field operators φ(x) and ψ(x) satisfy the equations

(i∇̂ −m)ψIR(x) = 0 , (◻ +m
2)φIR(x) = 0 , (6.23)

and equation (6.17) reduces to

iℏ𝜕Ψ(t)
𝜕t
= g ∫

ct=x0

d3rψ̄IR(x)ψIR(x)φIR(x)Ψ(t) . (6.24)

Equation (6.17) can be generalized to covariant form. This is achieved by introduction
of an arbitrary hypersurface in space-time instead of the hyperplane t = const. The
only condition for this hypersurface to satisfy is that any vector nμ(x) normal to it at
an arbitrary point r should be time-like, that is, nμ(r)nμ(r) > 0. This means that no
points on this hypersurface can be connected by a light signal, or that any two points
on it should be separated by a space-like interval. Let us denote such surfaces as σ.
At an arbitrary point r on this surface, we can introduce time t(r), which is called the
local time. In the limit, when this surface becomes just a plane, all points on it possess
the same time t = const. Now,we can generalizeΨ(t) by introducingΨ[t(r)]. The basic
equation (6.17),

iℏ𝜕Ψ(t)
𝜕t
= HI (t)Ψ(t), (6.25)

can now be considered to be the result of the summation of an infinite number of
equations obtained after the introduction of local time at each point of the space-like
hypersurface. If the interaction Hamiltonian is expressed as the sum over small three-
dimensional cells ΔV , on the space-like hypersurface σ, that is,

HI = ∑
σ
ℋI (x)ΔV , (6.26)

the equation in a small cell surrounding the space-time point (r, t(r)) can bewritten as

iℏ𝜕Ψ[t(r)]
𝜕t(r)
= ℋI (x)ΔVΨ[t(r)] , (6.27)

which directly generalizes equation (6.17). The variation of Ψ(t), corresponding to a
rigid infinitesimal translation of hypersurface t = const as a whole, is determined by
the integral ∫t ℋId3r, so that it becomes clear that the variation of Ψ[t(r)] relative to
point x is determined by the interaction energy inℋI (x)ΔV , with an infinitesimal vol-
ume surrounding x. As the product ΔVΔt is a relativistic invariant, we may introduce
the following invariant differentiation procedure. Consider a function defined on the
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Figure 6.1

space-like hypersurface Ψ[t(r)] = Ψ(σ). Let us compare the values of this function on
two space-like hypersurfaces σ and σ󸀠, which are infinitesimally different from each
other in the vicinity of point x, as shown in Figure 6.1. Now, we define the invariant
operation δ/δσ(x) in the following way:

δΨ(σ)
δσ(x)
= lim

ΔtΔV→0

Ψ[t(r) + Δt(r)] −Ψ[t(r)]
c ∫ΔV d

3rΔt(r)

= lim
ΔtΔV→0

Ψ(σ󸀠) −Ψ(σ)
cΔt(r)ΔV

= lim
Ω(x)→0

Ψ(σ󸀠) −Ψ(σ)
Ω(x)

, (6.28)

where Ω(x) is the 4-volume between σ and σ󸀠. Then, in the limit of Ω(x) → 0 equa-
tion (6.27) can be rewritten in the form of the so-called Tomonaga–Schwinger equa-
tion:

iℏc δΨ(σ)
δσ(x)
= ℋI (x)Ψ(σ) . (6.29)

This equation is covariant, as ℋI (x) is relativistic invariant (scalar), and we do not
need any specific Lorentz reference frame to define the space-like surface σ. Thus, the
Tomonaga–Schwinger equation is written with no reference to any system of coordi-
nates. However, in the following, we shall mainly deal with equation (6.17), written in
the fixed reference frame.

Shinichiro Tomonaga (1906–1979) was a Japanese
physicist, who developed quantum electrodynamics,
work for which he was jointly awarded the Nobel Prize
in Physics in 1965 along with Richard Feynman and Ju-
lian Schwinger. Tomonaga was born in Tokyo in 1906.
He entered theKyoto Imperial University in 1926. Hideki
Yukawa, also a Nobel Prize winner, was one of his
classmates. In 1937, while working at Leipzig Univer-
sity (Leipzig), he collaborated with the research group
of Werner Heisenberg. Two years later, he returned to
Japan due to the outbreak of the Second World War.
During the war he studied meson theory, and his super-

many-time theory. In 1948, he and his students reexamined a 1939 paper by Sidney
Dancoff that attempted, but failed, to show that the infinite quantities that arise in
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QED can be canceled with each other. They found that Dancoff had overlooked one
term in the perturbation series. With this term, the theory gave finite results, thus
Tomonaga discovered the renormalizationmethod independently of Julian Schwinger
and calculated physical quantities, such as the Lamb shift. In the next year, he was in-
vited by Robert Oppenheimer towork at the Institute for Advanced Study in Princeton.
He studied themany-body problemand in the following year, after returning to Japan,
he proposed the exactly solvable one-dimensional model, known now as Tomonaga–
Luttinger model. In 1955, he took the leadership in establishing the Institute for Nu-
clear Study, University of Tokyo. He died of throat cancer in Tokyo in 1979.

Julian Shwinger (1918–1994) was a Nobel Prize winning
American theoretical physicist. He is best known for his
work on quantum electrodynamics, in particular, for de-
veloping a relativistically invariant perturbation theory,
and renormalization of QED. During World War II he pro-
vided theoretical support for the development of radar. Ac-
tually, Schwinger had started working with Green’s func-
tions during his radar work, and he used these methods to
formulate quantum field theory in terms of local Green’s
functions in a relativistically invariant way. This allowed
him to calculate unambiguously the first corrections to the
electron magnetic moment in quantum electrodynamics.

Schwinger developed renormalization, formulating quantum electrodynamics un-
ambiguously. Schwinger’s foundational work on quantum field theory constructed
the modern framework of field correlation functions and their equations of motion.
Schwinger always pursued independent research, different from mainstream fash-
ion. In particular, Schwinger developed the source theory, a phenomenological the-
ory for the physics of elementary particles. As a famous physicist, Schwinger is often
compared to Richard Feynman. He was more formally inclined to and favored sym-
bolic manipulations in quantum field theory. He worked with local field operators,
and he felt that physicists should understand the algebra of local fields. By contrast,
Feynman was more intuitive, which gave a particle picture. Schwinger commented
on Feynman diagrams in the following way: “Like the silicon chips of more recent
years, the Feynman diagram was bringing computation to the masses”. He disliked
Feynman diagrams because he felt that they made the student focus on the particles
and forget about local fields, which in his view inhibited understanding. He went so
far as to ban them altogether from his class, although he understood them perfectly
well. Schwinger died of pancreatic cancer, and α

2π is engraved above his name on his
tombstone, referring to his calculation of the “anomalous” magnetic moment of the
electron.
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6.3 S-matrix expansion

The solution of equation of motion in interaction representation (6.17) can be written
in integral form as

Ψ(t) = Ψ(t0) −
i
ℏ

t

∫
t0

dt󸀠HI(t
󸀠)Ψ(t󸀠) . (6.30)

Here, we take into account the initial condition: for t = t0, the function Ψ reduces to
Ψ(t0).

Let us write the relation between Ψ(t) and Ψ(t0) as4

Ψ(t) = U(t, t0)Ψ(t0) ,

Ψ(t0) = U
−1(t, t0)Ψ(t) , (6.31)

U(t0, t0) = 1 ,

where U(t, t0) is a unitary (conserving normalization) operator of evolution. Then,

S = U(+∞, −∞) (6.32)

defines the S-matrix (scattering matrix), which determines all the possible changes of
the system states due to interaction:

Ψ(+∞) = SΨ(−∞) , (6.33)

where Ψ(−∞) andΨ(+∞) are asymptotic state vectors of the system, in particular, the
asymptotic forms of incoming and scattered waves in a typical scattering process.

The operatorU(t, t0) satisfies the following differential equation,which is obvious
from (6.17):

iℏ𝜕U(t, t0)
𝜕t
= HI (t)U(t, t0) . (6.34)

Likewise,

− iℏ𝜕U
+(t, t0)
𝜕t
= U+(t, t0)HI (t) , (6.35)

as HI (t) is Hermitian. From these equations it immediately follows that

𝜕
𝜕t
(U+(t, t0)U(t, t0)) = 0 , (6.36)

4 The formalism presented below was developed by Dyson.
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which is equivalent to

U+(t, t0)U(t, t0) = 1 . (6.37)

To prove unitarity, we still have to show that

U(t, t0)U
+(t, t0) = 1 . (6.38)

The evolution operator satisfies the group property

U(t, t1)U(t1, t0) = U(t, t0) . (6.39)

In fact, from

Ψ(t) = U(t, t1)Ψ(t1) , Ψ(t1) = U(t1, t0)Ψ(t0) (6.40)

it follows that

Ψ(t) = U(t, t0)Ψ(t0) = U(t, t1)U(t1, t0)Ψ(t0) , (6.41)

which is necessary to satisfy (6.39). If in (6.39) we set t = t0, we get

U(t0, t1) = U
−1(t1, t0) . (6.42)

FromU(t0, t1)U(t1, t0) = 1,multiplying it from the left side byU+(t0, t1) andusing (6.37),
we obtain

U(t1, t0) = U
+(t0, t1) = U

−1(t0, t1) , (6.43)

which proves the unitarity of the evolution operator.
It follows directly from group property (6.39) that any transition of the systemdur-

ing the finite time interval can be represented by the multiplication of evolution oper-
ators, corresponding to infinitesimal transitions:

U(t, t󸀠) = U(t, t1)U(t1, t2) ⋅ ⋅ ⋅U(tn−1, tn)U(tn, t
󸀠) , (6.44)

where U(tj, tj+1) corresponds to an infinitesimal transformation from time moment tj
to tj+1.

The solution of equation (6.34) can obviously be written also in integral form:

U(t, t󸀠) = 1 − i
ℏ

t

∫

t󸀠

dτHI (τ)U(τ, t
󸀠) . (6.45)

Thus, for the infinitesimal time difference tj − tj+1, we have:

U(tj, tj+1) = 1 −
i
ℏ

tj

∫
tj+1

dτHI (τ)U(τ, tj+1)
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≈ 1 − i
ℏ

tj

∫
tj+1

dt󸀠HI(t
󸀠)U(tj+1, tj+1) = 1 −

i
ℏ

tj

∫
tj+1

dt󸀠HI(t
󸀠) . (6.46)

Increasing thenumber of time intervals (to infinity) and regrouping the terms in (6.44),
we obtain

U(t, t0) = 1 + (
−i
ℏ
)

t

∫
t0

dt1HI (t1) + (
−i
ℏ
)
2 t

∫
t0

dt1

t1

∫
t0

dt2HI (t1)HI (t2)

+ (
−i
ℏ
)
3 t

∫
t0

dt1

t1

∫
t0

dt2

t2

∫
t0

dt3HI (t1)HI (t2)HI (t3) + ⋅ ⋅ ⋅ . (6.47)

Consider the integral, determining the nth-order of perturbation theory:

t

∫
t0

dt1

t1

∫
t0

dt2 ⋅ ⋅ ⋅
tn−1

∫
t0

dtnHI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn) . (6.48)

Here, integration is performed essentially over the whole time interval from t0 to t,
but with a limitation: the time moment tj is earlier than tj−1 (j ≤ n). Of course, in
equation (6.48), we can arbitrarily rename the integration variables t1, . . . , tn →
tp1 , tp2 . . . tpn , and the value of integral will not change. Making all permutations of
variables t1, . . . , tn, summing all the expressions obtained, and dividing by the num-
ber of permutations n, we extend the integration over each of the variables to the
whole time interval from t0 to t. However, it is necessary to guarantee that the opera-
tors HI (tj) under the integral are placed from left to right in the order of growth of the
time arguments. This can be achieved defining the operator T-ordering, which acts
on the operators, depending on time, and places them in chronological order, that is,
an operator with a larger value of time in the product stands to the left of those with
smaller times:

T(HI (t1) ⋅ ⋅ ⋅HI (tk)) = HI (ti)HI (tj) ⋅ ⋅ ⋅HI (tk) for ti > tj > ⋅ ⋅ ⋅ > tk , (6.49)

which gives the definition of the chronological or T-product of the operators. Then,
using the symmetry of the integrand (6.48) mentioned above, we get:

t

∫
t0

dt1

t1

∫
t0

dt2 ⋅ ⋅ ⋅
tn−1

∫
t0

dtnHI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn)

=
1
n!

t

∫
t0

dt1

t

∫
t0

dt2 ⋅ ⋅ ⋅
t

∫
t0

dtnT(HI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn)) . (6.50)
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Figure 6.2

Let us consider in more detail the equivalence of these two forms of integral for the
case n = 2. From the definition of the T-product, we have

t

∫
t0

dt1

t

∫
t0

dt2T(HI (t1)HI (t2))

=
t

∫
t0

dt1

t1

∫
t0

dt2HI (t1)HI (t2) +
t

∫
t0

dt1

t

∫
t1

dt2HI (t2)HI (t1) . (6.51)

The integration region of the left-hand side is shown in Figure 6.2 as a square. On the
other hand, in the first term in the right-hand side of (6.51), integration is extended
over the region I (nondashed triangle), whereas—in the second term—integration is
performed over the dashed region II. Changing the order of integration in the second
integral, we shall first integrate over t1; then, the limits of integration change, and we
get

t

∫
t0

dt2

t2

∫
t0

dt1HI (t2)HI (t1) . (6.52)

Now, if we make the change of variables t1 → t2 and t2 → t1, equation (6.52) takes the
form

t

∫
t0

dt1

t1

∫
t0

dt2HI (t1)HI (t2) , (6.53)

so that (6.51) reduces to
t

∫
t0

dt1

t

∫
t0

dt2T(HI (t1)HI (t2)) = 2!
t

∫
t0

dt1

t1

∫
t0

dt2HI (t1)HI (t2) , (6.54)

which proves the validity of (6.50) for the case of n = 2.
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Thus, expansion (6.47) can be written as

U(t, t0) = 1 + (
−i
ℏ
)

t

∫
t0

dt1T(HI (t1)) (6.55)

+
1
2!
(
−i
ℏ
)
2 t

∫
t0

dt1

t

∫
t0

dt2T(HI (t1)HI (t2))

+
1
3!
(
−i
ℏ
)
3 t

∫
t0

dt1

t

∫
t0

dt2

t

∫
t0

dt3T(HI (t1)HI (t2)HI (t3)) + ⋅ ⋅ ⋅

=
∞

∑
n=0

1
n!
(−

i
ℏ
)
n t

∫
t0

dt1

t

∫
t0

dt2 ⋅ ⋅ ⋅
t

∫
t0

dtnT(HI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn)) , (6.56)

which can be rewritten as

U(t, t0) = T{exp(−
i
ℏ

t

∫
t0

HI(t
󸀠)dt󸀠)}, (6.57)

where we have performed the symbolic summation of the series (6.56), which reduces
it to the so-called T-exponent.

It can be directly checked that the series (6.56) gives the solution of equation (6.34). Let us differentiate
(6.56) by time t:

𝜕U(t, t0)
𝜕t
=
∞

∑
n=1

1
n!
(−

i
ℏ
)

n t

∫
t0

dt1
t

∫
t0

dt2 ⋅ ⋅ ⋅
t

∫
t0

dtn−1nHI (t)T(HI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn−1)). (6.58)

Writing the right-hand side of (6.58) using the symmetry of the integrand, and the fact that operator
HI (t) always depends on the timemoment t, which is later than t1, . . . , tn−1, allows us tomove operator
HI (t) outside the sign of the T-product, putting it to the left of all the other factors. Then, (6.58) can be
rewritten as

iℏ𝜕U(t, t0)
𝜕t
= HI (t)

∞

∑
n=1

1
(n − 1)!
(−

i
ℏ
)

n−1 t

∫
t0

dt1
t

∫
t0

dt2

⋅ ⋅ ⋅
t

∫
t0

dtn−1T(HI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn−1))

= HI (t)
∞

∑
n=0

1
n!
(−

i
ℏ
)

n t

∫
t0

dt1
t

∫
t0

dt2 ⋅ ⋅ ⋅
t

∫
t0

dtnT(HI (t1)HI (t2) ⋅ ⋅ ⋅HI (tn))

= HI (t)U(t, t0) , (6.59)

which proves the desired result.
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Recalling that

HI (t) = ∫ d
3rℋI (x) , (6.60)

we can rewrite (6.56) in the form explicitly demonstrating its covariance:

U(t, t0) =
∞

∑
n=0

1
n!
(−

i
ℏ
)
n t

∫
t0

d4x1

t

∫
t0

d4x2

⋅ ⋅ ⋅
t

∫
t0

d4xnT(ℋI (x1)ℋI (x2) ⋅ ⋅ ⋅ℋI (xn)) , (6.61)

wherewehaveused∫ dt ∫ d3r = ∫ d4x/c.We cangeneralize (6.61), introducing integra-
tion limits at space-like surfaces σ and σ󸀠. Then, U(σ, σ󸀠) will be explicitly invariant,
as bothℋI and the volume element d4x are 4-scalars.

The important point in the justification of the above formalism is the so-called
adiabatic hypothesis. Following the definition of the S-matrix, we have to tend the
initial moment of time t0 to −∞ and the final moment t to +∞. However, we have to
be cautious; for the nth-order term in expansion (6.56), this can be done in n ways
for each of the limits. Dyson proposed to overcome this difficulty by introducing the
convergence factor e−λ|t|, multiplying the interaction Hamiltonian, with λ → 0 at the
endof the calculations. This procedure is equivalent to anaveragingprocedure over all
possible nways to perform the limit of t → ±∞. Assuming the validity of this adiabatic
hypothesis, we can consider the initial- and final-state wave functions as eigenstates
of the “free” Hamiltonian H0; these are usually called the wave functions of “bare”
particles. Then, any scattering process is considered as consisting of the following
stages.
1. At time t = −∞, the system is in a state described by thewave functionΦ,which is

an eigenstate of the operatorH0. In this state, there is a given number of particles
with fixed spins and momenta, and these particles are separated from each other
andnoninteracting. The vectorΦ is constant and independent of the time (HI = 0)
vector in interaction representation.

2. The interaction is switched on adiabatically, so that the state with wave function
Φ transforms into a state Ψ(t0) = U(t0, −∞)Φ, which is assumed to correspond
to the real state of physical particles with the same momenta and spins. At this
stage it is still assumed that particles are well separated and do not interact with
each other. However, switching on HI induces self-interaction, so that the “bare”
particles are “dressed” by virtual quanta and the particles become real physical
particles, which satisfy the condition p2 = m2, wherem is the observable physical
mass.

3. Further on, the particles interact with each other, that is, are scattered, trans-
form into other type of particles, et cetera. After a long enough time T = t − t0,
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particles separate again, but their states are now described by the wave function
Ψ(t) = U(t, t0)Ψ(t0); this state corresponds to the “dressed” (that is, real physical)
particles after scattering.

4. Then interaction is adiabatically switched off and the state with wave function
Ψ(t) transforms into a state with the wave function Φ󸀠, which corresponds to
“bare” particles after scattering, and Φ󸀠 = U(∞, t)Ψ(t).

Thus, the real scattering problem Ψ(t0) → Ψ(t) is replaced by an “equivalent” prob-
lem, which introduces the “bare” particles at t = ±∞. Consider the relation

Ψ(t) = U(t, t0)Ψ(t0), (6.62)

which can be rewritten as

U−1(∞, t)Ψ󸀠 = U(t, t0)U(t0, −∞)Φ . (6.63)

Now, we have

Φ󸀠 = U(∞, t)U(t, t0)U(t0, −∞)Φ = U(∞, −∞)Φ = SΦ . (6.64)

This means that Φ󸀠 at t = +∞ is the wave function of “bare” particles, which appear
as a result of scattering from the state described by wave function Φ at t = −∞.

The adiabatic hypothesis leads to results, which are in excellent agreement with
experiments. This may seem strange, as it is clear that interaction between real par-
ticles can not be “switched off” (adiabatically or in any other way). In this respect,
quantum field theory is rather different from quantum mechanics, where we usually
deal with potentials with finite radius (except the Coulomb case, but there we know
the exact wave functions), so that in the scattering problem, the wave functions of the
initial and final states are really corresponding to free particles.

Freeman Dyson (born 1923)
is an English–born American
theoretical physicist. He is
known for his work in quan-
tum electrodynamics, solid–
state physics, astronomy, and
nuclear engineering. He the-
orized several concepts that
bear his name, such as Dyson
equation and Dyson sphere.
In 1949, Dyson demonstrated
the equivalence of two formu-

lations of quantum electrodynamics (QED): Feynman’s diagrams and the operator
method developed by Julian Schwinger and Shinichiro Tomonaga. He was the first
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person after their creator to appreciate the power of Feynman diagrams, and his
paper written in 1948 and published in 1949 was the first to make use of them, devel-
oped rules for calculating the diagrams and completely solved the renormalization
problem in QED. Dyson’s paper and also his lectures presented Feynman’s theories
of QED in a form that other physicists could understand, facilitating the physics com-
munity’s acceptance of Feynman’s work. Later he made significant contributions to
physics ofmagnetism (spinwaves), randommatrices, and stability ofmatter. In 1960,
Dyson wrote a short paper for the journal Science, titled “Search for Artificial Stellar
Sources of Infrared Radiation”. In it, he theorized that a technologically advanced
extraterrestrial civilization might completely surround its native star with artificial
structures in order to maximize the capture of the star’s available energy. Eventu-
ally, the civilization would completely enclose the star, intercepting electromagnetic
radiation with wavelengths from visible light downwards and radiating waste heat
outwards as infrared radiation. Therefore, one method of searching for extraterres-
trial civilizations would be to look for large objects radiating in the infrared range of
the electromagnetic spectrum. Dyson has won numerous scientific awards, but never
a Nobel Prize. He remarked in 2009, “I think it’s almost true without exception if you
want to win a Nobel Prize, you should have a long attention span, get hold of some
deep and important problem and stay with it for ten years. That wasn’t my style.”

6.4 Feynman diagrams for electron scattering in quantum
electrodynamics

In quantum electrodynamics (QED), interaction Hamiltonian density has the form

ℋI (x) = jμ(x)A
μ(x) , (6.65)

where jμ is the current density of Dirac electrons, whereas Aμ is the vector-potential of
the electromagnetic field. Then, the scattering matrix is written as5

S = T exp{−ie∫ d4xjμ(x)A
μ(x)} , (6.66)

where we returned to the system of units with ℏ = c = 1.
Let us consider some specific examples of the calculation of matrix elements of

a scattering matrix. The current density operator j contains the product of two elec-
tronic ψ-operators. Thus, in the first order of perturbation theory, only the processes
involving three particles—two electrons and one photon—can appear, as shownby the
diagram in Figure 6.3, similar to that of Figure 4.7. However, such processes with free

5 In the following, here and in the next chapter, we mainly follow [6].
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Figure 6.3

particles are impossible because of energy and momentum conservation. In fact, if p1
and p2 are the 4-momenta of electrons, and k is the 4-momentum of a photon, conser-
vation law is written as k = p2−p1 or k = p1+p2. However, these equalities are impossi-
ble, as for the real photon,we always have k2 = 0,whereas the square (p2±p1)2 is easily
shown to be nonzero. Let us calculate (p2±p1)2 in the rest frame of one of the electrons,
for example, electron 1. Then, (p2±p1)2 = 2(m2±p1p2) = 2(m2±ε1ε2∓p1p2) = 2m(m±ε2),
and because of ε2 > m, we have (p2 + p1)2 > 0 or (p2 − p1)2 < 0.

Thus, the first nonzero matrix elements of the S-matrix can appear only in the
second order of perturbation theory:

S(2) = −e
2

2!
∫ d4x∫ d4x󸀠T(jμ(x)Aμ(x)j

ν(x󸀠)Aν(x
󸀠)) . (6.67)

As electron and photon operators in interaction representation commute with each
other, (6.67) can be rewritten as

S(2) = −e
2

2!
∫ d4x∫ d4x󸀠T(jμ(x)jν(x󸀠))T(Aμ(x)Aν(x

󸀠)) . (6.68)

As a first example, we consider the elastic scattering of two electrons. In the ini-
tial state, we have two electrons withmomenta p1 and p2, whereas in the final state we
have two electrons with momenta p3 and p4. It is assumed that electrons are in some
concrete spin states, but the spin indices in the following are dropped for brevity. We
have to calculate thematrix element between the initial and final stateswith appropri-
ate particles. As in both states photons are absent, the required matrix element of the
T-product of the photon operators is simply ⟨0| ⋅ ⋅ ⋅ |0⟩, where |0⟩ is a photon vacuum.
Accordingly, from (6.68), we obtain the tensor

Dμν(x − x
󸀠) = i⟨0|TAμ(x)Aν(x

󸀠)|0⟩ , (6.69)

which is called the photon propagator or the photon Green’s function.
From the T-product of electron operators in (6.68), the following matrix element

appears:

⟨34|Tjμ(x)jν(x󸀠)|12⟩ , (6.70)

where |12⟩ and |34⟩ denote states with two electrons with the appropriate momenta.
This matrix element can also be written in the form of a vacuum average if we use the
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relation

⟨2|F|1⟩ = ⟨0|a2Fa
+
1 |0⟩ , (6.71)

where F is an arbitrary operator, whereas a+1 and a2 are operators of the creation of
the 1st and annihilation of 2nd electrons. It is clear that instead of (6.70), we have to
calculate

⟨0|a3a4T(j
μ(x)jν(x󸀠))a+2 a

+
1 |0⟩ . (6.72)

Each of the current operators is written as j = ψ̄γψ, and the ψ-operators are repre-
sented by

ψ = ∑
p
(apψp + b

+
pψ−p) , ψ̄ = ∑

p
(a+pψ̄p + bpψ̄−p) , (6.73)

where ψp denotes the appropriate spinors (plane waves). The second terms here con-
tainpositronoperators,which are irrelevant for theproblemunder consideration. Tak-
ing (6.73) into account, the product jμ(x)jν(x󸀠) is represented by the sum of the terms,
each containing the product of two operators ap and two a+p, which are responsible for
the annihilation of electrons 1 and 2 and the creation of electrons 3 and 4. It is clear
that these should be operators a1, a2, a

+
3 , a
+
4 , which are “paired” (or “contracted”)with

the “external” operators a+1 , a
+
2 , a3, a4 according to the obvious equality

⟨0|apa
+
p |0⟩ = 1 . (6.74)

The operators disappear, and only the c-numbers remain. Depending on which of
ψ-operators provide a1, a2, a

+
3 , a
+
4 for pairing (contraction) with external a+1 , a

+
2 , a3,

a4, equation (6.72) produces four terms, such as

a⋅⋅⋅3 a
⋅
4(ψ̄
⋅γμψ⋅⋅)( ̄ψ󸀠

⋅⋅⋅
γνψ󸀠⋅⋅⋅⋅)a+⋅⋅2 a+⋅⋅⋅⋅1 + a

⋅
3a
⋅⋅⋅
4 (ψ̄
⋅γμψ⋅⋅)( ̄ψ󸀠

⋅⋅⋅
γνψ󸀠⋅⋅⋅⋅)a+⋅⋅⋅⋅2 a+⋅⋅1

+ a⋅3a
⋅⋅⋅
4 (ψ̄
⋅γμψ⋅⋅)( ̄ψ󸀠

⋅⋅⋅
γνψ󸀠⋅⋅⋅⋅)a+⋅⋅2 a+⋅⋅⋅⋅1 + a

⋅⋅⋅
3 a
⋅
4(ψ̄
⋅γμψ⋅⋅)( ̄ψ󸀠

⋅⋅⋅
γνψ󸀠⋅⋅⋅⋅)a+⋅⋅⋅⋅2 a+⋅⋅1 , (6.75)

where ψ = ψ(x) and ψ󸀠 = ψ(x󸀠), and the same number of dots denote paired (con-
tracted) fermion operators. Now, in each of these terms it is necessary to make per-
mutations of the “paired” operators a1, a2, . . . from ψ, written as (6.73), to put them
alongside their external partners a+1 , a

+
2 , . . . , so that we can use (6.74) and obtain the

vacuumaverage as a simple product of averages, corresponding to these pairings (con-
tractions). Taking into account the anticommutativity of these operators (1, 2, 3, 4 are
different states), we find that the matrix element (6.70) is equal to6

⟨34|Tjμ(x)jν(x󸀠)|12⟩ = (ψ̄4γ
μψ2)(ψ̄

󸀠
3γ

νψ󸀠1) + (ψ̄3γ
μψ1)(ψ̄

󸀠
4γ

νψ󸀠2)
− (ψ̄3γ

μψ2)(ψ̄
󸀠
4γ

νψ󸀠1) − (ψ̄4γ
μψ1)(ψ̄

󸀠
3γ

νψ󸀠2) , (6.76)

6 Due to the anticommutativity of fermion operators, the current operators j(x) and j(x󸀠)—composed
of pairs of these operators—commute, and we can drop the symbol T-product.
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where theψ are not operators but rather the corresponding spinors (plane waves with
momenta 1, 2, 3, 4). The total sign here is the subject of agreement; it depends on the
order of placement of the “external” electron operators. The sign of a matrix element
for the scattering of identical particles is, in general, arbitrary. The first and second
terms in (6.76) (as well as the third and fourth) differ from each other only by the per-
mutation of indices μ and ν and arguments x and x󸀠. But such permutations do not
change the matrix element (6.70), where the order of all factors is determined by the
symbol of T-ordering. Thus, after multiplying (6.76) and (6.69), and integration over
d4xd4x󸀠, four terms from (6.76) give

Sfi = ie
2 ∫ d4xd4x󸀠Dμν(x − x

󸀠)[(ψ̄4γ
μψ2)(ψ̄

󸀠
3γ

νψ󸀠1) − (ψ̄4γ
μψ1)(ψ̄

󸀠
3γ

νψ󸀠2)]. (6.77)

Note that the factor of 2 is canceled. Taking into account that the electronic wave func-
tion here are plane waves, we can write the expression in square brackets in (6.77) as

(ū4γ
μu2)(ū3γ

νu1)e
−i(p2−p4)x−i(p1−p3)x󸀠 − (ū4γ

μu1)(ū3γ
νu2)e
−i(p1−p4)x−i(p2−p3)x󸀠

= {(ū4γ
μu2)(ū3γ

νu1)e
−i[(p2−p4)+(p3−p1)]ξ/2

− (ū4γ
μu1)(ū3γ

νu2)e
−i[(p1−p4)+(p3−p2)]ξ/2} e−i(p1+p2−p3−p4)X , (6.78)

where we have introduced ξ = x − x󸀠 and X = 1
2 (x + x

󸀠). The integration in (6.77) over
d4xd4x󸀠 is now replacedbyd4ξd4X. The integral overd4X producesδ(p1 + p2 − p3 − p4),
corresponding to the conservation of the 4-momentum. Transforming from Sfi toMfi,
according to (5.2), (5.3), (5.11), we obtain scattering amplitudeMfi as

Mfi = e
2[(ū4γ

μu2)Dμν(p4 − p2)(ū3γ
νu1) − (ū4γ

μu1)Dμν(p4 − p1)(ū3γ
νu2)] , (6.79)

where

Dμν(k) = ∫ d
4ξeikξDμν(ξ ) (6.80)

is the photon propagator in momentum representation. Each of the contributions to
the scattering amplitude in (6.79) can be represented by an appropriate Feynman di-
agram. For example, the first term corresponds to the diagram in Figure 6.4, where
k = p1 − p3 = p4 − p2. Similarly, the second term is represented by the diagram in
Figure 6.5, where k󸀠 = p1 − p4 = p3 − p2. The rules of diagram construction are similar
to those discussed in Chapter 4:

Figure 6.4
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Figure 6.5

1. The full lines “entering” the diagram (incoming lines) and directed towards the
interaction vertex correspond to the initial electrons and are associated with
bispinors u. The full lines “leaving” the diagram (outgoing lines) and directed
outside the vertices correspond to the final electrons and are associated with
bispinors ū. These factors are written from left to right in the order corresponding
to the movement along the full lines against the direction of arrows.

2. With each vertex,we associate the factor (−ieγμ). The vertices are connectedby the
photon line, towhichwe associate the factor−iDμν. The 4-momenta of all particles
(lines) in the vertices are conserved. The direction of the photon line is irrelevant;
it only changes the sign of the photon momentum k, but the photon propagator
Dμν(k) is an even function of k.

These two diagrams differ from each other because of the exchange of two electrons
with momenta p3 and p4, which corresponds to the exchange of identical particles in
the final state, leading to a sign change of the scattering amplitude (Pauli principle).

Consider nowelectron–positron scattering.Wenowdenote the initialmomenta as
p− and p+, whereas the final momenta are denoted as p󸀠− and p

󸀠
+. The operators of the

creation and annihilation of positrons enter the field operators (6.73) togetherwith the
corresponding creation and annihilation operators of electrons. In the previous case
of electron–electron scattering, the annihilation of initial particles was done by the
operator ψ, whereas the creation of the final particle was achieved by the operator ψ̄.
Now, the roles of these operators change: the conjugate function ψ̄(−p+) describes the
initial positron, whereas the final positron is described byψ(−p+). With this difference
in mind, we can easily write the scattering matrix as

Mfi = −e
2(ū(p󸀠−)γ

μu(p−))Dμν(p− − p
󸀠
−)(ū(−p+)γ

νu(−p󸀠+))

+ e2(ū(−p+)γ
μu(p−))Dμν(p− + p+)(ū(p

󸀠
−)γ

νu(−p󸀠+)) , (6.81)

which is represented by the diagrams in Figure 6.6. The rules for constructing these
diagrams remain the same as before. The incoming full lines are associated with the
bispinoru, and theoutgoing lineswith ū. However, now the incoming lines correspond
to the final positrons, whereas the outgoing lines correspond to the initial positrons,
and their momenta are taken with the opposite sign. This is in agreement with the
Feynman interpretation of a positron (discussed in Chapter 4), being an electron prop-
agating backwards in time. In the first diagram of Figure 6.6, in one the vertex cross
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Figure 6.6

the lines of the initial and final electrons, whereas in the other, they cross the positron
lines, so that this diagramdescribes electron scattering by positron. In the second dia-
gram, in each of the vertices the electron and positron lines meet. In the upper vertex,
the pair is annihilated and a virtual photon is emitted,whereas in the lower vertex, the
pair is created by this photon. This difference is also reflected in the properties of the
virtual photons. In the first diagram (scattering channel) the 4-momentum of the vir-
tual photon is equal to the difference of the 4-momenta of two electrons (or positrons),
so that k2 < 0 (refer to the footnote at the beginning of this section). In the second di-
agram (annihilation channel), k󸀠 = p− + p+, so that k󸀠2 > 0. Note that for a virtual
photon, we always have k2 ̸= 0, in contrast to a real photon, for which we always have
k2 = 0.

6.5 Feynman diagrams for photon scattering

Consider now another effect which appears in the second order of perturbation
theory—the photon scattering by electrons (the Compton effect). In the initial state,
we have a photon and electronwith 4-momenta k1 and p1, respectively, whereas in the
final state they havemomenta k2 and p2 (for brevity, we drop the polarization indices).
During the calculation of the matrix element S(2), between the initial and final states,
the following photon matrix element appears:

⟨2|TAμ(x)Aν(x)|1⟩ = ⟨0|c2TAμ(x)Aν(x
󸀠)c+1 |0⟩ , (6.82)

where (refer to (3.41))

Aμ = ∑
k
(ckAkμ + c

+
kA
∗
kμ) . (6.83)

In (6.82), we are performing all pairings (contractions) of “external” and “internal”
photon operators and obtain

c⋅2A
⋅
μA
󸀠⋅⋅
νc
+⋅⋅
1 + c

⋅
2A
⋅⋅
μA
󸀠⋅
νc
+⋅⋅
1 = A

∗
2μA
󸀠
1ν + A1μA

󸀠∗
2ν . (6.84)

Here, we have taken into account the commutativity of c1 and c+2 , allowing the symbol
of T-ordering to be dropped.
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Likewise, we can analyze the electronic part of the matrix element:

⟨2|Tjμ(x)jν(x󸀠)|1⟩ = ⟨0|a2T(ψ̄γ
μψ)(ψ̄󸀠γνψ󸀠)a+1 |0⟩ . (6.85)

Here again, we are dealing with four ψ-operators. Only two of them annihilate elec-
tron 1 and create electron 2, that is, paired with operators a+1 and a2. These may be
operators ψ̄󸀠, ψ or ψ󸀠, ψ̄, but not ψ, ψ̄ or ψ󸀠, ψ̄󸀠, as the creation or annihilation at the
same point x or x󸀠 of a pair of real electrons (together with one real photon) obviously
produces zero. Making all the contractions, we obtain in thematrix element (6.85) two
terms, which we first write for the case of t > t󸀠:

a⋅2(ψ̄
⋅γμψ)(ψ̄󸀠γνψ󸀠⋅⋅)a+⋅⋅1 + a

⋅
2(ψ̄γ

μψ⋅⋅)( ̄ψ󸀠
⋅
γνψ󸀠)a+⋅⋅1 . (6.86)

Contractions in the first term give

a2ψ̄→ a2a
+
2 ψ̄2 , ψ󸀠a+1 → a1a

+
1ψ
󸀠
1 . (6.87)

The products a2a
+
2 and a1a

+
1 are diagonal and can be replaced with their vacuum aver-

ages, which, according to (6.74), reduce to unity. For the similar transformation of the
second term in (6.87), we first have to move operator a+2 to the left and a1 to the right,
which can be done using the commutation rules, which gives

{ap,ψ}+ = {a
+
p , ψ̄}+ = 0 ,

{ap, ψ̄}+ = ψ̄p , {a
+
p ,ψ}+ = ψp , (6.88)

where in the right-hand side of the last two expressions spinors appeared, correspond-
ing to plane waves with 4-momentum p (refer to (6.73)). As a result, (6.86) is trans-
formed to the form

⟨0|(ψ̄2γ
μψ)(ψ̄󸀠γνψ󸀠1) − (ψ̄γ

μψ1)(ψ̄
󸀠
2γ

νψ󸀠)|0⟩ for t > t󸀠 , (6.89)

where ψ without index are operators, whereas ψ1, ψ2 are again just spinors (plane
waves) with the appropriate momenta. Likewise, for t < t󸀠, we obtain an expression
that differs by permutation of the primes and the indices μ and ν:

⟨0| − (ψ̄󸀠γνψ󸀠1)(ψ̄2γ
μψ) + (ψ̄󸀠2γ

νψ󸀠)(ψ̄γμψ1)|0⟩ for t < t󸀠 . (6.90)

Both expressions (6.89) and (6.90) can be written in a unified way, introducing the
following definition of chronological (T-ordered) product of Fermion operators:

Tψ(x)ψ̄(x󸀠) = {
ψ(x)ψ̄(x󸀠) , t󸀠 < t ,

−ψ̄(x󸀠)ψ(x) , t󸀠 > t .
(6.91)

Then, the first and second terms in (6.89) and (6.90) are written as

ψ̄2γ
μ⟨0|Tψψ̄󸀠|0⟩γνψ󸀠1 + ψ̄

󸀠
2γ

ν⟨0|Tψ󸀠ψ̄|0⟩γμψ1 . (6.92)
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Note that in accordancewith definition of (6.91), the products of the operators for t < t󸀠

and t > t󸀠 are taken with different signs. This is the main difference of the definition
of the T-product for fermion operators from those given previously, which is related
to the anticommutation of these operators, in contrast to commuting bilinear forms,
entering the interaction Hamiltonian.

Let us define the electron propagator (Green’s function) as a second-rank bispinor
of the form

G(x − x󸀠) = −i⟨0|Tψ(x)ψ̄(x󸀠)|0⟩ . (6.93)

Then, the matrix element of interest to us is written as

⟨2|Tjμ(x)jν(x󸀠)|1⟩ = iψ̄2γ
μG(x − x󸀠)γνψ󸀠1 + +iψ̄

󸀠
2γ

νG(x󸀠 − x)γμψ1 . (6.94)

After multiplication by the photon matrix element (6.82), (6.84), and integration over
d4xd4x󸀠, both terms in (6.94) give the same result, so that

Sfi = −ie
2 ∫ d4x∫ d4x󸀠ψ̄2(x)γ

μG(x − x󸀠)γνψ1(x
󸀠)

× [A∗2μ(x)A1ν(x
󸀠) + A∗2ν(x

󸀠)A1μ(x)] . (6.95)

Substitutingplanewaves for the electronandphotonwave functions, and separating—
as in previous examples—the δ-function, corresponding to the 4-momentum conser-
vation law, we obtain the scattering amplitude as

Mfi = −4πe
2ū2[(γe

∗
2 )G(p1 + k1)(γe1) + (γe1)G(p1 − k2)(γe

∗
2 )]u1 , (6.96)

where e1 and e2 are 4-vectors of photon polarization, and G(p) is the electron propa-
gator in momentum representation. Two terms of this expression are represented by
the Feynman diagrams shown in Figure 6.7.

With the incoming line (initial photon), we associated the factor√4πe, to the out-
going line (final photon) the factor √4πe∗. The full internal line corresponds to the

Figure 6.7
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virtual electronwith 4-momentum, determined by the 4-momentum conservation law
in the vertices. This line is associated with the electron propagator iG(f ). In contrast
to the 4-momentum of a real particle, the square of the virtual electron 4-momentum
does not belong to its mass surface, that is, it is not equal tom2. Writing the invariant
f 2 in electron rest frame, it is easy to show that

f 2 = (p1 + k1)
2 > m2 , f 󸀠2 = (p1 − k2)

2 < m2 . (6.97)

6.6 Electron propagator

Let us calculate explicitly the propagators (Green’s functions) of free particles. By def-
inition (6.93), the electron propagator is given by

G(x − x󸀠) = −i⟨0|Tψ(x)ψ̄(x󸀠)|0⟩ .

Let us act upon it from the right side by the operator γμpμ − m, where pμ = i𝜕μ. As
the free field ψ(x) satisfies the Dirac equation (γμpμ −m)ψ(x) = 0, we shall get zero in
all points x, except those where t = t󸀠. Note that G(x − x󸀠) tends to different limits, as
t → t󸀠 + 0 and t → t󸀠 − 0, and according to definition (6.93), these limits are given by

−i⟨0|ψ(rt)ψ̄(r󸀠t)|0⟩ and +i⟨0|ψ̄(r󸀠t)ψ(rt)|0⟩ , (6.98)

so that for t = t󸀠, the Green’s function demonstrates finite discontinuity. This leads to
the appearance of an additional term with the δ-function in the derivative 𝜕G/𝜕t:

𝜕G
𝜕t
= −i⟨0|T 𝜕ψ

𝜕t
ψ(x󸀠)|0⟩ + δ(t − t󸀠)[G|t→t󸀠+0 − G|t→t󸀠−0] . (6.99)

Note that in γμpμ −m, the derivative over t enters as iγ0𝜕/𝜕t, so that

(γμpμ −m)G(x − x
󸀠) = δ(t − t󸀠)γ0⟨0|{ψ(rt), ψ̄(r󸀠t)}+|0⟩ . (6.100)

Now calculate the anticommutator. Multiplying the field operators, which we take in
the form of (6.73), and using commutation relations for ap and bp, we obtain

{ψ(r, t), ψ̄(r󸀠t)}+ = ∑
p
[ψp(r)ψ̄p(r

󸀠) + ψ−p(r)ψ̄−p(r
󸀠)] , (6.101)

whereψ±p(r)areplanewaves (bispinors)without a time-dependent factor. These func-
tions form the full set, so that

∑
p
[ψp(r)ψ

∗
p(r
󸀠) + ψ−p(r)ψ

∗
−p(r
󸀠)] = δ(r − r󸀠)δik , (6.102)
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where δik is the Kronecker symbol over the spinor indices. The sum in the right-hand
side of (6.101) differs from (6.102) by the replacement of ψ∗ by ψ∗γ0, so that

{ψ(rt), ψ̄(r󸀠t)}+ = γ
0δ(r − r󸀠) . (6.103)

Substituting (6.103) into (6.100), we finally get

(γμpμ −m)G(x − x
󸀠) = δ(x − x󸀠) . (6.104)

Thus, the electron propagator satisfies the Dirac equation with a δ-function in the
right-hand side, so that it is really the Green’s function for this equation.7

Consider now the Fourier transform of Green’s function

G(p) = ∫ d4ξe−ipξG(ξ ) . (6.105)

Calculating the Fourier transforms of both sides of equation (6.104), we get

(γμpμ −m)G(p) = 1 . (6.106)

Solving this equation, we obtain the result, which we already know from Chapter 4,

G(p) =
γμpμ +m
p2 −m2 . (6.107)

The components of the 4-vector p in G(p) are independent variables and are not re-
stricted by any relations, such as p2 ≡ p20 − p

2 = m2. If we write the denominator of
(6.107) as p20 − (p

2 + m2), we can see that G(p) as the function of p0 for a given value
of p has two poles at p0 = ±ε, where ε = √p2 +m2. Then again, during the integration
over dp0 in

G(ξ ) = ∫ d4p
(2π)4

e−ipξG(p) = 1
(2π)4
∫ d3peipr ∫ dp0e

−ip0τG(p) , (τ = t − t󸀠) (6.108)

we meet the problem of encircling these poles, which we first discussed in Chapter 4.
Again, we shall use Feynman’s approach. Let us return to definition (6.93). Substitute
into it ψ-operators in the form given by (6.73). Note that nonzero vacuum averages
appear only from the following products of creation and annihilation operators:

⟨0|apa
+
p |0⟩ = 1 , ⟨0|bpb

+
p |0⟩ = 1 . (6.109)

Then,

G(x − x󸀠) = −i∑
p
ψp(rt)ψ̄p(r

󸀠t󸀠) = −i∑
p
e−iε(t−t

󸀠)ψp(r)ψ̄p(r
󸀠) (6.110)

7 It is easy to see that iG(x1 − x2) coincides with Feynman’s function K+(2, 1) introduced in Chapter 4.
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Figure 6.8

for t − t󸀠 > 0. Accordingly,

G(x − x󸀠) = i∑
p
ψ̄−p(r

󸀠t󸀠)ψ−p(rt) = i∑
p
eiε(t−t

󸀠)ψ−p(r)ψ̄−p(r
󸀠), (6.111)

for t − t󸀠 < 0. We see that, as in Chapter 4, for t − t󸀠 > 0, only electrons contribute to G,
whereas for t − t󸀠 < 0, only positrons. Comparing (6.110) and (6.111) with (6.108), we
see that the integral

∫ dp0e
−ip0τG(p) (6.112)

in equation (6.108) must produce a factor e−iετ for τ > 0, and eiετ for τ < 0. This can
be achieved if during the calculation of (6.112) we encircle poles p0 = ε and p0 = −ε in
the upper and lower half-planes of complex variable p0, correspondingly, as shown in
Figure 6.8. In fact, for τ > 0,wehave (to guarantee convergence) closed the integration
contour to a semicircle at infinity in the lower half-plane of p0, then the value of inte-
gral (6.112) will be determined by the residue at the pole p0 = +ε. For τ < 0, we close
the contour in the upper half-plane, and integral is determined by the residue at the
pole p0 = −ε. Thus, we achieve the desired result. The Feynman rule to deal with the
poles, as we have seen in Chapter 4, can be formulated in another form: integration
over p0 is performed along the real axis, but we add an infinitesimally small negative
imaginary part to particle massm:

m→ m − i0 . (6.113)

Then,

ε → √p2 + (m − i0)2 = √p2 +m2 − i0 = ε − i0 . (6.114)

Correspondingly, the poles p0 = ±ε are moved up and down from the real axis, as
shown in Figure 6.9, so that integration becomes equivalent to integration along the
contour shown in Figure 6.8.8

This rule for dealing with poles is equivalent to the well-known relation

1
x ± i0
= P 1

x
∓ iπδ(x) , (6.115)

8 It is useful to note that this rule of pole encirclement corresponds to G(x−x󸀠) acquiring an infinites-
imal damping over |τ|. If we write the value of p0 in displaced poles as −(ε − iδ) and +(ε − iδ), where
δ→ +0, the time-dependent exponent in integral (6.112) will be equal to exp(−iε|τ| − δ|τ|).
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Figure 6.9

which is understood in the sense that integration with some regular function f (x) is done as follows:
∞

∫
−∞

dx f (x)
x ± i0
= P
∞

∫
−∞

dx f (x)
x
∓ iπf (0) , (6.116)

where P denotes the principal value of the integral.

Using Feynman’s rule, we write the electron propagator in momentum representation
as

G(p) =
γμpμ +m

p2 −m2 + i0
. (6.117)

This Green’s function is the product of the bispinor γμpμ +m and the scalar

G(0)(p) = 1
p2 −m2 + i0

. (6.118)

In coordinate representation G(0)(ξ ) satisfies the equation

(◻ −m2)G(0)(x − x󸀠) = δ(x − x󸀠), (6.119)

being the Green’s function of the Klein–Gordon equation. It is obvious that it deter-
mines the propagator of scalar particles and can be defined via scalar field as

G(0)(x − x󸀠) = −i⟨0|Tφ(x)φ+(x󸀠)|0⟩ , (6.120)

where

Tφ(x)φ+(x󸀠) = {φ(x)φ
+(x󸀠) , t󸀠 < t ,

φ+(x󸀠)φ(x) , t󸀠 > t,
(6.121)

is the definition of the T-product for the Bose field.

6.7 The photon propagator

While analyzing the free electromagnetic field,weused the expansionof the vector-po-
tential over transversal plane waves. This description does not apply in the case of an
arbitrary electromagnetic field. This is obvious, as—for example—in case of electron
scattering, we have to take into account Coulomb interaction, which is described by
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the scalar potential and is not reduced to the exchange of transversal virtual photons.
Thus, it seems that we still do not have the full definition of operators Aμ and cannot
calculate the photon propagator directly using the expression

Dμν(x − x
󸀠) = i⟨0|TAμ(x)Aν(x

󸀠)|0⟩ . (6.122)

Besides that, the gauge invariance makes the field operators somehow unphysical.
However, belowwe shall present somegeneral analysis,which solves all of these prob-
lems [6].

The most general form of the symmetric 4-tensor of the second rank, depending
only on the 4-vector ξ = x − x󸀠, is given by

Dμν(ξ ) = gμνD(ξ
2) − 𝜕μ𝜕νD

l(ξ 2) , (6.123)

where D and Dl are scalar functions of invariant ξ 2. Then, in momentum representa-
tion, we have

Dμν(k) = gμνD(k
2) + kμkνD

l(k2) , (6.124)

where D(k2) and Dl(k2) are the Fourier components of D(ξ 2) and Dl(ξ 2).
The photon Green’s function always enters scattering amplitudes multiplied by

the matrix elements of the transition currents of a pair of electrons, that is, in com-
binations, such as jμ21Dμνjν43, which is seen, for example, from equation (6.79). Current
conservation gives 𝜕μjμ = 0, so that the matrix elements of the current satisfy the con-
dition of four-dimensional transversality:

kμj
μ
21 = 0 , (6.125)

where k = p2 − p1. Thus, the physical results do not change after the replacement

Dμν → Dμν + χμkν + χνkμ , (6.126)

where χμ are arbitrary functions of k. This arbitrariness corresponds, in fact, to differ-
ent choices of the gauge for field operators. Thus, the choice of the function Dl(k2)
in (6.124) is, in fact, arbitrary9 and can be done to make calculations more conve-
nient. Thus, the full definition of the Green’s function reduces to the choice of a sin-
gle gauge invariant function D(k2). Taking the fixed value of k2, and choosing the
z-axis along the direction of k, we can see that transformations (6.126) will not affect
Dxx = Dyy = −D(k2). Thus, it is sufficient to calculate only one component Dxx, using
an arbitrary choice of the gauge for potentials.

9 Consider δDl(k2), an arbitrary change of Dl(k2). Then, we get δDμν = kμkνδDl ≡ kμχν, where χν =
kνδDl(k2).
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It is convenient to use, as before, the Coulomb gauge divA = 0 when the operator
A is given by

A = ∑
kα
√2π
ω
(ckαe
(α)e−ikx + c+kαe

(α)∗eikx) , (6.127)

where ω = |k|, and α = 1, 2 enumerates polarizations. The only nonzero vacuum aver-
age of the product of the operators c, c+ is

⟨0|ckαc
+
kα|0⟩ = 1 . (6.128)

Then, using definition (6.122), we obtain

Dik(ξ ) = ∫
d3k
(2π)3

2πi
ω
(∑

α
e(α)i e(α)∗k )e

−iω|τ|+ikξ , (6.129)

where i, k are three-dimensional vector indices. The presence in the exponent of the
modulus of τ = t − t󸀠 reflects the T-ordering of the field operators in (6.122). From
(6.129), it is clear that the integrand without the factor of eikξ represents the Fourier
component of Dik(rt). For Dxx = −D, it is equal to

2πi
ω

e−iω|τ|∑
α
|e(α)x |

2 =
2πi
ω

e−iω|τ| . (6.130)

To find Dxx(k2), we have to Fourier expand this function in time. This gives

2πi
ω

e−iω|τ| = −
∞

∫
−∞

dk0
2π

4π
k20 − k2 + i0

e−ik0τ . (6.131)

As shown above, integration here assumes encirclement of poles k0 = ±|k| = ±ω from
below and above, correspondingly, so that, for τ > 0, the integral is determined by the
residue at the pole k0 = +ω and, for τ < 0, by the residue at the pole k0 = −ω. Thus,
we finally find

D(k2) = 4π
k2 + i0
. (6.132)

Now, it is obvious that the corresponding function in coordinate representation satis-
fies the equation

◻D(x − x󸀠) = −4πδ(x − x󸀠) , (6.133)

so that it is the Green’s function of the wave equation.
Inmost cases, it is convenient to chooseDl = 0, so that the photon propagator has

the form

Dμν = gμνD(k
2) =

4π
k2 + i0

gμν , (6.134)
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which coincideswith the result obtained in Chapter 4 and corresponds to the so-called
Feynman gauge.

Sometimes it is convenient to choose Dl = −D(k2)/k2, so that

Dμν =
4π
k2
(gμν −

kμkν
k2
) , (6.135)

corresponding to the so-called Landau gauge. Then, Dμνkν = 0, and this choice is
similar to the Lorentz gauge, where kμAμ = 0.

The choice of the gauge divA = 0 leads to a similar gauge for the propagator:

Diik
l = 0 , D0lk

l = 0 , (6.136)

which, together with Dxx = −D = −4π/k2, gives

Dil = −
4π

ω2 − k2
(δil −

kikl
k2
) , D00 = −

4π
k2
, D0i = 0 , (6.137)

so that D00 simply equals to the Fourier transform of the Coulomb potential.

For massive particles with spin s = 1, there is no gauge invariance, and the choice of propagator is
unique. Substituting the appropriate operators ψμ into the definition

Gμν(x − x
󸀠) = −i⟨0|Tψμ(x)ψ

+
ν (x
󸀠)|0⟩ , (6.138)

we obtain an expression which differs from (6.129) only in the form of the sum over polarizations,
which takes into account three independent polarizations of the massive vector field. Dropping the
technical details [6], we only mention that in momentum representation the propagator of the vector
field is equal to

Gμν = −
1

p2 −m2 + i0
(gμν −

pμpν
m2 ) . (6.139)

6.8 The Wick theorem and general diagram rules

From simple examples of calculations of matrix elements of scattering matrix, con-
sidered above, we already can see the advantages of diagrammatic approach. Let us
consider now the general case. Matrix element of S for a transition between arbitrary
initial and final states coincides with vacuum average of operator, which is obtained
by multiplication of S from the right (by creation operators of all initial particles) and
from the left (by annihilation operators of all final particles). Then, in the nth-order of
perturbation theory, this matrix element is written as

⟨f |S(n)|i⟩ = 1
n!
(−ie)n ∫ d4x1 ⋅ ⋅ ⋅ d

4xn⟨0| . . . b2fb1f ⋅ ⋅ ⋅ a1f ⋅ ⋅ ⋅ c1fT

× (ψ̄1γA1ψ1) ⋅ ⋅ ⋅ (ψ̄nγAnψn)c
+
1i ⋅ ⋅ ⋅ a

+
1i ⋅ ⋅ ⋅ b

+
1i ⋅ ⋅ ⋅ |0⟩ . (6.140)
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The indices 1i, 2i, . . . enumerate the initial particles (electrons, positrons, and photons
separately), whereas 1f , 2f , . . . enumerate the final ones. The indices 1, 2, . . . of opera-
torsψ andA correspond toψ1 = ψ(x1), et cetera. The operatorsψ andA are represented
by linear combinations of the creation and annihilation operators of the appropriate
particles in different states. Thus, in matrix element, vacuum averages of products of
creation and annihilation operators, as well as their linear combinations appear. All
these operators are taken in interaction representation, so that they satisfy the equa-
tions of motion and the commutation relations for free particles. Calculation of such
averages is done using theWick theorem, which is proved below.

The Wick theorem
Let us define the normal product of operators

N(ABCD ⋅ ⋅ ⋅XYZ) , (6.141)

so that all the creation operators are to the left of the annihilation operators, with
their sign corresponding to the parity of the permutation of the Fermion operators,
which transforms the product to the necessary form. Obviously, the vacuum average
of the normal product of operators equals zero, except in the case, where under the
sign of the normal product, we have simply some c-number. Let us call the “pairing”
(“contraction”) of two operators the following difference:

A.B. = T(AB) − N(AB) . (6.142)

It is easy to see that this expression is a c-number, as its right-hand side is either zero or
coincides (up to a sign) with the commutator (anticommutator) of operators A and B.
The main statement of the Wick theorem is that the T-product of an arbitrary num-
ber of operators can be expressed through all possible N-products with all possible
pairings (contractions):

T(ABCD ⋅ ⋅ ⋅XYZ) = N(ABCD ⋅ ⋅ ⋅XYZ) + N(A⋅B⋅CD ⋅ ⋅ ⋅XYZ)
+ N(A⋅BC⋅D ⋅ ⋅ ⋅XYZ) + ⋅ ⋅ ⋅ + N(A⋅B⋅⋅C⋅⋅⋅D ⋅ ⋅ ⋅X ⋅Y ⋅⋅Z ⋅⋅⋅) , (6.143)

that is, the chronological product of the operators is equal to the normal product, plus
the sumof the normal productswith one pairing (the pair can be chosen in all possible
ways), plus the sumof the normal productswith two pairings, et cetera. Pairingwithin
the normal product is the c-number, which is (up to a sign ±1) determined by equa-
tion (6.142). The minus sign is chosen, when the permutation needed to bring paired
operators out of the normal product is odd with respect to the Fermion operators.

To prove the theorem, we first note that the simultaneous permutation of the op-
erators in both sides of (6.143) does not change this equality. Then, with no loss of
generality, we may assume that the time ordering of operators corresponds to that in
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(6.143). Toobtain theN-product from theT-product,wehave to take all the creationop-
erators and interchange their positions with all the annihilation operators on the left
one by one, using the definition (6.142). In this way, we get the sum of the N-products
of the type written in (6.143). However, this will contain only the contractions of those
operators, for which the order in the T-product is different from that in theN-product.
But pairings of operators for which both orders are equal to zero, and we can say that
the right-hand side of (6.143) contain normal products with all possible pairings (con-
tractions), proves the Wick theorem.

TheWick theorem helps to calculate the averages of the products of the operators
over the vacuumstate |0⟩. The averageof thenormal products is obviously zero, so that
a nonzero contribution comes only from those terms in the right-hand side of (6.143),
where all the operators are paired:

⟨0|T(ABCD ⋅ ⋅ ⋅XYZ)|0⟩ = ⟨0|T(AB)|0⟩⟨0|T(CD)|0⟩ ⋅ ⋅ ⋅ ⟨0|T(YZ)|0⟩
± ⟨0|T(AC)|0⟩⟨0|T(BD)|0⟩ ⋅ ⋅ ⋅ ⟨0|T(YZ)|0⟩ ± ⋅ ⋅ ⋅ , (6.144)

where we have taken into account that

⟨0|A⋅B⋅|0⟩ = ⟨0|T(AB)|0⟩ . (6.145)

Thus, the average is represented by the sum of all the possible products of the aver-
ages (over the ground state) of the T-products of the pairs of operators. The sign of
each term corresponds to the parity of permutation of the Fermion operators. From
(6.144), it follows—in particular—that among the operators A,B,C,D, . . . there should
necessarily be an even number of operators of each field. Recalling the definition of
the Green’s function, we conclude that the vacuum average of the T-product of an ar-
bitrary (even) number of field operators is expressed via the sum of the products of
the free Green’s functions.

Applying Wick’s theorem to the matrix element (6.140), we can represent it as the
sum of terms, each being the product of some pairwise averages. Among these, we
shall meet pairings of operators ψ, ψ̄, and A, with the “external” operators of the cre-
ation of the initial particles or the annihilation of the final ones. These pairings can be
expressed through the wave functions of the initial and final particles as

⟨0|Ac+p |0⟩ = Ap , ⟨0|cpA|0⟩ = A
∗
p ,

⟨0|ψa+p |0⟩ = ψp , ⟨0|apψ̄|0⟩ = ψ
∗
p , (6.146)

⟨0|bpψ|0⟩ = ψ−p , ⟨0|ψ̄b
+
p |0⟩ = ψ̄−p ,

where Ap and ψp are photon and electron wave functions with momentum p. The po-
larization indices are dropped here for brevity. Therewill also be pairings of “internal”
operators, standingunder the signof theT-product. Thesepairings are replacedby the
appropriate propagators.
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Each of the terms in the sum for the matrix element of the S-matrix, appearing
as a result of the application of Wick theorem, can be represented by the appropriate
Feynman diagram. In the diagram of the n-th order, there are n vertices, each asso-
ciated with the corresponding integration variable x1, x2, . . .. Each vertex is connected
with three lines; two full ones (electrons) and one wavy one (photon), corresponding
to the electron (ψ and ψ̄) and photon (A) operators, as functions of the same variable x.
The operator ψ corresponds to the incoming line, and ψ̄ to the outgoing line.

To illustrate this, we show several examples of the correspondence between the
terms of thematrix element of third order and the diagrams. Dropping the signs of the
integral and T-ordering, as well as the factors −ieγ and the arguments of the opera-
tors, we write these terms in symbolic form, as shown in Figure 6.10, where pairings
(contractions) are shown, as often done, by lines connecting the appropriate field op-
erators. Note that for the internal photon pairings the direction of photon lines is of
no importance, because of the even nature of the photon propagator as a function of
x − x󸀠.

Among the terms obtained in this way, there are some that are equivalent, and
which differ only by the permutation of the numbers of vertices, reflecting the corre-
spondence between the vertices and the number of variables x1, x2, . . ., that is, by a
simple redefinition of the integration variables. The number of such permutations is
n. It cancels the factor of 1/n in (6.140), so that we, in fact, do not need to take into ac-
count diagrams with all the permutations of the vertices. For example, two diagrams
of the secondorder, shown in Figure 6.11, are equivalent. In Figure 6.10 andFigure 6.11,
we show only internal pairings, corresponding to internal lines in the diagrams (vir-
tual electrons and photons). The remaining free operators are paired with external
operators, which establishes the correspondence between the external “legs” of dia-
grams and the initial or final particles. For example, pairing ψ̄with operators af or b+i
gives the line of the final electron or initial positron, whereas ψ pairing with a+i or bf

Figure 6.10
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Figure 6.11

produces the line of the initial electron or final positron. Free operator A pairing with
c+i or with cf may correspond to both the initial or final photon. In this way, we obtain
several “topologically equivalent” (that is, consisting of the samenumber of lineswith
identical configurations of the graphs) diagrams, differing only by the permutations
of the initial and the final incoming and outgoing external legs. Any such permutation
is equivalent to some permutation of external operators a, b, . . .. If among the initial or
final particles there are identical fermions, the relative sign of the diagrams, differing
by the odd permutation of the corresponding free legs, should be opposite.

Figure 6.12

The nonoverlapping sequence of the full lines in the diagrams forms the electron line
with an arrow along it, conserving the continuous direction. It may have two free ex-
ternal legs, or it can form a loop, as shown in Figure 6.12. The conservation of direction
along the electronic line is a graphical expression of the charge conservation law: the
“incoming” charge to every vertex is equal to the “outgoing” one. Placement of the
bispinor indices along the continuous electron line corresponds to writing the matri-
ces from left to right, moving against the arrows. Bispinor indices of different electron
lines never intermix. Along the nonclosed line, the sequence of indices ends at the
free external legs on the electron (or positron) wave functions. On the closed loop, the
sequence of indices also closes, so that the loop corresponds to the trace of the prod-
uct of thematrices along it. It is easy to see that this trace should always be takenwith
a minus sign. In fact, the loop with k vertices corresponds to the set of k pairings:

(ψ̄⋅Aψ⋅⋅)(ψ̄⋅⋅Aψ⋅⋅⋅) ⋅ ⋅ ⋅ (ψ̄⋅⋅⋅Aψ⋅) (6.147)

or the other similar pairings, differing by permutation of vertices. In the (k − 1)th
pairing, the operators ψ and ψ̄ are already in the correct order (ψ̄ to the right of ψ),
in which they should stand in an electron propagator. Those operators at the edges
can be moved to become neighbors with the help of an even number of permuta-
tions with other ψ-operators, to get at the end the correct order ψ̄ψ. As ⟨0|Tψ̄󸀠ψ|0⟩ =
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−⟨0|Tψψ̄󸀠|0⟩, the replacement of this pairing by the corresponding propagator is re-
lated to the change of the total sign of the whole expression.

Transformation to momentum representation leads to the general 4-momentum
conservation law, and also to the similar conservation law at every vertex. However,
these laws may be insufficient for fixing momenta of all internal lines in a given di-
agram. In these cases, we should perform the integration of all momenta of internal
lines d4p/(2π)4, which remain indeterminate.

In a similar way, we may analyze the case with an external electromagnetic field (refer to Chapter 4),
that is, the field created by “passive” particles, whose states are not changed during the scattering
process (these may be heavy “classical” charges). Let A(e)(x) be the 4-potential of an external field. It
enters the Lagrangian together with the photon operator A as a sum A + A(e). Because of the classical
nature of A(e), it is actually a c-number field containing no operators, and it cannot pair with other
operators. Thus, in Feynman diagrams, external fields may correspond only to external lines. Let us
introduce the Fourier expansion for A(e):

A(e)(x) = ∫ d4q
(2π)4

e−iqxA(e)(q) , A(e)(q) = ∫ d4xeiqxA(e)(x) . (6.148)

In expressions for matrix elements in the momentum representation, the 4-vector q will be present
along the 4-momenta of other external lines, corresponding to real particles. To each line of an ex-
ternal field, we associate the factor A(e)(q), with the corresponding line considered as “incoming”, in
accordance with the sign in the exponent e−iqx in the Fourier expansion for A(e)(q) (the “outgoing”
line should be associated with A(e)∗(q)). If the 4-momentum conservation law, with given values of
the 4-momenta of all real particles, does not fix the 4-momenta for the lines of external field, we have
to integrate over “free” d4q/(2π)4, as well as over all other nonfixed 4-momenta in the diagram.
If external field does not depend on time, then

A(e)(q) = 2πδ(q0)A(e)(q) , (6.149)

where A(e)(q) is the three-dimensional Fourier component,

A(e)(q) = ∫ d3rA(e)(r)e−iqr . (6.150)

The external line is now associated with the factor A(e)(q), and the 4-momentum qμ = (0,q). The
energies of electron lines entering (along with the line of the external field) the vertex are the same,
due to the conservation law.Over the remainingnonfixed three-dimensionalmomentapof the internal
lines, we perform the integration d3p/(2π)3.

Let us now present the final summary of the diagrammatic rules for scattering ampli-
tude (more precisely for iMfi) of QED in momentum representation.
1. Contributions of the nth-order of perturbation theory are represented by diagrams

with n vertices, each with one incoming and one outgoing electron (full) line and
one photon (wavy) line. The scattering amplitude is described by all diagrams
with free external legs (external lines), corresponding to the initial and final par-
ticles.

2. With each external incoming full line (leg), we associate the amplitude of initial
electron u(p) or final positron u(−p). With each outgoing full line, we associate the
amplitude of final electron ū(p) or initial positron ū(−p).
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3. With each vertex, we associate the 4-vector −ieγμ.
4. With each external incomingwavy line, we associate the amplitude of initial pho-

ton √4πeμ, and with the outgoing wavy line, associate the amplitude √4πe∗μ of
the final photon. The vector index μ coincides with index of the γμ matrix in the
corresponding vertex, so that we have the scalar product.

5. With each internal full line, we associate the factor iG(p), and with the internal
wavy line, we associate the factor of −iDμν(p). Tensor indices μν coincide with in-
dices of matrices γμ, γν in vertices, connected by a wavy line.

6. Along the continuous sequence of electron lines, the arrows have the same direc-
tion, while the positions of bispinor indices correspond to writing matrices from
left to right against the arrows. A closed loop is associated with the trace of the
product of the corresponding bispinor matrices.

7. In each vertex, the 4-momenta of the lines entering or leaving it satisfy the conser-
vation law, that is, the sumof themomenta of incoming lines equals the sumof the
momenta of the outgoing lines. The momenta of the external lines (legs) are fixed
(and obey the total conservation law for the scattering process under discussion),
with the positron line associatedwith themomentum −p. Integration d4p/(2π)4 is
performedover allmomenta of the internal lines, remainingnonfixed, after taking
into account the conservation laws in all vertices.

8. An incoming external line (leg), corresponding to the external field, is associ-
ated with the factor A(e)(q), where the 4-vector q is related to the 4-momenta of
other lines in the vertex by the conservation law. If the external field does not
depend on time, this external leg corresponds to the factor ofA(e)(q), and integra-
tion d3p/(2π)3 is performed over nonfixed three-dimensionalmomenta of internal
lines.

9. With each closed fermion loop, we associate an extra factor of (−1). If among the
initial or final particles there are several electrons or positrons, the relative sign
of the diagrams, differing by odd permutations of the identical particles (that is,
the corresponding external legs), should be opposite.

Finally, let us recall that in the presence of identical fermions, the total sign of the
scattering amplitude is irrelevant.
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GianCarloWick (1909–1992)was an Italian theoretical
physicist who made important contributions to quantum
field theory. In 1930, Wick received his doctoral degree in
Turin under G. Wataghin, with a thesis on the electronic
theory of metals. He then went to Göttingen and Leipzig
to further his study of physics. One of the professors he
got to know there was Werner Heisenberg. Wick became
Enrico Fermi’s assistant in Rome in 1932. In 1946, hewent
to the United States, first to the University of Notre Dame,
then to Berkeley. Wick refused a required oath during
the McCarthy era, so he left Berkeley and went to the
Carnegie Institute of Technology in Pittsburgh in 1951. He

remained there until 1957, interrupted by stays at the Institute for Advanced Study in
PrincetonandatCERN inGeneva. In 1957, hebecamechief of the theorydepartment at
Brookhaven National Laboratory. While in the United States, Wick made fundamen-
tal contributions to quantum field theory, such as the Wick theorem in 1950, which
showed how to express calculations in quantum field theory in terms of normally-
ordered products, and thus derive Feynman rules. He also introduced the Wick ro-
tation, in which computations are analytically continued from Minkowski space to
four-dimensional Euclidean space using a coordinate change to imaginary time. In
1967, he received the Dannie Heineman Prize. In 1968, he received the first Ettore Ma-
jorana Prize. He was a member of the United States National Academy of Sciences
and the Academia dei Lincei.





7 Exact propagators and vertices

7.1 Field operators in the Heisenberg representation and
interaction representation

Above, we have expressed the terms of a perturbation series via field operators in the
interaction representation, with time-dependence determined by the HamiltonianH0
of free particles. Exact scattering amplitudes aremore conveniently expressed via field
operators in theHeisenberg representation,where the time-dependence is determined
by the total Hamiltonian of interacting particlesH = H0 +HI . According to the general
rule for Heisenberg operators, we have

ψ(x) ≡ ψ(rt) = exp(iHt)ψ(r) exp(−iHt) (7.1)

and similar expressions for ψ̄(x) and Aμ(x). Here, ψ(r) are time-independent (Schroe-
dinger) operators. Heisenberg operators, taken at the same moments of time, satisfy
the same commutation rules as Schroedinger operators and operators in the interac-
tion representation. In fact, we have

{ψ(rt), ψ̄(r󸀠t)}+ = exp(iHt){ψ(r), ψ̄(r
󸀠)}+ exp(−iHt) = γ

0δ(r − r󸀠) . (7.2)

In a similar way, ψ(rt) and Aμ(rt) commute:

[ψ(rt),Aμ(r
󸀠t)] = 0 . (7.3)

This is not so for operators taken at different moments of time.
The equation of motion for the Heisenberg ψ-operator is written as

− i𝜕ψ
𝜕t
= Hψ(x) − ψ(x)H ≡ [H ,ψ(x)] . (7.4)

For theHamiltonian itself, the Schroedinger andHeisenberg representations coincide.

