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Preface

These volumes presents selected papers of Michael V. Sadovskii on different aspects of condensed
matter theory published by him from 1974 to 2024. From his total publication list of about 180
papers we have chosen only those which we consider conceptually most important. This choice is
of rather subjective nature and is not related to any of currently popular metrics, like e.g. citation or
Hirsch indices.

Selected reviews by M.V. Sadovskii were published in separate two — volume edition. All
experimental papers as well as papers devoted to calculations of different properties of specific
materials were just excluded from this edition.

All papers are published in original form without any editorial work or corrections of some minor
misprints mainly of a technical nature.

At the end of this volume we present an extended list of the books, reviews and research papers by
M.V. Sadovskii, which includes many of those dropped from this edition.
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Effect of crystal lattice disorder on Peierls transitions

L. N. Bulaevskii and M. V. Sadovskii

P. N, Lebedev Institute of Physics,

Academy of Sciences of the USSR, Moscow
{Submitted November 30, 1973)

Fiz, Tverd, Tela, 16, 1159-1164 (April 1974)

The effect of disorder on Peierls structural transitions is considered for quasi-one-dimensional crystals
of the K,Pt(CN) Bry 50" 3H,0 type and for salts based on TCNQ. The exactly solvable Lloyd disorder
model and the "fragment” model are considered. It is shown that in both models disorder causes a
strong suppression of the Peierls transition, and its effect is qualitatively similar to the effect of mag-
netic impurities on the superconducting transition. Possible experimental consequences are discussed.

The synthesis and study of physical properties of highly
condueting quasi-one-dimensional crystals on bases of
TCNQ salts! and of plane complexes of transition elements
of the platinum group [the K, Pt(CN),Bry, 33 * 3H,0 type]
raised the problem of applicability to those compounds of
the Peierls argument on instability of one-dimensional
electron systems with respect to a change in the lattice
period. According to these concepts, a displacement by
awave vector 2kp (kg is the electron Fermi momentun)
should appear at low temperatures in the original crystal
lattice affected by the electron system, and below a tem-
perature Ty, the one-dimensional system must remain a
dielectric, since a gap appears in the electron system at
the Fermi surface. In K,PT(CN) Bry g * 3H,0 compounds
diffuse x-ray scattering’® and inelastic neutron scatter-
ing* indicate that the Peierls instability is indeed observed.
According to the data of ref. 3 a static displacement of
atoms (a sixfold increase of the period) occurs at a tem-
perature below 77°K, and at higher temperatures this
static distortion is preceded by softening of phonon fre-
quencies with quasimomentum ~ 2kp. Obviously, a
Peierls period occurs also in the highly conducting TTF—
TCNQ salt,” while at the same time this transition has not
been so far observed in magnetic data of other investiga-
ted TCNQ salts. Indeed, for a Peierls transition the pa-
ramagnetic susceptibility should fall with temperature
lowered below Tp. Exactly such susceptibility behavior

is observed® in TTF-TCNQ, but not in other highly con-
ducting TCNQ salts.”

It is clear that crystal lattice disorder has a large
offect on the Peierls transition, Indeed, disorder washes
out those features in the density of states of one-dimen-
sional electron bands which lead to lattice instability in
the displacements with gap formation at the Fermi sur-
face. An internal instability, however, is inherent in all
quasi-one-dimensional crystals, besides TTF—TCNQ. In
platinum complexes halogen ions fill only part of the sites
which they can occupy, and their site distribution is ran-
dom. In the highly conducting TCNQ salts disorder is re-
lated toa random orientational distribution of asymmetric
cations. Only for the TTF—TCNQ complex is the TTF
cation totally symmetric and lattice disorder can be re-
lated only to structure defects.

In this paper we consider the effect of lattice disor-
ler on the temperature and the order parameter of the
Peierls transition. The calculations indicate that this ef-
fect is as strong as the effect of magnetic impurities on
the superconducting transition. The results obtained be-
low explain why the Peierls transition is not observed in
all quasi-one-dimensional crystals., We also discuss new
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properties added to this transition by lattice disorder.

1. INITIAL EQUATIONS AND
DISORDER MODEL

We consider only the simplest example of a Peierls
transition, one with a doubled period. Such a transition
occurs if the original electron band is half full, and only
in this case is a lattice change not accompanied by a re-
distribution of electron charge.® For this ratio a transi-
tion with a doubled period is simplest, and to evaluate the
transition temperature T in the static approximation it
is necessary to know only the dependence of the electronic
density of states on the displacement of the lattice atoms
and the degree of lattice disorder. In doubling the dis-
placement up of atom nwe use

= (—1]"u. (1)

For a half-filled band the free energy of the electrons
and the lattice is expressed in terms of the parameter
u as
Fla, T)=—T S dFp (u, E)In (1+¢ff’)-:--1,~£uﬂ, (2)

—m

where K is the lattice elasticity coefficient with electrons
localized at the sites,? and p (u, E) is the electronic den-
sity of states for displacement u. We consider below only
disorder models leading to p (u, E) symmetric with re-
spect to the energy E - 0,i.e..p (u, E) = p (u,~E). In this
case the electronic chemical potential is u = 0. Below
the Peierls transition temperature TP the free energy is
lowered at u # 0, and TP is the temperature for which

the equation

OE (1, T)

du il

(3)

=1,

has a nontrivial solution u # 0 for the first time.

The problem thus reduces to the determination of the
electronic density of states p (u, E) in a disordered lat-
tice. The possibility of applying approximate methods in
determining the density of states in a one-dimensional
system seems doubtful; therefore we consider disorder
models which allow accurate determination of the density
of states. Such are the Lloyd® and the "fragment"!’ models.

2, THE LLOYD MODEL

In this model it is assumed that the electrons are
described in the tight binding approximation by means of
the Hamiltonian
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= E {2nlhs g F b1 (820510 T @irs00) )0 (4)
n,e

in which the transition parameter (the resonance integral)
bn. n + 1 is not a random quantity, but the potentials eyare
randomly distributed over the sites n. It is assumed that
the distributions &, are independent for different sites,
and are all described by a Lorentz distribution

(5)

1 5y
Pla1=—1;?+1g-

Obviously, this model is qualitatively adequate for
the platinum complexes, in which disorder in the Br or
Cl ion positions leads to a random potential, acting on the
conduction electrons of the chain. For the distribution
(5) the density of states p (E) in the disordered lattice
(e;# 0) is expressed in terms of the density of states
pp(E) in an ideal lattice (g4 = 0) by the relation

T fa (z)
pe)="1 | 4 iy =

In an ideal lattice with a doubled period the electron
spectrum is of the form

N
e (k) = + VAT 47 cos® Ky k=%—. n=0, £1, £2, ..., £, (7)

where N is the number of atoms in the system, 2b is the
half-width of the original band (the band without doubling)
2b=bp n_t + bn,n+and A = |by,n+ 1=bn, n—1l; &/2b
1 (we consider only the case of small atomic displace-
ments, i.e., Tp <«<2b), The plus sign in (7) corresponds to
the upper part of the band, and the minus signto the lower.
The density of states, proportional to the derivative dk/de,
is infinite at the band edges (k = 0, 27) for N — = This
feature also causes the Peierls instability of the original
ideal lattice.

We notice that in the Lloyd model the electronic free
energy is infinite due to the slow decrease of the Lorentz-
ian distribution function (5) for £ — ; this divergence,
however, is not erucial for us since the part of the elec-
tronic free energy which depends on the displacements u,
i.e.,d8E (u,T)/0u, is finite. Physically the divergence in(2)
for large E is removed if the ion energy is included in the
same potential field gy,

We further choose for the transition parameter not
the displacement u, but the guantity A proportional to it,
which determines the gap in the electronic spectrum of
an ideal lattice with the doubled period. We introduce also
the dimensionless eleectron—lattice interaction constant g
by means of the relation Ku® = A%/rg’2h. Taking into ac-
count the condition A/2b <1 for weak disorder £4/2b «1,
we obtain from (2), (3), (6), (7) for an infinite system the
following equation for the transition temperature:

thas. (8)

2h
de £
1=:25 ——
Vi-(z)
0

For an ideal lattice (g, = 0) Eq. (8) differs from the
BCS equation for the superconducting transition temper-
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ature by the factor [1—'(2'./’2b)3}"1f2 only. This factor de-
scribes the electronic density of states in the tight hind-
ing approximation, and its appearance in (8) is related to
the fact that the whole electron band contributes to the
Peierls instability, while in a superconductor the elec-
tron—phonon interation differs from zero onlyinan energy
interval of the order of the Dehye frequency wyy « 2h around
the Fermi surface. In this narrow energy interval the
density of states can be considered constant. The features
of the density of states at the band edges, washed out by
disorder, leads to the appearance in (8) of the factor
£/(e? + £4%), regular for € =0, which decreases the tran-
sition temperature Tp-

Equation (8) is easily transformed into the form

T 1
P 1 g : I)_ b -7 {9)
B rn—q‘(a'*'?r-i") '*‘(2 i fp e s

where In y = C is the Euler constant, and 9 (x) is the di-
gamma function. In (9) we see the full analogy between
the effect of lattice disorder on the Peierls transition and
the effect of magnetic impurities on the superconducting
transition.'' For increasing £y the transition temperature
Tpdrops and the Peierls instability disappears when ¢, -
Eie = A¢/2, where A is the Peierls gap of an ideal crys-
tal at T = 0, equal TrTPu/Y.

The dependence of the parameter A on the instability
gy is determined for T = 0 from the equation

o

s [l VBT
L3

E3 i 4 =2 s

In

For small disorder (g; << Ay) we obtain from (9),(10)

3

and close to €., when the temperature Tp is low (Tp< Tpy),

Tp, 8y A 2 A
gl R T Lo J e I ) A
Tp= e In g z 5 ln T (12)

It is seen from (11) and (12) that in the Lloyvd model
the ratio A/ Ty, varies from r/y (the BCS value) to zero
for g varying from zero to g¢c.

We notice that in a disordered system the Peierls
transition does not cause a gap appearance in the elec-
tronie spectrum, since in this case the density of states
remains nonzero in the energy interval from — A tod,
although a pseudogap occurs in this region. Thus, in the
center of the original band we have for E = 0

4 |
P(U}=H< pul:f}):.‘i'b‘.

3. THE "FRAGMENT" MODEL

The "fragment" model is realized if a quasi-one-di-
mensional erystal has structural defects or impurity
atoms, through which conduction electrons with energies
Around the Fermi surface cannot pass (for example,
closed-shell impurity molecules). In the Hamiltonian (4]
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this situation corresponds to the case £y = 0, but the
resonant integral bp, n + 1 is a random quantity, vanishing
for several neighboring atoms n, n+ 1, while having for
other neighhoring atoms the ideal lattice value. The lin-
ear system of atoms is then decomposed into a number of
"fragments" and the Peierls transition in each of these
fragments takes place independently at a temperature Tp
depending on the number of atoms in the fragment. In a
system of N atoms the electronic spectrum in the tight
binding approximation is described, after doubling the pe-
riod by Eq. (7). For finite N the discrete nature of the
spectrum causes a weakening of the Peierls instability,
and for decreasing N the transition temperature Tp —0.

For the density of states we have from (7)

Nj2

p(E)= X

n=—y/2

5(5 4 V A? 4 4b2 cos? i’:,j) (13)

Further, let N be twice an odd number. The chemical
potential is then g = 0, and this simplifies the calculations
considerably (the final results are, obviously, independent
of the choice of N). From (2), (3), and (11) we obtain the
T dependence of A,

. - 2nn
N2 V_\E - 4b? cost —7 1

= A T 2rn
V.\'-‘ -+ 4b? cos? v

n=—N2
The Poisson summation equation allows to write (12)
in the form

1 th( 1 IT
hlss V o + 22
. .2 =2 7 S8 (i +2 2 cos Nn arccos z) . (15)
¥{ —zx? A?
i+ =

- (14

1 =g?

Using the condition Tpg <<2b and choosing N as twice
an odd number, we obtain from (15) an equation for the
ransition temperature:

Tp - . 2
In —-lr 2 1 m 1]— By =T (16)
n=1 N g1

For the order parameter A at T = 0 we have

g =2 3~ Ko[n ), a7
=1

where K;(x) is the modified Bessel function. From (16),
(17) we obtain for large N (when g, < A)

X4

) p— B
?'P.-_—.::"Pu(l—g 'N); _\=_\',(1__ _ﬁe ‘N)‘ (18)

and for small Tp « Tp, we have

T ! T
L ) LT (19)
L] ! VIT(3) Ex

where ¢ (x) is the Riemann function. A Peierls transition
does not occur if N < Ng = 2b/Tpg. In this model the ra-
tio A/Tp varies from n/y to « for N varying from « to Nc.
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4, DISCUSSION

The models considered by us differ in the pature of
their instability. Tocompare their results and to compare,
in particular, the Peierls transition critieria, we intro-
duce a universal quantity for one-dimensional disordered
systems, such as the electron localization length, which
can ve calculated if the density of states is known.'? This
quantity replaces in the one-dimensional case the mean
free path and is essentially of similar nature. Clearly,
in the "fragment” model the localization length [, ex-
pressed in interatomic distances, equals N. In the Lloyd
model the localization length was calculated by Thouless,!
and in the center of the original band at electron energies
E = 0 and g <« 2b it equals 2b/g, (at the edge of the orig-
inal band it is twice as large). Expressed in terms of the
localization length 7 the parameters g; and ey, character-
izing disorder in the Lloyd and "fragment" models, coin-
cide and equal 2b/]. For the critical localization lengths
in these models we obtain the very close values (2v/r)
(2b/Tpg) = 1.13 (2b/Tpy) and 2b/Tp,, respectively.

Thus, the criterion of Peierls transition appearance,
expressed in terms of the localization length

B has 20)
]

is, obviously, useful for any disorder. At the same time
the ratio A/Tp can vary from n/y to either side, depend-
ing on the nature of the disorder.

Applied to the platinum complexes, the results ob-
tained allow us to assume that the smallness of the ratio
Tp/2B n K,Pt(CN),Bry g+ 3H,0 (Tp€ 77°K; 2b ~ 2 eV)
be related to disorder in their Br ions, We notice that a
suppression of Peierls instability is also caused by elec-
tron transitions between chains, which destroy the sym-
metry condition of the electron spectrum

e(k)—p=—z(k+q)+p (21)

(g is the wave vector of Peierls deformation), necessary
for the occurrence of lattice instability!® " in a three-di-
mensional crystallin a one-dimensional system Eq. (21) is
always satisfied at least for electrons around the Fermi
surface for q = 2kgl. If the resonance integral of inter-
chain transitions leading to violation of {21) is denoted by
by, the transition temperature Tpis reduced' by about
by/Tp,y. At room temperature the conductwlly anisotropy’
in K, Pt(CN)Bry, 5, - 3H,0 exceeds 10%, and for this com-
pound by «Tpy.

An attempt has been made'® to explain the drop in
conductivity in Ky Pt(CN) Bry 5, * 3H,0 by the appearance
of a Peierls gap. As noted above, in a disordered system
the gap is replaced by a "pseudogap," so that the appear-
ance of an order parameter A does not, generally speak-
ing, cause an exponential decrease of conductivity with
temperature. The low-temperature conductivity is deter-
mined in this case by electron jumps over the energy
levels inside the pseudogap. At the same time the elec-
tronic specific heat at low temperatures, proportional to
the density of states at the Fermi surface, is strongly
suppressed if the system undergoes a Peierls transition.
Therefore, the small magnitude of electronic heat ca-
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pacity in K, Pt{CN),Cl, 5 * 3H,0 at low temperatures, mea-
sured by Greene and Little,'® can be explained by the oc-
currence of a Peierls transition in this crystal, as well
as in KzPT.lCN)_{BI‘c_;;(. * 3H,0.

According to the results of ref. 7, in highly conduct-
ing crystals on a TCNQ base with asymmetric cations the
transition resonance integral is a random guantity and
can acquire arbitrarily small values. In this case the
localization length is small and the Peierls transition can
indeed be totally suppressed.
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A model of a disordered system (A contribution to the theory of

“liquid semiconductors~)

M. V. Sadovskii

P. N. Lebedev Physics Institute, USSR Academy of Sciences
(Submitted November 1, 1973)
Zh. Eksp. Teor. Fiz. 66, 1720-1733 (May 1974)

A model of the electronic properties of disordered systems of the “liquid-semiconductor” type is
proposed. The one-electron Green’s function is obtained and leads to a density of states with the
characteristic “pseudo-gap” in the energy range corresponding to the forbidden band of the crystal.
The dielectric properties, conductivity, and optical absorption are considered. Electron localization of
the Bragg type is obtained, together with the analog of interband absorption in an ideal
semiconductor. The dielectric properties of the model considered turn out to be intermediate between
those of typical metals and insulators. It is noted that the results obtained can be applied to
interpret the properties of quasi-one-dimensional systems (of the TTF-TCNQ type) near the Peierls

structural transition point.

INTRODUCTION

In recent years interest has grown in both the theory
and the experimental studies of the electronic properties
of different disordered systemsm . In particular, great
attention has been paid to the experimental study of melts
of most of the known semiconductors (see the re-
Views[z"‘]). It has been found that semiconductors can
be roughly divided into three groups, according to their
kinetic properties in the liquid state.

The first contains substances of the type Ge, InSb and
other AjyBy, which, on transition to the liquid state,
give melts with purely metallic properties. Evidently,
this is connected with the fact that, in these substances,
not only the long-range order but also the short-range
order corresponding to the given crystal is destroyed on
melting. The second group is formed by substances of
the type PbTe, SnTe, PbSe, In,Te;, Ga:Tes, etc., which
are typical semiconductors in the crystalline state. On
melting, their electrical conductivity, in absolute magni-
tude and in the temperature dependence, has practically
the same behavior as in the corresponding crystal. The
sign of the thermoelectric power, as a rule, indicates
p-type conductivity. In the Hall effect, however, they dis-
play typically metallic properties: the Hall constant is
almost independent of temperature, its sign corresponds
to n-type conductivity, and in absolute magnitude it is
slightly greater than the value for a metal with two free
electrons per atom. Thus, these substances, which are
usually called "'liquid semiconductors,' form a group
intermediate between typical metals and semiconductors.
To all appearances, their properties can be considered
in the framework of the nearly-free electron approxima-
tion, with allowance for strong scattering of the '"Bragg"
type in the energy range coinciding with the forbidden
band of the corresponding crystal. Finally, the third
group is formed by substances of the type GeS, SnS, etc.,
with very low electron mobility, which, evidently, must
be treated in the approximation of tight binding of the
electrons to the ions.

In this paper we propose a simple model that makes
it possible to understand qualitatively the appearance of
the distinctive type of '"band structure' in the energy
spectrum of substances of the second group, which ap-
pears in the form of a characteristic ""pseudo-gap' (of
the type assumed in the work of Mott and other au-
thors) in the density of electron states. Also consid-
ered are the dielectric properties, high-frequency con-
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ductivity and optical absorption. The ''quasi-one-dimen-
sional" character of the model permits us to hope that a
considerable proportion of the results obtained below
can be applied to describe the properties of one-dimen-
sional systems (of the TTF-TCNQ type) near the Peierls
structural transition point.

1. THE ONE-ELECTRON GREEN FUNCTION
We write the Hamiltonian of the interaction of an
electron with the ions in the form

1
Hm,=WZ<P+I[|V|P>“:M‘1PP11 (1.1)
Pq

where

Pq=2 ek
is the Fourier component of the ion density (R1 are the
positions of the ions and N is their total number),
(p +q|V|p) is a matrix element of the (generally speak-
ing, nonlocal) ionic pseudo-potentialt®l, and a.f) and aj,
are electron operators in second quantization.

We introduce the one-electron Green function in the
Matsubara temperature technique:

G(pr) =—<T.a,(1)3,*(0)?, (1.2)
and also the Green function of the ion subsystem:
F(g7) =—(T:pq (1) p* (0)). (1.3)

For the Fourier transform of (1.3) we have the spectral
representation*®
A(go’)

F(qmm)= j. dm’m,

(1.4)

where wp, =2mmT (T is the temperature),

A(qo)=2Z"! Zexp [—%] | (pq)mnlz{i—exp [— 1},"1]}6(0)—&)".»),

mn

Omn=E,—E., (pg)m.=Cmlpglnd, Z= Zexp [—-E—;], (1. 5)

and m and n label the exact level of the ion subsystem.

Next we introduce the dynamical form factor of the
liquid t™

_ E, .
S(qw)=2Z ‘Zﬂl|(pq)m..|’exp[—-—T—]é(m—mm). (1.6)
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Comparing (1.5) and (1.6}, we see that

Algn}=S{qu} {l—e—T}. (1.7)

The simplest contribution to the electron self-energy
part has the form

T
Z(s,.p)=F2 l<p+qlV]p? ZF(qm..‘) :
q n

-
. T
{0 o TV S

£.—(nt1inl,  Ba—pilm—p. (1.8)

We note that the characteristic energies of the ionic
excitations (the frequencies at which S({gw) is nonzero)
satisfy, in the liquid, the condition w/T < 1, whereas we
are interested in the electron spectrum in a substantially
wider range of energies Z T, This enables us to neglect
the effect of the dynamics of the ion subsystem, i.e., to
take into account only the terms with m = n in (1.6):

Slqul=5iqtbla}, (1.9)

1 -
Slay= | duS(ga),

(1.10)

where S(g) is the static structure factor of the liquid 7,
Using (1.4)—(1.7) and (1.9) in (1.8), we obtain the static
approximation

1
E(s..P)EWZI(pﬂ]Ile)I’S(q) - (1.11)

1
Bn—§p+¢
This approximation was used by Edwards in his well-
known papers[”] . The averaging he used, over all possi-
ble ion configurations, is contained implicitly in the
definitions (1.5) and (1.6), in which averaging over the
canonical ensemble of the liquid is performed.

The static structure factor S(g) is determined experi-
mentally from data on the elastic scattering of x-rays or
neutrons. Its typical behavior in a liquid is represented
in Fig. 1.

First we shall consider a one-dimensional model of a
liquid. We shall model the structure factor by two nar-
row peaks at g = K, this being the natural analog of
Fig. 1 in the one-dimensional case. We shall assume
that the Fermi level of the free electrons passes through
the degeneracy points of their spectrum, at which Bragg
gaps are formed in the case of an ideal periodic struc-
ture (see Fig. 2). We therefore take 2pF = K, where pp
is the Fermi momentum of the free electrons, The latter
condition is typical for "liquid semiconductors' %,

K being the analog of the reciprocal-lattice vector of the
ideal erystal.

From (1,11) we have (L is the length of the system)

Ld
S(ew) = 5 G [0+l VIP IS () et (1112)
P SN )

. L pdyg .
A —W_Il—z;f(p-i-qlwp}l S(q). {1.13)
Here we have made use of the characteristic structure
of 8(q), with two narrow peaks at q = +K.

It is not difficult to convince oneself'® that correc-
tions for the finite width of the peaks are small if the
conditions

1-%4:@—,:!;' or  up(€al, (1.14)
are fulfilled, where » is the width of the peaks, v is the
Fermi velocity of the free electrons, and the parameter
Ry, defined in (1.14), in the one -dimensional case plays
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the role of the correlation length of the short-range
order.

From Fig. 2 the following symmetry properties of the
free-electron spectrum in the one-dimensional case can
be seen:

Erex=--¢, fOT p~+K/2

(1.15)
Eoaw=—% fOr p~—H/2,

Then, considering the electron with p ~ +K/2 (the treat-
ment of p ~ —K/2 is analogous), we may take into account
only the first term in the right-hand side of (1,12):

Zetp) =A'Gofen, —L,). (1.16)

Thus, the use of the characteristic form of the liquid
structure factor makes it possible to replace the real
interaction Kp +q|V |p}1°8(q) in the liguid by the model
interaction 27NL A% (g — K). Then, the remaining per-
turbation

Algy=[<p+elVIp>[*8(g) ~2nNL' A% (g - K)

is unimportant, if the treatment is confined to the region
specified by the conditions (1,14). It should be empha-
sized that the introduction of this model interaction does
not imply the introducticn of long-range crystalline
order. The analysis is performed under the assumption
of a microscopically homogeneous liquid, and the ¢ondi-
tions (1.14) impose a restriction in the sense that the
correlation length of the short-range order should be
sufficiently large. The presence of long-range order
entails the appearance of "anomalous' Green functions,
which describe Umklapp processes (19 and substantially
alter the structure of the equations.

With the model interaction introduced above, we can
now sum all the important diagrams, It is not difficult to
see'® that, in each order of perturbation theory, dia-
grams with an alternating sequence of Green functions
fie, — gp}'l and {ie, + £p1™ (we are considering p ~ K/2)
and an alternating sequence of vertices with incoming or
outgoing interaction lines transferring momentum + K
give equal contributions (see Fig. 3), The general term
in the expansion for the Green function then has the form

Al
(ie—E.) " (ie+Ep) " Ue—Es)

&n {ep) = =niz2"(2k,)Goleiks), (1«17)
where A® is defined by (1.13), n is the order of perturba-
tion theory in A%, and z(e;£p) = A*Gol€; & p)Goles ; —Ep)-
The factor n! arises from simple combinatorial consid-
erations. In fact, there are 2n points to which interaction
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lines are attached. Of these, n points have an outgoing
line, which c¢an enter the remaining n free vertices
(corresponding to incoming lines) in any of n! ways, We
shall use the identity

2 Al Z jdt e-b(gz)"= J dt et 1C7-

Bl nmé o

{1.18)

Then the one-electron Green function is

i |+ »
Glap)= Zs'n(erp) jdte“%_‘l—,'mm(mp)h,(1-19)
where
ie,+ Ly
Gatepp)= . (1.20)

is the normal Green function of an ideal semiconductor
with energy gap 2{A|, and

L= fdﬁe“. ..
¢

is a particular type of averaging over the "fluctuations"
of the energy gap. Thus, the model considered for the
disordered system is equivalent to an ensemble of ideal
semiconductors, in the spectrum of which the energy gap
takes random values, with a distribution of a special
form.

Periorming the analytic continvation to real frequen-
cies in the usual way, we obtain the retarded (or ad-
vanced) Green function, The density of electron states
c¢an be found from the formula

Ney=— 2 g, 1m 02, (1.21)

where Ny is the density of free-electron states, From
(1.19) we have

Im G*4 (e, &, )_:Fnjdce'c(E"' )8 {e*-k, 1 4%)

(1.22)

- ¥%(e+gp} B(e!_ pi)e‘“'—')'”-"

and the density of states is
| 4 ' J KT (a=/A= ;)"- =2 |Aih|.e:p[_:_:]Erﬁ(Ai)'

Erii(x)=I dz e

N(e)

(1.23)

is the error function of imaginary argument. The den-
sity of states (1.23) is represented graphically in Fig. 4.

We have thus obtained a "pseudo-gap," of the type
proposed in the numerous papers of Mott and other au-
thors in order to interpret the properties of "liquid-
semiconductors.'” The width of the pseudo-gap is equal
in order of magnitude to the width of the forbidden band

<pegivip>

L #
g afz k4

FIG. 5
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of the corresponding crystal. The asymptotic behavior of
(1.23) has the form

N(E) { if
2e4*+0  for lz|-0.

We emphasize that the Green function (1.19) has no
pole singularities in the vicinity of the "Fermi surface”
and, in this sense, does not describe the spectrum of the
elementary excitations in the regicn of energies corre-
sponding to the pseudo-gap. The first of the conditions
(1.14) indicates that the formulas obtained are inapplica-
ble in the immediate vicinity ¢ ~ 0 of the Fermi level.
Far Rc 20a, where a is the interatOmic spacing, this

lel-s oo

(1.24)

_ hm1tat1on is extended to the region |£B| =~ 0.05 €p (e

is the free-electron Fermi energy),
IA] ~ (0.1—0.2)ep amounts to approximately (1/4)—
of the width of the pseudo-gap. The situation is im=-
proved with increasing R, but the vanishing of the den-
sity of states in the middle of the pseudo-gap raises
doubts. Moreover, for "liquid semiconductors' the esti-
mate T ~ |A| is typical, so that the second condition
(1.14) is already fulfilled when R, 2 10a.

The generalization of the results obtained to the
three-dimensional case encounters certain difficulties.
In particular, if in (1,11) we make use of the usual
local-pseudo-potential approximation, then, on integra-~
tion over the polar angle between the vectors p and g,
there arises a characteristic logarithmic expression for
the self-energy part '™ **) which is considerably less
singular than (1.12) in the energy region of interest and
leads only to weak changes in the density of states as
compared with the case of free electrons. It was pointed
out by Ziman"® that, under certain assumptions con-
cerning the higher correlation functions of the ions (in
particular, the four-ion correlation function), contribu-
tions to the electron self-energy part that have a "one-
dimensional” form of the type (1.12) can appear. Without
denying this possibility, we should like to remark that
these assumptions are too stringent, the more so0 be-
cause, at present, no theoretical or experimental me-
thods exist that permit one to find the higher ionic
correlators in the liguid. Incidentally, it turns out to be
sufficient to impose only one condition on the ionie
pseudo-potential (based essentially on its nonlocal na-
ture) in order to obtain a result of the type (1,16) in the
three-dimensional case. The matrix element {p + q|V|p;
of a nonloeal pseudo-potential depends not only on |g],
but also, in the general case, on |p| and [p +q|, i.e., it
depends also on the mutual orientation of the vectors p
and q'*). It then turns out that, in the region |q/ ~ 2pg
of interest, the pseudo-potential ¢corresponding to

"almost-backward' scattering is considerabl { greater
than for scattering through small angles [®+1?

ich, for typical
(1/8)

A typical dependence of the matrix element
(p +qlVIp) (Pl ~ PR, Il = 2pp) on the scattering angle
is shown in Fig. b. We shall assume that for the sub-
stances in which we are interested there is a sharply
pronounced peak in the pseudo-potential in the region of
scattering angles ¢ ~ #. Then, from (1.11) we obtain
{20 is the volume per atom)

dcos B1<p+ql ¥ip} 25 {q)

i8n=Epra

AN —E ot
(1.25)

and the problem reduces to a one-dimensional one.
Here,

S{eap) = jdq q-—~f

- i 1
A’—andqqzmIdc-osﬂl<p+q|V|p>|’S(q). (1.26)
n —1
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We assume that the conditions (1.14) are fulfilled and
that the integration over cos 6 is effectively cut off in
the interval

1981* <[ p—ps|/|2r] OF |80|* 20776, (1.27)

about 8§ ~ 7; this singles out a narrow cone, correspond-
ing to the dominant role of the backward scattering. For
p —ppl ~ 0.05pf we have [66] S 0.22. Therefore, in
the three-dimensional variant of our model the real
interaction [p + ¢|V[p)?S(q) is replaced by the model
interaction

g
E“—Asﬁ (q—K)ﬁ(cOS 9+1) .

The remaining perturbation

: ]

Ay, B)-|<p+q|V|p)|'S(q)—%A‘6 (g—K)8(cos8+1)
leads to the appearance of the above-mentioned weak
renormalizations of the density of states. It is not diffi-
cult to see that, in the three-dimensional case, in place
of (1.15) we have

Ep-xi=—% for |[p|~K/2. (1.28)

The subsequent treatment coincides with (1.17)—(1.23),
and all the formulas remain valid for the three-dimen-
sional system too.

2. THE VERTEX PART, POLARIZATION OPERATOR
AND DIELECTRIC FUNCTION

It is of interest to study, in the model under consider-
ation, the properties of the vertex part describing the
response of the system 1o an external electromagnetic
perturbation. We have the following expression for the
variation of the one-electron Green function on introduc-
tion of a weak external fieldt®:

4G (2p)
84,(qw)
where 0A  (qw) = {GAqw; —ﬁwqw} is the variation of the

external field and JH(epe + wp +q) is the required vertex
part. In this case we have for the free Green function:

=G (ep}*(epetoptq) G letoptyg), (2.1)

Gy {ep) .
W=G|(BP)JI} (EPB+mp+l])Go(E+.mP+‘])- (2,2}
where the free vertex
—epime -1,2,3
!.ll + + - ep L} P’ * '+
{epetoptyg) {e‘ 4=0 (2.3)

In the model considered, the variational derivative (2.1)
can be caiculated directly. In fact, from (1.17)—(1.19)
we have

8G(ep) 8 -
Mu(::) -5 {(E[;z(ep)r)‘f}o(ep)}
= (2 Z[;z(sp 1™ GGT{FP) [{z(etwptq) )™

el Ml

3Gy (ep)

X G (etoptq)+ 2 [tz (ep) ]“W

Amg

(2.4)

since 6G(ep)/6 A, @w) is cbtained from the set of dia-
grams of the type shown in Fig, 3 by inserting external-
field lines into any of the electron lines in Fig. 3 (see
Fig. 6a). In (2.4), m is the label of that block z(<p) of
Fig. 6a into which the external-field line enters. Using

848 Sov. Phys.-JETP, Vol. 39, No. 5, November 1974

KK K 4
4z
" 2
& sp K £p EpK e o £ Er rad Ep 1w Sedt | Erw
G P PR pog ppieg 7 prlpieg
e ‘g ‘9o
a b
FIG. 6

(2.2), it is not difficult to convince oneself that (see Fig.
6b)

[
ﬁ==Ga(sp)J,"(epe+wp+q)z(e.+wp+q)

+z(ep) /i (ep—Ketop—K+q) Gy (et op—K+q). (2.5)

Substituting (2.2) and (2.5) into (2.4), after certain
transformations we obtain

86 (ep)
8d.iqu)

X < Z ¢z (ep) Z trzm{etwptq) >:

Al med

=J M (epetaptq) Glep) Gy (2 top+q)

2.6)
+It{ep—Ketop—K+q) ( C,A‘Z Lzt (sp)E E‘"'”‘(e+mp+q)>

-l

which reduces immediately to

_SGAER) _ e (epetopa) (Gra(epn) Gro (e +op+ap+a) .
ﬁAn(qm) )

+I (ep—Ke+wp—K+q)<Gra{epp—K) G (e top—Ktqptq) 2, (2.7)

where Ga2(epp) is defined in (1.20), while

A

Gplie.pp—K} = +'m

(2.8)
is the anomalous Green function of the ideal semicon-
ductor, describing the elementary Umklapp process
p—p—K.