During the calculation of the right-hand side of (7.4), in the Hamiltonian we can drop the part depend-
ing only on the operator Aμ(x) (the Hamiltonian of a free electromagnetic field), as it commutes with
ψ. Then,

H = ∫ d3rψ∗(rt)(αp + βm)ψ(rt) + e∫ d3rψ̄(rt)γμAμ(rt)ψ(rt)

= ∫ d3rψ̄(rt)[γ ⋅ p +m + eγμAμ(rt)]ψ(rt) . (7.5)

Calculating the commutator [H ,ψ(x)], using (7.2) and excluding the δ-function by d3r integration, we
obtain the equation of motion for the operator ψ in the explicit form

(γμpμ − eγ
μAμ −m)ψ(rt) = 0 , (7.6)

which naturally coincides with Dirac’s equation in an electromagnetic field.

https://doi.org/10.1515/9783110648522-007
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Equations of motion for electromagnetic potential Aμ(rt) are obvious in advance from the correspon-
dence with the classical limit (large occupation numbers), when operator equations of motion should
reduce to the usual Maxwell equations for potentials, so that in an arbitrary gauge, we have

𝜕μ𝜕
μAν(x) − 𝜕ν𝜕μA

μ(x) = 4πejν(x) , (7.7)

where jν(x) = ψ̄(x)γνψ(x) is the current operator satisfying the continuity equation

𝜕ν j
ν = 0 . (7.8)

The system of equations (7.6), (7.7) is the gauge invariant:

Aμ → Aμ(x) − 𝜕μχ(x) , ψ(x) → ψ(x)eieχ(x) , ψ̄(x) → e−ieχ(x)ψ̄(x) , (7.9)

where χ(x) is an arbitrary Hermitian operator commuting (at the same moment of time) with ψ. Here,
we are dealing with operators in the Heisenberg representation. In interaction representation the
gauge transformation of electromagnetic potential does not act on ψ operators at all.

Let us now establish the relation between operators in the Heisenberg and interaction
representations. In accordancewith the adiabatic hypothesis, we assume that interac-
tion HI (t) is slowly “switched on” from the time moment t = −∞ to finite times. Then,
for t → −∞, both representations (Heisenberg and interaction) simply coincide. The
corresponding wave functions (state vectors) Φ and Φint also coincide:

Φint(t = −∞) = Φ . (7.10)

On the other hand, the wave function in the Heisenberg representation does not de-
pend on time at all (all time dependence is moved to the operators), whereas in the
interaction representation the time-dependence of the wave function has the form

Φint(t) = S(t, −∞)Φint(−∞) , (7.11)

where1

S(t2, t1) = T exp{−i
t2

∫
t1

dt HI (t)} (7.12)

with the obvious properties

S(t, t1)S(t1, t0) = S(t, t0) , S−1(t, t1) = S(t1, t) . (7.13)

Comparing (7.11) and (7.10), we find

Φint(t) = S(t, −∞)Φ , (7.14)

which establishes the relation between the wave functions in both representations.
The corresponding expression for the transformation of operators has the form

ψ(rt) = S−1(t, −∞)ψint(rt)S(t, −∞) = S(−∞, t)ψint(rt)S(t, −∞), (7.15)

and a similar expression also holds for ψ̄ and Aμ.

1 Note that a similar operator in the previous chapter was denoted as U(t2, t1).
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7.2 The exact propagator of photons

The exact photon propagator is defined as

𝒟μν(x − x
󸀠) = i⟨0|TAμ(x)Aν(x

󸀠)|0⟩ , (7.16)

where Aμ(x) are the Heisenberg field operators, whereas previously we considered

Dμν(x − x
󸀠) = i⟨0|TAintμ (x)A

int
ν (x
󸀠)|0⟩ , (7.17)

built upon the operators in the interaction representation. Green’s function (7.17) is
usually referred to as the propagator of free photons.

Let us now express the exact propagator 𝒟μν via the operators in the interaction
representation. Consider t > t󸀠; then, from the relation betweenAμ andAintμ of the type
of (7.15), we obtain

𝒟μν(x − x
󸀠) = i⟨0|TAμ(x)Aν(x

󸀠)|0⟩ (7.18)

= i⟨0|S(−∞, t)Aintμ (x)S(t, −∞)S(−∞, t
󸀠)Aintν (x

󸀠)S(t󸀠, −∞)|0⟩ .

Using (7.13), we have

S(t, −∞)S(−∞, t󸀠) = S(t, t󸀠) , S(−∞, t) = S(−∞, +∞)S(∞, t) . (7.19)

Consequently, (7.18) is written as

𝒟μν(x − x
󸀠) = i⟨0|S−1[S(∞, t)Aintμ (x)S(t, t

󸀠)Aintν (x
󸀠)S(t󸀠, −∞)]|0⟩ , (7.20)

where, for brevity, we introduced

S = S(+∞, −∞) (7.21)

and have taken into account that S−1(∞, −∞)S(∞, t) = S(−∞, t). As S(t2, t1) contains
only operators taken at the time moments between t1 and t2, placed in chronologi-
cal order, it becomes obvious that all operator factors in square brackets in (7.20) are
placed from left to right in the order of decreasing time. Placing the T-ordering sym-
bol before the bracket, in the followingwe canmake any permutations of factors here,
because the T-ordering will, in any case, place everything in the correct order. Then,
we can rewrite the bracket as

T[Aintμ (x)A
int
ν (x
󸀠)S(∞, t)S(t, t󸀠)S(t󸀠, −∞)] = T[Aintμ (x)A

int
ν (x
󸀠)S] . (7.22)

Thus, we obtain

𝒟μν(x − x
󸀠) = i⟨0|S−1TAintμ (x)A

int
ν (x
󸀠)S|0⟩ . (7.23)
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Repeating all the previous arguments, we can show that this expression is also valid
for the case of t < t󸀠.

It can be shown that S−1 can be moved out of the averaging procedure in the form
of a phase factor. In fact, a Heisenberg wave function of the vacuum Φ0 (as any other
Heisenberg function) coincides, according to (7.10), with the value of the vacuumwave
function Φ0

int(−∞) in the interaction representation. On the other hand, we have

SΦ0
int(−∞) ≡ S(+∞, −∞)Φ

0
int(−∞) = Φ

0
int(+∞) . (7.24)

But a vacuum (ground state) in a stable system is strictly a stationary state, in which
there is no possibility of any spontaneous processes of creation or annihilation of par-
ticles. In other words, as time goes by, the vacuum remains a vacuum. Thismeans that
Φ0
int(+∞) can differ from Φ0

int(−∞) only by some phase factor eiα. Then,

SΦ0
int(−∞) = e

iαΦ0
int(−∞) = ⟨0|S|0⟩Φ

0
int(−∞) (7.25)

or, making a complex conjugation and taking into account the unitarity of S,

Φ0∗
int(−∞)S

−1 = ⟨0|S|0⟩−1Φ0∗
int(−∞). (7.26)

Now, it is clear that (7.23) can be rewritten as

𝒟μν(x − x
󸀠) = i
⟨0|TAintμ (x)A

int
ν (x
󸀠)S|0⟩

⟨0|S|0⟩
. (7.27)

Substituting into the numerator and denominator perturbation expansion of the
S-matrix defined by (6.56), and performing averaging with the help of the Wick theo-
rem, we can obtain the expansion of𝒟μν in powers of the coupling constant e2.

In the numerator of (7.27), the expressions being averaged differ from similar ex-
pressions for thematrix elements of the scatteringmatrix, as analyzed in the previous
chapter, by the replacement of the “external” creation and annihilation operator of
photons by the operators Aintμ (x) and A

int
ν (x
󸀠). As all factors here stand under the sym-

bol of T-product, the pairings of these operators with “internal” operators Aintμ (x1),
Aintν (x2) will produce photon propagators Dμν. Thus, the results of averaging will be
expressed by sets of diagrams with two external legs, which are constructed by the
rules, given in the previous chapter, with the only difference that both the external
and internal photon lines are now associated with the propagators Dμν, instead of the
amplitudes of real photons. In a zero-order approximation, when S = 1, the numera-
tor of (7.27) coincides with Dμν(x − x󸀠). The next nonzero terms are of the order of ∼e2.
These are represented by diagrams with two external legs and two vertices, as shown
in Figure 7.1. The second of these diagrams consists of two disconnected parts: a wavy
line (corresponding to −iDμν) and a closed loop. This means that analytic expression
for this diagram consists of two independent factors. Adding to the diagrams in Fig-
ure 7.1 the wavy line, corresponding with a zero-order approximation, and moving it
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Figure 7.1

Figure 7.2

“outside the brackets”, we obtain, up to the terms of the order of ∼e2, that the numer-
ator of (7.27) is expressed by the diagrams in Figure 7.2. The expression ⟨0|S|0⟩ in the
denominator of (7.27) represents the amplitude of a “vacuum–vacuum” transition. Its
expansion into the perturbation series contains only diagrams with no external legs.
In the zero-order approximation ⟨0|S|0⟩ = 1, whereas up to terms of the order of ∼e2,
this amplitude is expressed diagrammatically, as shown in Figure 7.3. Dividing (up to
the same accuracy ∼e2) the numerator of (7.27) by the denominator, we obtain the dia-
grams shown in Figure 7.4, so that the contribution of “vacuum” terms (under the fig-
ure brackets) is completely canceled. Thus, the disconnected diagram in Figure 7.1(b)
drops out of the answer. This result is, in fact, of a quite general nature. A more de-
tailed analysis of the diagrams in the numerator and denominator of (7.27) shows, that
the role of the denominator ⟨0|S|0⟩ reduces to the general cancellation of all discon-
nected diagrams (in any order of perturbation theory), so that the exact propagator
𝒟μν is expressed only by diagrams without disconnected parts, or by connected dia-
grams only.

Note that diagrams without external legs (closed loops) are of no physical impor-
tance, as these loops represent radiation corrections to the diagonal element of the
S-matrix, describing vacuum–vacuumquantum transitions.Wealreadynoted that the

Figure 7.3

Figure 7.4
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Figure 7.5

Figure 7.6

sum of all such loops (together with 1 from the zero-th order) produces only an irrele-
vant phase factor, which does not influence physical results.

Transformation fromcoordinate tomomentum representation is done in the usual
way. For example, up to the terms of the order of ∼e2, the propagator −i𝒟μν(k) is given
by the diagrams shown in Figure 7.5, where the propagator itself is shown as a “fat”
wavy line in the left-hand side. The analytic expression corresponding to these dia-
grams is

𝒟μν(k) = Dμν(k) + ie
2Dμλ(k)[∫

d4p
(2π)4

Sp γλG(p + k)γρG(p)]Dρν(k) . (7.28)

Terms of the higher orders are constructed in a similar way and are graphically rep-
resented by diagrams with two external photon lines and the necessary number of
vertices, corresponding to the order of perturbation theory. For example, terms of the
order of ∼e4 are represented by diagrams with four vertices, as shown in Figure 7.6.
The diagram shown in Figure 7.7 also contains four vertices, with an electron loop in
its upper part. This loop corresponds to the pairing (contraction) ψ̄(x)γψ(x), that is,
simply to the vacuum average of the current ⟨0|j(x)|0⟩. Even from the definition of the
vacuum itself, it is obvious that this average should identically be zero, and this fact
cannot be changed by any radiation (higher-order) corrections to this loop (though di-
rect calculation, by the way, produces an infinite result here). Thus, no diagrams with
electron loops of this kind should be taken into account in any order of perturbation
theory.

Figure 7.7
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Figure 7.8

Figure 7.9

Part of the diagram (“block”) between two photon lines (external or internal) is called
a photon self-energy part.2 In the general case, such a block can itself be divided
into parts connected by one photon line, as shown in Figure 7.8, where circles denote
blocks, which cannot be further divided in this way. Such blocks are called irreducible
(or single-particle irreducible). Let us denote the sum (of an infinite number) of all
irreducible photon self-energy parts as i𝒫μν/4π, and call it the polarization operator.
Classifying diagrams by the number of full irreducible self-energy parts (polarization
operators), we can represent the exact photon propagator 𝒟μν by the diagrammatic
series shown in Figure 7.9, where each dashed circle represents i𝒫μν/4π. The corre-
sponding analytic expression is written as

𝒟 = D + D 𝒫
4π

D + D 𝒫
4π

D 𝒫
4π

D + ⋅ ⋅ ⋅

= D{1 + 𝒫
4π
[D + D 𝒫

4π
D + ⋅ ⋅ ⋅]} . (7.29)

It is obvious that the series in square brackets again produces the complete series
for𝒟. Thus, we obtain

𝒟μν(k) = Dμν(k) + Dμλ(k)
𝒫λρ(k)
4π

𝒟ρν(k) . (7.30)

Multiplying this equality from the left side by the inverse tensor (D−1)τμ and from the
right side by (𝒟−1)νσ, we get

𝒟−1μν = D
−1
μν −

1
4π

𝒫μν . (7.31)

Everything that was said in the previous chapter about tensor structure and gauge
dependence of the free photon propagator Dμν is also valid for the exact propagator
𝒟μν. Let us write its general form as

𝒟μν(k) = 𝒟(k
2)(gμν −

kμkν
k2
) +𝒟l(k2)

kμkν
k2
, (7.32)

2 Or, for brevity, just self-energy.
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where 𝒟l(k2) is an arbitrary function determined by the choice of gauge. For the free
propagator, we likewise write

Dμν(k) = D(k
2)(gμν −

kμkν
k2
) + Dl(k2)

kμkν
k2
, (7.33)

which is formally different from the form used in the previous chapter, but is, in fact,
equivalent to it, differing only by the definition of Dl(k2). The longitudinal part of the
propagator (the second term in these expressions) is related to unphysical longitudi-
nal part of the 4-potential and does not participate in interactions. Thus, interaction
does not change it and we can always assume that

𝒟l(k2) = Dl(k2) . (7.34)

Let us now introduce inverse tensors, which satisfy the following equalities:

𝒟−1μν𝒟
νλ = δλμ , D−1μνD

νλ = δλμ . (7.35)

For (7.32) and (7.33), the inverse tensors, taking (7.34) into account, have the form

𝒟−1μν =
1
𝒟
(gμν −

kμkν
k2
) +

1
Dl

kμkν
k2
, (7.36)

D−1μν =
1
D
(gμν −

kμkν
k2
) +

1
Dl

kμkν
k2
. (7.37)

Now, it follows that the polarization operator is actually the transverse tensor:

𝒫μν = 𝒫(k
2)(gμν −

kμkν
k2
), (7.38)

where 𝒫(k2) = k2 − 4π/𝒟(k2), so that3

𝒟(k2) = 4π
k2[1 − 𝒫(k2)/k2]

. (7.39)

Thus, in contrast to the photon propagator, the polarization operator is gauge invari-
ant.

Sometimes it is useful to introduce photon self-energy, defined as the sum of all
(not only irreducible) diagrams. Let us denote it as iΠμν/4π; then, we have

𝒟μν = Dμν + Dμλ
Πλρ

4π
Dρν , (7.40)

3 It is useful to note that 𝒫(k2) = 𝒫μ
μ (k2)/3.
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Figure 7.10

which is shown by the diagrams in Figure 7.10. Determining now Πμλ, we obtain

1
4π

Πμν = D
−1
μλ𝒟

λρD−1ρν − D
−1
μν (7.41)

and, using (7.32), (7.33), (7.36), and (7.37), we get

Πμν = Π(k
2)(gμν −

kμkν
k2
) , Π = 𝒫

1 − 𝒫/k2
. (7.42)

Now, we see that Πμν, as well as 𝒫μν, is the gauge invariant tensor.

7.3 The exact propagator of electrons

An exact electron propagator is defined as

𝒢(x − x󸀠) = −i⟨0|Tψ(x)ψ̄(x󸀠)|0⟩ , (7.43)

which is different from the case of the free particle propagator

G(x − x󸀠) = −i⟨0|Tψint(x)ψ̄int(x󸀠)|0⟩ (7.44)

by replacement of the ψ-operators in interaction representation by operators in the
Heisenberg representation. As in the case of photon propagator, discussed above,
equation (7.43) can be transformed to

𝒢(x − x󸀠) = −i ⟨0|Tψ
int(x)ψ̄int(x󸀠)S|0⟩
⟨0|S|0⟩

. (7.45)

Expansion of this expression in powers of e2 leads to a diagrammatic series for the
𝒢-function. The role of the denominator in (7.45) again reduces to the cancellation of
vacuum–vacuum transitions, so that the diagrammatic expansion for Green’s func-
tion contains diagrams without an isolated vacuum loop. Up to the terms of the order
∼e4 diagrams for 𝒢 are shown in Figure 7.11, where the exact propagator itself is shown
by a “fat” line. Diagrams like that in Figure 7.12, as noted before, should not be taken
into account. In momentum representation, a “fat” line corresponds to i𝒢(p), and the
usual full and wavy lines represent propagators of free particles iG(p) and −iD(k).

Figure 7.11
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Figure 7.12

Let us present a formal proof of the cancellation of vacuum diagrams. Consider the n-th order cor-
rection to the Green’s function (propagator) of an electron, described by some disconnected diagram,
representing two multiples. The first one includes all HI , contracted with ψ(x) and ψ̄(x󸀠), that is, cor-
responds to a connected block with external legs. The second one describes the rest of the diagram.
Thus, the analytic expression for this correction takes the form

− i (−i)
n

n!
∫ dt1 ⋅ ⋅ ⋅ ∫ dtm⟨0|T[ψ

int(x)ψ̄int(x󸀠)HI (t1) ⋅ ⋅ ⋅HI (tm)]|0⟩c

× ∫ dtm+1 ⋅ ⋅ ⋅ ∫ dtn⟨0|T(HI (tm+1) ⋅ ⋅ ⋅HI (tn))|0⟩ . (7.46)

Here, ⟨0| ⋅ ⋅ ⋅ |0⟩c and ⟨0| ⋅ ⋅ ⋅ |0⟩ correspond to some definite set of contractions (pairings) described by
theWick theorem, and the symbol ⟨⋅ ⋅ ⋅⟩c denotes that pairings in this expression produce a connected
diagram.
It is easily seen that someof thediagramsgive identical contributions. In fact, ifwe change thepairings
just by making different permutations of HI between ⟨⋅ ⋅ ⋅⟩c and ⟨⋅ ⋅ ⋅⟩, this will simply correspond to
the renaming integration variables and will not change the value of the correction to 𝒢. The number
of such diagrams is equal to the number of ways to break n operators inHI into groups ofm and n−m
operators, that is, it will be equal to n!

m!(n−m)! .
The total contribution of these diagrams is given by

− i (−i)
m

m!
∫ dt1 ⋅ ⋅ ⋅ ∫ dtm⟨0|T(ψ

int(x)ψ̄int(x󸀠)HI (t1) ⋅ ⋅ ⋅HI (tm))|0⟩c

×
(−i)n−m

(n −m)!
∫ dtm+1 ⋅ ⋅ ⋅ ∫ dtn⟨0|T(HI (tm+1) ⋅ ⋅ ⋅HI (tn))|0⟩ . (7.47)

Let us sum the contributions of all diagrams of an arbitrary order, containing the definite connected
part and the arbitrary disconnected parts. Obviously, we shall get

− i (−i)
m

m!
∫ dt1 ⋅ ⋅ ⋅ ∫ dtm⟨0|T(ψ

int(x)ψ̄int(x󸀠)HI (t1) ⋅ ⋅ ⋅HI (tm))|0⟩c

× {1 − i∫ dtm+1⟨0|HI (tm+1)|0⟩ −
1
2
∫ dtm+1 ∫ dtm+2⟨0|T(HI (tm+1)HI (tm+2))|0⟩

+ ⋅ ⋅ ⋅ +
(−i)k

k!
∫ dtm+1 ⋅ ⋅ ⋅ ∫ dtm+k⟨0|T(HI (tm+1) ⋅ ⋅ ⋅HI (tm+k))|0⟩ + ⋅ ⋅ ⋅} . (7.48)

Let us return to the initial expression (7.45). If we expand ⟨0|S|0⟩ in the denominator in a series in
powers of HI , we shall get exactly the same expression, which stands in braces in (7.48). Thus,

⟨0|Tψint(x)ψ̄int(x󸀠)S|0⟩ = ⟨0|Tψint(x)ψ̄int(x󸀠)S|0⟩c⟨0|S|0⟩ , (7.49)

so that, according to (7.45),

𝒢(x − x󸀠) = −i⟨0|Tψint(x)ψ̄int(x󸀠)S|0⟩c , (7.50)
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which completes our proof. This rule is valid for calculations of arbitrary expressions, such as (7.27)
or (7.45), with an arbitrary number of field operators. In practice this means that we can just drop the
factor of ⟨0|S|0⟩ in the denominator and do not take into account disconnected diagrams.
Further simplifications appear due to the fact that all types of pairings in

− i (−i)
m

m!
∫ dt1 ⋅ ⋅ ⋅ ∫ dtm⟨0|T(ψ

int(x)ψ̄int(x󸀠)HI (t1) ⋅ ⋅ ⋅HI (tm))|0⟩c , (7.51)

differing only by permutations of HI , give the same contributions. Because of this, we can drop the
factor of 1/m, and take into account only those pairings which lead to topologically nonequivalent
diagrams, that is, those which can not be obtained from each other by permutation of operators HI .
Now, the contribution of eachdiagramdoesnot contain a factorwith relevant dependence on the order
of diagramm. Due to this fact, each diagram can be separated into elements, which can be considered
separately as corrections to one or another Green’s function. There may be irrelevant dependencies
onm by factors, such as λm, where λ is some constant. Such factors do not prohibit separation of the
diagram into different elements (blocks). On the contrary, the presence of a factor, such as 1/m, does
not allow such separation and separate summations within different parts of the diagram.

The block between two electron lines is called the electron self-energy part. As in the
case of photons, it is called irreducible (or single particle irreducible), if it cannot be cut
into two self-energies by cutting one electron line.Wedenote the sumof all irreducible
self-energy parts as −iℳ(p), and callℳ(p) themass operator. Up to terms of the order
of ∼e4, the mass operator is represented by diagrams shown in Figure 7.13. Performing
summation, similar to that done during the derivation of equation (7.30), we obtain
the Dyson equation

𝒢(p) = G(p) + G(p)ℳ(p)𝒢(p) (7.52)

or, in terms of inverse matrices,

𝒢−1(p) = G−1(p) −ℳ(p) = γμpμ −m −ℳ(p) . (7.53)

Equation (7.30) can also be called the Dyson equation for a photon propagator. Below,
we shall return many times to the discussion of these equations.

Heisenbergψ-operators (in contrast toψ-operators in interaction representation),
as previously noted, do change under gauge transformations. In a similar way, the
exact electron propagator 𝒢 is also not a gauge invariant quantity. It is clear that the
change of 𝒢 under gauge transformations should be expressible via the same arbitrary
function Dl, which is added to the photon propagator. It is clear from the fact that,
during the calculations of 𝒢 via a diagrammatic perturbation series, any term in this
series is expressed via the photon Green’s functions D, and no other terms related to

Figure 7.13



182 | 7 Exact propagators and vertices

an electromagnetic field are present at all. We can make some assumptions about the
properties of the operator χ in (7.9),with the only limitation that the result be expressed
via Dl. Under (7.9), the propagators𝒟 and 𝒢 transform into

𝒟μν → i⟨0|T[Aμ(x) − 𝜕μχ(x)][Aν − 𝜕
󸀠
νχ(x
󸀠)]|0⟩ , (7.54)

𝒢 → −i⟨0|Tψ(x)eieχ(x)e−ieχ(x
󸀠)ψ̄(x󸀠)|0⟩ . (7.55)

We shall assume that operators χ are averaged over the vacuum independently of oth-
ers,which is natural, as gauge invariance of electrodynamics requires that the “field” χ
does not take part in the interactions. Now, put also ⟨0|χ(x)|0⟩ = 0. Then, in equa-
tions (7.54) and (7.55), terms containing χ are separated, and we obtain

𝒟μν → 𝒟μν + i⟨0|T𝜕μχ(x)𝜕
󸀠
νχ(x
󸀠)|0⟩ , (7.56)

𝒢 → 𝒢⟨0|Teieχ(x)e−ieχ(x
󸀠)|0⟩ . (7.57)

Here, let us stress once again, the χ are operators. Next, we consider the case of in-
finitesimal gauge transformations and introduce δχ insteadof χ. Transformation (7.56),
independently of the smallness of δχ, can be written as

𝒟μν → 𝒟μν + δ𝒟μν , δ𝒟μν = 𝜕μ𝜕
󸀠
νd

l(x − x󸀠) , (7.58)

where

dl(x − x󸀠) = i⟨0|Tδχ(x)δχ(x󸀠)|0⟩ . (7.59)

Now,we see that dl determines the change of the longitudinal part of the photon prop-
agator𝒟l under the gauge transformation.

In (7.57), we can expand the exponents in powers of δχ up to quadratic terms, so
that

⟨0|Teieδχ(x)e−ieδχ(x
󸀠)|0⟩ ≈ 1 − 1

2
e2⟨0|δχ2(x) + δχ2(x󸀠) − 2Tδχ(x)δχ(x󸀠)|0⟩ . (7.60)

Taking into account the definition (7.59), we get

𝒢 → 𝒢 + δ𝒢 , δ𝒢 = ie2𝒢(x − x󸀠)[dl(0) − dl(x − x󸀠)] . (7.61)

In momentum representation,

δ𝒢(p) = ie2 ∫ d4q
(2π)4
[𝒢(p) − 𝒢(p − q)]dl(q) , (7.62)

with

q2dl(q) = δ𝒟l(q) . (7.63)

These expressions give the general gauge transformation rules for exact propagators
in QED.
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7.4 Vertex parts

Besides the self-energy parts—in more complicated diagrams—we can introduce ad-
ditional blocks with special physical meaning. Consider the function

Kμ(x1, x2, x3) = ⟨0|TA
μ(x1)ψ(x2)ψ̄(x3)|0⟩ . (7.64)

Due to the homogeneity of space-time, this function depends only on differences of its
arguments. After transformation to interaction representation, we have

Kμ(x1, x2, x3) =
⟨0|TAμint(x1)ψ

int(x2)ψ̄int(x3)S|0⟩
⟨0|S|0⟩

. (7.65)

In momentum representation, we can write

Kμ(p2, p1; k)(2π)
4δ(p1 + k − p2) = ∫ d

4x1 ∫ d
4x2 ∫ d

4x3e
−ikx1+ip2x2−ip1x3Kμ(x1, x2, x3) .

(7.66)

In the diagram, the technical function Kμ is described by a “three leg” graph, shown
in Figure 7.14, with one photon and two electron legs, with the 4-momenta satisfying
the conservation law

p1 + k = p2 . (7.67)

The zeroth-order term in theperturbation expansionof this function is obviously zero,
whereas the first-order term in coordinate representation is

Kμ(x1, x2, x3) = e∫ d
4xG(x2 − x)γνG(x − x3)D

νμ(x1 − x) (7.68)

or, in momentum representation,

Kμ(p2, p1; k) = eG(p2)γνG(p1)D
νμ(k) , (7.69)

which is shown by the diagram in Figure 7.15. In higher orders, diagrams becomemore
complicated due to the addition of extra vertices. For example, in the third order, the
diagrams shown in Figure 7.16 appear. In the first three diagrams of Figure 7.16, we can
separate the obvious self-energy parts of the photon and electrons. However, there are

Figure 7.14
Figure 7.15
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Figure 7.16

no such blocks in the fourth diagram. This is a general situation: corrections of self-
energy type simply replace in (7.69) Green’s functions G and D by 𝒢 and𝒟. The sum of
the remaining terms of expansion lead to the change of the factor γμ in (7.69). Denoting
this quantity as Γμ, we have, by definition,

Kμ(p2, p1; k) = {i𝒢(p2)[−ieΓν(p2, p1; k)]i𝒢(p1)}[−i𝒟
νμ(k)] . (7.70)

The block connected with the other parts of diagram by a single photon and two elec-
tron lines is called the vertex part if this block can not be separated into parts, which
are connected to each other by single (electron or photon) lines. Block Γμ, introduced
above, representing the sum of all possible vertex parts, including the simple vertex
γμ, is called the vertex operator (or vertex function). In up terms of the fifth order, it
is expressed by the diagrams shown in Figure 7.17. All three momenta here cannot be
simultaneously related to real particles: we have already seen that absorption (emis-
sion) of a photon by the free electron is impossible because of 4-momentum conser-
vation. Thus, one of the legs in this graph can only be related a virtual particle (or
external field).

We can now introduce the notions of compact and noncompact vertex parts.
Those vertex parts, which do not contain self-energy corrections to internal lines,
are called compact, and we cannot separate the parts representing corrections to the
internal vertices. Among the graphs shown in Figure 7.17, only diagrams (b) and (d)
are compact. Diagrams (g,h,i) contain self-energy corrections either to the electron or

Figure 7.17
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Figure 7.18

the photon lines. In diagram (c), the upper horizontal wavy line can be considered
as a correction to the upper vertex, whereas the wavy lines at the sides of diagrams
(e) and (f) represent corrections to vertices at these sides. Replacing internal lines in
compact diagrams by “fat” lines representing exact Green’s functions, we obtain the
expansion of the vertex operator in the form, shown in Figure 7.18, which is usually
called a “skeleton” diagram expansion. This expansion, in fact, produces an integral
equation for Γ, but with an infinite number of terms in the right-hand side; there is no
closed equation for the vertex parts, similar to that of the Dyson equation for Green’s
functions (propagators).

Figure 7.19

We can also introduce vertices with a larger number of external legs, for example, the
“four-leg” vertex shown in Figure 7.19. We can obtain such a vertex considering the
function

K(x1, x2; x3, x4) = ⟨0|Tψ(x1)ψ(x2)ψ̄(x3)ψ̄(x4)|0⟩ , (7.71)

which is usually called a two-particle Green’s function. It also depends on differences
of its arguments, and its Fourier transformation can be written as

∫ d4x1 ∫ d
4x2 ∫ d

4x3 ∫ d
4x4K(x1, x2; x3, x4)e

i(p3x1+p4x2−p1x3−p2x4)

= (2π)4δ(p1 + p2 − p3 − p4)K(p3, p4; p1, p2) , (7.72)

where

K(p3, p4; p1, p2) = (2π)
4δ(p1 − p3)𝒢(p1)𝒢(p2) − (2π)

4δ(p2 − p3)𝒢(p1)𝒢(p2)
+ 𝒢(p3)𝒢(p4)[−iΓ(p3, p4; p1, p2)]𝒢(p1)𝒢(p2) . (7.73)

The first two terms here exclude from the definition of Γ(p3, p4; p1, p2) diagrams, such
as those shown in Figure 7.20. Likewise, in the third term in (7.73), the factors𝒢 exclude
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Figure 7.20

from the definition of Γ-vertex those graphs which represent corrections to external
electron lines. Using the properties of the T-product of fermion operators, we may
easily see that Γ(p3, p4; p1, p2) has the following (anti)symmetry properties:

Γ(p3, p4; p1, p2) = −Γ(p4, p3; p1, p2) = −Γ(p3, p4; p2, p1) . (7.74)

This vertex describes, for example, the process of scattering of two electrons; its am-
plitude can be found if we associate with the external legs the amplitudes of the initial
and final particles (instead of propagators 𝒢):

iMfi = ū(p3)ū(p4)[−ieΓ(p3, p4; p1, p2)]u(p1)u(p2) , (7.75)

andhere, Γdescribes all thepossible interactionprocesses in all orders of perturbation
theory.

7.5 Dyson equations

Exact propagators and vertex parts are connected to each other, as we have already
seen, by certain integral relations. Let us analyze these relations in more detail. Con-
sider diagrams for irreducible self-energies of an electron. It is easy to see that among
the infinite number of these diagrams, only one, shown inFigure 7.21, is compact in the
sense discussed in the previous section, whereas the others can be considered as in-
troducing corrections to one of its vertices. It is clear that all vertex corrections should
be attributed only to one (any of two) vertices of this diagram, whereas the other re-
mains “bare” (to avoid double counting). Correspondingly, the sum of all irreducible
self-energy parts (that is, the mass operator) can be expressed by only one skeleton
diagram, shown in Figure 7.22. The appropriate analytic expression has the form

ℳ(p) = G−1(p) − 𝒢−1(p) = −ie2 ∫ d4k
(2π)4

γν𝒢(p + k)Γμ(p + k, p; k)𝒟μν(k) . (7.76)

Similar expression can be also written for the polarization operator. Among irre-
ducible self-energies for a photon, again only one is compact, and the polarization

Figure 7.21
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Figure 7.22

Figure 7.23

operator is represented by the diagram shown in Figure 7.23. The corresponding ana-
lytic expression is

1
4π

𝒫μν(k) = D
−1
μν(k) −𝒟

−1
μν(k) = ie

2 Sp∫ d4p
(2π)4

γμ𝒢(p + k)Γν(p + k, p; k)𝒢(p) . (7.77)

Equations (7.76) and (7.77) give an explicit form of the Dyson equations (7.52) and
(7.30), which are integral equations for exact propagators, expressing them via exact
vertex parts. However, there are no similar “closed” integral equations for vertex parts,
so that—in practical cases—we have to solve the Dyson equations using different types
of approximations for the vertex part, for example, based on partial summation of
Feynman diagrams.

7.6 Ward identity

There are certain exact relations between propagators and vertices, which are sim-
pler than Dyson-type equations. Consider the electron propagator. Let us make a
gauge transformation (7.9), assuming χ(x) = δχ(x), where δχ(x) is an infinitesimal
nonoperator function of the coordinates x. Then, the electron propagator will change
as

δ𝒢(x, x󸀠) = ie𝒢(x − x󸀠)[δχ(x) − δχ(x󸀠)] . (7.78)

Such a gauge transformation breaks the homogeneity of space-time, and δ𝒢 now de-
pends on x and x󸀠 separately, not only on x−x󸀠. Now, we have tomake a Fourier trans-
formation over x and x󸀠 separately, so that in momentum representation, δ𝒢 becomes
the function of two 4-momenta:

δ𝒢(p2, p1) = ∫ d
4x∫ d4x󸀠δ𝒢(x, x󸀠)eip2x−ip1x

󸀠
. (7.79)

Substituting here (7.78) and integrating over d4xd4ξ or d4x󸀠d4ξ , where ξ = x − x󸀠, we
obtain

δ𝒢(p + q, p) = ieδχ(q)[𝒢(p) − 𝒢(p + q)] . (7.80)
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Figure 7.24

On the other hand, the same gauge transformation applied to the operator of electro-
magnetic vector-potential Aμ(x) produces

δA(e)μ (x) = −
𝜕
𝜕xμ

δχ , (7.81)

which may be considered as an infinitesimal external field. In momentum representa-
tion,

δA(e)μ (q) = iqμδχ(q) . (7.82)

The value of δ𝒢 canbe also calculated as the change of propagator under the influence
of this field. Up to terms of the first order over δχ, this change can be expressed by the
single skeleton diagram shown in Figure 7.24, where the “fat” wavy line denotes the
effective external field

δA(e)μ (q) + δA
(e)
λ (q)

1
4π

𝒫λν(q)𝒟νμ(q) , (7.83)

which takes into account the self-energy corrections. However, the 4-vector δA(e)λ (q) is
longitudinal (with respect to q), whereas the tensor 𝒫λν is transversal (refer to (7.38),
(7.42)). Thus, the second term here simply gives zero, so what remains is, in fact, the
contribution of the diagram shown in Figure 7.24, where the line of the external field
can be taken as “thin” and equal to δA(e)μ (q). In analytic form,

δ𝒢(p + q, p) = e𝒢(p + q)Γμ(p + q, p; q)𝒢(p)δA(e)μ (q) . (7.84)

Substituting here (7.82) and comparing with (7.80), we find

𝒢(p + q) − 𝒢(p) = −𝒢(p + q)qμΓ
μ(p + q, p; q)𝒢(p) (7.85)

or, in terms of inverse matrices,

𝒢−1(p + q) − 𝒢−1(p) = qμΓ
μ(p + q, p; q) . (7.86)

For q → 0, comparing the coefficients before infinitesimal qμ in both sides of this
relation, we get

𝜕
𝜕pμ

𝒢−1(p) = Γμ(p, p;0), (7.87)
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which is called the Ward identity in differential form. Relation (7.86) is also called a
Ward identity, but for finite q. From (7.87), we can see that the derivative of 𝒢−1(p) over
the momentum coincides with a vertex operator with zero momentum transfer. The
derivative of Green’s function 𝒢(p) itself is equal to

−
𝜕
𝜕pμ

i𝒢(p) = i𝒢(p)[−iΓμ(p, p;0)]i𝒢(p). (7.88)

In zeroth approximation, this identity is obvious, as from G−1 = γμpμ − m, we imme-
diately obtain 𝜕G

−1
𝜕pμ
= γμ. Now, it is easy to obtain a diagrammatic derivation of Ward

identity: from Dyson equation (7.53) it is obvious, that the differentiation of the in-
verse Green’s function over the momentum is equivalent to all possible insertions of
lines of a fictitious external field, with zero momentum transfer, into all diagrams for
irreducible self-energy, which generates all the diagrams for the corresponding ver-
tex part. The Ward identity is of great importance for checking the self-consistency of
concrete approximations in different problems of quantum field theory.

A little more technical is a similar derivation of similar identities for an exact pho-
ton propagator (polarization operator). The details of this derivation can be found
in [6].

John CliveWard (1924–2000) was a British theoretical
physicist. He introduced the Ward identity in quantum
electrodynamics. This result was inspired by a conjec-
ture of Freeman Dyson, and was disclosed in a one-half-
page letter. He also made significant contributions to
quantum solid-state physics and statistical mechanics.
Ward was one of the authors of the Standard Model of
particle interactions in a series of papers he co-authored
with Abdus Salam. In 1955, Ward was recruited to work
at the Atomic Weapons Research Establishment at Al-
dermaston. There, he independently derived a version of
the Teller–Ulamdesign, for which he has been called the

“father of the British H-bomb”. “I was assigned”, Ward later recalled, “the improba-
ble job of uncovering the secret of the Ulam–Teller invention. . . an idea of genius far
beyond the talents of the personnel at Aldermaston. . .”. Ward’s total number of pub-
lished papers was only about 20, a fact that reflects a strong sense of self-criticism. He
also expressed scepticism towards the importance attached to having a large number
of citations. He had received some significant awards, including Dirac Medal in 1981
and the Heineman Prize in 1982. He became a fellow of the Royal Society in 1965.





8 Some applications of quantum electrodynamics

8.1 Electron scattering by static charge: higher-order corrections

In this chapter, we shall consider the calculations of some specific effects of quantum
electrodynamics (QED), as well as some conceptual problems related to the founda-
tions of QED. It should be noted that QED is actually an example of the quite successful
theory of interacting elementary particles. It allows exceptionally precise calculations
of different effects due to electromagnetic interactions, which are in an ideal agree-
ment with current. The detailed analysis of the vast number of QED effects can be
found in [2, 6], whereas here, we shall limit ourselves to only few of the most typical
cases. During our discussion, we shall more or less skip the technical details, concen-
trating on the qualitative aspects of the theory.

Let us return to the previously discussed problem (reference Chapter 4) of elec-
tron scattering by static charge of the nuclei (Rutherford scattering). In the first order
of perturbation theory, this scattering process is described by the diagram shown in
Figure 8.1(a), where the static charge is denoted by a cross. According to the general
rules of diagram technique, the corresponding scattering amplitude is written as

Mfi = −i∫ d
4x⟨f |jμ(x)|i⟩A

μ(x) , (8.1)

where the matrix element of transition current is

⟨f |jμ(x)|i⟩ = eūf γμuie
−iqx , (8.2)

with q = pi − pf , and we introduced the spinors of initial and final states of an elec-
tron. The vector potentialAμ(x)describes the electromagnetic field of the static charge.
Then, we can write

Mfi = −ieūf γμuiA
μ(q) , (8.3)

where

Aμ(q) = ∫ d4x e−iqxAμ(x) . (8.4)

Figure 8.1

https://doi.org/10.1515/9783110648522-008
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For a static charge, the value of Aμ(x) is time-independent, so that

Aμ(q) = ∫ dt e−i(Ei−Ef )t ∫ d3r eiqrAμ(r) = 2πδ(Ef − Ei)A
μ(q) . (8.5)

The static Maxwell equation is written as

∇2Aμ(r) = −4πjμ(r) . (8.6)

Then, we have

Aμ(q) = 4π
|q|2

jμ(q) . (8.7)

Accordingly, from (8.3) and (8.5), we obtain

Mfi = −2πiδ(Ef − Ei)eūf γμui
4π
|q|2

jμ(q) . (8.8)

To shorten expressions to follow, we drop the δ-function for the conservation law and
define the amplitudeM by

− iM = ieūf γμui
4π
|q|2

jμ(q) . (8.9)

During static charge scattering, an electron changes its momentum, so that pi ̸= pf ,
but energy is conserved, and Ei = Ef , or q0 = 0. Thus,

q2 = −|q|2 < 0 (8.10)

is a space-like scattering vector, and (8.9) is rewritten as

− iM = (ieūf γ
μui)(
−4πigμν

q2
)(−ijν(q)) . (8.11)

Here, the first factor describes the vertex part, whereas the second represents the pho-
ton propagator. For static nuclei with charge Ze, we have

j0(r) = ρ(r) = Zeδ(r) , j(r) = 0 , (8.12)

so that

− iM = (ieūf γ
0ui)(
−4πi
q2
)(−iZe) , (8.13)

which is expressed by the diagram in Figure 8.1(a) and coincides in fact with (4.75).
These expressions describe Rutherford scattering, and the corresponding cross-
section is given by (4.79)

dσ
dΩ
∼ |M|2 ∼ q−4 ∼ 1

sin4 θ
2

, (8.14)
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Figure 8.2

where θ is the scattering angle determined by kinematics:

q2 = (pi − pf )
2 ≈ −2k2(1 − cos θ) = −4k2 sin2 θ

2
, (8.15)

where we have neglected electron mass (in comparison to that of nuclei) and intro-
duced k ≡ |pi| = |pf |.

This is the result of the first-order perturbation theory. Let us discuss higher-order
(radiation) corrections. Let us consider—as an example—the third-order diagram,
shown in Figure 8.2. Using the general rules of diagram technique, we obtain the
corresponding analytic expression

−iM = (−1)(ieūf γ
μui)(−i

4πgμμ󸀠
q2
)∫ d4p
(2π)4

Sp (8.16)

× {(ieγμ
󸀠
) i(p̂ +m)
p2 −m2 (ieγ

ν󸀠) i(q̂ − p̂ +m)
(q − p)2 −m2}(−i

4πgν󸀠ν
q2
)(−ijν(q)) .

In comparison to the first-order result (8.11), herewe observe the obviousmodification
of the photon propagator by the single-loop polarization “insertion”, so that

− i
4πgμν
q2
→ −i

4πgμν
q2
+ (−i

4πgμμ󸀠
q2
)Iμ
󸀠ν󸀠(−i4πgν󸀠ν

q2
)

= −i
4πgμν
q2
+ (−4πi)

q2
Iμν(q

2) (−4πi)
q2
, (8.17)

where

Iμν(q
2) = (−1) ∫ d4p

(2π)4
Sp{(ieγμ) i(p̂ +m)

p2 −m2 (ieγ
ν) i(q̂ − p̂ +m)
(q − p)2 −m2}. (8.18)
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Immediately, we see that for |p| → ∞, the integral in Iμν contains the contribution of a
term (from the polarization loop), such as ∫ dp p3

p2 , which is seems to be quadratically
divergent at the upper limit. This is a typical divergence that appears in higher orders
of perturbation theory, in practically every model of quantum field theory. The physi-
cal origin of this divergence is obviously related to the point-like (local) nature of field
interactions in relativistic theory. In fact, divergence here is weaker (logarithmic), but
the problem remains. Below, we shall discuss its qualitative aspects.

Direct, but rather tedious, calculations show [2] that Iμν can be written as

Iμν(q
2) = −igμνq

2I(q2) + ⋅ ⋅ ⋅ , (8.19)

where

I(q2) = e2

3π

∞

∫
m2

dp2

p2
− 2e

2

π

1

∫
0

dzz(1 − z) ln[1 − q
2z(1 − z)
m2 ] , (8.20)

and themultiple dot in (8.19) replaces the termsproportional to qμqν, which give a zero
contribution after tensor contraction of the photon propagator with external charges
(currents). The first term in (8.19) gives precisely the logarithmic divergence of the po-
larization loop.1

It is useful to explicitly write expressions for I(q2) in the limits of large and small
(−q)2. To make the integral sensible, we introduce in the first term of (8.20) the upper
limit cutoffΛ2 (with dimensionality of momentum (mass) Λ2 ≫ m2 squared). Then, for
(−q2) ≪ m2, we have

ln[1 − q
2z(1 − z)
m2 ] ≈ −

q2z(1 − z)
m2 (8.21)

and accordingly,

I(q2) ≈ e2

3π
ln( Λ

2

m2) +
e2

15π
q2

m2 . (8.22)

For (−q2) ≫ m2, we have

ln[1 − q
2z(1 − z)
m2 ] ≈ ln(

−q2

m2 ) , (8.23)

so that

I(q2) ≈ e2

3π
ln( Λ

2

m2) −
e2

3π
ln(−q

2

m2 ) =
e2

3π
ln( Λ

2

−q2
) . (8.24)

1 Logarithmic, not quadratic, divergence here is due to some “hidden” algebra of the integrand [2].
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Now, we can write the scattering amplitude with a single-loop correction at
(−q2) ≪ m2 in the form2

− iM = (ieūf γ0ui)(−
4πi
q2
)[1 − e

2

3π
ln( Λ

2

m2) −
e2

15π
q2

m2 + O(e
4)](−iZe) . (8.25)

This expression can be rewritten with the same accuracy as

− iM = (ieRūf γ0ui)(−
4πi
q2
)[1 −

e2R
15π

q2

m2 ](−iZeR) , (8.26)

where we introduced the renormalized charge

eR = e(1 −
e2

3π
ln Λ2

m2)
1/2
. (8.27)

Let us assume that the value of eR from (8.27) represents the “true” (experimentally
measurable) electric charge. Then, the scattering amplitude (8.26) becomes finite, and
its divergence is “concealed” in eR, which is taken from the experiment and is not cal-
culable within our theory. Thus, we have explicitly performed the renormalization of
the divergent radiation correction. In the following, we shall see that in QED all diver-
gences,which appear in higher orders of perturbation theory canbe likewise “hidden”
in the finite number of parameters, which should be determined experimentally. This
reflects the fundamental property of the renormalizability of this theory. Only renor-
malizable models of quantum field theory are physically sensible.

8.2 The Lamb shift and the anomalous magnetic moment

The first term in equation (8.26) is obviously due to the Coulomb potential

V0(r) = −Ze
2
R ∫

d3q
(2π)3

eiqr 4π
|q|2
= −

Ze2R
r
. (8.28)

The second term in (8.26) corresponds to quantum corrections to the Coulomb po-
tential, related to the possibility of creating virtual e+e−-pairs. The factor of |q|2 there,
after the transformation to coordinate representation, is replaced by−∇2. Then, taking
into account (8.28) and the Fourier expansion of δ-function

δ(r) = ∫ d3q
(2π)3

eiqr , (8.29)

2 Perturbation expansion here is in powers of dimensionless parameter e2 → e2
ℏc ≈

1
137 .
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or using the well-known relation [33] ∇2 1r = −4πδ(r), we can see that equation (8.26)
in coordinate representation corresponds to the interaction of the form

V(r) = −Ze2R(1 −
e2R

60π2m2∇
2) 1

r
= −

Ze2R
r
−

Ze4R
15πm2 δ(r) . (8.30)

Thus, the creation of virtual e+e−-pairs (vacuum polarization) leads to the modifica-
tion of Coulomb interaction at small distances, corresponding to some additional at-
traction to nuclei. Obviously, this expression is not rigorous, being obtained from the
asymtotics of a single-loop contribution in the limit of (−q)2 ≪ m2. However, it is suf-
ficient for simple estimates.

Consider the case of Z = 1 (proton). It is clear that the second term in equa-
tion (8.30) can lead to the shift of energy levels Enl of hydrogen. Considering this term
as perturbation, we easily obtain this shift as

ΔEnl = −
e4R

15πm2
󵄨󵄨󵄨󵄨ψnl(0)
󵄨󵄨󵄨󵄨
2δl0 = −

8e6R
15πn3

Ry δl0 , (8.31)

where ψnl(0) is a hydrogen wave function, corresponding to the main quantum num-
ber n and orbital moment l, and Ry = me4/2 is the Rydberg constant (Ry ≈ 13.6 eV).
Due to the point-like nature of additional interaction in (8.30), it acts upon only the
wave functions, which are nonzero at the nuclei (proton), that is, upon the s-states
(with l = 0). A corresponding shift of the levels is observed experimentally and mea-
sured with high accuracy. In some first experiments, Lamb measured the energy
difference between the 2s1/2 and 2p1/2 levels, which are degenerate according to the
Schroedinger–Dirac theory, which does not take radiation correction into account.
Theobservedvalueof the shift is equal to+1057MHz. Calculationswith equation (8.31)
give the shift of −27MHz. However, we should note that the contribution of vacuum
polarization is responsible only for the part of the shift between 2s1/2 and 2p1/2. The
complete set of Feynman diagrams responsible for the Lamb shift in this order of
perturbation theory (∼e3) is shown in Figure 8.3. All divergences appearing in these
diagrams can be “hidden” in electron charge, mass, and wave function renormal-
ization. This allows the calculation of total Lamb shift, giving the result in an ideal
correspondence with the experiment.3 This was a triumph of the renormalization ap-
proach in QED. As the value of the Lamb shift is known with an accuracy of the order
of ∼0.01%, one is easily convinced of the importance of the contributions of each
of the diagrams in Figure 8.3, including the relatively small contribution of vacuum
polarization expressed by the diagram in Figure 8.3(a). The main contribution is due
to the renormalization of the electron mass (diagram in Figure 8.3(c)). Physically, this
effect is due to the fact that the value (formally infinite) of radiation corrections to the

3 These calculations are very cumbersome, and we refer reader for details to [2, 6].
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Figure 8.3

mass of a free electron is different from that for an electron bound within an atom
(which is also infinite). The difference of these infinite corrections is finite [18, 60] and
produces the main contribution to the shift of atomic levels.

Consider in more detail the effects connected with the diagram in Figure 8.3(b).
In fact, this diagram modifies the structure of electron transition current (vertex)
−eūf γμui. Calculation of the finite part of this diagram in the limit of small (−q2) gives
[2, 18, 33]

− eūf γμui → −eūf{γμ[1 +
e2

3π
q2

m2(ln
m
mγ
− 3
8
)] − [ e

2

2π
1
2m

iσμνq
ν]}ui , (8.32)

where σμν =
i
2 (γ

μγν − γνγμ). The expression in the first square brackets here gives the
corresponding contribution to the Lamb shift, as this term is similar in form to (8.26).
However, here we also meet the divergence at smallmomenta, which can be formally
avoided in (8.32) by introducing a small fictitious photon massmγ. This divergence is
related to the so-called infrared catastrophe. In fact, the contribution connected with
the fictitious massmγ is exactly canceled by similar terms, originating from diagrams
in Figure 8.3(c). Infrared divergences in QED do not lead to major difficulties, such
as in the case of ultraviolet divergences (appearing due to the divergence of Feynman
integrals at the upper limit) discussed above. The infrared catastrophe is related to
the ever-present possibility (for any QED process) of radiation of the large number of
very “soft” photons with very small energy (frequency). Thus, the appearance of the
infrared catastrophe is connected with the somehow inconsistent formulation of the
problem:What is the probability for electron scattering by static nucleiwith nophoton
being emitted? In reality, we have to determine the scattering amplitude for an elec-
tron without a single photon emission, as well as the amplitudes with the emission of
one, two, three. . . “soft” photons with energies less thanmγ. Each of these amplitudes
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diverges, but an artificial introduction of mγ makes them finite. The sum of all these
amplitudes does not diverge, and the fictitious parameter mγ cancels. This problem
was analyzed in detail at the early stages of development of QED [2, 6, 18].

We are now interested in the second term in the square brackets in (8.32), which
modifies γμ, that is, the structure of the current. In fact, we can convince ourselves
[2, 6, 18] that the contribution of the type σμνqν describes the magnetic moment of an
electron μ = − e

2mσ, which is usually written as μ = −g e
2ms, with spin s = 1

2σ, and g
being the gyromagnetic ratio for an electron (in Dirac’s theory g = 2). Accordingly, the
second term in (8.32) describes the additional contribution to the magnetic moment
of an electron, so that

μ = − e
2m
(1 + e

2

2π
)σ (8.33)

or

g = 2 + e
2

π
. (8.34)

Thus, in addition to Dirac’s magnetic moment of an electron, there appears the so-
called anomalousmagnetic moment e2/2π. A more precise expression for the anoma-
lous contribution to the gyromagnetic ratio, obtained through very tedious calcula-
tions taking into account terms up to the order of ∼ e6, has the form

g − 2
2
= 1
2
e2

π
−0.32848(e

2

π
)
2
+ (1.49±0.2)(e

2

π
)
3
+ ⋅ ⋅ ⋅ = (1159655.4± 3.3) ⋅ 10−9. (8.35)

The uncertainty shown here is related to the difficulty of calculating the very large
number of diagrams of the order of ∼ e6. The experimental value of the anomalous
gyromagnetic ratio is

g − 2
2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨exp
= (1159657.7 ± 3.5) ⋅ 10−9 . (8.36)

This is the reason why QED is considered to be probably the most exact of the the-
ories of interacting elementary particles. To the author’s knowledge—up to now—no
discrepancies between QED predictions and experiments were ever found in purely
electrodynamic phenomena.

The analysis of the radiation corrections using Feynman diagrams, being rigorous, is rather compli-
cated and requires tedious calculations. To understand the physics of these effects, it is useful to refer
to the qualitative approach proposed by Welton, which allows us to obtain their simple interpreta-
tion, based on the picture of the vacuum fluctuations of an electromagnetic field and the role of the
electron–positron vacuum.
First of all, let us discuss the mean-square fluctuations of an electromagnetic field in the arbitrary
point of a physical vacuum. Consider a field in some normalization volume V . Zero-point oscillation
with frequency ω has the energy ℏω2 . We can write the obvious relation as

ℏω
2
=

1
8π
∫ dV(E2ω + H2

ω) =
1
4π
∫ dVE2ω =

E20ω
8π

V , (8.37)
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where E0ω andH0ω are amplitudes of electric andmagnetic fields in a vacuum, corresponding to zero-
point oscillation with frequency ω, whereas the line denotes averaging over the oscillation period.
From (8.37), we find the mean-square amplitude of a zero-point oscillation of the field, corresponding
to frequency ω, as

E20ω =
4πℏω
V
. (8.38)

Consider an electron bound within an atom. It is acted upon by a Coulomb field of nuclei and also by
zero-point fluctuations of the electromagnetic field in a vacuum. Thus, the orbital motion of an elec-
tron is superposed with additional chaotic motion due to vacuum fluctuations of the electromagnetic
field. Let V(r) denote the potential energy of an electron at a point r. We can write the electron coor-
dinate as r = r0 + r󸀠, where r0 denotes the usual coordinate, which is more or less regularly changing
during its orbital motion, whereas r󸀠 is its small displacement under the influence of a random force
from vacuum field fluctuations. Then, we can write the change of the average potential energy of an
electron under these random displacements as

⟨ΔV(r)⟩ = ⟨V(r0 + r
󸀠) − V(r0)⟩ ≈ ⟨x

󸀠
i
𝜕V
𝜕xi
+
1
2
(x󸀠i x
󸀠
k)
𝜕2V
𝜕xi𝜕xk
⟩

=
1
2
∇2V⟨(x󸀠i )

2
⟩ =

1
6
∇2V⟨(r󸀠)

2
⟩ . (8.39)

Here, the angular brackets denote the average over all the possible values of the random variable r󸀠.
During this averaging, we take into account that ⟨x󸀠i ⟩ = 0, and ⟨x

󸀠
i x
󸀠
k⟩ =

1
3 ⟨(r
󸀠)2⟩ due to the spatial

isotropy of these random displacements.
For the Coulomb field of the proton, we have

∇2V(r0) = 4πe
2δ(r0) , (8.40)

so that

⟨V(r)⟩ = V(r0) +
2πe2

3
δ(r0)⟨r

󸀠2⟩ . (8.41)

To estimate the Lamb shift of an atomic level, we have to average (8.41) over the electron state of the
atom, so that

ΔELamb =
2π
3
e2 ∫ dV 󵄨󵄨󵄨󵄨󵄨ψn(r0)

󵄨󵄨󵄨󵄨󵄨
2
δ(r0)⟨r

󸀠2⟩ =
2π
3
e2󵄨󵄨󵄨󵄨󵄨ψn(0)

󵄨󵄨󵄨󵄨󵄨
2
⟨r󸀠

2
⟩ , (8.42)

where ψn is the wave function of the relevant atomic state.
To estimate ⟨r󸀠2⟩, we assume that electron displacement under the influence of field fluctuations is
independent of its orbital motion. Let us write the classical equation of motion:

md2r󸀠ω
dt2
= eEω = eE0ω sin(kr − ωt) , (8.43)

which gives
r󸀠ω = −

eE0ω
mω2 sin(kr − ωt) . (8.44)

Accordingly,

⟨(r󸀠ω)
2
⟩ =

e2

2m2ω4 E
2
0ω =

2πe2ℏ
m2ω3V

, (8.45)

where the line again denotes time averaging, and to get the last equality, we used (8.38).
Zero-point oscillations with different frequencies are independent, so that their contribution to the
mean square displacement of an electron can be written as a simple sum:

⟨r󸀠
2
⟩ =

V
π2c3
∫ dωω2⟨(r󸀠ω)

2
⟩ =

2e2ℏ
πc3m2

ωmax

∫
ωmin

dω
ω
. (8.46)
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In the absence of an electron–positron vacuum, the upper integration limit here can be arbitrarily
large, and the integral diverges. In fact, for frequencies of the order of mc2/ℏ zero-point oscillations
of the electromagnetic field begin to interact with the filled negative energy (“background”) states of
the electron–positron vacuum.We can imagine the interaction of current fluctuations, due to random
displacement of electrons with positive energy and similar currents, due to random displacement of
“background” electrons from the filled states. Due to the Pauli principle, all electrons tend to avoid
each other, and these current fluctuations should be in the opposite phase, leading to their effective
compensation. This leads to the effective cutoff in (8.46) for ωmax ∼ mc2. The cutoff at the lower limit
in (8.46) is determined by some average frequency of electronic excitation in an atom, which is of the
order of the Rydberg frequency: ωmin = ω0 ∼

Ry
ℏ =

me4

2ℏ3 . Then, (8.46) reduces to

⟨(r󸀠
2
)⟩ =

2e2ℏ
πc3m2 ln

mc2

ℏω0
=

2
π
e2

ℏc
(
ℏ
mc
)

2

ln mc2

ℏω0
. (8.47)

Now, we obtain for the value of Lamb shift (8.42):

ΔELamb =
4
3
e2

ℏc
(
ℏ
mc
)

2
󵄨󵄨󵄨󵄨󵄨ψn(0)
󵄨󵄨󵄨󵄨󵄨
2
ln mc2

ℏω0
. (8.48)

This shift is always positive, and the s-level of hydrogen is higher in energy than predicted by the
standard Schroedinger–Dirac theory. For a hydrogen atom,

|ψn(0)|
2 = (

1
naπ1/3
)

3

, (8.49)

where a = ℏ
2

me2 is the Bohr radius, and we obtain

ΔELamb =
8
3π
(
e2

ℏc
)

3
Ry
n3

ln mc2

ℏω0
. (8.50)

More accurate and detailed calculations by Bethe produced more precise result: ℏω0 ≈ 18 Ry. Then,
from (8.50) it follows the value of the Lamb shift for 2s-state of hydrogen is ΔELamb(2s) ≈ 1040MHz,
which is very close to the result of rigorous calculations, based upon the general QED formalism and
renormalization theory. Thus, the Lamb shift is another confirmation of the reality of the physical
“vacuum” of quantum field theory.

8.3 Renormalization – how it works

Previous examples of the calculation of radiation corrections in QED demonstrated
the major role of renormalization procedures, allowing us to get rid of the inevitable
divergences of Feynman integrals in the higher orders of perturbation theory. The de-
velopment of the theory of renormalization in QED led to the development of practical
methods for calculating the arbitrary physical effects due to electromagnetic inter-
action, as well as for analyzing some conceptual problems of the theory. The notion
of renormalizability is crucial for modern quantum field theory. Models of interact-
ing fields lacking this property are usually treated as nonphysical. Before moving to a
rigorous treatment of the renormalization procedure, we shall discuss the qualitative
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Figure 8.4

Figure 8.5

aspects of this approach, using—as an example—the case of charge renormalization
in a single-loop approximation.

Let us return to equation (8.27), which contains a ln Λ2

m2 divergence. The value of
the electric charge enters the theory via the diagram for an elementary vertex, shown
in Figure 8.4. There is an infinite number of corrections to this vertex,with some exam-
ples shown in Figure 8.5, which actually change the value of the charge. The physical
charge is determined by all the corrections of this type, and the result of the sum-
mation of all diagrams for the vertex part is experimentally measured as the charge
of an electron. Let us call the “initial” charge, associated with an elementary vertex
of Figure 8.4, the “bare” charge e0. Then, for the “true” or “dressed” charge e, we
can write the perturbation expansion in powers of the “bare” charge, for example,
built upon the single-loop polarization correction, as represented by the diagrams
in Figure 8.6, where dots replace the similar diagrams of higher orders. The relation
between e2 and e20 can be established, as shown in Figure 8.6, at some appropriate
(from an experimental point of view) value of transferred (by photon line) momen-
tum4 q2 ≡ −Q2 = −μ2. In most traditional methods, to determine the charge value, we
use the low-energy limit of Q2 ≪ m2. As a result, the expansion shown in Figure 8.6

Figure 8.6

4 The value of Q2 is introduced here instead of (−q2), just for convenience, to deal with Q2 > 0.
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Figure 8.7

can be schematically written as

e2 = e20[1 − I(Q
2 = μ2) + O(e40)] , (8.51)

where the value of I(Q2) is determinedby equations (8.17)–(8.20), that is, by the single-
loop approximation ∼ e20. Taking the square root of both sides of equation (8.51), we
obtain

e = e0[1 −
1
2
I(Q2 = μ2) + O(e40)] , (8.52)

which coincideswith (8.27) after the square root expansion. Expansion (8.52) is shown
in diagrammatic form in Figure 8.7. Accordingly, taking into account all the orders of
perturbation theory, we have

e = e0[1 + e
2
0A1(Q

2) + e40A2(Q
2) + ⋅ ⋅ ⋅]Q2=μ2 . (8.53)

It is clear that A1(Q2),A2(Q2), . . . are infinite in the limit of Λ2 → ∞. Consider some
physical scattering process, for example, the one shown in the diagrams of Figure 8.8.
In analytic form:

− iM(e20) = e
2
0[F1(Q

2) + e20F2(Q
2) + O(e40)] . (8.54)

Here, all the terms are also divergent. But now, we are taking a crucial step. Let us
renormalize the value of −iM(e20), expressing e0 via e, by inversing (8.52), or, in other
words, reconstructing the diagrams of Figure 8.7 with the same accuracy, as shown
in Figure 8.9, and substituting this expansion into the vertices of the diagrams in Fig-
ure 8.8. Then, we obtain the diagrammatic expansion shown in Figure 8.10. The first
two diagrams of this expansion originate from the first diagram of Figure 8.8, whereas

Figure 8.8
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Figure 8.9

Figure 8.10

the factor of 2 appears, because we have to express e0 via e in every vertex. In the re-
maining diagram of Figure 8.8, we can simply replace e0 by e, as inaccuracy here is of
the order of e6. We can rewrite the expansion of Figure 8.10 as shown in Figure 8.11. In
analytic form this expansion is written as

− iM(e2) = e2[F󸀠1(Q
2) + e2F󸀠2(Q

2) + O(e4)] . (8.55)

Now,wehave achieved everythingwewanted: comparing (8.54) and (8.55), we can see
that the new scattering amplitude is expressed only via the “experimental” charge e,
defined according to (8.53) andmeasured atQ2 = μ2. Actually, here we have not added
or dropped anything, but just changed the parameters in (8.54), and in fact M(e2) =
M(e20). At the same time, the term ∼ e40 in (8.54) is infinite, whereas the term ∼ e4

in (8.55) is finite. It is clear from the fact that the “experimental” charge e is finite by
definition, whereas two terms in the brackets in Figure 8.11 are of the opposite sign,
so that after summation, we obtain

[ e
2

3π
ln Λ2

Q2 −
e2

3π
ln Λ2

μ2
] = e2

3π
ln μ2

Q2 , (8.56)

which is independent of cutoff Λ2. Different choices of parameter μ2 (renormaliza-
tion point) lead to different expansions (8.55). However, the observable value of |M|2

Figure 8.11
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should not depend on the choice of μ. This requirement can bewritten as the following
differential equation:

μdM
dμ
= (μ 𝜕
𝜕μ
+ μ 𝜕e
𝜕μ
𝜕
𝜕e
)M = 0 . (8.57)

This means that the explicit dependence of M on μ, which is contained in the co-
efficients F󸀠i (Q

2, μ2), in expansion (8.55), is compensated for by the appropriate
μ2-dependence of e2(μ2). Equation (8.57) is a typical differential equation of the renor-
malization group, which is of great significance in quantum field theory. Below, we
shall once more return to a discussion of this (renormalization) invariance of the the-
ory, which allows one to analyze conceptual foundations of quantum field theory and
gives an effective formalism to perform calculations of specific effects.

8.4 “Running” the coupling constant

The expansion of Figure 8.6 can be redrawn as shown in Figure 8.12. If we limit our-
selves only to loop diagrams, we obtain geometric a progression, which is easily
summed, as shown in Figure 8.13. We have seen above that divergences can be elim-
inated if we work with the physical (renormalized) charge e, which is determined
by the expansion shown in Figure 8.13 at Q2 = μ2. Actually, we can use any value
of μ2. Different choices of Q2 = μ21 , μ

2
2, . . . correspond to the perturbation expansion

in powers of numerically different values of the physical charge e(μ2i ). In fact, from
Figure 8.13, we obtain

e2(Q2) =
e20

1 + I(Q2)
, (8.58)

Figure 8.12

Figure 8.13
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so that the experimentally observable charge depends on the value of transferred (dur-
ing the scattering) momentum Q2. The value of e(Q2) is called the “running” coupling
constant. In the limits of large Q2 ≡ (−q2), the value of I(q2) is given by (8.24), and we
get

e2(Q2) =
e20

1 − e20
3π ln(

Q2

Λ2 )
. (8.59)

To exclude, in equation (8.59), the explicit dependence of e2(Q2) on the cutoff param-
eter Λ, we consider this expression atQ2 = μ2 and express e0 via e2(μ2). As a result, for
large Q2, we can rewrite (8.59) as

e2(Q2) =
e2(μ2)

1 − e2(μ2)
3π ln(Q

2

μ2 )
. (8.60)

Here, everything is finite. The “running” coupling constant e(Q2) describes the depen-
dence of the effective charge on the transferred momentum Q2, that is, in fact on the
distance between the charged particles. We shall see later that it is really the observ-
able effect, and the corresponding dependence is precisely logarithmic. However, the
result expressed by equation (8.60) raises a number of conceptual questions on the
consistency of QED. The thing is that from (8.60), we can see that with the growth of
Q2 (reduction of distance) the value of effective charge grows, so that sooner or later
perturbation theory becomes invalid at small distances, and for

Q2 = μ2 exp( 3π
e2(μ2)
), (8.61)

we obtain an obviously unphysical divergence (“ghost” pole). For Q2 larger than this
value, the charge becomes imaginary. For historical reasons, this behavior is called
“Moscow zero” (or the “zero-charge” problem). In the following, we shall return sev-
eral times to the discussion of this situation and related problems.

Actually, somewhat prematurely, we note that in quantum chromodynamics (QCD) the situation is just
the opposite. There, we also obtain the “running” coupling constant of gluons and quarks, which is
expressed (similarly to (8.60)) as

g2(Q2) =
g2(μ)

1 + g2(μ2)
12π (33 − 2nf ) ln(

Q2
μ2 )
, (8.62)

where nf is the number of flavors of quarks, whereas the constant factor of 33 is connected to the
non-Abelian nature of gauge symmetry in QCD (in fact, it is calculated as some constant related to
the properties of the matrices of generators of the color group SU(3)). Only for the world with nf > 16,
the sign in the denominator of equation (8.62) will be the same as in QED. In the real world, we have
nf = 6. Thus, the effective charge in QCD does not grow, but diminishes with the growth of Q2 and
becomes small at small distances. This behavior is called “asymptotic freedom”. For small enough
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Q2 (at large distances between quarks), the effective coupling constant (in contrast to QED) becomes
large, which is directly related to the confinement of quarks (“infrared prison”). Let us denote the value
of Q2, corresponding to the pole (“ghost pole” again) in (8.62), as Λ2, so that

Λ2 = μ2 exp[− 12π
(33 − 2nf )g2(μ2)

] . (8.63)

Then, (8.62) can be rewritten as
g2(Q2) =

12π

(33 − 2nf ) ln(
Q2
Λ2 )
. (8.64)

For Q2 ≫ Λ2, the effective coupling constant is small, and the interaction of quarks and gluons (at
small distances of large momenta) can be described by perturbation theory, just as in interactions of
electrons and photons in QED (at large distances or small momenta). For Q2 ∼ Λ2, such a description
becomes impossible, whereas quarks and gluons form strongly coupled clusters: the hadrons. The
experimental value of Λ is somewhere in the interval between 0.1 and 0.5 GeV. Then, for experiments
at Q2 ∼ (30GeV)2, it follows from (8.64) that g2 ∼ 0.1, so that perturbation theory is valid, as in QED.
In the limits of large Q2, we can neglect all quark masses, but there is still a mass scale in the theory,
given by μ2, which appears in the process of renormalization.

8.5 Annihilation of e+e− into hadrons. Proof of the existence of
quarks

As an interesting illustration of QED applications, let us show how purely electrody-
namic experiments prove the existence of quarks [24]. This becomes possible via stud-
ies of thehigh-energy annihilationprocesses of electrons andpositrons,with arbitrary
hadrons in the final state. In fact, these reactions are going through the creation of
quark–antiquark pairs, that is, e+e− → qq̄, which afterwards form hadrons. We can
show that the cross-section for such processes can be obtained from an easily calcu-
lable QED cross-section for electron–positron annihilation into muons: e+e− → μμ̄.

To calculate the cross-section of this process in QED, it is sufficient to consider
the second of the Feynman diagrams, shown in Figure 6.6, where the final products of
the reaction is the pair μμ̄.5 The standard calculation, using the rules of QED diagram
technique, gives the total cross-section for such process as [24]

σ(e+e− → μμ̄) = 4πe
2

3Q2 , (8.65)

whereQ2 = 4E2 is the square of energy in the center of themass reference frame (Man-
delstam variable s). Then, the cross-section for annihilation into the quark–antiquark
pair is given by

σ(e+e− → qq̄) = 3e2qσ(e
+e− → μμ̄) , (8.66)

5 We remind that muons are similar to electrons, but with larger (about 200 times) rest mass.
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where eq is the q-quark charge. An additional factor of 3 appears here due to three
separate diagrams for different quark colors, which are to be summed, so that appro-
priate cross-sections are also summed. To find the cross-section for the creation of all
possible hadrons, it is necessary to sum over all quark flavors q = u, d, s, . . ., so that

σ(e+e− → hadrons) = ∑
q
σ(e+e− → qq̄) = 3∑

q
e2qσ(e

+e− → μμ̄) . (8.67)

Thus, we obtain the very important prediction

R ≡ σ(e
+e− → hadrons)
σ(e+e− → μμ̄)

= 3∑
q
e2q . (8.68)

As cross-section σ(e+e− → μμ̄) is well studied (and is in excellent agreement with
equation (8.65)), the experimental measurements of the cross section for e+e−-anni-
hilation into hadrons give direct information on the number of quarks, their flavors,
and their colors. We have

R =
{{
{{
{

3[( 23 )
2 + ( 13 )

2 + ( 13 )
2] = 2 for u, d, s .

2 + 3( 23 )
2 = 10

3 for u, d, s, c ,
10
3 + 3(

1
3 )

2 = 11
3 for u, d, s, c, b, etc.

(8.69)

These predictions have been well confirmed by experiments. The value of R = 2 is
observed for Q < 2(mc + mu) ≈ 3.7GeV, that is, below the threshold for creation of
c-quarks. Above the threshold for creation of five quark flavors, that is, for Q > 2mb ≈
10GeV, the experimentally observed value of this ratio is R = 11/3. These experi-
ments directly confirm the existence of three colors of quarks with the appropriate
(fractional) values of the electric charge.

Within QCD, we can also take into account the contributions of diagrams with quarks (or antiquarks)
emitting gluons [24]. In the first order over g2, equation (8.68) is modified as follows:

R = 3∑
q
e2q(1 +

g2(Q2)
π
) , (8.70)

so that the weak (logarithmic) dependence of R on Q2 is also observed.

8.6 The physical conditions for renormalization

Let us now discuss more rigorously the basics of renormalizability in QED. It is clear
that the general scheme of invariant perturbation theory and diagrammatic equations
for exact propagators presented above was rather formal. We have operated with all
the entities of the theory, as with the usual finite mathematical expressions, though
explicit calculations of 𝒟, 𝒢, and Γ, using perturbation theory, inevitably produce di-
verging integrals. We shall explicitly show below that using certain recipes in QED al-
lows us to perform the well-defined “subtraction” of all infinities and to obtain finite
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expressions for all the measurable physical characteristics. These recipes are based
upon the obvious physical requirements of the photon mass being exactly zero, and
the electron charge and mass are equal to their observable values. Our presentation
will necessarily be a bit schematic, but further details can be found in [6], and in es-
pecially detailed analysis in [2].

A physical photon has zero mass, so that its dispersion is given by k2 = 0. This
means that the exact photon propagator should always have a pole at k2 = 0, so that

𝒟(k2) = 4π
k2

Z for k2 → 0 , (8.71)

where Z is some constant. According to equation (7.39), the general form of the prop-
agator is expressed via the polarization operator as

𝒟(k2) = 4π
k2(1 − 𝒫(k2)/k2)

, (8.72)

so that from (8.71), we get for polarization operator

𝒫(0) = 0 . (8.73)

Likewise, the constant Z in equation (8.71) can be defined as

1
Z
= 1 − 𝒫(k

2)
k2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k2→0
. (8.74)

Further limitations on the behavior of 𝒫(k2) can be obtained from the analysis of the
physical definition of electric charge. Two classical (very heavy) particles being at rest
at some large distance from each other (r ≫ m−1, wherem is electron mass), are inter-
acting according to the Coulomb law: V(r) = e2/r. On the other hand, this interaction
is expressed by the diagram shown in Figure 8.14, where the “fat” wavy line denotes
the exact propagator of the virtual photon and the upper and lower lines correspond
to classical particles. Self-energy corrections for the photon are taken into account in
its exact propagator. Any other self-energy corrections, acting upon the lines of heavy
particles, lead to the corresponding diagrams being zero. In fact, an addition of some
internal line into the diagram of Figure 8.14, for example, joining 1 and 3 or 1 and 2
by a photon line, leads to the appearance in corresponding diagrams of heavy virtual

Figure 8.14
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particles (due to particle lines under the extra photon lines), with the propagators
containing large massM of the classical particle in denominators, giving zero contri-
bution in the limit ofM →∞. Then, it is clear that the factor of e2𝒟(k2) in the diagram
of Figure 8.14 is given (up to a sign) by the Fourier transform of the interaction poten-
tial of our particles. The static nature of interaction (particles at rest) corresponds to
the frequency of virtual photon ω = 0, whereas the large distances correspond to the
small wave vectors k. As𝒟 depends only on k2 = ω2 − k2, we arrive at the condition

e2𝒟 → 4πe2

k2
for k2 → 0 , (8.75)

so that in equation (8.71), we have to put Z = 1. Then, from equation (8.74), it immedi-
ately follows that

𝒫(k2)
k2
→ 0 for k2 → 0 . (8.76)

Besides the previously derived condition (8.73), it follows now that

𝒫󸀠(0) ≡ d𝒫(k
2)

dk2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k2=0
= 0 . (8.77)

Note that the effective external line of a real photon should be associated with the
factor of√4π[1 + 1

4π𝒫(k
2)𝒟(k2)]eμ. However, for the real photon, we always have k2 =

0, and due to (8.76), we conclude that in the lines of external photons, we can safely
drop all radiation corrections.

Thus, the natural physical requirements lead to definite values (zeroes) for 𝒫(0)
and 𝒫󸀠(0). At the same time, direct calculation using the diagram rules of perturba-
tion theory leads here to diverging integrals. We can get rid of these divergences if
we attribute the finite values dictated by physical requirements to these divergent ex-
pressions. This is the main idea of renormalization. Another way to formulate this
operation, example for charge renormalization, is as follows. We can introduce the
nonphysical “bare” charge e0, as a parameter entering the initial expression for an
operator of electromagnetic interaction, which is used in formal perturbation theory.
After that, the renormalization condition is formulated as the requirement of

e20𝒟(k
2) → 4πe2

k2
for k2 → 0 , (8.78)

where e is the true physical charge of a particle. Then we find the relation

e2 = Ze20. (8.79)

Now the unphysical e0 is excluded from all expressions, determining the physical ef-
fects (whereas divergence is “hidden” in the renormalization factor Z). If we require
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Z = 1 from the very beginning, we actually perform renormalization “on the fly” [6],
so that there is no need to introduce any fictitious entities into the intermediate calcu-
lations.

Let us now consider the physical conditions for renormalization of the electron
propagator. It is obvious that the exact propagator 𝒢(p) should have a pole at p2 = m2,
wherem is the mass of physical electron. Then, we can write

𝒢(p) ≈ Z1
γμpμ +m

p2 −m2 + i0
+ g(p) for p2 → m2 , (8.80)

where Z1 is a scalar constant (renormalization factor) and g(p) is finite for p2 → m2.
From (8.80), we immediately obtain the inverse propagator as

𝒢−1(p) ≈ 1
Z1
(γμpμ −m) − (γ

μpμ −m)g(p)(γ
μpμ −m) for p2 → m2 . (8.81)

The mass operator for p2 → m2 now has the form

ℳ(p) = G−1(p) − 𝒢−1(p) ≈ (1 − 1
Z1
)(γμpμ −m) + (γ

μpμ −m)g(p)(γ
μpμ −m) . (8.82)

We associate the following factor with the effective external electron line (for ex-
ample, incoming) in the scattering diagram:

𝒰(p) = u(p) + 𝒢(p)ℳ(p)u(p) , (8.83)

where u(p) is the usual electron bispinor, satisfying theDirac equation (γμpμ−m)u = 0.
Due to relativistic invariance (𝒰 is also thebispinor), the limiting value of𝒰(p) forp2 →
m2 can differ from u(p) by a constant scalar factor (wave function renormalization)

𝒰(p) = Z󸀠u(p) . (8.84)

It is not difficult to show [6] the validity of a simple relation

Z󸀠 = √Z1 . (8.85)

This is almost obvious, since Green’s function (propagator) is quadratic in electron
operators.

Now, after the establishment of the limiting behavior of the electron propagator,
there is no need of any additional conditions for the vertex operators. Consider the di-
agram in Figure 8.15, and let us assume that it describes first-order electron scattering
by an external field A(e)μ (k), taking into account all radiation corrections. In the limit
of k → 0, we have p2 → p1 ≡ p, and the radiation corrections to the line of the external
field vanish (we already noted above that they vanish for arbitrary k2 = 0). Then, this
diagram corresponds to the amplitude

Mfi = −e ̄𝒰(p)Γ
μ(p, p;0)𝒰(p)A(e)μ (k → 0) . (8.86)
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Figure 8.15

But for k → 0, the potential A(e)μ (k) reduces to a constant independent of coordinates
and time, which does not describe any physical field and cannot lead to any change of
transition current. In other words, in this limit, transition current ̄𝒰Γμ𝒰 should simply
coincide with free current ūγμu:

̄𝒰(p)Γμ(p, p;0)𝒰(p) = Z1ū(p)Γ
μu(p) = ū(p)γμu(p) . (8.87)

This relation is automatically satisfied due to the Ward identity, independent of the
value of Z1. In fact, substituting 𝒢−1(p) from (8.81) into (7.87), we obtain

Γμ(p, p;0) = 1
Z1
γμ − γμg(p)(γμpμ −m) − (γ

μpμ −m)g(p)γ
μ (8.88)

and (8.87) is satisfied, due to (γμpμ − m)u(p) = 0 and ū(p)(γμpμ − m) = 0. This again
simply gives us the definition of the physical electron charge. We see that the renor-
malization factor Z1 drops from the amplitude of the physical process. We can simply
require

ū(p)Γμ(p, p;0)u(p) = ū(p)γμu(p) for p2 = m2 , (8.89)

that is, putZ1 = 1. The convenience of suchadefinition is that now there is nonecessity
to introduce any corrections to external electron lines, andwe simplyhave𝒰(p) = u(p).
It is also clear also that, for Z1 = 1, for mass operator (8.82), we have

ℳ(p) = (γμpμ −m)g(p)(γ
μpμ −m) , (8.90)

so that the second term in (8.83) obviously reduces to zero. Thus, there is no need to
renormalize the external lines of all real particles, both photons and electrons.

8.7 The classification and elimination of divergences

The physical conditions of renormalization introduced above allow us, in principle.
To obtain the finite and definite values for the amplitudes of any QED process in an
arbitrary order of the perturbation theory.

Consider first the character of divergences appearing in different Feynman inte-
grals. First of all, we calculate the powers of the virtual 4-momenta, entering the in-
tegrand. Consider an arbitrary diagram of the nth order (n is the number of vertices),
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containing external lines ofNe electron andNγ photon. The numberNe is always even.
The total number of electron lines is equal to 2n; of these Ne are external and Ie are in-
ternal. During the calculation of the number of lines, the internal lines are counted
twice, as each of them connects two vertices, so that

2n = Ne + 2Ie . (8.91)

Correspondingly, the total number of internal electron lines in the diagram is

Ie = n −
Ne
2
. (8.92)

Each vertex is connectedwith one photon line, and forNγ vertices, this line is external,
whereas for the remaining n−Nγ vertices, this line is internal. As each internal photon
line connects two vertices, the total number of these lines is equal to

n − Nγ

2
. (8.93)

Each internal photon line is associated with the propagator D(k), which contains
k to the power of −2. Each internal electron line is associated with the propagator
G(p), which behaves like p to power of −1 (for p2 ≫ m2). Thus, the total power of the
4-momenta in the denominator of the integrand is

2
n − Nγ

2
+ n − Ne

2
= 2n − Ne

2
− Nγ . (8.94)

The number of integrations over d4p and d4k in the diagram is equal to the number of
internal lines, but the conservation law of the 4-momentum in each vertex leads to an
additional n − 1 constraint on integration momenta (one of these n conservation laws
is connected with external momenta, and it corresponds to the general conservation
law for the scattering process described by this diagram). Correspondingly, taking into
account equations (8.92) and (8.93),we conclude that the total number of internal lines
(both electron and photon) in the diagram is given by

n − Ne
2
+ n
2
−
Nγ

2
= 3
2
n − Ne

2
−
Nγ

2
, (8.95)

which gives the number of integrations, not taking conservation laws into account.
Then, subtracting n−1, we obtain for the number of independent integrationmomenta

3
2
n − Ne

2
−
Nγ

2
− n + 1 = n

2
+ 1 − Ne

2
−
Nγ

2
. (8.96)

Multiplication by 4 gives the total number of integrations

2(n − Ne − Nγ + 2) . (8.97)
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The difference between the number of integrations and the power of the momenta in
the denominator of the integrand for our diagram is equal to the difference between
(8.97) and (8.94):

r = 4 − 3
2
Ne − Nγ . (8.98)

This number determines whether the appropriate Feynman integral is convergent or
divergent.6 Strictly speaking, the situation is more complicated, as the condition of
r < 0 for the diagram as a whole is not sufficient to guarantee its convergence. We also
have to require the negative values of r󸀠 for all internal blocks, which can be contained
within our diagram. The presence of internal blockswith r󸀠 > 0 leads to the divergence
of the diagramas awhole, though all other integralsmaybe convergent. The condition
r < 0 is sufficient to guarantee the convergence of the simplest diagrams.

For r ≥ 0, the integral is always divergent. The power of divergence is not less
than r if r is even, and not less than r−1 if r is odd (the drop of divergence power by 1 in
the last case is related to the integration of the product of odd number of 4-vectors over
the whole 4-space giving zero). The power of divergence can grow due to the presence
of internal blocks with r󸀠 > 0.

Note that the divergence power of the diagram r, according to (8.98), does not de-
pendon thediagramordern. This remarkableproperty, aswe shall see later,makes the
theory renormalizable. Briefly speaking, the important thing here is that from (8.98), it
becomes immediately clear that only the finite number of types of divergence exists in
such a theory, becausewith positivity of bothNe andNγ, we can obtain r ≥ 0 for only a
fewpairs of the values of these integers, and thusonly thefinitenumber of the simplest
primitively diverging diagrams. Correspondingly, we can introduce the finite number
of parameters (to be determined from the experiments) to “hide” all divergences. In
the case of n entering (with positive sign) into (8.98), the number of divergence types
will grow with the growth of n, so that situation will become hopeless. For QED, we
can explicitly list all primitively diverging diagrams. From the very beginning, we can
exclude the cases ofNe = Nγ = 0 (vacuum loops) andNe = 0,Nγ = 1 (the average value
of vacuum current). All other cases are shown in Figure 8.16. For the first of these dia-
grams, we have r = 2, and divergence is formally quadratic; in all other cases r = 0 or
r = 1, and divergence is logarithmic.

The diagramof Figure 8.16(d) represents the first correction to the vertex. It should
satisfy (8.89), which can be written as

ū(p)Λμ(p, p;0)u(p) = 0 for p2 = m2 , (8.99)

where
Λμ = Γμ − γμ . (8.100)

6 Let us recall that in all cases we are dealing with divergences of integrals at the upper integration
limit.
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Figure 8.16

Let usdenote theFeynman integral,writtenaccording todiagramrules, as Λ̄μ(p2, p1; k).
This integral is logarithmically divergent and does not satisfy (8.99). However, we can
obtain the expression satisfying this condition by constructing the difference

Λμ(p2, p2; k) = Λ̄
μ(p2, p1; k) − Λ̄

μ(p1, p1;0)|p21=m2 . (8.101)

Divergence in the integral for Λ̄μ(p2, p1; k) can be separated if we consider the limit of a very large
4-momentum of the virtual photon f . Then, we obtain

− 4πie2 ∫ d4f
(2π)4

γνG(p2 − f )γ
μG(p1 − f )γ

λDλν(f ) ∼ −4πie
2 ∫

d4f
(2π)4

γν(γκfκ)γμ(γρfρ)γν
f 2f 2f 2

, (8.102)

which is independent of the values of the 4-momentum of the external lines. Consequently, in the
difference given by (8.101), divergences are canceled, and we obtain the finite expression.

Such a procedure for canceling divergence is called the subtraction scheme of renor-
malization. Let us stress that the possibility for canceling divergence in Λ̄μ(p2, p1; k)
by only one subtraction is guaranteed by (the weakest possible) logarithmic nature of
the divergence.

After determining the first correction for Γμ (that is, the first term of expansion for
Λμ), the first correction for the electron propagator (diagram of Figure 8.16(b)) can be
calculated using the Ward identity (7.87), which can be rewritten as

− 𝜕ℳ(p)
𝜕pμ
= Λμ(p, p;0) , (8.103)

introducing themass operatorℳ instead of 𝒢 and Λμ instead of Γμ. This equation can
be easily integrated with the boundary condition

ū(p)ℳ(p)u(p) = 0 for p2 = m2 , (8.104)

which follows from (8.90).
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In principle, in a similar (though more tedious), way we can cancel divergences
from the polarization operator of Figure 8.16(a) [2, 6], but here we have to make two
subtractions:

𝒫(k2) = 𝒫̄(k2) − 𝒫̄(0) − k2𝒫̄󸀠(0) , (8.105)

where 𝒫̄ denotes the Feynman integral, corresponding to this diagram. It is obvious
that (8.105) satisfies the physical requirements given by (8.73) and (8.77).

The next order of the perturbation theory for the vertex operator Λ(2)μ is determined
by the diagrams shown in Figure 7.17(c–i). Of these, only the diagrams shown in Fig-
ure 7.17(d–f) are compact, which can be made finite with the help of one subtraction
(8.101). Internal self-energy and vertex parts, contained within the noncompact dia-
grams, can be directly replaced by the already-known (renormalized) values of the
first order, given by𝒫(1),ℳ(1), and Λ(1)μ , so that integrals are again made finite by sub-
traction (8.101). Correctionsℳ(2) and𝒫(2) are then calculated using theWard identity
(8.103) and (8.105). The systematic application of such procedure gives, in principle,
the rigorous way to obtain finite expressions for 𝒫,ℳ, and Λμ in an arbitrary order of
the perturbation theory [2, 6]. This makes possible the calculation of the amplitudes
of the physical scattering processes, containing blocks, such as 𝒫, ℳ, and Λμ. The
physical conditions of renormalizability formulated above are sufficient to cancel di-
vergences from all Feynman integrals. This is themanifestation of the quite nontrivial
property of renormalizability of QED. Below, we shall return several times to the dis-
cussion of renormalizability and its use in other models of quantum field theory.

8.8 The asymptotic behavior of a photon propagator at large
momenta

Let us consider the conceptually very important problemof photonpropagator asymp-
totic behavior at large momenta |k2| ≫ m2. In the lowest order of perturbation the-
ory, the polarization operator is determined by the simple loop diagram shown in Fig-
ure 8.17. It is defined by the Feynman integral

i
4π

𝒫μν(k) = −e2 ∫ d4p
(2π)4

Sp γμG(p)γνG(p − k) . (8.106)

However, this integral (over thewhole 4-dimensionalp-space) diverges (quadratically,
according to a simple power counting of the previous section, but actually only log-

Figure 8.17
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arithmically, due to a “hidden” algebra of the integrand). These divergence can be
canceled using the renormalization recipes of the previous sections. Direct calcula-
tions are rather tedious [2]. This analysis is much simplified in the asymptotic limit of
|k2| ≫ m2, which is of major interest to us. As we shall see below, after the renormal-
ization (8.106), in this limit, we have

𝒫(k2) = e2

3π
k2 ln |k|

2

m2 . (8.107)

In essence, this gives the first-order correction inverse photon propagator 4πD−1 = k2,
and it is valid until the following condition is satisfied:

e2

3π
ln |k

2|
m2 ≪ 1 , (8.108)

which limits the validity region of our approximation at high values of |k|2. In fact,
equation (8.107) can be used even under the much weaker condition of

e2

3π
ln |k

2|
m2 ≲ 1 . (8.109)

Now, we shall give a proof of this statement and also obtain the result (8.107) itself [6].
First of all, let us note that, although for (8.109) there may be additional contributions
to𝒫(k2), due to thehigher orders of perturbation theory, in then-th order it is sufficient
to take into account only the terms of the order of ∼ (e2)n lnn( |k|

2

m2 ), containing the large
logarithm, appearing in the limit of |k2| ≫ m2. This logarithm should enter with the
same power as e2, because terms with lower powers of the logarithm are obviously
smaller due to e2 ≪ 1. This is called the approximation of leading logarithms.

Consider now the Dyson equation for polarization operator (7.77)

𝒫(k2) = 4πie
2

3
Sp∫ d4p
(2π)4

γμ𝒢(p + k)Γμ(p + k, p; k)𝒢(p) . (8.110)

As we have shown above, 𝒫(k2) is gauge invariant, so that calculating it using Feyn-
man diagrams, we can use any gauge for the propagators and vertices. Most conve-
nient is the Landau gauge, when the photon propagator is written as (Dl = 0):

𝒟μν(k) =
4π
k2
(gμν −

kμkν
k2
) . (8.111)

A detailed analysis of the correction diagrams for (8.106), which can be found in [6],
shows that in this gauge perturbation theory, series does not contain terms with the
required powers of logarithms at all.

Then, in (8.110) it is sufficient to use the zeroth-order approximations 𝒢 = G and
Γμ = γμ. Then, (8.110) reduces to the integral

𝒫(k2) = 4πie
2

3
Sp∫ d4p
(2π)4

γμG(p + k)γμG(p) , (8.112)
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as in (8.106). Let us discuss the appearance of the logarithm in this integral. It is easily
seen that it originates from the integration region

p2 ≫ |k2| for |k2| ≫ m2 . (8.113)

In fact, in this limit, we can write7

G(p) ≈ 1
γμpμ
=
γμpμ
p2
, (8.114)

G(p − k) ≈ 1
γμpμ − γμkμ

= 1
γμpμ
+ 1
γμpμ

γνkν
1

γαpα

+ 1
γμpμ

γνkν
1

γαpα
γρkρ

1
γβpβ
+ ⋅ ⋅ ⋅

=
γμpμ
p2
+
(γμpμ)(γνkν)(γαpα)
(p2)2

+
(γμpμ)(γνkν)(γαpα)(γρkρ)(γβpβ)

(p2)3
+ ⋅ ⋅ ⋅ . (8.115)

After substitution of these expressions into (8.112), the first term, independent of k,
drops out due to renormalization in accordance with the condition 𝒫(0) = 0 (the first
subtraction in (8.105)). The second term also becomes zero after integration over the
directions of p. The third integral is logarithmically divergent over p2; it can be easily
estimated, making the integration from p2 ∼ |k2| (lower limit of the region (8.113)) up
to some “cutoff parameter” Λ2:

∫ d4pp
4

p8
∼ ∫ dp p3 p

4

p8
∼

Λ2

∫
|k2|

dp2 p2 p
4

p8
∼

Λ2

∫
|k2|

dp2 1
p2
∼ ln Λ2

|k2|
. (8.116)

Finally, we get

𝒫(k2) = − e
2

3π
k2 ln Λ2

|k2|
. (8.117)

This is not the end of our derivation; for the final cancellation of the divergence (at
Λ → ∞), we need to subtract from 𝒫(k2)/k2 its value at k2 = 0 (second subtraction
in (8.105)). However, logarithmic accuracy of our calculations assumes |k2| ≫ m2, so
that it is sufficient to subtract the value of (8.117) at |k2| ∼ m2, and Λ2 in the argument
of logarithm is simply replaced by m2. Thus, we obtain the required result (8.107). In
the Landau gauge, there are no corrections to 𝒢 and Γ with the “proper” powers of the
logarithm, and equation (8.107) is actually valid under the condition (8.109).

7 The signs here are determined by the properties of the γ-matrices.
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The function 𝒟(k2), corresponding to the polarization operator (8.107), has the
form

𝒟(k2) = 4π
k2

1
1 − e2

3π ln
|k2|
m2

. (8.118)

Because of (8.109), there is no need to expand this expression in the powers e2. How-
ever, the validity of (8.118) is limited from the side of large |k2|, due to the diminishing
denominator. The derivation of (8.118) was based on logarithmic approximation and
neglect of infinite sequences of the diagrams of higher orders, which do not contain
leading logarithms. According to (8.118), an addition of each new “fat” photon line
introduces an additional factor of e2𝒟, and the small parameter of the perturbation
theory instead of e2 is given by

e2

1 − e2
3π ln
|k2|
m2

≪ 1 , (8.119)

which coincides with the “running” coupling constant (8.60) discussed above. As |k2|
grows, this coupling becomes of the order of unity, so that the small expansion pa-
rameter actually disappears, and perturbation theory can not be further applied.

8.9 Relation between the “bare” and “true” charges

The situationwith (8.118), (8.119) can be understoodmore clearly if, during the deriva-
tion of (8.118), we do not do renormalization “on the fly”, but introduce the first “bare”
charge e0, which afterwards is fitted to obtain the correct observable value of charge e
(or eR in the notations used above). If the logarithmically divergent integral is cut off
at the upper limit at some Λ2 (above we have also used the notation M2 as the cutoff
parameter), the “bare” charge can be considered to be its function: e0 = e0(Λ2), and—
at the end—we have to perform the limit Λ → ∞. In this approach, the polarization
operator takes the form (8.117)

𝒫(k2) = −
e20
3π

k2 ln Λ2

|k2|
. (8.120)

Correspondingly,

𝒟(k2) = 4π
k2

1

1 + e20
3π ln

Λ2

|k2|

. (8.121)

Let us define the physical charge e according to

e20𝒟(k
2) → 4πe2

k2
where k2 → m2 , (8.122)
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that is, at distances of the order ofm−1 (the Compton length of an electron ℏ/mc, which
in quantum field theory defines its effective size). Then, we obtain

e2 =
e20

1 + e20
3π ln

Λ2

m2

, (8.123)

which, in fact, coincides with (8.59) if we choose the normalization point μ2 = m2.
Consequently,

e20 =
e2

1 − e2
3π ln

Λ2

m2

. (8.124)

If we formally consider the limit of point-like charge Λ→∞ in (8.123), we shall obtain
e→ 0, independently of thepossible formof the function e20(Λ). This behavior is called
the “zero charge” (or “Moscow zero”). It was first noted by Landau and Pomeranchuk,
and independently by Fradkin in the mid-1950s. In the opinion of Landau [49] this
situation reflected the internal inconsistency of both the renormalization procedure
and QED (and any other model of quantum field theory known at that time) itself.

Let us consider the arguments of Landau and Pomeranchuk, which led them to this rather radical
conclusion. Let the ratio Λ2

|k2 | be so large that

e20
3π

ln Λ2

|k2|
≫ 1 , (8.125)

but, at the same time, we still have e0 ≪ 1. Then, in equation (8.121), we can neglect unity in the
denominator, so that

𝒟(k2) = 12π2

k2e20 ln
Λ2
|k2 |

(8.126)

and, correspondingly, from (8.122), we have

e2 = 3π

ν ln Λ2
m2

, (8.127)

which is independent of the value of “bare” charge e0. Note that here, we divided (8.127) by an ad-
ditional parameter ν, which denotes the number of the fundamental fermions, which contribute to
vacuum polarization (the corresponding contributions to polarization loops are additive). Let us now
introduce, instead of the standard 4-potential of electromagnetic field Aμ, a new 4-vector𝒜μ = e0Aμ.
Then, the interaction Hamiltonian HI will not contain the “bare” charge e0, whereas the free elec-
tromagnetic field Hamiltonian H0 (quadratic in Aμ) will contain e20 in the denominator. The function
𝒟̃(k2), defined with the help of𝒜μ in the same way that𝒟(k2) is defined via Aμ, will be equal to

𝒟̃(k2) = e20𝒟(k
2) =

12π2

k2 ln Λ2
|k2 |

. (8.128)

This expression does not contain e0, and this means that it corresponds to the neglect in the total
Hamiltonian H = H0 + HI (depending on e0) of the term H0. If this neglect of H0 in comparison to HI
is possible (at large Λ) already for e20 ≪ 1, it is natural to assume that it is even more justified at not
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so small e20. Then, equation (8.126), and also equation (8.127), become unrelated to the condition of
e20 ≪ 1, so that the limit of Λ→∞ becomes feasible. Consequently, e2 → 0, independent of the form
of the function e20(Λ).
The cutoff parameter Λ, guaranteeing the validity of (8.127), is in any case very large. At corresponding
(very small) distances, the effects of gravitation may exceed those of electromagnetism. This leads to
the very attractive idea that the “crisis” of QED happens precisely at those distances (energies), where
gravitation coupling matches that of electromagnetism. Choosing the cutoff parameter of the order of
the Planck length, we have

GNΛ
2 ∼ 1 , (8.129)

where GN is the Newtonian gravitational constant. If we accept such a point of view, the value of the
physical charge e will be automatically determined by the theory via equations (8.127) and (8.129),
which will lead to the limitation of ν ≈ 12. In fact, if ν < 12, the effects of gravitation will become
important well before the effective charge becomes of the order of unity. In the opposite case of ν > 12,
the effects of gravitation will not “save” electrodynamics, becoming important “too late”. Note that,
according to themodern experimental data on elementary particles (see Chapter 1), there are precisely
12 fundamental fermions.

At the same time, we must stress the opinion of the majority of theorists, who believe
that the limit of Λ → ∞ in expressions, such as (8.123) and (8.124) cannot be per-
formed without breaking the assumptions made during their derivation. From (8.124)
it is seen that as Λ grows (with fixed e2), the value of e20 also grows, and for e

2
0 ∼ 1, all

these expressions become invalid, as their derivation was based on the assumption of
e20 ≪ 1, which is simply the criterion of the applicability of perturbation theory.

Note that for QED all these difficulties are of a rather “academic” importance,
since they appear at fantastically high energies of no real interest: e2

π ln( E
2

m2 ) = 1 is
achieved for E ∼ 1093m, which is essentially due to the smallness of e2 = 1

137 . Much
earlier, as we shall see later, electromagnetic interactions become “intermixed” with
theweak and strong interactions of the elementary particles, so that “pure” electrody-
namics looses its meaning. At the end of this volume we shall return to the discussion
of the problems of consistency of quantum field theory and its asymptotic behavior.

For a better understanding of these problems, we now present a simple qualitative discussion on coor-
dinate space [5]. We can transform our asymptotic expressions of QED to “coordinate representation”
by an obvious (from dimensionality arguments) replacement: m → r−1 and Λ → r−10 , where r is the
characteristic distance from the “center” of an electron (which can be taken to be of the order of its
Compton wavelength), whereas r0 is some fundamental length, characterizing the geometric size of
the “bare” charge, which can be imagined to be a small sphere with radius r0. Then, (8.123) can be
written as

e2(r) = e2(r0)

1 + 2e2(r0)
3π2 ln r

r0

. (8.130)

Let the value of the “bare” charge e2(r0) be fixed. Our aim now is to go to the limit of a point-like
“bare” charge, so we start to diminish r0, with a fixed value of e20(r0). Then, sooner or later, we obtain
2e2(r0)
3π2 ln r

r0
≫ 1, and we can neglect unity in the denominator of (8.130). Correspondingly, we have

e2(r) = 1
2
3π2 ln

r
r0

. (8.131)
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But now, with a further diminishing of r0, we obtain e2(r) → 0 for r0 → 0. This is “zero charge”
behavior (or “Moscow zero”). On this ground, Landau and Pomeranchuk claimed8: “We are coming
to the fundamental conclusion that the formal quantum electrodynamics apparently leads to the zero
charge of an electron. The word “apparently” here is related to some lack of rigorousness in the above
arguments”. The physics here is that in this approximation vacuum polarization (due to creation of
virtual electron–positron pairs) is so strong at small distances that, at some distance, the remnant
charge is actually independent of the initial (“bare”) charge. In the limit of thepoint-like “bare” charge,
nothing remains of it on any finite distance: we have the complete screening. Note that this result is
quite transparent; the phenomenon of screening is well known in plasma and solid state physics [36],
where it is described by quite similar calculations of the polarization operator in many body systems
[1]. But in this situation, how we can understand the magnificent successes of QED?
Let us write (8.130) in the form solved with respect to e2(r0), and put r = λe = m−1 (the Compton wave
length of an electron):

e2(r0) =
e2(λe)

1 − 2e2(λe)
3π2 ln λe

r0

. (8.132)

Here, e2(λe) should be understood as the “physical” charge of an electron, that is, the charge that is
measured at large distances (of the order of λe) outside the effective region of vacuum polarization
(screening). When we “enter” this region (r0 < λe), the charge grows due to the diminishing screen-
ing inside the “cloud” of electron–positron pairs.9 However, we cannot reach the limit of a very large
charge, due to the existence of the “Landau ghost pole”, close to which equation (8.132) simply be-
comes invalid. From a practical point of view, all this is not important at all, as we are speaking here
about the region of r0 ∼ λe exp[−(137)(3π2)/2]. QED is a practical theory precisely becausewe are using
nonexact solutions with point-like interaction and leave open the question of the correct behavior at
small distances, where other interactions become quite important. And who knows; is there not some
physical mechanism cutting off divergences at small distances (for example, related to gravitation;
refer to (8.129)), which is still unknown to us, but which makes interactions in quantum field theory
effectively nonpoint-like? Thus, the pragmatic (majority) point-of-view is that we are dealing with the
experimentally defined “physical” charge e(λe), such that we can work with solutions in the form of a
perturbation series, though modern theory becomes invalid at small distances. Thus, the problem of
the asymptotic behavior of QED still remains unsolved (we shall return to this at the end of the book).
In asymptotically free field theories, for example, in QCD, the situation is different. The sign in the de-
nominators of expressions similar to (8.130) and (8.132) is opposite to that in QED, and the asymptotic
behavior of the interaction “constant” (charge) is also opposite: g2(r0) → 0 for r0 → 0. It is not that
the charge at the finite distance is becoming zero, for an arbitrary value of the “bare” charge, but the
zero point-like charge corresponds to a finite charge at the finite distance: g2(r) grows with the growth
of r. In QCD, we are dealing with an effective “antiscreening” of the “bare” charge. However, we do
not know which values of r0 and g(r0) should be fixed, and up to what values of r we can use an log-
arithmic expression, such as (8.130). We cannot use it infinitely, as the diminishing (with growth of r)
denominator again makes perturbation theory inapplicable. Qualitatively, it is clear that this growth
of the charge with r corresponds to the confinement force (acting upon quarks). These dependencies
are now measured experimentally, and we shall return later to the discussion of asymptotic freedom
in QCD.

8 Reports of the USSR Academy of Sciences 102, 489 (1955).
9 In fact, this corresponds to the dependence of the “fine structure constant” on momentum, trans-
ferred during the scattering process. We already noted that this effect is experimentally observable.
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Lev Davidovich Landau
(1908–1962) was a Soviet physi-
cist who made fundamental con-
tributions to many areas of theo-
retical physics. His achievements
included the independent co-
discovery of the density matrix
method in quantum mechanics
(alongside John von Neumann),
the quantum mechanical the-
ory of diamagnetism, the the-
ory of superfluidity, the theory of

second-order phase transitions, the Ginzburg–Landau theory of superconductivity,
the theory of Fermi liquid, the explanation of Landau damping in plasma physics, the
Landau “ghost” pole in quantum electrodynamics, and the two-component theory of
neutrinos. He received the 1962 Nobel Prize in Physics for his development of a theory
of superfluidity. Landau was born in Baku, Azerbaijan, in what was then the Russian
Empire. In 1924, he moved to Leningrad and dedicated himself to the study of theo-
retical physics. Landau traveled abroad during the period 1929–1931, when he finally
went to Copenhagen to work at the Niels Bohr’s Institute for Theoretical Physics.
After the visit, Landau always considered himself a pupil of Niels Bohr. Apart from
his theoretical accomplishments, Landau was the principal founder of the “Landau
school” of theoretical physics. He and his friend and collaborator Evgeny Lifshitz,
have written the Course of Theoretical Physics, finally completed by Lev Pitaevskii;
ten volumes that together cover the whole of the subject and are widely used up to
nowadays. From 1937 until 1962, Landau was the head of the Theoretical Division
at the Institute for Physical Problems. In 1938, Landau was arrested and held in
Lubyanka prison until his release in 1939, after the head of the institute Pyotr Kapitsa
wrote a letter to Joseph Stalin, personally vouching for Landau’s behavior. Landau
was rather briefly involved in Soviet atomic and hydrogen bomb projects. However,
for this work he received the Stalin Prize in 1949 and 1953, and was awarded the title
“Hero of Socialist Labour” in 1954. In January 1962, Landau’s car collided with an
oncoming truck. He was severely injured and spent two months in a coma. Finally,
he partly recovered, but his scientific creativity was destroyed, and he never returned
fully to scientific work.

8.10 The renormalization group in QED

Let us show now how equations (8.130) and (8.124) can be derived using simple anal-
ysis, based on dimensional analysis and the notion of renormalizability, which con-
stitute the essence of the so-called renormalization group, introduced in QED by Gell-
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Mann and Low. Consider again the square of the “bare” charge as a function of cutoff
parameter e20(Λ), and introduce some function d that relates e20 for two different values
of its argument (cutoff):

e20(Λ
2
2) = e

2
0(Λ

2
1)d. (8.133)

For Λ2
1, Λ

2
2 ≫ m2, the function d does not depend onm and, being dimensionless, can

depend only on the dimensionless arguments e20(Λ
2
1) and Λ

2
2/Λ

2
1, so that we can write

e20(Λ
2
2) = e

2
0(Λ

2
1)d(e

2
0(Λ

2
1),

Λ2
2

Λ2
1
) . (8.134)

This is the main relation of the renormalization group. Its physical meaning is quite
clear: in renormalizable theory any change of the cutoff parameter can be compen-
sated for by the appropriate change of the “bare” charge, with no change in the phys-
ical results (in this case, of the physical charge). The functional equation (8.134) can
be conveniently rewritten in a differential form. Consider the infinitesimally close val-
ues of cutoff parameters Λ2

1 and Λ
2
2. Let us denote Λ

2
1 = ξ and Λ

2
2 = ξ + dξ . Then, from

(8.134), we obtain

e20(ξ + dξ ) = e
2
0(ξ ) + de

2
0(ξ ) = e

2
0(ξ )d(e

2
0(ξ ), 1 +

dξ
ξ
)

= e20(ξ )[d(e
2
0(ξ ), 1) +

𝜕d(e20(ξ ), x)
𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=1

dξ
ξ
] , (8.135)

which gives, on account of d(e20(ξ ), 1) = 1,

de20(ξ ) = e
2
0(ξ )
𝜕d(e20(ξ ), x)
𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=1

dξ
ξ
, (8.136)

giving the differential Gell-Mann–Low equation

de20
d ln ξ
= ψ(e20) , (8.137)

where we have introduced the Gell-Mann–Low function

ψ(e20) = e
2
0[
𝜕d(e20, x)
𝜕x
]
x=1
. (8.138)

Writing (8.137) as de20
ψ(e20)
= dξ

ξ and integrating it from ξ = Λ2
1 to ξ = Λ

2
2, we get

ln
Λ2
2

Λ2
1
=

e20(Λ
2
2)

∫
e20(Λ

2
1)

de2

ψ(e2)
. (8.139)



224 | 8 Some applications of quantum electrodynamics

If in the entire integration region the value of e20 is small, we can use for ψ(e2) the
expression obtained from the first order of perturbation theory. From the general ex-
pression𝒟(k2) = 4π

k2 (1 −
𝒫(k2)
k2 )
−1, it is clear that corrections to the “bare” charge e20 are

given by e20k
−2𝒫(k2). Then, using for the polarization operator its lowest-order expres-

sion (8.120), we find (refer to (8.123))

e2 = e20(Λ
2
1)[1 −

e20(Λ
2
1)

3π
ln

Λ2
1
|k2|
] = e20(Λ

2
2)[1 −

e20(Λ
2
2)

3π
ln

Λ2
2
|k2|
] . (8.140)

Then,

d(e20,
Λ2
2

Λ2
1
) =

1 − e20
3π ln

Λ2
1
|k2|

1 − e20
3π ln

Λ2
2
|k2|

≈ 1 +
e20
3π

ln
Λ2
2

Λ2
1
. (8.141)

Correspondingly, using the definition (8.138), we obtain

ψ(e20) =
e40
3π
, (8.142)

so that the Gell-Mann–Low function is quadratically growing with its argument. Now,
we can perform integration in (8.139) explicitly:

1
3π

ln
Λ2
2

Λ2
1
= 1
e20(Λ

2
1)
− 1
e20(Λ

2
2)
. (8.143)

If we define the physical charge as e2 = limΛ2
1→m2 e20(Λ

2
1), the expression (8.143) re-

duces to (8.123) and (8.124). Thus, the calculation of the Gell-Mann–Low function in
the lowest order of perturbation theory and the subsequent integration of the differen-
tial renormalization group equation give the result obtained above by summation of
the leading logarithms of diagrammatic expansion. In this sense, we can “overcome”
the problems of the rigorous justification of this summation procedure. Sometimes it
is said that the renormalization group provides an “improved” perturbation theory,
where the role of the coupling constant is played by (8.119). However, all the main
questions discussed above actually remain. The result (8.143) was obtained from an
approximate expression for the Gell-Mann–Low function (8.142), which is valid only
for e20 ≪ 1. It is not clear how it is changed by higher-order corrections, and no reliable
analysis of this problem is available. However, later we shall see that the qualitative
analysis of the possible consequences of a differential equation, such as (8.137), based
on certain assumptions on the form of the Gell-Mann–Low function for arbitrary val-
ues of its argument, is actually possible and may be quite useful for the general dis-
cussion on the asymptotic properties of quantum field theory.
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Murray Gell-Mann (born 1929) is an American theo-
retical physicist who received the 1969 Nobel Prize in
physics for his major contributions to the theory of el-
ementary particles. Gell-Mann earned a bachelor’s de-
gree in physics from Yale in 1948 and a PhD in physics
from Massachusetts Institute of Technology (MIT) in
1951. His supervisor at MIT was Victor Weisskopf. Gell-
Mann’s work in the 1950s involved recently discovered
cosmic ray particles that came to be called kaons and
hyperons. Classifying these particles led him to propose
that a quantum number called “strangeness” would be
conservedby the strongand the electromagnetic interac-

tions, but not by the weak interactions. In 1961, he introduced a classification scheme
for hadrons, based on SU(3) symmetry, which he called the “Eightfold Way” (term
taken Buddhism), because of the octets of particles in the classification. In 1964, Gell-
Mann and, independently, George Zweig, went on to postulate the existence of quarks,
particles of which the hadrons of this scheme are composed. The name “quark” was
coinedbyGell-Mann,who took it from James Joyce’s novel “FinnegansWake”. In 1958,
he developed the V-A theory of the weak interaction in collaboration with Richard
Feynman. In 1954, Gell-Mann and Francis Low introduced the differential form of
renormalization group (initially for QED), which became the major tool to investi-
gate the asymptotic behavior in quantum field theory. During the 1990s, Gell-Mann’s
interest turned to the emerging study of complexity. He played a central role in the
founding of the Santa Fe Institute, where he continues to work as a distinguished pro-
fessor.

8.11 The asymptotic nature of a perturbation series

The scheme of renormalization discussed above allows the total cancellation of diver-
gences in separate diagrams, that is, in separate terms of the perturbation expansion
of the scattering matrix in powers of an electron charge, but not in the scattering ma-
trix as a whole. The question arises of whether or not this renormalized perturbation
series is convergent. There is an argument, due to Dyson, which proves that this series
is actually divergent and belongs to the class of the so-called asymptotic expansions.

We have seen that the interaction between two electrons is determined by the
function e2R𝒟(k

2), where eR is the renormalized (physical) charge. Calculating, with
the help of this function, some physical property F(p; e2R), we obtain the infinite series
in powers of e2R

F(p; e2R) =
∞

∑
n=0

e2nR fn(p) , (8.144)
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where fn(p) are some functions of the 4-momenta of the particles. Assume that this
series (with separate terms renormalized according to the procedure discussed above)
is convergent for some value of eR. Then, F(p; e2R) ≡ F(e

2
R) is an analytic function of e

2
R

for e2R ∼ 0, so thatF(−e
2
R) is also ananalytic function, expressible as a power series. But

F(−e2R) represents our property F for the case of particle interaction given by−e
2
R𝒟(k

2),
which corresponds to particle attraction rather than repulsion.

It can be easily seen that—in this case—the usual definition of the vacuum does
not correspond to the state with the lowest possible energy. In fact, imagine the cre-
ation of N electron–positron pairs with all electrons being concentrated in one region
of space andwhereas all positrons are in another region. If both regions are small and
well-separated, for large enough N, the negative Coulomb energy of these attracting
regions will become larger than their rest and kinetic energies. Let us call these states
“pathological”.

Assuming that charge interaction is determinedby−e2R𝒟(k
2), consider someusual

state characterized by the presence of several particles. In particular, this may be the
usual vacuum state (state with no particles). This state is separated from the “patho-
logical” state with the same energy by some energy barrier, and the height of this bar-
rier is determined by the minimal energy needed to create N pairs, that is, by the rest
energy of these N particles.

Due to quantum mechanical tunneling, there is a finite probability of transition
from the usual to the “pathological” state. This means that every physical state is ac-
tually unstable towards the spontaneous creation of a large number of particles. The
“pathological” state, towhichour system tunnels,will not be stationary, becausemore
and more particles will be created, so that the vacuum state, in particular, will be de-
stroyed, and there will be no ground state for our system at all. Due to such “pathol-
ogy”, we cannot assume that QED interaction −e2R𝒟(k

2) leads to well-defined analytic
functions. Actually, the function F(−e2R) cannot be analytic and the perturbation series
(8.144) can not be convergent for e2R ̸= 0.

Again, we can pose the natural questions:What is the physicalmeaning of pertur-
bation series (8.144), and why is QED, operating with such expansions, so successful
in explaining experiments? The answer is that expansion (8.144) represents an asymp-
totic series. Such expansions, under certain conditions, can be used to describe the
functions they represent with high (but always finite) accuracy [71]. In contrast to a
convergent series, the terms of the asymptotic series e2nR fn(p) first diminish with the
growth of n, but then, starting from some number n0, start to grow (and this growth is,
in general, unlimited). The maximal accuracy for an asymptotic series to the approx-
imate function F is determined by the value of fn0 . The less this term is, the higher is
this accuracy. In the case of QED, there are reasons to believe that in the series (8.144),
the values of fn will diminish up to n of the order of n0 ≈ ℏc/e2R = 137. This value of
n0 is so large that the accuracy of the QED series (8.144) in describing reality is very
high. Apparently, the error here can be estimated as exp(−ℏc/e2R), which is immensely
small. For the practical tasks of QED, such accuracy is overwhelming.
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9.1 Quantum mechanics and path integrals

It is well known that quantum mechanics was initially formulated in two equivalent
forms:matrix Heisenbergmechanics andwavemechanics, based on the Schroedinger
equation. Later Feynman [20] proposed another quite elegant path, integral formula-
tion of quantummechanics, which will be briefly described in this chapter. Of course,
all these formulations of are equivalent and may be used to solve different practical
problems, choosing those more convenient for the problem at hand. Conceptually,
they stress different aspects of the same universal quantum theory and allow different
ways of generalizing towards the appropriate quantumfield theory. Feynman’s formu-
lation is especially convenient for this kind of generalization, as we shall see later.

Letψ(qi, ti) be a wave function of a quantum particle at the initial moment of time
ti, where qi denotes the appropriate coordinate dependence. For simplicity, we shall
consider here only one-dimensional motion. We have seen in Chapter 4 that the value
of the wave function at a later moment of time t can be written as

ψ(qf , tf ) = ∫ dqiK(qf tf ; qiti)ψ(qiti) , (9.1)

where K(qf tf ; qiti) is the appropriate propagator (Green’s function of the Schroedinger
equation). According to standard interpretation, ψ(qf , tf ) represents the probability
amplitude for finding the particle at spatial point qf at time moment tf . Correspond-
ingly, propagator K(qf tf ; qiti) represents the probability amplitude of particle transi-
tion from the initial point qi at moment ti to the final point qf at moment tf . The prob-
ability of this transition is given by

P(qf tf ; qiti) =
󵄨󵄨󵄨󵄨K(qf tf ; qiti)

󵄨󵄨󵄨󵄨
2
. (9.2)

Let us divide the time interval betweenmoments ti and tf into two intervals, separated
by the time moment t. Repeated use of (9.1) gives

ψ(qf , tf ) = ∫ dqi ∫ dqK(qf tf ; qt)K(qt; qiti)ψ(qiti) , (9.3)

so that

K(qf tf ; qiti) = ∫ dqK(qf tf ; qt)K(qt; qiti) . (9.4)

Thus, the qiti → qf tf transition can be considered as the particle transition via all pos-
sible intermediate points (states), as shown in Figure 9.1. As an example,wemay recall
the notorious experiment on two-slot electrondiffraction. This is schematically shown
in Figure 9.2, where slots are placed at points 2A and 2B. In this case the analogue of

https://doi.org/10.1515/9783110648522-009
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Figure 9.1

Figure 9.2

equation (9.4) can be written as

K(3; 1) = K(3; 2A)K(2A; 1) + K(3; 2B)K(2B; 1) . (9.5)

The intensity distribution at the screen, placed at point 3, is determined by

P(3; 1) = 󵄨󵄨󵄨󵄨K(3; 1)
󵄨󵄨󵄨󵄨
2
, (9.6)

with obvious interference contributions. It can be said that in this experiment the elec-
tron simultaneously moves along both paths (trajectories). Registering it somehow at
one of the slots destroys the interference picture.

Let us introduce eigenvectors of the coordinate operator in Dirac’s notations:

q̂|q⟩ = q|q⟩ . (9.7)

Then, the wave function of our particle can be written as

ψ(qt) = ⟨q|ψt⟩S , (9.8)

where |ψt⟩S is the state vector in the Schroedinger representation, related to the time-
independent state vector in Heisenberg representation |ψ⟩H by

|ψt⟩S = e
−iHt/ℏ|ψ⟩H . (9.9)
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Let us define the time-dependent state vector as

|qt⟩ = eiHt/ℏ|q⟩ . (9.10)

Consequently, we can rewrite (9.8) as

ψ(qt) = ⟨qt|ψ⟩H . (9.11)

All these relations are well known from elementary quantum mechanics. Using the
completeness of the set of state vectors (9.7), (9.10), we can write

⟨qf tf |ψ⟩H = ∫ dqi⟨qf tf |qiti⟩⟨qiti|ψ⟩H , (9.12)

which reduces (with the account of (9.11)) to

ψ(qf tf ) = ∫ dqi⟨qf tf |qiti⟩ψ(qiti) . (9.13)

Comparing (9.13) with (9.1), we see that the propagator can be written as

K(qf tf ; qiti) = ⟨qf tf |qiti⟩ , (9.14)

which (in a slightly different form)we alreadyused inChapter 4. Belowwe shallwidely
use (9.14) in our discussion.

Figure 9.3

Let us divide the time interval between moments ti and tf into (n + 1) equal segments
of duration τ. Then, the propagation of particle from qiti to qf tf can be considered as
shown in Figure 9.3, which—by repeated use of (9.4)—allows us to write the transition
amplitude (propagator) as

⟨qf tf |qiti⟩ = ∫ ⋅ ⋅ ⋅ ∫ dq1dq2 ⋅ ⋅ ⋅ dqn⟨qf tf |qntn⟩⟨qntn|qn−1tn−1⟩ ⋅ ⋅ ⋅ ⟨q1t1|qiti⟩ , (9.15)

where the multiple integral is taken over all possible trajectories, connecting initial
point qi with final qf . In the limit of n → ∞ or τ → 0, equation (9.15) determines the
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propagator as a Feynman’s path integral (continual or functional integral). Already at
this level, we can see the major difference between classical and quantum mechan-
ics. The classical particle propagates from some initial point to the final point, mov-
ing along the single trajectory determined by the least action principle, whereas in
quantummechanics the particle motion involves the whole continuum of all possible
trajectories, connecting these points.

The propagator at a small trajectory segment is easily calculated. From equation
(9.10), we get

⟨qj+1tj+1|qjtj⟩ = ⟨qj+1|e
−iHτ/ℏ|qj⟩ = ⟨qj+1|1 −

i
ℏ
Hτ + O(τ2)|qj⟩

= δ(qj+1 − qj) −
iτ
ℏ
⟨qj+1|H|qj⟩

= ∫
dp
2πℏ

exp[ i
ℏ
p(qj+1 − qj)] −

iτ
ℏ
⟨qj+1|H|qj⟩ , (9.16)

wherewe have used an obvious representation of the δ-function via a Fourier integral.
In the general case, the HamiltonianH is some function of q and p. Consider the most
common case of a particle moving in a potential field when

H = p2

2m
+ V(q) . (9.17)

Then, the kinetic energy term can be rewritten as

⟨qj+1|
p2

2m
|qj⟩ = ∫ dp

󸀠 ∫ dp⟨qj+1
󵄨󵄨󵄨󵄨p
󸀠⟩⟨p󸀠󵄨󵄨󵄨󵄨

p2

2m
|p⟩⟨p|qj⟩ , (9.18)

so that using

⟨qj+1
󵄨󵄨󵄨󵄨p
󸀠⟩ =

1
√2πℏ

exp(
ip󸀠qj+1
ℏ
) , ⟨p|qj⟩ =

1
√2πℏ

exp(−
ipqj
ℏ
) ,

we obtain

⟨qj+1|
p2

2m
|qj⟩ = ∬

dpdp󸀠

2πℏ
exp[ i
ℏ
(p󸀠qj+1 − pqj)]

p2

2m
δ(p − p󸀠)

= ∫
dp
2πℏ

exp[ i
ℏ
p(qj+1 − qj)]

p2

2m
. (9.19)

Note that in the left-hand side of this expression, p is represented by operator, whereas
in the right-hand side, it is just a c-number. In a similar way, we can obtain

⟨qj+1|V(q)|qj⟩ = V(
qj+1 + qj

2
)⟨qj+1|qj⟩ = V(

qj+1 + qj
2
)δ(qj+1 − qj)

= ∫
dp
2πℏ

exp[ i
ℏ
p(qj+1 − qj)]V(q̄j) , (9.20)
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Figure 9.4

where q̄j =
1
2 (qj+1 + qj). Now, from (9.19) and (9.20), we get

⟨qj+1|H|qj⟩ = ∫
dp
2πℏ

exp[ i
ℏ
p(qj+1 − qj)]H(p, q̄) , (9.21)

so that (9.16) is rewritten as

⟨qj+1tj+1|qjtj⟩ = ∫
dpj
2πℏ

exp{ i
ℏ
[pj(qj+1 − qj) − τH(pj, q̄j)]} , (9.22)

where pj is momentum at the moment between tj and tj+1 (between qj and qj+1).
The corresponding segments of the trajectory in momentum space are shown in Fig-
ure 9.4. Equation (9.22) defines the propagator on a small segment of one of the paths
(trajectories). The complete propagator is obtained by substitution of (9.22) into (9.15),
so that

⟨qf tf |qiti⟩ = lim
n→∞
∫

n
∏
j=1

dqj
n
∏
i=0

dpi
2πℏ

exp{ i
ℏ

n
∑
l=0
[pl(ql+1 − ql) − τH(pl, q̄l)]}, (9.23)

where q0 = qi and qn+1 = qf . In fact, we are dealing here with a multiple integral of an
infinite order. Usually equation (9.23) is written in the symbolic form

⟨qf tf |qiti⟩ = ∫
𝒟q(t)𝒟p(t)

2πℏ
exp{ i
ℏ

tf

∫
ti

dt[pq̇ − H(p, q)]} , (9.24)

where q(ti) = qi and q(tf ) = qf . This form defines the measure for integration over all
trajectories (q(t), p(t)) in the phase space of a particle, and it has no othermeaning, ex-
cept the compact notation for (9.23). The situationhere is quite similar to the definition
of the usual integral via the limiting behavior of Riemann sums. This notation (9.24)
introduces the notion of a functional (continual) integral over all trajectories (paths)
in the phase space. Variables p(t) and q(t) entering (9.24) are the usual c-number
functions.
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The definition of the propagator via the functional integral over all trajectories
in phase space (9.24) is absolutely general and is valid for the arbitrary Hamiltonian
H(p, q). In the case of the Hamiltonian given by (9.17), we can make further simpli-
fications and transform the propagator to a functional integral over all the paths in
coordinate space only. In this case, we can write

⟨qf tf |qiti⟩ = lim
n→∞
∫

n
∏
j=1

dqj
n
∏
i=0

dpi
2πℏ

exp{ i
ℏ

n
∑
l=0
[pl(ql+1 − ql) −

p2l
2m

τ − V(q̄l)τ]} . (9.25)

The integrals over pj here are easily calculated using the standard expressions pre-
sented below. Then, we get

⟨qf tf |qiti⟩ = lim
n→∞
(

m
2πiℏτ
)

n+1
2

∫
n
∏
j=1

dqj exp{
iτ
ℏ

n
∑
l=0
[
m
2
(
ql+1 − ql

τ
)
2
− V(q̄l)]} , (9.26)

so that in a continuous limit, we can write

⟨qf tf |qiti⟩ = 𝒩 ∫𝒟q(t) exp{
i
ℏ

tf

∫
ti

dt[m
2
q̇2 − V(q)]}

= 𝒩 ∫𝒟q(t) exp{ i
ℏ

tf

∫
ti

dtL(q, q̇)} = 𝒩 ∫𝒟q(t) exp{ i
ℏ
S} , (9.27)

where L = T − V is the classical Lagrange function of our particle, whereas S =
∫
tf
ti
dtL(q, q̇) is the classical action, calculated for an arbitrary trajectory q(t), connect-

ing the initial point q(ti) with final q(tf ). The functional integral (9.27) is taken over
all the possible trajectories, connecting the initial and final points. The normalization
factor𝒩 , introduced here, is formally divergent in the limit of n→∞, but this is irrel-
evant; as we shall see later, it always cancels from physical transition amplitudes.

The remarkable result (9.27) allows, in particular, a qualitative understanding of
the physical origin of the classical principle of least action. We can see that in the
classical limit of ℏ → 0, the Feynman integral (9.27) contains the continuumof rapidly
oscillating factors of exp(iS/ℏ), which “on the average” cancel each other. The only
“surviving” one is the contributionof themost slowly changing factorwith Smin,which
corresponds to the single trajectory described by the least action principle and the
Newtonian equations of motion of classical mechanics.

Remarks on some useful integrals

Below, we present some common integrals, which are useful for practical calculations with functional
integrals. First of all, we have the well-known Gauss–Poisson integral:

∞

∫
−∞

dx e−ax
2
= √

π
a
, a > 0 . (9.28)
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This result follows immediately if we write
∞

∫
−∞

dx
∞

∫
−∞

dy e−a(x
2+y2) =

π
a
, (9.29)

which, after the transformation to polar coordinates in the (x, y) plane, reduces to

2π

∫
0

dθ
∞

∫
0

dr re−ar
2
= π
∞

∫
0

d(r2) e−ar
2
=
π
a
. (9.30)

The last equality is obvious and proves (9.28).
Consider now the integral of an exponent, depending on the quadratic form

∞

∫
−∞

dx e−ax
2+bx+c ≡

∞

∫
−∞

dx eq(x) , (9.31)

where we assume that a > 0. Then, we have q󸀠(x) = −2ax + b, q󸀠󸀠(x) = −2a, q󸀠󸀠󸀠(x) = 0 . . ., and we
easily find x̄, the value of x corresponding to the minimum of q(x):

x̄ = b
2a
, q(x̄) = b2

4a
+ c . (9.32)

Now, it is convenient to rewrite q(x) as

q(x) = q(x̄) − a(x − x̄)2 . (9.33)

Then,
∞

∫
−∞

dx eq(x) = eq(x̄)
∞

∫
−∞

dxe−a(x−x̄)
2
= eq(x̄)√ π

a
, (9.34)

so that finally, we have
∞

∫
−∞

dxe−ax
2+bx+c ≡

∞

∫
−∞

eq(x) = exp( b
2

4a
+ c)√ π

a
. (9.35)

This expression was used to derive (9.26) and (9.25).
Let us quote also the generalization of (9.35) for the case of n integration variables [56]:

∞

∫
−∞

dx1 ⋅ ⋅ ⋅
∞

∫
−∞

dxn exp{iλ[(x1 − a)
2 + (x2 − x1)

2 + ⋅ ⋅ ⋅ + (b − xn)
2]}

= [
inπn

(n + 1)λn
]

1/2

exp[ iλ
n + 1
(b − a)2] , (9.36)

which will be useful in what follows.

Equation (9.27), in fact, contains the whole of the quantum mechanics of a particle
and is widely used to solve practical problems [20]. Let us show how the common
Schroedinger equation is derived from this representation. First of all, we write the
basic relation (9.1), which connects the wave function at moment t2, with its value at
the previous moment t1:

ψ(x2, t2) =
∞

∫
−∞

dx1K(x2t2; x1t1)ψ(x1t1) . (9.37)
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Let moments t2 and t1 be very close, so that t2 = t1 + ε, where ε → 0. Then, the propa-
gator is determined by the contribution of a single small segment of the trajectory, so
that using (9.26), we can write (9.37) as

ψ(x, t + ε) = A
∞

∫
−∞

exp[ i
ℏ
m(x − y)2

2ε
] exp[− i

ℏ
εV(x + y

2
, t)]ψ(y, t)dy , (9.38)

whereA = ( m
2πiℏε )

1/2. Due to the first exponent, a significant contribution to the integral
originates only from the values y close to x. Making the variable transformation y =
x + η, we rewrite (9.38) as

ψ(x, t + ε) = A
∞

∫
−∞

exp( imη
2

2ℏε
) exp[− iε

ℏ
V(x + η

2
, t)]ψ(x + η, t)dη . (9.39)

The main contribution here comes from the small values of η, and expanding both
sides of (9.39), we have

ψ(x, t) + ε𝜕ψ
𝜕t
= A
∞

∫
−∞

exp( imη
2

2ℏε
)[1 − iε
ℏ
V(x, t)][ψ(x, t) + η𝜕ψ

𝜕x
+
1
2
η2 𝜕

2ψ
𝜕x2
]dη . (9.40)

Now, we can take into account that

A
∞

∫
−∞

eimη
2/2ℏεdη = 1 ,

A
∞

∫
−∞

eimη
2/2ℏεηdη = 0 ,

A
∞

∫
−∞

eimη
2/2ℏεη2dη = iℏε

m
.

Then, (9.40) reduces to

ψ(x, t) + ε𝜕ψ
𝜕t
= ψ − iε
ℏ
Vψ − ℏε

2im
𝜕2ψ
𝜕x2
. (9.41)

This equation is valid (for ε → 0) if ψ satisfies the one-dimensional Schroedinger
equation

iℏ𝜕ψ
𝜕t
= −
ℏ2

2m
𝜕2ψ
𝜕x2
+ V(x, t)ψ . (9.42)

This completes our derivation.
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9.2 Perturbation theory

Let us consider potential V(x) as a small perturbation. More strictly speaking, we re-
quire the smallness (in comparisonwithℏ) of the time integral ofV(x, t). Consequently,
we can write an expansion:

exp{− i
ℏ

tf

∫
ti

dtV(x, t)} ≈ 1 − i
ℏ

tf

∫
ti

dtV(x, t) − 1
2!ℏ2
[

tf

∫
ti

dtV(x, t)]
2

+ ⋅ ⋅ ⋅ . (9.43)

Using this type of expansion in equation (9.27), we can obtain the perturbation expan-
sion for the propagator K(xf tf ; xiti):

K = K0 + K1 + K2 + ⋅ ⋅ ⋅ . (9.44)

The zeroth-order term here represents the free particle propagator:

K0 = 𝒩 ∫𝒟x exp(
i
ℏ
∫ dt 1

2
mẋ2) . (9.45)

To make an explicit calculation, we return to the definition of the path integral (9.23)
and write (9.45) as a limit of the multiple integral (refer to (9.26)):

K0 = lim
n→∞
(

m
2πiℏτ
)

n+1
2
∞

∫
−∞

n
∏
j=1

dxj exp[
im
2ℏτ

n
∑
l=0
(xl+1 − xl)

2] . (9.46)

Denoting the multiple integral here as I, we can calculate it using (9.36) and obtain

I = 1
(n + 1)1/2

(
i2πℏτ
m
)
n/2

exp{ im
2ℏ(n + 1)τ

(xf − xi)
2}. (9.47)

Taking (n + 1)τ = tf − ti, from (9.46), we get the explicit form of the free particle propa-
gator

K0(xf tf ; xiti) = θ(tf − ti)(
m

2πiℏ(tf − ti)
)
1/2

exp{
im(xf − xi)2

2ℏ(tf − ti)
} , (9.48)

where we have added a factor of θ(tf − ti), which guarantees causality. The generaliza-
tion of this expression for a particle moving in three-dimensional space is quite ob-
vious: the corresponding propagator reduces to the product of free propagators (9.48)
along three axes: x, y, z.

In Chapter 4, we have seen that the particle propagator satisfies Schroedinger
equation with the δ-source:

[iℏ 𝜕
𝜕tf
− H(xf )]K(xf tf ; xiti) = iℏδ(tf − ti)δ(xf − xi) . (9.49)
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For one-dimensional free particle motion, H(xf ) = −
ℏ2

2m
𝜕2

𝜕x2f
. Correspondingly, the free

particle propagator satisfies the equation

[iℏ 𝜕
𝜕tf
+
ℏ2

2m
𝜕2

𝜕x2f
]K0(xf tf ; xiti) = iℏδ(tf − ti)δ(xf − xi) . (9.50)

It can also be checked by direct substitution of (9.48) into this equation.

In equations (9.48) and (9.50), we make the replacements t → −iℏt and ℏ2m → D; Equation (9.50)
transforms into

[
𝜕
𝜕tf
− D 𝜕

2

𝜕x2f
]K0(xf tf ; xiti) = δ(tf − ti)δ(xf − xi) , (9.51)

and K0(xf tf ; xiti) now represents the Green’s function of the diffusion equation [70], with the diffusion
coefficientD. All the imaginary terms of (9.48) disappear, and this expression describes the diffusion of
particles from the point-like source. In fact, path integrals first appeared in the theory of diffusion pro-
cesses, where these are called Wiener integrals. The disappearance of oscillations from (9.48) (which
are replaced by the rapidly diminishing exponents of diffusion theory) is quite convenient for numeri-
cal calculations, particularly for calculations of path integrals byMonte Carlo algorithms. Such formal
transformation to the imaginary time is widely used in studies of different problems of quantum me-
chanics and quantum field theory.
There is one more aspect of transformation to imaginary time, which is even more fundamental for
physics. Equilibrium statistical mechanics is based of the use of Gibbs canonical distribution, with
the density matrix of the following form [36]:

ρ = 1
Z
e−βH , (9.52)

where H is the system Hamiltonian, Z is the partition function, and β = 1
T is the inverse temperature.

Then, it is easy to get
𝜕ρ
𝜕β
= −Hρ . (9.53)

But this equation (also called the Bloch equation) can be obtained from the usual Schroedinger equa-
tion:

iℏ𝜕ψ
𝜕t
= Hψ (9.54)

after the formal replacement ψ → ρ, t → −iℏβ. Thus, we may say that all of statistical mechanics
is the same theory as quantum mechanics in “imaginary time”. The calculation of the equilibrium
density matrix of the system of interacting particles can be performed by solving equation (9.53) with
the help of Green’s function formalism (propagators) in imaginary (so-called “Matsubara”) time [1].
These propagators can be represented by Feynman path integrals (Wiener integrals), which allows the
development of an alternative general approach to problems of statistical physics [19].

Now let us calculate K1, the first-order correction over the potential V(x). From (9.26)
and (9.43), we have

K1 = −
iτ
ℏ

lim
n→∞
(

m
2πiℏτ
)

n+1
2 n
∑
i=1
∫ dx1 ⋅ ⋅ ⋅ dxnV(xi, ti) exp{

im
2ℏτ

n
∑
j=0
(xj+1 − xj)

2} , (9.55)

where we have replaced integration over t by summation over ti. As V depends here
on xi, we break the sum in the exponent in two: one performed from j = 0 to j = i − 1
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and the other from j = i to j = n. Let us also separate the integral over xi. As a result,
equation (9.55) is rewritten as

K1 = − limn→∞
iτ
ℏ

n
∑
i=1
∫ dxi{(

m
2πiℏτ
)

n−i+1
2

∫ dxi+1 ⋅ ⋅ ⋅ dxn exp[
im
2ℏτ

n
∑
j=i
(xj+1 − xj)

2]}

× V(xi, ti){(
m

2πiℏτ
)

i
2

∫ dx1 ⋅ ⋅ ⋅ dxi−1 exp[
im
2ℏτ

i−1
∑
j=0
(xj+1 − xj)

2]} . (9.56)

The terms in the figure brackets are equal to K0(xf tf ; xt) and K0(xt; xiti), so that after
the replacement of τ∑i ∫ dxi by ∫ dx ∫ dt, equation (9.56) reduces to

K1 = −
i
ℏ

tf

∫
ti

dt
∞

∫
−∞

dx K0(xf tf ; xt)V(x, t)K0(xt; xiti) . (9.57)

Taking into account that K0(xf tf ; xt) = 0 for t > tf , whereas K0(xt; xiti) = 0 for t < ti,
we can write equation (9.57) as

K1 = −
i
ℏ

∞

∫
−∞

dt
∞

∫
−∞

dx K0(xf tf ; xt)V(x, t)K0(xt; xiti) , (9.58)

which is the final expression for the first-order correction to the propagator (Green’s
function) of our particle.

In quite a similar manner, but by more tedious calculations, we can find the
second-order correction:

K2(xf tf ; xiti) = (−
i
ℏ
)
2 ∞

∫
−∞

dt1

∞

∫
−∞

dt2

∞

∫
−∞

dx1

∞

∫
−∞

dx2 (9.59)

× K0(xf tf ; x2t2)V(x2t2)K0(x2t2; x1t1)V(x1t1)K0(x1t1; xiti) .

Now the structure of the higher orders becomes clear, and we obtain the perturbation
series for the propagator:

K(xf tf ; xiti) = K0(xf tf ; xiti) −
i
ℏ
∫ dt1dx1K0(xf tf ; x1t1)V(x1, t1)K0(x1t1; xiti)

−
1
ℏ2
∫ dt1dt2dx1dx2K0(xf tf ; x2t2)V(x2t2)K0(x2t2; x1t1)

× V(x1t1)K0(x1t1; xiti) + ⋅ ⋅ ⋅ , (9.60)

which coincideswith the similar expansion introduced inChapter 4.Note that in equa-
tion (9.59), there is no factor of 1/2!, which is present in expansion (9.43). This is due
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to the fact that two interactions V at different moments of time are equivalent, and we
can write

1
2!

∞

∫
−∞

dt󸀠
∞

∫
−∞

dt󸀠󸀠V(t󸀠)V(t󸀠󸀠)

=
∞

∫
−∞

dt󸀠
∞

∫
−∞

dt󸀠󸀠[θ(t󸀠 − t󸀠󸀠)V(t󸀠)V(t󸀠󸀠) + θ(t󸀠󸀠 − t󸀠)V(t󸀠)V(t󸀠󸀠)]

=
∞

∫
−∞

dt1

∞

∫
−∞

dt2V(t1)V(t2)θ(t1 − t2) . (9.61)

For the same reason, the correction of the arbitrary orderKn does not contain the factor
of 1/n!. It is clear that expansion (9.60) corresponds to the simple diagram technique:
each term of the series can be expressed by a diagram if we associate the straight line
with the propagator and thewavy lineswith the potential, acting at appropriate points
of space, at appropriate moments of time (over which we perform integration).

Substitution of expansion (9.60) into (9.1) gives

ψ(xf tf ) = ∫ dxiK(xf tf ; xiti)ψ(xiti)

= ∫ dxiK0(xf tf ; xiti)ψ(xiti)

−
i
ℏ
∫ dt ∫ dx∫ dxiK0(xf tf ; xt)V(x, t)K0(xt, xiti)ψ(xiti) + ⋅ ⋅ ⋅ . (9.62)

The contribution of higher-order terms, which are not written here, obviously reduces
to the replacement of the last propagator K0 by the complete propagator K. Corre-
spondingly, we obtain the exact integral equation for the wave function:

ψ(xf tf ) = ∫ dxiK0(xf tf ; xiti)ψ(xiti) −
i
ℏ
∫ dt ∫ dxK0(xf tf ; xt)V(x, t)ψ(xt) , (9.63)

which is equivalent to the Schroedinger equation for the problem under discussion.
Assuming that for ti → −∞, the wave function is the solution of the free particle
Schroedinger equation (plane wave), and denoting it by φ(xt), we may rewrite (9.63)
as

ψ(xf tf ) = φ(xf tf ) −
i
ℏ
∫ dt ∫ dxK0(xf tf ; xt)V(x, t)ψ(xt) , (9.64)

because the plane wave remains the plane wave during free particle motion.
For practical tasks, it ismore convenient to use themomentum representation. Let

K(p1t1;p0t0) be the probability amplitude for a particlewithmomentump0 atmoment
t0 to be registered at a later moment t1 with momentum p1. This amplitude is given by

K(p1t1;p0t0) = ∫ dx0 ∫ dx1 exp(−
i
ℏ
p1x1)K(x1t1;x0t0) exp(

i
ℏ
p0x0) , (9.65)
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where the free propagator K(x1t1;x0t0) for a particle moving in three-dimensional
space (in accordance with the remark made after equation (9.48)) has the form

K0(x1t1;x0t0) = θ(t1 − t0)(
m

2πiℏ(t1 − t0)
)
3/2

exp{ im(x1 − x0)
2

2ℏ(t1 − t0)
} . (9.66)

Then, we have

K(p1t1;p0t0) = θ(t1 − t0)[
m

2πiℏ(t1 − t0)
]
3/2

× ∫ dx0 ∫ dx1 exp[
i
ℏ
(p0x0 − p1x1)] exp[

im(x0 − x1)2

2ℏ(t1 − t0)
] . (9.67)

Let us introduce the new integration variables

x = x0 − x1 , X = x0 + x1 , p = p0 − p1 , P = p0 + p1 , (9.68)

so that 2(p0x0 − p1x1) = Px + pX. The Jacobian of these variables’ transformation is
equal to (1/2)3 = 1/8. Correspondingly, equation (9.67) is rewritten as

K(p1t1;p0t0) = θ(t1 − t0)(
α
iπ
)
3/2 1

8
∫ dX exp( i

2ℏ
pX)∫ dx exp( i

2ℏ
Px)eiαx

2
, (9.69)

where α = m
2ℏ(t1−t0)

. The first integral here is equal to 8(2πℏ)3δ(p) = 8(2πℏ)3δ(p0 − p1),
so that

K(p1t1;p0t0) = (2πℏ)
3θ(t1 − t0)δ(p0 − p1)(

α
iπ
)
3/2
∫ dx exp( i

2ℏ
Px + iαx2), (9.70)

and using (9.35), we obtain

K(p1t1;p0t0) = (2πℏ)
3θ(t1 − t0)δ(p0 − p1) exp[−

iP2(t1 − t0)
8mℏ

] , (9.71)

where the δ-function expresses momentum conservation. Taking into account P2 =
4p20, we finally get

K(p1t1;p0t0) = (2πℏ)
3θ(t1 − t0)δ(p0 − p1) exp[−

ip20(t1 − t0)
2mℏ

] . (9.72)

At last, we can calculate the Fourier transform of the propagator over time:

K(p1E1;p0E0) = ∫ dt0 ∫ dt1 exp(
i
ℏ
E1t1)K(p1t1;p0t0) exp(−

i
ℏ
E0t0)
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= (2πℏ)3δ(p0 − p1) ∫ dt0 ∫ dt1θ(τ)

× exp(−
ip21
2mℏ

τ) exp[ i
ℏ
(E1t1 − E0t0)] , (9.73)

where we have introduced τ = t1 − t0. Considering τ and t0 as independent variables,
we obtain

K(p1E1;p0E0) = (2πℏ)
3δ(p0 − p1)

∞

∫
−∞

dt0 exp[
i
ℏ
(E1 − E0)t0]

×
∞

∫
−∞

dτθ(τ) exp[ i
ℏ
(E1 −

p21
2m
)τ] . (9.74)

The first integral here yields (2πℏ)δ(E1 − E0), whereas the second one, because of the
presence of θ(τ), should be understood as1

lim
δ→+0

∞

∫
0

dτei(E1−p
2
1/2m+iδ)τ/ℏ =

iℏ

E1 −
p21
2m + iδ
. (9.75)

Thus, we finally have

K(p1E1;p0E0) = (2πℏ)
4δ(p0 − p1)δ(E0 − E1)

iℏ

E1 −
p21
2m + iδ
, δ → +0 , (9.76)

which is the Fourier transform of the retarded Green’s function of the free particle,
where δ-functions express the momentum and energy conservation laws. Note that
the pole here is in fact determined by the kinetic energy of a particle, which reflects the
general property of Green’s functions [1]: their poles determine the energy spectrum
of the corresponding particles (quasiparticles).