We see that, in the model considered, the electro-
magnetic response is described by the same formulas
as in an ideal semiconductor of the excitonic-insulator
type, but with a fluctuating energy gap. Finite expres-
sions arise, associated with pair products of anomalous
Green functions, while the average (of the type (1,19)) of
(2.8) is absent, corresponding to the absence of long-
range order in the system. The model interaction intro-
duced above is the direct analog of the Bragg scattering
in the ideal crystal and is responsible for the formation
of the distinctive kind of band structure (the psendo-gap)
in the electron spectrum. However, like the scattering
in the ideal crystal, it is insufficient for a correct des-
cription of the kinetics, for which we must take into ac-
count the dissipative scattering {the analog of defects and
phonons in the crystal) associated with the discarded part
of the real interaction,

We now turn to consider the dielectric properties of
our system. Since the polarization operator is directly
related to the scalar vertex, from (2.7) we have

= &
T{qun) = ~2 ;[d; ey Ty (Gent (£2B) Gun (et amp+ap+a)
+Gh'(3 in_K) GtA’(3n+'9m P""'IP—K'HI) }-<HIA‘ (q(l)m) . (2-9}

Summing over the Matsubara frequencies in the stan-
dard manner and performing the analytic continuation
jwp, — w + 10, we obtain [
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1 &'p  EpEorqthplprytd’

Il =-— t7(E E }
algw) 3 @ E\Epre f( ) —f(Epiy)
>‘:{ 1 + 1 } _1 e
Eyv—Epatotib E—Ep c—w—ib 24 {2n)* Epllpyy
' 1 1

U~ o) —f Epy { e} @2.10)

i.e., the pola.nzatmn operator of an ideal semiconductor.
Here Ej, = (Ep + AHYE (B (Ep) = {exp(Ep/T) + 1} !is the
Fermi dlstrlbutmn function.,

E,E,  tutid

As A® — 0 the second term in (2.10} tends to zero,
while the first gives the usual polarization operator of
the electron gas. On the other hand, for T — 0 but A®
# 0, the first term in (2,10) vanishes, so that

a'p  EEprq—Erbpeq—4A°

H,e(qm)-— TE Ebos (2.11)
X{ E,+E,,i+m+£6 * E,+E,:—m—i6}'
The dielectric function is
elgo) =1+ %H(qm)-(em(qm);, (2,12}
where
£.0(00) =14 [T u(q0) (2.13)

is the dieleciric function of the ideal semiconductor.

We shall consider first the case w = 0, For vpq
<. |A| we obtain from (2,11)

_vie mp @ v (2.14)
Lela0) == i ™ e 1847
so that '
ear(90) =1+, %/ 184 =1 +0,/64°, (2.15)
where «° = 4mppe®/r is the square of the inverse Debye

screening length and w; = 47ne%m is the square of the
plasma frequency (n is the total electron density).

On the other hand, for vpq 2> |A]| it follows from
(2.10)—(2.11) that

a2 (g0 =map s/ n* =n’/ dme®, {2.16)

s0 that

e (D) =1+u%g?, (2.17)

i.e., we have the usual Debye screening,

We shall use the simplest interpolation from (2.15) to
(2.17);

2

£a{q0) =1+ (2.18)

g +184% v

Then for our model of a disordered system we obtain

e(qO}—Idte-‘eu-(QO)-i— 1&4*‘“‘ p(jgj,)m.( "'9') (2.19)

1847
where Ei{(—x) is the integral exponential function, For
vpa & |Al we use the asymptotic form

Ei{~x} = —e*/x

Tab s

and obtain (2,17). For vpq < |A| we use

Ei{—z} ~ Inz,
E—eil
so that
oy UP2K2 D’Rq’ 2 2
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Correspondingly, the effective Coulomb interaction
takes the form

T {q0) =4na¥/q*, (2.21)
. B I vy’
i /(1 1847 " TEar ) (2.22)

which formally resembles the well-known "zero-charge"
situation in field theory. Behavior of the type
(2.20)—(2,22) has been obtained recently in a treatment
of the so-called zero-gap semiconductors''®

We turn to the analysis of the case w # 0, vpg << |A|,
From (2,11} we have

A - nyq mps A
e Hl.¢ (qu) = — 1 f o T (223)
qu mPv A?
Im M (gu}= J ENW
x{-s ?—(§P=+A=)'*]—.5[2—+(§,,=+A?)'*']}. (2.24)

We first consider the real part of the dielectriec fune-
tion. From (2,23) we obtain

net At 1
Ree (o) =1 +i_f .
m

2 m ® Ay A (2.25)

For w — 0 (w <& 2]A]}, (2.15) follows naturally from this,
For w 3 2|A| we obtain the plasma limit:

Re eyilo)=1—w, o’ [2.26}
We shall use the simplest approximation:
w® w,t w?
Reea bA’ (1_2?)"(,)_39(23?_1)' (2.27)
Then, from (2.12),
@t . w? o aan
Ree(w)=1-goki{ - 7r )= Tit—eish (2.8)

From this, for w >» 2]A|, the plasma limit (2.26) fol-
lows. For w << 2|A| we obtain, analogously to (2,21),

H
Ree(wm)=1— 2—ln

64 (2.29)

i1}
Th

We emphasize that the qualitative behavior of Re €(w)
turns out to be practically independent of the method of
interpolation in the formulas of the type (2.19) and (2.27).
We can combine (2,20) and (2.29) by writing a single ex-
pression, valid with logarithmic accuracy:

max{w®; vigth
44* ’

This result is valid only for w <€ 2|A|, vpa < |Aj, The
interpolation formula (2.28) describes the entire fre-
quency interval. One can easily convince oneself that
Re €(w) given by (2.28) has no zeros other than the
plasma zero, which arises in the limit w > 2|A],

2.30)

The behavior of the imaginary part of the dielectric
function is of special interest, since it determines, in
particular, the optical absorption in the system, The
absorption is determined by the real part of the conduc-
tivity, which is related to Im e{w) as follows:

Be ¢{w)=0 Im e{w)/4n.

From (2.11) and (2.12) we obtain

(2.31)
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%5

# net ¢ ¢
Ime(w}= -4—7‘_‘[ dl e t__[nd'é» e reds)®

Aol

—gereant] - o] T rrean ]}

onet 14| s L
=2 —— b
1 (MEJ;&A:_;).-’,
_ @y Al o w® d )
~+(2) ool - M = e | - (2.32)
Correspondingly,
ne' Al w? wt d C L @
Ren(o)=r “p{_rw }{tw _'Eta_} Bl o L-. '
(2.33)
We have the following asymptotic behavior for
w = 2)Al:
2 A ]
Ime()=a(=2) (=), (2.34)
A ]
Rea(m)z—n(T)‘ (2.35)
For w € 2|A|,
Im & (o) 2n0,64%, (2.36)
net
Beﬂ(ﬁj)z?ﬂ b’Az+0 for w=+{, (2.37)

The static conductivity in our approximation vanishes,
indicating a particular type of Bragg electron-localiza-
tion. Analogously, the static conductivity of the ideal
semiconductor at T = 0 equals zero, We have obtained
the analog of the usual interband absorption, In addition
(2.36) shows that our model describes a substance in-
termediate between a metal and an insulator: in a metal
Im €{w) = 1/, and in an insulator Im €(w) = 0 for w = 0.
In our case, Im e{w) has a finite discontinuity at w = 0
(Im €{w) = —Im €(-w)).

It should be noted that, generally speaking, in view of
the fact that the entire treatment is invalid (in the sense
of the first of the conditions (1.14)) near the center of
the pseudo-gap, when ¢ ~ £_ ~ 0, our formulas are not
valid in the region of low frequencies. Therefore, the
calculation performed for the polarization operator is
valid, clearly, only in the region of sufficiently high fre-
quencies:

W F ey =0/ R, {2.38)

where y and R, are defined in (1.14). For Rc 20a, we
are concerned w1th irequencies greater than or of the
order of (1/4)—(1/8) of the width of the pseudo-gap. The
condition (2.38) has a clear meaning—in the characteris-
tie time of variation of the external field the electron
moves over a distance less than R;. Naturally. allow-
ance for the finite temperature will also change the
asymptotic behavior of €({gw) for small q and w, because
of the appearance of excited carriers in the "upper
band".

In conclusion, we note that the model ¢onsidered and
all the results obtained above can be used in the analysis
of the properties of one-dimensional systems (of the
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TTF-TCNQ type) undergoing a Peierls structural tran-
sition, since the strong fluctuations of the order param-
eter in the one-dimensional case make such systems
similar in a certain sense to "liquid semiconductors" [*%],
Inasmuch as Ry, in this case can reach hundreds of inter-
atomie spacings, and the temperatures are sufficiently
low, the region of applicability of the theory is substan-
tially broadened.

The author expresses his deep gratitude to L. V.
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Quasi-one-dimensional systems undergoing a Peierls transition
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A model of a quasi-one-dimensional system undergoing a Peierls structural transition is analyzed on the
basis of the Ginzburg— Landau one-dimensional model, The electronic-state density with a pseudogap
{s derived for a strictly one-dimensional system, in which there is no true transition, The pseudogap
arises because of fluctuations in the short-range order corresponding to a Peierls lattice distortion. The
dielectric propertics of the system turn out to occupy an intermediate position between those of metals
and dielectrics, An analysis is also made of the role of fluctuations below the temperature of the true
transition, which is stabilized in a three=-dimensional system. These fluctuations lead to the formation
of a pseudogap in the state density, so that measurements of the electronic characteristics of the system

cannot reveal the point at which the true transition occurs,

Quasi-one-dimensional systems having a metallic conduc-
tivity have recently been the object of considerable experi-
mental work.!»? Study of erystals based on TCNQand plat-
inum complexes [of the type K;Pt(CN);Brg 333H,0] has
spurred interest inthe familiar Peierls arguments regard-
ing the instability of a one-dimensional metal with respect
to a change in the lattice constant.” According to x-ray
structural®’ and neutron-diffraction® data, a Peierls transi-
tion actually occurs in the compound K;Pt(CN)yBry, 333H,0,
so that at temperatures T € 80°K the initial lattice con-
stant is increased by a factor of 6, while at higher tem-
peratures there is a pronounced softening of the frequency
of phonons having a quasimomentum =~ 2py (p is the Fermi
momentum of the electrons). It is also highly probable
that a Peierls transition has been observed in the com-
pound’ TFF—TCNQ, although as yet there is no directevi-
dence for a doubling of the lattice constant in this system.

Below we describe a model for systems of this type
under conditions such that the correlation length for the
fluctuations in the order parameter corresponding to the
deformation of the lattice with the new lattice constant is
much longer than the interatomic distance. We analyze
the one-electron spectrum and the state density of the
system. We then turn to the dielectric constant corre-
sponding to the reaction to an electric field oriented par-
allel to the metallic chains, and we analyze the conductiv-
ity along the chains at high frequencies. The properties
of this system turn out to occupy an intermediate position
between typical metallic and typical semiconducting prop-
erties, implying that there are certain unique features in
quasi-one-dimensional systems in which the fluctuations
of the order parameter near a second-order phase tran-
sition are extremely important.

We begin from the Hamiltonian
\ 1
Hom D tyata+ Dottt 75 O feshosts g H k), @)
P q P

where tEp is the free-electron energy, reckoned from the
Fermi level; wq is the phonon spectrum; gp corresponds
to the electron—phonon interaction; and ap and by are the
electron and phonon annihilation operators. Theory has
already been worked out® 1 for a Peierls transition in the
self-consistent-field approximation in a strictly one-di-
mensional system; it is also known!! that fluctuations of
the self-consistent field in a one-dimensional system are
extremely important and rule out the possibility of phase
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transitions altogether in a strictly one-dimensional sys-
tem. Account of the three-dimensional nature of a real
system can help stabilize the true transition (or suppress
fluctuations). We are essentially adopting the Peierls-
transition model proposed by Lee et al.,'? which is based
on the one-dimensional Ginzburg—Landau model, which
has been analyzed in detail.!® Although there is no true
transition according to this model, the correlation radius
for short-range order becomes macroscopic at a certain
temperature Tp ~ 1/4T¢ (T is the transition temperature
in the self-consistent-field approximation). We are in-
terested in the temperature range T ~ Tp, in which this
radius is quite large. If the true (three-dimensional) tran-
sition is stabilized at a certain temperature, i.e., if long-
range order appears, the analysis must be modified. How-
ever, fluctuations are also important in the neighborhood
of the true transition. The corresponding calculations are
given in the Appendix.

Instead of the Ginzburg—Landau model we could adopt
an interaction having a soft phonon mode near the transi-
tion puint,“ but in this case we would have to use specific
models for the soft mode, and the range of applicability of
these models is unclear. For the problem under consid-
eration here the Landau free energy is'?

F (¥g) =a (T, 20| ¥ !
45T, 200 | Yo [+ (7. 200) (2 — 2201 | 1, @)
where the order parameter ¥q = gQ (bQ +bZq) is propor-

tional to the Pierles lattice deformation. The expansion
coefficients are

r—T 2 «
a=Ng—— :I",=-T}~E,.axp{—-&-}.

T, £,
Ty 1
a=N,{a,+{b1ﬁa.,)-r—‘}ﬁ: e = N (T); (3)
T (3) v 14 7%(3)

BN =15 + bo=77 h=Tgz"

where Iny =C is the Euler constant, N; is the free-elec-
tron state density at the Fermi level, Ep is the Fermi en-
ergy, and vp is the Fermi velocity. Account of the elec-
tron-band structure in the strong-coupling approximation
alters the constants in (3) only slightly.'® In this model an

electron is scattered in the static field of random fluctua-
tions of the order parameter ¥q. The simplest eigenener-
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gy part of the one-electron Green's function is %1 [g, =
(2n + 1)7T]

d 1
3 (e =0 | 5 @O @)

— i’
where S(8) is the static structural factor for fluctuations
of the order parameter, proportional to the Fourier trans-
form of the two-point correlation function for the order
parameter. For this model we have!®!?

& &1 (7) (1) )
23 Q=(g—Zr e T O F R (D)’

where ¢(T) is the correlation length for fluctuations in the
order parameter (the short-range correlation radius). At
T ~ 1/4Te the length £{T) increases exponentially with de-
creasing temperature.'* Now assuming an electron having
p ~ + pg, we find

I (20, P) =<4 [ieq + §p + tv 71 (T)]71 == A2 (e, +-Ep) 7y (6)
At =Gy, (7)

where we have used Ep-2p, = “Ep for the one-dimensional
system.

The approximate equality in (6) holds [the corrections
for the finite width of the S(Q) peak are small] under the
conditions!’

E(M>lp—rol™

UFE"l (T}@.?.r.?'. (8)

The first condition in (8) imposes a restriction on our
analysis in the immediate vicinity of the Fermi level T ~
1/4TC, where ¢(T) is large, the corresponding energy range
is extremely narrow and of no particular interest. Accord-
ing to the data of ref. 5, we have ¢a (T = 300°K) > 10%, where
a is the Pt—Ptdistance in the compound K;Pt(CN)Bry 333H,0.
Although the estimates of ref. 12 are less favorable, the
values of ¢(T) near the "transition" are undoubtedly very
large and can reach hundreds of interatomic distances.

Using approximation (6) in the higher-order diagrams,
we can sum all!) the important diagrams by the perturba-
tion-theory method proposed in ref. 17. Scalapino et al,»
analyzed the contribution of only the simplest diagram in
(6), but the higher-order approximations are extremely
important. Carrying out the summation, we find'" the one-
electron Green's function to be

(==]

ey + 6,
G (tn, p)= S e e — —tae = et (tm P, Py (9)
0

where

it &y

Gusltw Py )= T3 — B (10)

i= the normal Green's function of an ideal Peierls insula-

tor having an energy gap | Al. It is easy to say that Eq. (9)

is the Green's function of an electron in an external field

W cos 2pgx whose amplitude "fluctuates™ with a distribution
2

P{W}l=|W |/A2.c-."(W ) The integral in (9} denotes an

averaging over these fluctuations.

After the standard analytic continuation to the real
[requencies, we find the electronic-state density to be
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Fig. 1. Electronic density.
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where Erfi x = S dx®*. Figure 1 shows this state density,

(1]
which contains a typical pseudogap having a width on the
order of |A| ~ (y%)/? The temperature dependence of

(%% was calculated in ref. 13; the asymptotic behavior is

N (e) 62
le| = o; Tﬂﬂ.‘:Zﬁ—%G as |e|—=0.

N (¢)
N, -1 as

The vanishing of the state density in the middle of the
pseudogap is nonphysical; our analysis is not valid inthe im-
mediate vicinity of the Fermi level because of restriction
(8). Accordingly, in contrast with the situation in ref. 13,
the summation of all the important diagrams leads to the
existence of a pseudogap not only at T > 1/4T, but also at
T < 1/4Te. A true gap does not arise even at low temper-
atures in the "dielectric" phase.z) As is shown in the Ap-
pendix, this result holds even in the case of a true phase
transition (at T £ Tg), so that, strictly speaking, measure-
ments of the electronic characteristics of the system can-
not reveal the transition point.

We turn now to the reaction of the system to a longi-
tudinal electric field directed parallel to the metallic
chains. A variation ¢ o (@ is the wave vector along the
chain and w is the frequency of the external field) causes
a variation in the one-electron Green's function:

ot P) _ e, p)T(e, po w2+ )G (e+w, p+a),
es

(12)
where T'(g, p, € + w, p + q) is the corresponding vertex
part. In this model the variational derivative in (12) can
be calculated immediately;!" we find
3G (e, p)
P
—eGale, P, P—200) Gy (st p—2p+ 0, P49,

=—e{Grale, p, P)Gesle+o, PHa, P19

(13)

where e is the electronic charge, G,? (g, p, p) is given in
(10), and
A

Gy ity By P —2py) = (ie,)® — Eﬂi A2

(14)
is the anomalous Green's function of a Peierls dielectric,
which describes the flipping p — p—2p;. Accordingly, av-
erapges over hinary products of anomalous Green's func-
tions arise in the theory, while the anomalous functions
themselves do not, in correspondence with the absence of
long-range order in the system.

The polarization operator is (wm = 2emT)

I (qog) = — | dte~527 D Voo X
0 L



x| 4, (Gt b PG leatom p+a P+ (15)

—@

+ G:a! (e, P P — 2pg) G:a’ (tat om P+9, P— 20+ 9}} = <Hu‘ (g, '“m)>:.

where [a2(q, wm) is the polarization operator of a Peierls
dielectric, and p is the density of the metallic chains in a
eross section of the sample (here we are interested inthe
response of a unit volume of the system). The analysis
continues as in ref. 17. The dielectric constant along the
metallic chains is

hme?
elg, w)=1- PE] IT {qu) = <3:p (?"">E, (16}
where
4mel
() =1+ —5- T (a, ©) )

is the dielectric constant of a Peierls dielectric.

We consider first the case w = 0; then for this model
we find!?
pial pla? vlg?

e (g, D]:ti“_ﬁ';;_s“PWEi(_'_g%)' (18)
where n? = B-;erop is the inverse square of the Debye
screening radius, and Ei(—x) is the integral exponential
function. Hence, with vpg> |A|, we find e(g, 0)= 1 +
(»%/q%. For vpdq < | Al we find

O e s (19)

(g, U):-‘:‘l—vwln‘fw.

This £ (g, 0) behavior occupies an intermediate posi-
tion between the behavior characteristic of metals and that
characteristic of dielectrics.

Turning now to the case w = 0, vpq < | A|, we find!!

w? 2 Wl _m’
Re((Iu)ki—‘E“%Ei(—:&—!)—w—:{‘!—e E}, (20)

where w%, - sz_Hz is the square of the plasma frequency.

In the case w > 2|A| we have Re ¢ (W)=~ 1-—(w§)/w2); in
the case w <« 2| A | we have

w? Wt .
Res[m]%i—ﬁ—;ﬁlﬂ‘[ﬁ?. (21)

Of particular interest is the behavior ofthe imaginary
part of the dielectric constant, since it governsthe absorp-
tion of electromagnetic energy in the system. The real
part of the conductivity is

Rea () == Tm s (). (22)

By analogy with ref. 17 we have

w?
ar
A
Tm ¢ (o :%«;;Jm—,lg dre=t
b ar—t
caplbly B2 oo
=RupTa ¢ FETIr 7Y Rt Ml T Y ) (23)

Asymptotically we find

Wy 2 AN
Im:{w)ﬂ:ﬂ(r) (‘;_,_) ’
A nwi

A (24)
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w
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Fig. 2. Qualitative behavior of the imaginary part of the dielectric con-
stant (a) and of the real part of the conductvity (b) as functions of the
frequency of the external field.

1 w2141
b

forw » 2| A |; forw « 2| A |, we find

L] ‘*‘:
T {u) =gy 2o

(25)
1 [ @p\?
Raa(w)%-ﬁ;(]—) w—>0 for w—0.

Accordingly, the static conductivity vanishes in our
approximation. Analogously, the static conductivity of a
Peierls dielectric vanishes at zero temperature. Equa-
tion (23) describes a sort of interband absorption (Fig. 2),
having a peak at w ~ 2] A |. We also see that our model
describes a substance whose properties are intermediate
between those of metals and dielectrics: In a metal we
would have Im ¢ (w) ~ 1/w as w —0, while in a dielectric
we would have Im £ (w) = 0 atw = 0. In our case the quar
tity Im & (w) has a finite discontinuity at w = 0:

(Ime (v) = —Ilm e (—w)).

Strictly speaking, these equations do not hold at low

frequencies, since the entire analysis breaks down near

the Fermi level, according to the first condition in (8).
Our calculation of the polarization operator holds only for

w> v L (T). (26)

This condition has a clear meaning: Over the scale
time for a change in the external field an electron moves
a distance shorter than ¢ (T).

A Peierls system thus apparently represents a sub-
stance whose properties occupy an intermediate position
between those of metals and dielectrics. An experimenta
search for absorption peaks at frequencies corresponding
to the width of the pseudogap would be very interesting.
The possible anomalous behavior of £ (w) according to (2]
and (25) at w £ 2| A| emphasizes the importance of ex-
periments in the rf range. No reliable experimental data
are presently available.

In conclusion the author thanks L. V. Keldysh, L. N
Bulaevskii, and D. I. Khomskii for many discussions and
comments.

APPENDIX

A phase transition cannot occur in a strictly one-di-
mensional system because of the disruptive influence of
fluctuations.!' In particular, the self-consistent-field ap
proximation does not have a range of applicability becaus
of the large width of the critical region, AT/ Te ~ 1 (ref.
13). However, since real systems are three-dimensiona
in nature, fluctuations can be suppressed in some manne
(e.g., the fluctuation amplitude can be limited by a long-
range Coulomb interaction between electrons of neighbor



ing chains). Then a true phase transition is possible inthe
in the system at T = Te. Apparently it is this case which
oceurs in K;Pt(CN) Bry 333H,0 (ref. 4), where the true
(three-dimensional) transition stabilizes at Te¢ € 80°K.
Then, at T < Tg, a long-range order arises, and the sys-
tem can be described satisfactorily in the self-consistent-
field approximation. However, the fluctuations of the or-
der parameter, even though suppressed, can turn out to be
important even at T < Tq. In this case we have!®

Yo =2+ By, (A.1)
where
e =T a T<T
a \' %@y T A o
t T T, at =0

is the equilibrium value of the order parameter, and 8Q
is its fluctuation. Here A plays the role ofacoherent field,
which transmits a momentum 2p, and which leads to Bragg
scattering of electrons by the boundaries of the new Bril-
louin zone, and 63Q is the random field. In the diagram
technique we find two types of interaction lines: lines of the
coherent field A, which transmita momentum 2p, and lines
of the random field, which are associated with the corre-
lator {6§’JQ6¢' _Q) = (5;{.-2)8((3). Here S(Q) is again given by
(5) (ref. 13). The equations for (%*) and ¢(T) derived on
the basis of the self-consistent-field approximation!® are
now, generally speaking, inapplicable (because ofthe three-
dimensional nature of the critical fluctuations), so that
(6¢*yand ¢(T) are treated below as parameters of the the-
ory. Near the transition point (T € T¢) the quantity £(T)
inereases, so that we can again use an approximation like
that in (6)-(8). Then the random-field lines also trans-
mit a momentum 2p,. In the expansion of the one-elec-
tron Green's function a sequence of alternating Green's
functions {iej — £p }71 and {ig; + £p}_1 dominates. In per-
turbation theory of order n there are 2n vertices, of
which 2k are connected by random-field lines of the fluc-
tuations, and with which factors 6% = (6¢?) are associ-
ated; at 2(n — k) vertices, single coherent-scattering lines
arise, each of which is associated with a factor A. Then
the expansion of the Green's function is

Clnt)=3 3 B, &) (A.3)
n=0 k=0
where
B}'— [A'4}

n!
|4 k) [m:h BA[ R (g —Ep) ™ (1ag 65} (ber — {511

Actually, an electronic line has 2k vertices, to which
random-field lines are attached; of these vertices, khave
an outgoing line, which goes to the remaining k vertices
inany of k! methods. Here [n!/k!(n—k)!]? is the num-
ber of arrangements of single coherent-field lines at any
2(n — k) vertices taken from the total of 2n vertices; the
circumstance that the momentum 2p, "enters" half of
these vertices and "exits" from the other half is taken
into account. We use the identity (1 + x)™(1 + y)P =

b s kakZCEiCE?, where we have set
=0

1A A
=3 =|Le¥g i y=2%
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where

=

Sdiﬁ..‘zSdﬂetﬁlmt...:—idit”tlS o...
(1] L]

We have obtained a normal Green's function with a
gap which "fluctuates™ around A as given by Egs. (A.2).
The equation for the anomalous Green's function is obvi-
ous. As A —0, Eq. (A.5) converts into Eq. (9), and in the
case 6A —0 we find (10), i.e., an ideal Peierls dielectric.
Accordingly, the analysis above is valid for the case T 5
Te¢. Obviously, even in the case T ¢ T, the fluctuations
are extremely important. For the state density we have

AP
N(e) e g‘d%‘l‘l’a[ti_mli—h ) ]
L2

= - =l A,
Ny n V ‘!_5111+:-Er_‘;\_|2 (A.6)

Omitting the lengthy details, we state that as 6A — 0
(i.e., as T —0) we would have

l=] >4,

(A.T)

el
N (0) _’[ e
He 0 for |e|< 8,
i.e., we find an ideal dielectric with a gap 2A. When §A is
finite we always have N(g)/N;y = 0 for | £| < A.

For example, as | | = 0 we would have

o o)

(A.8)

xz

where Erfec x =2 /yn gdxe‘xz. With | €] = A we find

N(le|= ANy~ Ja/Tsal.

Accordingly, we again find a state density having a
pseudogap. In the case |6A| « A the state density in the
energy gap is of course small, but this is not generally
true in the case T £ Ty, We see that fluctuations of the
order parameter are extremely important even in the case
of a true phase transition. Near the transition, the state
density has a pseudogap at both T > T, and T # Tg. In this
sense the transition point is not defined and cannot be de-
termined from measurements of electronic characteristics
of the system. In terms of their effects, the fluctuations
turn out to be analogous to an internal disorder of the sys-
tem, analyzed in ref. 18: They suppress the true transi-
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tion and "smear" its effects on the electronic properties.

Note added in proof. D.B, Tanner recently
reported [ Phys. Rev. Lett., 32,1303 (1974)] experimental
data on IR absorption in TTF = TCNQ at 65 and 320°K. The
results are qualitatively analogous to Fig. 2b, with Re o
=2 |Al) ~ 5-10%-10% "'+ cm . Extrapolating (25)to
w = 2|A| and using the experimental values 2|A | = 0.14
eV, and wp, = 1.2 eV, we find Re ¢ (@ -2lah~8-10 07t

em-1.

) We assume that all the higher-order correlators for the order parameter
can be factored into binary correlators; this procedure is equivalent to
taking only Gaussian fluctuations inte account, '

%) pccount of non-Gaussian fluctuations could hardly have a qualitative ef-
fect on this result. The gap can appear only in the presence of a true long-
range order.
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It is shown that the most probable spatial behavior of the cme-electror_l Green function in the region of
localized states mear the mobility edge in the Anderson maxdel coincides with the spatial behavior of the
correlation function in the critical region of a second-order phase transition with a zero-component order

parameter.

PACS numbers: 71.50. 4+t

Ideas about the localization of electrons in a random
field lie at the basis of the modern theory of disordered
systems.™? The most highly developed scheme for
treating the problem of localization is the well-known
Anderson model®* describing an electron propagating
in a regular lattice with random energy levels at the
different sites, Most of the papers on the Anderson
model are devoted {0 proving the localization of elec-
tron states when the ratio of the parameter W describ-
ing the spread of levels to the amplitude V of an elec-
tron transition from site to site is sufficiently large, to
determining the critical ratio W,/V, and also to deter-
mining the mobility edges E,, i.e., the critical elec-
tron energies separating the regions of localized and
delocalized states in the band, (424 It is of great in-
terest to study the character of the electron states near
the mobility edge, since the corresponding characteris-

1008 Sov. Phys. JETP, Vol. 43, No. 5, May 1976

tics essentially determine the kinetics and other elec-
tronic properties of disordered systems. (51 Attempts
in this direction have been undertaken in papers by
Anderson, Edwards, and Freed.!®¢7

There exist a number of cbvious analogies between
the problem of the localization of an electron near the
mobility edge and the problem of describing the critical
phenomena near a second-order phase-transition point.
For example, as the electron energy approaches the
mobility edge in the region of localized states the local-
ization length of the electron wavefunction diverges,
just as the correlation length of fluctuations at a phase-
transition point diverges. This prompts the thought that
the spatial behavior of electron states near the mobility
edge can be described by the (scaling) dependences that
are characteristic for the phase-transition problem,
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wi-th critical indices determined only by the dimension-
ality of space and of the corresponding order param-
eter, 18!

In the present paper, using the method of Anderson,m

we show that the most probable spatial behavior of the

one-electron Green function at the mobility edge coin-

cides with the spatial behavior of the correlation func-

tion for the problem of critical phenomena with a zero-
component order parameter. % 10

The Hamiltonian of the Anderson model has the
formt31

H= ; Ej*a; + Z Viaita;.
i

Here, a; and a; are the electron creation and annihila-
tion operators at the lattice site ¢, and E, are the ran-
dom energy levels at the sites, distributed in accor-
dance with the law

1)

1/W, |El<'/.W

0, |Ej| >, W )

pE)={
The transition amplitude V,, from site to site is as-
sumed to be nonzero, and equal to a constant V, for
transitions between nearest neighbors only.

The character of the electron states is determined by
the one-electron Green function

a1 g ),

which is the transition amplitude from the site at the
point R, to the site at the point R; for an electron with
energy E. A renormalized perturbation—theory series
in V is constructed for this Green function. As Ander-
son has shown, *?! the localization problem reduces to
investigating the convergence of this series, where, in
view of the random character of the quantities E;, the
convergence is understood in the sense of convergence
with a certain probability. >4’ In the region of localized
states the series converges with probability unity, and
the condition for convergence determines the critical
ratio W,/V or the position of the localization edge in
the band.