If we introduce the Fourier transform of potential, writing V(x, t) as

V(x, t) = ∫ dω
2π
∫

d3q
(2π)3

ei(qx−ωt)V(qω) , (9.77)

perturbation series (9.60) generates the standard diagram technique in momentum
representation for the Green’s function of a particle in an external field [1].

1 The Fourier transform of θ(t) is defined by

θ(t) = lim
δ→+0

∞

∫
−∞

dω
2π

e−iωt i
ω + iδ
,

which can be easily checked by making the integration along the real axis and closing integration
contour in upper or lower half-planes of complex ω, depending on the sign of t.
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9.3 Functional derivatives

The Green’s function (particle propagator), written in the form of Feynman path inte-
gral

⟨qf tf |qiti⟩ = 𝒩 ∫𝒟q(t) exp{
i
ℏ

tf

∫
ti

dt[m
2
q̇2 − V(q)]}

= 𝒩 ∫𝒟q(t) exp{ i
ℏ

tf

∫
ti

dtL(q, q̇)} (9.78)

introduces the notion of the functional integral: integration is performed here over all
functions (trajectories) q(t), connecting the initial and final points. Thus, the calcu-
lation of (9.78) relates the whole set of functions q(t) with some concrete (complex)
number: the amplitude of quantummechanical transition in the left-hand side. Thus,
equation (9.78) is the concrete realization of the mathematical notion of functional:
the mapping of the set of functions into the set of numbers:
– Functional: function⇒ number

In contrast, the usual function defines themapping of one set of numbers into another
set of numbers.
– Function: number⇒ number

In particular, the functional is not simply the function of another function (this is
again just a function).

Usually, the functional F of function f (x) is denoted as F[f (x)]. A typical example
of a functional is the definite integral: F[f (x)] = ∫ba dxf (x).

Let us now define the functional derivative. In analogy with the usual differen-
tiation, the functional (or variational) derivative of some functional F[f (x)] over the
function f (y) is defined as

δF[f (x)]
δf (y)

= lim
ε→0

F[f (x) + εδ(x − y)] − F[f (x)]
ε

. (9.79)

For example, for F[f (x)] given by the definite integral:

δF[f (x)]
δf (y)

= lim
ε→0

1
ε
[∫ dx[f (x) + εδ(x − y)] − ∫ dxf (x)] = ∫ dxδ(x − y) = 1 . (9.80)

As another example, we consider the functional

Fx[f ] = ∫ dyf (y)G(x, y) , (9.81)

where the variable x in the left-hand side is considered as a parameter. Then, we have
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δFx[f ]
δf (z)
= lim

ε→0

1
ε
[∫ dy{G(x, y)[f (y) + εδ(y − z)]} − ∫ dyG(x, y)f (y)]

= ∫ dyG(x, y)δ(y − z) = G(x, z) . (9.82)

These expressions are sufficient for understanding all the expressions related to func-
tional differentiation, which will be used below.

9.4 Some properties of functional integrals

The amplitude of quantumparticle transition from initial point qiti to final qf tf is given
by

⟨qf tf |qiti⟩ = 𝒩
q(tf )=qf

∫
q(ti)=qi

𝒟q(t) exp{ i
ℏ

tf

∫
ti

dt[m
2
q̇2 − V(q)]}

= 𝒩

q(tf )=qf

∫
q(ti)=qi

𝒟q(t) exp{ i
ℏ

tf

∫
ti

dtL(q, q̇)}. (9.83)

Let us derive some formal relations, whichwill be quite useful belowduring the gener-
alization to quantum field theory. We can add to the Lagrange function of our particle
an extra “source” term:

L→ L + ℏJ(t)q(t), (9.84)

where J(t) is some arbitrary function of time. Let us assume that J(t) is nonzero at
some time interval between moments t and t󸀠 (t < t󸀠), which is shown in Figure 9.5.
Consider also the moment T, previous to t, and another moment T󸀠, which is later
than t󸀠. Then, the transition amplitude of the system, interactingwith source, between
arbitrary states (points) in these moments of time is given by

⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨QT⟩
J
= 𝒩 ∫𝒟q(t) exp{ i

ℏ

T󸀠

∫
T

dt [L(q, q̇) + ℏJq]}. (9.85)

On the other hand, using (9.4), we can write

⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨QT⟩
J
= ∫ dq󸀠 ∫ dq⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨q

󸀠t󸀠⟩⟨q󸀠t󸀠󵄨󵄨󵄨󵄨qt⟩
J
⟨qt|QT⟩ , (9.86)

Figure 9.5
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where (due to our assumption on the form of J(t)) only the “intermediate” propagator
is source-dependent. Using (9.10), we have

⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨q
󸀠t󸀠⟩ = ⟨Q󸀠󵄨󵄨󵄨󵄨exp(−

i
ℏ
HT󸀠) exp( i

ℏ
Ht󸀠)󵄨󵄨󵄨󵄨q

󸀠⟩

= ∑
m
φm(Q

󸀠)φ∗m(q
󸀠) exp[ i
ℏ
Em(t
󸀠 − T󸀠)] , (9.87)

where {φm(q)} is the complete set of the eigenfunctions of the Hamiltonian (energy
operator). In a similar way, we obtain

⟨qt|QT⟩ = ∑
n
φn(q)φ

∗
n (Q) exp[−

i
ℏ
En(t − T)] . (9.88)

Substituting (9.87) and (9.88) into (9.86) andmaking the replacement T󸀠 → T󸀠e−iδ and
T → Te−iδ (“rotating” the time axis by an arbitrary angle δ < π/2 in a complex plane
of “time”, as shown in Figure 9.5), we perform the limits of T󸀠 → ∞ and T → −∞.
In this case, because of the “damping” factor δ in the transition amplitude (9.86), all
the contributions of the states with En > 0, Em > 0 vanish, whereas the term with
E0 = 0 survives, which gives the contribution of the ground state level of our particle
in potential V(q).2 Then, we get

lim
T󸀠→∞e−iδ

lim
T→−∞e−iδ

⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨QT⟩
J
= φ∗0(Q)φ0(Q

󸀠) exp[− i
ℏ
E0(T
󸀠 − T)]

× ∫ dq󸀠 ∫ dqφ∗0(q
󸀠t󸀠)⟨q󸀠t󸀠󵄨󵄨󵄨󵄨qt⟩

Jφ0(qt) (9.89)

or

∫ dq󸀠 ∫ dqφ∗0(q
󸀠t󸀠)⟨q󸀠t󸀠󵄨󵄨󵄨󵄨qt⟩

Jφ0(qt)

= lim
T󸀠→∞e−iδ

lim
T→−∞e−iδ

⟨Q󸀠T󸀠|QT⟩J

φ∗0(Q)φ0(Q󸀠) exp[−
i
ℏE0(T

󸀠 − T)]
. (9.90)

The left-hand side of this expression represents the transition amplitude (in the pres-
ence of the source), averaged over the ground state (“vacuum”) of the system. Nowwe
can make t󸀠 → ∞ and t → −∞ and introduce (denoting our averaged transition am-
plitude (9.90) as ⟨0,∞|0, −∞⟩J ) which corresponds to a “vacuum–vacuum” transition
during the infinite interval of time. The denominator in the right-hand side of (9.90) is
a simple number, and we can write

2 Here, it is important that the eigenlevels of energy can be ordered: E0 < E1 < E2 < ⋅ ⋅ ⋅ < En < ⋅ ⋅ ⋅, so
that this procedure separates the contribution of the lowest energy level, which may be set as energy
zero (or left explicitly as the most slowly vanishing term). At the end, we may safely go to the limit of
δ→ +0, to get rid of “complex” time.
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⟨0,∞|0, −∞⟩J ∼ lim
T󸀠→∞e−iδ

lim
T→−∞e−iδ

⟨Q󸀠T󸀠󵄨󵄨󵄨󵄨QT⟩
J
≡ Z[J] , (9.91)

where we have introduced the following functional of the source:

Z[J] = lim
T󸀠→∞e−iδ

lim
T→−∞e−iδ

𝒩 ∫𝒟Q(t) exp{ i
ℏ

T󸀠

∫
T

dt[L(Q, Q̇) + ℏJQ]} . (9.92)

Note that instead of time axis “rotation” in a complex plane to extract a ground state
contribution, we could just add a small negative imaginary part to the Hamiltonian
of our system (9.17), which can conveniently be written as − 12 iεq

2(ε → +0). In this
case, the entire energy level will acquire small imaginary parts, which in the limit of
T󸀠 → ∞, T → −∞ will lead to the same effect of the exponential damping of the
contributions of levels with En > 0.3 In a Lagrange function, this L is equivalent to an
addition of the term + 12 iεq

2. Then, we can write

Z[J] = 𝒩 ∫𝒟q(t) exp{ i
ℏ

∞

∫
−∞

dt[L(q, q̇) + ℏJq + 1
2
iεq2]} , ε → +0 . (9.93)

We shall see that, thus defined, functional Z[J] possesses a number of useful and in-
teresting properties.

Instead of transition amplitude ⟨qf tf |qiti⟩, we may consider the matrix element of
coordinate operator ⟨qf tf |q̂(tn1)|qiti⟩, where tf > tn1 > ti. Using thewell-known general
rules, we can write

⟨qf tf
󵄨󵄨󵄨󵄨q̂(tn1)
󵄨󵄨󵄨󵄨qiti⟩ = ∫ dq1 ⋅ ⋅ ⋅ dqn⟨qf tf |qntn⟩⟨qntn|qn−1tn−1⟩

⋅ ⋅ ⋅ ⟨qn1tn1
󵄨󵄨󵄨󵄨q̂(tn1)
󵄨󵄨󵄨󵄨qn1−1tn1−1⟩ ⋅ ⋅ ⋅ ⟨q1t1|qiti⟩. (9.94)

Obviously,

⟨qn1tn1
󵄨󵄨󵄨󵄨q̂(tn1)
󵄨󵄨󵄨󵄨qn1−1tn1−1⟩ = q(tn1)⟨qn1tn1|qn1−1tn1−1⟩ , (9.95)

where, in the right-hand side, q(tn1) is now not an operator, but a c-number (eigen-
value). Then, we can repeat all the arguments used during the transformation from
(9.15) to (9.24), and write (9.94) in the form of a Feynman path integral:

⟨qf tf
󵄨󵄨󵄨󵄨q̂(t1)
󵄨󵄨󵄨󵄨qiti⟩ = ∫

𝒟q𝒟p
2πℏ

q(t1) exp{
i
ℏ

tf

∫
ti

dt[pq̇ − H(p, q)]} . (9.96)

3 It is obvious that the explicit coordinate dependence ∼ 1
2q

2 introduced here is irrelevant for these
argumentation. However, later we shall see its convenience.
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Now let us calculate the matrix element ⟨qf tf |q̂(tn1)q̂(tn2)|qiti⟩. For tn1 > tn2, we can
write

⟨qf tf
󵄨󵄨󵄨󵄨q̂(tn1)q̂(tn2)

󵄨󵄨󵄨󵄨qiti⟩ = ∫ dq1 ⋅ ⋅ ⋅ dqn⟨qf tf |qntn⟩⟨qntn|qn−1tn−1⟩

⋅ ⋅ ⋅ ⟨qn1tn1
󵄨󵄨󵄨󵄨q̂(tn1)
󵄨󵄨󵄨󵄨qn1−1tn1−1⟩

⋅ ⋅ ⋅ ⟨qn2tn2
󵄨󵄨󵄨󵄨q̂(tn2)
󵄨󵄨󵄨󵄨qn2−1tn2−1⟩ ⋅ ⋅ ⋅ ⟨q1t1|qiti⟩ , (9.97)

producing (as limiting behavior) the path integral of the form

⟨qf tf
󵄨󵄨󵄨󵄨q̂(t1)q̂(t2)

󵄨󵄨󵄨󵄨qiti⟩ = ∫
𝒟q𝒟p
2πℏ

q(t1)q(t2) exp{
i
ℏ

tf

∫
ti

dt[pq̇ − H(p, q)]} . (9.98)

Here, we assumed that t1 > t2. If we consider the case of t2 > t1, the matrix elements
of the coordinate in time moments t1 and t2 in the right-hand side of (9.94) will inter-
change positions, so that this expression, as well as the path integral in the right-hand
side of (9.98), reduces to ⟨qf tf |q̂(t2)q̂(t1)|qiti⟩. Thus, in the general case, the path inte-
gral in the right-hand side of (9.98) defines the matrix element of the chronological
product of operators ⟨qf tf |T[q̂(t1)q̂(t2)]|qiti⟩, where the operation of the T-ordering of
two operators is defined as

T[A(t1)B(t2)] = {
A(t1)B(t2) for t1 > t2 ,
B(t2)A(t1) for t2 > t1 .

(9.99)

Thus, generally, we can write

⟨qf tf
󵄨󵄨󵄨󵄨T[q̂(t1)q̂(t2) ⋅ ⋅ ⋅ q̂(tn)]

󵄨󵄨󵄨󵄨qiti⟩

= ∫
𝒟q𝒟p
2πℏ

q(t1)q(t2) ⋅ ⋅ ⋅ q(tn) exp{
i
ℏ

tf

∫
ti

dt[pq̇ − H(p, q)]} , (9.100)

which gives the general expression for the average of the chronological product of the
operators via the functional (path) integral. For the case, when the Hamiltonian can
bewritten in the form given by equation (9.17), we canmake additional simplifications
and write

⟨qf tf
󵄨󵄨󵄨󵄨T[q̂(t1)q̂(t2) ⋅ ⋅ ⋅ q(tn)]

󵄨󵄨󵄨󵄨qiti⟩ = 𝒩 ∫𝒟q q(t1)q(t2) ⋅ ⋅ ⋅ q(tn) exp{
i
ℏ

tf

∫
ti

dtL} . (9.101)

Using the definition of the functional Z[J] (9.93), we can easily see that its functional
(variational) derivative over the source J is written as

δZ[J]
δJ(t1)
= i𝒩 ∫𝒟q(t) q(t1) exp{

i
ℏ

∞

∫
−∞

dt[L(q, q̇) + ℏJq + 1
2
iεq2]} . (9.102)



246 | 9 Path integrals and quantum mechanics

In the general case,

δnZ[J]
δJ(t1) . . . δJ(tn)

= in𝒩 ∫𝒟 q(t)q(t1)

⋅ ⋅ ⋅ q(tn) exp{
i
ℏ

∞

∫
−∞

dt[L(q, q̇) + ℏJq + 1
2
iεq2]} . (9.103)

Now, putting J = 0 here, we get

δnZ[J]
δJ(t1) . . . δJ(tn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= in𝒩 ∫𝒟 q(t)q(t1)

⋅ ⋅ ⋅ q(tn) exp{
i
ℏ

∞

∫
−∞

dt[L(q, q̇) + 1
2
iεq2]} . (9.104)

Remembering that the term i
2εq

2 allows us to extract the ground-state contribution
from the quantum averages, and using (9.101), we come to the following expression
for the “vacuum” average of chronological product of operators:

δnZ[J]
δJ(t1) . . . δJ(tn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
∼ in⟨0,∞󵄨󵄨󵄨󵄨T[q̂(t1) ⋅ ⋅ ⋅ q̂(tn)]

󵄨󵄨󵄨󵄨0, −∞⟩ . (9.105)

Thus, the multiple functional differentiation of Z[J] over the source J “generates” the
averages of T-ordered products of the quantum operators, whereas the source itself
can be put to zero at the end of calculations. Thus, the functional Z[J] can be called the
generating functional for these averages. As a byproduct, we obtain the representation
of such averages in the form of functional (path) integrals.

Wehave seen above that vacuumaverages ofT-ordered products of field operators
determine the whole set of Green’s functions of quantum field theory. The transition
from quantummechanics to quantum field theory reduces to the generalization of the
system, with an infinite number of degrees of freedom, when the operators of coor-
dinates are replaced by field operators at each point of space-time. Now, it becomes
clear that the path integral formulation of quantummechanics can be used for the di-
rect construction of quantum field theory, based on formalism of functional integrals
over field variables. This will be our task in the next chapters.



10 Functional integrals: scalars and spinors

10.1 The generating functional for scalar fields

Now we will begin discussing the modern functional formulation of quantum field
theory. Let us first consider the simplest case of the free scalar field φ(x), interacting
with an arbitrary source J(x). Directly generalizing the analysis given in the previous
chapter, we can introduce the generating functional:

Z[J] = ∫𝒟φ(xμ) exp{i∫ d4x[ℒ(φ) + J(x)φ(x) + i
2
εφ2(x)]}

∼ ⟨0,∞|0, −∞⟩J , (10.1)

which is proportional to the vacuum–vacuum transition amplitude. Here, ℒ(φ)
is a Klein–Gordon Lagrangian, and we replaced integration over the trajectories
of a particle to integration over all possible field configurations1 in space-time:
𝒟q(t) → 𝒟φ(xμ). The meaning of such integration is rather simple. We can represent
space-time as a set of small four-dimensional cubes (cells) of volume δ4 and assume
our field a constant within any of these cells (the average value of the field inside the
cube):φ ≈ φ(xi, yj, zk , tl). Field derivatives can be expressed via finite differences, such
as

𝜕φ
𝜕xi

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨i,j,k,l
≈
1
δ
[φ(xi + δ, yj, zk , tl) − φ(xi, yj, zk , tl)]. (10.2)

Replacing the set of indices (i, j, k, l) by a single index n, which enumerates the cells
(cubes), we can write

ℒ(φn, 𝜕μφn) = ℒn . (10.3)

Any of the indices (i, j, k, l) takes N values; the new index n takes N4 values, and we
can write the action as

S = ∫ d4xℒ =
N4

∑
n=1

δ4ℒn . (10.4)

Then, generating functional Z[J] takes the form

Z[J] = lim
N→∞
∫

N4

∏
n=1

dφn exp{i
N4

∑
n=1

δ4(ℒn + φnJn +
i
2
εφ2

n)} , (10.5)

1 In classical field theory, we are dealing with only one configuration of the field in space-time, those
satisfying the Lagrange equations (principle of the least action). In quantum field theory, all kinds of
field configurations are “at work”, each one entering the theory with the “weight” exp{iS}, where S is
the classical action.

https://doi.org/10.1515/9783110648522-010
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which defines the meaning of the formal expression (10.1), and introduces the notion
of the functional integral over field configurations (instead of the particle trajectories
in quantummechanics).

Let us calculate Z[J] for the free field when

ℒ→ ℒ0 =
1
2
(𝜕μφ𝜕

μφ −m2φ2) (10.6)

is a Klein–Gordon Lagrangian. Then,

Z0[J] = ∫𝒟φ exp{i∫ d4x[ 1
2
(𝜕μφ𝜕

μφ − (m2 − iε)φ2) + φJ]} . (10.7)

We can move further even without explicit calculation of the functional integral. Let
us use the obvious identity 𝜕μ(φ𝜕μφ) = 𝜕μφ𝜕μφ + φ𝜕μ𝜕μφ and write

∫ d4x𝜕μφ𝜕
μφ = ∫ d4x𝜕μ(φ𝜕

μφ) − ∫ d4xφ◻φ . (10.8)

Consequently, the first term in the right-hand side is transformed, according to the
Gauss theorem, into a surface integral, which can bemade zero if wemove this surface
to infinity (where we assume that φ→ 0). Then,

∫ d4x𝜕μφ𝜕
μφ = −∫ d4xφ◻φ, (10.9)

and the generating functional is rewritten as

Z0[J] = ∫𝒟φ exp{−i∫ d4x[ 1
2
φ(◻ +m2 − iε)φ − φJ]} . (10.10)

Let us stress that the field φ in this expression is arbitrary (integration variable) and
does not satisfy the Klein–Gordon equation at all. Nowwe can change the integration
variable as

φ(x) → φ0(x) + φ(x) (10.11)

and use the relation (which is derived similarly to (10.9)):

∫ d4xφ0[◻ +m
2 − iε]φ = ∫ d4xφ(◻ +m2 − iε)φ0 . (10.12)

Then, we have

∫ d4x[ 1
2
φ(◻ +m2 − iε)φ − φJ] → ∫ d4x[ 1

2
φ(◻ +m2 − iε)φ +

+ φ(◻ +m2 − iε)φ0 +
1
2
φ0(◻ +m

2 − iε)φ0 − φJ − φ0J] . (10.13)
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Now, we can require that φ0(x) satisfy the Klein–Gordon equation with the source in
the right-hand side:

(◻ +m2 − iε)φ0(x) = J(x) . (10.14)

As a result, the integral of interest to us reduces to

∫ d4x[ 1
2
φ(◻ +m2 − iε)φ − 1

2
φ0J] . (10.15)

The solution of equation (10.14) has the form

φ0(x) = −∫ d
4yΔF(x − y)J(y) , (10.16)

where ΔF(x − y) is Feynman’s propagator of a scalar field, satisfying the equation (al-
ready written in Chapter 4)

(◻ +m2 − iε)ΔF(x) = −δ(x) . (10.17)

Substituting (10.16) into (10.15), we see that the expression in the exponent in (10.10)
is equal to

− i{ 1
2
∫ d4xφ(◻ +m2 − iε)φ + 1

2
∫ d4xd4yJ(x)ΔF(x − y)J(y)}. (10.18)

Thus, we obtain2

Z0[J] = exp{−
i
2
∫ dxdyJ(x)ΔF(x − y)J(y)}

× ∫𝒟φ exp{− i
2
∫ dxφ(◻ +m2 − iε)φ} . (10.19)

However, the integral over𝒟φ is simply some number (it is taken over all the possible
configurations of the field φ). Denoting this number as𝒩 , we finally obtain

Z0[J] = 𝒩 exp{− i
2
∫ dxdyJ(x)ΔF(x − y)J(y)} . (10.20)

The value of𝒩 is of no special importance: this is just a normalization factor.
The Fourier expansion for ΔF(x) has the form

ΔF(x) = ∫
d4k
(2π)4

e−ikx

k2 −m2 + iε
. (10.21)

2 Further, we write—for brevity—dx instead of d4x, et cetera.
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Figure 10.1

Figure 10.2

The presence of iε → i0+ in the denominator here dictates the choice of the integration
contour in the integral over k0, in accordance with Feynman rule, to deal with the
poles at k0 = ±√k2 +m2. The poles are situated at the points (in the complex k0 plane)
determined by equation k20 = k

2 +m2 − iε, that is, at

k0 = ±√k2 +m2 ∓ iδ = ±E ∓ iδ , (10.22)

as shown in Figure 10.1. In the limit of δ → 0 (ε → 0), these poles move to the real
axis, and the integration contour goes as shown in Figure 10.2.

We have seen above that this approach corresponds to the “rotation” of the time
axis by a small angle δ in the complex plane for time. This guarantees us the correct
boundary conditions for the vacuum–vacuum transition amplitude. The sameaimcan
be achieved by making finite angle rotation by −π/2, so that t → −it (→ −i∞). Intro-
ducing the notation

x4 = it = ix0 , (10.23)

we see that this limit corresponds to x4 →∞. Such space-time (with imaginary time)
is Euclidean, with the invariant interval (distance between two adjacent points) given
by

ds2 = −(dx0)2 − (dx)2 − (dy)2 − (dz)2 = −
4
∑
μ=1
(dxμ)2 . (10.24)
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In the momentum space, we can similarly introduce

k4 = −ik0 , (10.25)

so that

k2 = −(k21 + k
2
2 + k

2
3 + k

2
4) = −k

2
E , d4kE = d

3kdk4 = −id
4k , (10.26)

where the index E denotes the Euclidean momentum space. Now the Feynman prop-
agator takes the form

ΔF(x) = −i∫
d4kE
(2π)4

e−ikx

k2E +m2 . (10.27)

Note that this expression,3 up to a factor of −i, coincides with the Ornstein–Zernike
correlation function of the theory of critical phenomena in the four-dimensional space
[3, 36, 42] if we take m2 ∼ T − Tc, where Tc is the temperature of the second-order
phase transition (and for simplicity we are dealing with temperatures T > Tc). Here,
we meet for the first time the deep interconnections between quantum field theory
and the modern theory of critical phenomena in statistical physics [3, 42]. From equa-
tion (10.7), taking into account d4x = −id4xE and (𝜕μφ)2 = −(𝜕

μ
Eφ)

2, we obtain the
generating functional of Euclidean field theory as

Z0E[J] = ∫𝒟φ exp{−∫ d4xE(
1
2
[(𝜕μEφ)

2
+m2φ2] − φJ)} , (10.28)

which actually coincides with the partition function of the Gaussian model of the
phase transition (that is, the Landau theory [36] with no ∼ φ4 and higher-order terms
in Landau expansion) for scalar-order parameter φ, interacting with the external
field J [3, 42].

10.2 Functional integration

Now, we present the formal discussion of functional integration. Let us start from the
well-known expression for the Poisson–Gauss integral (9.28):

∞

∫
−∞

dxe−
1
2 ax

2
= √

2π
a
. (10.29)

3 There is no problem with encircling poles here: both are at the imaginary axis at the points k4 =
±i√k2E +m

2.
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In the following, we assume the integration limits to be always from −∞ to∞ and do
not write them explicitly. Let us take the product of n such integrals:

∫ dx1dx2 . . . dxn exp(−
1
2
∑
n
anx

2
n) =
(2π)n/2

∏ni=1 a
1/2
i

. (10.30)

Let A be the diagonal matrix with elements a1, a2, . . . , an and x the n-dimensional vec-
tor (column) with components x1, x2, . . . , xn. Then, the expression in the exponent in
(10.30) can be written as a scalar product:

(x,Ax) = ∑
n
anx

2
n . (10.31)

The determinant of the matrix A is

DetA = a1a2 ⋅ ⋅ ⋅ an =
n
∏
i=1

ai . (10.32)

Then, (10.30) can be written as

∫ dnxe−
1
2 (x,Ax) = (2π)n/2(DetA)−1/2 . (10.33)

This expression is valid for any diagonal matrix; correspondingly, it is also valid for
any real symmetric matrix, as it can always be diagonalized by linear transformation.
Let us define the integration measure as

[dx] = (2π)−n/2dnx . (10.34)

Then, (10.33) is rewritten as

∫[dx]e−
1
2 (x,Ax) = (DetA)−1/2 . (10.35)

This relation is easily generalized to the case, when there is a general quadratic form
in the exponent:

Q(x) = 1
2
(x,Ax) + (b, x) + c . (10.36)

We can proceed as during the derivation of (9.35). The form (10.36) reaches its mini-
mum for x̄ = −A−1b and can be rewritten as

Q(x) = Q(x̄) + 1
2
[x − x̄,A(x − x̄)] . (10.37)

Consequently, we immediately obtain the analogue of (9.35) as

∫[dx] exp[− 1
2
(x,Ax) − (b, x) − c] = exp[ 1

2
(b,A−1b) − c](DetA)−1/2 , (10.38)

where A−1 denotes the inverse matrix.
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Consider now the case of Hermitian matrices. Taking the square of (10.29), we
write

∫ dxdye−
1
2 a(x

2+y2) =
2π
a
. (10.39)

Let us introduce z = x + iy and z∗ = x − iy, so that (calculating the Jacobian of trans-
formation from x, y to z, z∗), we have dxdy = −idz∗dz/2, so that (10.39) can be written
as

∫
dz∗

(2πi)1/2
dz
(2πi)1/2

e−az
∗z = 1

a
. (10.40)

We can generalize this expression, similarly to the transformation from (10.30) to
(10.35) and (10.38), introducing the positive definite Hermitian matrix A, the complex
vector b, and the integration measure

[dz] = (2πi)−n/2dnz . (10.41)

Then, we obtain

∫[dz∗][dz]e−(z
∗ ,Az) = (DetA)−1 . (10.42a)

∫[dz∗][dz]e−(z
∗ ,Az)−(b∗ ,z)−(z∗ ,b)−c = exp[(b∗,A−1b) − c](DetA)−1.

All these expressions are quite rigorous and represent the direct generalization of
“one-dimensional” integrals to the case of the vector space of finite dimensionality.
Let us make the formal generalization to the case of infinite-dimensional functional
space. Consider the space of real functions φ(xμ). We can define the scalar product as

(φ,φ) = ∫ d4x[φ(x)]2 . (10.43)

The generalization of equation (10.35) is written as

∫𝒟φ(x) exp{− 1
2
∫ dxφ(x)Aφ(x)} = (DetA)−1/2 , (10.44)

where A is some operator acting upon functions φ(x):

Aφ(x) = ∫ dy A(x, y)φ(y) , (10.45)

and its determinant is naturally defined as the corresponding product of eigenvalues.
Integration measure is 𝒟φ(x) = [dφ(x)]. All these expressions should be understood
as the limiting expression, such as (10.5). Expression (10.44) is usually called a Gaus-
sian functional integral.
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If φ(x) is a complex function (field), we obtain the natural generalization of
(10.42a)

∫𝒟φ∗(x)𝒟φ(x) exp{−∫ dxφ∗(x)Aφ(x)} = (DetA)−1 , (10.46)

where A is a Hermitian operator.
Generalization of (10.38) for the case of real fields φ(x) has the form

∫𝒟φ(x) exp{− 1
2
∫ dx∫ dyφ(x)A(x, y)φ(y) − ∫ dxB(x)φ(x) − c}

= exp{ 1
2
∫ dx∫ dyB(x)A−1(x, y)B(y) − c}(DetA)−1/2, (10.47)

where A−1(x, y) denotes the inverse operator. A similar expression for integration over
complex fields differs from (10.47) by the presence of integration over φ∗ and φ, as
well by the replacement of (DetA)−1/2 by (DetA)−1:

∫𝒟φ∗(x)𝒟φ(x) exp{−∫ dx∫ dyφ∗(x)A(x, y)φ(y)

− ∫ dx[B∗(x)φ(x) + φ∗(x)B(x)] − c}

= exp{∫ dx∫ dyB∗(x)A−1(x, y)B(y) − c}(DetA)−1 . (10.48)

Let us return to the discussion of the general expression for generating the func-
tional of a Klein–Gordon field (10.10):

Z0[J] = ∫𝒟φ exp{−i∫ d4x[ 1
2
φ(◻ +m2 − iε)φ − φJ]} . (10.49)

Here,wehaveprecisely theGaussian functional integral, such as (10.47),withA(x, y) =
i(◻ +m2 − iε)δ(x − y), B(x) = −iJ(x), c = 0. Then, from (10.47), we get

Z0[J] = exp{
i
2
∫ dxdyJ(x)(◻ +m2 − iε)−1J(y)}[iDet(◻ +m2 − iε)]−1/2 . (10.50)

The determinant here can be rewritten using (10.44) as

[iDet(◻ +m2 − iε)]−1/2 = ∫𝒟φ(x) exp{− i
2
∫ dxφ(x)(◻ +m2 − iε)φ(x)}, (10.51)

and the inverse operator is

(◻ +m2 − iε)−1 = −ΔF(x − y) , (10.52)
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which follows directly from (10.17). Consequently, equation (10.50) reduces to

Z0[J] = exp{−
i
2
∫ dxdyJ(x)ΔF(x − y)J(y)}

× ∫𝒟φ exp{− i
2
∫ dxφ(◻ +m2 − iε)φ}, (10.53)

which coincides with (10.19). Thus, the direct calculation using the rules of functional
integration produces the same result obtained above via “indirect” arguments.

The expressions for Gaussian functional integrals will be widely used below.

10.3 Free-particle Green’s functions

Let us now show that Z0[J] is the generating functional for the Green’s functions of
free particles. We can expand (10.20) in the series:

Z0[J] = 𝒩 {1 −
i
2
∫ dxdyJ(x)ΔF(x − y)J(y)

+
1
2!
(
i
2
)
2
[∫ dxdyJ(x)ΔF(x − y)J(y)]

2

−
1
3!
(
i
2
)
3
[∫ dxdyJ(x)ΔF(x − y)J(y)]

3
+ ⋅ ⋅ ⋅} . (10.54)

Introducing the Fourier representation for the source

J(x) = ∫ d4pJ(p)e−ipx (10.55)

and using (10.21), we easily obtain

−
i
2
∫ d4xd4yJ(x)ΔF(x − y)J(y) = −

i
2
(2π)4 ∫ d4p J(−p)J(p)

p2 −m2 + iε
. (10.56)

Wemay associate analytic expressions in these series with graphic elements as shown
in Figure 10.3. Then, equation (10.56) corresponds to the diagram, shown in Fig-
ure 10.4. As a result, the expansion of the generating functional (vacuum–vacuum

Figure 10.3
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Figure 10.4

Figure 10.5

transition amplitude) (10.54) is represented by the diagrams shown in Figure 10.5.4

We see that this series describes the propagation of 1, 2, 3 . . . “particles” between
sources, so that we are dealing with a many-particle theory. It is clear that Z0[J] is the
generating functional for the Green’s functions of our field theory.

Let us comment on the formal aspects of this analysis. Consider, for example, the Taylor expansion of
some functions F(y1, . . . , yk) of k variables y1, . . . , yk:

F{y} ≡ F(y1, . . . , yk) =
∞

∑
n=0

k
∑
i1=1
⋅ ⋅ ⋅

k
∑
in=1

1
n!
Tn(i1, . . . , in)yi1 ⋅ ⋅ ⋅ yin , (10.57)

where
Tn =

𝜕nF{y}
𝜕yi1 ⋅ ⋅ ⋅ 𝜕yin

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨y=0
. (10.58)

We may go to the intuitively clear limit, when variables form the continuum i → x, yi (i = 1, . . . , k) →
y(x),∑i → ∫ dx, and obtain an expansion for the functional

F[y] =
∞

∑
n=0
∫ dx1 . . . dxn

1
n!
Tn(x1, . . . , xn)y(x1) ⋅ ⋅ ⋅ y(xn) , (10.59)

where
Tn(x1, . . . , xn) =

δ
δy(x1)
⋅ ⋅ ⋅

δ
δy(xn)

F[y]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨y=0
. (10.60)

In such a case, we call F[y] the generating functional for functions Tn(x1, . . . xn).

Our generating functional Z[J] should be normalized. We have seen that it is propor-
tional to vacuum-vacuum transition amplitude in the presence of a source J Natural

4 Normalization factor𝒩 is dropped here.
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normalization is Z[J = 0] = 1. Consequently, we can write

Z[J] = ⟨0,∞|0, −∞⟩J , (10.61)

so that Z[0] = 1 is satisfied automatically. Thus, we have to rewrite both (10.10) and
(10.20) as

Z0[J] =
∫𝒟φ exp{−i ∫ d4x[ 12φ(◻ +m

2 − iε)φ − φJ]}
∫𝒟φ exp{−i ∫ d4x 1

2φ(◻ +m
2 − iε)φ}

, (10.62)

Z0[J] = exp{−
i
2
∫ dxdyJ(x)ΔF(x − y)J(y)} . (10.63)

These new definitions obviously satisfy the condition of Z[J = 0] = 1, justifying our
dropping of the irrelevant normalization factor 𝒩 . The functional Z0[J], defined by
equation (10.63) in accordance with equation (10.60), is the generating functional of
the functions

τ(x1, . . . , xn) =
1
in

δnZ0[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.64)

Recalling equation (9.105), we understand that

δnZ0[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= in⟨0|Tφ(x1) ⋅ ⋅ ⋅φ(xn)|0⟩ , (10.65)

so that

τ(x1, . . . , xn) = ⟨0|Tφ(x1) ⋅ ⋅ ⋅φ(xn)|0⟩ (10.66)

represents the vacuumaverage of the chronological product of the field operators, that
is, n-point (number of coordinates) Green’s functions of our theory. This definition co-
incideswith our previous definition of the Green’s functions in the operator formalism
of quantum field theory. Generating the functional can now be written as

Z0[J] =
∞

∑
n=0

in

n!
∫ dx1 . . . dxnJ(x1) ⋅ ⋅ ⋅ J(xn)τ(x1, . . . , xn) , (10.67)

which means that Z0[J] is the generating functional of the Green’s functions
τ(x1, . . . , xn). This expansion is shown graphically in Figure 10.5.

Let us now calculate some simplest n-point Green’s functions in our free scalar
field theory. We start with a 2-point function

τ(x, y) = − δ2Z0[J]
δJ(x)δJ(y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.68)
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Calculations can be done explicitly, using the general definition of the functional
derivative. We have

1
i
δZ0[J]
δJ(x)
=
1
i

δ
δJ(x)

exp[− i
2
∫ dx1dx2J(x1)ΔF(x1 − x2)J(x2)]

= −∫ dx1ΔF(x − x1)J(x1) exp[−
i
2
∫ dx1dx2J(x1)ΔF(x1 − x2)J(x2)], (10.69)

1
i

δ
δJ(x)

1
i

δ
δJ(y)

Z0[J] = iΔF(x − y) exp(−
i
2
∫ JΔFJ)

+ ∫ dx1ΔF(x − x1)J(x1) ∫ dx2ΔF(y − x2)J(x2) exp(−
i
2
∫ JΔFJ), (10.70)

where we use the shortened notations in the exponent. Putting now J = 0, we get

1
i

δ
δJ(x)

1
i

δ
δJ(y)

Z0[J]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= iΔF(x − y) (10.71)

or

τ(x, y) = iΔF(x − y) . (10.72)

It is clear that the 2-point Green’s function, in fact, coincides with the Feynman prop-
agator for a scalar particle (single-particle Green’s function of a free scalar particle).
Let us once more consider its physical meaning. We start with operator formalism. By
definition of the chronological product, we have

τ(x, y) = ⟨0|Tφ(x)φ(y)|0⟩
= θ(x0 − y0)⟨φ(x)φ(y)⟩ + θ(y0 − x0)⟨φ(y)φ(x)

󵄨󵄨󵄨󵄨0⟩ . (10.73)

Here, the first term represents the probability amplitude of particle creation at point
y at time moment y0, and its annihilation at point x at later moment x0. The second
termgives theprobability amplitudeof particle creationat point x atmoment x0 and its
annihilation at point y at time moment y0. These processes are graphically illustrated
in Figure 10.6. The sum of these amplitudes gives the Feynman propagator. We know

Figure 10.6
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that in operator formalism, the field φ can be written as the sum of the terms with
positive and negative frequencies (reference Chapter 3)

φ(x) = φ(+)(x) + φ(−)(x) , (10.74)

where

φ(+)(x) = ∫ d3k
(2π)3

1
√2ωk

ake
−ikx , (10.75)

φ(−)(x) = ∫ d3k
(2π)3

1
√2ωk

a+ke
ikx , (10.76)

whereωk = √k2 +m2, and a+k and ak are the corresponding creation and annihilation
operators. Taking into account the physical meaning of these operators, only terms
such as φ(+)φ(−) remain in the vacuum average (10.73):

τ(x, y) = θ(x0 − y0)⟨0|φ
(+)(x)φ(−)(y)|0⟩ + θ(y0 − x0)⟨0|φ

(+)(y)φ(−)(x)|0⟩ . (10.77)

Substituting here (10.75) into (10.76), we get

τ(x, y) = ∫ d3kd3k󸀠

(2π)6√2ωkωk󸀠 [θ(x0 − y0)e−i(kx−k
󸀠y) + θ(y0 − x0)e−i(ky−k󸀠x)]⟨0|aka+k󸀠 |0⟩ ,

(10.78)

so that interchanging operators in the vacuum average using commutation relations
(to separate normal product of operators giving zero and nonzero contribution from
δ-function), we obtain

τ(x, y) = ∫ d3k
(2π)32ωk

[θ(x0 − y0)e
−ik(x−y) + θ(y0 − x0)e

ik(x−y)] . (10.79)

Actually, this expression can be shown to coincide with iΔF(x − y), where ΔF(x − y) is
given by (10.21), and equation (10.21) can be rewritten as

ΔF(x) = ∫
d4k
(2π)4

e−ikx

k2 −m2 + iε
= ∫

d3kdk0
(2π)4

e−ikx

k20 − (k2 +m2) + iε

= ∫
d3kdk0
(2π)4

e−ikx

2ωk
{

1
k0 − ωk + iδ

−
1

k0 + ωk − iδ
} . (10.80)

The integral over k0 can be calculated as usual, by contour integration in a complex
plane. Due to the exponential factor e−ik0x0 for x0 > 0, we are closing the integration
contour in the lower half-plane of k0, so that the integral is determined by the contri-
bution of the pole at k0 = ωk − iδ. For x0 < 0, we close the integration contour in the
upper half-plane, so that integral is determined by the pole at k0 = −ωk + iδ. Then,
using the Cauchy theorem, we have

ΔF(x) = ∫
d2k
(2π)3

eikx

2ωk
[θ(x0)(−i)e

−iωkx0 − θ(−x0)ie
iωkx0] . (10.81)
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After the replacement k → −k in the second integral and variable transformation
x → x − y, we obtain

ΔF(x − y) = −i∫
d3k
(2π)32ωk

[θ(x0 − y0)e
−ik(x−y) + θ(y0 − x0)e

ik(x−y)] , (10.82)

which coincides with −iτ(x, y) from (10.79). Thus, the 2-point Green’s function appear-
ing in the functional approach coincides with single-particle propagator of the opera-
tor formulation of quantum field theory.
But what is the 1-point function? From (10.69), we obviously have

τ(x) = ⟨0|Tφ(x)|0⟩ = ⟨0|φ(x)|0⟩ = 1
i
δZ0[J]
δJ(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0

= −∫ dx1ΔF(x − x1)J(x1) exp(−
i
2
∫ JΔFJ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= 0, (10.83)

that is, the vacuum average of the field itself is just zero.
Let us now find the 3-point function. Differentiating (10.70) once more, we get

1
i

δ
δJ(x1)

1
i

δ
δJ(x2)

1
i

δ
δJ(x3)

Z0[J]

= − iΔF(x2 − x3) ∫ dxΔF(x1 − x)J(x) exp(−
i
2
∫ JΔFJ)

− iΔF(x2 − x1) ∫ dxΔF(x3 − x)J(x) exp(−
i
2
∫ JΔFJ)

− iΔF(x3 − x1) ∫ dxΔF(x2 − x)J(x) exp(−
i
2
∫ JΔFJ)

− ∫ dxΔF(x2 − x)J(x) ∫ dyΔF(x3 − y)J(y)

× ∫ dzΔF(x1 − z)J(z) exp(−
i
2
∫ JΔFJ) , (10.84)

which, for J = 0, obviously gives zero. Thus,

τ(x1, x2, x3) = ⟨0|Tφ(x1)φ(x2)φ(x3)|0⟩ = 0 . (10.85)

Similar calculations give

1
i

δ
δJ(x1)
. . .

1
i

δ
δJ(x4)

Z0[J] = −ΔF(x2 − x3)ΔF(x1 − x4) exp(−
i
2
∫ JΔFJ)

− ΔF(x2 − x1)ΔF(x3 − x4) exp(−
i
2
∫ JΔFJ)

− ΔF(x3 − x1)ΔF(x2 − x4) exp(−
i
2
∫ JΔFJ)

+ ⋅ ⋅ ⋅ , (10.86)
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Figure 10.7

where multiple dots denote the terms giving zero for J = 0. Accordingly, we obtain

τ(x1, x2, x3, x4) = −ΔF(x2 − x3)ΔF(x1 − x4) − ΔF(x2 − x1)ΔF(x3 − x4)
− ΔF(x3 − x1)ΔF(x2 − x4) , (10.87)

which is graphically shown by the diagrams in Figure 10.7 and represents the propa-
gation amplitude of two free particles. Here, we have just four space-time points inter-
connected in all possible ways by the lines of free particles.

Going to n-point functions, we can easily be convinced that for the odd value of n,
they are zero:

τ(x1, x2, . . . , x2n+1) = 0 . (10.88)

For even n, each n-point function is factorized into the sum of the products of the
2-point functions (that is, the sum of all “pairings” (contractions), defined by all pos-
sible permutations of the coordinates entering in pairs):

τ(x1, x2, . . . , x2n) = ∑
P
τ(xp1 , xp2 ) ⋅ ⋅ ⋅ τ(xp2k−1 , xp2k ) , (10.89)

where

τ(x1, x2) = iΔF(x − y) . (10.90)

This reduces to theWick theoremwe are familiar with, which is now proved in a func-
tional formulation of quantum field theory.

10.4 The Generating functional for interacting fields

So far, we have discussed the case of a free (noninteracting) field. How can this formal-
ism be generalized to the interacting case? Consider the simplest case of interacting
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theory, taking the Lagrangian of a scalar field in the form

ℒ =
1
2
𝜕μφ𝜕μφ −

m2

2
φ2 −

g
4!
φ4 = ℒ0 + ℒint , (10.91)

where g is some coupling constant. This is the so-called gφ4-theory. The interaction
Lagrangian is

ℒint = −
g
4!
φ4 . (10.92)

Lagrange equations for such theory are nonlinear (containing the term ∼ gφ3), which
reflects the presence of (self)interaction. In the general case, the interaction La-
grangian is some function V(φ). In principle, we could consider even nonpolynomial
functions, but we shall limit ourselves here to the simplest models.

Remarks on the dimensionality of coupling constants

We have seen above that the action S = ∫ d4xℒ is dimensionless (we are using natural system units
with ℏ = 1). Correspondingly, the dimensionality of the Lagrangian [ℒ] = l−4, where l is some length.
The dimensionality of energy (mass) is [E] = [m] = l−1. From the explicit expression (10.91) for the
Lagrangian, it is clear that [φ] = l−1. Then, from equation (10.92), it is clear that in gφ4-theory, the in-
teraction constant g is dimensionless. This is very important. Due to this property, this theory is renor-
malizable. Intuitively, this can be understood from the following elementary arguments. Consider a
more general interaction Lagrangian

ℒint = gkφ
4+k , k > 0. (10.93)

In this case, the dimensionality of the coupling constant [gk] = lk . However, perturbation expansion
should be always performed in powers of some dimensionless small parameter. In our case, such a
parameter is given by

gk l
−k ∼ gkm

k ∼ gkE
k , (10.94)

which grows with the growth of energy E (or at small distances). This is bad and actually reflects the
nonrenormalizability of such a theory. Roughly speaking, we may say that the dimensionality of the
coupling constant is a necessary (but not sufficient) condition for the renormalizability of any theory
of interacting particles. More precisely, it is necessary that interaction constant be dimensionless, or
that it has the dimensionality of some negative power of length: g ∼ l−a, a > 0. In this latter case,
the dimensionless parameter of perturbation theory is gE−a, which is harmless at high energies. From
this point of view, gφ3-theory is also satisfactory, but it leads to other problems: it breaks the posi-
tive definiteness of energy (there is no stable ground state). Thus, the gφ4-theory is actually the only
“reasonable” theory of a scalar field in the 4-dimensional space-time.5

For the spinor field (s = 1/2), we argue in a similar way. Dirac’s Lagrangian ℒ ∼ iψ̄𝜕ψ −mψ̄ψ, so that
[ψ] = [ψ̄] = l−3/2. Correspondingly, if we write the interaction Lagrangian of Dirac field with scalar
fields in the obvious form (so-called Yukawa interaction)

ℒint ∼ gψ̄ψφ , (10.95)

5 These arguments, including the dependence on spatial dimensionality, will be discussed later in
more detail.
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the appropriate interaction constant g is again dimensionless, and the theory is renormalizable. How-
ever, if we take the 4-Fermion interaction (Fermi)

ℒint ∼ Gψ̄ψψ̄ψ , (10.96)

the coupling constant G is dimensional: [G] = [m−2] = l2. Such a theory has “bad” behavior at high
energies and is nonrenormalizable.
Modern quantum field theory deals mainly with renormalizable theories. The dimensionality of the
coupling constant is the crude criterion for choosing between different interaction Lagrangians, sat-
isfying the general requirements of relativistic invariance.

The normalized generating functional for the theory with interactions is defined in a
similar manner to the case of noninteracting theory (reference (10.1), (10.62)):

Z[J] =
∫𝒟φ exp(iS + i ∫ dxJφ)
∫𝒟φeiS

, (10.97)

where S = ∫ d4xℒ is the action of our theory, including the contribution from the inter-
action Lagrangian. Forℒint = 0, (10.97) naturally reduces to the case of the free theory.
In the general case, we can write S = S0 + Sint, where Sint = ∫ d4xℒint.

Performing functional differentiation explicitly, we have

1
i
δZ
δJ(x)
=
∫𝒟φ exp(iS + i ∫ dxJφ)φ(x)

∫𝒟φeiS
, (10.98)

1
i2

δ2Z
δJ(x)δJ(y)

=
∫𝒟φ exp(iS + i ∫ dxJφ)φ(x)φ(y)

∫𝒟φeiS
, (10.99)

et cetera. Putting here J = 0, we generate all the Green’s functions of our theory, such
as

⟨0|Tφ(x)φ(y)|0⟩ =
∫𝒟φ exp(iS)φ(x)φ(y)
∫𝒟φeiS

, (10.100)

⟨0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0⟩ =
∫𝒟φ exp(iS)φ(x1)φ(x2)φ(x3)φ(x4)

∫𝒟φeiS
. (10.101)

We see thatGreen’s functions are representedby the functional “averages” of the prod-
ucts of an even number of fields, and “averaging” is performed with “weight” eiS. If
we write here S = S0 + Sint and perform an expansion of the exponent in powers of Sint
(that is, consider the perturbation series in powers of the coupling constant) and use
Wick theorem (proven above), we can build a diagram technique for calculating ar-
bitrary Green’s functions, similarly to the case of operator formalism. The “averages”
of the pairs of fields in different points will be “averaged” with eiS0 . These “averages”
are easily calculated (Gaussian integrals) and reduced to the appropriate free Green’s
functions.However, belowwe shall use amore formal approach, based on the analysis
of the general relations for generating the functional of interacting theory (10.97).
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Note that

1
i

δ
δJ(x)

ei ∫ dxJφ = φ(x)ei ∫ dxJφ . (10.102)

As J andφ here are independent (functional) variables, a similar equality also is valid
for an arbitrary function of φ:

V( 1
i

δ
δJ(x)
)ei ∫ dxJφ = V(φ(x))ei ∫ dxJφ , (10.103)

which is easily proven by making the Taylor expansion of V(φ). Then, we have

e−i ∫ dxV(φ)ei ∫ dxJφ = e−i ∫ dxV(
1
i

δ
δJ(x) )ei ∫ dxJφ . (10.104)

Now, taking for V(φ) the interaction Lagrangian ℒint(φ), we can write the generating
functional of interacting theory as

Z[J] = 𝒩 ∫𝒟φ exp{i∫ dx[ 1
2
𝜕μφ𝜕

μφ − 1
2
(m2 − iε)φ2 + ℒint(φ) + Jφ]}

= 𝒩 ∫𝒟φ exp{i∫ dxℒint(φ)}

× exp{i∫ dx[ 1
2
𝜕μφ𝜕

μφ − 1
2
(m2 − iε)φ2 + Jφ]}

= 𝒩 exp{i∫ dxℒint(
1
i

δ
δJ(x)
)}Z0[J] (10.105)

or, using (10.20),

Z[J] = 𝒩 exp[i∫ dxℒint(
1
i

δ
δJ(x)
)] exp{− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)}. (10.106)

Thus,wehave obtained the general expression for generating functional of interacting
theory, which will be used below to construct a diagram technique.

10.5 φ4 theory

Let us return to the theory with the interaction Lagrangian

ℒint = −
g
4!
φ4 . (10.107)

The normalized generating functional for this theory is written as

Z[J] =
exp[i ∫ dzℒint(

1
i

δ
δJ(z) )] exp[−

i
2 ∫ dxdyJ(x)ΔF(x − y)J(y)]

{exp[i ∫ dzℒint(
1
i

δ
δJ(z) )] exp[−

i
2 ∫ dxdyJ(x)ΔF(x − y)J(y)]}

󵄨󵄨󵄨󵄨󵄨J=0
. (10.108)
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Perturbation theory is constructed by expanding this expression into the series in
powers of the interaction constant g. Let us write the first terms of this expansion for
the numerator:

[1 − ig
4!
∫ dz( 1

i
δ

δJ(z)
)
4
+ O(g2)] exp[− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)] . (10.109)

Making all the necessary differentiations, we get

1
i

δ
δJ(z)

exp[− i
2
∫ dxdyJ(x)ΔF(x − y)J(y)]

= −∫ dxΔF(z − x)J(x) exp[−
i
2
∫ dxdyJ(x)ΔF(x − y)J(y)] , (10.110)

(
1
i

δ
δJ(z)
)
2
exp[− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)]

= {iΔF(0) + [∫ dxΔF(z − x)J(x)]
2
}

× exp[− i
2
∫ dxdyJ(x)ΔF(x − y)J(y)] , (10.111)

(
1
i

δ
δJ(z)
)
3
exp[− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)]

= {3[−iΔF(0)] ∫ dxΔF(z − x)J(x) − [∫ dxΔF(z − x)J(x)]
3
}

× exp[− i
2
∫ dxdyJ(x)ΔF(x − y)J(y)] , (10.112)

(
1
i

δ
δJ(z)
)
4
exp[− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)]

= {−3[ΔF(0)]
2
+ 6iΔF(0)[∫ dxΔF(z − x)J(x)]

2

+ [∫ dxΔF(z − x)J(x)]
4
} exp[− i

2
∫ dxdyJ(x)ΔF(x − y)J(y)] . (10.113)

These expressions can be associated with diagrams. Let us draw function −iΔF(x − y)
(propagator) by the straight line, connecting points x and y. The value of −iΔF(0) =
−iΔF(x − x) will be drawn as closed loop, connected with point x. Then, equa-
tion (10.113) is graphically represented as shown in Figure 10.8. The origin of coef-
ficients 3, 6, 1 here can be understood from symmetry considerations. For example,
coefficient 3 corresponds to three ways to connect two pairs of lines to draw diagram
with two loops. Likewise, in the second term, there are 6 ways to connect two lines
to obtain the diagram shown in Figure 10.8. These coefficients are called symmetry
factors, and we later shall discuss the general algorithm for finding them. Note that



266 | 10 Functional integrals: scalars and spinors

Figure 10.8

the first term in (10.113) and in Figure 10.8 represent the typical vacuum contribution
(diagram) with no external lines.

Consider now the denominator of (10.108). We can simply put J = 0 in (10.113),
which excludes the second and third terms in Figure 10.8. Thus, up to the terms of
the order of g, generating the functional is expressed by the diagrams shown in Fig-
ure 10.9, where the second equality is obtained by expanding the denominator to the
same accuracy, so that the vacuumdiagram from the denominator is “lifted upwards”
and cancels the vacuum diagram from the numerator. This reflects the general rule of
cancellation of vacuumdiagrams valid for normalized generating functionals in quan-
tum field theory.

2-point function
The 2-point function is defined as

τ(x1, x2) = −
δ2Z[J]

δJ(x1)δJ(x2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.114)

From Figure 10.9, it is clear that contribution of the first term of Z[J] into τ(x1, x2) is
equal to iΔF(x1 − x2), that is, the free propagator. The diagram in Figure 10.9 with four
“legs” contains four factors of J and does not contribute (J = 0) to the 2-point function.
The contribution of the diagram with loop in Z[J] is equal to

g
4
ΔF(0) ∫ dxdyΔF(z − x)J(x)ΔF(z − y)J(y) exp(−

i
2
∫ JΔFJ) . (10.115)

Figure 10.9
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Figure 10.10

Differentiating this expression twice, we get

1
i

δ
δJ(x1)
(⋅ ⋅ ⋅) = −

ig
4
ΔF(0)2∫ dydzΔF(z − x1)ΔF(z − y)J(y) exp(−

i
2
∫ JΔFJ) + ⋅ ⋅ ⋅ ,

(10.116)
1
i

δ
δJ(x2)

1
i

δ
δJ(x1)
(⋅ ⋅ ⋅) = −

g
2
ΔF(0) ∫ dzΔF(z − x1)ΔF(z − x2) exp(−

i
2
∫ JΔFJ) + ⋅ ⋅ ⋅ ,

(10.117)

where we have dropped the terms giving zero for J → 0. Finally, we have

τ(x1, x2) = iΔF(x1 − x2) −
g
2
ΔF(0) ∫ dzΔF(z − x1)ΔF(z − x2) + O(g

2) , (10.118)

which is shown by the diagrams in Figure 10.10. For the free particle, we have

τ(x) = iΔF(x) = i∫
d4k
(2π)4

e−ikx

k2 −m2 + iε
(10.119)

and the Fourier transform of the free propagator has the pole at k2 = m2, which deter-
mines the spectrum of the corresponding particle. It is easy to see that in the presence
of interactions, the particle mass becomes different from m. In fact, we can write the
second term of Figure 10.10 as

−
g
2
ΔF(0) ∫ dzΔF(x1 − z)ΔF(x2 − z)

= −
g
2
ΔF(0) ∫

d4pd4qdz
(2π)8

e−ip(x1−z)

p2 −m2 + iε
e−iq(x2−z)

q2 −m2 + iε

= −
g
2
ΔF(0) ∫

d4pd4q
(2π)4

e−ip(x1−x2)

(p2 −m2 + iε)2
δ(p + q)

= −
g
2
ΔF(0) ∫

d4p
(2π)4

e−ip(x1−x2)

(p2 −m2 + iε)2
, (10.120)

so that (10.118) reduces to

τ(x1, x2) = i∫
d4p
(2π)4

e−ip(x1−x2)

p2 −m2 + iε
{1 + i

2
g ΔF(0)
p2 −m2 + iε

} . (10.121)

For g ≪ 1, the term in the figure brackets in (10.121) can be rewritten (with the same
accuracy) as

{1 − i g
2

ΔF(0)
p2 −m2 + iε

}
−1
. (10.122)
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Then,

τ(x1, x2) = i∫
d4p
(2π)4

e−ip(x1−x2)

p2 −m2 − i
2gΔF(0) + iε

. (10.123)

We see that now the Fourier transform of τ(x1, x2) has the pole at

p2 = m2 +
i
2
gΔF(0) ≡ m

2 + δm2 = m2
r , (10.124)

where

δm2 =
i
2
gΔF(0) , (10.125)

and mr here represents the physical (or renormalized) mass of the particle. Thus, in-
teraction changes the mass. Unfortunately, the value of δm2 cannot be calculated,
as it is formally infinite, as ΔF(0) ∼ ∫

d4k
k2 ∼ ∫ dkk

3/k2 ∼ ∫ dkk, and this integral is
quadratically divergent at the upper limit. This is again a typical example of “ultra-
violet” divergence in quantum field theory. The situation here is the same as in QED.
The physical origin of divergence is the point-like nature of interaction in local field
theory. We do not know whether or not any “realistic” mechanism of the “cutoff” of
these divergences exists. In the theory of condensed matter, in similar situations, the
upper limit of integration inmomentum space is usually ∼1/a, where a is some “mini-
mal” length of the order of the average interatomic distance or lattice constant. There
is no known analogue of such “minimal” length in quantum field theory. Its intro-
duction (for example, by assuming a kind of lattice structure of space-time at small
distances) explicitly breaks the relativistic invariance of the theory. The problem is
solved for renormalizable theories, where all such divergences can be “hidden” in the
finite number of parameters to be determined from experiments. For renormalizable
gφ4-theory, we shall return to the discussion of these problems later.

4-point function
We have

τ(x1, x2, x3, x4) =
δ4Z[J]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.126)

The term of the order of g0 was considered above, and from (10.87), we have

τ(x1, x2, x3, x4) = −ΔF(x2 − x3)ΔF(x1 − x4) − ΔF(x2 − x1)ΔF(x3 − x4)
− ΔF(x3 − x1)ΔF(x2 − x4) , (10.127)

which is shown diagrammatically in Figure 10.7 and corresponds to the free propaga-
tion of two particleswithout any scattering. Consider the contribution of the first order
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Figure 10.11

in g. From the diagrammatic form of generating a functional, shown in Figure 10.9, it
is clear that one of the contributions of this type, which is due to differentiation of the
loop graph in Z[J], is shown in Figure 10.11 and is equal to

g
4

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
{ΔF(0) ∫ dx∫ dy∫ dzΔF(x − z)ΔF(y − z)

× J(y)J(x) exp(− i
2
∫ JΔFJ)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0

= −
ig
2
ΔF(0) ∫ dz[ΔF(z − x1)ΔF(z − x2)ΔF(x3 − x4)

+ ΔF(z − x1)ΔF(z − x3)ΔF(x2 − x4)
+ ΔF(z − x1)ΔF(z − x4)ΔF(x2 − x3)
+ ΔF(z − x2)ΔF(z − x3)ΔF(x1 − x4)
+ ΔF(z − x2)ΔF(z − x4)ΔF(x1 − x2)
+ ΔF(z − x3)ΔF(z − x4)ΔF(x1 − x2)] , (10.128)

which is shown by the diagram in Figure 10.12, which replaces six terms in this expres-
sion. The other contribution of the first order in g is obtained by differentiation of the
“four leg” graph in Z[J], which gives

−
ig
4!

δ4

δJ(x1) ⋅ ⋅ ⋅ δJ(x4)
{∫ dz[∫ dxΔF(z − x)J(x)]

4
exp(− i

2
∫ JΔFJ)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0

= −ig ∫ dzΔF(x1 − z)ΔF(x2 − z)ΔF(x3 − z)ΔF(x4 − z) , (10.129)

which may be expressed graphically by a point with four “legs”, where the point rep-
resents the elementary (“bare”) interaction vertex.

Thus, the 4-point function up to terms of the order of g is expressed by the dia-
grams in Figure 10.13. Here, the first term of the order g0, as we noted above, does not

Figure 10.12



270 | 10 Functional integrals: scalars and spinors

Figure 10.13

Figure 10.14

contribute to scattering, the second term describes the self-interaction of one particle,
and scattering itself is described only by the third term.

The numerical coefficients in Figure 10.13, as well as in other similar cases, can be
understood from simple combinatorics. Consider an arbitrary diagram of the order gn

for a 4-point function. It contains n vertices, as shown in Figure 10.14. A 4-point func-
tion has 4 external “legs”, as shown in Figure 10.15 (“prediagram”). Now, we have to
connect these “legs” in all possible ways with n vertices, using the rules of diagram
technique. For example, in the first order in g, there exist three topologically differ-
ent types of Feynman diagrams, shown in Figure 10.16. To obtain the diagram of Fig-
ure 10.16(a), we have to connect x1 in the prediagram of Figure 10.15 with one of the
legs of the vertex; there are four ways to do this. Afterwards, there remain only three
ways to connect x2 with one of the remaining legs, et cetera. In total, there are 4! = 24
ways to obtain this diagram from the prediagram, leading to the corresponding coef-
ficient in Figure 10.13. To obtain the diagram of Figure 10.16(b), we have to connect
x1 with one of the external legs x2, x3, x4, which will produce a single line: there are
three ways to do this. Then, we take one of the vertex legs and connect it with one of
remaining external points: this can be done in 4 × 2 ways. After that, we connect one

Figure 10.15

Figure 10.16
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of the three remaining legs of the dotted vertex to the last remaining point, which can
be done in three ways. Finally, we connect the two remaining legs with each other. As
a result, we obtain a multiplicity factor of 3 × 4 × 2 × 3 = 12 × 6, which gives the coeffi-
cient before the diagram in Figure 10.13. It is clear that the multiplicity of the diagram
in Figure 10.16(c) is equal to 3 × 3 = 9, but this (vacuum) diagram is not present in
Figure 10.13, being canceled by the corresponding contribution from the denominator
of the normalized functional Z[J].

Finally, we formulate the following diagram rules for gφ4-theory (in coordinate
representation):
– The free particle propagator −iΔF(x − y) is associated with the continuous line

connecting points x and y.
– The elementary interaction vertex is expressed by a point connected with four

continuous lines and associated with factor −ig. There is integration over the ver-
tex coordinates.

– Each diagram is multiplied by the corresponding symmetry factor S(1/4!)n, where
S is the number of ways to construct this diagram from the corresponding pre-
diagram.

10.6 The generating functional for connected diagrams

We can introduce the generating functional W[J], which generates only connected
Feynman diagrams, that is, diagrams which can not be represented by indepen-
dent “blocks”.6 Connected diagrams are important, because only these diagrams
contribute to the nontrivial part of the S-matrix (scattering). The functional W[J] is
defined as

W[J] = −i ln Z[J] , (10.130)

so that

Z[J] = exp(iW[J]) . (10.131)

Let us consider, for example, 2-point and 4-point functions and show thatW[J] gen-
erates only connected diagrams. We have

δ2W
δJ(x1)δJ(x2)

=
i
Z2

δZ
δJ(x1)

δZ
δJ(x2)
−
i
Z

δ2Z
δJ(x1)δJ(x2)

. (10.132)

For J = 0, we have

δZ[J]
δJ(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= 0 , Z[0] = 1 , (10.133)

6 An example of a nonconnected diagram is shown in Figure 10.16(b).
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so that
δ2W

δJ(x1)δJ(x2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= −i δ2Z

δJ(x1)δJ(x2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
= iτ(x1, x2) . (10.134)

We see thatW determines the propagator in all orders of g.
Now for the 4-point function: let us differentiate (10.132) two more times and put

J = 0. Consequently, we have

δ4W
δJ(x1)δJ(x2)δJ(x3)δJ(x4)

= i [ 1
Z2

δ2Z
δJ(x1)δJ(x2)

δ2Z
δJ(x3)δJ(x4)

+
1
Z2

δ2Z
δJ(x1)δJ(x3)

δ2Z
δJ(x2)δJ(x4)

+
1
Z2

δ2Z
δJ(x1)δJ(x4)

δ2Z
δJ(x2)δJ(x3)

−
1
Z2

δ4Z
δJ(x1)δJ(x2)δJ(x3)δJ(x4)

]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0

= i[τ(x1, x2)τ(x3, x4) + τ(x1, x3)τ(x2, x4) + τ(x1, x4)τ(x2, x3) − τ(x1, x2, x3, x4)] .
(10.135)

It is easily seen that this expression does not contain nonconnected diagrams. Substi-
tuting (10.118) and (10.129) into (10.135), with an accuracy up to the terms of the order
g, we obtain Figure 10.17. We see that only connected diagrams contribute here.

Let us briefly discuss the n-point function

τ(x1, . . . , xn) =
1
in

δnZ[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.136)

The irreducible (connected) n-point function φ(x1, . . . , xn) can be defined as

φ(x1, . . . , xn) =
1
in

δnW[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.137)

In fact, from Figure 10.13 and equation (10.136) there directly follow the expressions
shown in Figure 10.18. From (10.135), it follows that

iφ(x1, . . . , x4) = τ(x1, . . . , x4) − τ(x1, x2)τ(x3, x4) − τ(x1, x3)τ(x2, x4) − τ(x1, x4)τ(x2, x3) .
(10.138)

As τ(x1, x2) = iφ(x1, x2), we have:

τ(x1, . . . , x4) = iφ(x1, . . . , x4) − ∑
p
φ(xi1 , xi2 )φ(xi3 , xi4 ) , (10.139)

where the sum is taken over all the possible combinations of the indices (1, . . . , 4) into
the pairs (i1, i2), (i3, i4). Thus, the 4-point function breaks into an “irreducible” (or con-
nected) part and reducible parts, as shown in Figure 10.19. In the first order over g, we
have the diagrams shown in Figure 10.20. For the case of n-points functions, the ap-
propriate generalization has the form shown in Figure 10.21.
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Figure 10.17

Figure 10.18

Figure 10.19

Figure 10.20



274 | 10 Functional integrals: scalars and spinors

Figure 10.21

10.7 Self-energy and vertex functions

Let us continue our discussion of the general structure of equations in quantum field
theory in the functional formulation, limiting ourselves mainly to the gφ4-theory.
From the generating functional Z[J], we can determine the n-point functions
τ(x1, . . . , xn) (Green’s functions Gn(x1, . . . , xn)) by

τ(x1, . . . , xn) = G
(n)(x1, . . . , xn) =

1
in

δnZ[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.140)

These functions contain both connected (irreducible) and nonconnected (reducible)
parts, as shown, for example, for the case of G(4) in Figure 10.22. The scattering pro-
cesses are determined only by connected diagrams,which are generated by functional
W = −i ln Z, so that the connected Green’s functions are defined as

iφ(x1, . . . , xn) = G
(n)
c (x1, . . . , xn) =

1
in−1

δnW[J]
δJ(x1) ⋅ ⋅ ⋅ δJ(xn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨J=0
. (10.141)

Then, of all the graphs shown in Figure 10.22 only the third one remains, which deter-
mines G(4)c in the first order over g.

Figure 10.22

Connected (irreducible) 2-point Green’s function, up to the terms g3, is determined by
the diagrams shown in Figure 10.23. The complete sum of such diagrams gives the
“dressed” propagator G(2)c (x, y), which is usually depicted by a “fat” line. We can per-
form the usual procedure, extracting single-particle irreducible diagrams (which can-
not be cut over the single-particle line), and introduce their sum, as shown in Fig-
ure 10.24. This sum defines the irreducible self-energy part. The exact (dressed) prop-
agator is now determined by the Dyson equation

G(2)c (p) = G0(p) + G0(p)
1
i
Σ(p)G0(p) + G0(p)

1
i
Σ(p)G0(p)

1
i
Σ(p)G0(p) + ⋅ ⋅ ⋅

= G0{1 +
1
i
ΣG0 +

1
i
ΣG0

1
i
ΣG0 + ⋅ ⋅ ⋅}
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Figure 10.23

Figure 10.24

= G0[1 −
1
i
ΣG0]
−1
= [G−10 (p) −

1
i
Σ(p)]
−1

(10.142)

or

G(2)c (p) =
i

p2 −m2 − Σ(p)
, (10.143)

where we have taken into account that

G0(p) =
i

p2 −m2 . (10.144)

TheDyson equation is shown in diagrammatic form in Figure 10.25. Defining the phys-
ical mass of a particlemphys from the pole of the dressed propagator7

G(2)c (p) =
i

p2 −m2
phys
, (10.145)

7 The energy spectrum of a freely propagating “dressed” particle is determined from p2 = m2
phys.
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Figure 10.25

we obtain

m2
phys = m

2 + Σ(p2 = m2
phys) . (10.146)

From equation (10.142), we have

[G(2)c (p)]
−1
= G−10 (p) −

1
i
Σ(p) , (10.147)

so that the inverse 2-point function contains (besides an inverse “bare” propagator)
only single-particle irreducible diagrams. Formally, we can define the 2-point vertex
function Γ(2)(p) by

G(2)c (p)Γ
(2)(p) = i , (10.148)

which, according to (10.147), reduces to

Γ(2)(p) = p2 −m2 − Σ(p) . (10.149)

In fact, the nontrivial part of this construction reduces simply to Σ(p), but this new
notation is convenientwithin the frameworkof someuniversal notation system,which
introduces the general notion of vertex functions.8

We can also introduce the generating functional for n-point single-particle irre-
ducible vertices Γn. This is denoted as Γ[φ] and is usually called the effective action.
This functional is defined by the so-called Legendre transformation of the functional
W[J]:

W[J] = Γ[φ] + ∫ dxJ(x)φ(x) . (10.150)

Now, we immediately obtain

δW[J]
δJ(x)
= φ(x) , δΓ[φ]

δφ(x)
= −J(x) . (10.151)

Then as propagator, we have

G(x, y) = − δ2W[J]
δJ(x)δJ(y)

= −
δφ(x)
δJ(y)
. (10.152)

8 It is convenient to exclude the imaginary i from the definition of G(2)c (p), so that the right-hand side
of (10.148) is equal simply to 1. Correspondingly, in the Dyson equation, we replace 1

i Σ → Σ. These
notations are most common in the literature.
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Let us define Γ(x, y) as

Γ(x, y) = δ2Γ[φ]
δφ(x)δφ(y)

= −
δJ(x)
δφ(y)
, (10.153)

which is inverse to the propagator:

∫ dxG(x, z)Γ(z, y) = −∫ dz δ2W[J]
δJ(x)δJ(z)

δ2Γ[φ]
δφ(z)δφ(y)

= ∫ dz δφ(x)
δJ(z)

δJ(z)
δφ(y)
=
δφ(x)
δφ(y)
= δ(x − y) , (10.154)

Differentiating both sides of (10.154) by J(x󸀠󸀠), replacing y by z, and using the relation

δ
δJ(x󸀠󸀠)
= ∫ dz󸀠󸀠 δφ(z

󸀠󸀠)
δJ(x󸀠󸀠)

δ
δφ(z󸀠󸀠)

= −∫ dz󸀠󸀠G(x󸀠󸀠, z󸀠󸀠) δ
δφ(z󸀠󸀠)

, (10.155)

we then obtain

∫ dz δ3W
δJ(x)δJ(x󸀠󸀠)δJ(z)

δ2Γ
δφ(z)δφ(z󸀠)

− ∫ dz × ∫ dz󸀠󸀠 δ2W
δJ(x)δJ(z)

G(x󸀠󸀠, z󸀠󸀠) δ3Γ
δφ(z)δφ(z󸀠)δφ(z󸀠󸀠)

= 0 ,

(10.156)

so that

∫ dz δ3W
δJ(x)δJ(x󸀠󸀠)δJ(z)

Γ(z, z󸀠) + ∫ dzdz󸀠󸀠G(x, z)G(x󸀠󸀠, z󸀠󸀠) δ3Γ
δφ(z)δφ(z󸀠)δφ(z󸀠󸀠)

= 0 . (10.157)

Multiplying both sides of the last equation by G(x󸀠, z󸀠), integrating by z󸀠, and taking into account
(10.154), we get

δ3W
δJ(x)δJ(x󸀠)δJ(x󸀠󸀠)

= −∫ dzdz󸀠dz󸀠󸀠G(x, z)G(x󸀠, z󸀠)G(x󸀠󸀠, z󸀠󸀠) δ3Γ
δφ(z)δφ(z󸀠)δφ(z󸀠󸀠)

. (10.158)

Thus, the connected 3-point function reduces to a single-particle irreducible 3-point vertex function,
with external lines given by exact propagators. Correspondingly, δ3Γ

δφ(z)δφ(z󸀠)δφ(z󸀠󸀠) represents the com-
plete three-leg vertex. All this is shown graphically in Figure 10.26. Equation (10.158) can be inverted
with the help of (10.154), so that

δ3Γ
δφ(y)δφ(y󸀠)δφ(y󸀠󸀠)

= −∫ dxdx󸀠dx󸀠󸀠Γ(x, y)Γ(x󸀠, y󸀠)Γ(x󸀠󸀠, y󸀠󸀠) δ3W
δJ(x)δJ(x󸀠)δJ(x󸀠󸀠)

. (10.159)

In the right-hand side, the external legs of (10.158) are “amputated”.
Differentiating (10.158) once more, we obtain the 4-point function represented by the diagrams in Fig-
ure 10.27,where a4-leg irreducible vertex anda three single-particle reducible contributions appeared,
corresponding to the three cross-channels of the reaction.