3)

The most probable behavior of the Green function can

be represented in the form® 3’
C 2eV\Y gV
GulE) s~ Y ZeRRY) (S5) (-0, K), @)

N=0

where Zy(R, —R;) is the number of paths of N steps,
without intersections, linking site j with site ¢, and ¥
is a slowly varying (logarithmic) function of the ratio
V/W and of the so-called connectivity constant K of the
lattice. ®®? For simplicity we consider below an Ander-
son transition in the center of the band (at E=0). In
the general case, in (4) we must replace 2V/W by
2Vp(E), where p(E) is the density of electron states. 13!
The critical bandwidth W, corresponding to the thresh-
old of localization is determined by the equation®’

2V v
W:KW (WC’K)‘

1= 5)
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For E #0 a condition of the type (5) was discussed in‘"¥

Thus, the spatial behavior of the Green function is
entirely determined by the statistics of nonintersecting
paths, through the function Zy(R; ~R;). Anderson®!
and Thouless'!!’ used a Z,(R) obtained as the resuit of
machine experiments. We shall make use of the ana-
lytic theory of de Gennes and des Cloizeaux. '’ Using
Wilson’s e-expansion method, ‘®' de Gennes and des
Cloizeaux considered the statistics of random walks
without intersections and showed that the function Z,(R)
of interest to us is determined, in a space of d dimen-
sions, by the inverse Laplace transform

e+ioo

d:

=i

e¥*Gy (s, R) 6)

of the unrenormalized Green function Gy(s,R) of a
Euclidian field theory (Landau-Ginzburg phase-transi-
tion theory) with Lagrangian of the form

2o=13 (v0r+mion +La (Y 01)

i

(7

et

where 7 is the number of components of the field & and
is equal to zero in the problem under consideration.
(The condition =0 eliminates the “superfluous” dia-
grams with loops, which are absent in the nonintersect-
ing random-walk problem,) The dimensionless param-
eter s is related to the unrenormalized mass: s =m?2a?,
where a is a characteristic length of the order of the
lattice constant. The phase transition correspondsm
to the vanishing of the renormalized mass m of the field
theory (7) as s—s,:

8)

m~a='(s—s.) ",
where v is the critical index of the correlation length.

In (6) we must take ¢>s,. The parameter s, is re-
lated to the connectivity of the lattice!® 10,121,

K=exp (sc). (9)

Using (6) and (3), we obtain

Gy~ 2 cTW%exp{N(s—sc)}Gu(s, R—R) (%K) x\p“‘(%,x)
eplm

ds - W.
~ | -6t R.-—R,)Zoxp{N(s—sg)+Nln W}

c=ix Nl

=Gy (ln%+sc; Ri—Rj) 10)
which is the main result, showing that the most prob-
able spatial behavior of the one-electron Green function
of the Anderson model in the region of localized states
near the mobility edge (W2 W,) coincides with the be-
havior of the correlation function of the phase-transi-
tion theory (7) with =0, and W=W, corresponds to the
transition point.

For W2 W, the Green function falls off exponentially
with distancef®’:;

Gy ~ exp{—%} i IRI=|R~R;|>R,.,

loe

1)
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where

Rigc~m='~a I W-w.

W, | K (12)

plays the role of the localization length, Analogously,
for E#0, but for ExE,,

E-E |~
E,

Rm'-a'

In the framework of the Wilson e-expansion (d =4 - ¢)
for » =0, we have

1 g 15 ,

v=2—{1+8—+2563+...}z0.592 for  em=1, (13)
in excellent agreement with Anderson’s result »=0,6, ‘"
obtained from a machine analysis of the statistics of

nonintersecting paths,

For W=W, we have

Gy R|-t-2bm (14)
where
;3
nm{ie el 008 for oot (15)

The small value of the critical index 7 implies that the

localization assumed by Thouless®!? (who evidently
used unreliable numerical values, obtained in the ma-
chine analysis, for the critical indices in the pre-ex-
ponential factor in Z,(R)), with a power-law decay of
the wavefunctions, is impossible in the given model.
In the analog of formula (14) in™!?, the exponent is
equal to 17/9, which falls in the region of possible val-
ues (from § to §, according to Thouless) of the local-

. ization exponent, In our case, d-2+7=1,032 for
d=3.

Naturally, the asymptotic formulas (11) and (14)
given above can also be obtained by direct use of the
asymptotic formulas for Z,(R) obtained by des
Cloizeanx, '

The analysis carried out is inapplicable in the one-
dimensional case, since in the model under considera-
tion, with nearest-neighbor interaction, Anderson’s re-
normalized series for the electron Green function con-
tains only two terms, corresponding to the two possible
nonintersecting paths, ***? The question of localization
reduces to an investigation of the convergence of a cer-
tain continued fraction, and the statistics of noninter-
secting paths do not play a special role, Therefore, a
one-dimensional model of a phase transition, of the
Landau-Ginzburg type, evidently has no direct relation
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to the problem of the localization of electrons in a one-
dimensional disordered system. The same conclusion
is obtained from other arguments in a recent paper by

Thouless, '#?

In conelusion, we emphasize that the most probable
electron Green function near the mobility edge was con-
sidered above.  In papers by Edwards®®! and Freed!™ an
analogy has been noted between the problem of nonin-
tersecting random walks and the problem of calculating
the one-electron Green function averaged over random
configurations of impurities. Starting from this anal-
ogy, it is not difficult to convince oneseld that the dia-
grammatic series of Edwards for this Green function,*'®!
in the Gaussian approximation for the statistics of the
impurities, is generated by the diagrammatic series for
Gy(s) of the problem (7) with » =0, after the appropriate
analytic continuation in the parameters of the Lagrang-
ian (see also the paper''*’), The important point here,
however, is that the sign of the interaction constant g,
changes, so that the correspondence with the theory of
phase transitions is evidently lost,  Physically, this is
connected with the fact that random walks without in-
tersections are equivalent to the thermodynamics of a
polymer chain with repulsion between the links, where-
as the thermodynamics of an electron in a system of
impurities is equivalent to the thermodynamics of a
polymer with attraction.®! The question of the possi-
bility of applying Wilson’s e-expansion in this problem
remains open,

The author expresses his deep gratitude to L. V.
Keldysh and Yu. A, Izyumov for discussion of a wide -
range of questions associated with this work.
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Oscillations of the phase of the order parameter are considered in quasi-one-dimensional systems that

undergo a Peierls structural transition. Their spectrum is calculated with allowance for the effects of the

Coulomb interaction of the charge-density wave (CDW) on different chains and within a single chain. It is

shown that the interaction of the CDW with charged impurities leads to pinning of the wave. Nonlinear

excitations of CDW of the soliton type are considered. CDW interaction on neighboring chains leads to a
~ binding of solitons and antisolitons into pairs that play the role of defects in the CDW structure.

PACS numbers: 64.70. —p

Recent years have seen an increased interest in the
study of the properties of quasi-one-dimensional systems,
particularly systems that undergo a Peierls structural
transition.! This interest is stimulated by the experimen-
tal observation of a Peierls transition in compounds of the
type K,Pt(CN);Br, ,3H,0(KCP) (Refs. 2-4) and TTF—TCNQ
(Refs. 5 and 6), and also the possibility of ohserving
anomalous conductivity connected with displacement of
the charge-density wave (CDW) that oceurs in the transi-
tion.”™® This latter property of such systems turns out to
be closely connected with collective excitations of CDW
(Refs. 9 and 10) which are being actively studied experi-
mentally.!!712

The present paper is devoted to a consideration of

607 Sov, Phys. Solid State, Vol. 19. Na_ 4 Anril 1977

the spectrum of the collective excitations of CDW in the
low-temperature region, on the basis of a generalized
semiphenomenological model proposed in Refs. 13 and 14,
The model is generalized from the pure one-dimensional
case to include the quasi-one-dimensional case, and the
influence of the impurities and of commensurability ef-
fects is investigated. The possible existence of new
modes of the collective-excitation spectrum of the soliton
type in a purely one-dimensional model is considered,
with a qualitative allowance for three-dimensional and
Coulomb effects.

The model is quite general, and the main results
may be applicable to CDW that are not of the Peierls

type.
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1. FORMULATION OF THE MODEL AND EXCITATION
SPECTRUM IN THE LINEAR APPROXIMATION

We consider a quasi-one-dimensional system at tem-
peratures much lower than the Peierls-transition point
[Tp ~120K for KCP (Ref. 4), Tp = 54K for TTF —TCNQ
(Ref. 6)]. In each chain there exists a nonzero order pa-
rameter of the CDW,

Re ¥ (z) = Re (A exp [iQz + ®]), (1)

where A is the amplitude of the order parameter and is
connected with the gap in the spectrum of the single-elec-
tron excitations of the Peierls phase!; & is the phase shift
of the order parameter and determines the position of the
CDW relative to the immobile coordinate system®; Q =
2py, where pf is the Fermi momentum of the electrons
and is connected with their linear density by the relation
pF = (7/2)n.

The collective excitations of the CDW correspond to
the fact that in (1) the amplitude and phase A(xt) and &(xt)
become coordinate and time functions that are different
from the equilibrium values A and &. We consider hence-
forth only excitations of the phase shift of the order pa-
rameter, which can be regarded in first-order approxi-
mation independently of the amplitude oscillations,? at
least at sufficiently low temperatures T < Tp. This ques-
tion was considered in greater detail by Brazovskii and
Dayaloshinskii.!® It will be assumed that &(xt) is a suf-
ficiently smooth function of the coordinate and of the time,

From the form of (1) it is easily seen®! that the de-
pendence of the CDW phase on the time means displace-
ment of the wave along the chain with velocity

{1 00
},1’:—?”"’?“. (2}

Analogously, the presence of a spatial gradient of the
phase means local variation of the Fermi momentum of
the electrons

1 a0
=7 Gz » (3)

and then the excitation of ®(xt) corresponds to a linear
energy density

2 1 nm* 1 fad\ §? é¢ ?
B=Tﬂ;(ap,)’+7m'u.vi=—@'[7(a_¢ +"i‘(‘a? } @

where ng is the linear density of the electrons that move
together with the CDW; m* is the effective mass con-
nected with the motion of the CDW (Refs. 13 and 14); m
is the effective mass of the electron in the chain

f=—— - (5)

The phenomenological parameters ng and m* can be de-
termined from the microscopic theory and depend on the
concrete model whereby the CDW is produced. In the sim-
plest theory of Peierls transitions at T « T, we have® 131

n,==n,
LR, . . (6)
m lmq ?\ma
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where n is the total linear density of the electrons in the
chain, A is the gap in the electron spectrum at T = 0, uj
is the characteristic frequency of the "hare" phonon
(wg~ 0p is the Debye temperature), and A is the dimension-
less constant of the electron—phonon interaction. Usually
m* > m, for example m* = 10°m for KCP (Refs. 11 and
13).

It follows from Refs. 1 and 4 that the effective La-
grangian of a CDW on an isolated chain is

smm e (5 - 1)) 0

The derivation of such a Lagrangian from the microscopl
theory is given in Ref. 10. This leads to the standard
wave equation

il [l
5 5t rrl =0, (8)

which coincides, when account is taken of (2) and (3), with
the hydrodynamic equation of motion™

v m
AL ®

where p is the chemical potential (Fermi energy) of the
electrons, and the factor m/m* determines the fraction
of the CDW mass carried by the electrons. The spectrum
of the CDW phase oscillations under the foregoing as-
sumptions takes the form

e . {l 0)

which corresponds to the Goldstone mode of Lee, Rice,
and Anderson, corresponding to the Frohlich "supercon-
ductivity" in the considered model.’?

Our purpose is to consider the role of various inter-
actions that are not taken into account by the zero-order
Lagrangian (7). These include primarily the interaction
of the CDW on various chains in a quasi-one-dimensional
systems, the role of Coulomb effects in one chain, and in-
teractions with charged impurities.

The Peierls CDW corresponds to modulation of the
density of an electron charge along the chain, in the form’

a
P (x) = ne gz cos (Qz + ®), (11)

so that this chain produces around itself an electrostatic
field with a potential

A
ep(rJ_r)—_—zuem: cos (Qz + @) K, (Qr.). 12

‘where e is the electron charge, Ey is the Fermi energy

of the chain, r, is the radial distance from the chain, and
K¢(x) is a modified Bessel function. Accordingly, in a sys-
tem of chains forming a regular lattice in a plane orthog-

onal to the chains, with a lattice constant r; = b, an elec-



trostatic interaction energy is produced (per unit length
of the system)

1
U=nm’*@'§h§"": cos {‘hn_‘hm)' (13)
w} ‘:m% (41’.‘. ) lzoﬂrf‘} Ko (Qr)l, -i' (14)

where n and m determine the positions of the chains in
the plane lattice, «p is the plasma frequency of the elec-
trons, and ¢, is the dielectric constant of the system in
a direction transverse to the chains. It suffices to take
into account in (13) the nearest-neighbor interaction,
since Ky(Qr ) is exponentially small when Qr, > 1. The
interaction (13), in particular, causes the CDW on the
neighboring chains to be conveniently aligned in such a
way that their phases differ by #, as is indeed observed
experimentally in KCP (Ref. 4).

The Lagrangian of the system now takes the form!)

RS, T
(15)

We consider a linearized variant of the theory, cor-
responding to ép<« 1, by = 7, so that (15) goes over into

P11 (=Y RS EEE P ) RO

no{(mj
(16)

n {m}

where all the &, $,; now denote small deviations from
the equilibrium values. The corresponding equations of
motion take the form

o atd
S N L JEPWY S (17)

(my

We seek the solution in the form

{(g=+q, n-wf)

D, (zt)= Vg o
2 (18)

and obtain the spectrum
w? = 52q? 4 20? {2 — cos gfb — cos g7Tb), (19)

where the lattice of chain is assumed for simplicity to be
quadratic (b is the lattice constant). For q; = 0 we have
again the acoustic spectrum (10). Thus, the interaction
of the chains does not lead to pinning of the CDW.

We now take into account the Coulomb effect in an in-
dividual chain. The phase gradient, according to (3) and
according to the connection between the Fermi momentum
and the electron density, signifies local variation of the
charge density

ad
. (20)

Bk

bg=

which produces a corresponding electric field in the chain.
To take this circumstance into account it is necessary to
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2} 3 Dt 14 con 0, — 04

solve in place of (17) a coupled system of equations of mo-
tion

w.ne 92y (21)

+ e, ey gz '

re, 1
o — &5 + el E

which take into account the action of the electric field with
potential ¢q, defined by a differential-difference Poisson
equation

oy 1 o0 i n.
D [?m‘_z‘,n.,.%_,i]=4,d—;‘z, iy (22)

i=y, x IJ.

The last term in (21) corresponds to replacement of
the chemical potential in (9) by the electrochemical poten-
tial. Here e is the dielectric constant due to electron
transitions through the Peierls gap

w=1+ g T - (23)

In (22), n; are the reciprocal-lattice vectors of the
chains, We seek the solution for & (xt)®,(xt) in the form
(18) and in analogous form for @p(xt). Solving the corre-
sponding secular equation, we obtain the spectrum of the
excitations

q q*
w? = s2g? +._& ; -
@+ ,[thq*b-—wsqrb]
b

+ 2w} [2 — cos ¢1b — cos g¥b],
(24)

where w2 = 47ne?/m*. The Coulomb effects lead to a
finite frequency u'F")'z /tp ™ (3/2)A cuzq, of the phase oscilla-
tions at g, = 0; at g, b ««1 we have

w*?

ol = ﬁ cos? 0  s2g* | wibig?, (25)

where tg6 = q, /q. For q, = (x/b, n/b) we have

ssgsferte)s -

]

The spectrum (24) constitutes a natural generaliza-
tion of the results of Refs. 9 and 14 to the case of quasi-
one-dimensional systems. The displacement of the atoms
in the n-th chain following excitation of small oscillations
of the order-parameter phase shift is proportional to

igz+ig Ln‘iur}

u, ~ exp [[Qz +i -E n - uﬂn*me
¢(M):+I(»;-+ql)n—¢qt (27}

=
ifrri—n
=e b -4 l@“ of
ke

Thus, the phase oscillations with wave vector q =
(4, g, ) correspond to excitation of phonons with wave vec-
tor (@+ q, n/b+ q¥, n/b+ ql), so that the study of the
phonon spectrum at the point (Q, n/b, 7/b) corresponds
to a study of phase oscillations with q = (0, 0, 0). As seen
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from (27), these oscillations correspond to antiparallel
displacements of the atoms in the neighboring chains.'’
Analogously, the phonon spectrum at the point (Q, 0, 0) is
connected with the phase oscillations with g = (0, n/b, 7/b)
corresponding to parallel displacements in the neighboring
chains,

Low-frequency optical phonons were observed in Ref.
12 in KCP at the points (Q, n/b, n/b) and (Q, 0, 0), which
can tentatively be interpreted as connected with oscilla-
tions of the order-parameter phase shift. The weak dis-
persion of these phonons is explained by the gap-like char-
acter of their spectrum (an unjustified comparison with the
acoustic spectrum (10) was made in Ref. 12). At the same
time, the equality of the phonon frequencies observed at
the points (@, /b, 7/b) and (Q, 0, 0) remains unexplained.
We emphasize that the absence of total three-dimensional
ordering in KCP (Ref. 4), which is apparently due to dis-
order effects, can lead to a discernible change of the re-
sults obtained above, which are valid, strictly speaking,
only for a system consisting of one-dimensional chains
of the same type, without the internal disorder inherent
1r.1 systems of the KCP type.

2. EFFECT OF IMPURITIES ON THE CDW EXCITATION
SPECTRUM

Lee, Rice, and Anderson® have advanced arguments
favoring the assumption that the interaction of CDW with
charged impurities converts the acoustic-type phase-
oscillation spectrum (10) into a spectrum with a gap, mean-
ing a pinning of the CDW on the impurities and elimination
of the Frohlich "superconductivity." At the same time, it
was stated in Ref, 16 that the interaction of CDW with ran-
dom impurities does not lead to pinning. There is as yet
no calculation of the spectrum of the phase oscillations of
the CDW with allowance for the interaction with the impur-
ities in any concrete model. We present below such a cal-
culation in the considered semiphenomenological theory.

We consider a system of charges disposed in random
fashion along a chain with CDW, at a distance r, from the
chain. Such a situation is apparently realized in KCP,
where the acceptor atoms (of the Br type) are randomly
arranged in the system along Pt chains.! The impurity
charge density

p{:):Ee‘ﬁ{:—zJ—), (28)
J
where xj are the impurity coordinates, interacts with the

CDW potential (12), so that the interaction energy per unit
length of the system is

1 1
U o= G wlay -, (008 (02, + ), (29)
J
where
w? A
oy =0 ) €14 Ko 070, @0

N is the number of atoms in the chain and v is the number
of conduction electrons per atom.
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We consider again the linearized theory (& < 1). The
Lagrangian of the system takes the form

1 [1700\2 5t foD\? 1
e=mg (3(5) —T(5F) +elmy Qein0z0
J

+ ooy 7 D, 008 0z,08). (31)
J
The equations of motion are given by
9,;; - f'% = wimp % sin Qz; 4 wim%E cos Qz ;0. (32)
4 J
In a system with impurities
® =0 (zt; {z;}) (33)

is the functional of the impurity positions. On the other
hand, the phase shift, as a component of the order param-
eter, is a thermodynamic quantity and must be averaged
over the ensemble of random impurity configurations.
Averaging (32), we obtain

(% — :’-ai:.g) (DY = wimp <% 2 cos Ozj@> .

(34)

This gives rise in natural fashion to a chain of equa-
tions expressed in terms of the Fourier components in
the form

(—ot + 5207} { Py = 0lmp (%r‘ Z cos Qr.c@)w- (35)
(—at+o1gt) (F D cos 0z _f'b/\,'m
J
= wlnp <$- 2 sin Q1 2 c0s Q:;) b(w)b(q)
F ‘
~+ wimp <% Z cos Qz; ‘ cos Q:,'ﬁ>w. (36)

Carrying out in (36) a very simple decoupling in the
impurity correlators, we obtain (at w = 0, q =0)

4
m| i
[ —ot it e g S 10}} (®@gu> =0, (37
where
S @ =77 <E e“’"“"“) (38)
i

is the structure factor of the impurity positions. From
(37) follows the phase-oscillation spectrum

w={7 8@} dapt s (39

For random impurities S(Q) is equal to the impurity
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concentration ¢ijmp. Thus, the impurities lead to pinning
of the CDW, the gap in the spectrum being

1

wh = { 3 Cmy}lh "”imn' (40)

The foregoing analysis is valid for sufficiently low
impurity concentrations, which do not influence substan-
tially the Peierls transition itself'T and which allow the
decoupling carried out above. The allowance for the
quasi-one-dimensionality and for the Coulomb effects is
in the same manner as above; leaving out the calculations
we indicate that as the result the gap u?r is simply added
to the right-hand side of expression (19) or (25). The gap
in the spectrum is different from zero at arbitrary g and
qJ_."’) It is possible that the equality of the phonon fre-
quencies at the points (Q, n/b, n/b) and (Q, 0, 0), which
was observed in Ref. 12, is due to the dominant role of the
impurities in the formation of the gap.

3. EFFECTS OF COMMENSURABILITY AND NONLINEAR
EXCITATIONS

The existence of a Goldstone mode with a spectrum
(10) is directly connected with degeneracy of the CDW
with respect to the phase #. This degeneracy of the CDW
having a period that is commensurate with the period of
the original chain. In the commensurate case Q = 2rm*
(Ma)~!, where a is the period of the initial chain, and
m « M are integers. The CDW energy then acquires a
comensurability term!8:14s?

U oomm ~ A% cos MO, (41)

The proper Lagrangian of one chain takes the form

m')
.?=.?o+um‘%?£-{cosﬂf¢—l}, (42)
where® !
A \M-p
o} ~ M2} (E) ; (43)

In the linear approximation we can confine ourselves
to expansion of cos M® up to quadratic terms, and obtain

the spectrum of the phase oscillations in the form?
w? = v} 4 s%q?.

(44)

Thus, the commensurability effects lead to a pinning
of the CDW.

The nonlinear Lagrangian (42) leads to an equation
of motion of the sine-Gordon type

i pers wf
e T (49

for which an extensive spectrum of classical and quantum
solutions has been obtained.!” In addition to the branch
corresponding to the linear oscillations of @ near zero
(44), it is possible to excite in the system an arbitrary
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number of soliton—antisoliton pairs moving with velocity
V<s

D ()= %aro tg {exp (? (—:———'-—ﬂ'“j’)] B (46)
s

wlnll!ﬁ] (xt) = _@-&vt {x'!}‘ ‘47}

The energy of the soliton is expressed by the standard
"relativistic" formula

M 82 o
Ebol :'Wz V‘siol -+ SLP!'

lv—-";{"

(48)

where the mass Mgo| (Ago] = Mgo]s?, p is the soliton mo-
ment), in the quasiclassical (WKB) approximation (Refs.
18 and 19}3}, using the parameters of our model, is equal
to

M'U’=”m.5¥7_s=__m‘%' (49)

where y is the renormalized coupling constant, equal in
the present model to

T (50)

8

1=

In classical soliton theory we have y = M2, The pos-
sible existence of soliton excitations in CDW of the Peierls
type was considered in the classical approximation in a
recent paper.”® The form of the soliton solution as a func-
tion of x (at v = 0) is shown in Fig. 1. In a region having
linear dimensions of the order of

B (51)

(the soliton dimensions) the gradient of the phase differs
effectively from zero, i.e., in accordance with (20), there
is an excess charge density

2 e ©r
Wl =H 73 N 35 (52)

from which it is clear that the soliton carries an electric
charge

4
= M LS (53)

Antisoliton carry a charge of opposite sign. The mo-
tion of the solitons produces a current density [see (3)]

j,ﬂ{::}.e-.—%lbml (xt) = Tpyy (2) 0. (54)

Solitons and antisolitons can be produced only in
pairs and are subject to Fermi statistics,’!
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?(x)

—Zg - FIG. 1. Change of phase in the re-
s/ gion of the soliton solution.

~— &0t —

It is easily seen that the considered model is equiva-
lent to a simple generalization of a one-dimensional dis-
location after Frenkel' and Kontorova®?3, dealing with
the motion of a chain of "atoms" and mass m* in a peri-
odic field of a "substrate" produced by the commensur-
ability effects, In this sense, solitons constitute "dislo-
cations" in the CDW lattice.

In addition to solitons, the model under consideration
admits of spectrum branches corresponding to bound soli-
ton—antisoliton states, which have not been considered in
Ref, 20. Buch a "doublet" solution of (45) in the rest sys-
tem (v = 0) takes the form!8:1?

4 sin (—2:; x)
o, (zt) = 3 arc Y s —F 5 [* (55)
ch(t iy

T 5

where

wy COS 5"

Here N=1, 2,..., < 87/y (Ref. 19) number the stable
(in quantum theory) branches of the doublet spectrum.
Their masses (gaps in the spectrum) are given in the
WKB approximation by1?

1 16w N
anm‘ﬁ—rsin(l—g)z

7 3 m—rm" = sin (% " (57)

T Spp il

Taking into account the form of ¥ (52) and the fact
that only M > 3 is meaningful in the considered model
(Ref. 9),4) we verify that N= 1 for M = 3, and for M > 3
the doublet solutions are unstable.

The doublet solution is shown graphically in Fig. 2.
It is obvious that the total charge carried by the doublet
is equal to zero, i.e., their motion does not contribute to
the constant current. However, a doublet has a dipole
moment that oscillates with frequency 27 /7, and this
could manifest itself in prineciple in the dieleetric con-
stant.

We note that in Ref, 24 an attempt was made to con-
struct doublet-like solutions of an equation of the type
(45). However, the approximate formations obtained there
have nothing in common with the exact solutions (55) and
are apparently unstable. In addition, it is erroneously
stated in Ref. 24 that such solutions contribute to the de
conductivity.

We consider now the degree to which the obtained
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(1)

anN

-~ Erot—

FIG. 2. Change of phase in the re-
gion of the bound soliton—antisoliton
state.

purely one-dimensional solutions are preserved when ac-
count is taken of the Coulomb effects in a single chain,
as well as of chain-interaction effects.

The formation of a soliton is not profitable from the
point of view of Coulomb effects, since it involves an en-
ergy loss Q% %gol€p,. This energy shortage is imma-
terial if it is smaller than Mggs?, which leads to the con-
dition e®m/f pF < (1/16)€p, which can be readily satis-
fied. To take into account the interaction of CDW of
neighboring chains it is necessary to consider systems
of coupled nonlinear equations.

We present a simple qualitative analysis. The pro-
duction of a soliton—antisoliton pair on one of the chains
leads to a loss of chain-interaction energy [see (13)]

2
e

U._r-nm'.o-,._;.a{cos.-.(I—%)-i-l}. (58)

where ¢ is the soliton—antisoliton distance. The influ-
ence of this loss on the soliton mass is immaterial if
2Mgo1s? > U, , leading to the requirement

.16 (“‘r )rl .
s\, ) e (59)

i.e., the soliton and the antisoliton must be close enough,
At the same time it is necessary to have { > £, for
only then can be speak of "individual" solitons. In view
of the smallness of wT(43) relative to the parameter

(A /EF)M=-2 « 1, this condition is difficult to satisfy for
the known systems of the type KCP or TTF—TCNQ. At
the same time, w decreases exponentially with the in-
creasing distance between the chains (14) in such a way
that the situation becomes more favorable in a system of
sufficiently separated chains. Owing to (58), the solitons
and antisolitons are attracted with a force ~nm(w&/@?,
and, strictly speaking, are always bound. Let us estimate
the minimum dimension of a bound soliton—antisoliton
state in the potential well (58)

{5 )" 0

Here, too, it is necessary to stipulate £y > £441, which
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can be readily satisfied. Thus, solutions of the soliton
type are not profitable from the point of view of interac-
tion between the chains and can hardly be realized in
known systems.?) In addition, even under conditions when'
one can speak of the existence of solitons in individual
chains, they are bound into soliton—antisoliton pairs and
make no contribution to the conductivity in weak fields,ﬂ
in contradiction to the statements made in Ref. 21,

We note in conclusion that the loss of energy of the
type (58) disappears in a situation corresponding to for-
mation of solitons on all chains in a sample cross section
perpendicular to the chains. It can be proved rigorously,
however, that such soliton "planes" are not profitable
from the point of view of Coulomb effects. For lack of
space, this question is not considered here,

In coneclusion, the author is grateful to L. N. Bulaev-
skil for numerous discussions and critical remarks,

LA constant has been added here to make the ground state correspond to
2=0, thereby fixing the energy origin.

Usince the phase oscillations are in fact three-dimensional, questions con-
cerning the specific character of the action of impurities in a strictly one-
dimensional system are not raised.

31t appears that the WKB mass values used here are exact.
Yt M = 2, the phase oscillations of CDW coincide with the amplitude os-
cillations, which are not considered here.

SjIn Ref, 24, and in fact also in Ref. 20, they considered an interaction La-
grangian of the type (42) with M = 1, We do not know of any physical
mechanisms that lead to such an interaction. It appears that a nonlinear
interaction berween the chains does not lead o formation of soliton solu-
tions, since it does not ensure pinning of the CDW.

thye note, however, that the binding energies of soliton—antisoliton pairs
decrease exponentially with increasing distance between chains.

Ty sufficiently strong field E ~2 3(M/ ¥ )(e;’ri )wf:/,\u% will break the soli-
ton—antisoliton pair and their contribution to the conductivity becomes in
principle possible. The magnitude of this field also decreases exponentially
with increasing distance between chains.
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The author has made an error in Egs. (21) and (22)
in this article. The correct forms of these equations are

*e, d o, wne 0%
5 — S e e, = o} 2° . a: ' (21)
{m)
oz,

1 i ,
B ..I;?‘.L 2 [fnhb.— - ZFn + ?u—l,‘] = e _d_:l E 3, (22)

i=y, 7 ny

—g m
LT
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Wt =4s"" 4

Equation (24) then becomes

o2
P q

g b- =% e

W

cos gib — cos q¥b]

(24)

20} [2 — cos gib — cos g¥b].

Equation (25) is then valid only for £, = g,.

Translated by A. Tybulewicz

613



Electron in a random field, theory of phase transitions, and

finite-action nonlinear solutions
M. V. Sadovskii

Institute of Metal Physics, Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk

(Submitted September 25, 1978)
Fiz. Tverd. Tela (Leningrad) 21, 743-751 (March 1979)

It is shown that the profile of an electron density-of-states tail in a Gaussian random field is given by the
solution of finite-action nonlinear equations for a zero-component scalar field. Ideas of the phase transition
theory and the dispersion equation for the coupling constant are used to calculate the preexponential
factor in the expression for the density-of-states tail. The applicability of a scaling theory at the mobility

edge is discussed.
PACS numbers: 71.25.Mg

1. Ideas of the modern theory of critical phenomena'’
have been used'™ to describe the behavior of electron
states near the mobility threshold of disordered systems,
A formal correspondence between the problem of an elec-
tron in a random field and a phase transition with a zero-
component order parameter (Euclidean theory of a zero-
component scalar field)®® has been used in most papers
~evoted to this subject (with the exception of Refs. 1 and
-}. However, it was pointed out In Refs. 1, 2, 4-6 that the
aforementioned correspondence is incomplete since the
coupling constant in the corresponding field theory has the
"incorrect" sign. Consequently, the standard theory of
critical phenomena’ cannot be applied and the incorrect
sign of the coupling parameter indicates that perturbation
theory fails in the range of energies of interest. ¢ The
neighborhood of the mobility edge, where the perturbation
theory fails, is analogous to the "Ginzburg" critical re-
glon in the theory of critical phenomena, 2

It is our aim to extend Ref. 2 and study in detail the
region of localized states (region of negative energies).
The present approach is a development of the method pro-
posed by Langer!” and Zittartz and Langer.!! It will be
shown that the profile of a tail in the electron density of
states in a random field is governed by the classical solu-
tions of the field theory studied in Refs. 2, 4, and 5 that
are characterized by a finite action,'®!* We also propose
& new method of caleulation of the preexponential factor
in the density-of-states tail which is based on a dispersion
equation for the coupling constant.!#!® Qur approach is
analogous to the theory of critical phenomena. Finally,
we shall discuss the validity of scaling at the mobility
edge,

2. We shall consider an electron in the field of a ran-
dom distribution of point seatterers and calculate the
Fourier transform G(Ep) of the one-electron Green's func-
uon averaged over all the configurations of scatterers. In
the limit p — e, V —0, pV?— const, where p is the den-
sity and V is the scattering potential, the problem under
study is equivalent to the motion of an electron in a Gaus-
sian random field with a "white noise" correlation func-
tion.»!! It was shown in Ref. 2 that such a Green's func-
tion can be identified with the Green's function of a scalar
field theory with the following Lagrangian (m is the elec-
tron mass and E its energy):
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1=1

where n is the number of components of the field & (n
should be set equal to zero after all the calculations have
been carried out), which eliminates the "superfluous" dia-
grams with loops that do not appear in the problem of an
electron in a random field. #%? We have studied? the range
of energies E > 0, wherethe standard perturbations theory
is applicable (the parquet approximation). The region E <
0 (the region of localized states) was discussed in Ref, 2
only qualitatively.! It is our aim to study in detail the re-
gion E < 0.

The main difficulty of the aforementioned theory is
due to negative sign of the coupling constant in Eq. (1),
which leads to an instability of the ground state in such a
field theory and to a failure of the perturbation theory to
describe the electron energies?*

1 u \i—a
E@l"—m(‘——'?_ ) » IP))
where
meat-d i
=g (3)

is the dimensionless coupling constant, ¢ is a distance re-
lated to the cutoff of divergent integrals (the shortest dis-
tance in our problem which is related to the difference be-
tween the random field correction function and the corre-
lation function of white noise), and d is the dimensionality
of the space considered,

A physically correct approach to such a problem was
proposed by Langer,!® who showed that all the correlation
functions should be calculated by an analytic continuation
with respect to the coupling constant and exhibit a cut
along the negative real axis in the complex plane of the
values of the coupling constant. Any correlation function
(Green's function) of such a theory can be represented as
the following dispersion relation for the coupling con-
stant!#!5 (g |s an arbitrary coupling constant):

m

A
amm% S d:;—%. 4

€ 1979 American Institute of Physics 435



and
1 ;
Alg) =76 (g +1r) =G (g — )] =ImG (g) (5)

is a discontinuity over the cut (nonzero for g < 0) which
can be obtained from the nonlinear solutions of the clas-
sical field theory equation (1) with a finite action.!?™!® we
shall always assume that G(g) is the one-particle Green's
function.

3. The action of the field theory defined by Eq. (1)
is given by

5[0 = S d9r 2 (r) (8)

and the Green's function is given by the following func-
tional integral; *

t L ]
Glr—rlm—25 3 | 20 @) 0, (00, () exp(—S (01,  (7)
J=1

~here
Z= | (4 (1) exp (=S (91). )

The minus sign in Eq. (7) ie chosen to yield the correct
zeroth-order electron Green's function,

The minimization 6S[®] = 0 yields the following clas-
gical field equations:

{ ) 3
5&0,:;-20_,-—5;;"'41,(2@). (9)
i=1
We shall seek the solution of the fleld equations in the

form!%13

= (10)

where u is a unit vector (u?= 1) in the "isospin" space
of the theory [0(n) symmetric] considered, Restricting
ourselves to the class of spherically symmetric solutions
(Refs. 16-18), we obtain from Eq. (9) the following result:

®, (=) u;

d—1d® 1
-TU}z_m._ 7 Vel 1)

o fara,
2m | dr? r

Equation (11) has a trivial solution #;= 0. We shall con-
sider nontrivial solutions of Eq. (11) with a finite action
[i.e., such that the integral in Eq. (6) converges]. Ford=
1, it is possible to obtain an exact solution of Eg. (11) (see
Ref. 10). Using the results of Refs. 18 and 19, we can
show that the required solution appropriate to the problem
under study exists only for d < 4. We shall discuss the
solutions qualitatively following the method of Ref. 20 (see
also Ref. 17).

Yiz) Fx

<0 FIG. 1. "Poiental energy” correspond-

ing to the equation of moton (13).
Io To
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We shall introduce new variables

o= (23" z 0,

r={2m|E|) A,

(i}

Equation (11) then assumes the following dimensionless
form:

dizr d—1dx
FTL R B Tt 13

where the upper sign corresponds to E < 0 and the lower
signto E > 0,

We can now use an obvious mechanical analogy, 1.e.,
Eq. (13) is an equation of motion for a particle with unit
mase in the following potential (Fig. 1):

e

A
U@=F3+7T 14
The particle in question moves subject to a friction force
depending on time as ~1/t. By considering the "energy”

1 fdxz\t
s=3(3) +v@. (15)
we can easily demonstrate the dissipative nature of the
motion. Using Eq. (13), we obtain

dé& dz\td —1{
7 =—(a@) <o e>1. as)

The qualitative behavior of the motion 18 shown in Fig. 2.
The motion in question gatisfies the following initial con-
ditions:

X |jg=const,
dr
=0 an

Fort > 1, we can linearize Eq. (13) near the extrema of
of U(x), i.e., near the points x = 0, x = + x; = + 1 to obizin
the asymptotic behavior of the solution defined by Eq. (13),
It is quite clear that the solutions of type 2 and 3 shown
in Fig. 2 are of no interest since the corresponding action
integral defined by Eq. (6) diverges [the field defined by
Eq. (12) tends to a constant at infinity]. The asymptotic
behavior (t > 1) of the solution of type 4 in Fig. 2 (E > 0)
is given by

co
Tty —g—

3 3 (18)

FIG. 2. Qualitative behavior of the solutlons of Eq. (13).
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[ JL,(!J are the Bessel functions| and the integral defined
2

by Eq. (6) also diverges as a function of the upper limit
for d = 2, Therefore, we are left with a unique solution
of type 1 shown in Fig. 2 (E < 0). The fact that the solu-
tion is unique follows from physical considerations., In
fact, there is a single point on the curve U(x) which has
the property that a particle starting its motion from this
point terminates its motion at the point x = 0, The asymp-
totic behavior of the aforementioned unique solution (t > 1)
is given by

const t
f'[‘]"‘ﬁ:—o"LK " {:}%‘%ﬂup(—l]; 1, -
¥ *(r') ¥

5 (19)

‘I

I:K’G") (t) s the modified Bessel function] and the corre-
sponding actior integral defined by Eg. (6) converges.
Using Eq. (12), we obtain

31@,}mj‘d‘r.?(rr¢,{rn.—_-,:,"'T;:f!s[!-m 3 (20)

The constant A, which depends on the dimensionality, ia
determined by dimensionless integrals of x(t). The calcu-
lation of Ag requires numerical integration of the equation
»f motion (13) supplemented by the initial conditions (17

4. The functional integral in Eq. (7) can be evaluated
by the steepest descent method near the classical solutions
with a finite action defined by Eq, (12) (see Refs. 10, 12-
15). For E > 0, only the trivial solution &, = 0 exists and
the steepest descent method yields the standard perturba-
tiontheory '8 which was used in Ref. 2. For E < 0, there
isanontrivial solution with a finite action defined by Egs.
(12), (17), and (19). The field &(r) can be expanded near
%y(r) as follows:

@ (F) =05 (r—Ry) +2(r). (21)

It is then possible to perform all the calculations in the
lowest order of a perturbation theory with respect to ¢(r).
All the correlation functions will contain a factor exp -
(—S[®o])which is nonanalytic inthe coupling constant and also
a preexponential factor which is obtained in the evaluation
of the Gaussian integral in the variable ¢(r). The prob-
lems related to the negative sign of the coupling constant,
to the arbitrary choice of the location of the solution &(r—
Ry) in space (arbitrary choice of Ry), and to the arbitrary
orientation of the vector u in the isotopic space intro-
duced in Eq. (10) [0(n) symmetry] require special discus-
sion. All the required calculations are analogous to the
calculations of Refs, 10, 12-15, 17. The imaginary part

of the one-electron Green's function is given by

A(E)) b{—pV?
ImG(Ep|— V) =C(E] F]“P{_-;i"‘l_)};v%'
eV T

(22)

where C(|E|, p) is a function of E and p which is indepen-
dent of the coupling constant pV?,

d
AB)=Am~n BT (23)
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the theta function in Eq. (22) indicates that the imaginary
part of the Green's functlion is nonzero only for negative
values of the coupling constant in the field theory with the
Lagrangian defined by Eq. (1). The power of the coupling
constant in the preexponential factor in Eq. (22) can be
easily understood. The translation invariance (arbitrary
choice of Ry) yields a factor!®!" (pv?~4/2 (there are d

-]
translation "zero" modes); an additional factor (V) F
is related to arbitrary orientation of the vector u (n—1
rotational "zero" modes); and the factor (pV) Y /2 ig re-
lated to the product of v fields which appears in the de-
finition of the v/2-th Green's function!® (in the case con~
sidered, v = 2). These results are independent of the ac-
tual form of the classical solutions &(r — R;) (see Refs.
15, 17); the type of solution determines C(|E|, p).

The Green's function can be calculated from Im G(Ep|-
V) (i.e., from the discontinuity across the cut in the com-
plex coupling constant plane) via the dispersion integral
().

A

t
G(Eple)=—5C(|E| P]jv e T
Yo (—g(-n?

(249

where g is an arbitrary coupling constant for an electron
in a random field g = —pV% The integral in Eq. (24) can
be easily evaluated:

GtEpIs}-m%CtIEI- pu-%ﬂw{a:m}r(d_?)r(!‘";_d' i:_ﬁ'l)’

) (25)

where (a, z)= S dte”'t™*  is the incomplete gamma func-

tion. )

The Green's function of an electron in a random field
represents the analytic continuation of Eq, (25) from the
region g > 0 to negative values g = —pV? (see Ref. 21).

It follows from Eq. (22) that our preexponential factor
in the tail of the density of states is correct, 1232 The
preexponential factor is completely determined by the
classical solutions of the field theory defined by Eq. (1)
with a finite action. The main advantage of our method is
that it yields automatically correct results and does not
introduce the additional assumptions employed in Refs, 11,
22, and 23 such as the assumption that the {irst level of
the fluctuation well is dominant. Different treatments of
the energy ranges E >0 and E < 0 are also introduced
automatically since the classical solutions with a finite
action exist only for E < 0. Nonanalytic dependences on
the coupling constant also arise quite naturally in the
present method (breakdown of the standard perturbation
theory).

The condition of validity of our results can be for-
mulated as S[®,] >> 1, i.e., our results hold when the meth-
od of steepest descent used in the evaluation of the func-
tional integral in Eq. (7) is justified. In other words, the
following condition should be satisfied:

d
AE) _ Ay 1 fIE|N i1,

V¥ I —4\'E,,
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Le.,

|E|>E,,, (25a)

which reduces to the condition obtained in Ref. 2. The
condition of validity of the "perturbation theory™ near the
classical solution with a finite action defined by Eq. (21)
is the same as the criterion of validity of the standard
perturbation theory in the energy range E 5 0, It was
noted in Ref. 2 that an interval of width 2Egc about E =0
is an analog of the "Ginzburg" critical region in the theory
of critical phenomena. However, in contrast to the theory
of eritical phenomena, perturbation theory, when ap-
plied to the case considered, fails even for space of dimen-
slonality d= 4 - ¢,

5. The preexponential factor C(|E|, p) in Eq. (22) can
be evaluated provided the classical solutions with a finite
action are known explicitly., For d > 1, such solutions
can be obtained only numerically, We shall now develop
a method of calculation of the preexponential factor based
on the analogy with the theory of phase transitions, which
makes it possible to aveid numerical calculations,

For g > 0, the Green's function defined by Eq. (25)
corresponds to the correlation function of a stable field
theory (the theory of second-order phase transitions).
Far from the critical region, the aforementioned corre-
lation function is well known,’ L.e., the correlation func-
tion is given by the standard Ornstein— Zernike expres-
slon. For |E| > Ege, we obtain

1
GEplg>0)~— ———-.

3 (28)
1Bl 45,

On the other hand, using the asymptotic expression?® 2! for
the incomplete gamma function, we find that Eq. (25) ylelds
({|IE[ > Ege; E < 0)

d+1

i d 41 ——
cEple>0~—or ()@ T eqer . (27)
Comparing Eqs. (26) and (27), we obtain
d+1 d
B (20T Z‘um(x—;)
CUEL pa—ghpem T P, -
°(7) 181+5
IE!}E.. *

The imaginary part of the electron Green's function is
then given by (|E| » Eg¢)

d+1
nd gt

| £ lmu(:-%) 1 A (E)
-

ImG (Ep|— =~ 0
mC (Ep| —pV1) i[‘(d‘—-,—:—l) |El+5 (mg v-)T
o

(29)
We can now calculate the density of electron states in the

tail region including the preexponential factor, We find
that (JE|>» Egq; E < 0)

1 (4%
N(E)=— ?j&“—]‘ Im G* (Ep | —pV?)
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1ja

2r1 ¢
Lisd (a+1)(1-52
K Al 1E] ( ') A (E) 2 {
ey @ oXp -"_‘—"Pp-:} dpp®=t 7 (30)
o(%3 : 18145

(m{pV‘)

ey

it a— 0 and Eq. (30) yields

4
where K, =201y 1 -For d = 1, we can take the lim-

-Al E E s
N(E)—I.—ﬁ*%?'—lup[-—dl;lql—r!r—’}, (51)

It follows from Ref. 11 that A =4VE/3 [Eq. (11) ford =1
can be solved exactly] and Eq. (31) reduces to the exact
result of Refs. 25 and 11 with an accuracy up to the factor
3/x%. Ford = 2, the divergent integral in Eq. (30) is cut
off at a momentum ~ 1/q, the cut-off momentum being re-
lated to the reciprocal of the range of the correlation func-
tion of random fields. Our calculations are valid for ener-
gles |[E| «E, = 1/2ma’. For |E| » E,, the tail of the den-
gity of states is governed by the quasiclassical approxi-
mation.®"® For d = 2, Eq. (30) yields (Egc « |E| «Ey)

- LE [N Es 1E|
eV{E}-hconstmluma;p{—A.Em}, (32)
for d = 3, we obtain
|E|Ef | E [h
N(E}Szcomn—'rdp—‘;"-,-'up {-—A,—';WPF—.- . (33)

For 2 < d < 4, the tail in the density of states is glven by

d+1 i:..'.
_ 4; \T _ 2m  (2mE)?
N{Eiwh(hs(g_a)) r(d+l) (d—o-ﬂ)

x(z;)

We believe that the aforementioned expressions yleld (with
an accuracy up to a constant factor) exact expressions for
the preexponential factor of the density of states in the en-
ergy range considered.

o
() [
exp |—dicpr |E] P (34

6. The energy range |E| « Egc lies outside the region

~ of validity of our theory. It follows from the theory of

critical phenomena that, for g > 0 and for energies IE| <«
Egcs the correlation function obeys the standard scaling

G(Eplg>0)=ClE[TD(p"Y); E~|E™ (35)

Here, ¥ and v are the critical indices of the susceptibility
and correlation length ¢, D(x) is a universal (independent
of the details of the interaction) function, and C Is a non-
universal factor. Since it is well known that the discon-
tinuity across the cut in the dispersion relation (4) [A(z)
in Eq. (4) is unique for arbitrary g] is universal, this
seems to indicate that the Green's function should exhibit
an analogous universal behavior for |E| « Eg. irrespec-
tive of the sign of g. Applying formally Eq. (25) to the
region |[E| «Ege and using [(¢, x) — (%) forx—0 (o =0,
-1, -2, ...), and also A(E) —0 for E— 0 and I'(1/2 +
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d2)r( 2-d/2) = = /cos (rd/2), we obtain

i'+l

! g o
=d¢ CUE| phi |E|<]E,, (36)

Cos -
z

GlEplg>0)=~—

where d = 1, 3 but the values d=2and d= 4 — ¢ are ad-
missible. Comparing Eqs. (35) and (36), we obtain

CE| p)~|E|TD(p%), @37
Equation (22) then yields
lmG (Ep|—pV!) = B| E |1 D (p%?), (38)

where B 1s a (nonuniversal) constant (independent of E
and p). It must be understood that Eqs. (36)-(38) repre-
sent an extrapolation of Eq. (25) beyond its range of va-
lidity. However, mere assumption that the discontinuity
icross the cut in the dispersion equation (4) can be fac-
iorized leads to a result similar to that defined by Eq,
(38), i.e.,

A(Ep|5)=ImG (Ep|2)=C (|E|, p)/(3) 39)

for [E| « Ege. Such a factorization holds when Eq. (25) is
applied formally to the region |E| <« Eg¢ and implies the
scaling defined by Eq. (37) irrespective of the sign of g.
unfortunately, we are unable to prove Eq. (39). However,
if we assume the validity of Eq, (39), we find that Eq. (35)
ylelds Egs, (37) and (38) and the density of states for |E|«
Ege is given by

N{E}&—Elé‘r"f[‘—"nb{ %)= p L4 |Ep—=
e e o

where a is the specific-heat critical index. Ford=4-¢
and n = 0, we obtain

a7 40, (41)
where D is a constant (independent of E). As a result, we
obtain

dN (E
d{ 1*1'5!—.‘ | E]—0. (42)

The density of states in the limit |[E| —0 exhibits a kink
and its derivative diverges as the specific heat in the
theory of critical phenomena.

Consequently, assuming the factorization defined by
Eq. (39), we obtain a scaling at the mobility edge which
holds for the average electron Green's function in a ran-
dom field, If this is the case, the well-known discrepancy
between the Anderson result that considers the "most
probable” electron Green's function' and the standard ap-

439 Sov. Phys. Solid State 21(3), March 1979

proach due to Edwards based on the average Green's func-
tion disappears. An alternative approach is to treat the
neighborhood of the mobility edge as an analog of the
transition region in the Kondo problem, where the Ander-
son and Edwards treatments are complementary,?

The author is grateful to L, V, Keldysh for his dis-
cussions and interest in the present work and to D, V,
Shirkov for making available a preprint of Ref. 15.
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Supereonduetivity in Spin-Glasses

By
M. V. SapovskIr and Yu. N. SKRYABIN

Itis shown that spin glass ordering does not affect the superconductivity as a result of total compens
sation of the paramagnetic effect and the effect of spin-flip scattering freezing out in a spin-glass
phase.

ITokasaHo, YTO YNOpAZOYeHHe CIIHHOR {IPH Iepexole B COCTOAHHE CHHHOBOTC CTEKNA He
OKA3HBACT BAHAHEA HA CBEPXUPOBORMMOCTD, YTG ABMACTCA C/IEACTBHEM B3AHMHON KHOM-
NEeHCALMH NAPaMATHUTHOrO sdderta 1 3QibeHTa BRMODAKUBAHMA NPOIECCOB DACCEAHNA
€ NepeBOPGTOM CIIMHA.

1. Introduection

Recently there hag been a considerable growth of the literature on the coexistence of
superconductivity and magnetic ordering [I, 2], due to the experimental discovery
of such phenomena in some rare-earth compounds with regular positions of magnetic
atoms [3 to 5]. Likewise it has been known for a long time that there is some ex-
perimental-evidence of such a coexistence in dilute alloys of transition metals in
a superconducting matrix [1]. In such systems the type of magnetic ordering is
unknown in most cases. In the theory of dilute alloys of magnetic impurities the
concept of the spin-glags phase is preferred now due to the long-range and oscillating
behaviour of the indirect exchange interaction via the conduetion electrons [6, 7).
There is good experimental evidence for the coexistence of superonductivity and
spin-glass ordering in Gd,Th;_.Ru, [8] and Gd.Ce,_.Ru, [8], as well as some evidence
for it in the amorphous alloy of LagAw,, with Gd impurities |91,

The influence of magnetic impurities upon superconductivity was first considered
by Abrikesov and Gorkov {10]. Gorkov and Rusinov have considered a possibility of
coexistenee of superconductivity and ferromagnetism in such a system {11]. In the
present paper we will attempt to analyze the influence of spin-glass ordering upon
superconductivity.

2. General Formalism

To describe superconductivity in a system with some kind of magnetic ordering it
is convenient to use & four-dimensional mafrix formalism, defining the electron
operators in spinor form {1, 2]:

wir)

s — | WY Y. B () = + . .

¥iry = pi | Pr(r) = ((pf (1) pT{) 9 (1) v (1))}, (1)
plHr)

where (r) is the ordinary electron destruction operator with spin directed upwards

and so on.

1 Sverdlovsk 620 170, USSR.
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The zero-order Hamiltonian for a superconducting system takes the form

o = | dr Pr(r) hy(r) Pir), 2)
where R .

7 Hyr) Air)

holt) = (A*(r} — Hitr)
Hy(r) is the free-electron Hamiltonian, ¢; and 1; are two independent sets of Pauli
matrices, direct product of which can be used to represent any 4 X 4 matrix, 4, =
= Re 4, A, = Im A, where A is the gap function of superconductivity theory.

The electron interaction with magnetic atoms can be deseribed by the ordinary s—d

exchange model and the interaction Hamiltonian in the four-dimensional matrix
formalism takes the form [1]

) = Hy(r}) 6,15 + ogt, + u057 (3)

K=+ [ dr P @) V) P, 4
where .

V)= Jir —R)e-S,, {5}

&, = (g“ _gu). (6)

10 is the electron spin operator, J(r — Ry) is the s-d exchange integral, 8; is the
spin of the magnetic atom at the site R,.

To consider superconductivity with any kind of magnetic ordering it is useful to
isolate the mean-field effects. The Hamiltonian of electron intersction with a mean
magnetic field, following from (5} is

JENF == L dp P (r) H(r) P (7), (7)
where

o= (H((;‘} ° — f;){?‘) otr) = Hio (8)

Hir) =3 Jir — R) (S (9)

is the mean magnetic field at the point », ¢S,> the thermodynamic average of the
impurity spin. The mean field H{(»r) leads to the paramagnelic effect suppressing
superconductivity.

We must also consider a perturbation (fluetuations) over the mean-field:

Hiy = Hin, — T = [ dr #+r) T T(r — R) (i — <SPy (10)

The perturbation theory over J,,, produces the Green’s function
Dz, v’y = — (T(8H(x) — SV STy — S, (1)
where 7 i3 the Matsubara “time”.

3. Spin-Glass Ordering and Supercondnetivity

At present there is no complete spin-glass theory even in the mean field approximation.
The most popular Edwards-Anderson model of spin-glass behaviour [12, 13] is based
on the so-called replica method and the limit of replica number 7 — 0 and faces some
basic difficulties (such as negative entropy) [7). Some other models were proposed
not using the replica method [14 to 16]. All of these models try to describe the spin-
glass phase via the order-parameter ¢ = <(8;>*, [12], where <...>, denotes the con-
figurational averaging, and lead to a practically equivalent behaviour of physical
quantities, though not in complete agreement with the experiment [6]. There is even
some doubt in the existence of the spin-glass transition itself [17)].
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Gur aim is to consider the influence of the Edwards-Anderson order-parameter
upon superconductivity. The main results will be in fact independent of any specific
model of spin-glass in the mean-field approximation. Thus we consider the simplest
maodel of [14], which leads to the same main results as the Edwards-Anderson model,
but is free from the unphysical artefacts of the replica method.

In the Medvedev-Zaborov moedel and analogous models of [15, 16] it is supposed
that the chaotic orientations of impurity spins lead to a random magnetic mean field
at every site h; = h{R;). The distribution function of this field can be shown to be
Gaussian [14]:

A2
P = (3 mdg)~** exp(— ), 02)
v Ay
where ¢ is the Edwards-Anderson order-parameter defined by
¢ = [an P (7). 13)
H T
where
Y k2
Pih) = 4oh® (£ mgd) 3 exp ( — = ) (14)
T¢d

is the distribution funection for the absolute value of the mean field, bs(x) is the Brillouin
function,

A= (AR IXR) = cI?, (15)

Ty %,

where J(R} is the indirect exehange integral (for example of the RKKY type), ¢ the
concentration of magnetic atoms, v, the volume per one such an atom, T the absolute
temperature. The integration in (15) goes over the whole volume of the system except
the volume ¢, around the origin.

The solution of (18) for ¢{T) leads to dependences similar to that of the Edwards-
Anderson theory, ¢(T) =+ 0 for T' < T, where T'; is the spin-glass “freezing’ temper-
ature:

Ty=+ 88+ 1) AW = 3 8(S + 1y W# I'2, (16)
where § is the magnitude of the impurity spin.

The distribution of molecular fields is factorized over the aites:

P{) = IT P(hy) 17)
and there is no short-range magnetic order:
(hiby>, = gAdy . (18)

Following the methods of [14] it is easy to show that the mean magnetic field H{r)
acting upon a conduction electron is also Gaussian:

Pl = Gt~ exp | T, -
@) = 1 20w , ’ (20)
(Hp) Hr')y, = qAdlr — 1), 21
where
A = [ AR JYR) = cJ? (22)
o

and ¢(T) is defined by (13}.
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Now we have to consider the superconductivity of electrons under the influence of
the random magnetic field H{r) distributed according to (19} to (21). The interaction
given by {7) can be analyzed by perturbation theory, which leads to the summation
of graphs for the electrons Green’s function shown in Figure 1.

Here the continuous line represents the matrix Green’s function defined by the
equation of motion

a ~
{— 57 9% — hﬂ(fr)} golrT, ¥'7) = 3(r — ) St — 7). {23)
The dashed line describes the interaction with the random field H{r). Averaging over
(19), (20) we obtain that the second graph in Fig. 1 is equal to zero, while the
third one gives the ordinary electron self-energy in the random field (see Fig. 2a). It
is equal to

Suplr — v, 7 —7) = | {(3H(r)} P{H) Hor) H' () o, golrt, 7'7) &, =

= <§ J(r — Ry) J(r" — Ry) (S8 (8D, augn(rr s 7'7) &, (24)
or, using {21},
Zuplr — v, v — 1) = L Agd(r — ) X907 TT) &y (25)

or, in the momentum representation,

Zur(pen) = AgN, % [ déy &, Go{Pen) Ay (26)
where N is the free-electron density of states at the Fermi level. Equation (26) coin-
cides with the appropriate expression of the Abrikosov-Gorkov theory [1, 10] with
the substitution of the ordinary spin-flip scattering rate by Iy = 2aAdg(TV N, =
= 2meSq{T) Ny. Thus the paramagnetic effect {random molecular field) in spin-
glasses influences the superconductivity in the same way as magnetic impurities in
the Abrikosov-Gorkov theory.

Consider now the rest of the interaction given by the Hamiltonian (10). The simplest
self-energy corresponding to this interaction is shown in Fig. 2b:

S, v1)y = — S J(r — R) I — By) DE(z,7') o, gol17, 77 a, . (27)
L7

We use now the static approximation for D§(z, 7).

DT, v') = — (S8 + (SIS . (28)
Then

2 rty= Y Jr — R) J(¥' — Ry) (S¥8H augolre, ¥z, —

#

— H¥w) H'(#') g, ¥'T') a, . (29)
After the configurational averaging we get

Zr — v, —) = (X Jr — B) J{r' — Ry) (SIS0 apgort, ¥'7) &, —

7
— 3 Ag3(r — ¥) a7, ¥'T) o, . (30)
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In the following we use the standard assumption of the spin-glass ‘theory [7, 13],
corresponding to the absence of short-range magnetic order:

{BE8T Y, == 8,05 S(S -+ 1) . (31)
Then the total electron self-energy is equal to

r—r,t —t)=Zyp(r — v, v —7) + f{r — v, T —1) =

e {%} Jr — R)J(#" — B+ S(8 + 1) a, gyfrr, »'7) o, == (32)

~ 4 ¢S + V) a,golrT, ¥ 7Y w0, 8(r — ),

where the last equality is valid for the point-like s—d exchange. In the momentum
representation

I
Z(pes) = i’ 3 | 45 sugelpea) & s (33)

where
Iy = 2ned?8(8 4+ 1) N, (34)

is the standard electron spin-flip scattering rate (in Born approximation) coincides
with the well-known result of the Abrikosov-Gorkov theory. In the sum of (25) and
(30) the contributions dependent on the Edwards-Anderson order-parameter have
cancelled each other completely. The physical meaning of such a caucellation is ab-
solutely clear. We have seen that the paramagnetic effect in spin-glasses is equivalent
to the spin-flip scattering rate Iy = ZmeJ%q(T") N,. At the same time the “‘freezing”
of sping during the spin-glass transition “freezes” out the ordinary mechanism of
spin-flip scattering in such a way that the corresponding scattering rate becomes
equal to Iy = Iy — 2meJ2q(T) Ny = S(8 + 1) — ((8)*),. Both effects just com-
pensate each other Iy = Iy + Iy. Superconductivity in the system of magnetie
impurities is determined by the dependences of the Abrikosov-Gorkov theory despite
the spin-glass ordering,

4, IMiscussion

The cancellation of the Edwards-Anderson order parameter demonstrated for the
simplest graphs of Fig. 2 persists for all diagrams in higher orders of pertur-
bation theory. This is quite obvious for diagrams without crossing interaction lines
and also can be demonstrated directly for diagrams with erossing lines. This can-
cellation follows from the fact that the econfigurational average of the random mole-
cular field is equal to zero and the Abrikosov-Gorkov behaviour is due to equation
(31) holding both in paramagnetic and spin-glass phages. Note that we neglect the
quantum nature of impurity sping which allows us to use the standard diagram
technique.

Spin dynamics can be neglected [1] if the characteristic frequencies of spin motion
in the spin-glass phase Qy¢ <€ T, ~ 4, where T, is the temperature of superconducting
transition, and A, the superconductivity gap for T = 0. £23¢ can be a characteristic
frequency of a spin wave or the typical inverse time of change of the Edwards-Anderson
order parameter when on the average it is equal to zero due to the slow relaxation
processes [17]. Spin-glass dynamics can lead to a change in superconducting behavior
in comparison with the Abrikosov-Gorkov theory. For example it is well known,
that electron-electron interaction due to the exchange of spin-waves is repulsive,
thus lowering the superconducting 7.

Under the specific conditions [14] the system considered can undergo a transition
not to a spin-glass phase but to that of a random ferromagnet (with a non-zero
spontaneous magnetic moment). This leads to a change of the distribution function
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of the random molecular fields, particularly the average of the second graph in
Fig. 1 as well as all graphs of odd power in the random field become non-zero.
Then there is no compensation of the paramagnetic effect and spin-flip scattering
freezing out, as in the case of ordinary ferromagnets {1, 2]. It is possible that such
a situation wsas realized in the experiments with Gd La; _,Ru, [18], where two super-
conducting transition temperatures (re-entrant superconductivity) have been found
for some concentrations of Gd.

Finally, note that we have neglected the influence of the superconducting transi-
tion upon a spin-glass transition. The appropriate analysis seems difficult due to the
present status of spin-glass theory. The oscillating behaviour of the indirect exchange
interaction via the conduction electrons remains in the superconducting phase and
in faet this interaction is almost the same as in normal metals up to distances of the
order of the supercondueting coherence length [19). This interaction is effectively
cut. off at distances of the order of the electron mean-free path, thus in the case of
mean-free paths shorter than the superconducting coherence length the effective
interaction of impurity spins is unchanged in a superconducting phase. In general,
the interaction parameter (15) determining the spin-glags transition is apparently
almost the same as in the case of a normal metal.
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A one-dimensional system of electrons is considered, in a Gaussian random field with a correlator whose
form (in the momentum representation} is a Lorentzian with its center at Q =2p.. This can be

considered as a Gaussian model of the Peierls transition in the fluctuation region. An exact summation of
all Feynman diagrams is carried out, and a representation of the averaged one-glectron Green's function
as a continued fraction is obtained. A density of states with a characteristic pseudogap is found. It is
shown that when the correlation range of the short-range order is decreased there is a graduval filling in

of the pseudogap and a transition to a “metallic” state.

PACS numbers: 71.20. +c, 71.30. + h, 71.25.Cx

INTRODUCTION

There is a limited number of models of the electronic
structure of one-dimensional disordered systems that
admit of exact solution.' Interest in such models is due
both to the general problem of studying the electronic
properties of disordered systems and to questions of
the physics of quasi-one-dimensional systems, the
majority of which display some sort or other of proper-
ties associated with their disorder. In the last few
years several important new results have beenobtained,
casting considerable light on the situation of an elec-
tron in a one-dimensional random field,2~* This work
is also mostly characterized by the use of specific
methods of solution, specially adapted to the solution
of one-dimensional problems, and as a rule not capable
of further generalization because they are so cumber-
some, Only in a very few cases is it possible to obtain
an exact solution of a problem about the electron ina
one-dimensional random field by means of standard
methods of present-day many-particle theory.5

One model of this sort was proposed some time ago
by the present writer (see Ref. 8). In the framework
of this model it could be shown now the scattering of
the electron by a random field with a definite type of
short-range order leads to the formation of a peculiar
“band structure’ of the energy spectrum, which ap-
pears in the form of a characteristic pseudogap in the
density of electronic states, in the absence of any sort
of long-range order, It was alsc possible to consider
high-frequency conductivity and optical absorption in
terms of the pseudogap. This model was used to de-
scribe the fluctuation region of quasi-one-dimensional
systems that undergo a Peierls transition,” with the
result that the predictions of this model are in good
quantitative agreement with optical experiments on
KCP and TTF-TCNQ,®? at least at sufficiently high
temperatures.

A form of this model was considered in Ref. 9 as an
extension’ to the fluctuation region of a commensurable
Peierls transition. The exact solution®” was obtained
in the limit of large range of the close-order correla-
tion, and gualitative eriteria were indicated for the
applicability of this treatment for a finite correlation
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length. In the present paper an exact solution for the
one-electron Green’s function is obtained in the form
of a continued fraction, and also for the density of
electron states, for arbitrary values of the correla-
tion length for shortrange order; this permits us to
trace a smooth transition to the “metallic” state
(pseudogap filled in)} as the correlation length is de-
creased and to justify the qualitative criteria given
earlier’ for the use of the asymptotic form for large
correlation lengths.