Figure 10.26
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Figure 10.27

Thermodynamic analogy
There is a deep analogy between quantum field theory and statistical mechanics,
which is expressed by the following table:

Quantum field theory Statistical mechanics

Z – generating functional Z – partition function
Z = eiW Z = e−

F
T

W[J] = Γ[φ] + ∫ Jφ F – free energy

In the following section,we shall consider an explicit example of the applicationof the
methods of quantum field theory to the theory of the critical phenomena at second-
order phase transitions.

10.8 The theory of critical phenomena

Let us consider briefly one of most successful applications of quantum field theory
methods to problems of statistical physics: the theory of critical phenomena in the
vicinity of the critical temperature of the second-order phase transitions. This problem
remained unsolved by the traditional methods of statistical physics for a long time.
The essence of the problem is well known: in the rather narrow (so-called critical) re-
gion near the phase transition temperature Tc, the critical exponent describing the
singular behavior of physical properties at Tc is not satisfactory, as described by the
general Landau theory of second-order phase transitions [36]. The reason for this de-
ficiency is also quite clear; close to a phase transition point, strong fluctuations of the
order parameter develop in the system,which strongly interactwith eachother [36, 42].
Significant progress in the theory was achievedwith the introduction of the important
concept of scale invariance, or scaling [42, 48]. However, the rigorous derivation of this
concept and the explicit calculations of the critical exponents became possible only
after the development of the appropriate quantum field theory methods, which led to
the successes of the modern theory of critical phenomena [3, 42, 48]. Below, we shall
give a very short presentation of the main ideas and results of this theory, which illus-
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trate a deep relationship between quantum field theory and statistical physics. Many
important details of the calculations will, however, be skipped.

The Landau functional of free energy can be written in the standard form as [3,
42, 48]9

1
T
F[ϕ(r)] = ∫ ddr{ 1

2

n
∑
j=1
[(∇ϕj)

2 + τϕ2
j ] +

1
8
g(

n
∑
j=1

ϕ2
j)

2

} , (10.160)

where T is the temperature, and the parameter τ = T−Tc
Tc

determines the size of the
critical region close to the phase transition point. We shall limit ourselves to the tem-
perature regionT > Tc (symmetric phase). The order parameterϕj is representedby an
n-component vector in some“isotopic” spacewithdimensionalityn. Equation (10.160)
is quite general. In fact, we are dealing with an O(n)-symmetric (isotropic) model of
phase transition, which well describes a rather wide class of real systems. The case of
n = 1 corresponds to the Ising model, n = 2 describes the so-called XY -model (super-
fluidity, superconductivity), n = 3 corresponds to isotropic Heisenberg ferromagnet,
et cetera [42, 48].

In the Landau theory, which completely neglects fluctuations of the order param-
eter (mean-field theory), ϕ = 0 for T > Tc [36]. However, even for T > Tc, fluctuations
may lead to the appearance of regions in the system with ϕ(r) ̸= 0. The probability of
such fluctuations is defined by [36, 42]

𝒫[ϕ(r)] = 1
Z
exp{− 1

T
F[ϕ(r)]}, (10.161)

where the partition function Z is determined by a functional integral:

Z = ∫𝒟ϕ(r) exp{− 1
T
F[ϕ(r)]}. (10.162)

The free energy of the whole system is given by

F = −T ln Z. (10.163)

The correlation function of the order parameter is defined as

Gjl(r, r
󸀠) = Z−1 ∫𝒟ϕ(r)ϕj(r)ϕl(r

󸀠) exp{− 1
T
F[ϕ(r)]} ≡ ⟨ϕj(r)ϕl(r

󸀠)⟩ . (10.164)

An analogy with the results of the previous sections is obvious: the theory of critical
phenomena is equivalent to the Euclidean quantum theory of an n-component scalar

9 From the very beginning, we shall consider the space of dimension d, because of the important
dependence of critical phenomena on spatial dimensionality [36, 42].
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field in d-dimensional space. Equation (10.164) is simply the propagator (Green’s func-
tion or 2-point function) of such a field theory. In the simplest variant of the so-called
Gaussianmodel of critical phenomena, we have alreadymet this theory in connection
with equation (10.28).

The structure of the perturbation theory over the coupling constant g for fluctu-
ations of the order parameter is quite similar to that in the gφ4-theory with a single-
component scalar field discussed above. The free Green’s function coincides with
Ornstein–Zernike correlator (reference (10.27)):

G0jl(p) =
δjl

p2 + τ
. (10.165)

The correlation function of interacting fluctuations is determined by the Dyson equa-
tion

G−1(p) = G−10 (p) − Σ(p) , (10.166)

where the self-energy part Σ(p) is represented by the diagrams in Figure 10.28. The
vertex part (“four-leg” vertex) determines the 4-point correlator ⟨ϕi(r1)ϕj(r2)ϕl(r3)
ϕm(r4)⟩, et cetera.

Figure 10.28

Figure 10.29

Nontrivial physics of critical phenomena is connectedwith interaction of fluctuations.
Let us consider the lowest-order perturbation theory corrections to the “bare” inter-
action, defined by the coupling constant g. In Figure 10.29, we show diagrams ∼ g2,
corresponding to the three cross-channels of “two-particle scattering”, determined by
three sums of incoming momenta:10

10 Arrows on lines define the directions of incoming and outgoing momenta.
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1. p1 + p2;
2. p1 − p3;
3. p1 − p4.

Naturally, we have the conservation of the total momentum

p1 + p2 = p3 + p4 . (10.167)

In the problem with an n-component field, it is convenient to use the symmetrized
(over “isotopic” indices) form of the “bare” interaction

∙ = g(δijδkl + δikδjl + δilδjk) ≡ gIijkl . (10.168)

Then, the interaction term in (10.160) is ∼ Iijklϕiϕjϕkϕl, where we assume summation
over the repeating indices from 1 to n.

Figure 10.30

To find the full vertex part of a two-particle scattering, we need to perform the summa-
tion of all the diagrams, such as those shown in Figure 10.30. Obviously, in the general
case, this problem is unsolvable. However, we can introduce some topological clas-
sification of diagrams, which allows us to write the general system of the so-called
“parquet”(integral) equations, which determines this full vertex part [17]. It is clear
that the full vertex Γ can be written as

Γ = R + Γ1 + Γ2 + Γ3 , (10.169)

where the “blocks” Γ1, Γ2, Γ3 are built of diagrams, which can be cut over two lines in
channels 1,2,3, whereas the block R consists of all diagrams that cannot be cut in this
way in either of these channels. Then, for blocks Γ1, Γ2, Γ3, we can construct diagram-
matic equations, which are shown in Figure 10.31. Here, we introduced the blocks

Ii = R +∑
j ̸=i
Γj , (10.170)

which cannot be cut over two lines in channel i. The structure of the diagrams, deter-
mining block R, is clear from the diagrams shown in Figure 10.32.
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Figure 10.31

Figure 10.32

This system of integral equations is very complicated. However, there is a case, where
the solution is more or less simple. This is the so-called approximation of the “leading
logarithms”. To understand the main idea, let us estimate Diagram 1 in Figure 10.29.11

Analytically, the contribution of this diagram is determined by the integral

g2(n + 8) ∫ ddp
(2π)d

1
p2 + τ

1
(p + k)2 + τ

. (10.171)

The factor n + 8 here originates from the product of two factors (10.168), standing at
the vertices

IijmnImnkl + IikmnImnjl + IilmnImnjk = (n + 8)(δijδkl + δikδjl + δilδjk) . (10.172)

Now, consider our theory in the 4-dimensional space, d = 4. Then, we can estimate
our integral as

∫ d4p 1
p2 + τ

1
(p + k)2 + τ

∼
Λ

∫

Max(k,√τ)

dpp3

p4
∼

Λ

∫

Max(k,√τ)

dp
p

∼ ln Λ
Max(k, √τ)

, (10.173)

where we have introduced upper limit cutoff Λ ∼ 1
a . Here, in contrast to quantum field

theory, we do not have any problem with logarithmic divergence at the upper limit;

11 In the following, in most cases, we drop irrelevant numerical constants, such as symmetry factors.
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Landau expansion (10.160) is valid only on the length scale, which is much larger
than the interatomic distances a, and there is simply no fluctuationwith shorter wave-
lengths. The value of a plays the role of “minimal length”, which is absent in quantum
field theory. However, the presence of logarithmic divergence in (10.173) is of prime im-
portance. This logarithmbecomes very large in the vicinity of a phase transition point,
when we are dealing with k, √τ ≪ Λ. Here, we have “infrared” divergence for τ or k
tending to zero. In fact, with an accuracy up to second-order terms in g, we now have

Γ(k) ≈ g − g2(n + 8) ln Λ
Max(k, √τ)

+ ⋅ ⋅ ⋅ . (10.174)

We see that the first correction to the interaction vertex for τ → 0, k → 0 can become
much larger than the bare coupling constant g; fluctuations become strongly interact-
ing as we move to the transition point. This is the essence of the problem: we need
some relevant corrections everywhere, and this is not an easy problem to solve. For
d = 3, this seems to be a hopeless task; however, for d = 4, due to the relatively weak
logarithmic singularity, we can perform the summation of a certain set of diagrams,
corresponding to the “leading logarithm” approximation. The logarithm appears from
momentum integration in the loopgraph. Inhigher orders, higher powers of logarithm
appear, with their powers determined by the number of loops in the corresponding di-
agram. For example, considering in a similar way Diagrams 2 and 3 in Figure 10.30,
we estimate their contribution to be ∼ g3 ln2 Λ

Max(k,√τ) , whereas for Diagram 4, we get
∼ g4 ln3 Λ

Max(k,√τ) . At the same time, the estimate of Diagram 6 gives ∼ g4 ln Λ
Max(k,√τ) ,

whereas for Diagram 7, we have ∼ g5 ln Λ
Max(k,√τ) , which is much smaller than contri-

butions of 2, 3, 4, due to the assumption of weakness of the “bare” coupling g ≪ 1.
Thus,we can limit ourselves to the “leading logarithms”, that is, take into account only
those diagrams, which give the power of the logarithm as equal to the power of cou-
pling constant g minus 1; in Figure 10.30 these are Diagrams 2, 3, and 4. The topology
of these diagrams is quite clear: in the given order they contain the maximal number
of loops, like Figure 10.29. This set of graphs is typically called “parquet” diagrams.
“Parquet” takes into account all the vertex corrections of the order of ∼ gn lnn, but
neglects contributions such as ∼ gn+k lnn. Moreover, we can neglect the contributions
without logarithms. In particular, blockR—introduced above—now reduces to the first
term in Figure 10.32, that is, simply to the “bare” interaction g. In such an approxima-
tion, the “parquet” equations of Figure 10.31 can be solved. However, the procedure of
this solution is rather complicated, and we shall not discuss it. The correct answer for
the full vertex can be obtained using amore “naïve” analysis, whichwill be used here.
Consider the simple one-dimensional set of diagrams shown in Figure 10.33. This is a

Figure 10.33
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simple progression, which is easily summed (in contrast to a two-dimensional “par-
quet”):

Γ(k) = g − g2(n + 8) ln Λ
Max(k, √τ)

+ g3(n + 8)2 ln2 Λ
Max(k, √τ)

+ ⋅ ⋅ ⋅

=
g

1 + g(n + 8) ln Λ
Max(k,√τ)

. (10.175)

The rigorous solution of “parquet” equations gives the same answer (for external mo-
menta of the same order of magnitude).12 “Parquet” equations for such vertices are
reduced to the differential equation

dΓ(s)
ds
= −(n + 8)Γ2(s), (10.176)

with the boundary condition Γ(s) → g for s → 0. Here, we introduce the logarithmic
variable

s = ln Λ
Max(k, √τ)

. (10.177)

Integration of (10.176) gives

Γ(s) = g
1 + g(n + 8)s

, (10.178)

which coincides with (10.175). In fact, this result is completely similar to expressions
for physical charge obtained in Chapter 8 during our discussion on the asymptotic
properties of QED, which lead to the problem of the “Moscow zero” or the Landau
“ghost pole”.13

Consider the case of k = 0 (interaction of fluctuations with very long wave-
lengths). Then, (10.175) reduces to

Γ(k = 0) = g
1 + g(n + 8) ln Λ

√τ

→
1

(n + 8) ln Λ
√τ

for τ → 0 . (10.179)

Now, as we approach the point of phase transition, the dependence on the “bare”
coupling constant g cancels, whereas the effective interaction tends to zero (typical
“zero-charge” behavior!).14 But here, in contrast to relativistic field theory, this behav-
ior does not lead to any problem and, in fact, completely clarifies the situation. Equa-
tion (10.179) corresponds to the effective interaction of fluctuations becoming weaker

12 This coincidence with the correct answer is pretty accidental; the rigorous solution was first ob-
tained in [17].
13 A result of the type of (10.175) was first obtained from the analysis of “parquet” equations during
the studies of asymptotic properties of relativistic scalar field gφ4-theory [17]. In the theory of critical
phenomena for d = 4, it was obtained much later by Larkin and Khmelnitskii [38].
14 Let us stress that in the theory of critical phenomena, we have g > 0, so that here we have no
problems such as “ghost poles”.



10.8 The theory of critical phenomena | 285

as we approach the phase transition. We can explicitly calculate the influence of this
weak interaction on all physical characteristics, which are singular at the phase tran-
sition point, and we can see that it leads only to some insignificant (logarithmic) tem-
perature corrections to the critical behavior describedby the Landau theory. These log-
arithmic corrections do not change the powers of the temperature singularities, that
is, critical exponents. Thus, for d = 4, the critical indices (exponents) are simply equal
to their values of the Landau theory.

Definitions of critical exponents

The theory of critical phenomena usually considers the following standard set of physical charac-
teristics of the system and critical exponents (indices), determining the singular behavior of these
characteristics for τ = T−Tc

Tc
→ 0.

Order parameter:

φ̄ ∼ |τ|β , T → Tc − 0 , (10.180)

φ̄ ∼ h
1
δ , T = Tc , (10.181)

where h is the external field interacting with the order parameter.
Susceptibility:

χ ∼ {
τ−γ , T → Tc + 0 ,
|τ|−γ
󸀠
, T → Tc − 0 .

(10.182)

The correlation function of the order parameter (d is the spatial dimensionality):

G(r) ∼ exp (−r/ξ )
rd−(2−η)

, (10.183)

where the correlation length is

ξ ∼ {
τ−ν , T → Tc + 0 ,
|τ|−ν
󸀠
, T → Tc − 0 .

(10.184)

At the critical point itself,

G(r) ∼ 1
rd−(2−η)

, (10.185)

G(p) ∼ 1
k2−η
. (10.186)

In a similar way, we introduce the critical index of specific heat α:

C(τ, h = 0) = A
+

α
[τ−α − 1] + B+ , T → Tc + 0 , (10.187)

C(τ, h = 0) = A
−

α󸀠
[|τ|−α

󸀠
− 1] + B− , T → Tc − 0 , (10.188)

so that α = 0 corresponds to a logarithmic singularity.

It is important to note that in Landau theory (mean-filed theory), the values of the
critical indices are [36]

ν = 1
2
, γ = 1 , η = 0 ,

α = 0 , β = 1
2
, δ = 3 (10.189)
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and satisfy the standard scaling relations [36, 42]

ν = γ
2 − η
,

α = 2 − νd , (10.190)

β = 1
2
ν(d − 2 + η)

in the 4-dimensional space, d = 4. In this sense, we can say that Landau theory gives
a correct description of critical phenomena for d = 4. The same statement is actually
valid for all d > 4; it can be easily seen that corrections of the type of (10.171) do not
lead to any divergences for d > 4 and are small, due to the assumption of g ≪ 1. The
spatial dimensionality d = 4 is called the upper critical dimension of the theory.

For the physically most interesting case of d = 3, there is no possibility of choos-
ing the “leading” (dominating) diagrams in a perturbation series; actually, all the di-
agrams are of the same order. This was the main obstacle for constructing a rigorous
theory of critical phenomena. Wilson has proposed an original method for calculat-
ing critical exponents, which is based on the idea of the introduction of an artificial
small parameter of the perturbation theory ε = 4 − d: a deviation from the upper criti-
cal dimensionality d = 4, for which all critical indices coincide with the predictions of
themean-field theory (ε-expansion). The idea of “fractional” spatial dimensionality is
rather simple. In all the Feynman integrals above, we have dealt with integration over
the volume of d-dimensional momentum space, with the volume element in spherical
coordinates (for the integrand depending only on the absolute value of momentum)
written as

ddp = Ωdp
d−1dp , (10.191)

where Ωd is the surface of the d-dimensional sphere of the unit radius,

Ωd =
2πd/2

Γ( d2 )
, (10.192)

where we use the usual definition of the Γ-function. In this expression, we already can
consider d as an arbitrary (noninteger) real parameter. Then, we can write

∫
ddp
(2π)d
⋅ ⋅ ⋅ =

Ωd
(2π)d
∫ dp pd−1 ⋅ ⋅ ⋅ = Kd ∫ dp p

d−1 ⋅ ⋅ ⋅ , (10.193)

where we introduce the standard notation

Kd = 2
−(d−1)π−d/2[Γ(d

2
)]
−1
. (10.194)

In particular, K4 = (8π2)−1. Previously, during our estimates of (10.173), this constant
was dropped. In the following, we shall also drop it.
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Let us estimate once again the contribution of Diagram 1 in Figure 10.29 for the
space dimensionality d = 4 − ε. Instead of (10.173), we have

g2(n + 8)Kd

Λ

∫

Max(k,√τ)

dp pd−1 1
p4
∼ g2(n + 8)

Λ

∫

Max(k,√τ)

dp pd−5

∼ g2(n + 8) 1
d − 4

pd−4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Λ

Max(k,√τ)

∼ g2(n + 8) 1
ε
{[Max(k, √τ)]−ε − Λ−ε} . (10.195)

The changes in comparison to the case of d = 4 reduce the replacement of logarithm
(10.173) by a “logarithmic variable”

s = 1
ε
{[Max(k, √τ)]−ε − Λ−ε} , (10.196)

which gives the same logarithm in the limit of ε → 0. Thus, during the solution of
“parquet” equations, we can again use the approximation of the “leading logarithms”
and the differential equation, since the vertex (10.176) conserves its form. Its solution
(10.178) for the case of k = 0 in a space with d = 4 − ε can now be written as

Γ(k = 0) = g
1 + g(n + 8) 1ε [τ

−ε/2 − Λ−ε]
→

1
(n + 8) 1

ετε/2 =
ετε/2

(n + 8)
for τ → 0 .

(10.197)

We see that the effective interaction of fluctuations is small, due to the assumed small-
ness of our artificial parameter ε = 4 − d.

Equation (10.176) can also be considered as a differential equation over cutoff pa-
rameter Λ, which enters the variable s (10.196), (10.177): ds = Λ−(1+ε)dΛ. In this case,
this equation describes the renormalization of the vertex Γ under infinitesimal trans-
formation of the cutoff parameter Λ → Λ󸀠 = Λ + dΛ. Essentially this is the differential
equation of the renormalization group introduced first by Gell-Mann and Low and al-
ready known to us in the case of QED. Renormalization group ideology is the basis of
the modern theory of phase transitions [3, 42, 69].

Let us schematically presenthowcritical exponents are calculated in ε-expansion.
Consider a correlation function of the order parameter (Green’s function) G(pτ). We
have by definition:

G(p = 0τ) = χ(τ) ∼ τ−γ ,
G(pτ = 0) ∼ p−2+η . (10.198)

Let us limit ourselves to indices γ and η, as all others can be determined from scaling
relations, such as (10.190) [42, 48].
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Figure 10.34

In this theory, we may prove two Ward identities:

𝜕
𝜕pα

G−1jl (pτ = 0) = 2pαδjl − 2∫
ddp󸀠

(2π)d
p󸀠αG

2
mm(p
󸀠0)Γjlmm(ppp

󸀠p󸀠) , (10.199)

𝜕
𝜕τ

G−1jl (pτ = 0) = δjl − ∫
ddp󸀠

(2π)d
G2
mm(p
󸀠0)Γjlmm(ppp

󸀠p󸀠) . (10.200)

Introducing the “triangular” vertex 𝒯jl =
𝜕
𝜕τG
−1
jl (pτ = 0), we can draw the second of

these identities as shown in Figure 10.34. This identity can be derived by differenti-
ation of diagrams for self-energy (inverse propagator), as is shown schematically in
Figure 10.35. Differentiation of the inverse free propagator (10.165) (Figure 10.35(a))
gives the first term, whereas differentiation of the simplest contribution to self-energy
(Figure 10.35(a)) gives lowest-order contributions to the vertex with two linked “legs”,
that is, the lowest-order contribution to the second term. The full series of “differenti-
ated” graphs is summed to the full vertex. The identity (10.199) is derived in a similar
way, differentiating by pα.

Figure 10.35

Let us substitute into (10.199) the “parquet” solution for Γ(ppp󸀠p󸀠).Wehavenot derived
it explicitly, but it is sufficient to know that (just as Γ(k) derived above) it depends only
on the absolute values |p| and |p󸀠|, so that the integral in the right-hand side of (10.199)
gives zero after integration over the polar angle. Thus, we simply have

𝜕G−1(pτ = 0)
𝜕pα

= 2pα , (10.201)

so that

G(pτ = 0) ∼ 1
p2
, (10.202)

which gives the value of the critical exponent η = 0.
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Figure 10.36

Let us use now the Ward identity (10.200). In a “parquet” approximation, we can re-
sume the diagrams in such a way that this identity reduces to an integral equation
for a “triangular” vertex, shown in Figure 10.36. Using logarithmic variables, we can
rewrite this equation as

𝒯jl(s) = δjl −
s

∫
0

dtΓjlmn(t)𝒯mn(t) . (10.203)

Using 𝒯jl = 𝒯 δjl and (10.168), we obtain

Ijlmnδmn = (n + 2)δjl, (10.204)

and (10.203) reduces to

𝒯 (s) = 1 − (n + 2)
s

∫
0

dtΓ(t)𝒯 (t) . (10.205)

Differentiating by s, we reduce this integral equation to a differential one:

d𝒯 (s)
ds
= −(n + 2)Γ(s)𝒯 (s), (10.206)

with boundary condition 𝒯 (s = 0) = 1. Then, we find

𝒯 (s) = exp{−(n + 2)
s

∫
0

dtΓ(t)} . (10.207)

Using here (10.178), we finally obtain

𝒯 (s) = [1 + g(n + 8)s]−
n+2
n+8 . (10.208)

Consequently, we have

𝜕
𝜕τ

G−1(p = 0τ) = 𝜕χ
−1(τ)
𝜕τ
= [1 + g(n + 8)s]−

n+2
n+8 . (10.209)

Integrating with the necessary accuracy, we get

χ(τ) ≈ 1
τ
{1 + g(n + 8) 1

ε
[τ−ε/2 − Λ−ε]}

n+2
n+8
→ τ−(1+

ε
2
n+2
n+8 ) (10.210)
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for τ → 0. Thereafter, for the susceptibility critical exponent, we find

γ = 1 + n + 2
n + 8

ε
2
+ ⋅ ⋅ ⋅ . (10.211)

This expression, and the previous result η = 0, are valid up to the terms of the first
order in ε, and represent the first terms of the ε-expansion of critical indices. More
tedious calculations allow the derivation of higher-order corrections.

One remarkable result of the modern theory following from these expressions is
the universality of critical behavior; the values of the critical exponents in quite differ-
ent physical systems are determined only by the dimensionality of space (or system)
and the number of components n of the order parameter (that is, in fact, the type of
the symmetry broken during the phase transition).

Figure 10.37

Expansion (10.160) may, in principle, contain higher powers of the order parameter.
What is their role in critical behavior? Why have we limited ourselves only to gϕ4?
Consider a possible term, such as λϕ6, and the simplest diagram due to such an in-
teraction, shown in Figure 10.37. By the order of magnitude, it is determined by the
integral

λ2 ∫ d3p1 ∫ d
3p2

1
p21p22(p

2
1 + p22)
∼ λ2

Λ

∫

√τ

dp1

Λ

∫

√τ

dp2
p21p

2
2

p21p22(p
2
1 + p22)

∼ λ2 ln Λ
√τ
. (10.212)

For d > 3, this correction converges (at the lower limit, for τ → 0), so that for d =
4 − ε, an interaction of the type of λϕ6 is actually irrelevant. Quite analogous is the
situation with the higher-order terms of the Landau expansion, which justifies the
analysis made above.

In conclusion, let us quote the values of critical indices up to the terms of the order
of ∼ ε2 for the theory with an n-component order parameter [3, 42]:

γ = 1 + n + 2
n + 8

ε
2
+
n + 2
n + 8

n2 + 22n + 52
(n + 8)2

ε2

4
+ ⋅ ⋅ ⋅ ,

2ν = 1 + n + 2
n + 8

ε
2
+
n + 2
n + 8

n2 + 23n + 60
(n + 8)2

ε2

4
+ ⋅ ⋅ ⋅ ,
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η = n + 2
2(n + 8)2

ε2 + n + 2
2(n + 8)2

[
6(3n + 14)
(n + 8)2

−
1
4
]ε3 + ⋅ ⋅ ⋅ ,

δ = 3 + ε + [ 1
2
−

n + 2
(n + 8)2

]ε2 + ⋅ ⋅ ⋅ ,

β = 1
2
−

3
n + 8

ε
2
+
(n + 2)(2n + 1)
2(n + 8)3

ε2 + ⋅ ⋅ ⋅ ,

α = 4 − n
n + 8

ε
2
+ ⋅ ⋅ ⋅ . (10.213)

It is interesting to compare the values calculated from these expressions for d = 3
(ε = 1) and n = 1 (the Ising case), with the results of numerical calculations (high-
temperature expansion) for the three-dimensional Ising model. In the table, we also
show the values derived from themean-field theory (Landau).We see that ε-expansion
gives rather a satisfactory agreement with the results of numerical analysis.15 (See Ta-
ble 10.1.)

Kenneth GeddesWilson
(1936–2013)was anAmer-
ican theoretical physicist
with major contributions
to quantum field theory
and the theory of criti-
cal phenomena in type II
phase transitions. He was
also a pioneer in the devel-
opment of computer stud-
ies in particle physics. He
was awarded the 1982 No-

bel Prize in Physics for his work on the use of renormalization group in the theory
phase transitions. He went on to Harvard College at age 16 and earned his PhD from
Caltech in 1961, studying under Murray Gell-Mann. He did post-doc work at Harvard
and CERN. Wilson’s work in physics involved formulation of a comprehensive theory
of scaling: how fundamental properties and forces of a system vary, depending on the
scale over which they are measured. His novel formulation of renormalization group
theory provided profound insights into the field of critical phenomenaandphase tran-
sitions in statistical physics enabling calculations of critical exponents (the so called
ϵ-expansion). An example of an important problem in solid–state physics he solved

15 Another effectivemethod for calculating critical indices is based on the expansion in powers of the
inverse number of components of the order parameter 1/n [3, 42]; as for n→∞, it can be shown that
the indices also reduce to their values in the mean-field approximation (Landau theory). Calculations
are based on the summation of loop diagrams, as each loop contribution is ∼ n.
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using the renormalization group is the so called Kondo problem, related to the un-
usual behavior of magnetic impurities in metals. He extended his methods on scaling
to answer fundamental questions on the nature of quantum field theory, including the
physical meaning of the renormalization group. He also pioneered our understanding
of the confinement of quarks inside hadrons, utilizing lattice gauge theory, where he
initiated an approach permitting strong – coupling calculations on computers. Be-
side his Nobel prize he was awarded numerous international awards, such as Dannie
HeinemanPrize forMathematical Physics (1973), BoltzmannMedal (1975),Wolf Prize
(1980), and Franklin Medal (1982).

Table 10.1: Critical indices for the Ising model (n = 1).

Index Wilson Numerical Landau

ν 0.626 0.642 0.5
η 0.037 0.055 0
γ 1.244 1.250 1
α 0.077 0.125 0
β 0.340 0.312 0.5
δ 4.460 5.15 3

Modern methods of the calculation of critical exponents significantly improve the re-
sults of simple ε-expansion; taking into account higher-order diagrams, they give the
values of the indices, which practically coincide with the results of numerical calcu-
lations and experiments [69].

10.9 Functional methods for fermions

Generalization of the functional integral approach to quantization to fermions is not
obvious. In the Bose case, functional integration is performed over all possible clas-
sical (c-number) field configurations. For fermion fields, the classical limit is absent,
and it is not clear what kind of field configurations we can introduce at all. The clas-
sical limit is achieved as ℏ → 0. In this case, the nontrivial right-hand side of all
Bose field operators, as considered in Chapter 2, tends to zero, and the operators be-
come c-numbers. For fermion fields, quantization is done with anticommutators, so
that for ℏ → 0 in the Fermi case, we get some anticommuting variables, with no ob-
vious “common-sense” meaning. However, it happens that these variables lead to a
correct solution of our problem. Such variables were introduced in mathematics by
Grassmann in the middle of 19th century and are called Grassmann variables. A func-
tional formulation in quantum field theory for fermions, using Grassmann variables,
was proposed by Berezin, who introduced the notion of integration over these vari-
ables [7].
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Consider first themathematical definitions. GeneratorsCi of n-dimensional Grass-
mann algebra satisfy the anticommutation relations

{Ci,Cj} ≡ CiCj + CjCi = 0 , (10.214)

where i = 1, 2, . . . , n. In particular,

C2i = 0 . (10.215)

Thus, the series expansion of an arbitrary function f (Ci) can contain only a finite num-
ber of terms. For example, in the case of one-dimensional algebra, we have

f (C) = a + bC , (10.216)

where a and b are usual numbers. The quadratic and higher-power terms of this ex-
pansion are equal to zero.

For the general n-dimensional case, the analogue of (10.216) takes the form

f (C) = P0 + P
i
1Ci + P

ij
2 CiCj + ⋅ ⋅ ⋅ + PnC1C2 ⋅ ⋅ ⋅Cn , (10.217)

where each summation index takes values from 1 to n, and coefficients P are antisymmetric with re-
spect to the permutation of any pair of indices i, j, . . .. Expansion is cut to a finite number of terms
because of (10.214).

Consider the notion of differentiation overGrassmannvariables.We can introduce two
types of derivatives, left and right. The left derivative of the product C1C2 is defined as

𝜕L

𝜕Ci
(C1C2) = δi1C2 − δi2C1 . (10.218)

Correspondingly, the right derivative is given by

𝜕R

𝜕Ci
(C1C2) = δi2C1 − δi1C2 . (10.219)

Then, we have the following equalities:

{
𝜕
𝜕Ci
,Cj} = δij , (10.220)

{
𝜕
𝜕Ci
,
𝜕
𝜕Cj
} = 0 . (10.221)

In particular, for one-dimensional algebra,

{
d
dC
,C} = 1, (10.222)



294 | 10 Functional integrals: scalars and spinors

and we always have

(
𝜕
𝜕Ci
)
2
= 0 . (10.223)

All these relations are rather natural.
In contrast, the definition of an integral over Grassmann variables is rather for-

mal. In particular, it is impossible to introduce it as the inverse operation to differen-
tiation. However, it can be defined in such a way that it possesses some general prop-
erties characteristic of the usual integral. For example, we can require our integral to
be invariant towards the shift of the integration variable by a constant:

∫ dCf (C) = ∫ dCf (C + α) . (10.224)

This is always so for the usual integral with infinite limits of integration, but here our
newdefinition of integration has nothing in commonwith the usual definition (except
the notation ∫), and there is no limit of integration here in the usual sense. Using the
explicit form of f (C) (10.216), we obtain

∫ dC(a + bC) = ∫ dC[a + b(C + α)] , so that

∫ dC bC = ∫ dC b(C + α) , (10.225)

from which it follows that

∫ dC bα = 0 (10.226)

or, due to arbitrariness of bα,

∫ dC = 0 . (10.227)

Here, α is another element of Grassmann algebra, independent of and anticommuting
with C. The remaining integral ∫ dC C can be defined by the condition

∫ dC C = 1 . (10.228)

Equations (10.227) and (10.228) completely determine integration over Grassmann
variables.

Naturally, integration thus defined has nothing in common with the usual notion
of an integral. Moreover, in the case of one-dimensional Grassmann algebra, we have
df
dC = b and ∫ dCf (C) = b, so that the operation of integration acts upon a function in
the same way as differentiation.
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In the n-dimensional case, we assume that

∫ dCi = 0 , ∫ dCiCi = 1 . (10.229)

Let η and η̄ be independent Grassmann variables, so that

∫ dη = ∫ dη̄ = 0 , ∫ dηη = ∫ dη̄η̄ = 1 . (10.230)

As η2 = η̄2 = 0, we have

e−η̄η = 1 − η̄η , (10.231)

so that

∫ dη̄dη e−η̄η = ∫ dη̄dη − ∫ dη̄dη η̄η = 0 + ∫ dη̄dη ηη̄ = 1 . (10.232)

Let us find a generalization of this expression for the case of a larger number of di-
mensions. Consider the two-dimensional case, introducing for convenience the new
notations

η = ( η1
η2
) , η̄ = ( η̄1

η̄2
) . (10.233)

The exponent η̄η (or more precisely η̄Tη) has the form

η̄η = η̄1η1 + η̄2η2 . (10.234)

Then,

(η̄η)2 = (η̄1η1 + η̄2η2)(η̄1η1 + η̄2η2)
= η̄1η1η̄2η2 + η̄2η2η̄1η1 = 2η̄1η1η̄2η2 , (10.235)

where we have taken into account that η21 = η
2
2 = η̄

2
1 η̄

2
2 = 0. The higher powers of η̄η

are equal to zero, and we get

e−η̄η = 1 − (η̄1η1 + η̄2η2) + η̄1η1η̄2η2 . (10.236)

Applying our integration rules, we see that

∫ dη̄dηe−η̄η = ∫ dη̄1dη1dη̄2dη2η̄1η1η̄2η2 = 1 , (10.237)

as in the one-dimensional case. Let us transform the integration variables as

η = Mα , η̄ = Nᾱ , (10.238)
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whereM andN are 2×2-matrices,whereas α and ᾱ are newGrassmann variables. Then,
we have

η1η2 = (M11α1 +M12α2)(M21α1 +M22α2)
= (M11M22 −M12M21)α1α2 = (DetM)α1α2 , (10.239)

where we have taken into account the anticommutativity of Grassmann variables. To
conserve the integration rules

∫ dη1dη2η1η2 = ∫ dα1dα2α1α2 , (10.240)

we have to require that

dη1dη2 = (DetM)
−1dα1dα2 , (10.241)

which differs from the usual rule for an integration variable change by the power of
the determinant. Taking into account that

η̄η = NᾱMα = NᾱαMT = −αMTNᾱ = ᾱMTNα , (10.242)

we write (10.237) as

(DetMN)−1 ∫ dᾱdαe−ᾱM
TNα = 1 . (10.243)

As DetMN = DetMTN, we obtain the general result

∫ dᾱdαe−ᾱAα = DetA , (10.244)

which represents the Gaussian integral over Grassmann variables.
To describe fermion fields, we make a transition to Grassmann algebra with infi-

nite dimensions, with the appropriate generators denoted as C(x):

{C(x),C(y)} = 0 , (10.245)

𝜕L,RC(x)
𝜕C(y)

= δ(x − y) , (10.246)

∫ dC(x) = 0 , ∫ dC(x)C(x) = 1 . (10.247)

As a result, we obtain functional integrals over Grassmann (Fermion) fields.
As we already know, Dirac’s Lagrangian has the form

ℒ = iψ̄γμ𝜕μψ −mψ̄ψ . (10.248)

Then, the normalized generating functional for the free Dirac field can be written as

Z0[η, η̄] =
1
𝒩
∫𝒟ψ̄𝒟ψ exp{i∫ dx[ψ̄(x)(iγμ𝜕μ −m)ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)]},

(10.249)
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where the normalization factor is

𝒩 = ∫𝒟ψ̄𝒟ψ exp[i∫ dxψ̄(x)(iγμ𝜕μ −m)ψ(x)] . (10.250)

Here,we introduced theGrassmannian source η̄(x) for fieldψ(x) andη(x) for field ψ̄(x).
To shorten the notations, we introduce

S−1 = iγμ𝜕μ −m . (10.251)

Then,

Z0[η, η̄] =
1
𝒩
∫𝒟ψ̄𝒟ψ exp[i∫ dx(ψ̄S−1ψ + η̄ψ + ψ̄η)] . (10.252)

Consider the quadratic form

Q(ψ, ψ̄) = ψ̄S−1ψ + η̄ψ + ψ̄η . (10.253)

Let us find the value of ψ, “minimizing” this form from the condition

𝜕LQ
𝜕ψ̄
= S−1ψ + η = 0 , 𝜕

RQ
𝜕ψ
= ψ̄S−1 + η̄ = 0 , (10.254)

which gives

ψm = −Sη , ψ̄m = −η̄S , (10.255)

where we have assumed the existence of the inverse operator S−1. At the “minimum”,
we have

Q = Qm = Q(ψm, ψ̄m) = −η̄Sη . (10.256)

As a result, our quadratic form can be written as

Q = Qm + (ψ̄ − ψ̄m)S
−1(ψ − ψm) . (10.257)

Correspondingly,16

Z0[η, η̄] =
1
𝒩
∫𝒟ψ̄𝒟ψ exp{i∫ dx[Qm + (ψ̄ − ψ̄m)S

−1(ψ − ψm)]}

=
1
𝒩

exp[−i∫ dx∫ dyη̄(x)S(x − y)η(y)]Det(−iS−1) , (10.258)

16 The second equality in (10.258) is the fermion analogue of equation (10.48) for a complex boson
field.
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where the last expression was derived extracting the factor exp[i ∫Qm] outside the
integral, as Qm does not depend onψ and ψ̄ and used the obvious functional general-
ization of (10.244)

∫𝒟ψ̄𝒟ψe−ψ̄Aψ = DetA . (10.259)

In a similar way, we may show that 𝒩 = Det(−iS−1), so that finally, we obtain the
generating functional of the free Dirac field as

Z0[η, η̄] = exp[−i∫ dx∫ dyη̄(x)S(x − y)η(y)] . (10.260)

It is easy to see that operator S really exists. It has the form

S(x) = (iγμ𝜕μ +m)ΔF(x) , (10.261)

where ΔF(x) is the well-known Feynman propagator of a scalar field. In fact, using
(10.251), we have

S−1S = (iγμ𝜕μ −m)(iγ
μ𝜕μ +m)ΔF(x) = (−◻ −m

2)ΔF(x) = δ(x) . (10.262)

Now, we can define the free propagator of the Dirac field as

τ(x, y) = − δ2Z0[η, η̄]
δη(x)δη̄(y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨η=η̄=0

= −
δ

δη(x)
δ

δη̄(y)
{−i∫ dx∫ dyη̄(x)S(x − y)η(y)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨η=η̄=0

= iS(x − y) , (10.263)

where we have used exp(−η̄Sη) = 1 − η̄Sη.
Let us summarize themain expressions related to the free scalar and spinor fields.

For the scalar field, we have

ℒ0 =
1
2
𝜕μφ𝜕

μφ − 1
2
m2φ2 = −

1
2
φ(◻ +m2)φ . (10.264)

We have seen above that

τ(x, y) = iΔF(x − y) , (10.265)

where ΔF is the Feynman propagator satisfying the equation

(◻ +m2)ΔF(x − y) = −δ(x − y) . (10.266)

For the spinor (Dirac) field, we have

ℒ0 = iψ̄γ
μ𝜕μψ −mψ̄ψ = ψ̄S

−1ψ , (10.267)

τ(x, y) = iS(x − y) . (10.268)
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In both cases, we see that the propagator is inverse (operator) to the coefficient be-
fore the quadratic term in the Lagrangian. We can take this as the definition of a free
propagator in the functional formulation for an arbitrary field.

The generating functional of interacting Dirac fields can be defined in a similar
manner to the case of scalar fields:

Z[η, η̄] = exp[i∫ dxℒint(
1
i
δ
δη
,
1
i
δ
δη̄
)]Z0[η, η̄] . (10.269)

From this expression, we can derive all the rules of diagram technique for Fermi fields,
in the same way how this was done above for the scalar field. The only important dif-
ference, due to the Grassmann nature of fermion fields, is the necessity of associating
an additional factor of (−1) with each fermion loop.17 We shall not give details of the
diagrammatic rules for purely fermion models of particle interaction, as all such the-
ories are nonrenormalizable in the 4-dimensional space-time.

Felix Aleksandrovich Berezin (1931–1980) was a Soviet
mathematical physicist. He studied mathematical physics
under direction of Israel Gelfand and joined the Depart-
ment of Mathematics at the Moscow State University at the
age of 25. Since the 1950s, he was involved in the studies of
functional approaches in quantum field theory and quan-
tummechanics.Hewasfirst to introduce functional integral
over Grassmannian anticommuting variables to describe
Fermions in quantum field theory, which is called after him,
as is the closely related construction of the Berezinian,
which may be regarded as the “super”-analog of the Jaco-
bian. His ideas were of exceptional importance for founda-

tions of “super”-mathematics and supersymmetry in the theory of elementary parti-
cles. In 1980 he drowned during a tourist trip in the region of Kolyma river in Eastern
Siberia.

As an example of a fermion interaction model, which is really applicable to particle interactions, we
only mention the so-called Fermi (4-fermion) interaction. This is quite successful as a description of
low-energy interactions of leptons. The corresponding interaction Lagrangian (for two lower genera-
tions of leptons) is written in the standard form [40]

ℒint =
G
√2

j+w jw , (10.270)

17 It can be shown [56] that the origin of this factor is related to the functional generalization of
(10.221), which has the form δ2

δη(x)δη(y) = −
δ2

δη(y)δη(x) .
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where jw is a lepton-weak current operator:

jαw = ψ̄eΓ
αψνe + ψ̄μΓ

αψνμ ,

jα+w = ψ̄νeΓ
αψe + ψ̄νμΓ

αψμ , (10.271)

where
Γα = 1

2
(1 − γ5)γα(1 + γ5) , (10.272)

and the lower indices of the field operators denote the corresponding particles (electron e, muon μ,
electron neutrino νe, muon neutrino νμ).
From simple dimensional analysis it becomes clear that the Lagrangian corresponds to nonrenormal-
izable theory: the coupling constantG is dimensional,with thedimensionality of squared length or the
inverse square of the mass. Its numerical value is well known from experimental data on low-energy
processes (well-described by first order of perturbation theory over G), such as muon decay and is
written usually as

G = 1.0 ⋅ 10−5 ℏ
3

m2
pc
= 1.43 ⋅ 10−49 erg⋅cm3 , (10.273)

where mp is the proton mass, introduced here just as a dimensional parameter. Its appearance in
(10.273) is rather artificial, and later we shall see how such interaction appears as effective in the
modern theory of weak and electromagnetic interactions, and which mass scale is actually at work
here.
Due to the nonrenormalizability of field theory with the interaction Lagrangian (10.270), it cannot be
considered as fundamental, and it is rather senseless to write higher-order corrections of perturbation
theory over G.

10.10 Propagators and gauge conditions in QED

In QED we can write down the generating functional of Maxwell field as

Z[J] = ∫𝒟Aμ exp{i∫ dx(ℒ + J
μAμ)} , (10.274)

where Jμ is an external source current, and

ℒ = −
1

16π
FμνF

μν . (10.275)

Making partial integration over dx and dropping the surface integrals, we can rewrite
this Lagrangian as

ℒ =
1
8π

Aμ[gμν◻ − 𝜕μ𝜕ν]A
ν . (10.276)

The Lagrangian of the electromagnetic field is invariant to gradient (gauge) transfor-
mations Aμ → Aμ + 𝜕μΛ. At the same time, the functional integral in (10.274) is taken
over all Aμ, including those connected with each other by gauge transformations. Ob-
viously this leads to the appearance of an infinite contribution to Z and to Green’s
functions. It is clear that it is necessary to fix some gauge, so that the integral over Aμ
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is not calculated over the field configurations, which are obtained from each other by
gauge transformations. Physically these configurations are just equivalent! Here we
meet a problem which becomes especially difficult for non-Abelian gauge theories. In
fact, this problem can be rigorously solved, as it will be shown in the next chapter.
Here we just limit ourselves to several technical remarks.

If we use the Lorentz gauge 𝜕μAμ = 0, the Lagrangian (10.276) becomes

ℒ =
1
8π

Aμgμν◻A
ν . (10.277)

The inverse operator for gμν◻ is represented by the Feynman propagator (see, e. g.,
Chapter 4)

DFμν(x, y) = gμν4πΔF(x, y;m = 0) . (10.278)

In momentum representation, the operator −gμνk2, originating from (10.277), has an
inverse operator written as −gνλ 1

k2 , so that the Feynman propagator of the electromag-
netic field in the Lorentz gauge has the form

DFμν(k) = gμν
4π
k2
. (10.279)

In the general case we can add to the Lagrangian an extra term, fixing the gauge, with
an arbitrary coefficient α:

ℒ = −
1

16π
FμνF

μν −
1

8πα
(𝜕μA

μ)
2
=

1
8π

Aμ[gμν◻ + (
1
α
− 1)𝜕μ𝜕ν]A

ν . (10.280)

In momentum representation, the coefficient before the square of the field is

− k2gμν + (1 −
1
α
)kμkν , (10.281)

and the corresponding inverse operator produces the propagator

Dμν(k) =
4π
k2
[gμν + (α − 1)

kμkν
k2
] . (10.282)

For α→ 1, we obtain the Feynman propagator (Lorentz–Feynman gauge), whereas for
α→ 0, we obtain the propagator in a Landau gauge.
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11.1 Non-Abelian gauge fields and Faddeev–Popov quantization

Let us consider the quantum theory of non-Abelian gauge fields. For a long time, quan-
tization of Yang–Mills fields remained an unsolved problem due to difficulties related
to the necessity of a correct account of gauge invariance. In particular, attempts to
quantize this theory along the lines of the traditional (operator) approach in quan-
tum field theory were mostly unsuccessful, despite the successes of Abelian QED. The
complete solution of the problemwas achievedbyFaddeev andPopov,whoused func-
tional methods. In the following, we mainly follow the presentation of [13].

The heuristic idea
We have seen above that the value of the generating functional Z, defined in the usual
way, in the case of gauge theory (even QED) is—in general—infinite, as it contains in-
tegration over all fieldsAμ, including those connected with each other by gauge trans-
formations, which leave an integrand invariant.

Before we start the analysis, allowing separation of the corresponding infinite
“volume” factor from the (infinite-dimensional) functional integral over the gauge
field, we shall consider a simple illustration of the main idea of our general method
for the case of the usual two-dimensional integral:

W = ∫ dx∫ dyeiS(x,y) = ∫ dreiS(r) , (11.1)

where r = (r, θ) defines the polar coordinates of a point on the plane. Assume that
the function S(r) (analogue to the action) is invariant with respect to rotations in the
two-dimensional space:

S(r) = S(rϕ) (11.2)

as r = (r, θ) → rϕ = (r, θ + ϕ). This means, that S(r) is constant at the circles (“orbits”)
in the (x, y)-plane, as shown in Figure 11.1(a). In this trivial example, if we want to
take into account only contributions from nonequivalent values of S(r), we need to
extract a “volume factor”, corresponding to integration over angular variable1 ∫ dθ =
2π. To formalize this, we shall use the following “recipe”, to be generalized for more
complicated cases later. Let us put inside our integral a factor 1, written in the form2

1 = ∫ dϕδ(θ − ϕ) . (11.3)

1 Angular integration is assumed to be done from 0 to 2π, and we drop these integration limits below.
2 Here it is assumed that θ is within the interval (0, 2π).

https://doi.org/10.1515/9783110648522-011
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Figure 11.1

Then, we have

W = ∫ dϕ∫ dreiS(r)δ(θ − ϕ) = ∫ dϕWϕ , (11.4)

where

Wϕ = ∫ drδ(θ − ϕ)e
iS(r) (11.5)

is calculated for the given value of ϕ = θ. Thus, first of all, we calculate W at the
fixed value of ϕ = θ (constraint!), and afterwards integrate over all values of ϕ (see
Figure 11.1(a)). Using the invariance of S (11.2), we have

Wϕ = Wϕ󸀠 . (11.6)

We see that the “volume” of the orbit can be extracted as a factor:

W = ∫ dϕWϕ = Wϕ ∫ dϕ = 2πWϕ . (11.7)

In the general case, we can use a more complicated constraint (instead of ϕ = θ),
which can be represented by some curve g(r) = 0, crossing each orbit only once, as
shown in Figure 11.1(b), so that the equation g(rϕ) = 0 has the unique solution for ϕ
at a fixed value of r. Taking such a general constraint, we define, instead of simple
equation (11.3), the “representation of unity” of the form

1 = Δg(r) ∫ dϕδ[g(rϕ)] . (11.8)

In other words, we define the function Δg(r) as

[Δg(r)]
−1 = ∫ dϕδ[g(rϕ)] . (11.9)

Using the general rule

∫ dxδ[f (x)] = ∫ df 1
df /dx

δ(f ) = 1
df /dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨f=0
, (11.10)

we obtain

Δg(r) =
𝜕g(rθ)
𝜕θ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨g=0
, (11.11)
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and Δg(r) here is invariant with respect to two-dimensional rotations:

[Δg(rϕ󸀠 )]
−1 = ∫ dϕδ[g(rϕ+ϕ󸀠 )] = ∫ dϕ

󸀠󸀠δ[g(rϕ󸀠󸀠 )] = [Δg(r)]
−1 . (11.12)

Then, repeating arguments similar to those used during the transformation from (11.4)
to (11.7), we can again extract from our integral the “volume factor” 2π:

W = ∫ dϕ∫ drΔg(r)δ[g(rϕ)]e
iS(r) = ∫ dϕWϕ , (11.13)

where

Wϕ = ∫ dre
iS(r)Δg(r)δ[g(rϕ)] . (11.14)

The entire nontrivial part of the integral is here. The “volume factor” is equal to 2π,
which is the formal outcome of the invariance ofWϕ with respect to the rotations:

Wϕ󸀠 = ∫ dre
iS(r)Δg(r)δ[g(rϕ󸀠 )] = ∫ dr

󸀠eiS(r
󸀠)Δg(r

󸀠
ϕ) = Wϕ , (11.15)

where we have introduced the variable r󸀠 = (r,ϕ󸀠) and used the rotational invariance
Δg(r) of S(r) and the integrationmeasure dr. Thus, our “recipe” for extracting the “vol-
ume factor” is to introduce into the integrand the constraining δ-function, which is
multiplied by Δg , defined by (11.9).

Extracting the “volume factor” in a functional integral
Now let us discuss non-Abelian gauge fields. To be concrete, we consider here the case
of Yang–Mills fields for a SU(2) gauge group. The Lagrangian of this theory iswritten as

ℒ = − 1
16π

FaμνF
aμν , a = 1, 2, 3 , (11.16)

where (reference equation (2.113))

Faμν = 𝜕μA
a
ν − 𝜕νA

a
μ + gε

abcAbμA
c
ν . (11.17)

Here, g is the Yang–Mills coupling constant. We define the generating functional as
usual:

Z[ ⃗J] = ∫𝒟A⃗μ exp{i∫ dx[ℒ(x) + ⃗Jμ ⋅ A⃗
μ(x)]} . (11.18)

The action is invariant with respect to gauge transformations

A⃗μ → A⃗θμ , (11.19)
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where (reference equations (2.157), (2.160), and (2.163))

A⃗θμ ⋅
τ⃗
2
= U(θ)[A⃗μ ⋅

τ⃗
2
+ 1
ig
U−1(θ)𝜕μU(θ)]U

−1(θ) . (11.20)

Here,

U(θ) = exp[iθ⃗(x) ⋅ τ⃗
2
] (11.21)

is the spinor transformation of SU(2). Near the unit transformation, we can write
U(θ) as

U(θ) = 1 + iθ⃗ ⋅ τ⃗
2
+ O(θ2) . (11.22)

The values of θ⃗(x) represent the group parameters, depending on the point of space-
time, whereas τ⃗ are Pauli matrices in isotopic space.

The action of our theory is constant (invariant) on the orbit of the gauge group,
consisting of all A⃗θμ, obtained from some fixed field configuration A⃗μ by transforma-
tion U(θ), which encompasses all elements of the group SU(2). For the correct quan-
tization procedure, functional integration should be done over the “hypersurface” in
functional space, which crosses each orbit only once. Thus, if we write the equation
for this hypersurface as

fa(A⃗μ) = 0 , a = 1, 2, 3 , (11.23)

the equation

fa(A⃗
θ
μ) = 0 (11.24)

should have a unique solution θ⃗ for the given field configuration A⃗μ. This condition
fixes the gauge.

Let us define integration over the gauge group parameters as

[dθ⃗] =
3
∏
a=1

dθa . (11.25)

Ifwemake twogauge transformations θ⃗ and θ⃗󸀠, the correspondingmatrix isU(θ)U(θ󸀠),
and the transformation parameters are summed: θ⃗+ θ⃗󸀠. Thus, the integrationmeasure
defined as in (11.25) is gauge invariant; if θ angles encompass all possible values, the
shift by a constant θ󸀠 is irrelevant. Symbolically, we write this as d(θ⃗θ⃗󸀠) = dθ⃗󸀠󸀠 = dθ⃗.

Now, we can act as above (in the case of usual integral) and introduce Δf [A⃗μ] as
follows:

Δ−1f [A⃗μ] = ∫[dθ⃗(x)]δ[fa(A⃗
θ
μ)] . (11.26)
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Then, we have

Δf [A⃗μ] = DetMf , (11.27)

which is called the Faddeev–Popov determinant, where

(Mf )ab =
δfa
δθb
. (11.28)

In more detail, making the usual discretization of space (followed by the continuous limit), we can
write

Δ−1f [A⃗μ] = ∫∏
x
∏
a
dθa(x)δ[fa(x)] = ∏

x
∏
a
∫ dfa(x)δ[fa(x)]

𝜕(θ1(x), θ2(x), θ3(x))
𝜕(f1(x), f2(x), f3(x))

= ∏
x
Det[𝜕θa(x)
𝜕fb(x)
]
f=0
= Det[δθa(x)

δfb(x)
]
f=0
. (11.29)

In the last equality (after transformation to continuous x), the functional determinant (Jacobian) of
the matrix with continuous indices δθa(x)

δfb(y)
appeared, which is defined as the product of eigenstates of

this matrix.

The matrix Mf is related to the infinitesimal gauge transformations of the function
fa[A⃗μ]:

fa[A⃗
θ
μ(x)] = fa[A⃗μ(x)] + ∫ dy

δfa(x)
δθb(y)

θb(y) + O(θ
2)

= fa[A⃗μ(x)] + ∫ dy[Mf (x, y)]abθb(y) + O(θ
2) . (11.30)

Then, demanding the uniqueness of the solution of equation (11.24) fa(A⃗θμ) = 0, with
respect to θ⃗, we conclude that DetMf should be nonzero. The explicit form of Mf is
naturally dependent on the choice of specific gauge condition (the form of function
fa); concrete expressions for the case for Lorentz gauge will be presented below.

The Faddeev–Popov determinant Δf [A⃗μ] is gauge invariant. In fact, we can write

Δ−1f [A⃗μ] = ∫[dθ⃗
󸀠(x)]δ[fa(A⃗

θ󸀠
μ )] . (11.31)

Then,

Δ−1f [A⃗
θ
μ] = ∫[dθ⃗

󸀠(x)]δ[fa(A⃗
θθ󸀠
μ )] = ∫[dθ⃗(x)θ⃗

󸀠(x)]δ[fa(A⃗
θθ󸀠
μ )]

= ∫[dθ⃗󸀠󸀠(x)]δ[fa(A⃗
θ󸀠󸀠
μ )] = Δ

−1
f [A⃗μ] , (11.32)

which completes the proof. Actually, this situation is similar to (11.12).

Let us substitute the “unity representation” following from (11.26),

1 = ∫[dθ⃗(x)]Δf [A⃗μ]δ[fa(A⃗
θ
μ)], (11.33)
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into (11.18). Then, denoting the integration measure over the Yang–Mills fields as
[dA⃗μ(x)], we obtain

∫[dA⃗μ(x)] exp{i∫ dxℒ(x)}

= ∫[dθ⃗(x)] ∫[dA⃗μ(x)]Δf [A⃗μ]δ[fa(A⃗
θ
μ)] exp{i∫ dxℒ(x)}

= ∫[dθ(x)] ∫[dA⃗μ(x)]Δf [A⃗μ(x)]δ[fa(A⃗μ)] exp{i∫ dxℒ(x)} . (11.34)

To obtain the last equality, we used the invariance of Δf [A⃗μ] and exp{i ∫ dxℒ(x)} to
gauge transformations A⃗θμ → A⃗μ. Then, we see that the integrand does not depend on
θ⃗(x), and ∫[dθ⃗(x)] = ∫∏x dθ⃗(x) simply gives infinite “volume” of the orbit, which we
wanted to separate. Thus, dropping this irrelevant factor, we can write the generating
functional for gauge field A⃗μ as

Z[ ⃗J] = ∫[dA⃗μ]Δf [A⃗μ]δ[fa(A⃗μ)] exp{i∫ dx[ℒ(x) + ⃗J
μ ⋅ A⃗μ]}

= ∫[dA⃗μ](DetMf )δ[fa(A⃗μ)] exp{i∫ dx[ℒ(x) + ⃗J
μ ⋅ A⃗μ]} . (11.35)

This is the essence of the so-called Faddeev–Popov Ansatz; we isolate and cancel
all the irrelevant integrations, introducing into the integration measure the factor of
DetMf δ[fa(A⃗μ)].

Abelian gauge theory (QED)
Consider the simplest example, QED. In this case, the infinitesimal gauge transforma-
tion is written as

Aθμ = Aμ(x) −
1
g
𝜕μθ(x) . (11.36)

For any choice of the gauge condition (11.23) linear over field Aμ(x), the matrix Mf
(11.28) is independent of field Aμ(x). Then, the Faddeev-Popov determinant is unim-
portant from a physical point of view and can be moved outside functional integral
over Aμ(x) and dropped.3 Then, we can write the generating functional as

Z[J] = ∫[dAμ]δ[f (Aμ)] exp{i∫ dx[ℒ(x) + Jμ(x)A
μ(x)]} , (11.37)

where δ[f (Aμ)] fixes the gauge, and we obtain the usual formulation of QED.

3 In terms of general case, discussed below, we can say, in QED Faddeev-Popov “ghosts” do not inter-
act with field Aμ and are irrelevant.
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11.2 Feynman diagrams for non-Abelian theory

Consider now the details of the diagram technique for non-Abelian theory. Let us
rewrite the generating functional (11.35) as

Z[ ⃗J] = ∫[dA⃗μ] exp{iSeff + i∫ dx ⃗J
μ ⋅ A⃗μ} , (11.38)

where we have rewritten the factor DetMf δ[fa(A⃗μ)] as exp ln(DetMf δ[fa(A⃗μ)]), and in-
cluded −i ln(DetMf δ[fa(A⃗μ)]) into the definition of effective action Seff. Naturally, the
presence of such a term in effective action complicates the construction of the diagram
technique. First, we shall try to write this term in amore natural and convenient form.

Faddeev–Popov “ghosts”
We can write DetMf as an exponential, using the expression

DetMf = exp[Sp lnMf ] . (11.39)

The proof of (11.39) is trivial. The equality lnDetMf = Sp lnMf is obvious for any matrix: DetMf is
represented by the product of eigenvalues ofMf , so that lnDetMf gives the sum of the logarithms of
all eigenvalues ofMf , that is, precisely Sp lnMf .

Writing the matrixMf as

Mf = 1 + L (11.40)

and expanding the logarithms, we have

exp[Sp lnMf ] = exp[Sp L −
1
2
Sp L2 + ⋅ ⋅ ⋅ + (−1)

n+1

n
Sp Ln + ⋅ ⋅ ⋅]

= exp{∫ dxLaa(x, x) −
1
2
∫ dx∫ dyLab(x, y)Lba(y, x) + ⋅ ⋅ ⋅}. (11.41)

We see that the Faddeev–Popov determinant can be represented as a loop expansion,4

as shown in Figure 11.2, where lines denote the propagators of some fictitious particles
(Faddeev–Popov “ghosts”), forming a triplet of complex scalar (spinless) fields c⃗(x).
These fields and their interactions can be described by the generating functional

DetMf = ∫[dc⃗][dc⃗
+] exp{ i∫ dxdy∑

ab
c+a (x)[Mf (x, y)]abcb(y)} . (11.42)

Here, integration is done over Grassmannian c⃗(x), c⃗+(x), as the use of common
c-number fields will lead to (DetMf )

−1! Thus, our scalar fields c⃗(x), c⃗+(x) obey Fermi

4 This expansion is similar to the loop expansion of free energy in the theory of condensedmatter [1].
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Figure 11.2

statistics, and the Faddeev–Popov “ghosts” are fermions with spin. There is no con-
tradictionwith the spin and statistics theoremhere, because these “ghosts” are purely
fictitious particles, which are introduced to the theory just “for convenience”. As their
contribution to the generating functional reduces to the loop series (11.41), there are
no diagrams with external “ghost” lines.

Gauge-fixing terms
Now, we shall transform to the exponential form the term δ[fa(A⃗μ)]. First of all, we
generalize the gauge-fixing condition, writing it as

fa[A⃗μ] = Ba(x) , a = 1, 2, 3 , (11.43)

where Ba(x) is some arbitrary function of space-time point, independent of gauge
field A⃗μ. Correspondingly, we define Δf by the condition

Δf [A⃗μ] ∫[dθ⃗(x)]δ[fa(A⃗
θ
μ) − Ba(x)] = 1 . (11.44)

Obviously, because of the independence of Ba(x) from A⃗μ, this is the same function
Δf defined in (11.26);5 in fact, there is no dependence on Ba(x) here at all. Thus, the
generating functional (11.35) can be rewritten as

Z[ ⃗J] = ∫[dA⃗μ][dB⃗](DetMf )δ[fa(A⃗μ) − Ba]

× exp{i∫ dx[ℒ(x) − ⃗Jμ ⋅ A⃗μ −
1

8πξ
B⃗2(x)]} , (11.45)

where we have included in the integrand the constant term, such as

∫[dB⃗] exp{− i
8πξ
∫ dxB⃗2(x)} , (11.46)

where ξ is an arbitrary constant coefficient, which is usually called the gauge pa-
rameter. As a result, the generating functional (11.45) differs from (11.35) by an irrel-
evant constant factor, which can be hidden into normalization. But now, using the

5 This is simply the analogue of (11.6) in the case of usual integration.
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δ-function, entering (11.45), we can lift integration over [dB⃗(x)]. Finally, taking into
account also (11.42), we obtain

Z[ ⃗J] = ∫[dA⃗μ][dc⃗][dc⃗
+] exp(iSeff[ ⃗J]) , (11.47)

where

Seff[ ⃗J] = S[ ⃗J] + Sfix + Sghost , (11.48)

where S[ ⃗J] = ∫ dx[ℒ(x) + ⃗Jμ ⋅ A⃗μ] is the usual action of our theory,

Sfix = −
1

8πξ
∫ dx{fa[A⃗μ(x)]}

2 (11.49)

is the so-called gauge fixing term, and

Sghost = ∫ dxdy∑
ab
c+a (x)[Mf (x, y)]abcb(y) (11.50)

is “ghosts” action.

The Lorentz gauge
In the Lorentz gauge, we have

fa(A⃗μ) ≡ 𝜕
μAaμ = 0 , a = 1, 2, 3 . (11.51)

Under infinitesimal gauge transformations,

U(θ) = 1 + iθ⃗(x) ⋅ τ⃗
2
+ O(θ2) , (11.52)

so that

Aaθμ = A
a
μ(x) − ε

abcθb(x)Acμ(x) +
1
g
𝜕μθ

a(x) . (11.53)

Substituting (11.53) into (11.51), we have

fa(A⃗
θ
μ) = fa(A⃗μ) − 𝜕

μ[εabcθb(x)Acμ(x) −
1
g
𝜕μθ

a(x)]

= fa(A⃗μ) + ∫ dy[Mf (x, y)]abθ
b(y) , (11.54)

where, in the last equality, we have used (11.30). Then, we see that—in this case—

[Mf (x, y)]ab =
1
g
𝜕μ[δab𝜕μ − gε

abcAcμ]δ(x − y) . (11.55)
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Now, substituting everything into (11.49) and (11.50), we obtain

Sfix = −
1

8πξ
∫ dx(𝜕μA⃗μ)

2 , (11.56)

Sghost =
1
g
∫ dx∑

ab
c+a (x)𝜕

μ[δab𝜕μ − gεabcA
c
μ]cb(x) . (11.57)

We see that now “ghosts” are interacting with the gauge field A⃗μ, which is described
by the second term in square brackets in (11.57). In similar expressions in QED, such a
term was absent.6

Let us also introduce the sources η+a , ηa for “ghost” fields ca, c
+
a and write the gen-

erating functional of gauge theory as

Z[ ⃗J, η⃗, η⃗+] = ∫[dA⃗μdc⃗dc⃗
+] exp{i∫ dx[ℒ(x) − 1

8πξ
(𝜕μA⃗μ)

2

+ c+a𝜕
μ(δab𝜕μ − gεabcA

c
μ)cb + J

a
μA

aμ + ηa+ca + ηaca+]} , (11.58)

where we redefined fields ca, c+a in an obvious way by including the factor 1/g.

Perturbation expansion
Let us write the action of our theory as

Seff = S0 + SI , (11.59)

where

S0 = ∫ dx[−
1

16π
(𝜕μA

a
ν − 𝜕νA

a
μ)

2 − 1
8πξ
(𝜕μAaμ)

2 + c+a𝜕
2ca + J

a
μA

aμ + ηa+ca + ηaca+] ,

(11.60)

and the interaction term containing fields in powers higher than two has the form

SI = ∫ dx[−
1
8π
(𝜕μA

a
ν − 𝜕νA

a
μ)gε

abcAbμAcν

− 1
16π

g2εabcεadeAbμA
c
νA

dμAeν − gca+𝜕μεabcAcμc
b] . (11.61)

The generating functional can now be written as

Z[ ⃗J, η⃗, η⃗+] = exp{iSI[
δ
iδ ⃗Jμ
, δ
iδη⃗
, δ
iδη⃗+
]}Z0A[ ⃗J]Z

0
c [η⃗, η⃗

+] , (11.62)

6 In the non-Abelian case it is also possible to choose a special, so-called axial, gauge,where “ghosts”
are completely excluded [13], but this gauge is rather inconvenient for practical calculations, due to a
very complicated form of the gauge field propagator.
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where

Z0A[ ⃗J] = ∫[dA⃗μ] exp{i∫ dx[−
1

16π
(𝜕μA

a
ν − 𝜕νA

a
μ)

2 − 1
8πξ
(𝜕μAaμ)

2 + JaμA
aμ]} , (11.63)

Z0c [η⃗, η⃗
+] = ∫[dc⃗+][dc⃗] exp{i∫ dx[ca+𝜕2ca − ηa+ca − ηaca+]} . (11.64)

These expressions allow the direct derivation of perturbation theory.We shall not give
the detailed derivation here, but limit ourselves to the summary of the main rules of
the diagram technique. Readers interested in details can find such in a number of
books, for example, [56, 53, 28, 13, 25].

Propagators
To find the propagator of field A⃗μ, we rewrite Z0A as

Z0A[ ⃗J] = ∫[dA⃗μ] exp{i∫ dx[
1
8π

δabA
a
μ(g

μν𝜕2 −
ξ − 1
ξ
𝜕μ𝜕ν)Abν + J

a
μA

aμ]}

= ∫[dA⃗μ] exp{i∫ dx[
1
2
AaμK

μν
abA

b
ν + J

a
μA

aμ]} , (11.65)

where

Kμν
ab = [g

μν𝜕2 − (1 − 1
ξ
)𝜕μ𝜕ν]δab . (11.66)

Integration over [dA⃗μ] can be performed using the well-known Gaussian integral
(10.47), which—in this case—can be written as

∫[dφ] exp[− 1
2
⟨φKφ⟩ + ⟨Jφ⟩] ∼ (DetK)−1/2 exp⟨JK−1J⟩ , (11.67)

where angular brackets denote the appropriate integrals. Application of this expres-
sion to (11.65) gives

Z0A[ ⃗J] = exp{−
i
2
∫ dxdyJaμ (x)G

μν
ab(x − y)J

b
ν (y)} , (11.68)

where

Gμν
ab(x − y) = δ

ab ∫ d4k
(2π)4

e−ik(x−y)[−(gμν − k
μkν

k2
) − ξ k

μkν

k2
] 4π
k2 + iε
. (11.69)

It is easy to check that

∫ dyKμν
ab(x − y)G

bc
νλ (y − z) = g

μ
λ δ

c
aδ(x − z) , (11.70)

so that the propagator G is the inverse of K.
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Likewise, we find

Z0c [η⃗, η⃗
+] = exp{−i∫ dxdyηa+(x)Gab(x − y)ηa(y)} , (11.71)

where

Gab(x − y) = −∫ d4k
(2π)4

e−ik(x−y)

k2 + iε
δab . (11.72)

This directly corresponds to the fact that “ghosts” are scalar particles with zero mass
(obeying Fermi statistics).

Finally, we have:
1. the propagator of massless vector bosons

iΔabμν (k) = −iδab[gμν − (1 − ξ )
kμkν
k2
] 4π
k2 + iε
, (11.73)

denoted in diagrams by a wave-like line;
2. the propagator of Faddeev–Popov “ghosts”

iΔab(k) = −iδab
4π

k2 + iε
, (11.74)

which is denoted by a dashed line with an arrow (a “ghost” is different from an
“antighost”).

Elementary vertices
In non-Abelian gauge theories, there are two types of self-interactions, which can be
written as

εμa(k1)ε
ν
b(k2)ε

λ
c(k3)Γ

abc
μλν (k1, k2, k3) , (11.75)

εμa(k1)ε
ν
b(k2)ε

λ
c(k3)ε

ρ
d(k4)Γ

abcd
μλνρ (k1, k2, k3, k4) , (11.76)

where we also explicitly show the corresponding polarization vectors. The Feynman
rules are derived directly from (11.61), (11.62). In momentum representation, the first
term in (11.61) can be written as

1
3!
Aaμ(k1)A

bν(k2)A
cλ(k3)Γ

abc
μνλ (k1, k2, k3) . (11.77)

The vertex part Γabcμνλ should be completely antisymmetric with respect to permutations
of fields A. The structure related to SU(2) gauge group is already fixed:

Γabcμνλ (k1, k2, k3) = ε
abcΓμνλ(k1, k2, k3) , (11.78)
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whereas the Lorentzian (relativistic) structure of this function can be obtained as fol-
lows: From (11.61), it is clear that Γμνλ(k1, k2, k3) consists of terms, such as kμgνλ. A pre-
cise combination of these terms can be established from the requirement of antisym-
metry of Γμνλ(k1, k2, k3), with respect to permutations of the indices: μ, ν, 1, 2, et cetera,
taking into account the total antisymmetry of the tensor εabc. Thus, we find

iΓabcμνλ = igε
abc[(k1 − k2)λgμν + (k2 − k3)μgνλ + (k3 − k1)νgμλ] (11.79)

where k1 + k2 + k3 = 0. The corresponding diagram for a “triple” vertex is shown in
Figure 11.3.

Figure 11.3

Likewise, we can find the vertex of “quartic” interaction of the gauge field correspond-
ing to the second term in (11.61):

iΓabcdμνλρ = ig
2[εabeεcde(gμλgνρ − gνλgμρ) + ε

aceεbde(gμνgλρ − gλνgμρ)

+ εadeεcbe(gμλgρν − gρλgμν)], (11.80)

which is expressed by the diagram in Figure 11.4. Here, k1 + k2 + k3 + k4 = 0.

Figure 11.4

For the vertex connecting the “ghosts” and gauge fields with polarization vector εμ(q),
we have

iΓabcμ = igε
abck2μ, (11.81)
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Figure 11.5

where k2 = k1 + q. This vertex is shown in Figure 11.5; it is antisymmetric over the
isospin indices. Let us recall that “ghost” lines enter diagrams only in loops. Besides
each diagram containing a closed loop of the gauge field, there is a corresponding
diagram with a closed “ghost” line. As in the case of the usual fermion fields, each
“ghost” loop can be multiplied by an additional (−1).

The propagator of gauge field (11.69) depends on the gauge parameter ξ . Its value
is chosen for the convenience of explicit calculations in solving concrete problems. For
example, ξ = 1 corresponds to the so-called t’Hooft–Feynman gauge, whereas ξ = 0
gives the Landau gauge.

The introduction of fermions into the Yang–Mills theory is not difficult: it is suffi-
cient to add to the Lagrangian gauge invariant terms, such as

ℒf = ψ̄(iγ
μDμ −m)ψ (11.82)

where

Dμψ = 𝜕μψ − igT
aAaμψ. (11.83)

Here, Ta is the gauge group generator in the given representation. For example, if ψ
is a SU(2) doublet, we have Ta = τa/2. Thus, we obtain additional Feynman rules for
fermions (with group indices n,m, . . .):
1. the fermion propagator has the standard form

iΔmn(k) = δnm
1

γμkμ −m + iε
(11.84)

and is expressed by continuous line;
2. the fermion-gauge field interaction vertex has the form

iΓαμnm = ig(T
a)nmγ

μ. (11.85)

This is shown diagrammatically in Figure 11.6.
The structure of the diagram technique described above is also conserved for the

other gauge groups, such as the very important SU(3)describing the color symmetry of
quarks. The only difference is in the dimensionality of the corresponding irreducible
representations and the explicit form of generator matrices.



11.2 Feynman diagrams for non-Abelian theory | 317

Figure 11.6

So far, we have already studied the basics of the modern theory of quantum gauge
fields, which forms the foundations of the standard model of elementary particles.
Now, we will begin our discussion on specific models of interactions. However, some
conceptual problems, which we have discussed from the beginning, still remain. In
particular—so far—it is still unclear howwe should deal with the problem of themass-
less nature of Yang–Mills fields, which is in striking contrast to experiments, which
clearly demonstrate that the only long-range interaction in nature (except gravitation)
is electromagnetism. In the next chapter, we shall see how this problem is solved in
the unified theory of weak and electromagnetic interactions. The remarkable fact is
that this solution is completely based on the ideas and methods originating from the
modern theory of condensed matter.

Ludwig Dmitrievich Faddeev
(1934–2017) was a Soviet and
Russian theoretical physicist and
mathematician. He is known for
the discovery of the Faddeev
equations in the theory of the
quantum mechanical three-body
problem and for the develop-
ment of path integral methods in
the quantization of non-Abelian
gauge field theories, including
the introduction (with Victor

Popov) of Faddeev–Popov ghosts. He led the Leningrad School, in which he, along
with many of his students, developed the quantum inverse scattering method for
studying quantum integrable systems in one space and one time dimension. Faddeev
was born in Leningrad to a family of mathematicians. His father, Dmitry Faddeev,
was a well known algebraist, professor of Leningrad University and member of the
Russian Academy of Sciences. His mother, Vera Faddeeva, was known for her work
in numerical linear algebra. Faddeev attended Leningrad University, receiving his
undergraduate degree in 1956. He enrolled in physics, rather than mathematics, to
be independent of his father. Nevertheless, he received a solid education in mathe-
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matics as well, due to the influence of V. A. Fock and V. I. Smirnov. From 1976 to 2000,
Faddeev was head of the St. Petersburg Department of Steklov Institute of Mathe-
matics of Russian Academy of Sciences. He was an invited visitor to the CERN Theory
Division for the first time in 1973 andmade several further visits there. Faddeev was a
member of the Russian Academy of Sciences since 1976, and was amember of a num-
ber of foreign academies, including the US National Academy of Sciences, the French
Academy of Sciences, the Austrian Academy of Sciences, the Brazilian Academy
of Sciences, the Royal Swedish Academy of Sciences, and the Royal Society. He re-
ceived numerous honors, including USSR State Prize (1971), Dannie Heineman Prize
(1975), Dirac Prize (1990), Max Planck Medal (1996), Demidov Prize (2002), Henri
Poincare Prize (2006), and Lomonosov Gold Medal (2013). He was the president of
the International Mathematical Union (1986–1990).



12 The Weinberg–Salam model

12.1 Spontaneous symmetry-breaking and the Goldstone
theorem

As we have already noted, the significant progress in modern theory of elementary
particles was achieved using some fundamental concepts of the modern theory of the
condensed state.Most importantwas the introduction into quantumfield theory of the
idea of the possibility of phase transitions, when the symmetry of the ground state be-
comes lower than the symmetry of the Lagrangian. This allowed the effective solution
of the problemofmass generation for gauge fieldswithout breaking local gauge invari-
ance, directly leading to quite rich and nontrivial foundations of the Standard Model.
Moreover, the picture of possible “vacuum” phase transitions form the basis of mod-
ern cosmology and physics of matter at very high densities and temperatures. Here,
we shall limit ourselves to a presentation of someof themain ideas,which played a de-
cisive role during the construction of the unified theory of weak and electromagnetic
interactions.1

Let us again begin with the simplest example of the real scalar self-interacting
field φ(x), described by the Lagrangian

ℒ =
1
2
(𝜕μφ)

2 − V(φ) = 1
2
(𝜕tφ)

2 −
1
2
(∇φ)2 − V(φ) , (12.1)

whereV(φ) is some functionof field invariants. Thefirst term in this expressionmaybe
considered to be kinetic energy density, and all the others represent potential energy
density.

From (12.1), we obtain the equations of motion

𝜕2μφ = −
𝜕V(φ)
𝜕φ

or

𝜕2tφ − ∇
2φ = −𝜕V(φ)

𝜕φ
. (12.2)

The character of the solutions of these field equations depends essentially on the
form of “potential energy” of self-interaction V(φ). Consider first the case of the tra-
ditional field theory, which was analyzed before. Let V(φ) be of the form shown in
Figure 12.1(a). Then, our system has the “stable equilibrium” state with φ = 0 and can
oscillate around it. Close enough to this equilibrium state, we can always write

V(φ) ≈ μ
2

2
φ2 , (12.3)

1 In this chapter we mainly follow [5].

https://doi.org/10.1515/9783110648522-012



320 | 12 The Weinberg–Salam model

Figure 12.1

where μ2 = ( 𝜕
2V
𝜕φ2 )φ=0, so that (12.2) reduces to

𝜕2μφ + μ
2φ = 0 , (12.4)

that is, to the Klein–Gordon equation. If we are looking for the plane-wave solution of
this equation φ ∼ eikx from (12.4), the usual relativistic dispersion of a particle with
mass μ: k20 = k2 + μ2 immediately follows. The higher-order terms of expansion of
V(φ) lead to nonlinear terms in field equations, describing interactions of these plane
waves or particle scattering. Let us limit ourselves to

V(φ) = 1
2
μ2φ2 +

1
4
λφ4 . (12.5)

There is no cubic term here, as V(φ) should be symmetric with respect to φ→ −φ, so
that there is always aminimum of V(φ) atφ = 0. Limitation to powers not higher than
∼φ4 is of conceptual importance, as the coupling constant λ > 0 is dimensionless, and
the theory is renormalizable. Thus, in this case, we are dealing with the well-known
φ4-theory.

Consider now the case of μ2 < 0. This can seem strange, as from the naïve point
of view, we are dealing with imaginary mass. However, we need to be more accurate.
Now φ = 0 is no longer a stable equilibrium, as the potential energy has the form
shown in Figure 12.1(b).2 We now see two stable equilibrium states, corresponding to

φ = η = ±√|μ|
2

λ
. (12.6)

Expanding V(φ) around points (12.6) up to the quadratic terms, we have

V(φ) = μ
2η2

4
− μ2(φ − η)2 = μ

2η2

4
− μ2(δφ)2 , (12.7)

2 The situation here is completely analogous to the Landau theory of phase transitions, where μ2 ∼
T − Tc, so that μ2 < 0 for T < Tc, that is, below the phase transition temperature.
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where δφ = φ − η and −μ2(δφ)2 > 0, because of μ2 < 0. Now, we see that field equa-
tions (12.2) will have plane-wave solutions for δφ with wave-vector k, satisfying the
condition (determining dispersion) k2 = 2|μ|2, so that these waves will correspond to
particles with real positivemassm = √2|μ|2.

In fact, here we are dealing with a phase transition in quantum field theory. The
system chooses one of two equilibrium positions in Figure 12.1(b), and the field oscil-
lates close to this new ground state.

In quantum mechanics the system with two such minima of potential energy does not only oscillate
around the singleminimum, because of the possibility of quantum tunneling between these two equi-
libriumpositions. Thequantumstate is split in two: the symmetric and the antisymmetric (with respect
to these minima) states. The ground state corresponds to the symmetric state [35]. Thus, in quantum
mechanics the symmetry of the ground state is in complete agreement with the symmetry of the La-
grange function (in our case even inφ). Quantum field theory, in this sense, is reminiscent of classical
mechanics. Actually, the probability of quantum tunneling transition becomes less with the growth
of the number of degrees of freedom, and becomes zero in the case of their number being infinite. In
fact, let us consider the field in a finite volume Ω. Then, the Lagrange function is L = ∫ d3xℒ ∼ ℒΩ,
so that the corresponding kinetic energy ∼ Ωφ̇2, whereas the potential is ∼ ΩV(φ). Thus, our problem
is equivalent to the tunneling of a particle with mass M ∼ Ω through the potential barrier of width
|x| ∼ η and height 𝒱 ∼ Ωm2η2. The probability of such tunnelling transition [35] is of the order of
exp(−√2M𝒱 |x|) ∼ exp(−Ωmη2) → 0 for Ω → ∞. We can say that our field in the ground state is rep-
resented by a macroscopic “string” or “rope” of infinite length, lying in the left or right valley of the
potential in Figure 12.1(b), along the whole valley, which is perpendicular to the plane in the figure.
Naturally, such an object cannot tunnel between the valleys of the potential.

In quantum field theory the ground state is called a vacuum. Thus, we have to choose
the single ground state: one definite vacuum. The presence of another vacuum (phys-
ically equivalent to the first one) is now irrelevant. Twominima of V(φ) correspond to
two separate vacuums of the theory, which are orthogonal to each other, two orthog-
onal Hilbert spaces of excited states, two separate “worlds”.

Traditional quantum field theory, corresponding to the potential V(φ) shown in
Figure 12.1(a), is constructed, as we know, as follows: The field is represented by the
sum of the oscillators, which are described by the creation and annihilation operators
a† and a, and the vacuum is the state without the particles a|0⟩ = 0, so that

⟨0|φ|0⟩ = 0 . (12.8)

In the case of potential V(φ), shown in Figure 12.1(b), the sum over the oscillators
represents not the field φ itself, but its deviation from the equilibrium δφ = φ − η. In
this case,

⟨0|φ|0⟩ = η , (12.9)

that is, the vacuum average of the field operator is nonzero: the system acquires the
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Bose-condensate3 of particles corresponding to field φ. The initial Lagrangian (12.1),
(12.5) is symmetric with respect to φ → −φ. However, for μ2 < 0, it leads to a non-
symmetric ground state (vacuum), which is expressed by (12.9). Excitations above this
vacuum also do not possess the symmetry of the initial Lagrangian, as V(φ) from Fig-
ure 12.1(b) is nonsymmetric with respect to φ = η. This phenomenon in quantum field
theory is called spontaneous symmetry-breaking, whereas in condensedmatter theory
this is thewell-known situation of phase transition into the state with lower symmetry.

The mechanism of mass generation
The existence of the nonzero vacuum average of a scalar field can automatically lead
to the generation of mass of an initially massless particle, which interacts with this
field. Consider as an example Dirac’s field of massless particles with spin 1/2. The La-
grangian of this field has the form

ℒ = iψ̄L𝜕̂ψL + iψ̄R𝜕̂ψR , (12.10)

where 𝜕̂ = γμ𝜕μ, and we introduced “left” and “right” components of bispinor ψ:

ψR =
1
2
(1 + γ5)ψ , ψL =

1
2
(1 − γ5)ψ , ψL + ψR = ψ . (12.11)

Now,we can introduce the interaction of fieldsψL,ψR with our scalar fieldφ, breaking
the symmetry of the ground state. Let us add to the Lagrangian (12.10) the term

ℒint = −ϰ[ψ̄LψR + ψ̄RψL]φ , (12.12)

where an expression in square brackets represents the only scalar, which can be con-
structed from ψL and ψR, whereas ϰ is a dimensionless coupling constant (so that
this interaction is renormalizable). Let us replace field φ in (12.12) by its vacuum aver-
age η; this means that we are not taking into account the particle creation processes
for field φ. Consequently, we have

ℒint = −ϰη(ψ̄LψR + ψ̄RψL) = −ϰηψ̄ψ , (12.13)

so that the sum of (12.10) and (12.13) gives

ℒ = iψ̄𝜕̂ψ −mψ̄ψ , (12.14)

which corresponds to the Dirac Lagrangian for fermions with mass

m = ϰη . (12.15)

3 Compare with Bogolyubov’s approach to nonideal Bose gas.



12.1 Spontaneous symmetry-breaking and the Goldstone theorem | 323

Thus, we can start with the model of initially massless “left” and “right” fermions,
which interact with scalar field φ, undergoing the phase transition and transforming
“left” particles into “right” ones and vice versa, and leading to the generation ofmass.

Above, we considered the simplest example of a Lagrangian with discrete sym-
metry with respect to φ→ −φ. Let us now consider the case of continuous symmetry-
breaking. To do this, we introduce the complex scalar field φ, which is equivalent to
two real fields φ1, φ2 related by (see Chapter 2)

φ(x) = 1
√2
[φ1(x) + iφ2(x)]. (12.16)

The Lagrangian of this field can be written as

ℒ =
1
2
(𝜕μφ1)

2 +
1
2
(𝜕μφ2)

2 − V(φ1,φ2) = (𝜕μφ)(𝜕
μφ∗) − V(φ1,φ2) . (12.17)

Let us assume that the potential V(φ1,φ2) depends only on the absolute value of φ,
that is, on ρ2 = φ2

1 +φ
2
2 = 2φ

∗φ, so that V = V(ρ). This is equivalent to the requirement
of an additional (“internal”) symmetry of the theory with respect to transformations
of group U(1):

φ→ eiαφ (12.18)

or, which is just the same, the invariance of the Lagrangian with respect to rotations
in an “isotopic” plane:

φ1 → φ1 cos α − φ2 sin α ,
φ2 → φ1 sin α + φ2 cos α . (12.19)

We have seen (see Chapter 2), that this symmetry determines the conservation of some
charge, such as electric and barion. Fields φ and φ∗ have the opposite values of this
charge.

Consider now the potential V(ρ), shown in Figure 12.2, which can bemodeled, for
example, by

V(ρ) = 1
2
μ2ρ2 + 1

4
λρ4 (12.20)

with μ2 < 0. Writing the field as (modulus-phase representation)

φ(x) = 1
√2

ρ(x)eiϑ(x) , (12.21)

where ρ(x) and ϑ(x) are real functions, we can see that V(ρ) has the minimum at ρ =
η = √ |μ

2|
λ , that is, for field values

φ = 1
√2

ηeiα (12.22)
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Figure 12.2

with arbitrary α! Here, we have continuous degeneracy of the ground state with differ-
ent values of α. Each value of α corresponds to its own vacuum (ground state) with the
same (minimal) energyV(η). All these vacuums are physically equivalent, butwehave
to choose the only one, for example, corresponding to α = 0, and the Hilbert space of
states associated with this single vacuum, where we already have no U(1) symmetry
(12.18), (12.19).
Let us see which particles are describe by the Lagrangian (12.17). Using (12.21), we can
rewrite the Lagrangian as

ℒ =
1
2
(𝜕μρ)

2 − V(ρ) + ρ
2

2
(𝜕μϑ)

2 . (12.23)

If we limit ourselves in (12.23) to terms which are quadratic in a field, we have to ex-
pand V(ρ) around ρ = η in powers of ρ󸀠 = ρ − η, and in third term of (12.23) replace ρ
by η. As a result, we obtain the free-particle Lagrangian as

ℒ = const + 1
2
(𝜕μρ
󸀠)
2
−
m2

2
ρ󸀠2 + η

2

2
(𝜕μϑ)

2 , (12.24)

wherem2 = 2|μ2|. From here, we immediately obtain the equations of motion

(𝜕2μ +m
2)ρ󸀠 = 0 , 𝜕2μϑ = 0 . (12.25)

Thus,we obtained twoneutral (real) fields ρ󸀠 and ϑ, where the first one describes parti-
cles with massm, whereas the second one corresponds tomassless particles. In equa-
tion (12.25), we have dropped the terms of higher orders describing the interactions of
these particles.
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The appearance of massless particles due to the spontaneous breaking of con-
tinuous symmetry is the essence of the Goldstone theorem; these particles are called
Goldstones.4

It is not difficult to generalize the Goldstone theorem to the case of higher symme-
tries. Considerφ(x)withn components. Then, group transformations canbewritten as

Φ⃗ = SΦ⃗󸀠 , (12.26)

where Φ⃗ and Φ⃗󸀠 are columns with n components (φ1, . . . .φn), and S is an n × n-matrix.
Let the potential V(Φ⃗) be dependent only on ρ2 = φ2

1 + ⋅ ⋅ ⋅ +φ
2
n and suppose that there

are no other invariants. Consequently,

ℒ =
1
2
(𝜕μΦ⃗)

2 − V(ρ) . (12.27)

In this case, we can again make the transformation to “polar” coordinates for field
Φ⃗, when the field is determined by the modulus ρ(x) and n − 1 “angular” variables
(phases) αi(x) (i = 1, 2, . . . , n − 1). As a result, the Lagrangian is written as

ℒ =
1
2
(𝜕μρ)

2 +
ρ2

2

n−1
∑
i,k=1

θik(αi)𝜕μαi𝜕μαk − V(ρ) . (12.28)

Assume V(ρ) having its minimum at ρ = η, i. e., ⟨0|ρ|0⟩ = η. The angular components
αi can be fixed by the condition ⟨0|αi|0⟩ = 0 (the choice of vacuum) and by θik for
αi = 0 having the form θik(0) = δik . Then, again introducing ρ󸀠 = ρ − η, we have

ℒ = const + 1
2
(𝜕μρ
󸀠)
2
−
m2

2
ρ󸀠2 + 1

2
η2

n−1
∑
i=1
(𝜕μαi)

2 . (12.29)

We see that particles corresponding to fields αi have zeromasses, so that there are now
n − 1 Goldstones. This is the general form of the Goldstone theorem.

12.2 Gauge fields and the Higgs phenomenon

It may seem that the appearance of Goldstone particles with zero mass creates addi-
tional difficulties, as our main task is actually to solve the problem of zero mass of

4 In condensed matter theory, the situation is just the same. For example, phase transition into the
ferromagnetic state breaks the continuous symmetry of a rotation group—the Heisenberg exchange
Hamiltonian is invariant to rotations (it contains scalar products of spins on lattice sites), whereas in
the ground state we have a special direction: that of the vector of spontaneous magnetization (sym-
metry is lower). Analogue of Goldstones, in this case, are acoustic spin waves.
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gauge bosons. But this is not the case. The unification of the main idea of gauge the-
ories with the concept of spontaneous symmetry-breaking allows us to formulate the
natural strategy for the construction of realistic models of interacting particles.

Consider the interaction of scalar field φ, breaking symmetry, with gauge field Aμ
in its simplest Abelian (Maxwell) variant. The Lagrangian invariant with respect to
local transformations of U(1) has the form5

ℒ = [(𝜕μ − ieAμ)φ
∗][(𝜕μ + ieAμ)φ] − 1

4
FμνF

μν − V(φ,φ∗) , (12.30)

where Fμν = 𝜕μAν − 𝜕νAμ,

V(φ,φ∗) = μ2φ∗φ + λ(φ∗φ)2 , μ2 < 0 . (12.31)

Let us again introduce modulus-phase representation of field φ:

φ(x) = 1
√2

ρ(x)eiϑ(x) . (12.32)

But now, we can consider (12.32) as a local gauge transformation of U(1):

φ(x) = eieχ(x)φ󸀠(x) , (12.33)

where

χ(x) = 1
e
ϑ(x) , φ󸀠(x) = 1

√2
ρ(x) . (12.34)

Then, the covariant derivative, entering (12.30), is transformed as follows:

Dμφ = (𝜕μ + ieAμ)e
ieχφ󸀠 = eieχ(𝜕μ + ie𝜕μχ + ieAμ)φ

󸀠 = eieχ(𝜕μ + ieA
󸀠
μ)φ
󸀠 , (12.35)

where

A󸀠μ = Aμ + 𝜕μχ (12.36)

or, taking into account (12.33), (12.34),

(𝜕μ + ieAμ)φ =
1
√2

eiϑ(𝜕μ + ieA
󸀠
μ)ρ , (12.37)

where

A󸀠μ = Aμ +
1
e
𝜕μϑ . (12.38)

5 Later in this chapter we use the Heaviside system of units.
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As a result, our Lagrangian is rewritten as

ℒ =
1
2
[(𝜕μ − ieA

󸀠
μ)ρ][(𝜕

μ + ieA󸀠μ)ρ] − V(ρ2) − 1
4
FμνF

μν

=
1
2
(𝜕μρ)

2 +
e2

2
ρ2A󸀠μA󸀠μ − V(ρ

2) −
1
4
FμνF

μν . (12.39)

We see that the phase component ϑ of field φ disappeared from the Lagrangian (so
that the possibility of Goldstone also disappeared); it “gauged-out” into a redefined
vector-potential.

Let us expand (12.39) in powers of deviation ρ󸀠 = ρ − η from vacuum average η,
limiting ourselves only to quadratic terms. As a result, we get

ℒ =
1
2
(𝜕μρ
󸀠)
2
−
m2

2
ρ󸀠2 − 1

4
FμνF

μν +
1
2
e2η2A󸀠μA󸀠μ + const , (12.40)

wherem2 = 2|μ2|. This Lagrangian describes a pair of free fields: the field ρ󸀠 of particles
with massm and the vector field A󸀠μ with mass

mA = eη , (12.41)

which is due to the presence of a nonzero vacuumaverage of the scalar field. The equa-
tions of motion for these fields are

𝜕2μρ
󸀠 +m2ρ󸀠 = 0 , 𝜕μF

μν +m2
AA
󸀠ν = 0 . (12.42)

The second equation here has the form of a Proca equation.
Thus, in the initial Lagrangian, we had the two-component field φ and the vector

Maxwell (massless) field Aμ. For μ2 > 0, retaining only terms quadratic over fields, we
obtain the Lagrangian of two free fields; one describing the chargedparticleswith spin
0, whereas another corresponding to a photon with zero mass and two polarizations,
that is, four particles in total. For μ2 < 0, the total number of particles remains the
same (conservation of the degrees of freedom), but their character has changed: now
we have one neutral scalar field with spin 0 and three independent components of a
massive vector boson with spin 1. Initially, we had QED of a scalar field, whereas after
the reconstruction of the field, we have a “completely different” theory. However, it
should be stressed that all transformations were done exactly, and the initial gauge
invariance of the theory is conserved (and was used during the derivation), despite
the appearance of gauge fieldmass. Renormalizability of the theory is also conserved.

The appearance of the vector gauge field mass due to its interaction with scalar
field, breaking the symmetry of the ground state, is called the Higgs phenomenon,
whereas field ρ is usually called a Higgs field, and the corresponding scalar particles
are called Higgs bosons.
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Peter Higgs (born 1929) is a British theoreti-
cal physicist and Nobel Prize laureate. In the
1960s, he proposed that broken symmetry could
explain the origin of mass of elementary parti-
cles in general and of theW and Z bosons, in par-
ticular, for the case of electroweak interactions.
This so-called Higgs mechanism, which was pro-
posed by several physicists in addition to Higgs
at about the same time, predicts the existence of
a new particle, the Higgs boson, the detection of
whichbecameoneof the great goals of physics. In
2012, CERN announced its discovery at the Large

Hadron Collider.The Higgs mechanism is generally accepted as an important ingredi-
ent in the Standard Model of particle physics. Higgs was elected Fellow of the Royal
Society (FRS) in 1983. In addition to having been awarded the Nobel prize, Higgs has
been honored with a number of awards in recognition of his work, including the 1981
HughesMedal from the Royal Society, the 1984 RutherfordMedal from the Institute of
Physics, the 1997 Dirac Medal and Prize for outstanding contributions to theoretical
physics, the 1997 High Energy and Particle Physics Prize by the European Physical
Society, and the 2004 Wolf Prize in Physics. Higgs is an atheist. He was displeased
that the Higgs particle is nicknamed the “God particle”. Usually this nickname for the
Higgs boson is attributed to Leon Lederman, the author of the book “The God Parti-
cle”, but the name is the result of the suggestion of Lederman’s publisher; Lederman
had originally intended to refer to it as the “goddamn particle”.

Remarks on the Ginzburg–Landau theory

Let us show that our theory is the precise analogue of theGinzburg–Landau theory of superconducting
transition, which was formulated long before the discovery of the Higgs phenomenon.
Consider the static case of the Higgs model, when 𝜕0φ = 0, 𝜕0Aμ = 0. The electromagnetic field will
be considered in a Coulomb gauge: Aμ = (φ = 0,A), ∇ ⋅ A = 0. Then, the Lagrangian (12.30) is written
as

ℒ = − 1
2
[(∇ − ieA)φ][(∇ + ieA)φ∗] − 1

2
m2|φ|2 − 1

4
λ|φ|4 − 1

4
(∇ × A)2 . (12.43)

Consequently,

F = −ℒ = 1
4
(∇ × A)2 + 1

2
|(∇ − ieA)φ|2 + 1

2
m2|φ|2 + 1

4
λ|φ|4 (12.44)

is precisely the free-energy density of Ginzburg–Landau theory [37] if we putm2 = a(T −Tc), where Tc
is the temperature of the superconducting transition.6 In this case, we have m2 > 0 for temperatures

6 In contrast with standard notations [37], here we put the electron mass and velocity of light equal
to 1. More importantly, in the Ginzburg–Landau theory e→ 2e in (12.44), in accordance with the value
of the Cooper pair charge. But these slight differences are irrelevant for our discussion.
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T > Tc andm2 < 0 for T < Tc. For T < Tc, the minimum of F is at

|φ|2 = −m
2

λ
> 0 , (12.45)

which defines the equilibrium value of the superconducting order parameter, which is the precise
analogue of the vacuum average of a Higgs field introduced above (ground state of the Higgs field,
T = 0).
The Ginzburg–Landau free energy is invariant with respect to a gauge transformation:

φ→ eiΛ(x)φ , A→ A + 1
e
∇Λ(x) , (12.46)

and the corresponding conserved current is

j = − ie
2
(φ∗∇φ − φ∇φ∗) − e2|φ|2A . (12.47)

For T < Tc and for the spatially homogeneous order parameter φ, only the second term in (12.47)
contributes

j = e
2m2

λ
A , (12.48)

which is the so-called London equation. If we also take into account Maxwell equations ∇ × H = 4πj,
∇ ⋅H = 0 and calculate curl of both sides of equation (12.48), we obtain the equation for the magnetic
field inside the superconductor:

∇2H = k2H , k2 = − e
2m2

λ
> 0 , (12.49)

which describes theMeissner effect: the exclusion of the magnetic field from interior of the supercon-
ductor. The field is exponentially decreasing inside the superconductor on characteristic length |k|−1

(penetration depth) [37].
Finally, from (12.49), it follows that ∇2A = k2A, which is an analogue of the relativistic equation ◻Aμ =
−k2Aμ: the “photon” inside the superconductor acquires “mass” |k|, which is equivalent to the Higgs
effect. Thus, theHiggsmodel is the relativistic analogue of the Ginzburg–Landau theory, and theHiggs
vacuum is similar to the ground state of a superconductor.

Vitaly Lazarevich Ginzburg (1916–2009) was a So-
viet and Russian theoretical physicist, astrophysicist,
Nobel laureate, a member of the Soviet and Russian
Academies of Sciences and one of the most active de-
fendants of science in modern Russia. He was the suc-
cessor to Igor Tamm as head of the Department of
Theoretical Physics of the Lebedev Physical Institute
in Moscow, and an outspoken atheist. He was born in
Moscow in 1916 and graduated from the Physics Faculty
of Moscow State University in 1938. Among his achieve-
ments are a phenomenological theory of superconduc-
tivity, the Ginzburg–Landau theory (developed with Lev

Landau in 1950), the theory of electromagnetic wave propagation in plasmas, a the-
ory of the origin of cosmic radiation, and various aspects of the theory of phase transi-
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tions. He was an active proponent of the idea of high-temperature superconductivity
long before it was discovered experimentally in cuprates. He was awarded the Nobel
prize in 2003 for his part in the development of Ginzburg–Landau theory of supercon-
ductivity, which actually forms the basis of many modern theories in physics, such as
the Standard Model of elementary particles. In late 1940s and early 1950s, he also
worked in Soviet atomic project, contributing some major ideas on hydrogen bomb
design (the use of LiD). Ginzburg was an atheist and criticized clericalism in the press
and in his books on religion and science. His regular seminar in Lebedev Institute had
attracted the scores of theorists for more than 40 years. In addition to his Nobel prize,
he had numerous scientific awards, such as Stalin (1953) and Lenin (1966) prizes,
Wolff prize in physics (1994), and Lomonosov Gold Medal of the Russian Academy of
Sciences (1995). He was also a member of a number of foreign Academies, including
the Foreign membership of the Royal Society (1987).

12.3 Yang–Mills fields and spontaneous symmetry-breaking

Let us now consider the Higgs mechanism in non-Abelian gauge theories. First of all,
we shall recall the main facts related to Yang–Mills fields, using the example of the
SU(2) gauge group.

Interaction of scalar field φ with Yang–Mills field A⃗μ (the arrow denotes a vector
in isotopic space) is described by the replacement of the usual derivative 𝜕μφ by the
covariant derivative

Dμφ = (𝜕μ − igT⃗ ⋅ A⃗μ)φ , (12.50)

where T⃗ is the gauge group generator; for SU(2) we have T⃗ = 1
2 τ⃗.

TheGauge invariance of the Lagrangianputs constraints on the field A⃗μ. Ifφ corre-
sponds to some isotopicmultiplet, its transformationunder rotations in isotopic space
can be written as

φ = Sφ󸀠 , (12.51)

where the operator S depends on the three parameters (angles) of the rotation vector
ω⃗(x). As a result, we write the covariant derivative as

Dμφ = S𝜕μφ
󸀠 + (𝜕μS)φ

󸀠 − igT⃗ ⋅ A⃗μSφ
󸀠

= S(𝜕μ + S
−1𝜕μS − igS

−1T⃗ ⋅ A⃗μS)φ
󸀠 . (12.52)

This expression should be the same as

Dμφ = S(𝜕μ − igT⃗ ⋅ A⃗
󸀠
μ)φ
󸀠 , (12.53)
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so that we have to require

T⃗ ⋅ A⃗󸀠μ = S
−1(T⃗ ⋅ A⃗μ)S +

i
g
S−1𝜕μS . (12.54)

For small ω⃗, we have

S = 1 + iT⃗ ⋅ ω⃗ . (12.55)

Then,

S−1(T⃗ ⋅ A⃗μ)S = (1 − iT⃗ ⋅ ω⃗)T⃗ ⋅ A⃗μ(1 + iT⃗ ⋅ ω⃗)

= T⃗ ⋅ A⃗μ − i[T⃗ ⋅ ω⃗, T⃗ ⋅ A⃗μ] = T⃗ ⋅ Aμ + [ω⃗ × A⃗μ] ⋅ T⃗ , (12.56)

where we have used [Ti,Tj] = iεijkTk: the commutation relations for generators of
SU(2). Taking into account S−1𝜕μS = iT⃗ ⋅ 𝜕μω⃗, (12.54) and (12.55) give the general trans-
formation rule

A⃗󸀠μ = A⃗μ + [ω⃗ × A⃗μ] −
1
g
𝜕μω⃗ , (12.57)

so that, in addition to gradient transformation, the Yang–Mills field is rotated in iso-
topic space.

The tensor of the Yang–Mills fields has the form

F⃗μν = 𝜕μA⃗ν − 𝜕νA⃗μ + g[A⃗μ × A⃗ν] . (12.58)

Using (12.57), we can easily show that under infinitesimal rotations in isotopic space,
F⃗μν is transformed like an isovector:

F⃗󸀠μν = F⃗μν + [ω⃗ × F⃗μν] . (12.59)

The Yang–Mills Lagrangian is written as

ℒYM = −
1
4
F⃗μν ⋅ F⃗

μν , (12.60)

which is invariant under local gauge group transformations.
Consider now the Yang–Mills field interacting with scalar Higgs field breaking

symmetry. Let the Higgs field ϕ be an isospinor having two complex (four real) com-
ponents

ϕ = (φ1
φ2
) , (12.61)

which transform under rotations in isotopic space as

ϕ = Sϕ󸀠 , S = e
i
2 gτ⃗ω⃗(x) . (12.62)

For small ω⃗, we have S = 1 + igω⃗τ⃗/2.
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The Lagrangian for fields ϕ and A⃗μ is written as

ℒ = (Dμϕ)(D
μϕ)∗ − V(ϕ) − 1

4
F⃗μνF⃗

μν , (12.63)

where

Dμ = 𝜕μ − ig
τ⃗
2
A⃗μ , (12.64)

V(ϕ) = μ2ϕ∗ϕ + λ(ϕ∗ϕ)2 . (12.65)

Then, for μ2 < 0, (12.65) has a minimum at

ϕ∗ϕ = 1
2
η2 , η2 = |μ

2|
λ
. (12.66)

The vacuum state has infinite degeneracy, but we have to choose a single definite vac-
uum (break symmetry), for example, taking

⟨0|ϕ|0⟩ = 1
√2
(
0
η
) , (12.67)

where η is real and positive. Let us transform to “polar” coordinates:

ϕ(x) = ei
τ⃗
2 ϑ⃗(x)ϕ󸀠(x) = (cos ϑ

2
+ i(n⃗ ⋅ τ⃗) sin ϑ

2
)ϕ󸀠(x) , (12.68)

where

ϕ󸀠(x) = 1
√2
(

0
ρ(x)
) , ϑ⃗ = n⃗ ϑ, (12.69)

and n⃗ is unity vector in the direction of the rotation axis in isospace.

Equations (12.68) and (12.69) define the parameterization of isospinor ϕ = ( φ1φ2 ) by four real functions
ρ, ϑ, θ, φ, where ϑ, θ, φ are polar angles determining the direction of vector n⃗ in isospace:

ϕ = 1
√2
(

iρ sin ϑ
2 cos θe

iφ

ρ(cos ϑ
2 − i sin

ϑ
2 cos θ)
) , (12.70)

so that ϕ∗ϕ = ρ2/2, ⟨0|ρ|0⟩ = η, ⟨0|ϑ|0⟩ = ⟨0|θ|0⟩ = ⟨0|φ|0⟩ = 0.

Note that (12.68) is equivalent to (12.62) if we put ω⃗ = ϑ⃗/g. The Lagrangian is invariant
with respect to such transformations and has the form

ℒ =
1
2
(D󸀠μρ)(D

󸀠 μρ)∗ − V(ρ) − 1
4
F⃗󸀠μν ⃗F󸀠

μν
, (12.71)

where in D󸀠μ and F⃗
󸀠
μν we replaced A⃗μ → A⃗󸀠μ, which corresponds to the gauge transfor-

mation (12.57). We see that only one of the four components of the field ϕ, that is, ρ
remains in the Lagrangian; the other three have gauged out.
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Taking into account the form of the spinorϕ󸀠 = 1
√2 (

0
ρ ), we rewrite the Lagrangian

as (the prime over A⃗μ is now dropped)

ℒ =
1
2
(𝜕μρ)

2 +
g2

8
ρ2A⃗μ ⋅ A⃗μ − V(ρ) −

1
4
F⃗μνF⃗

μν , (12.72)

where

V(ρ) = 1
2
μ2ρ2 + 1

4
λρ4 . (12.73)

For small deviations from the vacuum state, making again an expansion of V(ρ) in
powers of ρ󸀠 = ρ − η and retaining only quadratic terms, we obtain

ℒ = const + 1
2
(𝜕μρ
󸀠)
2
−
m2

2
ρ󸀠2 − 1

4
F⃗0μνF⃗

0μν +
1
8
g2η2A⃗μ ⋅ A⃗μ , (12.74)

wherem2 = 2|μ2| and F⃗0μν = 𝜕μA⃗ν −𝜕νA⃗μ. This Lagrangian describes four free fields: the
real scalar field ρ and the triplet vector fields A⃗μ. The scalar field describes particles
with massm, and the vector field describes particles with mass

mA =
gη
2
. (12.75)

Thus, symmetry-breaking has again created masses for particles described by vector
(gauge) field A⃗μ. Gauge invariance of the theory is conserved, despite the appearance
of these masses. The total number of degrees of freedom has not changed: instead of
the three components of field ϕ (Goldstones) which “disappeared”, we got longitudi-
nal polarization components of A⃗μ. In this model, all the components of the Yang–
Mills field acquired mass.

However, to construct the realistic unified theory of weak and electromagnetic
interactions, we have to guarantee the massiveness of vector bosons, responsible for
the weak interactions (short range forces), whereas the electromagnetic field should
remain massless. This can be done by some generalization of our SU(2)-model. We
note that the invariant ϕ∗ϕ of the scalar field automatically satisfies an additional
symmetry, different from SU(2) used above. We can multiply ϕ by an arbitrary phase
factor, suchas exp[i f2λ(x)], andnothingwill change. This is the transformationofU(1),
so that we shall now consider the theory with SU(2) ⊗ U(1) symmetry. This additional
Abelian symmetry U(1) allows us to associate with the particles of the field ϕ—except
isospin—some new “hypercharge”, which leads to the introduction of an additional
(Abelian) gauge field, which will be denoted as Bμ. As a result, the full symmetry of
our model corresponds to the invariance to local gauge transformations

ϕ = Sϕ󸀠 , (12.76)

where

S = exp(igω⃗(x) ⋅ τ⃗
2
+ if λ(x)

2
) , (12.77)
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with the Lagrangian of the model having the form

ℒ = (Dμϕ)(D
μϕ)∗ − V(ρ) − 1

4
F⃗μνF⃗

μν −
1
4
GμνG

μν , (12.78)

where

Dμ = 𝜕μ − ig
τ⃗
2
⋅ A⃗μ − i

f
2
Bμ , (12.79)

Gμν = 𝜕μBν − 𝜕νBμ . (12.80)

Further analysis, in fact, repeats the previous analysis, so we drop the details. It is
convenient to introduce, insteadof fieldsAμ1,Aμ2,Aμ3, andBμ, the linear combinations

Wμ =
1
√2
(Aμ1 + iAμ2) , (12.81)

Zμ = Aμ3 cos α − Bμ sin α , Aμ3 = Zμ cos α + Aμ sin α ,

Aμ = Aμ3 sin α + Bμ cos α , Bμ = −Zμ sin α + Aμ cos α , (12.82)

where

cos α = g
g̃
, sin α = f

g̃
, g̃ = √g2 + f 2 , tg α = f

g
. (12.83)

Consequently, our Lagrangian (12.78) is rewritten in terms of these new fields as

ℒ =
1
2
(𝜕μρ)

2 − V(ρ) + ρ
2

4
[g2W∗μWμ +

g̃2

2
ZμZμ] −

1
4
F⃗μνF⃗

μν −
1
4
GμνG

μν . (12.84)

Here, it is important that field Aμ from (12.82) does not enter the square bracket term,
so that after the appearance of the nonzero vacuum average for field ρ (spontaneous
symmetry-breaking) this field remains massless and can be identified with the usual
electromagnetic field. At the same time, the fieldsWμ and Zμ acquire the mass

mW =
gη
2
, mZ =

g̃η
2
=

mW
cos α
. (12.85)

This is immediately seen if we rewrite the Lagrangian (12.84) up to the quadratic terms
in ρ󸀠 = ρ − η,Wμ, and Zμ:

ℒ =
1
2
(𝜕μρ
󸀠)
2
−
1
2
m2ρ󸀠2 − 1

2
(𝜕μWν − 𝜕νWμ)(𝜕μW

∗
ν − 𝜕νW

∗
μ )

+
1
4
g2η2W∗μW

μ −
1
4
(𝜕μZν − 𝜕νZμ)

2 +
1
8
g̃2η2Z2μ

−
1
4
(𝜕μAν − 𝜕νAμ)

2 + const , (12.86)

wherem2 = 2|μ2|.
The fieldWμ defined in (12.81) is complex, that is, charged, whereas the fields Aμ

and Zμ (12.82) are real (neutral). From the definition of F⃗μν, (12.58), (12.81), and (12.82),
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it follows that
1
√2
(F1 + iF2)μν = DμWν − DνWμ , (12.87)

where
Dμ = 𝜕μ + igAμ3 = 𝜕μ + ig sin αAμ + ig cos αZμ . (12.88)

If we identify field Aμ with the Maxwell electromagnetic field, from (12.88) we get
the following relation between Yang–Mills coupling constant g and the usual electric
charge e:

e = g sin α . (12.89)

An important property of this theory is its renormalizability. Renormalizability of
QED is guaranteed by themasslessness of the photon and also by its neutrality.We can
drop one of these properties, but the theory will still be renormalizable. For example,
we can work with the renormalizable theory of fermions interacting with a massive
vector neutral field. Thus, we do not worry much whether or not the photon has very
small (undetected up to now) mass. The theory will not change much. Also renormal-
izable is theYang–Mills theory of two charged andoneneutralmassless fields interact-
ing with fermions. Due to the Higgs phenomenon, the charged Yang–Mills fields may
becomemassive: in the following we shall call them charged intermediateW -bosons.
They transmit weak interactions, whereas Z-bosons are similar neutral particles. The
electromagnetic fieldAμ remainsmassless. The question ariseswhether or not our the-
ory will remain renormalizable after the Higgs phenomenon (spontaneous symmetry-
breaking). We can expect it to remain renormalizable, as the initial Lagrangian is def-
initely renormalizable, and all further results were obtained by clear transformations
and change in notations. These expectations are actually confirmed by the rigorous
proof, which we shall not consider here.

Steven Weinberg (born 1933) is an Amer-
ican theoretical physicist and Nobel laure-
ate in Physics for his contributions—with Ab-
dus Salam and Sheldon Glashow—to the uni-
fication of the weak force and electromag-
netic interaction between elementary parti-
cles. Steven Weinberg was born in 1933 in
New York City. He graduated from Bronx High
School of Science in 1950. He was in the same
graduating class as Sheldon Glashow, whose
own research, independent of Weinberg’s,
would result in their (and Abdus Salam) shar-

ing the 1979 Nobel in Physics. Weinberg received his bachelor’s degree from Cornell
University in 1954. He then went to the Niels Bohr Institute in Copenhagen, where he
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startedhis graduate studies and research. After completing his PhD,Weinbergworked
as a postdoctoral researcher at Columbia University (1957–1959) and University of
California, Berkeley (1959–1966). He did research in a variety of topics of particle
physics, such as the high-energy behavior of quantum field theory, symmetry break-
ing, pion scattering, infrared photons, and quantum gravity. In 1966, Weinberg left
Berkeley andwent toHarvard. In 1967, hewas a visiting professor atMIT. It was in that
year atMIT thatWeinberg proposed hismodel of unification of electromagnetismand
of nuclear weak forces, with themasses of the force-carriers of theweak part of the in-
teraction being explained by spontaneous symmetry-breaking. One of its fundamen-
tal aspects was the prediction of the existence of the Higgs boson. Weinberg’s model,
now known as the electroweak unification theory, had the same symmetry structure
as that proposed by Glashow in 1961: both models included the then-unknown weak
interaction mechanism between leptons, known as neutral current and mediated by
the Z boson. The 1973 experimental discovery of weak neutral currents (mediated by
this Z boson) was the first verification of the electroweak unification. The paper by
Weinberg, in which he presented this theory, is one of the most cited works ever in
high-energy physics. Weinberg is an atheist.

Abdus Salam (1926–1996)
was a Pakistani theoretical
physicist. He shared the 1979
Nobel Prize in Physics with
Sheldon Glashow and Steven
Weinberg for his contribu-
tion to the electroweak uni-
fication theory. He obtained
a PhD degree in theoretical
physics from the Cavendish
Laboratory at Cambridge.
Early in his career, Salam

made an important and significant contribution in quantum electrodynamics and
quantum field theory. In 1957, he was invited to take a chair at Imperial College, Lon-
don, and he and PaulMatthewswent on to set up the Theoretical Physics Department
at Imperial College. As time passed, this department became one of the prestigious
research departments that included well-known physicists, such as StevenWeinberg,
Tom Kibble, and John Clive Ward. In 1961, Salam began to work with John Ward
on symmetries and electroweak unification. In 1964, Salam and Ward worked on a
gauge theory for the weak and electromagnetic interaction, subsequently obtaining
SU(2)×U(1) model. Salam was convinced that all the elementary particle interac-
tions are actually the gauge interactions. In 1968, Salam andWeinberg incorporated
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the Higgs mechanism into this earlier theory, giving it a modern form in electroweak
theory, and thus introduced the StandardModel. In 1964, Salam founded the Interna-
tional Centre for Theoretical Physics (ICTP) in Trieste, Italy and served as its director
until 1993. In 1997, the scientists at ICTP commemorated Salam and renamed ICTP
as “Abdus Salam International Centre for Theoretical Physics”. Abdus Salam was a
Muslim, who saw his religion as a fundamental part of his scientific work.

12.4 The Weinberg–Salam model

The correct scheme for the unified description of weak and electromagnetic interac-
tions was proposed (independently) by Weinberg and Salam.This model is well con-
firmed by experiments and forms the basis of the Standard Model. The main idea of
the theory of electroweak interactions is that weak interactions aremediated by gauge
bosons (W±, Z), which are “initially” massless, whereas their masses (short range na-
ture of weak forces) are acquired as a result of the Higgs mechanism. The electromag-
netic field obviously remains massless. This scheme for gauge fields was presented in
the previous section. Now, we have to include the leptons: the electron and the neu-
trino,7 which are also assumed to initially bemassless. TheHiggsmechanism (sponta-
neous symmetry-breaking) should generate the mass of an electron, leaving the neu-
trino massless.8

The Dirac Lagrangian

ℒ = iψ̄γμ𝜕μψ −mψ̄ψ (12.90)

form = 0 transforms to iψ̄γμ𝜕μψ. Let us introduce, as is usual for massless fermions,

ψL =
1
2
(1 − γ5)ψ , ψR =

1
2
(1 + γ5)ψ , ψ = ψL + ψR , (12.91)

where γ5 = −iγ0γ1γ2γ3. Then,

iψ̄γμ𝜕μψ = iψ̄Rγ
μ𝜕μψR + iψ̄Lγ

μ𝜕μψL , (12.92)

as γ5 anticommutes with γμ. The electron (just as themuon and the τ-lepton) has both
L andR components, whereas the neutrino, according to the two-component neutrino
model, that is, νe (and also νμ, ντ), has only L-components. Consequently, the initial
Lagrangian of the leptons can be written as

ℒ = iēRγ
μ𝜕μeR + iēLγ

μ𝜕μeL + iν̄eγ
μ𝜕μνe + (e→ μ) + (e→ τ) , (12.93)

7 The other generations of leptons are described precisely in the same way.
8 Here, we neglect the possibility of very small neutrino mass.
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where the fermion fields are denoted by the symbols of the appropriate particles. The
contribution of the higher generations can be written in a similar form, but we skip it
here for brevity.

The transformations of a gauge group should be applied to particleswith the same
space-time properties, that is, the only possibility is tomix eL and νe. We introduce the
isospinor

ψL = (
νe
eL
) (12.94)

and associate with this doublet the non-Abelian charge (“weak” isospin) IW = 1/2,
with its projections corresponding to its two components: neutrino νe corresponds to
I3W = +1/2, whereas the “electron” eL corresponds to I

3
W = −1/2. The remaining

ψR = eR , (12.95)

is considered to be an isosinglet: IW = 0. As a result, we can write the Lagrangian as

ℒ = iψ̄Rγ
μ𝜕μψR + iψ̄Lγ

μ𝜕μψL , (12.96)

which is invariant with respect to the SU(2) group of isospin transformations:

ψL → e−
i
2 τ⃗α⃗ψL , ψR → ψR (12.97)

or, in more detail,

(
νe
eL
eR
)→ (e

−i τ⃗2 α⃗ 0
0 1
)(

νe
eL
eR
) . (12.98)

The electric charge Q and the third component of the weak isospin I3W for the left and
right fields are connected by the obvious relations

L : Q = I3W −
1
2
; R : Q = I3W − 1 . (12.99)

If wemake this symmetry a local gauge symmetry, that is, put α⃗ = α⃗(x), this will lead to
the appearance of three massless Yang–Mills fields. However, the photon will not be
there, as the right electron eR, being an isosinglet, will not interact with these fields,
whereas it is obviously interacting with the usual photons. To solve this problem, we
can use the fact that SU(2) is not the maximal possible symmetry of our Lagrangian.
We can additionally transform eR by simple U(1):

eR → eiβeR . (12.100)

But this can be the only common transformation for all the fields of our model. Then,
νe and eL should also acquire the commonphase factor, but its phase is not necessarily
the same as for R. Thus, we can write
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(
νe
eL
eR
)→(

einβ 0 0
0 einβ 0
0 0 eiβ

)(
νe
eL
eR
) , (12.101)

where n is some number to be determined later. This U(1)-symmetry leads to the ex-
istence of some conserving charge, with eR having one value of this charge, whereas
both νe and eL have another value. This is obviously not the electric charge Q, as νe
and eL in reality have different values of Q. The gauge field corresponding to this U(1)
symmetry is not the usual electromagnetic field. Weinberg proposed to consider this
symmetry as the conservation of the “weak hypercharge” YW , defined by the relation9

Q = I3W +
YW
2
. (12.102)

Comparing this expression with (12.99), we see that for the left and right leptons, it is
necessary to introduce

L : YW = −1 ; R : YW = −2 . (12.103)

Thus, in equation (12.101), we have to put n = 1/2, so that the coupling constant for
interaction of the hypercharge gauge field for left fields is twice as small as the corre-
sponding constant for right fields. As a result, the U(1) group transformation is finally
written as

(
νe
eL
eR
)→(

eiβ/2 0 0
0 eiβ/2 0
0 0 eiβ

)(
νe
eL
eR
) . (12.104)

Thus, the Lagrangian (12.93), (12.96) is invariant to the direct product of groups SU(2)⊗
U(1). The Yang–Mills theory regarding such a symmetry was already examined in the
previous section.We have introduced four gauge fields: isotriplet A⃗μ and isosingletBμ.
For all of them, YW = 0.

Lepton fields ψL and ψR interact with fields A⃗μ, Bμ, and the Higgs field ϕ. First of
all, let us consider this last interaction. The corresponding term in Lagrangian is writ-
ten in a form similar to equation (12.12), which was already discussed in connection
with the mass generation mechanism for fermions:

ℒM = −√2a(ψ̄LψRϕ + ψ̄RψLϕ
∗) , (12.105)

where a is the dimensionless coupling constant of this renormalizable interaction.We
write the Higgs field as an isospinor:

ϕ = (φ
+

φ0) , ϕ∗ = (φ−,φ0∗) , (12.106)

9 This expression is written in analogy with the Gell-Mann–Nishijima formula for the hypercharge of
hadrons [40].
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with components corresponding to projections of weak isospin I3W = ±1/2. From
(12.102), we find the corresponding quantum numbers

IW = 1/2 , YW = 1 . (12.107)

Both φ+ and φ0 fields are complex, so that we can write

ϕ = (φ
+

φ0) = (
1
√2 (φ3 + iφ4)
1
√2 (φ1 + iφ2)

) , (12.108)

where φ1, . . . ,φ4 are real fields.
The covariant derivative describing the interaction of the Higgs field with the

gauge fields has the form

Dμϕ = (𝜕μ −
i
2
gτ⃗ ⋅ A⃗μ −

i
2
fBμ)ϕ . (12.109)

Finally, the part of the Lagrangian containing field ϕ is equal to

ℒϕ = (D
μϕ)∗(Dμϕ) − μ

2ϕ∗ϕ − λ(ϕ∗ϕ)4 − √2a(ψ̄LψRϕ + ψ̄RψLϕ
∗) . (12.110)

The part of the Lagrangian corresponding to Higgs field interaction with the leptons
is written in more detail as

− √2a(ν̄eeRφ
+ + ēLeRφ

0 + ēRνeφ
− + ēReLφ

0) . (12.111)

Further, we have

ϕ∗ϕ = (φ+)∗φ+ + (φ0)
∗φ0 =

1
2
(φ2

1 + φ
2
2 + φ

2
3 + φ

2
4) . (12.112)

For μ2 < 0, the Higgs field Bose condenses and the minimum energy corresponds to

⟨0|(φ∗φ)|0⟩ = η2 = −μ
2

λ
. (12.113)

Let us choose a vacuum to satisfy

⟨0|φ1|0⟩ = η , ⟨0|φ2|0⟩ = ⟨0|φ3|0⟩ = ⟨0|φ4|0⟩ = 0 , (12.114)

that is,

⟨0|ϕ|0⟩ = 1
√2
(
0
η
) . (12.115)

Then, the lowest-order (over excitations) interaction is written as

ℒM = √2a(ψ̄LψR + ψ̄RψL)ϕ = a(ēLeR + ēReL)η = aηψ̄ψ , (12.116)
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so that the Higgs condensate η interacts only with electrons. Thus, we achieved what
was desired: the electron acquired the mass

me = aη , (12.117)

whereas the neutrino remained massless.
Consider now lepton interactions with gauge fields, which is described by the co-

variant derivatives

Dμψ = (𝜕μ − igT⃗ ⋅ A⃗μ − if
Y
2
Bμ)ψ , (12.118)

whereY is theweakhypercharge of fieldψ, and g and f are the corresponding coupling
constants. ForψL, we have T⃗ =

1
2 τ⃗, Y = −1, whereas forψR, we have T⃗ = 0 and Y = −2.

Then, the part of the Lagrangian corresponding to the interaction between the leptons
and the gauge fields has the form

ℒ = iψ̄Lγ
μ(𝜕μ − ig

τ⃗
2
⋅ A⃗μ + i

f
2
Bμ)ψL + iψ̄Rγ

μ(𝜕μ + ifBμ)ψR . (12.119)

The gauge fields entering these expressions, as we have seen in (12.81), (12.82), (12.83),
can be divided into three types: a field of charged heavy bosonsWμ, a field of neutral
heavy bosons Zμ, and an electromagnetic field Aμ. Separately, let us write the parts of
Lagrangian ℒW , ℒZ , ℒA corresponding to the interaction with these fields. First, we
write

ℒW =
g
2
ψ̄Lγ

μ(τ1A1μ + τ2A2μ)ψL =
g
√2

γμ(ν̄eWμeL + ēLW
∗
μ νe) . (12.120)

This is the Lagrangian of the weak interaction of the leptons due to the exchange by
W±-bosons (the so-called charged currents). There are also interactionswith fieldsAμ3
and Bμ, from (12.119); these are written as

1
2
ψ̄Lγ

μ(gτ3Aμ3 − fBμ)ψL − f ψ̄Rγ
μBμψR (12.121)

or, using (12.82), (12.83),

g̃
2
γμ[ν̄e(cos αAμ3 − sin αBμ)νe − ēL(cos αAμ3 + sin αBμ)eL − 2 sin αēRBμeR] , (12.122)

so that, expressing Aμ3 and Bμ via Zμ and Aμ according to (12.82), we get

ℒZ =
g̃
2
γμ(ν̄eZμνe − cos 2αēLZμeL + 2 sin

2 αēRZμeR), (12.123)

the weak interaction due to the exchange by neutral Z-bosons (the so-called neutral
currents), and

ℒA = −g sin αγ
μ(ēLAμeL + ēRAμeR), (12.124)
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the usual electromagnetic interaction. Note that (12.124) once more confirms the rela-
tion for the electric charge (12.89). Thus, the model under discussion gives a unified
description of weak and electromagnetic interactions, where the fields correspond-
ing to W±- and Z-bosons and to the electromagnetic field appear from the funda-
mental requirement of invariance, with respect to the local gauge transformations of
SU(2) ⊗ U(1).

Figure 12.3

During the first years since the construction of Weinberg–Salammodel, weak interac-
tion processes due to neutral currents (12.123) were not known, which was considered
to be a shortcoming of the model. The experimental discovery of such processes in
1973 in CERN was actually the first serious confirmation of the theory of electroweak
interactions. One of the simplest processes due to weak interactions is muon μ de-
cay, described by the diagram shown in Figure 12.3. If the mass of the W -boson is
a significantly larger muon mass, its propagator is simply proportional to 1

m2
W
, and

the appropriate transition amplitude is equivalent to the amplitude derived from the
phenomenological (nonrenormalizable) 4-fermion interaction introduced by Fermi
(10.96), (10.270):

g2

2m2
W
(ēLγανe)(ν̄μγ

αμ) . (12.125)

Comparing with (10.270), we obtain the following expression for Fermi coupling:

G
√2
=

g2

8m2
W
. (12.126)

The value of G is well known experimentally (10.273). We see, that its smallness
(“weakness” of the weak interactions) is actually due to the large mass of the inter-
mediate boson in the denominator of (12.125), whereas the fundamental coupling
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constant is actually g ∼ e ! Using (12.89) and the experimental values of e and G, we
can, with the help of (12.85) and (12.126), find the following estimates for the masses
of intermediate gauge bosons:

mW =
e

25/4G1/2 sin α
=
37GeV
sin α
, mZ =

mW
cos α
=
74GeV
sin 2α
, (12.127)

so thatmW > 37GeV andmZ > 74GeV. Using (12.85) and (12.127), we can write

η = mW
g
=
37GeV

e
= 122 GeV . (12.128)

Then, from (12.117), we have

a = me
η
≈ 5 ⋅ 10−6 , (12.129)

so that the coupling constant of leptons with the Higgs field is very small.
Experimental studies of theweak interactions due to neutral currents had already

led in the early 1980s to the following estimate of “angle” α:

sin α ≈ 0.47 . (12.130)

Then, from (12.127), we have

mW ≈ 78.6GeV , mZ ≈ 89.3GeV . (12.131)

The triumphof the theorywas the experimental discovery in 1983 ofW±- andZ-bosons
in CERN with masses mW ≈ 80GeV and mZ ≈ 92GeV, respectively. Since then, the
theory has been confirmed in numerous experiments, and at present it is the com-
monly accepted scheme for describing electroweak interactions. The constants of the
theory are known with high accuracy. The present-day experimental situation is well
described in [67].

For many years, the main unsolved problem was the absence of any direct exper-
imental observation of Higgs bosons. One of the difficulties was due to the inability
tomake definite predictions for Higgs bosonmass within theWeinberg–Salammodel;
only a rather wide interval of possible values were theoretically predicted. However,
aswe alreadymentioned in Chapter 1, in 2012 it was announced in CERN that a particle
with the properties expected for the Higgs boson was discovered in a number of LHC
experiments, with mass around 125–126GeV. Later it was finally confirmed by further
studies, and this is definitely the final triumph of the theory and the Standard Model.
A brief discussion of the situation related to the experimental discovery of the Higgs
boson can be found in [55].
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The Standard Model
The “Standard Model” of elementary particles is the combination of the Weinberg’s
and Salam’s electroweak theory and quantum chromodynamics (QCD), which we dis-
cussed above. The full gauge symmetry is given by the direct product of color symme-
try and the symmetries of weak isospin and weak hypercharge: SU(3) ⊗ SU(2) ⊗ U(1).
If we limit ourselves to the most important first generation of fermions, the fermion
sector of the model is defined by

L = (νe
e
)
L
, eR, QL = (

uα
dα
)
L
, uRα , dRα , (12.132)

where u and d denote the corresponding quarks (α is the color index). The covariant
derivative, which determine the fermion interactions with Yang–Mills fields has the
form

Dμ = 𝜕μ − ig1
Y
2
Bμ − ig2

τi

2
W i

μ − ig3
λa

2
Ga
μ , (12.133)

where λa are the generators of the color group SU(3) (reference Chapter 2) and Ga
μ are

the vector fields of gluons. The Higgs sector of the theory was described above. Gluons
remain massless, but they are not observed as free particles, due to the phenomenon
of “confinement”, which we shall discuss later. This theory is sufficient, in principle,
to describe the entire world (or universe) surrounding us. At present all the predic-
tions of this theory are rather satisfactorily confirmed by existing experiments.10 The
attempts of the real unification of all known interactions within some single gauge
group, which includes symmetries SU(3) ⊗ SU(2) ⊗ U(1) of the Standard Model as a
subgroup, are usually called “great unification theories” (GUT). We shall briefly dis-
cuss such attempts in the next chapter.

Phase transitions in quantum field theory at finite temperatures
Finally, let us briefly discuss one very interesting direction of research in modern
quantum field theory. We have seen that the basis of the unified theory of electroweak
interactions is the phenomenon of spontaneous symmetry-breaking and the Higgs
mechanism. We already noted that this is a typical phase transition, like that taking
place, for example, in superconductors. From the theory of condensed matter, we
know that any symmetry-breaking disappears at high enough temperature T > Tc,
when the system goes to a symmetric phase. The same phenomenon takes place in
the models of quantum field theory introduced above. This was clearly demonstrated

10 Abrief review of experimental situationwith the StandardModel, before the discovery of theHiggs
boson, can be found in [22], whereas the importance of this theory for everyday life is well described
in [12].
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for the first time by Kirzhnitz and Linde [41]. An appropriate theoretical analysis can
be performed using the standard (Matsubara) formulation of quantum field theory
at finite temperatures, which is widely used in statistical physics [1]. We have no
room for a detailed discussion of these interesting problems here and, therefore, limit
ourselves only to formulating some of the main conclusions.

The vacuumaverage of theHiggsfield,whichplays the role of the order parameter,
becomes zero for T > Tc, where

Tc ≈ √
3|μ2|
λ
∼ η(0) ∼ 102 ÷ 103 GeV . (12.134)

For T < Tc, the order parameter behaves in the more or less usual way:

η2(T) = |μ
2|
λ
−Φ(T) , (12.135)

where Φ(T) is some increasing function of temperature. As a result, we obtain the
order parameter dependence shown in Figure 12.4(a). But we have seen above that
masses appearing due to spontaneous symmetry-breaking are proportional to the vac-
uum average η at T = 0. Correspondingly, as temperature increases, the masses of the
gauge bosons, leptons, and other particles diminish, and at T = Tc become zero, as
shown in Figure 12.4(b). Already, at this elementary level of discussion, it becomes
clear that the disappearance of the masses of the elementary particles creates strong
long-range forces,whichmayplay adecisive role in cosmology, because in thefirstmo-
ments after the “Big Bang” the temperature of the universe was extremely high. These
conclusions were followed by explosive developments of new approaches in cosmol-
ogy [41, 16]. Similar effects may be important for experiments with very high energy
collisions of heavy nuclei, when very high temperatures can also be generated.

Figure 12.4

At present, the analysis the effects of temperature in quantum field theory is an im-
portant part of elementary particles theory, which again stresses the unity of quantum
field theory and modern statistical physics.
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Andrei Dmitrievich Linde (born 1948) is a Soviet
and American theoretical physicist. He graduated from
Moscow State University and in 1975 was awarded a
Ph. D. from the Lebedev Physical Institute inMoscow. He
moved to the United States in 1990 to Stanford Univer-
sity. During 1972 to 1976, under the guidance of his su-
pervisor David Kirzhnits in Lebedev Institute, Linde de-
veloped a theory of cosmological phase transitions. Ac-
cording to this theory, there was not much difference be-
tween weak, strong, and electromagnetic interactions in
the very early universe. These interactions became dif-
ferent from each other only gradually, after the cosmo-

logical phase transitions, which happened when the temperature in the expanding
Universe became sufficiently small. In 1974, Linde found that the energy density of
scalar fields that break the symmetry between different interactions can play the role
of the vacuum energy density (the cosmological constant) in the Einstein equations.
These observations led to formulation of the inflationary universe theory proposed
by Alan Guth in 1980. In 1981, Linde developed another version of inflationary the-
ory, demonstrating that the exponentially rapid expansion of the universe could oc-
cur not only in the false vacuum, but also during a slow transition away from the false
vacuum. In 1983, Linde proposed evenmore general inflationary theory, chaotic infla-
tion. Chaotic inflation occurs in a much broader class of theories, without any need
for the assumption of initial thermal equilibrium. In 1986, Linde found that in many
versions of the chaotic inflation scenario, the process of exponential expansion of the
universe also continues forever. He called this process eternal inflation. In 2002, he
was awarded the Dirac Medal; in 2004, he received the Gruber Prize in Cosmology
for the development of inflationary cosmology. In 2012, he—along with Alan Guth—
was an inaugural awardee of the Fundamental Physics Prize. In 2014, he received the
Kavli Prize in Astrophysics together with Alan Guth and Alexei Starobinsky. In 2018,
he received the Gamow Prize.



13 Renormalization

13.1 Divergences in φ4

The concept of renormalizability plays an absolutely fundamental role in modern
quantum field theory. Only renormalizable theories are considered to be physical. In
Chapter 8 we briefly discussed the renormalizability of QED. Now, we will return to a
more detailed discussion of the general situation for different field theory models.

Below, we shall mainly consider the simplest scalar field gφ4 theory, which was
already discussed above in Chapter 10. Therewe alreadymetwith typical divergences,
such as in equation (10.125). Now, we shall present a more serious analysis of diver-
gences. Using the rules of diagram technique, we can once again write the first-order
(∼g) correction to self-energy corresponding to the diagram in Figure 13.1. The corre-
sponding analytic expression is

1
i
Σ = −ig 1

2
∫ d4q
(2π)4

1
q2 −m2 , (13.1)

where we have taken into account the symmetry factor 1/2. Here, in the integrand we
have the fourth power of q, whereas in the denominator we have q squared, so that
our integral diverges quadratically at large q (that is, at the upper limit, “ultraviolet
divergence”).

Figure 13.1 Figure 13.2

Another typical divergence arises in the order ∼g2 from the diagram shown in Fig-
ure 13.2, where p1 + p2 = q and p1 + p2 + p3 + p4 = 0. The corresponding analytic
expression is

− g2 ∫ d4p
(2π)4

1
p2 −m2

1
(p − q)2 −m2 . (13.2)

Here, we have the fourth power of p both in the numerator and denominator of the
integrand, which leads to logarithmic divergence.1

1 In fact, we have already considered such diagrams during our discussion of the theory of critical
phenomena in four-dimensional space, where the problem of divergence was solved by the introduc-
tion of a natural cutoff Λ of the order of the inverse lattice constant.

https://doi.org/10.1515/9783110648522-013
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Let us show how we can determine the divergence power of an arbitrary dia-
gram. A similar analysis was already performed for QED in Chapter 8. But here, we
shall present more details. It is obvious that in an arbitrary diagram, each propagator
contributes ∼p2 (for large p, we can neglect m) in the denominator of the integrand,
whereas each vertex contributes ∼p4 in the numerator and the δ-function expressing
momentum conservation in this vertex. The number of independent integration mo-
menta is equal to the number of closed loops in the diagram. For the diagrams shown
above, this number is 1 (one-loop diagrams). Consider a diagram of the order of ∼gn,
that is, with n vertices. Suppose it has E external lines, I internal lines, and L loops.
For generality, we consider space-timewith dimensionality d; in this case, the vertices
contribute pd to the numerator. Let us define the conditional degree of divergence D of
the given diagram as

D = dL − 2I . (13.3)

For the diagrams shown above, we have D = 2 and D = 0. Now, we can express D via
E and n, excluding I and L. In fact, we have in total I internal momenta. In each of the
n vertices, we have momentum conservation, and we also have the total momentum
conservation law for the scattering process described by our diagram (external mo-
menta are fixed). As a result, there are in total n − 1 relations between the integration
momenta. Thus, there are only I − n + 1 independent integration momenta. But this
number is equal to L:

L = I − n + 1 . (13.4)

In φ4-theory, each vertex is entered by four lines, so that we have in total 4n lines
in the diagram, but part of the lines are internal and another part external. During
these calculations the internal lines are counted twice, as each of them connects two
vertices. Therefore, we have

4n = E + 2I . (13.5)

From (13.3), (13.4), (13.5), we immediately get

D = d − (d
2
− 1)E + n(d − 4) . (13.6)

In particular, for d = 4, we have

D = 4 − E , (13.7)

which, by the way, gives the correct answers for the simplest diagrams discussed
above. From (13.7), we can see that the degree of divergence diminishes with the
growth of the number of external lines (and depends only on this number!).2

2 It may seem that all diagrams with the number of external lines greater than 4 are convergent. For
example, for E = 6, we have D = −2. However, this is a wrong conclusion, as we shall see below.
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Let us return to the discussion of the general formula (13.6), and consider the last
term in this expression. If the coefficient before n is positive, the situation is hopeless:
the degree of divergenceD growswith the growth of n, so that the full theory (summed
over all n) will contain an infinite number of terms containing divergences (in each or-
der of perturbation theory) with a higher degree of divergence than in the previous or-
der. This is equivalent to the nonrenormalizability of the theory. Inφ4-theory at d = 4,
the degree of divergence depends only on E and does not depend on the order of per-
turbation theory, so that we have the finite number of the types of divergences. We
can, therefore, hope that the corresponding infinite contributions can be hidden in
a finite number of (infinite) renormalizations of the appropriate physical characteris-
tics (renormalized theory). A finite number of the types of divergences is the necessary
condition for renormalizability.

It is useful to analyze similar formulas for the theory with the general interac-
tion φr . Equations (13.3) and (13.4) do not change, whereas equation (13.5) transforms
into

rn = E + 2I , (13.8)

so that equation (13.6) is rewritten as

D = d − (d
2
− 1)E + n[ r

2
(d − 2) − d] . (13.9)

Now, for d = 4, we have

D = 4 − E + n(r − 4) . (13.10)

For φ6-theory, we have D = 4 − E + 2n, and it is nonrenormalizable. On the other
hand, for φ3-theory, we have D = 4 − E − n, and the degree of divergence diminishes
with the increase of n, so that for fixed E there is only the finite number of divergent
diagrams, and we are dealing with the so-called super-renormalizable theory.3 Note
that for d = 2, we have D = 2 − 2n and independent of r.

Let us return to equation (13.7) and discuss the convergence or divergence of di-
agrams with E > 4. In φ4-theory, the number E is always even. Consider the exam-
ples of diagrams shown in Figure 13.3. Here, E = 6, so that—according to criterion
(13.7)—all of these diagrams seem to be convergent. This is correct for the diagram in
Figure 13.3(a), but obviously wrong for diagrams (b) and (c), which contain “hidden”
divergences from loops (considered above). It is because of such cases that we called
D the conditional degree of divergence. It is important, however, that the inverse state-
ment is always correct: the Feynman diagram converges if its degree of divergence D
and the degrees of divergence of all its subdiagrams are negative (Weinberg theorem).

3 However, this theory is actually bad: there is a stable ground state.
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Figure 13.3

The two divergent diagrams shown above in Figures 13.1 and 13.2, are called primi-
tively divergent. These are the only primitively divergent diagrams of φ4-theory (types
of divergences).

Dimensional analysis
Let us perform dimensional analysis in d-dimensional space. The action S = ∫ ddxℒ is
dimensionless. Therefore, we easily find

[ℒ] = L−d , [ℒ] = Λd , (13.11)

where L is some length, and Λ is the corresponding momentum. From the term
∼𝜕μφ𝜕μφ in ℒ, taking into account [𝜕μ] = L−1, we have

[φ] = L1−
d
2 = Λ

d
2 −1 . (13.12)

Consider the interaction gφr . If we define the dimensionality of the coupling constant
as [g] = L−δ = Λδ, we obviously get −δ + r(1 − d

2 ) = −d, so that

δ = d + r − rd
2
. (13.13)

Thus, the dimensionality of the coupling constants in different theories is

gφ4 : δ = 4 − d , [g] = Λ4−d , δ ≥ 0 for d ≤ 4 ,

gφ3 : δ = 3 − d
2 , [g] = Λ

3− d2 , δ ≥ 0 for d ≤ 6 ,
gφ6 : δ = 6 − 2d , [g] = Λ6−2d , δ ≥ 0 for d ≤ 3 .

(13.14)

Excluding the r-form equations (13.9) and (13.13), we obtain

D = d − (d
2
− 1)E − nδ . (13.15)

In particular, for d = 4, we have D = 4 − E − nδ. Now, it is clear that the necessary
condition for the renormalizability of the theory is δ ≥ 0. Previously, for simplicity we
have spoken of the dimensionless coupling constants (δ = 0) as the necessary condi-
tion for renormalizability. From (13.14), we can see when this condition is fulfilled for
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the simplest models of interaction. These results show that the dependence on spatial
dimensionality is also very important.