1. FORMULATION OF THE MODEL AND ANALYSIS
OF THE FEYNMAN DIAGRAMS ’

We consider an electron in a Gaussian random field
A{x) with the correlation function

A(DA(x) r=Atexp[—|x—x'|E ]cor 2pp (2—17), 1}

where A? gives the mean square fluctuation of the field,
£ is the correlation length (close-order correlation
range), and p. in the Fermi momentum of the elee-
trons. This is precisely the correlator that is obtained
for the fluctuations of the order parameter in the one-
dimensional Ginzburg-Landau model for the Peierls
transition,'® and therefore we shall speak of it in con-
crete terms as a Pelerls system in the fluctuation reg-
ion.

It must be noted that our assumption that the random
field A(x) is Gausstan obviously does not apply to real
Peierls systems, at least for sufficiently low tem-
peratures T« 7,,, where T,; is the temperature of the
Peierls trangition in the self-consistent field approxi~
mation.'! We are considering the Gaussian model of a
Peierls system [with the exact correlator (1)] because
it admits of an exact solution, derived below, and also
because it is evidently not so very far from reality in
the region T'~ T,,.

The correlation length will be regarded as a parame-
ter of the theory, just as the quantity A% is. Finding
them requires a complete microscopic theory of the
Peierls transition. The model under consideration can
also be derived in a certain variant of the static ap-
proximation of the dynamic theory of the Peierls transi-
tion,”® (the assumptionthat thereis a clearly expressed
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central peak in the dynamic structure factor of the
lattice which is undergoing the Peierls transition). The
model can also have a bearing on the properties of
liquid semiconductors.®

The Fourier transform of (1) (the static structure
factor) is of the form

* } (2

5(@) =287 TR

M
(@—2ps} 4t
where % =£*!. The simplest proper-energy part of the
one-electron Green’s function is given by (p is the mo-
mentum of the electron}

Sleap) = A* jg.s«)} _ (3)

wn“Epw'

and is shown graphically in Fig. 1, a, where the wavy
line corresponds to the formula (2) and the solid line
is the free Green’s function of the electron. Here £,
is the energy of iree electrons, measured from the
Fermi level, and ¢, =(2n +1)7T.

We shall deal in the most detail with the case of al-
most free elect_rons:

Es=p'/2m—p=vs(| p| —ps), (4)

where m is the mass of the electron, v, is the Fermi
velocity, and u is the chemical poteniial. Further-
more 2P is in general considered to be incom-
mensurable with the period of the initial lattice,

Besides this, we shall consider the selected® case of
the spectrum in the strong coupling approximation

t——Woos s, )

where a is the initial lattice period, setting 2p, = n/a,
which corresponds to a half-filled band with doubled
period, i.e., tothe case of limiting commensurability,
when the Peierls order parameter becomes real.

~ From Egs. (2) and (3) we get (we shall consider the
initial momentum of the electron p.. +pp)

Z{e.p) =Afin HE, i) 6
WA G, (en,—Ea—itsn), (6)

where we have used the fact that for a one-dimensional
system .5,_3", =—£,. The expression (6), which corres-
-ponds to the simplest diagram, Fig. 1, a, was taken

as the basis of the analysis conducted in the paper of
Lee, Rice, and Anderson.!® In Refs. 6 and 7 all dia-
grams of the Gaussian model of the Peierls transition
were summed in the asymptotic case »— 0, which, as
can be seen from Eq. (6), is justified when the in-
equality

Upmtpk €L 20T (7}

is satisfied. This imposes a limitation on the descrip-
tion of the immedizate nelghborhood of the Fermi level.

FIG. 1.

7 gk A g8
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Qur problem is now to sum all of the graphs of the
Gaussian model for finite ».

As was stated earlier,” in each order of perturbation
theory the contribution of one order is given by dia-
grams with a sequence of successive vertices with in-
coming or outgoing interaction lines transmitting a
momentum @ ~+ 2p., Diagrams of the type of Fig. 1, b
are small of the order of the parameter £,/¢, (£, is the
Fermi energy), and can be dropped. Thereforeinorder
2n (2n is the number of vertices) we need include only
n1 diagrams. Figure 2 shows all essential diagrams
of sixth order. Let us consider the contribution of the
diagram 2, d. After elementary calculations we find
that the guantity corresponding to Fig. 2, d is

1 1 | 1
fea—Ey iBaTEptives iga—EpT2i0as feg TEy+3iven

| | 1
{e,—Ept2iven leatEptiven f2.—Fp

The contributions for the other diagrams of Fig, 2 are
entirely analogous; the numbers over the eleciron
lines in Fig. 2 indicate how many times 7vy» occurs
in the corresponding denominator. We note that the
contribution of the “crossed” diagram Fig. 2, d is
equal to that of the diagram without crossing of the
interaction lines, Fig, 2, e, We emphasize that the
simplicity of the expressions for the contributions of
the various diagrams is due to the choice of the struc-
ture factor S(@} in the Lorentzian form (2),

In eighth order there are in all 4! = 24 essential
diagrams; all of the irreducible diagrams are shown
in Fig. 3. The corresponding contributions are easily
found and are analogous in form, and the use of the
numbers over the electron lines is as in Fig. 3. Fur-
thermore, again there are guite a number of equalities
among thedizgrams: a=b=c=d; e=f=g=h;i=ji k=L

The general rules for writing out the expression cor-
responding to an arbitrary diagram are now clear. The
contribution of any diagram is determined by the ar-
rangement of the initial and final vertices (in Fig. 3
they are marked with the letters I and F). In each elec-
tron line following a vertex of type I a term fvpn is
added in the denominator, and in an electron line fol-

e e
L
N

7

FIG. 2.
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lbwing a vertex of type F, such a term is subtracted,
In this connection, the sense {direction) of the inter-
action lines i{s immaterial.

These rules hold also for the treatment of the prob-
lem with spectrum (5) in the strong-coupling approxi-
mation for the half-filled band, Here, however, we
must include also diagrams of the type of Fig. 1, b, in
which the interaction lines do not have to be arranged
in succession according to the directions of motion of
the transferred momentum, since with the spectrum
(5} the points p,p +2p,, and p = 2p, are equivalent (with
2p. =7/a)® i.e., all possible diagrams. Then in order
2n there are in all (2n ~ 1)1 = (20 -11/2""Yn - 1) dia-
grams, and also the contribution of each interaction
line is multiplied by 2.° The rule about the appearance
of terms iv,x in denominators of Green’s functions is
the same as before.

We then follow a method proposed (for a different
problem) by Elyutin,’® From the foregoing it is easy
to see that the contribution of any diagram is deter-
mined by the arrangement of initial and final vertices.
Furthermore any diagram with intersecting interaction
lines can be uniquely represented by a diagram without
any intersections, since any diagram with intersections
is equivalent to some diagram without any. The recipe
for the construction of the corresponding dizgram
without intersections {for a given arrangement of I and
F vertices) is: Counting from the left, the first final
vertex must be connected with an interaction line to the
nearest initial vertex on its left, and so on for the re-
maining vertices not 50 far connected with interaction
Yines. Thus, for example, the diagrams of Fig. 3, b,
¢, d reduce to the form of Fig. 3, a, the diagrams Fig.
3, e, f reduce to the form of Fig. 3, g, and so on. For
a fixed distribution of initial vertices in a problem with
the electron spectrum {4) the final vertices can be
chosen only from points of opposite parity, but for a
problem with the spectrum (5) the final vertices can be
chosen also from points of the same parity as the
initial ones. The numbers put with the electron lines
in Figs. 2 and 3 can be transferred to the vertices, by
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assigning to a vertex the number of terms fu,» in the
denominator corresponding to the line proceeding after
that vertex. The general rule is'®: To an initial vertex
is assigned the number N, =N,_, +1, where N, _, is the
number assigned to the nearest vertex on the left. To
a final vertex is assigned the number N,-1. Also
Ny=0, and » is the order number of a vertex,

Let us introdace

(k+1)/2 F=2m+1 (8)
0= &
/2 =2m
for a problem with the spectrum (4) and
b (k) =k 9)

for a problem with the spectrum (5). Then it can be
verified that the number of irreducible seli-energy
diagrams which are equal to a given diagram without
intersections of interaction lines is equal to the product
of the quantities »{¥,) for all initial vertices of that
diagram.” Accordingly, we can conduct all further
arguments in terms of diagrams without intersections
of interaction lines by applying to all initial vertices
the appropriate factors v(¥,,),

2. THE ONE-ELECTRON GREEN'S FUNCTION

Any diagram for an irreducible proper-energy part,
when restructured according to the rules that have been
formulated here, contains an all-surrounding inter-
action line, i.e., reduces to the form shown in Fig. 4,

a. This enables us to derive recurrence formulas for
determining a proper-energy part, which aré the basis
of Elyutin's method.'* By the definition of a proper-
energy part, we have the Dyson equation for the Green's
function;

G (enks) =G (Bakn) —Eileaks), {10)
where (see Fi:g. 4, a)

K ——.i__ AT -2 )
B (o) = e T (680) = %G e, —Ey i) B ek

()
and for = ,{c,£,) we have the expansion of Fig. 4, b in
terms of diagrams without intersections of interaction
lines, with the factors »{N,) applied to their vertices.
This expansion can be expressed in the standard way

in terms of the corresponding irreducible graphs:

B, (2aks) =0y~ (£n) —Bp—itrx) (i~ (€0, —E—ilpx)—Ey(eals} ), (12)

where Z,(¢,£,) can be expressed as a sum of the ir-

®_ = 'r;_arl‘ feri=ominex) + Q
b /_/-4—"-\.\_\
AT ¥ e W Y S
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reducible graphs of Fig. 4, ¢:
Zi(£aks) =A%G (£, §p—2ivrk) Exlents) {13)
Zalenke) =Ga*(£a, Ep— 20w} (G (£ny Ep—200rx) —Li(eals)} (14)

and so on. We have finally:

u(a8s) =AW (en, (~ 1) Emikuyx)U(R)E(eaEs),  (15)
ylealp) =G (£a, (—1)"Ep—ikvpn} {Gy' (g, (—1)"E,—ikven}
—Zun{eaEs)}, (16)
B A% (k)
A = e D e ey U7

This is the fundamental recurrence formula. The
Green's function is accordingly expressible in the form
of a continued fraction:

G (eatp)
1
= at
uu_gﬂ" - A
ian‘i‘%p"l“'vp”__ - DAL
ity — b+ divy Tt E, T Siv— -
_fo 1 —ar — At (k)
=[ "ey—Bp" ien Byt ivex '”"ia,‘-(—i)"gp+skuFu’"']'
(18)

For » =0 we can use the well known representation of
the incomplete I function as a continued fraction'*:

e
T+ ‘l—iu
14
T4+

(g, 2) = Sd!e"t"“ = , (19)

2—a

14-.-

and also the relation T'(0, x}= ~ Ei(~x) to verify that
e+, e’ =8y ., f ks’

e (- ) B(55)

Glelp) e =

eti,

T (20)

- r . _' e+t
njldte £ ;‘ldWPn(W}e

W
where the usual analytie continuation ic, = £ib is to be
understood., Here
' 2w Ww*

P~ =rex (- 5)
is the Rayleigh distribution”® which deseribes the uni-
form fluctuations of a semiconducting slit over all
space. The Rayleigh distribution arises because in this
case we have to do with a complex Gaussian field of

“fluctuations.'® Accordingly, for n =0 we get the result
of Ref. 6. In the general case (w#0) we cannot put the
expression (18) in any closed form, but the continued-
fraction representation is convenient for numerical
computation.

(21}

For the problem with the spectrum (5) and 2p,=n/a
(limiting commensurable case, doubled period} we get
in a similar way the recurrence relation {17) with
v(k) given by Eq. (9), so that

G (ea8p)
{

2A¢

e, —E, —
e Ep 3. 9A%

i by -t — i

ia,,—&,,—kzivpx—
_fo. 1 — 2A%
T fen—Ee T ien o+ B gk

— k- 27
ey —(— 1) Ep+ kg ]
(22)
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!e“+§p—!—3ivsx—---

Here A? has a coefficient 2 owing to the necessity of in-
eluding the two directions of interaction lines, as ex-
plained earlier.

For » =0 we can again use Eq. (1), and after simple
calculations we get

Glebphoms — _j_(em, ) " o (_ e=—a,.') r(‘_ N e*-g;)

AN Ep—e 4n? 27 4Al
- _1_ N _E ett, -~ n etE,
- ;[ & exp( . )'_“““—e‘—af-r;*a* = :[udWPG(W)————-—Bz_E’:__W.
where (23)
t we
P =gz o (g ) 24)

which agrees with the result obtained in Ref. 9. The
appearance of the Gaussian distribution here is due to
the fact that in this case we are dealing with a real
Gaussian field of fluctuations, In the general case,

# #0, we are also obliged to use the continued-fraction
representation (22) for the Green's function.

3. THE DENSITY OF STATES

Let us proceed to the caleculation of the density of
electron states corresponding to the Green's functions
(17) and (22). For the problem with the spectrum (4)
{incommensurable transition) we have

N 1y
= f atImorets)
_”l c Im Z,{et,)
e R SR EaE @)

where N, is the density of states of free electrons at
the Fermi level. From the fundamental recurrence
relation (17) we have:

Atw (k) [e—{—1)" §—Re Zisu(eky) )
[e—{—1)* Es—Re Ly (eky) 1*+{kvex—Im Dieilets) 1 ’

26)
— Ak} [kvpxe—Tm Ty, {ets) |

[e— (—1)"Es—Re Ty, (e8s) '+ [ kvre—Tm Iy, (66,0 I

Calculations of the density of states were made with
a BESM-6 computer; the convergence of the iteration
procedure (26} was found to be very good. The results
are shown in Fig. 5, where the different curves of the
density of states correspond to different values of the
dimensionless parameter I"=ppn/A=v £~ /4. The
curve with I'=0 corresponds to the case in which the
density of states can be found analytically.” It can be
seen that as the correlation length £ decreases there is
a gradual filling up of the pseudogap, i.e., a transition
to a “metallic” state, For v, £~'< A the approximation
» =0 works very well everywhere except in the range

Re Z.(ekp) =

Im i {ekp) =

FIG. §.
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of energies ~p.£~"' around the Fermi level, which con-
firms the gualitative conclusions of previous papers,®?
For large values I' = 2 the difference between the re-
sults of Lee, Rice, and Anderson,!® based on the use of
only the one diagram of Fig. 1, a, and those of the
present calculation done by including all graphs be-
comes inappreciable. The main difference appears
for small T', when the approach of Ref. 10 predicts a
transition to a density of states of the BCS type for T~ 0.
Figure 8 shows the dependence of the density of
states on the Fermi level (which governs, for example,
the Pauli paramagnetic susceptibility) as a function of
T'. Curve 1is our result, and curve 2 is the result of
Ref. 10 (adjusted to our notation). It can be seen that
the filling in of the pseudogap oceurs n.ore rapidly in
our model; for I' <1,5 curve 1 can be approximated
with the formula N(0)/N,= (0,541 0,013)T" 2.

In attempts to compare our results with experiments
on the Peierls transition in KCP or TTF-TCNQ it must
be kept in mind that we have neglected all nongaussian
fluctuations, which may be important for T < T,
This Gaussian model can be applied for T= T, or for
KCP and TTF-TCNQ for 7= 200 K at any rate, From
neutron diffraction and x-ray data it follows*®'!” that at
these temperatures in KCP £ > 10%: {« is the lattice
constant), i.e., T <epa/A£<0.1, which may explain the
good agreement of the results obtained in Refs. 6 and 7
for the optical absorption by the pseudogap with experi-
ments on KCP (Ref, 18, see also Ref. 8). There is no
generally accepted theory of the correlation length for
the Peierls transition. The experimental data do not
contradict the results of Blunck,'® which indicate that
E(300 K) = 10%a, £(200 K)= 10%, t.e., T'(300 K)<0.1,
I'{200 K)< 0.01, The nongaussian character of the fluc-
tuations for T« T, evidently leads to a more sharply
expressed pseudogap in the density of states,'’ which
can also be seen in the optical experiment.!® We note,
however, that in the range of temperatures when a
sharper gap is observed experimentally, evidently
three-dimensional ordering effects are already im-
portant.

For the extreme case of commensurability [the spec-
trum (5)] we have
N(e, W) 17 dt, Im I, (e&p)

N, z_?_{ru—g;mn)'b [e—t,—Re &, (efy) |“HIm? 5, (eE,)

(27)

The iteration procedure is given by the formulas (26)
with the substitntion ¥~ 2k, Figure 7 shows the results
of calculations of the density of states for the case
W = {infinitely broad band) which is most simply

LIt A

FIG. 6.
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compared with the free electron case which we have
considered. For finite values of W there is a charac-
teristic peak of the density of states at € =W,° owing to
the smearing out of the singularity at the edge of the
band of the one-dimensional metal, Furthermore, in
the case W A the form of the density of states for

£% A is practically not different from that obtained in
the limit W ~ -2, and this is precisely the region of most
interest to us. Again it can be seen that as ¢ decreases
there is a smooth transition to a metallic state. The
density of states at the Fermi level as a functionof T
is shown for this problem as curve 3 in Fig. 6.

Again it is easy to trace the transition to the case 0,
for which the problem can be solved analytically®; this
approximation works well when the inequalities (7) are
satisfied. For I"<3 curve 3 is approximated by the
formula (0.546 = 0.016)T'®. There is a curious colnci-
dence in the values of the constants in the expressions
for the density of states at the Fermi level as function
of the parameter I in the two different problems. In
the case now being congidered (commensurable) the,
pseudogap in the density of states is less sharply ex-
pressed, and it is filled in much more rapidly as £
decreases, than in the incommensurable case pre-
viously considered, and the criterion for the applica-
bility of the approximation I' =0 is more strictly quan-
titative in this case, although qualitatively it is again
expressed by the inequalities (7).

In conclusion the writer expresses his deep gratitude
to B. M. Letfulov for carrying out the numerical calcu-
lations. He is also grateful to 8, A, Brazovskil and
L. V. Keldysh for discussions and for their interest in
this work.
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Electron localization with disorder in the phases of the transport integrals is considered in the Anderson
model. It is shown with the aid of Anderson’s method that a disorder of this type leads in the general case to
an effective decrease of the lattice connectivity constant, and contributes to the localization. Total localization
of the band on account of the phase disorder alane, however, is impossible. The influence of an external
magnetic field and the positions of the mobility edge is considered {neglecting the spin effects). [t is shown that
the result of the action of the magnetic field is determined by the distribution function of the areas of the seli-
avoiding walks on the lattice. In the genreal case, the magnetic field contributes to the localization, and its
action is similar to the effect of random phases of the transport integrals. The results are valid in the region of
sufficiently strong fields, in which the effects connected with the Langer-Neal diagrams are suppressed.

PACS numbers: 71.50, 4+t

INTRODUCTION

Interest in the localization of electrons in disordered
systems has increased lately.!”® This is due both to
the importance of this phenomenon to the theory of dis-
ordered systems, and to the reports of new experi-
ments in which the localization manifests itself in
wnusual manner.® At the same time, the level of the
theoretical understanding of the localization is still
too low; this is manifest, in particular, inthe fact that
the roles of different external fields {primarily mag-
netic) and of different types of disorder have not yet
been investigated, Until recently most papers were
devoted to the study of localization in the Anderson
model**® with diagonal {site) disorder of the electron
in the lattice. What was mainly discussed was the
critical disorder that leads to complete localization
of all states in a band. Only recently has serious in-
terest been evinced in the role of off-diagonal dis~
order {transport integrals), and this led immediately
to conclusions concerning the unasual role of this dis-
order in the phenomenon considered, especially to the
conclusion that complete localization in a band on
account of only a disorder of this type is impossible.®
Finally, a paper by Abrahams ef al.” increased sharply
the interest in the critical behavior at the mobility edge
and in the interesting predictions made concerning
localization in two-dimensional systems™ ' (see the
review?’),

In this paper we consider the localization phenomenon
in a specific model of off-diagonal disorder {the random-
phase model), whose interesting distinguishing feature
is the presence of local gauge invariance. Generaliza-
tion of the results obtained with this model make it
possible to examine the effect of an external magnetic
field in the positions of the mobility edges interms of its
influence on the orbital motion (neglecting spin effects).
The analysis is carried oul within the framework of
Anderson’s standard approach.*™® The relation between
our results and those obtained within the framework of
another approach®® will be discussed in the Conclusion,
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1. LOCAL GAUGE INVARIANCE IN THE
ANDERSON MODEL

We consider the Hamiltonian of the Anderson model

H—ZIJi,a‘*aj+E Eu*ta;, (1)

i ]
where g and g, are the electron creation and annihila-
tion operatorsonthei-thand j-thlattice sites. The ener-
gies E, at the sites are assumed to be random, and
their distribution is specified in the usual form

P{E{}=H PLE),

(2}
-1, LB <W

P(El)'={0' ? \EJ>W

The transport integrals J;;, which are assumed do differ

from zero only between nearest neighbors, also take on
random values. .

We consider a specific disorder model, in which the
random quantity is the phase rather than the modulus of
the transport integral, as considered by Antoniou.and
Economou.® We thus assume ( the random-phase model)

Fy=JF exp (i@} m U,
Jy=dy, Py=—0y

where $, is a random quantity whose distribution in
the lattice is assumed to be factorizable in the bonds:

re=[] 2@, (@)

i
and we consider for P(&,,) different cases:

{3

1 0.} (%)
Pe=—F50 “"{_ 207 } )
0_1, |0\;|“<° (6

P{m“)={ 0, 10.4>0
P{hy) =cb(Dg—n)+{(1—c) B(D,), 0<ec<t, (M

ete. Case (T) corresponds to random introduction {(with
density ¢) of “antiferromagnetic” bonds:

JH=JA63 (3)

¢ Ay=—1
Pldw)= { tec, Ag=+1" (9)
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It is easily seen that the Anderson Hamiltonian (1} has
local gauge symmetry. It is invariant to a transforma-
tion of the type
[ . + g —
{G}: at—+exp(id)a, g;~exp{—i®)a, (10)
Fy—~exp(—il)J; exp(i®,).
This the analog of the local gauge transformation in
the Yang-Mills theory on a lattice, a transformation
actively used of late in the theory of random spin sys-
tems (spin glasses),!'*? This invariance is known to
lead to a number of nontrivial conclusions for magnetic
systems,'!"? some of which can be directly crossed over
also to the model considered. In particular, if in (3)

‘Dfi=l11+a’4, . (11)

where o, and o, are random quantities, then this dis-
order is trivial and can be eliminated by a suitable local
gauge transformation. This crosses over to the case (8)
if A,=ce,, where ¢;=z1 in random fashion {the analog
of the Mattis model in spin-glass theory). Interest
attaches to the nontrivial {gauge-invarient} disorder
determined’’# by distribution of the frustrations on the
considered lattice, The definition of the frustration!!
(or of the frustration angle’®) can be formulated in the
considered electronic model in complete analogy with
the definitions in the theory of random spin systems.
The frustration distributions investigated in spin lat-
tices™®+'® can turn out to be useful also in localization
theory,

Proceeding to consideration of the electron Green’'s
function in the Anderson lattice, we note that the single-
electron Green’s function

G"'(E)B(iIEiﬂ|j>=<0|aiEjHa’+l0) (12)

is not gauge-invariant;

{6} Gy(E)+G{E)expli(®—0,)]. (13)

The only gauge invariant element in this function is
G;(E}, which is diagonal in the sites and is cus-
tomarily used in the study of localization in the stan-
dard Anderson approach.*™® It is obvious from the fore-
‘going that in the random-phase model the averaged
single-electron Green's function is diagonal in the

site indices:

(G4(E)>=G(E)S,, (14}

a reflection of the vanishing of the gauge-noninvariant
off-diagonal elements upen averaging over the gauge-
invariant distribution of the frustrations. It is there-
fore meaningless to use (14) for the investigation of

the localization. For the averaged two-particle Green’s
function we have

$GAE) GulE'Yy~Bybus Bubii Bubin. {15)

A similar situation (in another model) was dealt with in
Refs. 14 and 15,

We can introduce the gauge-invariant electron Green’s
functions

gﬂr{E) -=(0Ta,

i
o] V10 (16)

where MU, determines the product of the elements
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U, from (3) for A,, from (9)] along an arbitrary walk

T that connects the sites { and j of the lattice, EXpres-
gion (16) is obviously gauge invariant, and {14) does not
hold for it. Correlators of the type (16) are therefore
capable of containing definite information on the local-
ization, but they have an explicit dependence on the
walk T', and their behavior after the averaging has not
been investigated.

At the same time, as noted above, Anderson’s stan-
dard approach*™® is perfectly suited for the analysis of
problems of this type, in view of the local gauge in-
variance of G;(E).

2. LOCALIZATICN IN THE RANDOM PHASE MODEL

Following Anderson’s method, we investigate the
convergence of the renormalized perturbation-theory
series for the self-energy part A (E} that enters in the
matrix element, diagonal in the sites, of the non-
averaged Green’s function;

1

Gii[ﬁ'):———-ﬁl_ﬁ‘_a‘(ﬁ,} H (17)
1
(E)= Jo—m0————=—Ju
84(£) g E-E,—A(E)
1 1 (18}
7] 1a wt
+a¢2hlﬁ:!‘ E-E,—AME) ! E—E,—AME) ¢

where a}/*--+(E} is determined by a series such as {18),
but corresponding to the Hamiltonian (1), in which we
put E,=E,=E,;=...==." We have excluded from (18} the
repeated indices of the sites, ie., in (¥ +1)-st order in
Jy; the summation proceeds along a self-avoiding walk
T’y consisting of N steps on the lattice, starting with the
i-th site and returning to the i-th site [Fig. 1{a}]. Multi-
ple scattering processes {Fig. 1(b)] with return are
implicitly taken into account here by introducing

A%<+ (E) in the denominators of {18),*% and it is this
which allows us to consider self-avoiding walks on the
lattice. The representation (8) is exact. An electron of
energy E is localized if the series A {E) converges in
the sense of convergence with respect to probability.*-*

To investigate the convergence of the series (18), we
consider the modulus of the term of (¥ +1)-st order in
gyt

o @ |= | S @], (19)

where 7, denotes summation over self-avoiding walks
consisting of N steps starting and ending at the site 1,
and T ,(E) isthe contribution of one such walk. Accord-
ing to Economou and Cohen,® it can be shown that

|80 (&) =L (E)

(20}
- | Y 7exp (0, (B exp (D) BME) . T exp (10,) | ,

g (E)m( In (21)

1
e )
where the angle brackets denote averaging cver the dia-
gonal disorder (2). The quantity L¥(E) is obviously
gauge-invariant, since the walks 'y on the lattice are
closed, Then L{E}< 1 is the condition for the conver-
gence of the series (18) (Ref, 5) and can be regarded as
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FIG. 1.

a criterion of the localization. The delocalized states
correspond to the condition L{F)> 1.

Expression (21) is too complicated for actual calcula-
tions, owing to the need for taking the contribution
AL+ +}{E)} into account, There are several ways of
getting around this difficulty,*™® but we shall use the
simplest one—we neglect completely the contributions
of these quantities®-%;

Glu_..t (E) = oxp {_([nlE—Enl)} (22)

This approximation facilitates all the calculations, and
its result for the positions of the mobility edges and

for the critical disorder do not differ greatly from those
of the more accurate analysis,***" It is therefore
usually assumed that a more consistent account of

Al - ¥E) in (21) leads simply to a quantitative refine-
ment of the localization condition® (see, however, the
discussion in the Conclusion),

We then have

L (E) s ¥+ Zexp(i@;,) exp{-N{nlE-E,|}}, 23)
where
QIN-wu"‘On‘I‘. . ,+q)u (24)

is the phase advance along the walk I'y. Equation (24)
has only N terms, Tr contains ~K" terms, where X is
the so-called lattice connectivity constant 18:

1
In K= lim Tv—ln Zy,

where Z, is the total number of seli-avoiding walks of
N steps.

We consider now

XN=2°IP (torﬁ). (25)

If all the phase shifts in (24) are zero (or fixed), then
obviously | X,]~K" and we obtain correspondingly the
usual answer®''®

LY (E)=J"F KN gxp(—Nn |E~E, |},

L(E)=ak exp ¥ (E, W{J}, {26)
wy t°f J
& (E'T)=W -‘[f‘e* in '.E—E. ]
- (27

1 2K W E 2F W E
== (e 7 [ (- ) 57| )
Here o = Z/K (Z is the number of nearest neighbors)
is a correction factor® that makes it possible to des-
eribe correctly the limit of the regular lattice. The
condition L{0) =1 then yields for the critical disorder
need for complete localization
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(W) =2¢Z. (28)

In the random phase model, |X,| is the lengih of the
walk on a plane as a result of random K* steps of unit
length. The most substantial effect is reached for fully
random phases, when &,, have a distribution (6), with
& =21 (n=1,2 ...). We are then dealing with Brownian
motion on a plane, and | X, | has the Rayleigh distribu-
tionlo 20

PIX,l)e 2';:' exp{ - 'ﬁﬁ' 3 (29)
GXx|Py=H". {30)

The most probable value is | X, |~ {| Xy |D? ~K"?, Then
L¥(E) =" KN pxp (—NCIn [E—Ey |2},

L{EY=aK" exp F (E, Wi}, S

The stochastization of the phases leads thus to a de-
crease of the effective connectivity constant of the lattice
The condition for complete localization when the phases
are completely random takes then the form

(W) ™= 2ok " me ZK-" (32)
It is obvious that
(Wi =¥ < (W],

i.e,, the localization condition i3 less stringent,

In the absence of diagonal disorder, E,=E; for all
k. Then, if nondiagonal disorder is also absent, we
have®

7 7
LB ~aK =2y (33)
and when the phases are completely randomized
7 Z F
LiE)=gR" o =0 7T
B =l T T E (34)

Then at L{E)>1 we obtain the width of the band of
extended states in the model of completely random
phases:

B':;”-K"“B, (35)

where B=2ZJ is the usual width of the band in the
regular case,

Thus, in the absence of diagonal disorder complete
localization in the enitre band is impossible, and a
region of extended states, of widths B®'", always re-
mains around the center of the band. Table I shows the
values of K and K~ for different lattices,'® It is seen
that the phase disorder can localize in all cages ap-

proximately % to % of the initial band.

In the general case, obviously, K** < |X,|sK"
The problem of calculating the statistical distribution
of sums of the type {25) was investigated in detail in
connection with various problems of statistical radio
engineering,’®®? This distribution is relatively easy
to obtain when the distribution of the ¢ is such that
the central limit theorem is satisfied.?*“® In particular,

!XNIS-S =
P Xylym ¥ | () td o (P} i ({Q-R) %)
(313:)}' ; (36)
X COB [2marctg—H ]
e
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TABLET.

Lattice z x x4 nX
Triangular 6 41545 0.4908 14235
Quadratic 4 2.63%0 0.6458 0.9704
Diamand 4 2878 0.5896 1.0571
PC 6 4.6826 04624 15428
BOC 8 £.5288 03914 1.8762
FCC 12 16.035 0.3157 2.53061

the so-called Nakagami distribution.* Here ] {x) is a

modified Bessel function of order m, g,=1, and £,,=2
at m=0,
8.‘!‘53 '
8= ot ——
45; IX"I + 23, + 23:
P XX 0= 2o, R=ix. P
4 28 5y £
a=2]d®rﬂP(®rm)cos¢’rH=2 or,, (37)
Ty I'x
B= Y [ d0r, P(@: )sin 0r = 35,
Tw Ty
§y- EIdGFNP(QrN)cos’QrN—Z a;m
I'n Tx
(38)

se= ¥ f a0r, 2(0r dsin 0n, - 3 5
O I'm

where P(cIJF ) is the distribation function of ‘i'r . Itis
easily seen here that?! 22

U X | 2> =gty T2+, (39)

i.e., it is determined completely by the mean values o
and g and by the variances s, and s, from (38). The
Rayleigh distribution (29) is obtained from (36) at a =g
=0 and s, =5, =K /2.

We consider now several examples. We begin with
the Gaussian case {§). It is then easily seen that

PO =y P {_ ﬁ;) o
=D+ D3y =ND?, (41)
From (38) and (39) we easily obtain
¢ Xn| B> =K exp(—N®*)+E" (1—exp(~ND?) ). (42)
In the general case we get from (23) I
L(E)=aX exp F(E, Wi}, (43)

where the effective connectivity constant % is defined
as

K= lim (X, [0,

o (1l (44)
For the case (40}-(42} it is correspondingly easy to
show that
Kexp(~0%2), @®*<lnk

x {'K"-. ok (45)
The “effective connectivity” of the lattice as a function
of the phase disorder is shown in Fig, 2, % first increa-
ses with increasing ¢, and at 4> InK the phases be-
come completely randomized and % takes the asymp-
totic form K72,
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We consider now the case of the distribation (6) with
¢ +#2gn (n=1,2,...). Then, obviously,

UN®, |®py | < ND
P@="0"" oS e (46)
We then obtain
\ sin® ¥ sin® N® N
e L Nl el w o aw -
.1‘5‘1{"7 oy HE (1 mor )| -F @D

Thus, inthis case there is not even partial randomiza-
tion of the phases, A nondiagonal disorder of this type
does not influence the localization. It is seen from {47)
that at & =sn (¥ =1,2,...) we returnto the full stochas-
tization considered above,

The cases (7)~(9) can be treated similarly. Let n be
the number of negative bonds along a given walk Ty,
The probability of realization of such a bond distribution
is given by the binomial distribution

N-!l]'!N
) .

(48)

Using the limiting behavior of (48) as N— = and the fact
that in this case ¢ =inp 7, we obtain directly

Py (pry) = Cn V& (1 —¢

P(mrn)=—21-[2n’1\’r:(1—-':)]""'{exp[—('Dr,—an)‘szc(iﬂc)u’]
49
+ exp[—{@r +eaN)*/2Ne(1—c)n*]}). (49)

The appearance of two terms in (49) is due to the fact
that the walk Ty can follow two circuit directions, and
the phase advance is +np 7 by virtue of &,,=-&, (3).
From (49) we get

K {Kexp[ c{l—c)n¥/2), e<e, ero={1—-¢"),

e, (50)

where c¢f; is obtained by solving the equation ¢{1 - o)
=1nkK,

Thus, the inclusion of a sufficient number of anti-
ferromagnetic bonds (with ¢ > ¢}) leads to complete
stochastization of the phases and brings # to the level
K'?. The values of ¢}, for different lattices are given
in Table II. We note that the critical concentrations
obtained in this manner are very close to the critical
antiferromagnetic-bond concentrations at which ferro-
magnetism vanishes in the corresponding Ising lat-
tices,® 24

TABLE II.
Lattice | Triangul Quad i | »BC BCC FCC
o* 0.1748 01106 (4230 0.1944 0.2445 03722
cg* 0,8252 0.88%4 08780 (.8059 07455 0.6278
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3. LOCALIZATION IN AMAGNETIC FIELD

Application of a constant external magnetic field H
adds, as is well known, an additional phase factor inthe
transport integral J;, (the Peierls factor)*2*

J =exp{—i0,) Jisr

1 e {5 1
¢'1P'.—2-EH[R; X Ry,
where R, is the radius vector that determines the posi-
tion of the {-th site in the lattice. The main property of
these factors is?? that the sum along a closed walk r,
on the lattice is gauge-invariant and is equal to the flux
of the magnetic field H through the area 5. éenclosed by
the contour Ty measured in units of the magnetic-flux
quantum &, =%c/e:

‘Dr,“@u"’@jf" arn +CDN=€D¢“'HS.-,. (52,
The result (51) is valid in not too strong fields, for
which one can neglect the deformation of the atomic
wave functions in the magnetic field {this changes alsc
the modulus J,,).

We see now that the influence of the magnetic field on
the localization is similar to the influence, considered
above, of the random phases J;;. It is determined com-
pletely by the statistics of the area sl"y of the self-
avoiding walks on the lattice. To my knowledge, the
problem of the distribution of the areas of the self-
avoiding paths has not been considered before. It ap-
pears that reliable results can be obtained here only by
computer simulation. Nonetheless, regardless of the
statistics of S;-N, it is clear from the foregoing that the
appearance of the phase factors &, {52) in (23) can
only improve the convergence of the Anderson series
{or at least have no effect on it), and decrease effective-
ly the connectivity constant of the lattice. Therefore,
neglecting spin effects (their influence on the hopping
conductivity was considered recently by Fukuyama and
Yosida®*?), the magnetic field can only promote localiza-
tion in this approximation, We present below a simple
qualitative analysis aimed at revealing the principal
relations and estimating the scale of the phenomena,

It is known from the scaling theory of self-avoiding

walks®®#? that the mean squared dimension of & is
R~V (53).

where ¢ is the lattice constant and v is the critical ex-
ponent of the correlation length, For a qualitative treat-
ment we can therefore assume

{8y | > ~me R ~ g N® {54)

as an estimate of the average area of T,

In the two-dimensional case, with the magnetic field
perpendicular to the plane of the system, it is clear
that the values of ¢ (52} are distributed about

+F mt H([S, |} ~nN"Hab,
(The two signs are again connected with the two pos-

sible circuit directions of & ). The distribution func-
tion ‘br" can then be simulated by two Gaussian peaks;
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P (@)= 3-1712?.: {exp {“E.r”z;;._ﬂ] + exp [_ "(_'I’I*;T-:S-'ﬂ'v]}'
(55}

where
ont~f (N} Hia D42 (56)

is the variance of this distribution, It is difficult at
present to draw any definite conclusions concerning the
behavior of f({N), other than it apparently increases like
a certain power of N. In addition, we assume that the
distributions of the areas (i.e,, and of & ) of the
different T’y are independent, an assumption that is of
courge rather doubtful when the statistics of self-
avoiding walks is considered.

From the foregoing analysis of the random-phase
model we then obtain directly for the effective connec-
tivity constant in a magnetic field the expression

o= lim (Ko~ cos® F KX [1—e™ cos® F ]}

N=rm

I K; BN"‘*‘N'_“H:G‘/@J, {5 7)
- { Kb o ~N“ D} 60
Only in the case 0% ~NH*a'/&% do we obtain
X - { K exp(—const fa'/D,"); const e/ < InK
K% const B'a/ P>l K (58)

i.e., a behavior of the type shown in Fig. 2. At Ha?
~d,, the phases are thus completely randomized. The
behavior (57a), i.e., the absence of an influence of the
field on the localization, is also perfectly feasible. The
case (57b) has low probability,

We note that in the case (58) the effect saturates in
fields Ha*~ ®,,i.e., H~ 10°Gat ¢ ~ 3 A_ Inthe limit Ha®
<« §, it follows from (58) that

Ha W
L®)~ak{1 —const-a-F-}exp 78 7). (59)
i.e., the mobility thresholds are shifted inside the band
in proportion to the square of the field.

In the three-dimensional case we again assume fac-
torization of the distribution function 8 with respect
to various T'y. In addition we assume also complete
randomization of the orientations of 8. in space, so
that

D (Sen) =P (S0} P {52} P (Sra).
Simulating each of the factors in (60} by a simple
Gaussian distribution {with zero mean value}, we obtain
for the distribution function of the flux through the con-
tour Ty

1 Oty
P(%N)=Wexp (-— Zo, )'

where for o, we again assume a behavior of the type
{56). In the three-dimensional case we then obtain the
results (57)=(59).

Another possible approximation for P(CDI-N) is obtained
if the variance of Brx is neglected. It canthen be as-
sumed that g1l the T'y have a fixed area of the order of
(54), but the directions of Sy are random inspace, We
obtain readily

{60)

{61)

O 208,12 @, b<HSe, >

PO, ) =] )
0; (@, 1>H S, 1> (62)
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and for the effective connectivity we get a result of the
type of (47), ie., the magnetic field does not affect the
localization, It seems to me that the most probable is

a behavior of the type {58}, (59), but the final solution of
the problem depends on the behavior of the variance oy
(56).

CONCLUSION

In conclusion, we discuss the relation between the
results above and the deductions of the scaling theory
of localization®*" and the predictions concerning the
influence of the magnetic field.®*'® It was shown in Ref.
7 that in two-dimensional systems an arbitrarily small
disorder suffices for complete localization of all the
states in a band. Although this conclusion met with cer-
tain objections (see the review’), it is confirmed by
simple perturbation-theory calculations in the limit of
weak disorder,®® when !> g, where [ is the mean free
path due to elastic scattering, Analogous calcula-
tions?+!® have demonstrated the strong influence of a
magnetic field on two-dimensional localization, viz.,

a negative magnetoresistance sets in, i.e,, the field
destroys the localization. These results raise the
question of the physical meaning of the two dimensional
mobility edges obtained in Anderson’s standard ap-
proach,** as well as of the meaning of the conclusion
arrived at above, that the magnetic field can only
promote localization (or, in the extreme case, have no
influence on it).

We note first that despite the complete localization,
two-dimensional thresholds retain according to Ref, T a
certain definite physical meaning of the threshold ener-
gies that separate the quasimetallic energy region in
two-dimensional systems from the dielectric region,
When the Fermi energy passes through these threshold,
a rather abrupt transition should take from quasimetal-
lic to hopping conductivity.® The localization effects in
the “quasimetallic” region are connected”*® with the
singular behavior of a special class of per-
turbation-theory diagrams (the Langer-Neal graphs, ),
In the standard Anderson approach*'® the analog of such
processes are apparently multiple scattering with re-
turn [Fig. 1(b}], which contribute to the seli-energy
parts Al'-+«(E), Neglect of such contribution or in-
sufficient allowance for them in the usual approach®*
does not lead to weak (logarithmic} effects of complete
localization in the quasimetallic region of a two-dimen-
sional system.

At the same time, the coniribution of the Langer-
Neal graphs i5 quite sensitive to the magnetic field
(and also to scattering by magnetic impurities),®-?°
A rather weak field suffices to exclude such scattering
processes, Le., to destroy the localization in the quasi-
metallic region, and it is this which leads®+'® to the
effect of negative magnetoresistance. However, even
if the Langer-Neal processes are completely neglected,
the ordinary Anderson localization, which sets in at
[~gq, is possible when the disorder increases in the
system. In a two-dimensional zone of a system located
in a magnetic field, at sofficiently strong disorder (and
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field), there exist ordinary mobility edges, whose
behavior was in fact congidered above,

It is clear from the foregoing that the results of Reis.
9 and 10 and of the present study pertain to different
ranges of magnetic-field variation. In particular, if
the critical-field estimates of Refs. 3-10 are rewritten
in our notation, we find that the negative-magnetoresis-
tance effect saturates (~In¥) in fields He# /&, ~{a/IF at
T=0, or infields Hd/&,~d /11, at T+0, where [, is
the mean free path for inelastic-scattering processes.
By virtue of the condition a<<l« [, (T~ 0) used in Refs,
9 and 10, it is seenthat H& <« &, Typical values of the
critical field in Refs. 9 and 10 are of the order of 10—
100 G, At the same time, the effects discussed above
have a characteristic scale He® = ¢, and saturate at
Hd ~®,, i.e., they refer to fields H~10-10° G, where
they should lead to positive magnetoresistance [this
can occeur earlier in the case of the behavior (57Tb)]. We
note that positive-magnetoresistance effects are im-
plicitly contained in Refs. 9 and 10 via the magnetic-
field dependence of the classical diffusion coefficient.

In conclusion, the author is deeply grateful to M. V.
Medvedev and D. E. Khmel’nitskii for valuable discus-
sions, and B. I. Shklovskii for interest in the work.
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Localization of one-particle spin excitations in a ferromagnet with a

random easy-axis anisotropy
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Spin wave excitations in a ferromagnet with a random easy-axis anisotropy are studied. It is shown that
anomalous damping of magnons near the edge of the spin wave band takes place and this damping is
attributed to the localization of magnons. It is shown that the problem of localization of magnons is
equivalent to the localization of electrons in the Anderson model with a diagonal disorder. The position of the

mobility edge is calculated.

PACS numbers: 75.30.Ds, 75.30.Gw

1. The effect of fluctuations of the uniaxial anisotropy
parameter on the spectrum of spin waves of an amorphous
ferromagnet was studied in Ref. 1 on the basis of the
phenomenological Landau— Lifshitz equation. It was sug-
gested in Rel. 1 that the spin wave spectroscopy methods
could be used to detect the resulting modification in the
dispersion law of spin waves and thus estimate the {luc-
tuations in the anisotropy parameter at different sites and
determine their spatial correlation. It is of interest to in-
vestigate this problem within a lattice model of an amor-
phous ferromagnet and compare the spin wave spectrum
calculated by a perturbation theory method with the re-
sults on the position of the mobility edge of spin wave ex-
citations (in the spirit of the Anderson theory of localiza-
tion of electrons?),

We shall, therefore, consider a model of a uniaxial
Heisenberg ferromagnet in which only the anisotropy pa-
rameter K(n) = 0 characterizing an easy-axis anisotropy
1s a random quantity and all the other parameters are reg-
ular
N x \

H=-%,-J EES'S"“_EKM”'\:F' )
=1 =1 n=1

m=l

Here, J > 0; Z is the number of nearest neighbors, and we
ccaine that the uniaxial properties of a crystul manifest
themselves only by a uniaxial single-ion anisotropy but do
not influence the lattice parameters or the exchange inter-
action. It follows that the magnetic lattice can be well ap-
proximated by a cubie lattice. The condition K(n) = 0 in-
dicutes that the ordering of all the spins in the ground
state |¥,) is ferromagnetic and the energy of the ground
state is given by

=
Ey=— = INZST_ 52 2‘ K (n).
n

We shall now write the Schridinger equation for a
state | ) corresponding toa single spin deviation (the

1135 Sov. Phys. Saolid State 23(7), July 1981

0038-5654/81/07 1135-03 $02.40

total z component of the spin moment of Lhe crystal is given
by S§ym =NS—1)

MWD =E | ¥, (2)
The wave function |¥;) can be expanded In terms of the
basis of one-particle spin deviations localized at the lattice
sites

N i
=Y co|ny; |a)=(28)"h 57|00,
=z : @)
As a result, we obtain either homogeneous equations for
the coefficients
' z
{ﬁ—.rsz—(zs_u.*f(nnc“_-r.rsEam=o ()

=1

or inhomogeneous equations for the corresponding Green's
function

-

[\/i\‘

(E 52— (28— 1)K (n)) Gpp+- IS X G,y , =1, (5)

'

(the energy E =E{ —E, is measured from the ground state
energy). Here, Gpp(E + 10" is the Fourier transform of
the retarded Green's function

Gpp (1) = — 18 {2} (28)71 W | 5 (0) S5 (0] W

We can calculate the self-energy corrections to the
spectrum of spin waves a& in the mean-field approximation

= (25 —1) K (n) 4 .'S(z-—}_:ciq!) ©)

using the Edwards—Jones method,’ which yields the fol-
lowing dispersion law in the Born approximation:

- . 2N — 1N D[R R 28 —1\*D (K}
xqz[ﬁﬂ—l]ﬁ[i—(T)#{] -|-J.\u'q7L'|.—(_2‘3-—) T_,‘]'

K
. (7
The damping of spin waves is given by
© 1982 American Institute of Physics 1135



DK
Ty = (25 — 1) D (K) 5go () = (25 — 1) -;,(_,—} ag

(8)
in the long~wavelength limit aqg «< 1 (g is the lattice pa-
rameter and g, is the spin wave denslity of statgs In a crys=
tal in the mean-field approximation).

We have used In the derivation of Egs. (7) and (8) the
assumption that the fluctuations of the anisotropy param-
eter at different lattice sites are statistically independent,
i.e., that the averaging over the disorder is performed as
follows:

K a1 K () = [KE (n) — (K)2] bp 4 (K)2= D (K3, + (RON (9)

where D(K) is the dispersion of the anisotropy parameter.
The approximation which neglects all spatial correlations

of the fluctuations of the anisotropy is not necessary but

it is convenient for our comparison with the theory of local-
ization. The numerical cocfficients ¢ and 7 in Eq. (7) are
given by

1 W 2 R : 2
Luﬁl'}a;—_ﬁrmﬂ.ul for simple lattice,
. &

4 .
+ = 0.00 for cubic Iamce..‘

Jm%z@:g—_g—)—

Since the ratlo (28 — 1)/28 isof the order of unity, the
requirement that corrections to the mean-field theory
should be small assumes the form D{K} /KJ « 1 and
D{K}n/J* « 1. It can be seen that the fluctuations of the
anisotropy parameter reduce the gap in the spin wave
spectrum and the spin wave stiffness. It should be noted
that the gap in the spin wave spectrum is defined as eq=¢
rather than the actual gap in the density of states of sin-
gle-particle spin excitations corresponding to the lowest
Lifshitz boundary of the one-particle spectrum for emin =
(28 — 1)min{K(n)}. The density of states of one-particle
excitations increases rapidly at energies ~gg =g-

The most interesting physical result which can be
deduced from Eqs, (7) and (8) can be formulated as fol-
lows. The dispersion curve near £g=g Is not well defined
due to damping I'q ~ « and the change in the excitation
snergy near the gap is given by €q — £q=0 ~ a’q®. It fol-
lows that the dispersion curve of spin waves in the long-
wavelength limit is well defined only if the condition

s { 28 —INED(K) L
"—-—"‘“(T) 75 ag §!

(10)
is satisfied, i.e., for D{K}/J* « aq < 1. It appears that
this important result was first noted by Korenblit and
Shender® for an asperomagnet with a random distribution
of the easy-magnetization axes.

1t should be noted that the Goldstone gapless mode does
not appear in our model, The existence of such a mode is
due to continuous degeneracy of the ground state which
does not occur in systems with an easy-axis anisotropy.
However, the situation is quite different for systems with
an eusy-plane anisotropy [K(n) < 0 in Eqg. (1)] where the
ground state is invariant with respect to rotations in the
plane of the easy magnetization.

2. Since there is a region in which the perturbation
theory breaks down near the energies corresponding to the
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bottom of the spin wave band calculated in the mean field
approximation, spin wave excitations can become localized
near the bottom of the band.

Introducing the notation

= (28— 1)K (n) 4 152, V=18, (11)

we can see that Eqs, (4) and (5) demonstrate that the pres-
ent modél is equivalent to the Anderson model with diag=
onal disorder.®®7 The quantity €, plays the role of a
random electron energy at the n-th site and V is the am-
plitude of the electron hopping between sites. Conse-
quently, we can apply to our model the criteria developed
for the mobility edge of electrons. We shall not require

a great numerical accuracy in the caleulation of the mobil-
ity edge and restrict ourselves Lo a qualitative analysis.
Consequently, we can use the Ziman criterion of localiza-
tion of excitations®

JS

—I1SZ — (25— 1)K (n) (12)

Jost.

We shall consider a uniform distribution of the an-
isotropy parameter in the interval

Zexp {In \ y5

w W
K-—*T<K(n)<3+-2—. W< 2K. (13)
Performing the averaging in Eq. (12), we find that the one-
particle spin excitations become localized provided the
condition

[z — 2"

ity

ol | <1

Tty

Ze

(14)

is satisfied, where x = [E — JSZ — (25 — 1)K]/JS is the
dimensionless energy and y = (28 — 1)W/2JS is the dimen-
sionless scatter of the random values of the anisofropy
parameter.

The equality in Eq. (14) yields an equation for the cal-
culation of the mobility edge of spin excitations. Since Eq.
(14) is invariant under the substitution x ——x, it follows
that the mobility edges are symmetrically localized with
respect to the point x =0 [or with respect to E = (25— 1)K+
Js2, which represents the center of the spin wave band in
the mean field approximation]. Setting x =0, we find U!
following condition for the scatter in the anisotropy which
is required for the localization in the whole band:

225 — 1 K
21y

25— w
2l

> Ze. (15)

However, the case when the dispersion D{K} = W¥/12
is small compared with KJ and J? is more interesting.

Equation (14) ylelds x = £+ Z for y — 0. For y/x=~ y/2 <1,
we then obtain

=2 b (2]
which has the following solution:
e sa[i (3],

The lowest value of the mobility edge £]o¢ I8 then given by

(16)

(17)
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) o n T PO Gy T\ T

373 TS
teo /28— i)D{x}
=375 L(_i.s_) (C'”i' 77

where we have used, for comparison, the energy of the gap
tq=o glven by Eq. (7) and [ —1/Z =~ 0.34 for a simple
cublc lattice.

(18)

The method of Ref. 9 yields analogous results with a
dlfferent numerical factor

O R T
Us=" s [“K, i g;i]

teo (251N 2y D (K}
=+ () (- ) (19)
where K, is the lattice connectivity constant!® and ¢ —
2/Ke =~ 0.08 for a simple cubic lattice.

we find that, when the dispersion of the anisotropy
D{K}/J? « 1 is small compared with the exchange in-
teraction, the region in which the spin waves are not well
defined extends approximately up to energies ~D*{K}/J
from the bottom of the spin wave band of the unperturbed
"average" crystal, and the lowest value of the mobility edge
lies at a distance ~D{K }/T below the gap in the spin wave
spectrum of the unperturbed crystal (however, it lies above
the gap £q=9 calculated in the perturbation theory). An
estimate based on the Ziman theory® yields a somewhat
higher position of the mobility edge than the estimate due
to Abou-Chacra and Thouless.?

It follows that fluctuations of the anisotropy param-
eter of a crystal with an easy-axis anisotropy lead to a
rapid increase in the damping near the bottom of the spin
wave band and to a localization of magnons in the region of
anomalous damping. Unfortunately, the region in question
cannot be studied by the rescnance method because of a
sharp increase in the darping (for example, by the spin
wave resonance). However, we may assume that the ex-
istence of localized spin excitations should manifest it-
self in the transport effects (for example, it should in-
flucnce the magnitude of the magnon contribution to the
thermal conductivity, etc.).
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The appearance of a region of anomalous damping
Iq ~ «q near the bottom of the spin wave band is typical
of disordered magnetic materials with an easy-axis an-
isotropy and, in particular, it manifests itself in aspero-
magnels with randomly oriented axesof the casy mag-
netization® and in ferromagnets with a regular easy-axis
anisotropy but with a random distribution of exchunge in-
tegrals of different signs.! Consequently, the relationship
between the anomalous behavior of the damping of mag-=
nons and their localization which was demonstrated in the
present problem indicates that the localization of mugnons
near the bottom of the one-particle spin excitations should
occur in all such cases. Such localization should be most
important for the thermodynumic und transport properties
of magnetic materials, For disordered mugnetic materi-
als with an isotropic exchange interaction or with an easy-
plane anisotropy, spin excitations should become local-
ized in the upper part of the energy band. This was re-
cently demonstrated for an isotropic Heisenberg spin glass
(Ref. 12). It appears that the problem of localization of
magnons near the bottom of the energy band requires sep-
arate discussion for each model system because of the
possible appearance of a low-lying impurity band of local
spin excitations with their polarization opposite to the
polarization of the spin excitalions ol the matrix of the
unperturbed magnetic crystal.
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Random Bond Ising Model
in Self-Avoiding Walk Approximation

By
M. V. Mepvepev and M. V. Sapovsgno

Free encrgy of random bond [sing model is analysed by high-temperature expansion in self.
avoiding walk approximation. Conditions of instability of the paramagnetic state are determined
through the convergence criterion of the random high-temperature series. Critical concentrations
for the loss of the long-range magnetic order are determined for different 2d and 34 lattices.

MeToTaMH BRICOKOTEMIIEPATYPHBIX padilosked it B npubinenuy nyTelt Gea nepecedeHIH
HegieyerTca croGonHaA AHePrAA Mogean MaKAra co crydaltHbiMH 0GMEHHBIME CBAIAMH.
Fla onmpefeiesud MOpores CXOZMMOCTH CAYYAHHBIX BHCOKOTEMOEPATYPUBX PHIOB
HAliJeNH YCIOBMA NEeYyCTONUMBOCTH NAPAMATHHTHOTO COCTOAHHA. JIAA DasIMIHLIX
ABYMEDHLIX M TPeXMEpPHHWX PeleTOR olpeTesIeHEl KPHTHYMEeCKHe HOHLENTDAUHH, (IPH
ROTOPBIX TPOACXOTHUT DAIPYILEHIE TATBHET0 MATHUTHOrG MOPAINR,

1. Introduection

In recent years there has been considerable interest in the properties of disordered
magnetic systems [1], and in particular the random bond Tsing model was actively
studied [2 to 10]. We have the situation in mind of the Ising lattice with antiferro-
magnetic bonds distributed with concentration ¢, and ferromagnetic honds — with
concentration 1 — o, In this model the important concept of frustration has heen
formulated for the first time [2, 5, 7, 9]. One of the basic (and not yer completely
solved) problems in this model is the structure of its phase diagram [3 to 6, 8 to 10]
and, especially, the value of the critical concentration ¢} of the antiferromagnetic
bonds, at which ferromagnetism in the system disappears. These problems have been
analysed by different methods, from numerical simulation [3 to 5] and renormalization
group [4, 8] to relatively simple variants of molecular-field approximation for dis-
ordered systems (8, 10].

In this paper these problems are studied by a simple method based upon the con-
vergence criterion of the high-temperature expansion for the Ising model in the self-
avoiding walk approximation, used previously for regular systems by Domb [11}.
Our approach is based in part on the previous work by one of the anthors [12], where
the convergence of a similar random series had been considered related to the problem
of electron localization in disordered systems. The main attractive feature of our
method s its simplicity, as well as the similarity of the obtained results, to those of
more refined approaches. This leads us to helieve in a rather high accuracy of these
results. At the same time we are able to analyse some of more general cases than
those considered before by different authors.

1} 8. Kovalevskii str. 18, GSF-170, Sverdlovsk 620219, TSSR.
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2. High-Temperature Expansion for the Free Energy
in the Self-Avoiding Walk Appreximation

Consider an Ising lattice described by the Hamiltonian
H=— Z J-;jG'g{Tj » (1)
{8y
where the exchange interaction J; of the nearest peighbours takes random values,

oy = +1 is an lIsing spin. The distribution function of exchange interactions is
factorized over the bonds on the lattice,

P{Jy} —‘—'(I_g P(dy), (2)
where ’
Pl =¢8(Jy — Jp) + {1 —)8(Jy — J4). (3)

Here J4 > 0 is the “ferromagnetic” exchange mtegral, Jy < 0 is the “antiferromag-
nietic”” exchange integral, 0 << ¢ < 1 is the concentration of antiferromagnetic bonds.

The partition function of the system can be represented as usual in the following
form [13]:

Z{gy = [exp Z Kijo:00] =

= Zl (11 (cosh Ky) {1 + wyoa9)], (4)
{o} &>

where wy; = tanh Ky, Kq.;i = BJy, B=1/T, T is the temperature. High-temperature
expansion is the expansion in powers of Wiy The coefficient of the N-th power of Wi

consists of all possible products of N pairs of 0,6;. Because of E oi=0; Yof=
fa}
= Z 1 =1, this coefficient can be represented by a closed polygon on the lattice

[13} Flg. 1}, Every bond on the graph represents a factor tanh K;; and each bond
appears only once. At each vertex of the graph only an even number of bonds can
meet.

The expansion of Z{8} consists of all possible polygons (including unconnected
ones) constructed on the lattice by these rules. In the lowest orders in ¥ most of these
graphs are just self-avoiding walks (SAW) on the lattice. (Cf. Fig. 1a to ¢ for ¥ = 8.)

The logarithm of the partition sum (4),

InZ{f} = T Incosh K;; + In 3 [T (1 + wyouw)) s {5)
Ry e} f)
can also be expressed as an expansion in powers of w;; [11]. This expansion consists

only of connected graphs, which can be represented by the closed paths on the lattice,
starting and ending in the given lattice site. However, in this case the graphs are not

[ ]

- a b < d

Hig. 1. Examples of graphs in the expansion of Z{f} for ¥ =8
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so simple as in the case of the partition function. In particular, every bond can appear
several times, though again only an even number of bonds can meet at each vertex.
This graphs can be classified over the so-called cyclomatic number ¢ =1 — p 41
[11], where { is the number of the lines in the graph (multiple bonds are caleulated as
one}, p is the number of vertices. The class corresponding to ' = 1 consists of graphs
topologically equivalent to the closed SAW’s (which can be traced several times,
however). Examples of such graphs are given in Fig. 2 a to ¢. In Fig. 2d we show the
graph with ' = 2 {the go-called 6-topology [11]). Gur approximation neglects all the
graphs with ' > 1, thus we take into account only the graphs topologically equivalent
to the closed SAW’s.
Then we get

InZ{f} = lnZ{#) — I Incosh K;; ==
(G

‘—“222 7 Wik e Wi —
N:p

1 ., 1 3
—5Z I 3Z wg o wk+ 5 2 D8 el vl
253 % Pw-z ¥ 4,

(6)

Here the products of wy;, w3, ... ete, are taken along all possible SAW’s Tiof N steps,
T2 of N/2 steps (but with two bonds on each step) ete., starting and ending in the
1-th site. The atrueture of the expansion (6} is clear from (8) and the expansion of
In(1+ )= — 1/222 4 1/32® — 1/da* + ... The extra combinatorial factors 1N
for the contribution of I'y, 2/¥ for the contmbutmn of I‘Mg, etc. are due to the fact
that the initial vertex i of J'% can be chosen arbitrarily among N vertices of Ik,
among N/2 vertices for FN;g, etc.

The instability of the paramagnetic phase is determined by the convergence cri-
terion of the high-temperature expansion (6) [11, 12]. In the regular cage wy = 1wy =
= ... =w = tanh 8J and the problem reduces to the convergence criterion of the
series [11],

InZ{f} ~ 3 axw¥ | (T}
N
where
tty == p(N) — + p(N[2) + F p(Nf3) + ..., (8)
PN =5 Vs,

and Uy is the number of the closed SAW’s of V steps on the 'latt,ice, associated with
the given site. It iz known [11, 14] that for ¥ 3 1 Uy =~ N—2u¥ (k> 0}, where p is

.t 1] b ¢ —e

Fig. 2, Examples of graphs in the expansion of In Z{#}

Fe
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the so-called connectivity constant of the lattice. Then it is obvious that for ¥ -1
only the first term in (8) is relevant (because of g > u!/® > u'/® ..) and the series in
{7) diverges if yw = p tanh 8J = 1. The equality determines the critical temperature
[11]. The error of the SAW-approximation in regular cage is = 3%, for the 3d lattices,
and == 109, for the 2d lattices [11].

3. Convergence Criterion of the Random High-Temperature Series

In a disordered system the high-temperature expansion {(6) is & random series and its
convergence must be treated statistically. It is generally accepted [1] that this ex-
pansion must be averaged over (2) and (3) and considered as representing the ob-
servable free-energy of the system, However, first of all we shall consider the conver-
gence of the series (6) in the sense of convergence in probability, as it is done in
localization theory [15, 16). Qur analysis will be similar to that used in [12].

First of all let us consider qualitatively the case of J, == —J, and ¢ = 1/2 in (3).
Now only the terms with odd powers of wy; on the bonds in (6) are random (in sign ).
Consider the first series in (6). In the N-th order in wy; it consists of terms ~ u¥, cor-
responding to the number of SAW’s I'y, and the sign of each of them is absolutely
random for ¢ = 1{2 {positive and negative bonds are equally probable}. Then from
the obvious analogy with the one-dimensional Brownian metion it is clear, that the
modulus of this term for N 3 1 is of the order of u¥/*w¥, where w = tanh §J, =
= tanh # |J4|. The limis of convergence of the series is then determined by u'?w = 1,
and this coincides by the way with the limit of convergence of the second (ron-random)
series in {6): there are terms ~ u?/2, each contributing a factor of w¥, Only the first
two terms in (6) are relevant due to u > pl2 > ul/®, ete. Note, that the average of
the first term in {6) is exactly equal to zero for ¢ == 1/2, J, = |J4!, and the conver-
gence of the averaged high-temperature series is determined by the second term in
(6). We shall demonstrate that this is the general property of the high-temperature
geries for the random bond Ising model. The possibility of a singularity in the high-
temperature expansion for this model at u!/®w = 1 for ¢ = 1/2, J, = —Jy was first
noted by Domb [17] (see, however, [19]).