In conclusion, we present the table of “canonical” dimensions for different
Green’s functions and vertices [56]:

Field function Dimensionality in units of Λ Dimensionality at d = 4
φ d

2 − 1 1
G(n)(x1, . . . , xn) n( d2 − 1) n
G(n)(p1, . . . , pn) −nd + n( d2 − 1) = −n(

d
2 + 1) −3n

Ḡ(n)(p1, . . . , pn−1) d − n( d2 + 1) 4 − 3n
Γ(2)(x − y) 2 + d 6
Γ(n)(x1, . . . xn) n( d2 + 1) 3n
Γ(n)(p1, . . . , pn) −dn + n( d2 + 1) = n(1 −

d
2 ) −n

̄Γ(n)(p1, . . . , pn−1) d + n(1 − d
2 ) 4 − n

In addition to the Green’s functions and vertices already known to us, we introduce
here Ḡ(n) and Γ̄(n), defined as

G(n)(p1, . . . , pn) = Ḡ
(n)(p1, . . . , pn−1)δ(p1 + ⋅ ⋅ ⋅ + pn) ,

Γ(n)(p1, . . . , pn) = Γ̄
(n)(p1, . . . , pn−1)δ(p1 + ⋅ ⋅ ⋅ + pn) , (13.16)

where the δ-function of the totalmomentum conservation is explicitly shown (in units
of Λ, it has dimensionality −d).

Gerard t’Hooft (born 1946) is a Dutch theoretical physi-
cist and professor at Utrecht University, the Netherlands.
He shared the 1999 Nobel Prize in Physics with his the-
sis advisor Martinus Veltman. In 1969, t’Hooft started his
doctoral research on the renormalization of Yang–Mills
theories. In 1971, his first paper was published. In it he
showed how to renormalize massless Yang–Mills fields.
A period of intense collaboration with Veltman followed,
in which they developed the technique of dimensional reg-
ularization. Soon, t’Hooft’s second paper was published,
in which he showed that Yang–Mills theories withmassive
fields due to spontaneous symmetry breaking could be

renormalized. This paper earned them worldwide recognition and ultimately earned
the pair the 1999 Nobel Prize in Physics. t’Hooft further refined his methods for Yang–
Mills theories.Hebecame interested in thepossibility that the strong interaction could
be described as a massless Yang–Mills theory: one of a type that he had proved to
be renormalizable, and hence be susceptible to detailed calculation and comparison
with experiment. According to t’Hooft’s calculations, this type of theory possessed
just the right kind of scaling properties (asymptotic freedom) that this theory should
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have according to deep inelastic scattering experiments. This was contrary to pop-
ular perception of Yang–Mills theories at the time, that—like electrodynamics—their
intensity should decrease with increasing distance between the interacting particles.
When t’Hooft mentioned his results at a small conference at Marseilles in 1972, Kurt
Symanzik urged him to publish this result, but t’Hooft did not, and the result was even-
tually rediscovered and published by Hugh David Politzer, David Gross, and Frank
Wilczek in 1973, which led to their earning the 2004Nobel Prize in Physics. t’Hooft is a
member of the Royal Netherlands Academy of Arts and Sciences since 1982. He is also
a foreign member of many other science academies, including the French Académie
des Sciences and the American National Academy of Sciences.

13.2 Dimensional regularization of φ4-theory

To analyze divergences of Feynman diagrams, first of all we have to formulate well-
defined rules to separate the divergent parts of integrals. This is achieved by one or an-
other method of regularization of Feynman integrals. Above (for example, during our
discussion of divergences in QED in Chapter 8), we used the simplest regularization
procedure, introducing the upper integration limit cutoff Λ. This method explicitly
breaks relativistic invariance, as it is equivalent to the introduction of some “minimal
length”. Now, we shall discuss a more modern and elegant method of the so-called
dimensional regularization (t’Hooft and Veltman). The main idea of this method is
somehow similar to the analysis of critical phenomena in the space with d = 4 − ε
dimensions (Wilson) and considers divergent integrals in space-time with continuous
d < 4, with further limiting procedure of d → 4. We shall see that the singularities of
single-loop diagrams considered above are simple poles over the variable ε = d − 4.

First, we have to generalize the Lagrangian of 4-dimensional theory

ℒ = 1
2
𝜕μφ𝜕

μφ − m
2

2
φ2 − g

4!
φ4 (13.17)

to d dimensions. As field φ has dimensionality d
2 − 1, whereas the dimensionality of

the Lagrangianℒ is d, the coupling constant g is dimensionless for d = 4, and tomake
it dimensionless in d dimensions we have to multiply it μ4−d, where μ is an arbitrary
parameter of dimensionality ofmass (ormomentum).4 Thus, in the following,we shall
consider the theory with the Lagrangian

ℒ = 1
2
𝜕μφ𝜕

μφ − m
2

2
φ2 − 1

4!
gμ4−dφ4 . (13.18)

4 The arbitrariness of parameter μ is obvious, because at the end we have to perform the limit of
d→ 4.
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Let us calculate the simplest self-energy correction shown by the diagram in Fig-
ure 13.1. Similarly to (13.1), it is determined by the integral

1
2
gμ4−d ∫ ddp

(2π)d
1

p2 −m2 . (13.19)

This integral should be calculated at arbitrary d.

Integration in d-dimensions

We are working in the d-dimensional “Minkowski space” with one time and d − 1 spatial dimensions
(d ≤ 4). Consider an integral of the general form

Id(q) = ∫ d
dp 1
(p2 + 2pq −m2)α

, (13.20)

where p = (p0, r). Let us introduce polar coordinates (p0, r,φ, θ1, θ2, . . . , θd−3), so that

ddp = dp0r
d−2drdφ sin θ1dθ1 sin

2 θ2dθ2 ⋅ ⋅ ⋅ sin
d−3 θd−3dθd−3

= dp0r
d−2drdφ

d−3
∏
k=1

sink θkdθk

(−∞ < p0 < ∞ , 0 < r < ∞ , 0 < φ < 2π , 0 < θk < π) . (13.21)

Then,

Id(q) = 2π
∞

∫
−∞

dp0
+∞

∫
0

dr rd−2
π

∫
0

∏d−3k=1 sin
k θkdθk

(p20 − r
2 + 2p0q0 − 2r|q| cos θd−3 −m

2)α
. (13.22)

Direct calculations [56] give

Id(q) = iπ
d/2 Γ(α −

d
2 )

Γ(α)
1

[−q2 −m2]α−d/2
. (13.23)

Using (13.23), for (13.19) we obtain

− ig
32π2

m2(−
4πμ2

m2 )
2− d2

Γ(1 − d
2
). (13.24)

The Γ-function has poles at zero and at negative integers. We see that the divergence
of (13.24) is reflected in the simple pole for d → 4. It can be shown that

Γ(−n + ε) = (−1)
n

n!
[ 1
ε
+ ψ1(n + 1) + O(ε)] , (13.25)

where ψ1(z) = d ln Γ(z)/dz = Γ󸀠(z)/Γ(z) is the logarithmic derivative of the Γ-function,
for which ψ1(n + 1) = 1 +

1
2 + ⋅ ⋅ ⋅ +

1
n − γ, where γ = −ψ1(1) = 0.577 is the Euler constant.

Taking ε = 4 − d, we obtain

Γ(1 − d
2
) = Γ(−1 + ε

2
) = −2

ε
− 1 + γ + O(ε) . (13.26)



354 | 13 Renormalization

As a result, using aε = 1+ ε ln a+ ⋅ ⋅ ⋅, we obtain the following expansion of (13.24) near
d = 4:

− igm
2

32π2
[−2

ε
− 1 + γ + O(ε)][1 + ε

2
ln(−4πμ

2

m2 )]

= igm2

16π2ε
+ igm

2

32π2
[1 − γ + ln(−4πμ

2

m2 )] + O(ε)

= igm2

16π2ε
+ finite expression. (13.27)

The finite contribution here is of no special importance, butwe note that it depends on
the arbitrary factor μ. The important point is that we succeeded in a correct separation
of the divergent part. For ε > 0, this contribution is finite, and we can deal with it in a
normal way.

Let us now calculate a 4-point function up to the terms of the order of ∼g2. Simi-
larly to (13.2), we obtain the contribution of the diagram in Figure 13.2 as

− 1
2
g2(μ2)4−d ∫ ddp

(2π)d
1

p2 −m2
1

(p − q)2 −m2 . (13.28)

Denominators in the integrand here can be joinedwith the help of Feynman’s formula

1
ab
=

1

∫
0

dz
[az + b(1 − z)]2

. (13.29)

This formula is derived from

1
ab
= 1
b − a
( 1
a
− 1
b
) = 1

b − a

b

∫
a

dx
x2
, (13.30)

taking x = az + b(1 − z), with a and b complex, to exclude singularity at a = b. Now,
we have

1
p2 −m2

1
(p − q)2 −m2 =

1

∫
0

dz
[p2 −m2 − 2pq(1 − z) + q2(1 − z)]2

. (13.31)

Changing variables to p󸀠 = p − q(1 − z), we see that the denominator of the integrand
is the square of p󸀠 2 − m2 + q2z(1 − z). We have ddp󸀠 = ddp, so that after the change of
notations p󸀠 → p, (13.28) takes the form

− 1
2
g2(μ2)4−d

1

∫
0

dz ∫ ddp
(2π)d

1
[p2 −m2 + q2z(1 − z)]2

. (13.32)
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Using (13.23), we now have

ig2

2
(μ2)4−d( 1

4π
)
d/2 Γ(2 − d/2)

Γ(2)

1

∫
0

dz[q2z(1 − z) −m2]d/2−2

= ig2

32π2
(μ2)2−d/2Γ(2 − d

2
)

1

∫
0

dz[q
2z(1 − z) −m2

4πμ2
]

d
2 −2
. (13.33)

In the limit of d → 4, from (13.25), we get

Γ(2 − d
2
) = 2

ε
− γ + O(ε) , (13.34)

so that after writing aε ≈ 1 + ε ln a, (13.33) takes the form

ig2με

32π2
(2
ε
− γ + O(ε)){1 − ε

2

1

∫
0

dz ln[q
2z(1 − z) −m2

4πμ2
]} =

ig2με

16π2ε
−
ig2με

32π2
{γ +

1

∫
0

ln[q
2z(1 − z) −m2

4πμ2
]} . (13.35)

In this expression, the main (diverging) term depends on μ, whereas the finite part
depends on the square of (p1 + p2)2 = q2 = s (Mandelstam variable). Let us define the
function

F(s,m, μ) =
1

∫
0

dz ln[sz(1 − z) −m
2

4πμ2
] . (13.36)

Consequently, the final expression for the contribution of the diagram of Figure 13.2 is
written as

−
ig2με

16π2ε
+
ig2με

32π2
[γ + F(s,m, μ)] = − ig

2με

16π2ε
+ finite expression. (13.37)

Thus, we have explicitly written the lowest-order corrections to 2-point and 4-point
functions in φ4-theory. Let us now write the corresponding irreducible vertices Γ(2)(p)
and Γ(4)(pi). Equation (13.27), according to (13.1), reduces to

1
i Σ, so that in the first order

over g, we have

Σ(p) = − gm
2

16π2ε
+ finite expression. (13.38)

Accordingly, from the definition Γ(2)(p) = G−1(p)G(p)G−1(p) = p2 −m2 − Σ(p), we have

Γ(2)(p) = G−1(p) = p2 −m2(1 − g
16π2ε
) . (13.39)
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Figure 13.4

Obviously, for ε → 4, this expression diverges.
Further on, the 4-point vertex Γ(4)(p1, . . . , p4) in momentum representation is writ-

ten as

Γ(4)(p1, p2, p3, p4) = G
−1(p1)G

−1(p2)G
(4)(p1, p2, p3, p4)G

−1(p3)G
−1(p4) (13.40)

and is expressed by the sum of the diagrams shown in Figure 13.4, taking into account
contributions of all the cross-channels, which are obtained from (13.37) and another
two similar terms obtained from (13.37), changing the Mandelstam variable s to t and
u (reference Chapter 5):

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p1 + p4)
2 . (13.41)

The action of G−1(pi) in (13.40) reduces to the “amputation” of the external lines. Fi-
nally, we obtain

Γ(4)(pi) = −igμ
ε −

3ig2με

16π2ε
+
ig2με

32π2
[3γ + F(s,m, μ) + F(t,m, μ) + F(u,m, μ)]

= −igμε(1 + 3g
16π2ε
) + finite expression. (13.42)

The main contribution here is also infinite for ε → 0. To make vertices Γ(2) and Γ(4)

physically sensible, we should make them finite. This is done by renormalization.

Loop expansion

Note that above, we analyzed diagrams with the same number of loops equal to 1 (single-loop approx-
imation). Actually, we can present arguments showing that loop-expansion is, in some sense, even
more interesting than the usual perturbation expansion in powers of g. Expansion in the number of
loops L is equivalent to expansion in the powers of the Planck constant ℏ. In fact, restoring ℏ in all
expressions, we can write the generating functional as

Z[J(x)] = ∫𝒟φ exp{ i
ℏ
∫ dx[ℒ(x) + ℏJ(x)φ(x)]} . (13.43)

Introducing ℒ = ℒ0 + ℒint, we can write

Z[J] = exp{ i
ℏ
ℒint[

1
i
δ
δJ
]}Z0[J] , (13.44)

where

Z0[J] = 𝒩 exp[− 1
2
iℏ∫ dx∫ dyJ(x)ΔF (x − y)J(y)] . (13.45)
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From (13.44), it follows that every vertex introduces the factor of ℏ−1 into an arbitrary diagram of the
n-th order of the usual perturbation theory, whereas from (13.45) it follows that each propagator con-
tributes the factor of ℏ. Thus, the given diagram contains the factor of ℏI−n = ℏL−1 (where we have
used the previously derived relation (13.4): L = I − n + 1, where I is the number of internal lines of this
diagram). Then, we conclude that the expansion over the number of loops is actually an expansion in
the powers of ℏ, that is, the expansion “around” the classical theory.

13.3 Renormalization of φ4-theory

Our aim now is to make all physical quantities finite. In a single-loop approximation,
we can easily explicitly make renormalization. After the regularization, all the quan-
tities we are dealing with are finite, and we can act in a direct way. From the definition
of the physical mass of the particle, it is clear that the inverse propagator must be of
the form

G−1(p) = Γ(2)(p) = p2 −m2
1 or m2

1 = −Γ
(2)(0) = −G−1(0) , (13.46)

where the physical mass m1 is finite. The initial (“bare”) mass m entering the La-
grangian does not have any direct physical meaning and can even be infinite in the
limit of d → 4. This is a mass that characterizes a particle in the absence of interac-
tions, which is unobservable; only m1 is physically sensible, and it should be finite.
From (13.39) and definition (13.46), we have

m2
1 = m

2(1 − g
16π2ε
). (13.47)

In the second term in the right-hand side, we may—with the same accuracy ∼g—
replacem bym1, which gives

m2
1 = m

2 − g
16πε

m2
1 , (13.48)

so that we get

m2 = m2
1(1 +

g
16π2ε
). (13.49)

This is the value of the “bare” mass, guaranteeing the finite value m1 of the physical
mass in single-loop approximation.We see that for ε → 0, the value ofm diverges, but
m1 is finite.

We can similarly analyze the vertex part Γ(4). We rewrite (13.42) as

iΓ(4)(pi) = gμ
ε +

g2με

32π2
[6
ε
− 3γ − F(s,m, μ) − F(t,m, μ) − F(u,m, μ)] . (13.50)

Let us define the renormalized (finite) coupling constant g1 as

g1 = iΓ
(4)(pi = 0) , (13.51)
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that is, as the vertex part for particles with zero momenta. Then, from (13.50), we ob-
tain

g1 = gμ
ε +

g2με

32π2
[6
ε
− 3γ − 3F(0,m, μ)] . (13.52)

Considering g1 to be fixed and finite, we immediately see that the “bare” coupling con-
stant g should be infinite (for ε → 0). In fact, rewriting equation (13.52), replacing g by
g1μ−ε andmbym1 everywhere (which always canbedonewith an accuracyup to terms
∼g2), we can obtain an expression for g, expressed via g1, similar to equation (13.49):

g = g1μ
−ε −

3g21μ
−2ε

32π2
[2
ε
− γ − F(0,m1, μ)] . (13.53)

As a result, we can express Γ(4) (13.50) via g1 as

iΓ(4)(pi) = g1 −
g21μ
−ε

32π2
[F(s,m1, μ) + F(t,m1, μ) + F(u,m1, μ) − 3F(0,m1, μ)] . (13.54)

From here, (13.51) follows directly; as for p1 = p2 = p3 = p4 = 0, we have s = t = u = 0.
Thus, the physical (renormalized) coupling constant g1 coincides with iΓ(4), with all
external momenta equal to zero.5 Now everything is finite! We completed renormal-
ization in a single-loop approximation.

Figure 13.5

Now, how does this look in two-loop approximation? In this case, we have to con-
sider the diagrams shown in Figure 13.5. Appropriate analysis shows that in this case,
G−1(p) = Γ(2)(p) acquires an additional divergence due to the diagramof Figure 13.5(b).
This divergence is not canceled by mass and coupling constant renormalization. It
is hidden into an additional multiplicative factor, which is introduced by redefining
2-point function as

G−1r = Γ
(2)
r = Zφ(g1,m1, μ)Γ

(2)(p,m1) . (13.55)

5 This is not the only way to define the renormalized coupling constant. Sometimes g1 is defined via
iΓ(4) at the so-called symmetric point p2i = m

2, pipj = −m2/3 (i ̸= j), which corresponds to s = t = u =
4m2/3.
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Here, Γ(2)r is finite, whereas the factor Zφ is infinite. The factor of Z1/2φ is called wave
function renormalization. For Zφ, it is possible to write an expansion in the number
of loops, which has the form

Zφ = 1 + g1Z1 + g
2
1Z2 + ⋅ ⋅ ⋅ = 1 + g

2
1Z2 + ⋅ ⋅ ⋅ , (13.56)

because the single-loop contribution is absent.Wave function renormalization (renor-
malization of the field amplitude) cannot be merely arbitrary. To define it, we need to
require that at some point; for example, at p2 = 0, we have

𝜕
𝜕p2

G−1r (p)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨p2=0
= 𝜕
𝜕p2

Γ(2)r
󵄨󵄨󵄨󵄨󵄨󵄨󵄨p2=0
= 1 . (13.57)

The choice of p2 = 0 is more or less arbitrary.
The divergence of Zφ means that in a two-loop approximation the value ofm1 de-

fined above is actually infinite (in the limit of ε → 0). However, renormalized G−1r (p) =
Γ(2)r gives the finite value of renormalized massmr:

m2
r = Zφm

2
1 . (13.58)

In other words, divergences of Zφ andm2
1 cancel each other. The value of renormalized

coupling constant changes similarly. For Γ(4)r , we have the relation similar to (13.55):

Γ(4)r = Z
2
φΓ
(4)(p,m1, μ) (13.59)

and the new renormalized coupling constant gr, defined by the relation similar to
(13.46), has the form

iΓ(4)r (pi = 0) = gr = Z
2
φg1 . (13.60)

The factor Zφ is the function of gμε, so that writing this dependence explicitly, we
obtain the renormalized n-particle vertex part as

Γ(n)r (pi, gr ,mr , μ) = Z
n/2
φ (gμ

ε)Γ(n)(pi, g,m) (13.61)

or

Γ(n)(pi, g,m) = Z
−n/2
φ (gμ

ε)Γ(n)r (pi, gr ,mr , μ) . (13.62)

Thus, in two-loop approximation, we can alsomake our theory finite. Is it so in any or-
der? This is the problem of the proof of renormalizability. This proof is tedious enough,
but it can actually be done in all orders of perturbation theory (Dyson). A detailed pre-
sentation of this proof for differentmodels of quantumfield theory can be found in [9].
Note that the proof of renormalizability inφ4-theory is actually more difficult than the
similar proof for QED, which is made more simple due to the gauge invariance.
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Counter-terms
There is an alternative way to introduce renormalizability, which became popular af-
ter the publication of [9]. The point is that, from the start, we can consider parameters
m and g in an initial Lagrangian as the physical mass and charge (coupling constant).
The fact that this Lagrangian does not produce finite Green’s functions now leads to
the requirement that we introduce into the Lagrangian some additional terms, which
cancel the divergences. These terms are called counter-terms. Renormalized theory
can be made finite by the introduction of the finite number of counter-terms. Let us
briefly describe how this is done.

Figure 13.6

Consider againmass renormalization in a single-loop approximation,which is defined
by equations (13.46)–(13.49). This may be described as follows: A single-loop correc-
tion to a free propagator is shown in Figure 13.6 and diverges for ε → 0. Let us add to
the initial Lagrangian ℒ the term

δℒ1 = −
gm2

32π2ε
φ2 ≡ − 1

2
δm2φ2 . (13.63)

This may be considered as an additional interaction, which we shall denote by the
“cross” on the diagrams:

× = − igm
2

16π2ε
= −iδm2 . (13.64)

Then, up to terms of the order of ∼g, the total inverse propagator is represented by
diagrams in Figure 13.7 and is equal to

Γ(2)(p) = iG(p)−1

= i[ 1
i
(p2 −m2) − ( igm

2

16π2
1
ε
+ finite part) + igm2

16π2ε
]

= p2 −m2 , (13.65)

wherewehavedropped thefinite contribution (alternativelywe can include it intom2).
Here,m2 is considered to be the finite physical mass, which in corresponding order of

Figure 13.7
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Figure 13.8

Figure 13.9

perturbation theory is equal to −Γ(2)(0). The Lagrangian is now ℒ + δℒ1, where δℒ1 is
a diverging counter-term.

Themeaning of the introduction of amass term in the Lagrangian as an additional interaction is rather
simple. Consider noninteracting theory, where

ℒ = 1
2
(𝜕μφ)(𝜕

μφ) − 1
2
m2φ, (13.66)

and assume that it describes a massless field (first term in Lagrangian) with interaction determined
by the second terms. The corresponding Feynman rules are shown in Figure 13.8. The full propagator
is determined now by the diagrams shown in Figure 13.9. Then, the perturbation series reduces to the
simple geometric progression

G(p) = i
p2
+

i
p2
(−im2)

i
p2
+

i
p2
(−im2)

i
p2
(−im2)

i
p2
+ ⋅ ⋅ ⋅ =

i
p2 −m2 , (13.67)

which gives the usual propagator of the massive field. We actually used this while considering the
mass counter-term as perturbation.

In a similar way, we can also deal with Γ(4). From (13.42), it is seen that Γ(4), corre-
sponding to diagrams ∼g2 shown in Figure 13.10, diverges for ε → 0. Consequently,
we can add to the Lagrangian the counter-term

δℒ2 =
1
4!
3g2με

16π2ε
φ4 =

Bgμε

4!
φ4 , (13.68)

corresponding to the additional interaction shown in Figure 13.11. As a result, Γ(4), as
shown in Figure 13.12, becomes finite. The divergence of Γ(2) in a two-loop approxi-

Figure 13.10
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Figure 13.11

Figure 13.12

mation, qualitatively described above and leading to the necessity to multiply Γ(n) by
Zn/2φ , is equivalent to the addition to the Lagrangian of the counter-term

δℒ3 =
A
2
(𝜕μφ)

2 , (13.69)

where 1 + A = Zφ.
Thus, finite expressions for Green’s functions and vertices can be obtained by

adding to the Lagrangian

ℒ = 1
2
𝜕μφ𝜕

μφ − 1
2
m2φ2 − 1

4!
gμ4−dφ4 (13.70)

the counter-term ℒCT:

ℒCT =
A
2
𝜕μφ𝜕

μφ − 1
2
δm2φ2 − 1

4!
Bgμ4−dφ4 . (13.71)

The total Lagrangian, which is usually called the “bare” Lagrangian ℒB, is equal to

ℒB = ℒ + ℒCT =
1 + A
2
𝜕μφ𝜕

μφ − 1
2
(m2 + δm2)φ2 − 1

4!
(1 + B)gμ4−dφ4 . (13.72)

Thus, the addition of counter-terms is equivalent to the multiplication of φ,m, and g
by some renormalization factors Z (multiplicative renormalization). If we define the
“bare” quantities

φB = √Zφφr , Zφ = 1 + A ,

mB = Zmmr , Z2m =
m2 + δm2

1 + A
, (13.73)

gB = μ
εZggr , Zg =

1 + B
(1 + A)2

,

the “bare” Lagrangian (13.72) is written as

ℒB =
1
2
𝜕μφB𝜕

μφB −
1
2
m2
Bφ

2
B −

1
4!
gBφ

4
B . (13.74)



13.4 The renormalization group | 363

Note that here, there is no explicit dependence on μ. The values of A, B, and δm2 are
assumed to be chosen in such a way as to make Green’s functions finite (for ε → 0). In
terms of the counter-terms approach, the theory is renormalizable if the counter-terms
needed to cancel the divergences in every order of perturbation theory have the same
formas the terms entering the initial Lagrangian. If this is so, the “bare” quantities can
be defined with (infinite) renormalization factors, as was done above, and the “bare”
Lagrangian has the same form as the initial Lagrangian.

Lagrangian ℒB leads to finite theory, in contrast to initial ℒ. This means that,
“hiding” all divergences into φB, mB, and gB, we can make the theory finite: the di-
vergences are absorbed by renormalization. All “bare” quantities are divergent for
ε → 0,6 whereas renormalized quantities are finite for ε → 0, but their values are
more or less arbitrary and should be taken to be equal to the physical parameters of
the theory.

Equation (13.62) is also obvious from the counter-terms approach. From equa-
tions (13.73) and (13.74), it is clear that, taking (13.74) as the initial Lagrangian, we
have to replacem→ mB, g → gB, φ→ φB in all expressions for Green’s functions. But
now, we can (and need to) express the “bare” parameters via physical mr, gr, and φr
according to expressions (13.73). Then, we obtain

Γ(n)B (pi, gB,mB) = Z
−n/2
φ Γ(n)r (pi, gr ,mr , μ) , (13.75)

which is equivalent to (13.62) (index B can now be dropped). The absence of explicit
dependence of the left-hand side of this equation on μ is obvious from the form of the
Lagrangian (13.74), where it is also absent.

13.4 The renormalization group

In Chapter 8, we already discussed briefly the renormalization group in QED. Renor-
malization groups play a major role in quantum field theory [9, 56, 28] and statistical
physics [42, 3], and in some other fields of theoretical physics. Below, we shall present
a more detailed discussion. There are several (more or less equivalent) formulations
of this method. For example, in Chapter 8, the renormalization group was related to
transformations from one value of the cutoff parameter (for divergent integrals) to an-
other. In the theory of critical phenomena [42] Wilson’s formulation is quite popular,
which is based on integrating out regions ofmomentum space, corresponding to large
momenta, that is, restricting the analysis of fluctuations to long enough wavelengths
et cetera. Here, we shall use the most common (though probably more formal) ap-
proach used in quantum field theory literature, which is based on dimensional regu-
larization [56].

6 For finite ε, there are no divergences at all!
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Within the framework of dimensional regularization, we have introduced an ar-
bitrary parameter μ with dimensionality of the mass. Dependence of renormalized ir-
reducible vertices on μ is determined, according to equation (13.61), by a correspond-
ing μ-dependence of renormalization factor Zφ. In other words (cf. (13.62), (13.75)), the
nonrenormalized (“bare”) function Γ(n) does not depend on μ:

Γ(n)(pi, g,m) = Z
−n/2
φ (gμ

ε)Γ(n)r (pi, gr ,mr , μ) (13.76)

and, in this sense, is invariant towards the group of transformations

μ→ esμ or μ = esμ0 i. e. s = ln μ
μ0
. (13.77)

These transformations represent the renormalization group. Introducing the dimen-
sionless differential operator μ 𝜕𝜕μ , we get

μ 𝜕
𝜕μ

Γ(n) = 0 (13.78)

or, taking into account (13.76),

μ 𝜕
𝜕μ
[Z−n/2φ (gμ

ε)Γ(n)r (pi, gr ,mr , μ)] = 0 , (13.79)

where gr and mr depend on μ. Making a differentiation and multiplying the result by
Zn/2φ , we obtain

[−nμ 𝜕
𝜕μ

ln√Zφ + μ
𝜕
𝜕μ
+ μ𝜕gr
𝜕μ
𝜕
𝜕gr
+ μ𝜕mr
𝜕μ
𝜕
𝜕mr
]Γ(n)r = 0 . (13.80)

In the following, for brevity, we shall—in all cases—write g instead of gr andm instead
of mr, assuming that we are dealing only with renormalized quantities. In general,
only renormalized quantities enter equation (13.80), which are finite for ε → 0.

Let us define the following functions:

mγm(g) = μ
𝜕m
𝜕μ
,

γ(g) = μ 𝜕
𝜕μ

ln√Zφ , (13.81)

β(g) = μ𝜕g
𝜕μ
.

As a result, equation (13.80) takes the form

[μ 𝜕
𝜕μ
+ β(g) 𝜕
𝜕g
− nγ(g) +mγm(g)

𝜕
𝜕m
]Γ(n) = 0 . (13.82)
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This is the main differential equation of the renormalization group, usually called
a Callan–Symanzik equation. It reflects invariance of the renormalized vertex Γ(n) to
changes of the regularization parameter μ.7

Let us write a similar equation expressing the invariance of Γ(n) to changes of the
momentum scale (mass). Consider the replacement pi → tpi, m → tm, μ → tμ. The
vertex Γ(n) has mass dimensionality D, determined according to the table presented
above, by the expression

D = d + n(1 − d
2
) = 4 − n + ε(n

2
− 1) , (13.83)

where d = 4 − ε. Then, we have

Γ(n)(tpi, tm, tμ) = t
DΓ(n)(pi,m, μ) , (13.84)

which, after the simple variable changes tm → m̃, m → m̃/t, m̃ → m, and tμ → μ̃,
μ→ μ̃/t, μ̃→ μ, is rewritten as

Γ(n)(tpi,m, μ) = t
DΓ(n)(pi,m/t, μ/t) . (13.85)

Thus, Γ(n) is actually the homogeneous function of its variables of the power D.

Homogeneous functions. The Euler theorem

Let us recall the basic facts about homogeneous functions. The function u = f (x1, x2, . . . , xm) is called
a homogeneous function of power p if for any t, we have

u = f (tx1, . . . , txm) = t
pf (x1, . . . , xm) . (13.86)

For homogeneous functions, we have the Euler theorem

x1
𝜕u
𝜕x1
+ ⋅ ⋅ ⋅ + xm

𝜕u
𝜕xm
= pu . (13.87)

To prove this, consider u = f (tx01 , . . . , tx
0
m), where (x

0
1 , . . . , x

0
m) is an arbitrary point, from the region of

the definition of our function. Then, we have

du
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=1
=
𝜕u
𝜕x1

x01 + ⋅ ⋅ ⋅ +
𝜕u
𝜕xm

x0m . (13.88)

On the other hand,

du
dt
= ptp−1f (x01 , . . . , x

0
m) , so that

du
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=1
= pf (x01 , . . . , x

0
m) = pu . (13.89)

Comparison of (13.88) with (13.89) gives (13.87).

7 To avoid misunderstanding, we note that here we are dealing with the vertex defined in (13.16) and
denoted previously by Γ̄(n).
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From (13.85), using the Euler theorem, we have

(t 𝜕
𝜕t
+m 𝜕
𝜕m
+ μ 𝜕
𝜕μ
− D)Γ(n)(tpi, g,m, μ) = 0 . (13.90)

Excludingμ 𝜕Γ
(n)

𝜕μ from (13.82) and (13.90),we obtain another formof the Callan–Syman-
zik equation:

[−t 𝜕
𝜕t
+ β 𝜕
𝜕g
− nγ(g) +m(γm(g) − 1)

𝜕
𝜕m
+ D]Γ(n)(tpi, g,m, μ) = 0 , (13.91)

which directly expresses the result of the scale change of momenta in Γ(n) by the fac-
tor of t. Note that for β(g) = γ(g) = 0, γm(g) = 1. This result reduces to the canonical
dimension D, which is determined by the “naïve” dimensional analysis. The neces-
sity of renormalization and nontrivial values of β(g), γ(g), γm(g) is directly related to
interactions, which lead to anomalous dimensions.

Let us find the solution of equation (13.91). In fact, this equation reflects the fact
that the change of t can be compensated by an appropriate change ofm and g and of
the common factor. Suppose the existence of functions g(t),m(t), and f (t) such that

Γ(n)(tp,m, g, μ) = f (t)Γ(n)(p,m(t), g(t), μ) . (13.92)

Differentiating by t, we obtain

𝜕
𝜕t
Γ(n)(tp,m, g, μ) = df (t)

dt
Γ(n)(p,m(t), g(t), μ) + f (t)(𝜕m

𝜕t
𝜕Γ(n)

𝜕m
+ 𝜕g
𝜕t
𝜕Γ(n)

𝜕g
), (13.93)

or, taking into account (13.92),

t 𝜕
𝜕t
Γ(n)(tp,m, g, μ) = (t df (t)

dt
+ f (t)t 𝜕m
𝜕t
𝜕
𝜕m
+ f (t)t 𝜕g
𝜕t
𝜕
𝜕g
)Γ(n)(p,m(t), g(t), μ)

= (t df (t)
dt
+ tf (t)𝜕m
𝜕t
𝜕
𝜕m
+ tf (t)𝜕g
𝜕t
𝜕
𝜕g
) 1
f (t)

Γ(n)(tp,m, g, μ) , (13.94)

which, after the regrouping, reduces to

(−t 𝜕
𝜕t
+ t
f (t)

df (t)
dt
+ t 𝜕m
𝜕t
𝜕
𝜕m
+ t 𝜕g
𝜕t
𝜕
𝜕g
)Γ(n)(tp,m, g, μ) = 0 . (13.95)

Compare now (13.91) with (13.95). Equating the coefficients at 𝜕/𝜕g, we obtain the Gell-
Mann–Low equation

t 𝜕g(t)
𝜕t
= β(g) . (13.96)

The function g(t) is called the “running” coupling constant, and the β(g)-function is
called the Gell-Mann–Low function. This equation is of basic importance in the study
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of asymptotic properties in quantum field theory. The knowledge of β(g) allows us to
find g(t). Of major interest, as we shall see, is the asymptotics of g(t) at t → ∞. The
initial condition for equation (13.96) is g(1) = g.

Comparison of the coefficients before 𝜕/𝜕m in (13.91) and (13.95) gives

t 𝜕m
𝜕t
= m[γm(g) − 1] , (13.97)

and comparison of the remaining terms gives

t
f (t)

df (t)
dt
= D − nγ(g) . (13.98)

The latter equation can be integrated to obtain

f (t) = tD exp[−
t

∫
0

dt nγ(g(t))
t
] ; (13.99)

substituting this into (13.92) and taking D = 4 − n + ε( n2 − 1), in the limit of ε → 0, we
get

Γ(n)(tp,m, g, μ) = t4−n exp[−n
t

∫
0

dt γ(g(t))
t
]Γ(n)(p,m(t), g(t), μ) . (13.100)

This is the solution of (13.91), expressed via the “running” coupling constant g(t)
and the “running”massm(t). The exponential determines the anomalous dimension.
Thus, the physics at high momenta is determined by functions g(t) and m(t). Rela-
tions, such as (13.100), in some sense allow us to analyze the situation outside the
region of applicability of perturbation theory.

In the limit of very large momenta, we can neglect particle masses. Thus, we can
usually limit our analysis to studies of the Gell-Mann–Low equation (13.96). Consider
the possible qualitative behavior which may appear. We shall be interested in the be-
havior of g(t) for t → ∞. The Gell-Mann–Low equation is written as (13.96), and the
possible variants of the qualitative behavior of the β(g)-function are shown in Fig-
ure 13.13. We always have β(g = 0) = 0, which corresponds to free theory without
interactions. Perturbation theory allows us to determine the behavior of β(g) close to
g = 0; it is always (as we shall see below) quadratic in g. In principle, where zeroes of
β(g) at finite g,may be, it is sufficient to consider only one, say at g = g0, to understand
the consequences of its existence. Consider first β(g), shown in Figure 13.13(a). The ze-
roes of this function at g = 0 and g = g0 correspond to the so-called fixed points of the
Gell-Mann–Low equation. It is easy to see that, for t →∞ and initial values of g close
to g0, the value of g(t), determined from (13.96), tends to g0. In fact, for initial g < g0,
we have β(g) > 0, so that g grows with the growth of t and tends to g0 (where further
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Figure 13.13

growth is just stopped). Likewise, for initial g > g0, we have β(g) < 0, and g dimin-
isheswith the growth of t, that is, also tends to g0,moving in anegative direction. Thus
g(∞) = g0, and we have an ultraviolet stable fixed point: the fixed value of the cou-
pling constant (charge) at very largemomenta. For small initial values of g in the limit
of t → 0, we always obtain g = 0, the infrared stable fixed point (“Moscow zero”). If
the zeroes of the Gell-Mann–Low function at finite g are absent, equation (13.96) leads
to the continuous growth of g for t →∞, and a fixed value of charge does not appear.
If for the large values of argument β(g) ∼ gα and α > 1, the theory becomes internally
inconsistent: the inevitable divergence of g appears at the finite value of t (the Landau
“ghost pole”). For α ≤ 1, we obtain the monotonous growth of g for t →∞; the theory
is consistent, but for t →∞, we have a crossover to “strong coupling”.

Consider now the β(g)-function shown in Figure 13.13(b). Again,we have two fixed
points, but the sign of β(g) is now opposite, so that g = g0 is not the infrared stable
fixed point at (t → 0), whereas g = 0 is the ultraviolet stable fixed point at (t →∞). In
the latter case, g → 0 for t →∞, and effective interaction diminishes with the growth
of energy (momentum) becoming zero in the limit. This is called asymptotic freedom.
With the absence of zero of β(g) at finite values of g, we have problems at small mo-
menta; interaction grows and can produce unphysical divergence. In any case, here
we obtain the transition to “strong coupling” at large distances (confinement?).

These possibilities, in fact, represent all the variants of asymptotic behavior in any
reasonable model of quantum field theory. As a concrete example, we can consider
the gφ4 (g > 0)-theory. Let us take the result of the single-loop approximation (13.52)
for the renormalized coupling constant. Dropping irrelevant finite corrections, we can
write

g1 = gμ
ε(1 + 3g

16π2ε
). (13.101)

Then, we have

μ𝜕g1
𝜕μ
= εgμε + 3g2

16π2
με . (13.102)
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For finite ε, everything is finite, and we can (with the same accuracy) rewrite (13.102)
as

μ𝜕g1
𝜕μ
= εg1 +

3g21
16π2

μ−ε (13.103)

and then drop the index 1, assuming that we are working with a renormalized cou-
pling constant. Consequently, from (13.103), for ε → 0, we obtain the Gell-Mann–Low
function as

β(g) = μ𝜕g
𝜕μ
= 3g2

16π2
. (13.104)

Introducing s = ln t = ln μ
μ0
, so that μ 𝜕𝜕μ =

𝜕
𝜕s = t

𝜕
𝜕t , we can rewrite equation (13.103) as

𝜕g
𝜕s
= 3g2

16π2
. (13.105)

Now, without any calculations we can see that the “running” coupling constant of
φ4-theory grows with the growth of s, that is, with the growth of momentum, so that
this theory is not asymptotically free. The Gell-Mann–Low function is ∼g2. The ele-
mentary integration of equation (13.105) with initial condition g(s = 0) = g0 gives

g = g0
1 − 3

16π2 g0s
=

g0
1 − 3

16π2 g0 ln t
=

g0
1 − 3

16π2 g0 ln
μ
μ0

. (13.106)

With the growth of t (or μ) the coupling constant grows, and finally we meet the un-
physical singularity (“ghost pole”) at 1 = 3

16π2 g0 ln(
μ
μ0
), which corresponds to μ =

μ0 exp(
16π2
3g0
). The situation here is quite similar to that in QED, which we discussed

in Chapter 8. The same behavior was discussed in Chapter 10 in relation to critical
phenomena.

Of course, this behavior of the Gell-Mann–Low function is completely based on a
single-loop approximation and is formally valid only for small enough values of the
coupling constant g. The problem of the β(g) behavior for large values of g and the
related question of the consistency of gφ4-theory remains open. Many researchers ob-
tain for g → ∞ the asymptotic behavior of β(g), which is practically the same as the
result of a single-loop approximation, which is equivalent to the internal inconsis-
tency of the theory in accordance with the initial Landau claim, discussed above in
Chapter 8. Alternative suggestions will be discussed in Chapter 14.

Note that the gφ4-theory is “easily” made asymptotically free if we assume g < 0. Then, we obviously
have to change the sign before the logarithm in the denominator of equation (13.106) and the effective
coupling constant will drop with the growth of t and μ. However, such a theory is unstable: there is
no ground state (potential energy can be arbitrarily negative), and this model is usually not consid-
ered in quantum field theory. However, the specific variant of such models, which is reduced to the
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generalized Landau functional (10.160), with the number of field components n = 0, describes themo-
tion of an electron in the random potential field of impurities with point-like potential V , chaotically
distributed in space with fixed average density ρ if in (10.160), we put g = −ρV2 and τ = −E, where
E is the electron energy. This problem is basic for the theory of electrons in disordered systems and
related to the still unsolved problem of electron localization in such systems (Anderson localization,
the basic mechanism of metal-insulator transitions). These problems are deeply connected with the
description of the infrared region of asymptotically free models in quantum field theory. We shall not
discuss these problems in more detail here, referring the readers to existing reviews [57, 64].

13.5 Asymptotic freedom of the Yang–Mills theory

Now let us consider the asymptotic properties of gauge theories. The situation in QED
was discussed in Chapter 8, where it was shown that this theory is not asymptotically
free, which leads to a “zero-charge” problem and pathological behavior at large mo-
menta (energy). Remarkably, in non-Abelian theories the situation is different, and in
these theories we can obtain asymptotic freedom. The discovery of this phenomenon
by Gross and Wilczek opened the way for the development of quantum chromody-
namics and guaranteed the possibility of reliable calculations of QCD effects at high
energies using perturbation theory.

Figure 13.14 Figure 13.15 Figure 13.16

Here, we limit ourselves to the main results for the case of SU(3) gauge theory (QCD)
and a qualitative interpretation of asymptotic freedom, referring the reader for details
to existing textbooks [56, 53, 13]. The key to finding asymptotic behavior is the Gell-
Mann–Low β(g)-function. Addressing QED in Chapter 8, we used the simplest single-
loop approximation for vacuumpolarization. In single-loop approximation of QCDwe
have additional contributions related to the non-Abelian nature of the theory (self-
interaction). We have to take into account the contribution to charge renormalization
from the simple loop graphs for gluon–gluon interaction, shown in Figure 13.14, from
gluon–ghost interaction, shown in Figure 13.15, and the QED-like contribution from
gluon–quark interaction, shown in Figure 13.16. After some tedious calculations [56],
we obtain the renormalized QCD coupling constant in a single-loop approximation,
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similar to (13.101), in the form8

g1 = gμ
ε/2[1 + g2

4πε
(−11 +

2nf
3
)] , (13.107)

where nf is the number of quark “flavors” (type of quarks). A similar single-loop cor-
rection for electrons in QED is e2

4π (−
4
3 ). The sign of the fermion loop contribution in

QCD is the same as in QED. However, the combined contribution from the diagrams of
Figures 13.14 and 13.15 has the opposite sign. Correspondingly, for nf < 16, the sign of
the full polarization correction in (13.107) is opposite to that in QED (“antiscreening”).
The physical reasons for such behavior will be explained below, whereas now, acting
just as in transformations leading from (13.101) to (13.104), in the limit of ε → 0, we
obtain

β(g) = μ𝜕g
𝜕μ
= g3

12π
(−33 + 2nf ) . (13.108)

For nf ≤ 16, from (13.108) it follows that β(g) < 0 and the coupling constant g dimin-
ishes with the growth of the momentum (mass) scale, in accordance with the quali-
tative picture discussed above. We see that, in this case, the theory is asymptotically
free. In nature, we have nf = 6.

Let us obtain the expression for the “running” coupling constant. Introducing
once again s = ln t = ln μ

μ0
, μ 𝜕𝜕μ =

𝜕
𝜕s , we obtain the Gell-Mann–Low equation

𝜕g
𝜕s
= −ηg3 , where η =

33 − 2nf
12π
. (13.109)

Let us rewrite it as
d
ds
(g−2) = 2η . (13.110)

It is easy to see that the solution of this equation has the form

1
g2
= 1
g20
+ 2ηs (13.111)

or

g2 =
g20

1 + 2g20ηs
=

g20
1 + 2g20η ln t

. (13.112)

Introducing t = Q/μ and defining g0 at Q = μ, we obtain the result already quoted in
Chapter 8,

g2(Q2) =
g2(μ)

1 + g2(μ2)
12π (33 − 2nf ) ln(

Q2

μ2 )
. (13.113)

8 Here we use the Gaussian system of units.
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Only in the experimental world with nf > 16, the sign in the denominator of (13.113)
will be the same as in QED. In the real world, the effective charge of QCD does not
grow, but drops with the growth of Q2 and becomes small at small distances. In con-
trast, for small enough Q2 (at large distances between quarks) the effective coupling
constant becomes large, which is reflected in confinement of quarks (“infrared jail”).
For the value ofQ2, corresponding to the “ghost pole” in (13.113), we can introduce the
notation Λ2

QCD:

Λ2
QCD = μ

2 exp[− 12π
(33 − 2nf )g2(μ2)

] , (13.114)

so that (13.113) is rewritten as

g2(Q2) = 12π
(33 − 2nf ) ln(

Q2

Λ2 )
. (13.115)

For Q2 ≫ Λ2
QCD, the effective coupling constant is small, and quark–gluon interaction

(at small distances or large momenta) can be described by perturbation theory, just
as electron–photon interactions in QED (at big distances of small momenta). For Q2 ∼
Λ2
QCD, such a description becomes impossible, and quarks and gluons form strongly

interacting clusters, hadrons. The experimental value of ΛQCD is somewhere in the
interval between 0.1 and 0.5 GeV. Then, for experiments being done atQ2 ∼ (30GeV)2,
from (13.115)weobtain g2 ∼ 0.1, so that the perturbation theory is applicable as inQED.
In the limit of large Q2, we can neglect all quark masses, but the theory still contains
the mass scale μ2, which appeared during the renormalization procedure.

Let us stress that the theoretical result (13.115) iswell confirmedby experiments. In
Figure 13.17, we show the experimental data for the effective coupling constant of QCD
as a function of the characteristic energy-momentum scale if with different scattering
processes, studied at different experimental installations.9We see a rather convincing
agreement between the theory and experiments.

Antiscreening – the paramagnetism of Yang–Mills vacuum

We have seen that asymptotic freedom appears due to charge antiscreening in a Yang–Mills vacuum.
This phenomenon has a rather simple explanation, based upon analogies with condensedmatter the-
ory.10

Charge antiscreening means that a vacuum acts like a dielectric medium with dielectric permeability
ϵ < 1. The vacuumof quantumfield theory differs from the usual polarizablemedium in one important
aspect: it is relativistically invariant. Thismeans that itsmagnetic permeabilityμ is related to dielectric
and both satisfy

μϵ = 1 . (13.116)

9 M. Schmelling. ArXiv: hep-ex/9701002.
10 Below, we shall follow mainly F. Wilczek. Asymptotic Freedom. ArXiv: hep-th/9609099.
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Figure 13.17

In fact, ϵ is the coefficient before the electric field term in action E⃗ ⋅ D⃗ ∝ ϵFoiFoi, whereas μ−1 is the
coefficient before the magnetic field term B⃗ ⋅ H⃗ ∝ μ−1FijF ij. The sum of these terms is relativistically
invariant only if the condition ϵ = μ−1 is satisfied. This relation allows us to connect electric properties
of the medium with their magnetic properties, which may be of two types:
1. Landau diamagnetism (μ < 1). Charged particles in the medium respond to the magnetic field

creating the current, which itself induces the magnetic field with the direction opposite to the
external field.

2. Pauli paramagnetism (μ > 1). If particles possessmagneticmoments, these are oriented along the
field direction.

Then, the property of antiscreening of a Yang–Mills vacuum can be interpreted as μ > 1, that is, para-
magnetism.11 The thing is that non-Abelian gauge fields are Bose fields and, in contrast to Abelian
photons, possess a gauge charge. Let us stress that the terminology of electromagnetism is used here,
based on the analogy with U(1) gauge theory (QED), whereas—in reality—we mean charges, corre-
sponding to gauge SU(3) (color) symmetry and color charges. Electric and magnetic fields are under-
stood as electric-like and magnetic-like components of a non-Abelian gauge field, corresponding to
SU(3) symmetry of QCD. When we are speaking about Yang–Mills fields in QCD (gluons), possessing
charge and amagneticmoment, wemean that these fields possess a color charge and a colormagnetic
moment. Gluons are, of course, electrically neutral in the usual (electrodynamic) sense.
The well-known result of the theory of metals is that for an ideal gas of electrons, Landau diamag-
netism is overtaken by Pauli paramagnetism, so that the total response is paramagnetic [36]. We shall
see that for non-Abelian gauge theories, the situation is similar.

11 The usual polarizable medium, in contrast, can simultaneously be screening (ϵ > 1) and paramag-
netic (μ > 1). But still, there is some historical irony that the physical behavior leading to asymptotic
freedom was, in fact, known to Landau, who made some fundamental contributions to the quantum
theory of magnetism, but—at the same time—criticized the basics of quantum field theory, because of
the pathological behavior of interactions at high momenta.
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The standard classical Lagrangian of non-Abelian gauge theory has the form

ℒ = − 1
16π

Ga
αβG

aαβ + ψ̄(iγνDν −m)ψ + ϕ
†(−DνD

ν − μ2)ϕ + other contributions, (13.117)

where the field tensor is defined as Ga
αβ ≡ 𝜕αA

a
β − 𝜕βA

a
α − gf

abcAbαA
c
β, and f abc are the structural con-

stants of the gauge group; the covariant derivative Dν = 𝜕ν + igAaν ⋅ T
a, and Ta are the generators of

the group (for example, Pauli matrices τ
2 for the fundamental representation of SU(2), or Gell–Mann

matrices λ
2 for fundamental representation of SU(3)). “Other contributions” are assumed to originate

from Yukawa-type interactions and self-interactions of scalar fields. It is important that these contri-
butions are independent of gauge fields. It is convenient to redefine gA→ A, so that the Yang–Mills
constant g enters only the “free” part of the gauge field Lagrangian:

ℒ = − 1
16πg2

Ga
αβG

aαβ + ψ̄(iγνDν −m)ψ + ϕ
†(−DνD

ν − μ2)ϕ + other contributions, (13.118)

where now, Ga
αβ ≡ 𝜕αA

a
β − 𝜕βA

a
α − f

abcAbαA
c
β, Dν = 𝜕ν + iAaν ⋅ T

a, and g now enters only as a coefficient in
the first term.
To calculate themagnetic susceptibility of a vacuum,we need to know the change of its energy density
due to a change of the external magnetic field. It may seem that everything is determined only by the
first term in (13.118): 1

8πg2 B
2. But this is only the classical contribution to energy; in quantum theory,

we need also to consider the charge of zero-point energy of all fields entering (13.118) under the change
of the external magnetic field. In fact, everything is similar to the theory of metals, where the vacuum
corresponds to the filled Fermi sphere.
Before starting explicit calculations, we shall write the correct answer and analyze its meaning and
consequences. As we shall show, with the additional contribution of the zero-point oscillations Δℰ,
the vacuum energy density in the external magnetic field B can be written as12

ℰ + Δℰ = 1
8πg2(Λ2)

B2 − 1
8π

ηB2 ln(Λ
2

B
) + finite contributions , (13.119)

where η was defined above in (13.109):

η =
33 − 2nf
12π
, (13.120)

and the neglected terms are finite in the limit of g → 0 and Λ → ∞. Here, we introduced the usual
cutoff Λ, that is, dropped the contribution of all oscillations with wave vectors exceeding Λ. The origin
of the notation g2(Λ2) will soon become clear.
Consider the case when the cutoff Λ in (13.120) is changed to a smaller value Λ󸀠. Then, it is easy to
see that all oscillation modes with wave vectors in the interval between Λ󸀠 and Λ give the following
contribution to the change of vacuum energy:

δ(ℰ + Δℰ) = − 1
8π

ηB2 ln( Λ
2

Λ󸀠2
) = (

1
μ
− 1) 1

8πg2
B2 , (13.121)

where, in the second equality, we introduced the contribution to vacuummagnetic susceptibility (per-
meability) from these modes, thus giving, in fact, its definition.
Now, for small g, we get

μ − 1 = ηg2 ln( Λ
2

Λ󸀠2
) , (13.122)

12 In our system of units, [B] = [L−2] = [Λ2], and we are using here the Gaussian system of units of
electrodynamics.
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where we explicitly wrote the contribution to susceptibility from modes with energies (momenta) in
the interval between Λ󸀠 and Λ. From equation (13.120), it is clear that here (as in the theory of met-
als) we have two contributions: the first is connected with the tendency of spins to orient along the
field (paramagnetism), whereas the second is due to the orbital motion of charged particles (diamag-
netism). For electron gas, the paramagnetic response is three times greater than the diamagnetic one
[36]. The result (13.122) shows that in QCD the situation is similar and μ > 1, which, as we have seen,
corresponds to the antiscreening of the charge (ϵ < 1). To determine the correct sign, we have to take
into account the fact that particles with spin 1 (gluons) have only two polarizations and also that the
fermion (quark) contribution to vacuumenergy is negative (reference Chapter 3),which leads to partial
cancellation of the paramagnetic effect. In particular, in QED, where the Abelian electromagnetic field
is not self-interacting, the entire effect is due to fermions, and we have the usual vacuum screening of
the charge.
What are the consequences of equation (13.119) for physical observables? First of all, we have to deal
with the problem of arbitrary cutoff Λ.We define the effective coupling constant in such a way that the
right-hand side of (13.119) becomes independent of Λ. To achieve this, we require

const ≡ 1
g2(Λ2)
− η ln(Λ

2

B
), (13.123)

which is equivalent to (13.111). It is better to write this condition in a differential form:

d
d(ln Λ2)

1
g2(Λ2)
= η , (13.124)

which is the same as the Gell-Mann–Low equation (13.110). Now, we see that the effective coupling
constant drops with the growth of cutoff Λ, going to zero as the inverse logarithm of Λ for Λ → ∞,
when there are not too many quarks, that is, until η > 0. This is what we call asymptotic freedom.
Now let us proceedwith the derivation of equation (13.119). A paramagnetic contribution to η from spin
projections±s is easily calculated as follows: Let the electric charge be 1 and the gyromagnetic ratio gm.
As we are interested in the contribution of modes with very large momenta, the cutoff parameter Λ is
much larger than themasses of all the particles, andwe can consider all of them asmassless (ignoring
infrared divergences, whichwemay regularize, introducing a lowmomentum cutoff∼B). Switching on
themagnetic field leads to the energy shift of the relativistic particle [6]: E2 = k21 +k

2
2 +k

2
3 → E2 ±gmBs.

Thus, the corresponding change of zero-point energy is

Δℰ = ∫ d3k
(2π)3

1
2
(√k2 + gmsB + √k2 − gmsB − 2√k2) . (13.125)

Expanding here up to terms quadratic in B and making angular integrations, we get

Δℰ = −B2(gms)
2 1
32π2

Λ2

∫
0

dk2

k2
= −B2(gms)

2 1
32π2

ln Λ2

B
. (13.126)

This gives the paramagnetic contribution to (13.119). The precise value of the numerical coefficient in
(13.119) is related to group constants of SU(3), and we shall not derive it here.
Calculation of diamagnetic contribution to η is more difficult. Let us take the vector potential of a
magnetic field in the Landau gauge: Ay = Bx. The Klein–Gordon equation for orbital motion of a
relativistic particle in a magnetic field is

[E2 + 𝜕
2

𝜕x2
+ (
𝜕
𝜕y
− iBx)

2

+
𝜕2

𝜕z2
]ϕ = 0 , (13.127)
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and its solutions are written as

ϕ = ei(k2y+k3z)χn(x −
k2
B
) (13.128)

with corresponding eigenvalues E2n = k
2
3 +B(2n+ 1). Here, χn is the usual oscillator wave function [35].

Energy levels are characterized by the integer n and momentum k3, but are degenerate over k2, as for
the usual Landau levels in a magnetic field [35]. If we consider the states in the cube with side L, the
coordinate of the center of the oscillator k2/B should satisfy the inequality 0 ≤ k2/B ≤ L, whichmeans
that in the interval Δk3, we have Δk2Δk3/(2π)2 =

B
4π2 Δk3 states with fixed n (for unit volume L3 = 1).

Then, the corresponding contribution to the energy of zero-point modes is given by

ℰ0 =
B
(2π)2

Λ2
2B −

1
2
∑
n=0

∞

∫
−∞

dk3θ[Λ
2 − k23 − B(2n + 1)]√k23 + B(2n + 1) ≡

Λ2
2B −

1
2
∑
n=0

f(n + 1
2
) . (13.129)

This is a rather complicated expression because of the sum over n. For us, it is sufficient to take into
account the first nontrivial contribution using the Euler–Maclaurin summation formula:

p
∑
n=0

g(n + 1
2
) =

p+1

∫
0

dng(n) − 1
24
(g󸀠(p + 1) − g󸀠(0)) + ⋅ ⋅ ⋅ , (13.130)

as the next terms lead to contributions of higher orders in B/Λ2. Applying (13.130) to (13.129), we see
that the integral term is independent ofB, whereas the significant contribution comes from the deriva-
tive at zero:

1
24

f 󸀠(0) = 1
24

B
4π2

2
Λ

∫

√B

dk3
B

√k23
= B2 1

96π2
ln Λ2

B
. (13.131)

This gives the diamagnetic part of (13.119), which is smaller than paramagnetic term (13.126) for any
reasonable values of gm and s.

As we noted many times, the discovery of asymptotic freedom in non-Abelian gauge
theories played a revolutionary role in modern quantum field theory, transforming
QCD into a “respectable” theory and foundation of the Standard Model. During the
last thirty-five or so years, this theory was tested in many experiments and was al-
ways confirmed. We shall not discuss this. Many aspects of QCD are discussed in [13].
A rather detailed presentation of the mathematical apparatus of QCD can be found
in [62]. Among the unsolved problems, it is relevant that we mention the problem of
confinements, which is deeply related to the problem description of the strong cou-
pling (nonperturbative) effects ofQCD in the infrared region (large distances).We shall
briefly discuss these problems in the next chapter.

In recent years, there has been an intensive development of the theory of quark-
gluonmatter under extreme conditions of high temperatures and densities, important
for problems of astrophysics and cosmology and for the study of heavy nuclei colli-
sions in accelerator experiments. Here, we meet some remarkable analogies with the
physics of condensed matter. In particular, great attention is devoted to the study of
the so-called color superconductivity, appearing in quark-gluon matter due to Cooper
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pairing of quarks, induced by the attraction due to gluon exchange. A detailed and
clear presentation of these problems can be found in [54, 72].13

Frank Wilczek (born 1951) is an American
theoretical physicist. Along with David Gross
and Hugh David Politzer, he was awarded the
Nobel Prize in Physics in 2004 for their dis-
covery of asymptotic freedom in the theory of
strong interactions. In 1973, while a graduate
student working with David Gross at Prince-
ton University, Wilczek discovered asymptotic
freedom, which states that the closer quarks
are to each other, the more the strong inter-
action between them decreases. When quarks
are in extreme proximity, the nuclear (color

charge) force between them is so weak that they behave almost as free particles. This
theory, which was independently discovered by H. David Politzer, was key for the de-
velopment of quantum chromodynamics. Wilczek also worked on axions, anyons, the
color superconducting phases of quark matter, and other aspects of quantum field
theory. He also worked on condensed matter physics, astrophysics. Wilczek holds the
Herman Feshbach Professorship of Physics at MIT Center for Theoretical Physics. He
also worked at the Institute for Advanced Study in Princeton and the Institute for The-
oretical Physics at the University of California, Santa Barbara, andwas also a visiting
professor at NORDITA. Wilczek became a foreign member of the Royal Netherlands
Academy of Arts and Sciences in 2000. He was awarded the Lorentz Medal in 2002.
Hewon the Lilienfeld Prize of the American Physical Society in 2003. In the same year,
hewas awarded the Faculty ofMathematics and Physics CommemorativeMedal from
Charles University in Prague. Hewas the corecipient of the 2003High Energy and Par-
ticle Physics Prize of the European Physical Society. Wilczek was also the corecipient
of the 2005 King Faisal International Prize for Science.

13.6 “Running” coupling constants and the “grand unification”

In Chapter 12, we considered the SU(2)⊗U(1) symmetric unified theory of electroweak
interactions, which is in remarkable agreement with experiments related to the SU(3)
invariant QCD. But is it really a unified theory? In fact, SU(2) ⊗ U(1) represents the
direct product of two disconnected groups of gauge transformations: the SU(2) group
of weak isospin with coupling constant g and the U(1) group of weak hypercharge

13 An elementary presentation of the successes of modern QCD is given in a minireview [74].
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with coupling constant f . The ratio of these two coupling constants, introduced in
equation (12.83) as

tg α = f
g

(13.132)

is to be determined from experiments. However, if we consider groups SU(2) and U(1)
as subgroups of some larger gauge group

G ⊃ SU(2) ⊗ U(1) , (13.133)

the constants g and f can be related to each other by group relations, which will de-
termine the Weinberg angle α. Some of the transformations of the wider group G will
connect previously disconnected subsets of groups SU(2) and U(1). It is natural to try
to unify electroweak symmetries SU(2) and U(1)with the color gauge SU(3) symmetry
of QCD:

G ⊃ SU(3) ⊗ SU(2) ⊗ U(1) . (13.134)

Then, the gauge transformations of the group G will connect electroweak constants g
and f with QCD coupling. As a result, all known interactions will be described by a
single gauge group with the single coupling constant gG, whereas all observable con-
stants of known interactions will be unambiguously defined by the group structure of
G. This type of model is usually called grand unified theories (GUT). There are a num-
ber of such models under discussion for possible verification. Below, we shall briefly
discuss some aspects of this approach.

The foundation for such a description can be guessed from the real behavior of
“running” coupling constants for known interactions.We shall denote these constants
as g1(Q), g2(Q), and g3(Q), corresponding to gauge groups U(1), SU(2), and SU(3). Let
us introduce the following standard notations relating gi (i = 1, 2, 3) with the coupling
constants used above:

SU(3) : g2(Q) = 4πg23(Q) ,
SU(2) : g(Q) = g2(Q) ,

U(1) : f (Q) = 1
C
g1(Q) .

(13.135)

Here, we also introduced (not very important for us in the future) the coefficient C,
which is usually defined by some group constants of G. In particular, the angle α from
(13.132) becomes a function of Q:

tg α(Q) = 1
C
g1(Q)
g2(Q)
. (13.136)

Figure 13.18 shows the behavior of “running” coupling constants of the Standard
Model αi =

g2i
4π as functions of log10(μ/GeV), obtained from scattering experiments and
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Figure 13.18

(at very large momenta) from single-loop expressions, which were discussed above in
some detail for QED and QCD. We see that the QCD constant g3 drops with the growth
of momentum (asymptotic freedom), whereas the constants of electroweak theory
g1 and g2 grow. However, we clearly observe the tendency for effective constants to
becomemore or less equal in the region of Q ∼ 1015 GeV. It can be expected that in the
true theory of elementary particles at some large value of Q ∼ MX (at small distances)
all three constants become just one universal constant of “grand unification”:14

gi(Q) = gG(Q) for Q ≥ MX , (13.137)

corresponding to gauge group G. For Q < MX , constants gi(Q) separate and at large
distances tend to the phenomenological constants gi, describing the observable inter-
actions roughly corresponding toQ ∼ μ ∼ 10GeV. Suchbehavior of coupling constants
is also obtained in some supersymmetric generalizations of the Standard Model.15 An
example of the “running” couplings behavior obtained in such models is shown in
Figure 13.19. Such behavior of effective coupling constants is considered a strong ar-
gument for theories with supersymmetry. However, it should be noted that supersym-
metry is, in any case, strongly broken in the real world. Also, up to now, there is no
experimental evidence for its existence. In particular, it is not known whether or not
any “superpartners” of the known elementary particles exist.

Assuming the existence of the GUT group G and using the phenomenological val-
ues of coupling constants determined at Q ∼ μ ∼ mW , we can make a more accurate

14 In this region theWeinberg angle, in accordancewith (13.136), is determined by group coefficientC.
15 We recall that supersymmetry transforms fermions into bosons and back.
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Figure 13.19

estimate ofMX . For the QCD constant, using (13.109)–(13.113), we can write

1
g23(μ)
= 1
g23(Q)
+ 2b3 ln

Q
μ
, (13.138)

where we have introduced

b3 =
1
(4π)2
( 2
3
nf − 11) , (13.139)

which differs from η, introduced above, by its sign and constant factor. For Q = MX ,
we have g3 = gG, so that from equation (13.138), we get

1
g2i (μ)
= 1
g2G
+ 2bi ln

MX
μ
, where i = 3 . (13.140)

The same relation canbe applied to coupling constants g1 and g2 of gauge groups SU(2)
and U(1), with

b1 =
1
(4π)2
(4
3
ng) ,

b2 =
1
(4π)2
(−22

3
) + b1 , (13.141)

b3 =
1
(4π)2
(−11) + b1 , (13.142)

where ng is the number of fermion flavors for the given model. In the general case of
SU(N) gauge group, we have

bN =
1
(4π)2
(− 11

4
N + 4

3
ng), (13.143)
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where the first term is connected with loop contribution of gauge bosons, whereas the
second one with fermion loops.

Excluding ng and gG from three equations, such as (13.142), and using (13.143), we
can compose the following linear combination:

C2

g21
+ 1
g22
− 1 + C

2

g23
= 2[C2b1 + b2 − (1 + C

2)b3] ln
MX
μ
, (13.144)

where g2i = g
2
i (μ). The left-hand side here is chosen in such a way that it can be ex-

pressed via e2 and g23. In fact, we have

C2

g21
+ 1
g22
= 1
f 2
+ 1
g2
= 1
e2
, (13.145)

where we have used (13.135) and electroweak theory relation e = g sin α = f cos α.
Substituting the coefficients bi from (13.142) into (13.144), we obtain

ln MX
μ
= 3(4π)2

22(1 + 3C2)
[ 1
e2
− 1 + C

2

g23
]. (13.146)

For μ ∼ 10GeV, we have e2 ∼ 10−2 and g23 ∼ 0.1. Assuming16 C2 = 5/3, we have

MX ∼ 5 ⋅ 10
14 GeV. (13.147)

This estimate is not very sensitive to the choice ofμ and the precise value ofC. Actually,
the massMX is very large, but we can still neglect the gravitation effects.17

A minimal group satisfying the condition of

G ⊃ SU(3) ⊗ SU(2) ⊗ U(1) (13.148)

is SU(5), leading to the simplest GUT model (Georgi–Glashow). What kinds of gauge
bosons appear in this theory? In the general case of a SU(N)-symmetric gauge group,
we have N2 − 1 gauge bosons. Then, for SU(5), we have

24 = (8, 1)Gluons + [(1, 3) + (1, 1)]W ,Z,γ + [(3, 2) + (3̄, 2)]X,Y . (13.149)

16 This follows from (13.136) and sin2 α ≈ 0.2. In the general case, from (13.136), we have sin2 α =
g21 (Q)

g21 (Q)+C
2g22 (Q)

. If we take C2 = 5/3, then for Q = MX , that is, for g1 = g2, we get sin2 α = 3/8. However, for

Q ≈ μ, the value of sin2 α is different because of g1 ̸= g2.
17 The account of gravitation becomes important for GM2

r |r= ℏMC
∼ Mc2, which gives the Planck mass

MPc2 ∼ (
ℏc5
G )

1/2 ∼ 1.2 ⋅ 1019 GeV.
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Thus, in this model, superheavy bosons X and Y appear. They have color and are in-
termediate bosons for interactions, transforming quarks into leptons:

(u, d)L → e+L + (Ȳ , X̄) , (13.150)

which inevitably leads to proton decay.18

Fermions in the SU(5)model belong to fundamental representations 5̄ and 10. Ex-
plicitly, for left-handed states we have

5̄ = (1, 2) + (3̄, 1) = (νe, e
−)L + d̄L ,

10 = (1, 1) + (3̄, 1) + (3, 2) = e+L + u
+
L + (u, d)L . (13.151)

Theoretical estimates for the lifetime of proton give

τp ∼
M4

X
m5
p
. (13.152)

It is seen that its numerical value is not very sensitive to the precise value ofMX and is
within the interval of 1030–1032 years. The present-day experimental limit is τp > 1032

years. This contradicts the simplest SU(5) GUT model. However, in more complicated
GUT models, the proton lifetime can be made much larger. Unfortunately, at present
there is no clear experimental way to search for proton decaywith a lifetime exceeding
1032 years. In this sense, and also because of the immense scale of the MX masses,
all GUT models represent a kind of theoretical “game”. However, purely theoretical
considerations stimulate further work in this direction [73].

18 Proton decay is not so unexpected as it may seem. Conservation of electric charge is related to
the existence of a massless photon, but apparently there are no particles responsible for conservation
of the baryon charge (reference Chapter 2). For Q ∼ MX,Y , the strong color interaction is mixed with
electroweak interaction, and a clear distinction between color quarks and colorless leptons vanishes.
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14.1 The lattice field theory

Our previous presentation of the theory of interacting quantum fields was based on
perturbation theory. In fact, it is the only universal method to deal with interactions.
However, it is clear that there is are number of problems in quantum field theory,
which cannot be solved without the use of methods outside perturbation theory. In
particular, we are meeting such problems in studies of the asymptotic properties of
quantum field theory, where we have to use nonperturbative approaches in our at-
tempts to find the correct behavior of the Gell-Mann–Low function. Among the physi-
cal problems of interest here, we mention—first of all—the problem of quark confine-
ment. It is obvious that there is no universal way to move outside the framework of
perturbation theory. At the same time, a number of specific approaches were devel-
oped in the literature allowing us to analyze certain nonperturbative effects. This has
led to some general concepts, which are currently important not only in quantumfield
theory, but also in other fields, such as condensed matter theory. In this chapter, we
shall discuss a number of such problems, concentrating mainly on these conceptual
aspects.

An important part of modern quantum field theory is lattice gauge theory. It was
proposed byWilson, and—so far—is the onlymethod allowing amore or less complete
solution of the confinement problem. In this approach, instead of the usual space-time
continuum,we introduce discrete space-time.1 Now, we do not have any problemwith
ultraviolet divergences, as we have a natural cutoff: wavelengths in a discrete lattice
cannot be smaller than the double lattice constant a, whereas the momentum pro-
jection can change from zero up to π

a (that is, within the first Brillouin zone of solid
state theory). In this formulation, quantumfield theory becomes similar to the statisti-
cal mechanics of latticemodels, where we havewell-developedmethods, which allow
us—sometimes—to solve problems outside the limits of perturbation theory. In partic-
ular, in lattice models, we can effectively use numerical approaches, such as Monte
Carlo simulations. Below, we follow mainly [13]; a more detailed presentation of the
lattice models in quantum field theory can be found in [30, 31].

Here, we shall deal only with the Euclidean formulation of lattice quantum field
theory, though there aremethods allowing the explicit treatment of time dependence.
We shall consider only the simple cubic lattice with the lattice constant a in the four-
dimensional space. The lattice sites will be parameterized by a 4-vector n. Then, four-

1 The introduction of the lattice obviously breaks the relativistic invariance of the theory, but it is
not very important for problems under discussion; our main interest will be QCD behavior at large
distances, where we can forget about the discrete lattice.

https://doi.org/10.1515/9783110648522-014
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dimensional integration is replaced by summation:∫ d4x ⋅ ⋅ ⋅ → a4∑
n
⋅ ⋅ ⋅ . (14.1)

Scalar fields
Consider the simplest case of scalar fieldϕ(x). The action in the continuous Euclidean
space has the form

S(ϕ) = ∫ d4x[ 1
2
(𝜕μϕ)2 + V(ϕ)] , (14.2)

where

V(ϕ) = 1
2
m2ϕ2 + λ

4
ϕ4 . (14.3)

To go to the lattice representation, we note that a scalar field is now defined at every
lattice site n:

ϕ(x) = ϕn . (14.4)

The derivative of the field on the lattice is defined as𝜕μϕ(x) → 1
a
(ϕn+μ̂ − ϕn) , (14.5)

where μ̂ is the 4-vector of length a in direction μ.
Then, for the lattice action, we have

S(ϕ) = ∑
n
{a2
2

4∑
μ=1
(ϕn+μ̂ − ϕn)2 + a4(m2

2
ϕ2
n + λ4ϕ4

n)} . (14.6)

It is useful to transform to momentum representation and define the excitation spec-
trum of free theory (λ = 0). Let us use the Fourier transformation:

ϕn = ∫ d4k(2π)4 eik⋅nϕ(k) . (14.7)

Integration in (14.7) is performed over the Brillouin zone of the inverse lattice, that is,− π
a
≤ kμ ≤ πa for every μ = 1, . . . , 4 . (14.8)

Here, kμ ≡ k ⋅ μ̂. After the substitution of (14.7) into (14.6), we can write the terms
originating from “kinetic” energy as
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a4∑
n
∫ d4k(2π)4 ∫ d4k󸀠(2π)4 ei(k+k󸀠)⋅n(eiakμ − 1)(eiak󸀠μ − 1)= ∫ d4k(2π)4 (eiakμ − 1)(e−iakμ − 1) = 4∫ d4k(2π)4 sin2(akμ2 ) , (14.9)

so that free action takes the form

S0(ϕ) = 12 ∫ d4k(2π)4 [∑μ 4
a2

sin2(akμ
2
) +m2]ϕ(−k)ϕ(k) . (14.10)

Thus, each mode gives the following contribution to action:

S(k) = 1
2
[∑

μ

4
a2

sin2(akμ
2
) +m2] (14.11)

instead of standard 1
2 (k2 +m2). However, both expressions have the same continuous

limit (the limit of small k), so that everything is consistent. The spectrum obtained is
shown in Figure 14.1(a).