Consider now the general case of distribution (2) and (3), Let us analyse the modulus
of the N-th order term in the first series in (8). Obvicusly we have

ln ZNBY =15, wd —ral—wp) 3 = W] [T (—a" = wi X, ()

N i
where 11, is the number of negative bondson the path I'y, @ = wgfw,, w, = tanh §J,,
wyp == tanh f {Jy|. The probability of ny, is given by the binomial distribution

NI N~
. [P P LY o — e\t T Iy
Py(nry) T — i ¢ rr(l — ¢) . (10

Then it is easy to find
A=) = (1 —¢—ca)¥,
{=)" 5y = (1 — ¢ + ca®)" (11)

and the dispersion of an isolated term in {$) is equal to

L—a)™ sy — ((—a)"T¥)t = (1 — ¢ + ca?)¥ — (1 — o — ca)?¥ . (12)
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Let us estimate the most probable value of {Xy| by (X532 The dispersion of the
sum of independent random variables equals the sum of dispersions of isolated terms
in the sum, Thus, suppesing independence {(for N 3= 1) of terms ~ p¥ in X¥ we get

(X3 — (Xt = p¥ (1 — ¢ + ca®)¥ — (1 — ¢ — ca)2¥]. (13)
Use now

(Xw> = p¥{(—a)"T%) = p¥(1 — ¢ — ca}¥ (14)
to get

(X3 = p {1 — ¢ + ca?)™ — (1 — 0 — ca)®5] 4 p?¥(1 — ¢ — ca)?¥ . (13)

Independence of contributions from the different paths I'y is crueial for our analysis,
Obvionsly some of ~ p¥ paths have some parts in common. We suppose, that this
leads to correlations negligible in the limit of N — co,

The convergence condition for the first series in (6) is given now by

wy lm X3V 1 (16)

Newatr

and the critical temperature is determined by the equation

N - 4
wy lim [p”(l—-c-—o:’ﬁ) +ui“'[(1—c+c?—§) —

Nt A Wi
2N 12N
—(1-—6—621—3-) ]} =1, (17)
Wy
In particular, for @ = wgfw, = 1, Le. |Jg| = J4 = J, we have
w Hm {!"_24’\?{1 — 26)2.\7 + p*"[l —_ (1 — 26]2.\(]}1!25 =1, (1%)
N

From (18) we get

(g = 1 {19)
or ¢f < ¢ < c¥ and
pwll — 2 =1 {20y

fore < ef, ¢ >> ¢¥, where the critical concentrations c}‘,g are determined by the equation
u(l — 2¢)2 =1 and are

1 1
e =5 F —= (21)
2yp
Tablel
latsice  squure honeycomb $.c. b.c.c.
» 2.6390 1.3484 4.6826 8.5288
; 2.4142 1.7321 4.5840 6.4032
¥ 0.1782 01201 0.2665 0.3024

c¥ 0.5218 0.8799 0.7335 0.6976
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i Fig. 3. Phase diagram for the case of J, = |Jg/,
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Note, that the result (19) simply means that in the concentration interval cf <{e < ¢}
all terms = u¥ in Xy are random in sign (with equal probability!).

For the numerical estimates we use the constant u which is not the connectivity
constant of the lattice, as it should be done in the SAW approximation [11, 14], but
instead we use an “Ising constant” u, which determines the exact critical tempera-
ture for the regular case by the relation yw = 1 {11]. This assures the matching with
the regular case for ¢ = 0;1, and we hope that such an approximation takes into
account qualitatively the role of graphs with cyclomatic number ¢ >> 1, neglected
above. As was noted before (it can be seen also from Table 1, where i denctes now the
connectivity constant), this leads to a rather small change of the results, diminishing
slightly the critical temperature, Critical concentrations ¢f; determined for different
lattices are given in Table 1. We assume, that these concentrations correspond to the
Inss of the long-range ferromagnetic and antiferromagnetic order in the system. The
phase diagram is shown in Fig. 3.

In the general case of w, == wpy we obtain from (17)

pUR(1 — ¢) wk + cwh} =1 (22)
for e} < ¢ < ¢, and
pi{l —c)wy — cwpl =1 (23)

for ¢ < ¢f and ¢ >> ¢}, where the critical concentrations ¢f; are determined by the
roots of the equation

| E"i — Wy z
1 cj—cwia-p(l e ch). (24)
In Table 2 we give critical concentrations cfy for different lattices and ratios w, fwy.
In Fig. 4 the phase diagram of the system for w, =F wg is shown.

Consider finally the case of wy — 0, w, == 0, i.e. the percolation limit. In this case
we obtain from (17)

1l —ejwy =1 _ (25)
for ¢ < ¢*, where
F=1—pl=1—0¢*, {26)

For ¢ >> c* the critical temperature is zero, thus * = 1/u is the critical concentration
of the percolation transition, i.e. the critical concentration of the ferromagnetic bonds
for the appearance of the long-range ferromagnetic order, In Table 3 we give the
values of ¢* for the different lattices according to (26), as well as the exact critical
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Table 2

lattice squure honeycomb s.c. b.e. e
wyitey =16 of 0.1234 0.0810 0.1920 0.2214
o1 0.7595 0.8344 0.6517 0.6093

wyiwy =20 o 0.0912 0.0587 0.1465 0.1713
h 0.7135 0.8004 0.5928 0.5476

wgfwy =25 ¢ 0.0703 0.0446 0.1163 0.1375
ox 0.6785 0.7743 0.5485 0.5008

wgfwy, = 3.0  of 0.0562 0.0350 0.09850 0.1135
¥ 0.6508 0.7536 0.5138 0.4646

concentrations for the bond percolation [14]. From these results one may estimate the
accuracy of our approach, but one must also remember that classical percolation is
relevant for T = 0, i.e. strictly speaking it carnot be analysed on the basis of high-
temperature expansions.

Our results up to now were obtained from the comvergence in probability criterion
for the first series in (6) {which consists of terms of random signs). Now we show that
the same resnlts follow also from the analysis of the convergence of the seriea for the

average of In Z{B},

1
(I Z{BYy = 2 ;Ef@‘-’iﬂvﬂ---w&)p&—
1 2 o i |
—3 5L N<waj'wjx - Widryje + ... (27)
¥ % T

The averaging can be performed directly with the help of (10] Analogously to (11)
we get

wy N{z
Wi o Wi pi, = WY (1 —~c— G'Z) , (28)
Nig.
2.2 2 wg
{w.,-jw;g ver w;,:)rjvm = 'H?“Li (1 - + 01;2—) .
A

Then the limit of convergence for the first series in (27) is

u {1 — ) w, — cwy =1 ' {29)

: _ Fig, 4.-Phase diagram for the case of J, < |/l

P 557 T Notatiosn are the same ag in Fig. 3. Ljw,, , =
| '
g i

=(1/2} (Vapa 4 (1 — 6% = {1 —a)]l;a =wpjw,
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Table 3

lattice square honeycomb 2.0 b.e.c.
e* = 1fu 0.4142 0.5773 0.2181 0.1561
o* [14) 0.5000 0.6527 0.2470 0.1780

and for the second series it is given by
(1 — ) wi + owh} =1. (30)

These coincide with {23) and (22), respectively. The econvergence of the whole series
for (In Z{B}> is determined by (29} for ¢ <  cf, ¢ > ¢, and by (30) for ¢f < ¢ < ¢},
where ¢f; are determined from the condition of equivalence of (29) and (30), which
coincides with (24). It is easy to see that the neglected terms of (27) {with triple and
other multiple bonds) are irrelevant, because the corresponding series converge if
(29} and (30) are satisfied.

Thus the convergence criterion for the averaged high-temperature expansion leads
to exactly the same results as the convergence in the probability eriterion, During the
averaging we were not using the assumption of statistical independence of different
paths I'y (for N 3 1), and the result obtained confirms the use of this assumption
in the analysis of the convergence in probability. The equivalence of both approaches
is based in fact on the following theorem [19]: a random seriea {with independent
terms) converges with probability equal to unity, if both the averaged series con-
verge, and the series the termas of which are equal to the dispersions of the terms of the
initial sertes.

4. Diseussion

Consider now the physical meaning of the results obtained. Our analysis of the con-
vergence in probability allows one to give a very simple interpretation of these results
in terms of distribution of frustrations. It is well known [2, 5, 7, 9] that the model
under consideration possesses a local gauge invariance and the statistical mechanics
of the model should be expressed in terms of gauge invariant quantities. In our ap-
proach this is assured by the closed character of the paths I'y on the lattice. Cons:der
for simplicity the case of Jy = |J sl on the square lattice. Then the product of wy's
along the path Iy (in the first series in (6)} is equal to

Wity ... Wy = w¥ gn Jngjk e Jg,' = w¥ H @p , (31}
]
where {2, 7]
©, = sgn JyJpIuln (32}

is the produet of Jy's around the elementary plaquette (@, = +1}. The product of
@,’s in (31) is taken over all the plaquettes inside the contour of Iy, Thus, its sign is
positive or negative depending on whether there is an even or odd number of frustrated
(®, = —1) plaquettes inside /y. As was noted above, for high enough concentration
of negative (positive) bonds, greater than ¢f(c}), the value of [I @, in (31) is equal to

+1 WIth the same probability. This means that in the concentratlon interval ¢f <
< ¢ < ¢% an odd or an even number of frustrated plaquettes belong to the interior of
an arhitrary SAW Iy (¥ 3> 1) with the same probability. It is natural to assume that
in such a situation there is no long-range ferromagnetic or antiferromagnetic order,
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whieh leads to the interpretation of ¢}s given above. In the previous considerations
[2, 3, 7, 9] different aspects of frustration distributions with the variance of ¢ had
been discussed, but the interpretation of the instability of long-range order hased
upon a stochastic parity of frustrated plaquettes inside a closed SAW on the lattice
has not been, apparently, given before.

On the basis of our results it seems possible to assume the existence of a spin-glass
state in the concentration region ¢f < ¢ < ¢¥, but in fact our approximations are too
crude to solve this problem. The SAW-approximation has a tendency to overestimate
the critical temperature of the phase transition [11], and also the role of neglected
graphs is not very clear in this region (cf. [18]). Our method is based upon the high-
temperature expansion and is inapplicable for the discussion of the nature of con-
densed phases (below the phase-transition line in Fig, 3, 4),

The critical concentrations ¢}z found above are in good agreement with the results
of other authors [3 to 6, 8]. Note, however, that in most of these papers only the
case of J, = Jp was considered for the simplest lattices. Our results coincide with
the results of molecular field approximation for the critical temperatures {6] if we
replace there the number of nearest neighbours z by the connectivity constant u and
the ratio J/T by tanh J{T, which is typical also for the regular Ising model [11].
However, our resuits are ohtained without any assumptions about the nature of
condensed phases, such as an introduction of the Edwards-Anderson order parameter.
Note, that the critical concentrations determined above are related to the line of the
instability of the paramagnetic state (see Fig. 3, 4), they are naturally different from
the similar concentrations for 7' = 0 [6], which cannot be found from the high-tem-
perature expansion, We hope that the accuracy of our results is approximately the
same- 33 for the-SAW approximation in the regular case {11].
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This paper is devoted to a study of the general localization criterion in the field theory of an
electron in a random field. We show the equivalence of the Economou-Cohen and the Berezinskii-
Gor’kov localization criteria. The general localization criterion is formulated as the requirement
of the existence of a pole contribution in the two-particle Green function with a factorizable
residue (in momentum space). We search for a solution of this kind on the basis of a study of the
homogeneous Bethe-Salpeter equation and in the framework of the instanton approach. We show
that the Bethe-Salpeter equation determines the point where the “normal” (metallic) phase be-
comes unstable. The instanton approach describes the energy region corresponding to the local-
ized phase. In both approaches the critical energy for which the transition occurs (mobility
threshold} falls in the “Ginzburg critical region” which goes substantially beyond the framework
of the approximations used. Both approaches follow naturally from an effective action formalism,

but they reflect different mechanisms for the instability of the normal phase.

PACS numbers: 11.10.8t

1. INTRODUCTION

The obvious analogy which exists between the pheno-
menon of the localization of electrons in disordered systems
{Anderson transition) and the usual phase transitions has led
to many attempts to construct a field theory for an electron
in a random field (see the review' and Refs. 2 to 5). The
results of these papers are rather contradictory and the gen-
eral picture of the transition is still not at all clear. In particu-
lar, this is true of the problem of the possibility of describing
the localization on the basis of some kind of order-parameter
representation.

The problem of how the localization manifests itself in
the basic quantities with which the theory operates, such as
the Green function, has also not been studied sufficiently.
This makes the final solution of the problem much more
difficult. It is, for example, clear that the problem of the
realization of the localization effect itself is, in general, dif-
ferent from the problem of the behavior of the conductivity
near the mobility threshold, the solution of which may turn
out ot be much more complex. The present paper is devoted
to an analysis of the general criterion for localization and to
some attempts to look for the corresponding selutions from
the basic equations of the theory of an electron in a random
field.

2. EQUIVALENCE OF 'ECONOMOU-COHEN AND
BEREZINSKII-GOR’KOV LOCALIZATION CRITERIA

We consider noninteracting electrons moving in the
field of impurities which are randomly distributed (in a J-
dimensional space). Following Berezinskii and Gor’kov® we
define the spectral density:

1 r r
gpg(l‘}ngn (xVd= W( ;"3\-. (!‘){p‘,' (ﬂ@v" (r )‘Pv(‘-‘ )

Xﬁ(E—s,)ﬁ(EvLm—s,.')) \ {n

B16 Sov. Phys. JETP 56 (4), October 1882

N(E)= < Y ouiner@sE-20) 2)

is the electron density of states averaged over the configura-
tions of the random potential: ¢, (r) and ¢, are the exact
wavefunctions and energy levels of the electron in the field of
the impurities, v is a set of quantum numbers characterizing
these states, E is the energy of the electron, and w is an arbi-
trary frequency.

According to the localization criterion proposed in Ref.
6 there arises in the range of energies £ corresponding to
localized states a contribution which has a 5-shape:

Cpe(r) pesu (P) 2=Az(r—r ) (w) +p 5 (r—1, @), (3)
or, in the momentum representation,
Epeperoda=Az{q)0{w) +p.5(qu). (4)

The second term in (3) or (4] is regular in w. In the region of
delocalized states A (r — ') = A {g) = 0.

As the quantities A - (q) or Ag(r — ¢') signal the appear-
ance of localized states it is useful to change to their defini-
tion in the standard formalism (Green functions). Introduc-
ing retarded and advanced averaged Green functions for the
electron

GraGrE)= Y (@(r)g. 1)/ (F—e.xit)) (5)
and using the definition (1} we get immediately

Cpe(r) peyulr’) b= {Im G**(rt' E+0) Im G** (r'tE) >

1
N (E)

1 .3 ; A ’
L%_ZNFE_)RB“G (rr'E+a)GA(r'1E)

—~{GRA(rr Etw) GR4(r'eE) 2}, (6)
or, in momenturn space,
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{pspesoty = Im{2**(Eaq}— 2" (Eoq}}, {7)

1
2N (E)
where, for simplicity, we have introduced the notation’

1
L2 =——§: ® ‘E+e)GA(p-p-E)>, (B
@** (Eoq) o (G*(p.p. E+a)GA(p-"p-E) (8)
PP

where p, =p+4q/2. The quantities @°*(Ewg) or
@4 (Ewq) are defined similarly. One sees easily™® that as
q—0, »—0 the quantities P** and &4 behave regularly. It
is clear that the singular contribution to (4) corresponding to
the appearance of localized states can arise only from the
first term in (8). One sees easily that

— I: 1 RA :
Az(gq}= I:f:mﬁ Im $R4(Ew+ibq) | omq

i
=——-1I/ ] X A , .
SN (E) ELT‘SZ Re<G*(p,p, E-+i8) GA(p_'p_E lw(;]

or, in the coordinate representation,

’ — 1 r F n z
Ax(l"—l' )-—-m}ilfl 6<IG(1'1' E+£6)i ?. {10}

It is useful to introduce the quantity

g As(q) -

“(2m)*

1
= ’ 1 H '
2N (E !moG(FG(rr E+id) [ cmr, ()

Az=Ag (l'—l") fe—er =

which is proportional to the averaged probability that an
electron returns to the initial point in coordinate space after
infinite time.® Hence it is clear that the general Berezinskii-
Gor’kov localization criterion® is equivalent to the general-
ized Economou-Cohen localization criterion.’

3. LOCALIZATION FROM THE BETHE-SALPETER EQUATION

We consider the two-particle Green function
1
D (Eqo) = = 5 (G (PP EF @) G2 (p-Tp-EDD. (12)

It is well known that in the framework of perturbation the-
ory it is determined by the Bethe-Salpeter integral equa-
tion™*

1
Py (Eq) =G (E+0ps) G (Ep-) { — 55 (p—F)

+ ¥ Ui (@0) pyv (B0 }, (13)

where G®4(Ep} is the complete averaged retarded (ad-
vanced) single-electron Green function, while the irreduci-
ble vertex part U, (gw) is determined by the sum of all
graphs which cannot be cut along two lines—an advanced
and a retarded cone (see Fig. 1, where the dashed line indi-
cates the “interaction” sz, where p is the density of the
impurities and ¥ the Fourier transform of the potential of a
single impurity, which for the sake of simplicity we assume
to be a point impurity).

We consider the problem of whether the solution of Eq.
(13) can lead to a two-particle Green function containing
singularities corresponding to localization. Starting from

a17 Sov. Phys. JETP 56 {4}, October 1982

T \\‘_i// ~
Ylgew) = lo-0'+ | + :x/\ +
r“L} ! |' L
a2 i i
FiG. 1.

the results of the preceding section we assume that in the
range of energies E where there exist localized states in the
system, &, (Eqew) has the form with a pole
P (E) g% (E)
Ppp (o) =— TS

PP’

+ Ebpp' {Eqo), {14}

where @*(Eqe) is the regular part while the factorization of
the residue at the pole (in momentum space) is assumed by
analogy with the problem of bound states. We give a certain
justification for this assumption in that follows.

From (8) and (13) we get at once

n ) TV E) Yo
B4 (Equ) =— = +2 Bu (Eqo),  (15)
xe(B)= Y 0 (E). (16}
It then follows from (9) that
A (g) =y (B (E
AEG—N—(ETM Yoo (E). {17)

One sees easily that y, (E) =y (E]). From the general
property that® 4-(q =0} = 1 there follows the normaliza-
tion condition y,{€) = N '"*(E). For the return probability
Ag [Eq. {11}] we get

1
A,=ng. (E) %o (E). (18)

The basic advantage of the localization criterion {14)
formulated here is that when we substitude {14] into (13} the
pole term dominates (as w—0) and we get the homogeneous
Bethe-Salpeter equation for ¢3{E}:

0" (E)=G"Ep,)G* (Ep-) ), Upy (qo=0) gy *(E).  (19)

It appears that a study of such an equation is appreciably
simpler than the solution of the general Eq. (13). Localiza-
tion would correspond to the appearance of a nontrivial so-
lution ¢2(E )50 of Eq. (19) which would remain nonvanish-
ing in the whole energy range E<E, where £ is th mobility
threshold. However, it may turn out (and we show in what
follows that this is, apparently, the case) that Eq. (19) only
gives the threshold £, itself but does not describe the region
E < E.. We assume therefore that Eq. (19) gives a relatively
simple method for finding the instability threshold of the
“normal” {metallic) state.

It is obvious that an analysis of Eq. {19) in its general
form is impossible. It is clear after the appearance of Refs.
10, 11 that at least in the “quasi-metallic” range of two-
dimensional systems localization effects are connected with
the contribution of the “maximally interesting™ graphs for
UE  (qw) (Fig. 2):
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FIG. 2.
Un (qo) =27(E)pV*/ (D:* (p+p')*—ia), (20)
where D & = E /mdy|E) is the classical diffusion coefficient,

YE )is the classical diffusion coefficient, {E ) = wpV N (E).
In the metallic range Eq. {19) then takes the form

.[E—J‘(P*'%Q).Hw(ﬁ:)]

[E__l,_(p_%q) —iy(E) | (E)
d’p’ "Pn (E)

=ME )j ) (p+p)?

21)

where A (E) = 2dmy*(E JoV */E. After changing to dimen-
sionless variables p—p/(2mZE)'/? we write Eq. (19) in the
symmetrized from

- (B) =2s § &0 K" (. D)0 (B, (22)
where
P-s*(E) =R *(p)p-*(E),
Rq(p)=[1— (p—"/.q)"+i1/E] * [1— (p+*/q)*—iy/E] ™",
As=4(2n)'m* (2mE)***\ (E),
(23)

while

_ 1
K& (p. 0 )=Ry" () Ry" (—p"} oo (24)
PP

] I 2
is a positive-type'? symmetric (Hermitean) kernel satisfying
the inequality

K& (p, p)<EIy |p—p[*. (25)

Hence it is clear that for 2 < d < 4 the equation considered is
an integral equation with a kernel with a weak singularity'?
and certainly possesses a finite {or denumerable) eigenvalue
spectrum lying on a section of the real axis with a length
determined by the norm of the integral operator. From Enz’s
theorem’? it follows that the first eigenvalue of this kernel is
positive and simple while the corresponding eigenfunction is
everywhere positive definite. Using the boundedness of the
integral operator one checks easily that the equation consid-
ered does not have any trivial solutions when

e U3 . -1
;,E<{.f"_1_b‘_} , (26)
rd/2) d-2 7*
i.e., when
Ad ZAe—d)
-
E>(2%) B, @7

where 4, = 2' ~ 427~ 9"%d /T (d /2} and where we have in-
troduced the characteristic energy

E“=mdﬂ'¢—dl {pVZ)Z.I’(i—d). [28]
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Hence it is clear that for 4 = 3 the corresponding threshold
energy fallsin the “‘strong coupling” region £, = m*(pV?),
where the selection we made of diagrams is, generally speak-
ing, invalid"'* and one needs to take all diagrams of the per-
turbation theory into account. As d—2 the range of energies
for which there is no solution “takes off” to infinity which
means that in that case the mobility threshold E, — . In
our opinion this result is a rather exact proof of the ideas of a
total localization when d = 2 (Ref. 10). At the same time one
sees easily that inequality (27) gives the analogue of the
“Ginzburg critical region”"'* in which higher orders of the
perturbation theory are important. Therefore, as d—2 sim-
ple peturbaion theory becomes inapplicable for all energies.

4. LOCALIZATION AND INSTANTONS

In view of the fact that when we describe the region of
the localized states itself the approach given above, which is
based upon the homogeneous Bethe-Salpeter equation, is,
apparently, insufficient, we turn to an alternative approach
which enables us to obtain a two-particle Green function of
the form (14) in the whole energy range. It is well
known''*'* that the localization phenomenon is closely
connected with the appearnace (in the appropriate energy
range) of nonlinear solutions with a finite action {instantons)
of the classical equations of an effective field theory which is
associated with the problem of an electron in a random
field.! We consider in detail the contribution of such solu-
tions to the two-particle Green function.

To evaluate the two-particle electron Green function in
a random field we can introduce' the following effective La-
grangian:

@ (1) = —-Z { o (V8= (Etati) 7 }

1 ¢ 1
—_— —_— 2_ _ 3 2
-I—2 2 {2m (Vo)) '~ (E—id)} }

b (£ (Se) SR8 oo

=1 frai

J==1 ‘el

where at the end of the calculations one understands that one
must take the limit #—0, m—0. Using the qualitative analy-
sis of the classical field equations following from a Lagran-
gian'*'® one can check that when E<0, E + »> 0 these
equations have a spherically symmetric instanton solution of
the form

@ (r) =gu{r)e, & (r)=0, (30}

21EI\ .
qa,:(r>=(p—w—) galt), r=(2mlEl)~", (31)
wherey,(¢) < 1" ~9"? exp{ — t)whenr<1, ¥} (0) = 0.In(30)

e, is the unit (m-component} isotopic vector of the field .

Considering in the corresponding functional integral
contribution connected with the Gaussian fluctuations
around classical solution (30) we get
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(G*(rr'; E+o+i8) G*(r'r; E—~i8) > ~ exp{—S[q.]}
X1 ol 577 (gal [ dR, | dege (' —Ro)
xpoi(1=R) [ D@ [ Doo,(r) o, Yexp{=S:[ 9,01}, (32

where § (@ Jocm ~4?|E|*?/pV? is the classical action
on the instaton,

Llgal=§ &r(Vau)?~ms-| |-/,
33
Ilgul= [drgutt) ~migys-anrs O

is the Jacobian of the change to integration over the collec-
tive variables R, (center of the instanton) and e [direction in
isotopic space), So[&, @ ] is the action describing the Gaus-
sian fluctuations in the vicinity of the instanton solution {@
denotes now the deviation from @)

Sul 8, 01=| dH{Zu(B) +Z0 (@)}, (34)
Qyn (CP) = jref (MT"I'IG) (6.‘5—3"8‘;) q33+ q)[(MLJf'EG) £;25,
Z‘:a ; (35)
go(¢)=2¢t(ﬂr—(ﬂ—i6)ﬁﬂ¢h (36)
13
where
Mo { t_ ___3_ Lo 2
M, = E;;V E 3 pViq.s,
R i . 2
Mr=—ﬂv —E—wé-qu:ci. {37)

The tilde above the symbol for the functional integration
over ¢ indicates that the zero eigenvalues of the operators
M, and M, ( the “zero modes™) which are taken into ac-
count through the integration over the collective variables

R, and e must be excluded.
Introducing the eigenfunctions and eigenvalues

ML‘P:.L=}-¢LW»L; Mr‘Fkrm’thq'kr: (38]

we get easily

_[ Do ®,(r) @,(r Yexp {—S.{ &, 91}

¥, (T—Ru) v (l'f"‘Rn]
w+id

\Y ¥, (r—Ro) ¥\ (r'—R,)

f (Rhl"_m_iﬁ)l-i'm’! —

+2 (39)

RED

where the normalized eigenfunction of the lowest level of the
operator M,(1 ] =0, the “rotatonal” zero mode'*'?) has

the form

W (r—Ry) =Jr [0} Pes (F—Ry). (40)

As a result we get the singular contribution to the two-parti-
cle Green function:
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(G rr’; E+otib)GA (v, E—if))

—~

H dre
Py ar JL i
perer el A It ) (@]

X Jr"%[ @] (Det’ Mol)~(Det’ M )™
X { d'Bopet (r—Ry) o (1 —R,). (41)

Here Det’ M, and Det” M, do not contain contributions
from the zero eigenvalues of the operators M, and M.
Cardy'* was the first to give an expression equivalent to (41)
{for w = 0). Taking into account the sketchy nature of that
paper we decided to perform rather detailed calculations.
We note that the singular contribution turns out to be con-
nected with the existence of a “zero” rotational mode, i.e., in
fact with the symmetry of the system. One may thus expect
that this contribution does not vanish even when we take
into corrections to the Gaussian approximation.

Taking now the explicit form of the density of states
into account which in the energy range considered is deter-
mined by a similar instanton contribution'*'? we get at once
from (10}, (11), and (41)

42—~ | R e-R @'~ R [ [ i)
42)

which is valid up to dimensionless constants. For the return
probability we get from this: A o« |E |97
Changing to the momentum representation by using

to= [ dire=vq. (), (43)
we pet
Ax(9) ~Fal—s (44)

which repreduces {17}. Introducing the Fourier transform of
the instanton

pyci= J{f"re'fﬂ’qsc, (r), {45)
we see that

~ ddl’ e el

o = j W Po* ' Pa—pr (46)
and comparing this with (16) we get

9" (B) ~5* (B) @asp (£). (47)

The consideration given heris thusin fact a validation, in the
framework of the instanton approach, of the above in (14),
assumed form of the singular contribution to the two-parti-
cle Green function corresponding to localization. The resi-
due in the pole is then expressed in terms of instantons. The
region of applicability of the instanton approach is roughly
determined by the condition™'*"* § [ @, ] » 1 which leads to
the requirement |E |»E, where E_ is defined in (28} {the
necessary refinements will be given in what follows),

5. EFFECTIWE-ACTION FORMALISM

There arises the problem of the relation between the two
approaches discussed above for finding the singular part of
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the two-particle Green function. We show below that both

It is convenient to use a matrix notation

description methods naturally arise as a manifestation of, in ?® _
general, different instabilities of the system in the framework @ = ( ) v Or=(2¢). (49)
of the effective action formalism for the component fields.'® Cor G
For the system considered of the fields (2 and ¢ the effective G = [ C *e C m] v Gav=0Gre. (50)
action is'® a functional I” of the *“‘classical’” (average) values w
of the fields &, and g and of the corresponding Green Ty 1 gorangian (29) can be rewritten in compact form:
functions which satisfies the variational principle: )
s8I sr ér ' 4
=0 = —_— =, (48) Z(r}=",8p |d'r'O*G,~ O~/ ,pV*(Sp * D)2, 51
5% () Ser (0 5G0r,7) J O Sp@Ta Y
I
1 :
(= V=~ E+o+m)s, 0
P 2m
o ()= L X 8{t—r'). (52)
0 {-—%V’-—(E—ib)}ﬁu

According to Ref. 16 with an obvious generalization to the
case of two fields we have

I‘ (meh G) =S(0cl) '_‘/zTr II].G-I
=, Tr {G-1G—-1}+F (Do, &), (53)
where Tr and In are understood in the functional sense, ®i.e.,

in particular Tr includes all necessary integrations while
InG=InDetG,G ~'isthe reciprocal of the Green function
matrix in the classical field:

g eer=[2 7] s, (54)
cd
where
] 1
a= { L Vi (Etat+id) - —oV (Pt @) }
2m 2
X G;j—pvzﬁéni (:b:! ¥
b=—pVi@u, Qu, c=—pVpu P,
. i N 1 2 z 2
d= {-— — Vi- (E'—lé) _——— pV (¢=1 +CPcI )1
2m 2
X 8i—pV per, Pet 3
2 ¢'cl 2 (P“ Z(PCI
Jum iml
The functional # (& & } satisfies the conditions
&5 /66="1/.% (55)
such that the equation
SE/8G="1G—"—"/,G~'+/,5=0 (56)

is simply the Dyson equation while the matrix X consists of
the irreducible self-energy parts with dressed internal lines.
One can get the formal scheme for calculation & (®,,G)
easily by an appropriate generalization of the prescriptions
of Ref. 16.
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We first consider the “normal” phase in which @,
= @ = 0 and only the Green functions Gy and G, are
nonvanishing. In that case (53} simplifies

T'(G)y=%(&)-*/.Trln G-'—"/,Tr {G,~'G—1}. (57)

The matrix (54) reduces to {52). A stable system must satisfy
the condition 8 2" O for any variations in @, and G. We
consgider the stability against arbitrary variations of the
Green functions in the “normal” phase. We show graphical-
ly in Fig. 3 examples of variations of the self-energy parts
when the Green functions are varied. Hence one finds, m
particular, easily that

OT 1 6Ges™
0GaBGpe 2 8Gge

)P
3G 00

1
2

i 1
= Gopp™'Ge™ + Upgpe »

(58)
etc., where Ug ., is the irreducible vertex part in appropri-
ate two-particle channel. The problem of the instability of
the system with respect to variations G, is of interest to us.
In a stable system

&T (59)
————— G 4o=20.
8Cecbls
Using8G, = Goaior G {see Fig. 3)in {59}and (58) we see
that the stability threshold of the “normal’”” phase is given by

Tt 6G o

@ ¥ @A P
¢ 7 ¥
8L, = i + g =
? 7 @ 7 ¥ @;3 Pp’ '
F1G. 3.
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~@( v }:'@'ﬁ Y =B g

the condition threshold for the stability of the “normal” phase where we
TE Gorte G U pano G PrgGon— T ooy beGrpp 0, :'e talking. about stability‘ with respect to varia_tions 5Gy,

(60) n expanswn‘oftl'.ne fur_lctgonal (G} from (57) in powers of

8Gg, = Yz, gives in principle a method to consider the cor-

which is graphically represented in Fig. 4a. It is fairly ob-  responding “condensed" phase while in that case ¥, plays

vious that when there appears a nontrivial solution of the the role of the order parameter.

homogeneous Bethe-Salpeter Eq. (19} the stability of the sys- The first two Eqs. (48) are in fact a generalization of the
tem is violated (Fig. 4b. classical field equations following from the Lagrangian (29),
The analysis given here shows that the appearance of a  (51). The case when they acquire nontrivial solutions of the
nontrivial solution of Eq. {19) gives in the general case the  kind (30} is important for us. The matrix (54) then reduces to

|

iy [ (Me—a-i6) 8 0 o
G rr’) [ 0 (M,,+£'6)e.-e_;+(MT+£G}(aij—eie,)] §{r=r), (61)

and the simplest approximation for r{%{& ) reduces to  The “Ginzburg criterion” follows'® from the requirement
neglecting in (53) the contribution % {@,,G}. In that case  that the simplest formula ExE, — E,, be valid which

(53] gives means the equation for the renormalized electron “mass”
T (@) =S{@u) —/2 Tr1n Ggg ="/ TrlnGw™ energy reckoned from the shifted band edge. This is just the
meaning of the variable E in that paper and in Refs. 1, 14, 15.
=S {gper) Tk Par). {62) 1t is clear that the equation is satisfied when
and the equation 8I" /8¢, = 0 reduces to B, 2/ (5t
iy CEea— L v+ 8T (ger) _ 0 63 Bl ( [sin (red/2) | ) B, Z<d<d, 67
om P LGP 3 eV Qe _6([).;1 ) {63)

where B; =2~ 927" ~?2/I"(d /2) while E,_ is defined in
{28). This inequality which determines the condition for the
applicability of our approximation is equivalent, in particu-
lar, to the inequality (27) obtained earlier. In the negative
energy range it delimits the region beyond which the instan-

which is the generalized equation for instantons leading to
the solution (30). Here I'|(@,,) is the result of summing the
single-loop corrections to the classical action. Considering
in it the term of ﬁrst orderin pV g2 we get

1
i . .
(pe)=— _sz v, (r) d —_— ton approach is valid.
j ". (2n)* p/em—k From the effective action formalism there follows thus
=—-—-6EI doepa{x) {64)  in a natural manner both the instability of the “normal”
' {metallic) phase which is connected with the appearance of a

where 6E gives the single-lqop “mass” renormalization in  pontrivial solution of the homogeneous Bethe-Salpeter Eq.
the original Lagrangian. Taking for £ the already renormal-  (19) and the instability of that phase connected with the ap-
ized “mass” we shall assume that the “critical point” corre-  pearance of instanton solutions. In the framework of the ap-

sponds to E—0 so that in terms of the **bare mass” proximations used these two instabilities remain indepen-
. p 1 . 3t dent which may, in principle, indicate the existence of two
EFE_GE: Eq==pV j(_"gu)d pe/2m =—eV 2”‘5&&:‘5‘: kinds of electron localization. At the same time it is clear

that the complete solution of the problem of the relation
between the two instabilities requires one to go beyond the
framework of the approximations used and to penetrate real-
1y the “strong coupling” region. The effective action formal-
ism gives, at least in principle, a convenient apparatus for a
joint consideration of these instabilities.