Figure 14.1

The theorywith lattice action (14.6) can be quantized using functional integral formal-
ism, when the vacuum average is defined as2⟨0|ϕn1ϕn2 ⋅ ⋅ ⋅ϕnl|0⟩ = 1

Z
∫∏

n
[dϕn](ϕn1ϕn2 ⋅ ⋅ ⋅ϕnl)e−S[ϕ] , (14.12)

where

Z = ∫∏
n
[dϕn]e−S[ϕ] . (14.13)

This is a typical statistical mechanics of the field (order parameter) ϕn on a lattice.
The value of S[ϕ] corresponds to fluctuation-free energy. Equation (14.12) represents

2 In Euclidean theory there is no sense in introducing T-ordering.
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the correlation function of this order parameter at different lattice sites. It is useful to
compare these expressions with equations (10.160), (10.162), and (10.164), used above
in the theory of critical phenomena.

Let us change the variable (change the field scale):

ϕ󸀠n = √λϕn . (14.14)

Consequently, the lattice action takes the form

S(ϕ) = 1
λ
S󸀠(ϕ󸀠) , (14.15)

where

S󸀠(ϕ󸀠) = ∑
n
{a2
2
∑
μ
(ϕ󸀠n+μ − ϕ󸀠n)2 + a4(m2

2
ϕ󸀠2n + 14ϕ󸀠4n)} , (14.16)

so that the coupling constant λ becomes the common factor for the whole action. As a
result, (14.12) and (14.13) are rewritten as⟨0|ϕ󸀠n1ϕ󸀠n2 ⋅ ⋅ ⋅ϕ󸀠nl|0⟩ = 1

Z󸀠
∫∏

n
[dϕ󸀠n](ϕ󸀠n1ϕ󸀠n2 ⋅ ⋅ ⋅ϕ󸀠nl) exp{− 1λS󸀠[ϕ󸀠]}, (14.17)

Z󸀠 = ∫∏
n
[dϕ󸀠n] exp{−S󸀠[ϕ󸀠]λ

}. (14.18)

If we change here

1
λ
→ β = 1

T
, (14.19)

where T is the temperature, the strong coupling expansion of quantum field theory,
which is tobedoneover the inversepowers of coupling constant λ, becomes equivalent
to the high-temperature expansion of statisticalmechanics. This openswide prospects
for studying such expansions, as the high-temperature expansions are widely used in
latticemodels of statistical mechanics (for example, to study critical phenomena) and
are fairly well developed [21, 63].

Fermion fields
Let us consider fermions. The same procedure as we used for scalar fields leads to
Euclidean action of free fermions in the form

S0(ψ) = ∑
n
{a3
2

4∑
μ=1

ψ̄nγμ(ψn+μ̂ − ψn−μ̂) +ma4ψ̄nψn}, (14.20)

where the γ-matrices of Euclidean theory satisfy anticommutation relations:{γμ, γν} = 2δμν . (14.21)
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In momentum representation, the action (14.20) is written as

S0(ψ) = ∫ d4k(2π)4 ψ̄(−k){i∑μ γμ
sin akμ

a
+m}ψ(k) . (14.22)

As compared with the continuous case, we have the replacement γμkμ → γμ
1
a sin akμ.

As in theusual (Euclidean)Dirac’s theory, the operator γμkμ+mproduces the spectrum
k2 +m2; here, we obtain the excitation spectrum

S(k) = sin2 akμ
a2
+m2 , (14.23)

shown in Figure 14.1(b). We see that now we have two equivalent minima of the spec-
trum in the Brillouin zone. One is at k = 0 and leads to the correct continuous limit.
The other mode, corresponding to the minimum at kμ = ± πa , corresponds (in the limit
of a→ 0) to infinite momentum, but can be excited in the case of finite a. Correspond-
ingly, we have to modify the theory in such a way that we exclude the contribution of
the second minimum without changing the continuous limit. To achieve this, Wilson
proposed adding to the lattice Lagrangian the term

Δℒ = 1
2a

ψ̄n(ψn+μ̂ + ψn−μ̂ − 2ψn) , (14.24)

so that in the Euclidean space, the action of free fermions takes the form

S0(ψ) = ∑
n
{a3
2
∑
μ
ψ̄n[(1 + γμ)ψn+μ̂ + (1 − γμ)ψn−μ̂ − 2ψn] +ma4ψ̄nψn}. (14.25)

In momentum representation, we have

S0(ψ) = ∫ d4k(2π)4 ψ̄(−k){i∑μ γμ
sin akμ

a
+m −∑

μ

cos akμ − 1
a
}ψ(k). (14.26)

This action leads to the shift of the second minimum to finite energies, whereas the
behavior at small k does not change. Then, in the continuous limit, we remain only
with the contribution from the “correct” minimum at k = 0.
Local gauge invariance
Let us now construct the lattice gauge theory. For concreteness, we shall deal with
SU(3)-symmetric QCD. Local (depending on the site) gauge transformation is writ-
ten as

ψn → Φnψn , ψ̄n → ψ̄nΦ
+
n , (14.27)

where

Φn = exp{i λi2 θin}. (14.28)
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Here, λi (i = 1, 2, . . . , 8) are Gell-Mann matrices (generators of SU(3)), reference equa-
tions (2.187).

Now, we introduce the so-called link variable defined on the lattice link, connect-
ing the nearest-neighbor sites:

U(n + μ̂, n) = exp{igaλi
2
Ainμ}, (14.29)

where Ainμ is the lattice field of the gluons, and g is the Yang–Mills coupling constant.
The gauge transformation for this matrix is defined as

U(n + μ̂, n) → Φn+μ̂U(n + μ̂, n)Φ+n . (14.30)

From (14.27) and (14.30), it follows that the combination ψ̄nU(n, n+ μ̂)ψn+μ̂ is the gauge
invariant. Then, it becomes clear how we should modify the action (14.25) to obtain
the quark part of SU(3)-symmetric action of QCD:

SQCD = S(q) + S(A) , (14.31)

S(q) = ∑
n
{a3
2
∑
μ
[ψ̄n(1 + γμ)U(n, n + μ̂)ψn+μ̂+ ψ̄n(1 − γμ)U(n, n − μ̂)ψn−μ̂ − 2ψn] +ma4ψ̄nψn} . (14.32)

In the continuous limit of a → 0, the expansion of (14.32) in powers of a gives the
usual expression for fermion action with the covariant derivatives of gauge theory.

Figure 14.2

How should we write the action for gauge (gluon) field itself? It is clear that it should
be built of link variables. The simplest gauge invariant combination is defined on the
elementary square of plaquette of the lattice, shown in Figure 14.2. Let us compose the
matrix product of link variables taken along the links of the plaquette p:

Up = U(n, n + μ̂)U(n + μ̂, n + μ̂ + ν̂)U(n + μ̂ + ν̂, n + ν̂)U(n + ν̂, n). (14.33)

This combination is obviously invariant with respect to transformations (14.30). Let
us define the action of the gauge field as the following sum over all plaquettes on the
lattice:

S(A) = − 1
8πg2
∑
p
SpUp . (14.34)
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Here, the trace of the product is taken over the SU(3)matrix indices. If we expand the
exponents in (14.33), (14.34) in powers of a and neglect the terms of the order ofO(a3),
equation (14.34) can be rewritten as

S(A) = − 1
8πg2
∑
p
Sp{exp(iga2Fnμν)} , (14.35)

where

Fnμν = 𝜕μAnν − 𝜕νAnμ − ig[Anμ ,Anν] , (14.36)

where we have introduced the notation𝜕μAnν ≡ 1a (An+μ̂ν − Anν) , (14.37)

and where Anμ = Aiμλi/2 is the gluon field at lattice site n. This expression immediately
gives the correct continuous limit:

S(A) = − 1
8πg2
∑
p
{1 − g2a4

2
F iμνF

iμν + ⋅ ⋅ ⋅} → const + 1
16π
∫ d4xF iμνF iμν , (14.38)

where, during the derivation, we used Sp λi = 0 and Sp(λiλj) = 2δij.
The criterion for confinement. The Wilson loop
To define the confinement criterion for quarks in QCD, we shall find the energy of the
system consisting of a quark at point x = (t,0) and an antiquark at x = (t,R). In the
absence of confinement, we obviously have

E(R) → 2m for R→∞, (14.39)

where m is the quark mass. Confinement corresponds to the infinitely growing (with
interquark distance) interaction potential:

E(R) → ∞ for R→∞. (14.40)

We shall denote the fermion quark field as q(x) and introduce the gauge-invariant
qq̄-operator:

Γ[x, x󸀠;C] = q̄(x󸀠)U(x󸀠, x;C)q(x) , (14.41)

where U(x󸀠, x;C) is the ordered product of link variables along some path (trajectory)
C, connecting points x and x󸀠 on the lattice.3 Consider the gauge-invariant correlator

3 In a continuous limit, U(x󸀠, x) = P exp{ig ∫x
󸀠

x dyμ λi
2 A

i
μ(y)}, where P is the ordering operator along

path C.
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describing the overlap of qq̄ at the moment of (Euclidean) time t = 0 and qq̄ at the
time moment t = T:

Ω(T ,R) = ⟨0|Γ+[(0,0), (0,R);C]Γ[(T ,0), (T ,R);C]|0⟩ . (14.42)

Inserting betweenoperators theunity representation (completeness condition) via the
sumover the complete systemof the energy eigenstates of our system,we obtain (com-
pare the similar treatment in Chapter 9)

Ω(T ,R) = ∑
n
|⟨0|Γ+[(0,0), (0,R);C]|n⟩|2e−EnT . (14.43)

We see that for largeT, themain contributionhere comes from the statewith the small-
est En. This minimal eigenvalue of energy obviously corresponds to the potential en-
ergy of the static qq̄ system,with a quark and antiquark placed at distanceR from each
other:

lim
T→∞

Ω(T ,R) ∼ e−E(R)T . (14.44)

In terms of quark fields, we have

Ω(T ,R) = ⟨0|q̄(0,R)U[(0,R), (0,0);C]q(0,0)q̄(T ,0)U[(T ,0), (T ,R);C]q(T ,R)|0⟩ .
(14.45)

Considering quarks as very heavy (classical c-number) external sources and path
C, represented by closed rectangle, shown in Figure 14.3, we may rewrite equa-
tion (14.45) as

Ω(T ,R) ∼ e−2mTW(C) ∼ e−E(R)T , (14.46)

where

W(C) = ⟨0| SpU[x, x󸀠;C]|0⟩ (14.47)

defines the so-calledWilson loop. The behavior of the correlatorW(C) determines the
presence or absence of confinement. In fact, from (14.46), it is clear that

lim
T→∞

W(C) ∼ exp{−T[E(R) − 2m]} . (14.48)

Figure 14.3
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Aswe shall see below, in the limit of the strong coupling (g →∞) of the lattice theory,
theWilson loop satisfies the so-called area law, so that for large enough contour C, we
have

W(C) ∼ exp{−KA(C)} , (14.49)

where K is some constant, and A(C) is the area encircled on the lattice by contour C
(that is, the minimal area of the surface, with its border defined by C). For the rectan-
gular contour shown in Figure 14.3, we have

A(C) = TR . (14.50)

Then, from (14.48), (14.49), and (14.50), we obtain

T[E(R) − 2m] ∼ KTR or E(R) − 2m ∼ KR , (14.51)

that is, linearly growingwithR interaction potential in the qq̄ system,which obviously
corresponds to the confinement. Coefficient K is called the string tension (the force of
confinement). This term is connected with the picture of gluon fields between quarks
being in a tube—“string’—to produce linearly growing potential. This string connects
quarks, and its tension grows when quarks move from each other, thus preventing
their separation at large distances.

Area law in strong coupling expansion
Let us present a schematic derivation of area law in the limit of strong coupling. Link
variables associated with gauge fields can be used as the main dynamic degrees of
freedom in lattice theories. This allows us to write (14.47) in the form of “functional”
integral4

W(C) = 1
Z
∫∏

m,μ
dU(n, n + μ̂) SpU(x, x;C) exp{− 1

8πg2
∑
p
SpUp} , (14.52)

where

Z = ∫∏
m,μ

dU(n, n + μ̂) exp{− 1
8πg2
∑
p
SpUp} . (14.53)

Note that, here, there is no need of additional gauge fixing terms, as the link vari-
ables change in the limited interval. Correspondingly, the volume of field configura-
tions space generated by gauge transformations is actually finite.

Link variables, as was shown above, are the elements of the SU(3) group. The
unitary matrices of SU(3) are parameterized by eight generalized Euler angles, so that

4 On a lattice this is just the usual multiple integral.
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the group integrals in (14.52), (14.53) canbe explicitlywritten via these angles.We shall
not do so, limiting ourselves to the quotation of the following orthogonality conditions
[13]: ∫ dU(n, n + μ̂)[U(n, n + μ̂)]ij = 0 ,∫ dU(n, n + μ̂)[U(n, n + μ̂)]ij[U+(n, n + μ̂)]kl = 13δilδjk , (14.54)∫ dU(n, n + μ̂)[U(n, n + μ̂)]ij[U(n, n + μ̂)]kl = 0 .
Equations (14.54) mean that during the computation of the integrals determining
(14.52), the only nonzero contributions are from the lattice links, which are passed
in opposite directions. Then, if we consider two neighboring plaquettes of the same
orientation, after integration over the variables defined on their common link, these
plaquettes are “joined” in one rectangle, as shown in Figure 14.4.

Figure 14.4

In the strong coupling limit, the value of 1
g2 is considered to be a small parameter.

Thus, the exponent in (14.52) can be expanded as

W(C) = 1
Z
∫∏

n,μ
dU(n, n + μ̂) SpU(x, x;C)[1 − 1

8πg2
∑
p
SpUp+ 1

2!( 1
8πg2
)2∑

p
∑
p󸀠 SpUp SpUp󸀠 + ⋅ ⋅ ⋅] . (14.55)

For simplicity, we can consider a rectangular path C. According to equations (14.54),
in this expansion a nonzero contribution comes only from those terms in the expan-
sion in powers of 1

g2 , for which the plaquettes completely fill the surface encircled by
the path C. Only in this case is each link in group integral passed twice in opposite
directions (or is not passed at all), so that the corresponding integrals over the link
variables give finite contributions. Thus, the nonzero contribution toW(C) in the low-
est order comes from the term of the order of ( 1g2 )Np , whereNp is theminimumnumber
of plaquettes necessary to fill the surface encircled by C:

W(C) ∼ ( 1
g2
)Np . (14.56)
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This corresponds to area law, as the surface area of C is given by

A(C) = a2Np . (14.57)

Then,

W(C) ∼ (g2)−A(C)/a2 = exp{−(TR ln g2)/a2} . (14.58)

Comparing this expression with (14.49) and (14.51), we obtain the linearly growing
potential

E(R) = KR , where K = 1
a2

ln g2 , (14.59)

which corresponds to g2(a) ∼ eKa2 .
We can also consider the weak coupling expansion for a Wilson loop, transform-

ing to the continuous limit and taking the action in a Gaussian approximation. In this
case, theperimeter law is obtained,which corresponds toCoulombpotentialE(R) ∼ 1

R .
Does all this mean that we have proved the confinement? No! All our argumenta-

tion can actually be repeated also for the Abelian SU(1) theory, inasmuch as we never
used a non-Abelian nature of SU(3). Strong coupling and weak coupling regimes can
be separated by one or several phase transitions taking place at different values of
coupling constant g. There is no general proof of the absence of such transitions in
QCD. This problem was thoroughly studied numerically using Monte Carlo simula-
tions. These calculations has shown that in QCD, there are no phase transitions at
intermediate values of g, and there is continuous crossover from g2(a) ∼ eKa2 depen-
dence of equation (14.59) in the strong coupling region to weaken the coupling region
with asymptotically free behavior g2(a) ∼ 1

ln a−1 valid for a→ 0. The interaction poten-
tial of quarks, following from these calculations, is well approximated by the superpo-
sition of the Coulomb potential dominating at small distances, and linearly growing
potential, determining confinement at large distances: V(R) = C

R + KR. A typical re-
sult of such calculations is shown in Figure 14.5 [61], where we show the potential
acting between two static quarks calculated for the lattice with 324 sites, with the link
a = 0.055 ⋅ 10−13 cm. The continuous line shows the fit with the superposition of the
Coulomb and linear potentials. It is clearly seen that the linear growth of V(R) takes
place at distances R > 0.25 ⋅ 10−13 cm. At smaller distances, we have the usual per-
turbation theory dynamics and asymptotic freedom. A typical value of string tension
following from these calculations is K ≈ 0.2 GeV2 ≈ 1.0 ⋅ 1013 GeVcm−1 ≈ 14 tons. This
effectively proves the confinement.

The details of Monte Carlo calculations for the lattice field theories are well de-
scribed in [11, 43]. The current situation with analytical models of confinement is re-
viewed in [61].

The study of latticemodels has become one of themost important and actively de-
veloping directions in quantum field theory. As an illustration, we show in Figure 14.6
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Figure 14.5

Figure 14.6

[4] the early results of Monte Carlo calculations of the masses of light hadrons, con-
sidered as bound states of quarks and gluons, which demonstrates a rather satisfac-
tory agreementwith experiments. Current results onhadronmasses arewell described
in [11].
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Confinement is not absolute, and at some very high temperature Tc (deconfine-
ment temperature), or at some very high density, there is a phase transition from the
phase of hadronmatter to quark–gluon plasma [72]. Physically this is rather clear. If Λ
is some characteristicmomentumscale characterizing the transition to asymptotically
free behavior, then at T ≫ Λ the transferred momentum in scattering processes will
almost always satisfy the inequalityQ2 ≫ Λ2. Correspondingly,we can apply the usual
perturbation theory. But in the perturbative approach to QCD, both quarks and gluons
are physical states of the theory. Thismeans that at T ≫ Λ,we have nearly an ideal gas
of quarks and gluons (quark–gluon plasma). This phase transition is quite important
in astrophysics for neutron stars and cosmology. Experimentally, this transition can
be observed in collisions of heavy nuclei, and there are already some indications for
it in CERN experiments. The value of Tc was calculated by Monte Carlo in lattice QCD.
Typical values obtained show that Tc is somewhere in the interval of 0.15–0.20MeV.
A detailed review of phase transitions in QCD can be found in [45].

14.2 Effective potential and loop expansion

The convenient concept in the study of theories with spontaneous symmetry-breaking
is the so-called effective potential. It allows a universal analysis of these theories and
calculation of quantum corrections to the classical picture of spontaneous symmetry-
breaking, which was discussed above.

Let us once again discuss the simplest case of a scalar field:

ℒ = 1
2
(𝜕μφ)2 − V(φ) , V(φ) = m2

2
φ2 + g

4!φ4 , S[φ] = ∫ d4xℒ . (14.60)

This Lagrangian is invariant with respect to φ → −φ, but in the case of spontaneous
symmetry-breaking this property is absent for the solutions of the equation

dV
dφ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ=φ0

= 0 , (14.61)

where φ0 ̸= 0. This is already obvious from our previous analysis.
Quantum corrections, as we have seen above, appear from loop expansion con-

taining divergences, which require renormalization. The conditions for renormaliza-
tion were formulated in terms of irreducible vertices Γ(n). The generating functional
for Γ(n)(x1, . . . , xn) is the effective action Γ(φ), defined in (10.150). The meaning of this
term will be clarified below.

The generating functional for connected diagrams W[J] is defined, according to
(10.131), as

eiW[J] = ⟨0|0⟩J . (14.62)
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Then, the classical field φc (in the presence of source J) is determined from (10.151):

φc(x) = δW[J]δJ(x) = ⟨0|φ(x)|0⟩J⟨0|0⟩J . (14.63)

The vacuum average ⟨φ⟩ is by definition⟨φ⟩ = lim
J→0

φc . (14.64)

According to (10.150), the effective action Γ[φc] is given by
Γ(φc) = W[J] − ∫ dxJ(x)φc(x), (14.65)

and, in accordance with (10.151), it satisfies the equation

δΓ[φc]
δφc(x) = −J(x) . (14.66)

For J(x) → 0, the value of φc becomes constant, equal to ⟨φ⟩, so that the vacuum
average of φ is the solution of the equation

dΓ[φc]
dφc

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc=⟨φ⟩
= 0 . (14.67)

The usual expansion of the functional Γ[φc] in powers of φc is written as

Γ[φc] = ∞∑
n=0

1
n! ∫ dx1 ⋅ ⋅ ⋅ dxnΓ(n)(x1, . . . , xn)φc(x1) ⋅ ⋅ ⋅φc(xn) (14.68)

or, equivalently, in momentum representation,

Γ[φc] = ∞∑
n=0

1
n! ∫ dp1 ⋅ ⋅ ⋅ dpnδ(p1 + ⋅ ⋅ ⋅ + pn)Γ(n)(p1, . . . , pn)φc(p1) ⋅ ⋅ ⋅φc(pn) . (14.69)

Alternatively, we can expand Γ[φc] over field φc and its derivatives:

Γ[φc] = ∫ dx{−U(φc(x))} + 12 (𝜕μφc)2Z(φc(x)) . (14.70)

In this case, the function (not a functional)U(φc) is called an effective potential. Below,
we shall see that in classical limit it coincides with the potential V(φ). In the case,
whenφc(x) = ⟨φ⟩ = φ = const, all terms of the latter expansion except for the first one
are zero, so that

Γ[φ] = −ΩU(φ) , (14.71)
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where Ω is the total volume, filled by the field in space-time. Comparing (14.69) and
(14.71), we have

U(φ) = − ∞∑
n=0

φnΓ(n)(pi = 0) . (14.72)

The normalization conditions for Γ(2)(pi = 0) and Γ(4)(pi = 0) can be reformulated in
terms of potential U:

d2U(φc)
d2φc

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc=⟨φ⟩
= m2 , (14.73)

d4U(φc)
d4φc

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc=⟨φ⟩
= g . (14.74)

Additionally, condition (14.67) for the vacuum average takes the form

dU(φc)
dφc

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc=⟨φ⟩
= 0 . (14.75)

To study the properties of the theory with spontaneous symmetry-breaking, it is con-
venient to define the new field φ󸀠:

φ󸀠 = φ − ⟨φ⟩ , (14.76)

for which the vacuum average is simply zero.
Note that all divergences of the theorywere hidden in counter-terms beforewe ap-

ply normalization conditions (14.73), (14.74), so that in the theory with spontaneous
symmetry-breaking no new divergences appear (in addition to the theory without
symmetry-breaking), and the structure of the divergences in renormalized field the-
ory is not changed by spontaneous symmetry-breaking.

Let us calculate the effective potential. We shall use (14.65) and start with calcula-
tions of the functionalW[J] by the stationary phase (or steepest descent method). Let
us recall what steepest descent calculation is in the case of the usual integral of the
form

I = ∞∫
−∞

dx e−f (x) . (14.77)

Assume that the function f (x) has a minimum at some point x0. Then, we have

f (x) = f (x0) + 12 (x − x0)2f 󸀠󸀠(x0) + ⋅ ⋅ ⋅ , (14.78)

so that we can write

I ≈ e−f (x0) ∞∫
−∞

dx e−
1
2 (x−x0)

2f 󸀠󸀠(x0), (14.79)
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and the problem reduces to the calculation of the well-known Gaussian integral,
which is an easy task.

Restoring the Planck constant in the definition of the functionalW[J], we have
e

iℏW[J] = ∫𝒟φe
iℏ S[φ,J] , (14.80)

where

S[φ, J] = ∫ d4x[ℒ(φ) + ℏφ(x)J(x)] . (14.81)

From (14.60) and (14.61), it follows that

δS[φ, J]
δφ(x) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ0

= ℏJ(x) . (14.82)

For J → 0, this reduces to the condition of extremal action. Let us expand the action
in the vicinity of φ0:

S[φ, J] = S[φ0, J] + ∫ dx[φ(x) − φ0] δS
δφ(x) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ0+ ∫ dx∫ dy 1

2
[φ(x) − φ0] δ2S

δφ(x)δφ(y) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ0

[φ(y) − φ0] + ⋅ ⋅ ⋅= S[φ0, J] + ℏ∫ dx[φ(x) − φ0]J(x)+ 1
2
∫ dx∫ dy[φ(x) − φ0] δ2S

δφ(x)δφ(y) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ [φ(y) − φ0] + ⋅ ⋅ ⋅ , (14.83)

where we have used (14.82). By performing functional differentiation, we can under-
stand that

δ2S
δφ(x)δφ(y) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨φ0

= −[◻ + V 󸀠󸀠(φ0)]δ(x − y). (14.84)

If we take φ󸀠 = φ − φ0, the expansion (14.83) takes the form

S[φ, J] = S[φ0, J] + ℏ∫ dxφ󸀠(x)J(x) − 12 ∫ dxφ󸀠(x)[◻ + V 󸀠󸀠(φ0)]φ󸀠(x) + ⋅ ⋅ ⋅ . (14.85)

Substitution of this expression into (14.80), to use the stationary phase approach,
gives (here we write φ instead of φ󸀠)

exp( iℏW) = exp{ iℏS[φ0, J]}∫𝒟φ exp{− iℏ 12 ∫ dxφ[◻ + V 󸀠󸀠(φ0)]φ}, (14.86)

where we have dropped the contribution of the second term in (14.85), as in the fol-
lowing we shall make the transition to the limit of J → 0. To obtain the loop expan-
sion (equivalent, as we have seen, to the expansion in ℏ), we replace φ → ℏ1/2φ, thus
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excluding ℏ from the second exponent in (14.86). Let us transform the integral to Eu-
clidean space so that i also vanishes. Now, calculating the functional integral, we can
use the usual Gaussian expression and obtain

exp( iℏW) = exp{ iℏS[φ0, J]}(Det[◻ + V 󸀠󸀠(φ0)])−1/2 . (14.87)

Using the relation DetA = exp Sp lnA, we get
W[J] = S[φ0] + ℏ∫ dxφ0(x)J(x) + iℏ2 Sp ln[◻ + V 󸀠󸀠(φ0)] . (14.88)

This expression givesW[J] with a single-loop correction, whereas the terms O(ℏ2) are
dropped. Now, we can substitute (14.88) into (14.65). But first, we express S[φc] via
S[φ0]. Taking φ0 = φc − φ1, we have

S[φ0] = S[φc − φ1] (14.89)= S[φc] − ∫ dxφ1(x) δS
δφ(x) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc

+ ⋅ ⋅ ⋅= S[φc] − ℏ∫ dxφ1(x)J(x) + ⋅ ⋅ ⋅ . (14.90)

Consequently, the substitution of (14.88) and (14.90) into (14.65), in the limit of J → 0,
yields

Γ[φc] = S[φc] + iℏ2 Sp ln[◻ + V 󸀠󸀠(φ0)], (14.91)

which is the effective action with a single-loop quantum correction. Take now φc(x) =
φ = const. Then, Γ[φ] is determined by (14.71), whereas from (14.60), it follows that
S[φ] = −ΩV(φ). Correspondingly, from (14.91), we obtain the effective potential of the
form

U(φ) = V(φ) − iℏ
2
Ω−1 Sp ln[◻ + V 󸀠󸀠(φ)] . (14.92)

Now,we see that for ℏ → 0 (in the classical limit), the effective potential coincideswith
the classical potentialV(φ),whereas the effective action (14.91) reduces to the classical
action (14.60). A trace of an operator gives the sum (integral) over all eigenvalues, and
we can (after the transformation to Euclidean momentum space) rewrite (14.92) as

U(φ) = V(φ) + ℏ
2
∫ d4kE(2π)4 ln[k2E + V 󸀠󸀠(φ)]= V(φ) + ℏ

2
∫ d4kE(2π)4 ln(k2E +m2 + 1

2
gφ2). (14.93)
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This type of expression can be used to study spontaneous symmetry-breaking, taking
into account the quantum corrections. In the classical limit we used above, form2 > 0,
the vacuum is nondegenerate, whereas form2 < 0, there was spontaneous symmetry-
breaking and the appearance of degeneracy of the vacuum (phase transition). What
will happen, taking into account the quantum corrections—in particular—at m2 = 0?
From the single-loop expression for effective potential, it follows that the nontrivial
minimum φ ̸= 0 already appears at m2 = 0, so that we have spontaneous symmetry-
breaking due to quantum corrections. Unfortunately, the single-loop approximation
is insufficient for a complete understanding of this problem [13, 56]. A more detailed
discussion of effective potential formalism, its relation to the renormalization group,
and the other aspects of the theory are presented in [27].

The loop expansion, considered above, is—in fact—the expansion in powers of ℏ, not in powers of
the coupling constant g. In this sense, it is nonperturbative, but—in fact—this is not precisely so! In
classical theory, g is irrelevant by itself. It can be easily understood if we make the transformation to
φ󸀠 = gφ. As a result, the Lagrangian of φ4-theory can be rewritten as

ℒ = 1
g2
(
1
2
𝜕μφ
󸀠𝜕μφ󸀠 − 1

2
m2φ󸀠

2
− φ󸀠

4
) , (14.94)

and g drops from the classical equations ofmotion, becoming irrelevant. This is obviously not the case
in quantum theory, which is essentially due to the appearance of ℏ. In quantum theory, we are always
dealing with the ratio:

1
ℏ
ℒ = 1

g2ℏ
(
1
2
𝜕μφ
󸀠𝜕μφ󸀠 + ⋅ ⋅ ⋅), (14.95)

and the relevant parameter is g2ℏ. Thus, the quasi-classical approximation (small ℏ) is, in fact, inti-
mately connected with the weak coupling approximation (small g).

14.3 Instantons in quantum mechanics

Nontrivial nonperturbative effects can arise in quantumfield theory even for small val-
ues of the coupling constant, and perturbation theory may become inadequate when
naïvely it should be applicable.5 A simple example is quantum tunneling, which we
shall consider below.

Let us start with quantum mechanics. Consider a particle with unit mass moving
in one-dimensional potential:

H = 1
2
p2 − V(x) . (14.96)

Below, we shall derive the well-known results of quantum mechanics, but in a rather
unusual way, which will be further generalized for the case of quantum field theory.

5 Below, we follow mainly lectures by Coleman [15]; these problems are discussed in more detail in
the book by Rajaraman [52].
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Euclidean path integrals
Consider the Euclidean (imaginary time) version of the Feynman path integral:⟨xf |e−HT/ℏ|xi⟩ = 𝒩 ∫[dx]e−S/ℏ . (14.97)

Here, |xi⟩ and |xf ⟩ are eigenstates of the coordinate operator of the particle, and H is
its Hamiltonian. Here, the integration measure, which we previously denoted as 𝒟x,
is written as [dx]; T is considered to be positive.

Let us introduce, as usual, the complete set of eigenstates of the Hamiltonian:

H|n⟩ = En|n⟩ (14.98)

and write ⟨xf |e−HT/ℏ|xi⟩ = ∑
n
e−EnT/ℏ⟨xf |n⟩⟨n|xi⟩ . (14.99)

Then, in the limit of T →∞, only the contribution of the ground state survives.
In the right-hand side of (14.97) there is the Euclidean action:

S = T/2∫
−T/2

dt[ 1
2
(dx
dt
)2 + V] . (14.100)

Integration [dx] is performed over all trajectories,with boundary conditions x(−T/2) =
xi, x(T/2) = xf . In more detail, if x̄(t) is the given function and satisfies these condi-
tions, the arbitrary function satisfying the same conditions, can be written as

x(t) = x̄(t) + ∑
n
cnxn(t) , (14.101)

where xn(t) is the complete set of orthonormalized functions, being zero at the bound-
aries:

T/2∫
−T/2

dtxn(t)xm(t) = δnm , xn(±T/2) = 0 . (14.102)

Then, the integration measure [dx] can be defined as[dx] = ∏
n
(2πℏ)−1/2dcn . (14.103)

It is obvious, that acting in this way, we take into account all the paths, and this defi-
nition differs from that of Feynman only by the normalization constant.
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The right-hand side of equation (14.97) is easily calculated in quasi-classical ap-
proximation (small ℏ). The main contribution to the action comes from the vicinity of
the extremal trajectory, defined by

δS
δx̄
= −d2x̄

dt2
+ V 󸀠(x̄) = 0, (14.104)

Euclidean Newton equations. Let us choose xn as the eigenfunctions of the second
variational derivative of action S at x̄:− d2xn

dt2
+ V 󸀠󸀠(x̄)xn = λnxn . (14.105)

Just as the analysis carried out at the beginning of Chapter 2, the first variation of the action, due to
variation of trajectory x → x̄ + a, in this case, reduces to

δS =
T/2

∫
−T/2

dt a[−d
2x
dt2
+ V 󸀠(x)] = 0 for x = x̄ , (14.106)

which leads to the Newton law (14.104). If we vary once again x → x̄ + a, we get

δ2S =
T/2

∫
−T/2

dt a[−d
2(x̄ + a)
dt2
+ V 󸀠(x̄ + a)] =

T/2

∫
−T/2

dt a[− ̈x̄ − ä + V 󸀠(x̄) + V 󸀠󸀠(x̄)a]

=

T/2

∫
−T/2

dt a[−ä + V 󸀠󸀠(x̄)a] , (14.107)

where during the transformation to the last equality, we used equations of motion (14.104). Now, it
is clear that the second variational derivative of action S is determined by the left-hand side of equa-
tion (14.105).

Then, in the limit of small ℏ, after substituting (14.101) into (14.100), we can limit our-
selves to quadratic deviations from the classical trajectory x̄, so that the integrals over
cn become Gaussian, and we find⟨xf |e−HT/ℏ|xi⟩ = 𝒩e−S(x̄)/ℏ∏

n
λ−1/2n [1 + O(ℏ)]= 𝒩e−S(x̄)/ℏ[Det(−𝜕2t + V 󸀠󸀠(x̄))]−1/2[1 + O(ℏ)] . (14.108)

If there are several stationary points of action, the corresponding contributions should
be summed.

Note that the Euclidean equation of motion (14.104) is equivalent to the usual
Newtonian equation for a particle with unit mass, moving in the inverted potential
minus V . For such an equation, we have the integral of motion:

E = 1
2
(dx̄
dt
)2 − V(x̄) . (14.109)
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Figure 14.7

Consider the potentialV shown in Figure 14.7(a). Let xi = xf = 0. The inverted potential
is shown in Figure 14.7(b). It is obvious that the only solution of classical equations of
motion in this potential, satisfying boundary conditions, is

x̄ = 0, (14.110)

that is, the particle stays at rest at the top. For this solution, we have S = 0. Then, from
(14.108), we have ⟨0|e−HT/ℏ|0⟩ = 𝒩 [Det(−𝜕2t + ω2)]−1/2[1 + O(ℏ)] , (14.111)

where zeroes denote transition from the origin to the origin of our coordinate system,
whereasω2 = V 󸀠󸀠(0) is the square of the frequency of the small oscillations around the
minimum of potential V . It can be shown [15] that for large T,

𝒩 [Det(𝜕2t + ω2)]−1/2 = ( ω
πℏ)1/2e−ωT/2 . (14.112)

As a result, from (14.111) and the discussion around (14.99), we immediately see that
the ground-state energy in this problem is given by

E0 = 12ℏω[1 + O(ℏ)] , (14.113)

that is, the zero-point energy of the oscillator near the minimum of V . The probability
for a particle to be at the origin of the coordinate system, when it is at its ground state,
is given by |⟨x = 0|n = 0⟩|2 = ( ω

πℏ)1/2[1 + O(ℏ)] . (14.114)

These are the well-known results of the quasi-classical approximation of quantum
mechanics. Actually, from this correspondence, we immediately see the validity of
(14.112). The physics is also quite clear: in the limit of small ℏ, the particle is in the
ground state of oscillator near the origin of coordinate system.
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Figure 14.8

Double-well potential and instantons
Let us consider now a more interesting example: the double-well potential, shown
in Figure 14.8(a). Here, we have V(x) = V(−x), and the potential minima are at points
x = ±a.We can also introduceω2 = V 󸀠󸀠(±a): the square of the frequency of the classical
oscillations of a particle in the vicinity of the minima. Let us calculate the transition
amplitudes: ⟨−a|e−HT/ℏ| − a⟩ = ⟨a|e−HT/ℏ|a⟩ , (14.115)⟨a|e−HT/ℏ| − a⟩ = ⟨−a|e−HT/ℏ|a⟩ , (14.116)

making a quasi-classical approximation for the path integral, similar to the case of
a particle in single well. As a first step, we shall again look for the solutions of the
classical Euclidean equations of motion (14.104), satisfying the appropriate bound-
ary conditions. There are two obvious solutions: one corresponding to the case of the
particle remaining the entire time at the top of the left or right hill in Figure 14.8(b).
However, theremay be also anothermore interesting solution,when the particle starts
from one of the tops (for example, the left one) at the moment −T/2 and rolls to the
right top, reaching it at the moment +T/2 (T → ∞). Here, we are dealing with solu-
tions of equations of motion, corresponding to energy E = 0 (because E = 0 in the
initial states x = ±a). Correspondingly (reference (14.109)),

dx̄
dt
= √2V , (14.117)

and the solution of this equation has the form

t = t1 + x∫
0

dx󸀠 1√2V , (14.118)

where t1 is the integration constant (time at which x = 0). This solution obviously
has the form shown in Figure 14.9. This solution is called an instanton,6 centered at
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Figure 14.9

point t1. A mirror reflection of this solution can be called an anti-instanton. It is im-
portant to stress that an instanton has a finite action:

S0 = T/2∫
−T/2

dt[ 1
2
(dx̄
dt
)2 + V] = T/2∫

−T/2

dt(dx̄
dt
)2 = a∫
−a

dx√2V , (14.119)

where we have used (14.117). For large t, we have x̄ → a, so that (14.117) can be approx-
imated by

dx̄
dt
= √ω2(x̄ − a)2 = ω(a − x̄), (14.120)

so that at large t, (a − x̄) ∼ e−ωt (14.121)

and the instanton is “localized in time” (at times ∼ 1
ω ), which clarifies its name.

It is clear that for large T, the instanton and anti-instanton are not the only
solutions of equations of motion; approximate solutions can be built as chains of
well-separated instantons and anti-instantons. An example of such a configuration
is shown in Figure 14.10, with n objects (instantons and anti-instantons), centered at
points t1, . . . , tn:

T
2
> t1 > t2 > ⋅ ⋅ ⋅ > tn > −T2 . (14.122)

Correspondingly, in the path integral, we have to sum the contributions from all such
configurations.

6 The origin of this term is related to the obvious analogy with soliton, but stresses the fact that we
are dealing here with solutions of Euclidean equations of motion.
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Figure 14.10

Now, let us calculate! Obviously, n well-separated objects contribute additively to the
actions giving S = nS0, which in the path integral give the contribution of the order∼ exp(−nS0). To find the determinant, we need the more complicated procedure. Con-
sider the time evolution operator e−HT as the product of the operators of evolution
between the points, where instantons and anti-instantons are placed. In the absence
of these, on all time axes, we have V 󸀠󸀠 = ω2, and we get the same result as above for
the case of single-well potential (14.112):( ω

πℏ)1/2e−ωT/2 . (14.123)

Intervals with instantons and anti-instantons lead to a correction, which we can
write as ( ω

πℏ)1/2e−ωT/2Kn , (14.124)

where K can be determined from the requirement of a correct answer for the case of a
single instanton. Later, we shall give the appropriate explicit expression, whereas for
the moment, we note that in order to take into account all the possible contributions
to the path integral, we have to integrate over the arbitrary positions of all centers:

T/2∫
−T/2

dt1

t1∫
−T/2

dt2 ⋅ ⋅ ⋅ tn−1∫
−T/2

dtn = Tnn! . (14.125)

We should also take into account the fact that we are not completely free in placing
the instantons and anti-instantons. For example, if we start from −a, the first object
we meet is to be an instanton, the next one an anti-instanton, et cetera. If we finally
return to −a, n should be even, whereas if we end at +a, n should be odd. Thus, we
obtain ⟨−a|e−HT/ℏ| − a⟩ = ( ω

πℏ)1/2e−ωT/2 ∑Even n

(Ke−S0/ℏT)n
n! [1 + O(ℏ)] , (14.126)
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whereas ⟨a|e−HT/ℏ|−a⟩ is given by the same expression, but with summation over
odd n. The sums are elementary, and we obtain⟨±a|e−HT/ℏ|−a⟩ = ( ω

πℏ)1/2e−ωT/2 12 [exp(Ke−S0/ℏT) ∓ exp(−Ke−S0/ℏT)] . (14.127)

Recalling (14.99), ⟨xf |e−HT/ℏ|xi⟩ = ∑
n
e−EnT/ℏ⟨xf |n⟩⟨n|xi⟩ , (14.128)

we understand that the two lowest energy levels correspond to energies

E± = 12ℏω ± ℏKe−S0/ℏ . (14.129)

If we denote the corresponding states as |+⟩ and |−⟩, we see that|⟨+|±a⟩|2 = |⟨−|±a⟩|2 = ⟨a|−⟩⟨−|−a⟩ = −⟨a|+⟩⟨+|−a⟩ = 1
2
( ω
πℏ) .1/2. (14.130)

These are the well-known results of quantum mechanics [35]: we just obtained the
splitting of the level in the double-well potential due to tunneling (degeneracy lifting
of two levels in twopotentialwells). The size of this splitting is∼e−S0/ℏ. The lowest state|−⟩ is an even combination of wave functions, corresponding to a particle localized in
each of the wells, whereas the first excited state |+⟩ is described by antisymmetric
combination of these functions.

Now let us calculate the factor K. First, let us study the properties of the solutions
of equation (14.105): − d2xn

dt2
+ V 󸀠󸀠(x̄)xn = λnxn , (14.131)

where x̄ denotes a single instanton solution.Due to invariancewith respect to the time-
shift (the instanton center can be placed at an arbitrary point on the time axis), this
equation has an eigenfunction with zero eigenvalue (the so-called zero translation
mode). Explicitly this function is written as

x1 = S−1/20
dx̄
dt
. (14.132)

The normalization factor here appears from (14.119):∫ dt(dx̄
dt
)2 = S0 , (14.133)

The existence of zero-mode can be confirmed as follows: The instanton x̄(t) satisfies equation (14.104):

−
d2x̄
dt2
+ V 󸀠(x̄) = 0 . (14.134)
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But x̄(t + T), with arbitrary T, is also the solution of this equation:

−
d2x̄(t + T)

dt2
+ V 󸀠(x̄(t + T)) = 0 . (14.135)

Differentiating this equation by T, we obtain

−
d2x1
dt2
+ V 󸀠󸀠(x̄)x1 = 0 , (14.136)

which proves our statement on (14.132).

The existence of zero-mode with λ1 = 0 seems to lead to a problem. If we calculate the
Gaussian integral around the extremal trajectory (instanton), as described in connec-
tion with (14.101), (14.103), and (14.108), integration over c1 will lead to divergence.
However, we have already done the appropriate integration by integrating over the
centers of the instantons (anti-instantons) in (14.125). In fact, the change of x(t) under
the small shift of the instanton center t1 is equal to

dx = (dx̄
dt
)dt1 . (14.137)

At the same time, the corresponding change due to variation of the coefficient c1 in
(14.101) is

dx = x1dc1 . (14.138)

Then, writing ( dx̄dt )dt1 = √S0x1dt1 in (14.137) and comparing this with (14.138), we get
dc1 = √S0dt1, or (2πℏ)−1/2dc1 = ( S02πℏ)1/2dt1 , (14.139)

where ℏ is introduced to make normalization dimensionless. Thus, during the calcu-
lation of the determinant in the Gaussian integral in expressions, such as (14.108), we
do not need to include the zero eigenvalue, but instead we have to include in K the
factor ( S02πℏ )1/2. Then, the single-instanton contribution to the matrix element is given
by ⟨a|e−HT/ℏ|−a⟩1 inst = 𝒩T( S0

2πℏ)1/2e−S0/ℏ[Det󸀠(−𝜕2t + V 󸀠󸀠(x̄))]−1/2, (14.140)

where the prime over the determinant corresponds to dropping the zero eigenvalue.
Comparing (14.140) with the single-instanton contribution to (14.126), we find

K = ( S0
2πℏ)1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Det(−𝜕2t + ω2)

Det󸀠(−𝜕2t + V 󸀠󸀠(x̄)) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1/2 . (14.141)

This completes our calculation.
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Let us make some comments:
1. It can be shown that the results obtained are equivalent to the standard results of

quantummechanics [35].
2. We assumed that all λn > 0 (except λ1 = 0). This is really so, as the lowest state

x1 (as is easily seen from its explicit form) does not have zeroes, as it should be
for the solution of a one-dimensional Schroedinger equation. This is clear from
the fact that our instanton is monotonously growing (anti-instanton: decreasing)
function of t, so that its derivative x1 ∼ dx̄

dt has no zeroes.
3. The coefficientK is proportional to ℏ−1/2, which is related to the contribution of the

zero-mode. In fact, this is a general rule: each zero-mode (there may be several
such modes) produces the factor of ℏ−1/2.

In a similar way, we can analyze the problem of a particle moving in a periodic potential, as shown
in Figure 14.11. The difference from the previous case is that now, we have no restriction of alternating
the placement of the instantons and anti-instantons, which is connected with the existence here of
the multitude of equivalent potential minima. At the same time, the total number of instantons minus
the total number of anti-instantons should now be equal to the change of x̄ between the initial and
final coordinates. Then, from (14.127), we obtain

⟨j+|e
−HT/ℏ|j−⟩ = (

ω
πℏ
)

1/2

e−ωT/2
∞

∑
n=0

∞

∑
n̄=0

1
n!n̄!
(Ke−S0/ℏT)

n+n̄
δn−n̄−j++j− , (14.142)

where n is the number of instantons, whereas n̄ is the number of anti-instantons. Using now

δab =
2π

∫
0

dθ
2π

eiθ(a−b) , (14.143)

we rewrite (14.142) as

⟨j+|e
−HT/ℏ|j−⟩ = (

ω
πℏ
)

1/2

e−ωT/2
2π

∫
0

dθ
2π

exp[2KT cos θe−S0/ℏ] exp[−iθ(j+ − j)] . (14.144)

Figure 14.11
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In this case, we have the continuum of energy eigenvalues (band), parameterized by an “angle” θ:

E(θ) = 1
2
ℏω − 2ℏKe−S0/ℏ cos θ . (14.145)

The matrix elements

⟨θ|j⟩ = ( ω
πℏ
)

1/4

(2π)−1/2eijθ (14.146)

represent, in fact, the appropriate Bloch wave.

Instantons and metastable states
Consider the potential shown in Figure 14.12(a). If we neglect tunneling, therewill be a
bound state at the origin. The reflected potential is shown in Figure 14.12(b). Classical
equations of motion have the obvious solution corresponding to a particle starting
from the top of the hill at x = 0, which is then reflected from the classical point of
return σ and returns back to the top, as shown in Figure 14.13. Let us calculate the
matrix element of transition from x = 0 to x = 0, summing over all the well-separated
instantons of Figure 14.13. We can proceed as above (with obvious redefinition of S0,
ω2, etc.), but with no limitation on the number of instantons being even or odd. Then,
the summation produces the full exponent:

⟨0|e−HT/ℏ|0⟩ = ( ω
πℏ)1/2e−ωT/2 exp[KTe−S0/ℏ], (14.147)

and the ground-state energy eigenvalue is

E0 = 12ℏω − ℏKe−S0/ℏ. (14.148)

But this is wrong! In fact, in this situation we have tunneling and the appearance of
an unstable state. From the form of the instanton in Figure 14.13 it is clear that the
eigenfunction x1 ∼ dx̄

dt has zero and cannot be the ground-state wave function. But its
energy is zero, and now we understand that there is another state with λ0 < 0 and

Figure 14.12
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Figure 14.13

an eigenfunction without zeroes. Then, the factor K, containing the square root of the
product of the eigenvalues, is imaginary. Thus, in fact, we obtain

ImE0 = Γ2 ∼ ℏ|K|e−S0/ℏ, (14.149)

which corresponds to the finite-level width, corresponding to the metastable state.

14.4 Instantons and the unstable vacuum in field theory

Consider now Euclidean scalar field theory with the action

S = ∫ d4x[ 1
2
(𝜕μϕ)2 + U(ϕ)] , (14.150)

where potential U(ϕ) is shown in Figure 14.14. Here, we have two nonequivalent min-
ima at ϕ+ and ϕ−, and ϕ− is an absolute minimum. Let us choose the origin of the
energy scale, so that U(ϕ+) = 0. In quantum theory, the minimum at ϕ = ϕ+ plays
the role of a “false” (metastable) vacuum. The description of the decay of such “false”
vacuums is similar to the description of nucleation in statistical physics (for exam-
ple, during the boiling of a superheated liquid). In quantum field theory this prob-
lem is of importance for cosmology [41]. Who knows whether our vacuum is stable or
metastable!

We have to calculate the value of Γ
V , the probability of metastable vacuum decay

in units of time per unit volume. First, we have to find the corresponding instanton ϕ̄

Figure 14.14
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as a solution of the Euclidean equations of motion:𝜕μ𝜕μϕ̄ = U 󸀠(ϕ̄) , (14.151)

satisfying the boundary conditions

lim
x4→±∞

ϕ̄(x, x4) = ϕ+ . (14.152)

It is easily seen that to guarantee the finiteness of the action at instanton, we have to
satisfy the condition

lim
|x|→∞

ϕ̄(x, x4) = ϕ+ . (14.153)

If an instanton is found, then in the leading approximation in ℏ, we have
Γ
V
= Ke−S0 , (14.154)

where S0 = S(ϕ̄), whereas the preexponential factor K is determined by the appropri-
ate determinant.

The trivial solution ϕ̄ = ϕ+ is not interesting; for δ2S
δϕ2 does not have negative eigen-

values, so that it does not contribute to the vacuum decay. Equations (14.151)–(14.153)
are invariant with respect to four-dimensional rotations (O(4) group). We assume that
an instanton is also O(4) invariant,7 so that the corresponding ϕ̄ is the function of r
only. As a result, equation (14.151) reduces to

d2ϕ̄
dr2
+ 3
r
dϕ̄
dr
= U 󸀠(ϕ̄) , (14.155)

and, from (14.152) and (14.153), it follows that

lim
r→∞

ϕ̄(r) = ϕ+ . (14.156)

Obviously, we also have to require

dϕ̄
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = 0 , (14.157)

or ϕ̄ will be singular at the origin.
Equation (14.155) can be interpreted as an equation of motion (considering r as

time) of a particle moving in potentialminus U, shown in Figure 14.15, and under the
action of a time-dependent friction force (∼ 1r× velocity). The particle can start from
the state of rest (reference (14.157)) at the moment r = 0 from the appropriate initial
position and stops at r → ∞ at point ϕ+: such motion precisely corresponds to an
instanton. Obviously, such a solution exists.

7 This assumption can be rigorously justified: a spherically symmetric instanton has the minimal ac-
tion.



14.4 Instantons and the unstable vacuum in field theory | 413

– The particle starting to the right of ϕ0 will not reach ϕ+; it will not have enough
energy because of friction.

– If we choose the initial point correctly to the left of ϕ0, but to the right of ϕ−, we
can guarantee that for large r, the particle will reach ϕ+ and stop there.

In fact, for ϕ close to ϕ−, we can linearize the equation of motion and write it as( d2
dr2
+ 3
r
d
dr
− μ2)(ϕ̄ − ϕ−) = 0 , (14.158)

where μ2 = U 󸀠󸀠(ϕ−). This equation can be solved rather easily [15], and its solution
is expressed via the modified Bessel function. Thus, we see that choosing ϕ̄(0) close
enough to ϕ−, we can guarantee that for large-enough r, the particle will remain as
close as possible to ϕ−. But for large-enough r we can neglect friction, as it is ∼ 1/r.
But in absence of friction, the particle will overshoot the top atϕ+. This means that in
our problem there is always an intermediate point (betweenϕ− andϕ0), starting from
which the particle will at r →∞ stop at ϕ+.

Let U+(ϕ) be some even function of ϕ:

U+(ϕ) = U+(−ϕ) (14.159)

with minima at points ±a:
U 󸀠+(±a) = 0 . (14.160)

Let us define

μ2 = U 󸀠󸀠+ (±a) . (14.161)

Let us add to U+ a small term, breaking the symmetry between the minima:

U = U+ + ε(ϕ − a)/2a , ε > 0 . (14.162)

Figure 14.15
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In the first order in ε, we have

ϕ± = ±a . (14.163)

The value of ε defines the energy difference between the “true” and “false” vacuum.
Let us choose the initial position of the particle ϕ̄(0) very close to ϕ−. Consequently,
the particle remains close to ϕ− up to some large moment of time r = R; then after-
wards, it rapidly passes through the valley and slowly approaches ϕ+ for r → ∞.
Thus, our instanton looks like a large four-dimensional spherically symmetric “bub-
ble” of radiusRwith a thinwall separating the “false” vacuumϕ+ (outside the bubble)
from the “true” vacuum ϕ− (inside the bubble). Correspondingly, our bubble (instan-
ton) represents the nuclei of a new (“true”) vacuum inside the metastable (“false”)
vacuum.

For r ∼ R, we can neglect the friction and the ε-dependent term in U . Then, the
equation of motion has the form

d2ϕ̄
dr2
= U 󸀠+(ϕ̄) , (14.164)

which corresponds to the classical equation ofmotionof a particle in adouble-well po-
tential, which was analyzed in detail above. This equation has as its solution the sim-
plest one-dimensional instanton of Figure 14.9, which we studied above (and which
describes the transition from −a to +a at “moment” Rwith the growth of r). This is the
approximate description of an instanton in our field problem.

Up to now, we have not yet defined R. The action of the instanton is given by

S = 2π2 ∞∫
0

dr r3[ 1
2
(dϕ̄
dr
)2 + U(ϕ̄)] . (14.165)

Here, we have three regions of integration: outside the bubble, close to its surface, and
inside. Outside, we can take ϕ̄ = ϕ+ and U = 0, so that this contribution to the inte-
gral is zero (which actually guarantees the finiteness of the instanton action). Inside
the bubble, we have ϕ̄ = ϕ−, U = −ε, so that the corresponding contribution to the
integral is − 1

2
π2R4ε . (14.166)

Close to the bubble surface, that is, for r ∼ R, we can neglect ∼ε in U, so that the
integral reduces to

2π2R3 ∫ dr[ 1
2
(dϕ̄
dr
)2 + U+] = 2π2R3S1 , (14.167)

where

S1 = a∫
−a

dϕ√2U+ (14.168)
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is the action of the one-dimensional instanton (14.119). Finally, we get

S = − 1
2
π2R4ε + 2π2R3S1 . (14.169)

Let us now define R from the requirement of extremal action:

dS
dR
= −2π2R3ε + 6π2R2S1 = 0 , (14.170)

which gives

R = 3S1
ε
. (14.171)

Then, we have8

S0 = 27π2S412ε3
. (14.172)

The bubble radius (14.171) can be found from the elementary considerations used in nucleation the-
ory of statistical mechanics: the energy gain within the bubble should compensate the energy loss
connected with the surface tension of the bubble:

4
3
πR3ε = 4πR2σ , which gives R = 3σ

ε
, (14.173)

where σ is the surface energy of the bubble well. In our case, σ = S1.

Finally, we obtain the probability of “false” vacuum decay as

Γ
V
∼ exp(−S0) . (14.174)

Determinants and renormalization
The preexponential factor in (14.174) should be defined in the sameway as in the quan-
tum mechanical problem discussed above. But there are some important differences
and questions:
1. In quantummechanics, we had only one zero translational mode; here, there are

four.
2. It was very important that there was only one negative energy eigenvalue, leading

to an imaginary contribution. Is this also the case in the present problem?
3. In quantum field theory, we have ultraviolet divergences, and it is necessary to

perform renormalization. What is the role of renormalization here?

8 Our analysis is valid in the limit of small ε and in the limit when the bubble radius is much larger
than the width of its wall: R ≫ μ−1, which reduces to 3S1μ ≫ ε.
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Consider first the zero modes. Here, we have four directions for instanton transla-
tion (the instanton can be placed at an arbitrary point of four-dimensional Euclidean
space); correspondingly, we have four eigenfunctions of a differential operator related
to the secondvariational derivative of actionwith zero eigenstates. These functions are∼ 𝜕μϕ̄. The normalization condition reduces to∫ d4x𝜕μϕ̄𝜕νϕ̄ = 14δμν ∫ d4x𝜕μϕ̄𝜕μϕ̄ = δμνS0 . (14.175)

As a result, the preexponential in (14.174) contains four factors of ( S02π )1/2 instead of
one.

The proof of the latter equality in (14.175) goes as follows: Considerϕλ(x) = ϕ̄(x/λ). Then, the action is

S(ϕλ) =
1
2
λ2 ∫ d4x(𝜕μϕ̄)

2 + λ4 ∫ d4xU(ϕ̄) . (14.176)

As ϕ̄ is the solution of equations ofmotion, we should satisfy the condition of stationarity of the action
(14.176) at λ = 1. This yields

∫ d4x(𝜕μϕ̄)
2 = −4∫ d4xU(ϕ̄) (14.177)

or
S0 =

1
4
∫ d4x(𝜕μϕ̄)

2 > 0 . (14.178)

Finally, we obtain the preexponential factor as

K = S20
4π2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Det󸀠[−𝜕μ𝜕μ + U 󸀠󸀠(ϕ̄)]Det[−𝜕μ𝜕μ + U 󸀠󸀠(ϕ+)] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−1/2, (14.179)

assuming there are no problems with negative eigenvalues and renormalization.
As to negative eigenvalues, this is really so. It is clear that δ2S

δϕ2 (at the instanton)
has at least one negative eigenstate. It can be rigorously proved that there is only one
negative eigenstate in this problem [15]. Thus, equation (14.179) gives the correct prob-
ability of vacuum decay.

We shall not discuss in detail the problem of the renormalization of (14.174). In principle, it is clear
that in theories with renormalizable U(φ), all expressions, including (14.179), can be rewritten via
renormalized parameters, and everything should be finite. Some additional details can be found in
[15].

The bubble expanding in the real Minkowski space-time can be obtained as the ana-
lytical continuation of the instanton:

ϕ(x0,x) = ϕ̄(r = √|x|2 − x20) . (14.180)

Thus, at small ε, we have a thin wall at r = R, separating the two vacuums, and ex-
pansion of the bubble is determined by|x|2 − x20 ≈ R2 . (14.181)



14.5 The Lipatov asymptotics of a perturbation series | 417

The value of R is determined, as we have seen, by the microscopic parameters of the
theory and is itselfmicroscopic. Then, equation (14.181)means that the expanding sur-
face of the bubblemoves practically with the speed of light (v ∼ 1). Thewall transports
the energy (per unit surface) S1

√1−v2
. At the moment, when the bubble radius reaches|x|, the wall energy becomes

Ewall = 4π|x|2S1√1 − v2 . (14.182)

From (14.181), it is easy to find that

v = d|x|
dt
= √1 − R2|x|2 . (14.183)

Then, the wall energy is

Ewall = 4π|x|3S1R
= 4πε|x|3

3
, (14.184)

so that, practically, the whole energy released during the “false” vacuum decay goes
to the wall acceleration. No particles are created; from both sides of the wall we have
the corresponding vacuum states. In this sense, the “observer” will never know that
the wall passed through him; he will also just “decay” in the corresponding micro-
scopic time.

Examples of applications of this formalism to problems of relativistic cosmology
can be found in [41].

The concept of instantons plays a major role in many problems of quantum field
theory and statistical mechanics. As an example, we can again mention the gφ4 with
g < 0 and the number of field components n = 0, which describes the motion of an
electron in the random field of impurities in solid state theory. In this model, with an
unstable ground state, there are t instanton solutions which determine the electron
density of the states in the so-called “tail” region, appearing due to electron localiza-
tion by random field fluctuations [57, 64].

Especially important are nontrivial instanton solutions in non-Abelian gauge the-
ories, which are related to the topological properties of gauge transformations and
the complicated structure of a Yang–Mills vacuum [15, 51, 52]. Here, we shall neither
discuss these aspects of the theory, nor their importance for particle physics (QCD).
A detailed presentation can be found in [52, 58].

14.5 The Lipatov asymptotics of a perturbation series

At the end of Chapter 8, we briefly discussed the asymptotic nature of a perturbation
series in quantum field theory. Here, we shall consider it in more detail, describing
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the elements of the elegant approach proposed by Lipatov. The idea of the Lipatov
method is as follows: If we have some physical function F(g), which is expanded in a
perturbation series in powers of coupling constant g,

F(g) = ∞∑
N=0

FNg
N , (14.185)

the coefficients of this expansion FN can be determined as

FN = ∫
C

dg
2πi

F(g)
gN+1
, (14.186)

where integration contour C encircles the point g = 0 in the complex plane of the
coupling constant. Rewriting the denominator here as exp{−(N + 1) ln g} for large N,
we can use the steepest-descent (stationary phase) approach to estimate (14.186).

We know that all problems solved by the diagram technique can be reformulated
in terms of functional integrals, such as

Z(g) = ∫Dφ exp(−S0{φ} − gSint{φ}) , (14.187)

and we can write the coefficients of perturbation expansion as

ZN = ∫
C

dg
2πig
∫Dφ exp(−S0{φ} − gSint{φ} − N ln g). (14.188)

The Lipatov idea is to search for the steepest descent in (14.188) not simply over g, but
over g and φ simultaneously:

δS(φ)
δφ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨φc

= 0 , (14.189)

S(φc)
gc
= 0 . (14.190)

The solution of these equations exists for all interesting models and is realized on a
spatially localized instanton φc(x). The steepest descent approach is applicable here
for large N, independent of its applicability to the initial functional integral (14.187).
This fact is of prime importance; in the general case, an exact calculation of the func-
tional integrals is impossible, but they are easily calculated by steepest descent.

This allows us to determine the general form of large N asymptotics of the pertur-
bation theory coefficients for any physical characteristics (such as Green’s functions
and vertex parts) for different models of quantum field theory. The typical form of Li-
patov asymptotics for the perturbation coefficients of an arbitrary function F(g) has
the form

FN = c Γ(N + b)aN , (14.191)
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where Γ(x) is the Γ-function, and parameters a, b, c depend on the specific problem
under discussion. In a concrete model of field theory the constant a is universal, the
parameter b depends on the physical function F(g) under study, and c contains de-
pendence on external momenta (or coordinates). The appearance of Γ(N + b) ∼ N! in
(14.191) simply reflects the factorial growth of the number of diagrams with the order
N of perturbation theory. Obviously, such asymptotic behavior of perturbation theory
coefficients corresponds to the divergent series.

The knowledge of Lipatov asymptotics in combination with the exact results for
a few lowest orders of perturbation theory, obtained by direct diagrammatic calcu-
lations, gives information on the perturbation series as a whole. Approximating the
complete series by the sum of lowest-order contributions with asymptotics of higher
orders, and applying the mathematical methods of the summation of the divergent
series, we can obtain approximate solutions of an arbitrary physical problem.

The most common method to deal with a divergent (asymptotic) series of pertur-
bation theory is to use so-called Borel transformation. We can divide and multiply
each term of the series by N! and use the integral representation of the Γ-function, so
that after the interchange of summation and integration, we can write

F(g) = ∞∑
N=0

FNg
N = ∞∑

N=0

FN
N! ∞∫

0

dx xNe−xgN = ∞∫
0

dx e−x
∞∑
N=0

FN
N! (gx)N . (14.192)

The power series in the right-hand side is—in most cases—converging (it actually has
factorially improved convergence) and defines the Borel transformB(z) of the function
F(g), which can now be determined from the following integral transformation:

F(g) = ∞∫
0

dx e−xB(gx) , B(z) = ∞∑
N=0

FN
N! zN . (14.193)

The Borel transformation gives the natural method of summation of a factorially di-
vergent perturbation series of quantum field theory.9

14.6 The end of the “zero-charge” story?

In Chapter 13, we stressed the importance of the asymptotic behavior of the Gell-
Mann–Low function β(g) at large values of the coupling constant g for the internal
consistency of quantumfield theory. However, until recently, only perturbation theory
estimates of β(g) were available, and no definite conclusions on its behavior at large

9 A detailed discussion of methods to deal with divergent series of perturbation theory can be found
in the review paper [65].
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g could be drawn. Below, we shall present some nonperturbative arguments due to
Suslov, allowing us to find this asymptotic behavior in analytic form [66].

For simplicity, we shall consider the O(N) symmetric Euclidean φ4 theory in the
d-dimensional space with the action10

S{φ} = ∫ ddx{ 12 N∑
α=1
(∇φα)2 + 1

2m
2
0

N∑
α=1

φ 2
α + 1

8u( N∑
α=1

φ 2
α)2} , (14.194)

where u = g0Λϵ and ϵ = 4−d. Actually, this is the direct analogue of equation (10.160)
used in the theory of critical phenomena. Here, we are using lattice regularization of
ultraviolet divergences, introducing the cut-off Λ ∼ a−1, where a is the lattice constant.
Following the usual renormalization group formalism, we consider the “amputated”
vertex Γ(n) with n external lines of field φ. The multiplicative renormalizability of the
theory means that we may write the direct analogue of equation (13.76) as

Γ(n)(pi; g0,m0,Λ) = Z−n/2Γ(n)R (pi; g,m) , (14.195)

so that divergence at Λ → ∞ disappears after extraction of the proper Z-factors and
their transfer to the renormalized charge andmass,which aredenotedhere as g andm.
We shall accept the renormalization conditions at zero momentum:

Γ(2)R (p; g,m)󵄨󵄨󵄨󵄨󵄨p→0 = m2 + p2 + O(p4) ,
Γ(4)R (pi; g,m)󵄨󵄨󵄨󵄨󵄨pi=0 = gmϵ , (14.196)

which are typical for applications in the phase transitions theory. From equations
(14.196) and (14.195), we can obtain expressions for renormalized g, m, Z in terms of
the “bare” quantities:

Z(g0,m0,Λ) = ( 𝜕𝜕p2 Γ(2)(p; g0,m0,Λ)󵄨󵄨󵄨󵄨󵄨p=0)−1,
m2 = Z(g0,m0,Λ) Γ(2)(p; g0,m0,Λ)󵄨󵄨󵄨󵄨󵄨p=0 ,
g = m−ϵZ2(g0,m0,Λ) Γ(4)(pi; g0,m0,Λ)󵄨󵄨󵄨󵄨󵄨pi=0 . (14.197)

Applying the differential operator d/d lnm to (14.195) for fixed g0 and Λ gives the di-
rect equivalent of the Callan–Symanzik equation (13.82), which for large momenta|pi|/m ≫ 1 has the form[ 𝜕𝜕 lnm + β(g) 𝜕𝜕g − nγ(g)]Γ(n)R (pi; g,m) ≈ 0 , (14.198)

10 Generalization to QED is more or less straightforward.
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where the functions β(g) and γ(g) are defined as
β(g) = dg

d lnm
󵄨󵄨󵄨󵄨󵄨󵄨󵄨g0 ,Λ=const , γ(g) = d ln√Z

d lnm

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨g0 ,Λ=const , (14.199)

and according to the general theorems depend only on g.
Now, we shall show how the renormalization group functions are expressed via

functional integrals. The functional integrals of φ4-theory are determined as

Z(M)α1 ...αM (x1, . . . , xM) = ∫Dφφα1 (x1)φα2 (x2) ⋅ ⋅ ⋅φαM (xM) exp(−S{φ}) . (14.200)

The Fourier transform of equation (14.200) can be written as

Z(M)α1 ...αM (p1, . . . , pM)𝒩δp1+⋅⋅⋅+pM= ∑
x1 ,...,xM

Z(M)α1 ...αM (x1, . . . , xM)eip1x1+⋅⋅⋅+ipMxM= KM(pi)Iα1 ...αMδp1+⋅⋅⋅+pM , (14.201)

where𝒩 is the number of sites on the lattice, which is implied in the definition of the
(regularized) functional integral, and the symmetry factors Iα1 ⋅⋅⋅αM are similar to those
discussed in Chapter 10 in relation to critical phenomena. Now, we have

Z(0) = K0 , Z(2)αβ (p, −p) = K2(p)δαβ , Z(4)αβγδ{pi} = K4{pi}Iαβγδ, (14.202)

where Iαβγδ is givenby an expression similar to that in equation (10.168). Consequently,
we can introduce the vertex part Γ(4) by the usual relation for two-particle (4-point)
Green’s function:

G(4)αβγδ(p1, . . . , p4) = G(2)αβ (p1)G(2)γδ (p3)𝒩δp1+p2 + G(2)αγ (p1)G(2)βδ (p2)𝒩δp1+p3+ G(2)αδ (p1)G(2)βγ (p3)𝒩δp1+p4− G(2)αα󸀠 (p1)G(2)ββ󸀠 (p2)G(2)γγ󸀠 (p3)G(2)δδ󸀠 (p4)Γ(4)α󸀠β󸀠γ󸀠δ󸀠 (p1, . . . , p4), (14.203)

where G(2)αβ (pi) are single-particle (2-point) Green’ functions. Extracting the factors
Iα1 ...αM , we have

G(2)αβ (p) = G2(p)δαβ , G(4)αβγδ{pi} = G4{pi}Iαβγδ , Γ(4)αβγδ{pi} = Γ4{pi}Iαβγδ. (14.204)

Now, we can write

G4 = K4K0 , Γ4 = −G4
G4
2
= −K4K3

0
K4
2
, (14.205)

and

G2 = K2(p)K0
, Γ2(p) = 1

G2(p) = K0
K2(p) ≈ K0K2 + K0K̃2K2

2
p2 , (14.206)
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where for small p, we have written

K2(p) = K2 − K̃2p2 + ⋅ ⋅ ⋅ . (14.207)

Expressions for the Z-factors, renormalized mass, and charge follow from (14.197):

Z = [ 𝜕𝜕p2 Γ2(p)]−1p=0 = K2
2

K0K̃2
, (14.208)

m2 = ZΓ2(0) = K2K̃2 , (14.209)

g = m−ϵZ2Γ4 = −(K2K̃2)d/2K4K0K2
2
, (14.210)

and

dm2

dm2
0
= (K2

K̃2
)󸀠 = K󸀠2K̃2 − K2K̃󸀠2

K̃2
2
, (14.211)

where the prime denotes the derivatives overm2
0. The parameters g0 and Λ are consid-

ered to be fixed, whereas m2 is a function of m2
0 only, and the derivative dm2

0/dm2 is
defined by the expression inverse to (14.211). Using the definitions (14.199), we have

β(g) = (K2
K̃2
)d/2{−dK4K0

K2
2
+ 2 (K󸀠4K0 + K4K󸀠0)K2 − 2K4K0K󸀠2

K2
2

K̃2
K2K̃󸀠2 − K󸀠2K̃2} (14.212)

γ(g) = − K2K̃2
K2K̃󸀠2 − K󸀠2K̃2 [2K󸀠2K2 − K󸀠0K0 − K̃󸀠2K̃2 ]. (14.213)

These equations determine β(g) and γ(g) in parametric form: for fixed g0 and Λ, the
right-hand side of these equations are functions of m2

0 only, whereas dependence on
the specific choice of g0 and Λ is absent due to general theorems.

Any infinities in the right-hand sides of equations (14.212) and (14.213) can be in-
duced only by the zeroes of functional integrals.11 It is clear from equation (14.210) that
the limit g → ∞ can be achieved by two ways: tending to zero either K2 or K̃2. For
K̃2 → 0, equations (14.210) and equations (14.212), (14.213) give

g = −(K2
K̃2
)d/2K4K0

K2
2
, β(g) = −d(K2

K̃2
)d/2K4K0

K2
2
, γ(g) → 1 , (14.214)

and the parametric representation is resolved as

β(g) = dg , γ(g) = 1 (g →∞) . (14.215)

11 This is the most nontrivial moment of our discussion. Actually, it can be shown that zeroes of the
functional integrals can be obtained by a rather subtle compensation of the contributions of the trivial
vacuum and some instanton configuration with finite action.
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For K2 → 0, the limit of g →∞ can be achieved only for d < 4:
β(g) = (d − 4)g , γ(g) → 2 (g →∞) . (14.216)

The results (14.215) and (14.216) probably correspond to different branches of the func-
tion β(g). It is easy to understand that the physical branch is the first one. Indeed,
it is commonly accepted in phase transitions theory that the properties of φ4-theory
change smoothly as a function of space dimension, and the results for d = 2, 3 can be
obtained by analytic continuation from d = 4 − ϵ. All the available information indi-
cates the positivity of β(g) for d = 4, and consequently its asymptotics at g → ∞ is
also positive. The same property is expected for d < 4 by continuity. The result (14.215)
does obey such a property, whereas the branch (14.216) does not exist for d = 4 at all.

According to our discussion in Chapter 13, the behavior of the Gell-Mann–Low
function given by equation (14.215) corresponds to the continuous growth of the renor-
malized charge as we go to the region of strong coupling at small distances, and signi-
fies the consistency of quantum field theory without “pathologies”, such as a Landau
“ghost pole” (or a “zero-charge” problem). However, it should be clearly understood
that during our discussion here, we have skippedmany subtle details, which are to be
looked for in original papers, and the difficulties which are making this point-of-view
less than commonly accepted.
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