‘ (65)
which determines the (in the single-loop approximation)
shifted band edge. Here p, is the cut-off momentum, §,

=2""9-"g—42/Pid /2). Our definition of the shifted
band edge differs from the one assumed in Ref. 17. For E we
get the equation
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self-consistent theory of localization in 2 <d < 4 dimensions

A. V. Myasnikov and M. V. Sadovskir
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The self-consistent theory of electron localization in disordered systems proposed by Vollhardt and Wélfle
[Phys. Rev. B 22, 4666 (1980]] is generalized to 2<d <4 dimensions. The mobility edge position is

determined and the critical behavior of various physical quantities in the vicinity of the mobility edge is
discussed. It is shown that the description of the vicinity of the mobility edge in a self-consistent theory is
outside the range of validity of perturbation theory and, therefore, the results obtained by perturbation theory
are only qualitative. The case of d >4 is briefly discussed and the frequency dependence of the electrical

conductivity for d = 2 is also considered.

PACS numbers: 71.55.Jv, 71.10. 4+ x

1, It is well known that there are fundamental diffi-
ulties in the consistent description of localization of
dectrons in disordered systems.! In particular, it has
Wl been possible to describe the localization effect it-
ielf within the standard formalism based on averaged
Green functions., The only exception is the one~dimen~
“lona] case, In higher dimensions, it has been necessary
O resort to nonstandard methods based con the original
\nderson paper,? However, it is practically impossible
“caleulate various physical quantities within the Ander-
“n method,! We believe that the recent self-consistent
“proach to the localization theory developed in Ref, 3
presents an important step toward the solution of the
“alization problem, The main advantage of this method
“lts simplicity and standard formulation which make it
“ssible to generalize such a theory to include new scat-
“ring mechanisms and the effects of applied fields (see,
rexample, Refs. 4 and 5). Reference 3 is mainly con-
*ted with the two-dimensional case which is of par-
“Ular interest in the context of the present theory,! The
"roach of Ref, 3 is particularly suitable in the two-

®nsional case since it is based on the summation of a

Sov. Phys. Solid State 24(12), December 1982
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special class of diagrams®®" which dominate the per-
turbation series for d = 2. However, the aforementioned
method can be easily generalized to dimensions d > 2,

It will be shown that such a generalization yields reason-
able and qualitively correct results for all the principal
physical quantities of interest near the mobility edge,
The position of the mobility edge is also obtained within
such theory. After the completion of the present work,
Ref. 8 appeared and some of our results are quoted in
Ref, 8 (without derivation and discussion), Our aim is

to address ourselves to a number of questions which have
not been answered satisfactorily in Refs, 3-5 and 8, In
particular, we shall demonstrate explicitly that the de-
scription of the mobility edge 2 < d < 4 in dimensions,
obtained in the self-consistent theory of localization, is
outside the range of validity of the self-consistent theory,
We shall also discuss some special features of conduction
in two-dimensional systems, The behavior of the theory
for d = 4 is also briefly discussed,

2. The self-consistent theory of Ref, 3 is based on
the two-electron Green function averaged over the dis-
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tribution of impurities and on the related quantity

1 o
7' (v, 9)=— 37 Z 6% (py pli E-Fw) 6 (pl, pl; B, o0
Pp

where GR and GA are the one-electron Green functions
before averaging; E is the electron energy (Fermi ener-
gy); w is the frequency; p, = p+(1/2)q; and the angular
brackets indicate averaging over impurities, The quantity
w%A(w, q) determines the density—density response func-
tion and, therefore, the conductivity of the system,

The function (y%A{w, q) can be obtained as the solu-
tion of an approximate "transport equation” in the follow-
ing form (m is the electron mass);

0+ Mp(q. )
5! (o, q)=—N (E) TR (2
wt oMy (q, o) — =g

where Mg (q, w) is the so-called "relaxation kernel,"? In.
general, the relaxation kernel is determined by the sum
of diagrams for the irreducible vertex part in the two-
particle (R—A) channel and N(E) is the one-electron den-
sity of states,

By considering a self-consistent generalization of
the summation of Langer—Neal®' diagrams which yields
the dominant contribution for d = 2, Vollhardt and Wolfle®
derived the following self-consistent equation for ME(q =
0, W)z
3 — b (3)

fl<tky @ -______““s . @)

i
Mp (0, w) = e V2

where 1/7 = 2rp VN(E) is the Born rate of the scattering
electrons from impurities which are assumed to be ran-
domly distributed in space with a concentration p; V is
the Fourier transform of the impurity potential which is
assumed to be completely localized; and D, = 2E7/md is
the classical diffusion coefficient, The choice of the cut-
off momentum ly in Eq. (3) is discussed below,

The frequency-dependent electrical conductivity of
the system is given by’

net i
= S Mg (0, e ¢ (9

It can be seen that Re Mg(0, w = 0) = 0 holds in the metal-
lic region,

In the energy range corresponding to localized states,
we obtain o g(w —0) — 0 and the quantity

1 :
Ap (@) =5z gy lim E <GR(p,, py E+18) GA(p, pi E—ib)p
PP

A

1 - wh g (g, )
== N5 mm-‘as e (5)

(w, q)=Ilim

werl M i 2
wMplq, w) -2 ¢

which determines the "localization probability" becomes
nonzero,%? For q —0, we obtain'?
Agig) =1 —g*Rj, (E), (6)

where the localization radius Rjgc(E) is given by
28
RZ {E):m; ‘.,3:._&:% wMg{0, w) >0, (7
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It follows that the localization is related in the preg,
formalism to the divergence of the relaxation kerne;
w) for w—0 (see Ref, 3),

|
MEin

The self-consistent equation (3) was studied i Ref ¢
only for d = 2. However, it can be easily generalizeq
arbitrary dimensions d, It is clear that the COrTespony;,.
results can describe localization only qualitatively Sin:-:
Eq. (3) is based completely on the summation of La-nge.ru
Neal diagrams which are important only for d = g, Never
theless, such calculations are interesting since they y;|
a simple description of localization in arbitrary dimey_
sion and, undoubtedly, describe correctly some feapype,
of the localization, The validity of such calculations will
be discussed later.

3. Introducing in Eq. (3) 2 dimensionless integratiop
variable, we can write this equation in the following forp,
which is more suitable for our further calculations:

1
M _L Lo diad M| d d—l—l,. ™
E(w}._.__ + dizf M g lw) yy K Mg (w)wd * (%)
[}

P DT Ti{mER

C =
2 K

._-..—Pr!‘

2
p(;) {9)

where X is a dimensionless coupling constant and x, =
ky/VEZmE. Careful examination of the equations of Ref, 3
[prior to the introduction of Mp(q, @) in Eq. (27) of Ref, 3
indicates that k; ~pg ~ V2mE (py is the Fermi momen-
tum). Such a choice of the cutoff momentum was used in
Ref, 3 although the authors of Reif, 3 do not discuss in
detail their choice of k; (see Ref. 8, where the momentum
ky in Ref, 4 was chosen differently). We believe that the
choice of the cutoff momentum ky ~pp ~ V2mE is unique
and very important for the subsequent estimates. For
such a choice, it is clear that x, = const ~1,

B 1 m
hEmE = ( 2?)

Setting w = 0 in Eq. (8) and considering the metallic
regime Re M (0, w = Q) = 0, we find that

.

; d . : (10}
I;::(I —ma\a‘-ﬂ 3).
Equations (4) and (13) yield
i—d
2 A Ta
“stm=0?=n:: "{i_(%)l}; 2Ld A, an
where
i e
i LAY wr
E¢=ld52_{ﬂT(2ﬂ"‘g} Ey.. {12}
21‘(‘2‘)
4 2 (13)

E,o—=mi— (y¥2ia,
It can be seen that Ec plays the role of a mobility edge
2 s—a\ E—E,
e~ (S50) (P ) 2<a<s (14
for E 5 Ec. Our result (12) is practically identical Wit

the estimate of E¢ obtained by another method in Ref. 9
For d = 3, the mobility edge E; lies in the "strong co~

4
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pling" region Esc = m*(p V%)? where the set of diagrams
used in the calculation of this quantity is no longer dom-
jnant??? and all the diagrams of perturbation theory should
pe included. In fact, it follows from Eq, (9) that the con-
dition £ *Esc is equivalent to the requirement A < 1,
.., it represents the simplest condition of validity of
perzurbation theory, For d —2, we obtain E, — «, which
corresponds to the currently accepted view that there is
complete localization in two dimensions.!s"® Moreover,
as shown in Ref, 9, it is more important that Eq. (12) de-
fines essentially the dimensions of the "Ginzburg critical
region"i'a where higher orders of perturbation é;heory are
important since the geometrie factor (d— 2)3/( ~4) ap-
pears in the theory, It follows that, in spite of the fact that
the inequality E¢ »Ege (A < 1) is satisfied, the mobility
edge defined by Eq. (12) falls even for d —2 in an energy
range where perturbation theory (and the corresponding
choice of diagrams used in the present self-consistent
theory) is not valid, Nevertheless, it is reasonable to
assume that Eq, (12) yields a correct order-of-magnitude
estimate of the mobility edge. At the same time, the re-
sult (14) implying that the conductivity tends {o zero lin-
early in the limit E — E¢ cannot be regarded as proved,

We shall now discuss the region of localized states
(E < Eg). We shall set [see Eq. (7)] Im Mg(0, w) =0
and ReMp (0, @) =—w? A4v, and multiply Eq. (8) by w,
which yields in the limit w— ¢ the following equation for
ug:
1

C oyt du
t=dgt |y g s =g @s)
v

The integral in Eq, (15) can be expressed in terms of the
hypergeometric function and Eq, (15) then assumes the
form

1
1=ug—=zl,f,(|, L1145 -3) (16)

When the mobility edge is approached from below (E £
Ec), we can expand Eq. (16) in powers of z (small w}),
Simple transformations yield

5

A= Tarl- (@) 2cecnan

It follows from Eq, (7) that the localization radius is
given by

A
a-z

1 d=o
B (5 — L [p () p (=g LA oy — BN
'”{E’_r{,am—g{r(z)f( 2 )} “'(E‘) o )(18]
EgE,; 2<a<y
Where the critical index of the localization radius is
— (19)

d—2

Equations (19) and (14) indicate that Wegner's scaling
Telation g = (d — 2)v is satisfied for the critical conduc-
livity index,! The corresponding values of the critical
Indices describing the behavior of physical quantities
fear the mobility edge agree with the results obtained in
the principal approximation in the € = d — 2 expansion
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obtained by the field-theoretic method based on nonlinear
o models (see, for example, Refs, 11-13) and also on the
basis of the £ expansion in the qualitative scaling theory,!¢
We believe that these results should not be taken too
seriously since they were obtained by extrapolations out-
side the range of validity of perturbation theory and are
based on an inconsistent self-consistency procedure,
Nevertheless, the self-consistent theory of localization
of Ref, 3 is a powerful method since it yields quite simple
results that are equivalent to the results obtained by more
complex methods, 171

4, We shall now discuss the results of the present
self-consistent theory for d = 4, It follows from kg. (1m
that

The solution defined by Eq, (20) for d > 4 is clearly not
physical since the region of localized states and the me
lic region are interchanged, For d = 4, we obtain meta/
conduction and m? V? is the dimensionless coupling cor
stant of the four-dimensional theory of Ref. 15, Our tm
ment is clearly meaningful for m? V< 1, [It follows
from Eq. (15) that @ < o], This result also follows sin
the quantity Egp defined by Eq, (13) tends to zero for d
4 (from below) for m? V2<< 1, The interchange of the
metallic region and of the region of localized states for
d > 4 is a natural consequence of the following fact note
already in Refs, 15 and 16: the perturbation expansion
in the present theory is in powers of the parametfer

(E/ Egc){'1_d)/ ? and such an expansion for d < 4 diverges
in the limit E —0; for d > 4, it diverges for E —«, Nc
physical behavior of the model for d > 4 indicates that:
model based on a point interaction (correlation of a ran
dom potential of "white noise® type) is not adequate for
d > 4 (see Ref, 17), The situation changes completely if
we assume that the cutoff parameter k; in Eq. (3) is dete
mined by the range of the potential (pair correlation functio
of random potential) rather than by the Fermi momentun
i.e., by Rint, which implies k; -»B{ét <« py (long-range
interactions), For d < 4, we obtain the same results as
before but the mobility edge is now given by

d m a4 E.’!_Z—I o : kﬁ

Es=—d_z(§:) T #h Be=gy (2

I‘(‘:E

For d = 4, we obtain

2 E—F, ~
200 "n‘! = E>E, (2
4 d—4% E E
“’3”?7_—2([—1:)- (2

It follows that the critical index of the localization radiue
is v =1/2 ford > 4. In this sense, we can regard d = 4
as the upper bound on the dimension of space in which
localization effect can occur,! However, we would like
to point out that a choice of k; independent of py does not
follow from the model under study which is applicable

to d < 4, This important factor has not been discussed
in Ref, 8,

A. V. Myasnikov and M. V. Sadovskii 2035



5, Finally, we shall quote (in more detail than in
Ref. 3) our results on the frequency dependence of the
conductivity in the self-consistent theory applying to d =
2, A somewhatlengthybut straightforwrad analysis of
Eq. (3) for d = 2indicates that there are several frequency
intervals with different behavior of the conductivity. At
very low frequencies w < {1/ Aye-1/21/7), we obtain

ne? 1 oA

ag (w) "{—-;;TWN’- (24)

i,e., we obtain insulating behavior.® At somewhat higher
frequencies

net P12 (25)

splw) = T(nER™

"Quasimetallic" behavior with logarithmic corrections
first derived in Ref, 7 is obtained at frequencies satis-
fying (1 /A)et A /7)< w< A¥1), Le.,
T 1
3 {w):%- :(i — L lu_-u;). (26)

Finally, for A?/7 «<w< 1/, the seli-consistent theory
yields

net E.
:E(m)::T'-(i— 5 ) (27)
where
E‘.t-r::lg‘i"" In 3'20'—. (28)

The last result is especially interesting since the conduc-

2036  Sov. Phys. Solid State 24(12), December 1982

tivity in this frequency range is essentially constant
dependent of w) and cor_}‘espond to metallic conduct
with the mobility edge Ec defined by Eq. (28). Itis
sible that this result explains the well-known discre
between various numerical approaches to the calcul
of the two-dimensional conductivity's logarithmic ¢
tions and insulating behavior manifest themselves ¢
at extremely low frequencies and, at the same time
is an interval of frequencies (since A is small) inw
the system is characterized by a finite mobility ed;
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The self-consistent theory of electron localization in a random system in the form pro-
posed by Vollhardt and Wolfle is generalized for the analysis of localization in the
Anderson model. We derive the general equations appropriate for the system with rath-
er general form of the electronic spectrum. Explicit calculations are restricted to the
lattices of cubic symmetry and use the effective mass approximation to obtain the final
results. Anderson’s critical ratio for the localization of all the electronic states in the
tight-binding band is evaluated and found to be in surprisingly good agreement with
the results of numerical analysis of localization in the Anderson model.

1. Introduction

The phenomenon of electron localization in disor-
dered systems, which is actively studied in recent
years [17], usually is described within the framework
of the well-known Anderson model [2, 3]. In most
of the papers published up to now, either quite non-
traditional methods, originating from the classic pa-
per by Anderson [2], or numerical analysis were
used. But the few attempts to derive localization via
more or less standard formalism of the modern ma-
ny-particle theory, involving the averaged Green
functions, were mostly unsuccesful. Because of this
situation we believe, that the development of the
socalled self-consistent theory of localization, in the
form proposed by Vollhardt and Wolile [4], de-
serves a great attention. This approach allows to get
rather reasonable description of localization of elec-
tronic states in a two-dimensional system {d=2), and
also at least qualitatively describes the Anderson
transition for d>2 [5, 6], in close correspondence
with the scaling picture of this transition, proposed
in the famous paper by Abrahams, Anderson, Lic-
ciardelle and Ramakrishnan [7]. In papers [4-6]
the model of electrons scattered by the randomly
distributed point-like scatterers was considered.
Thus, due to the existence of rather large number of

*  Permanent address; Insiitute for Meial Physics, Ural Scientific
Research Center, USSR Academy of Sciences, Sverdlovsk,
620219, USSR

references, devoted to the study of localization in the
Andersen model (cf. the reviews [1, §]), it seems to
be inieresting to generalize the self-consistent theory
for the description of localization in this model. The
first attempt of this kind was undertaken by Prelov-
ek [9]. in the framework of self-consistent approach
proposed by Gotze [10]. In this paper we shall con-
centrate on the study of localization in the Anderson
model within the theory of Vollhardt and Wélfle
[4].

2. General Equations

The Hamiltonian of the Anderson model in a re-
gular lattice has the form:

H=Y Eaf a;+} V, a} a, (N
E L

where a; and a; are the usual destruction and crea-

tion operators of the electron at a site j. The energy

levels E; are considered to be independently distrib-

uted on different sites of the lattice. The distribution

at the given site is usually defined as [2]:

W; |Eji<%w

PE){o, |Ej>iw 2)
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corresponding to the homogeneous distribution of
energies in the energy interval of the width W. But
in the main part of this work we shall assume the
Gaussian distribution

P(E)=

1 E_f
which considerably simplifies the corresponding dia-
gram (echnique. The transfer integral V;; is assumed
to be different from zero and equal to a constant V
only for the transitions between the sites which are
nearest neighbours in the lattice.

After the Fourier transformation (1) can be written
as;

H= zs(p)a a +Z g1qfy )
where
s(p)=V§e“’" (5

is the standard electronic spectrum in a tight-bind-
ing approximation [11], and the vector h;;=R;—R,
defines the positions of the neighboring sites in the
lattice (the summation in (5) is assumed over the
nearest neighbours). The Gaussian random field U,
entering the second term in (4) (N - is the number
of sites n lattice):

1 R
lumg T B ©

has in the momentum space the correlation function
of the following form:

Fr2

<Uq Uq’> ZF 511, _

o =WQ6, o {7
correspending to the assumed form of correlation of
energy levels E; in the lattice:

(E;E»=W?33§,,. (8)

In (7) £, is just the volume per single site of the
lattice. In the following we are considering the lat-
tices of cubic symmetry and put the total volume of
the system equal to unity, which gives 1/N=4, (the
volume of primitive cell of ihe crystal). The higher-
order correlation functions in case of the Gaussian
random field are factorizable in terms of the pair
correlators (7), (8), so that the form of diagram tech-
nique for the calculation of the averaged Green
functions, corresponding to the Hamiltonian (4), is
quite obvious [12].

The derivation of the main equations of the self-con-
sistent theory follows the main steps of [4]. The

only complication is connected with the necessity to
take rather general form of the electronic spectrum
(3) into account. The formalism is based upon the
Bethe-Salpeter equation for the averaged two-par-
ticle Green function ¢F#(Ewq), which is used to de-
fine the function

Pelwq)= 3, 32 (Ewg)
- [ 13

1
=—3 Z(G"(m p.E+w)GAp

P _P+z‘l 9

Cp_Ep

The Bethe-Salpeter equation takes the form (for
small g}

(E—l—w)—i—E" (E)} (,b (Eawq)

2 o 40) O (qu)} (10)

{o—q-v,—

=AG {
where v, =3d¢(p)/@p is the group velocity of the elec-
tron, and

4G, =GHE+wp,)-G*Ep_) (11)

while the averaged one-electron Green functions are
taken in the standard form:

1

1
GRAEp)= ~
En) E—¢(p)~Z5E)  E—s(p)iy(E)

{12)

where the last expression in (12) is obtained through
the ordinary summation of simplest diagrams [12]
(without intersecting interaction lines) and

HE)=aW?Q, N(E) (13)

is just the scattering rate of the electron on the ran-
dom levels and N(E) - is the one-electron density of
states. In Eq.(10) Ufp.(qw) is the irreducible {(in two-
particle R— A channel} vertex.

summing both sides of {10) over p and p’ and using
the Ward identity derived in [4], we get the equa-
tion for ¢gleq):

w glwrq)—q i (wg)=— N(E) (14)

where we have introduced the function:
dHwa)=3 (v,-§) dfAEwe) (13)
rp

where § is the unit vector in the direction of q. To
obtain the equation for (,bf(wq) we maultiply (10) by
v, 4 and sum again over p and p’. Then to “close up”
the system of equations in terms of the functions
Pelwq) and ¢F(wq) we use the following approxi-
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mate relation:*

Zdv.‘f;t(ﬁwmz ~[2ziN(E)]~" 4G,

5 () g "
P e vE(q)
where

2a I .
vE(d) = ‘“m g("p“ﬂzﬂ Gy (17)

Is just the “averaged in the vicinity of the isoener-
getic surface e(p)=E" square of the projection of the
velocity v, on the direction of §. In the lattices of
cubic symmetry (which are the only lattices consid-
ered below), due to the isotropy of their physical
properties we have:

1 1

=g 0r= 5 e E"z‘ﬂ(’

. 1 2 —

>N B ;"p H(E~—&(p) (18)

where the last equality is approximately valid in the
limit of small disorder.
Then for ¢%(wq) we get the following equation:

[
{o+Mggo)} f.bf(wtﬂ—a v5q” de(wrg)=0 {19)

where the so called
takes the form:

“relaxation kernel” Milqw)

I — 2AG
zN(E)vi-%"

- [Zy, (Etw)-Z5 (B)]

d «
: X0, 946, UL, @0} 4G, (v, §)

T IRIN(E)L &
» d £ E
~ 2 y(E)—m g (v, 4 4G, U, (qo)

4G, (V- §) (20)

Meqo)=

where the last equality is valid in the limit of small q
and ¢, taking (12) into account.
Solving the system of (14) and (19) we obtain:

$p(00) = — N(B) —— 2T Msl42) 21

w? + o Mg(qow) —% vig?

so that the corresponding density-density response
function {cf. Ref. 4) is given by:

*  This relation is the patural generalization of (25) in [4] for the
case of electrons with the arbitrary specirum s(p)

xelqo)=wdplwq)+N(E)

1
EN(EJ v3q’
=- o 22)
o’ +oMgqo) - viq?

Neglecting the w? term in the denominator of (22)
we can rewrite xg{gw) in the form:

() iDglquw)q’

xe(qeo)=N(E 1D, Qo) (23)

where we have introduced the generalized diffusion
coefficient:

i vi
Dglqw)=~ ———. 24
£ d Mglqo) 9
The electrical conductivity is given by (cf. Ref. 4):
i
gg{w)=e* lim (——U;) ¥elqo)
q=0
N E)E—— 25
=— 0g————————.
d Ew+M s0w) (23)

The locahzation is signalled by the appearance (in
the corresponding energy range) of the finite limit
for the following expression [3, 6, 13]:

Aglq)

1 R A
ZnN(E) llmZ(G (P, P, E+i)GYp_p_E—id)

4 -1
N(E) -0 s dME{qw)m} '

(26)

L bmwéywq=lim {1 -

For g—0 we have [14]:
Ap{@=1~q*R{ (E) 27)

where the localization length is defined by:

2

R: (B)=—E_

loc( ) Q{E)

WH(E)= — lim oM {0 w) > 0. (28)
w—10

It can be seen, that in this formalism the localization
phenomenon is connected to the divergence of the
“relaxation kernel” M (0w) for @—0. which leads
to the appearance of the non-zero limit for w3>0 in
(28).

In the self-consistent theory of Vollhardt and Walfle
the irreducible kernel Uy, {(gw) is taken as a sum of
the se called Langer-Neal (or maximally crossed) di-
agrams [15], which for the model under conside-
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ration reduces to:

29(E) W2 Q,
—iw+ DE(p+p)?

Ufp, Q)= (29)

1 2
where DE= s

d y(E)
ficient, and we assume that |p+p’| is small with re-
spect to the characteristic sizes of the Fermi surface.
The main idea of the self-consistent approach of the
Ref. 4 was the substitution of DE in (29) by the “re-
normalized” diffusion coefficient defined according
to (24). Then Eq. (20) defines the self-consistent equa-
tion for My(Ow), which after some transformations
can be written as:

is the classical diffusion coef-

_i spn
MO0 == 2W el ) b, 0w: OO
where
Bp= 2o "Zv [Im G, (E))? 31)

and we have denoted 2y(E)=1/1. Equation (30} ge-
neralizes {42} of [4] for the case of general electronic
spectium z(p) in the lattices of cubic symmetry. It is
not difficult to write the similar expressions for the
lattices of some general symmetry, when the depen-
dence on the direction of the vector q appears ex-
plicitly {cf. {16}, (17)).

For =0 we get from (25) and (30):

2

aE(O)=—3— N(Ey}~ 200)
e , 2dW20,
=< N(E)vfr{ i) kz} ¢2)

defining mobility edge by the relation o (0)=0 we
get the equation determining its position E,:

24dWQ 1
l=—3—0% 15 (33)
E, k

In the energy range corresponding to localized states
we have [4, 6]: lnn o ImM0w)=0, ReM_ (0w)=

~wi(E)w, so that from (28) and (30) we can easily
find the following eguation for w3(E):

- 1
1=2W2 0005y —————. (34)

. wﬁ(E}—i—%vékz

For wi(E=E_)=0 it obviously reduces to (33).
Remembering that the expression (29) is valid for
rather small values of |p+p’j, we see that the sum-

mation over k in (30), {32)-(34) should be restricted
to the values of k lying inside of some isoenergetic
surface in the momentum space with the characteristic
dimensions of the order of “doubled” Fermi surface.
In fact it follows automatically from (20), because of
two factors of 4G, and 4G, under the sum over p
and p’ in it, because these factors are rather sharply
peaked in the vicinity of the Fermi surface.

3. The Effective Mass Approximation

The above relations are rather general and are valid
for the arbitrary electronic spectrum &(p), with the
only limitation to the lattices of cubic symmetry,
which allows not to deal with the anisotropy of
physical properties. The actval calculations will be
performed with the use of the effective mass approxi-
mation, which allows to evaluate all the integrals in
momentum space by elementary means. Near the
“left” band-edge we have from (5):
pZ

ep)x —ZV 45 -

(35)

where Z is the number of nearest neighbours, and
the effective mass can be easily evaluated from the
known expressions [11] for the electronic tight-bind-
ing spectra to be m*=1/2Va® for SC, BCC and
FCC lattices (@ ~ is the lattice constant}. Using (35)
it is shown by direct calculation that 6. defined in
(31) is equal to umity in this approximation. We
choose the upper cut-off for the momentum space
integration in (30), (32)-(34) equal to k,=x,p;,
where pr=¥2m*s (e=E+ZV is the energy distance
from the band edge) is the Fermi momentum, x,~1
~+2 {(cf. the discussion of the cut-off in Ref, 6). Then,
evaluating the integral in (32) for the d-dimensional
space we obtain:

e’ d _
G’E(O}=?N(S] vit l—m Axi-2

et v} d
= I— Lxd72 2<d<d
3nd WZQO{ d—3 "% } ==
where
1 ®y di2 P2 d-4
- =(m_) 8 55* (37)
2ret  \2nm F{d/2)

is the dimensionless
theory [6], vp=pg/m*.
Similarly from (33) we get:

i
Wiz d—2 _ gdy m*\"7 x2-¢ 2=
(?) e "”(5) (5»;) Vg, (38)

“coupling constant™ of this
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For the fixed disorder W/V this equation defines &
=¢, - the position of the mobility edge inside the
band. For the fixed & (Fermi energy ) (38) defines the
critical ratio {W/V),, sufficient to localize all the
electronic states on the Fermi surface. For the half-
filled band ¢=ZV (ie. E=0, corresponding to the
standard problem of the localization of the whole
band in the Anderson model [2, 3]), and we get:

d
Wiz d—2 _ fdy pm*V\ 2z x}i"¢ 44
Yy === 2
(V)c dr(z)(zﬂ) o, (39)

For W/V<(W/V), we obtain the following ex-
pression for the mobility edge

2
d x"ﬂ'2 N b
=y 0 2 E
where
d 2 4 E i
E, = (mi-3(Qg) -3 V3i-d (ﬂ;)““’
W i
4-d
)

is the energy defining the strong-coupling region [1,
6, 13] for the problem under consideration. When
the Fermi energy lowers in the band below this en-
ergy, we get A~ 1, and the perturbation theory clear-
ly breaks down.

While comparing our result with the literature on
the Anderson model it should be taken into account,
that our parameter W? is just the dispersion of the
Gaussian distribution {3). For the homogeneous law
(2) dispersion is equal to W?/12. Thus, for the
“Anderson’s critical ratio” we obtain*: (W/V)?
=12(W/")2 In Table 1 we give the numerical values
of the critical disorder for the localization of the
whole band calculated from (39) for the different
three-dimensional cubic lattices, for two different
values of the dimensionless cut-off. Despite the ob-
vious crudeness of the theory we get the amazingly
good correspondence of these vajues with the results
of numerical caleulation for the SC lattice:
(W/V). =15 [16], (W/V),=19105 [17], (W/V), =16
+0.5 [18], for the “Anderson’s type of disorder”,
and also with the results of the most accurate analy-
gis of localization within the Anderson approach
given by Licciardello and Economou: (W/V),~ 145
[19]. Also quite reasonable is the agreement with
the only known to us result of numerical analysis of

* [t is certain, that such 2 procedure gives only the approximate
description of the Anderson's type of disorder {2), because we ac-
tually negiect all the perturbation theory diagrams connected with
the higher-order cumulants of the random field E, which are
clearly not equal to zero for the distribution law (2)

Table 1. Critical disorder, corresponding to the localization of the
whole band for the Gaussian distribution of energy levels (W/F),
and for the Anderson’s type of distribution of levels (W/¥)},, for
the lattices of cubic symmetry

Lattice Z £, (Wi, [W,-"V]t (W), (W/V),
xg=1 x,=2 xo=1 Xo=
SC 6 at 3.67 4401 19.67 1391
BCC 8 a*2 B.63 6.10 29.88 21.13
FCC 12 a4 1350 9.55 46.78 33.08

the Gaussian disorder: (W/ V). =7 [20]. We are not
aware of any numerical calculations for the BCC
and FCC lattices.

In the following we quote onily the results for the d-
dimensional hypercubic lattices. In particular, for the
static conductivity in the half-filled band case we get
from (36) (2<d<4):

(W)V)-(W)V),
A U1 N

Wy W2 d—2  d\x3? Al
- —_] = — - - 2
PG @
where we have introduced:

47 2 jV\2
w7 (i), *)

which practically coincides with the Motts “mini-
mal metallic conductivity” [20]. For d=3 and the
Anderson’s type of disorder we get:

2
[
0013 }15—‘12102!2‘1 em~!  for a=3A4°
It is curious to note that for d—-2 g,
et 1

.Na"—‘zﬂ—-} o0, because of (W/V), -0 (39), which

reflects the crossover to the complete localization
of the band by the infinitesimal disorder in the two-
dimensional system [1, 4-7].

Similarly, for the vicinity of some mobility edge in-
side the band we obtain:

o=, 4—;—d (SZSC); e, (44)
where

e*v} ne’
00=—d—N(s)1:=mTr {45}

is the ordinary Drude-like conductivity of a metal (n
- is the tota] electron density). This result coincides
with that obtained in Ref. 6.

Let us now consider the results, following from (34),
limiting ourselves only to the case of the half-filled
band and (W/V)z(W/V),, which corresponds to the
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localized phase*. In dimensionless variables this
equation takes the form (use also (35)):
-1 __da}(E)

1
] -2 Y 2 “olH
1=did dy 2= el

m : (46)

All the calculations are similar to that done in
Ref. 6, so that using ¢=ZV, m*=(2Va®)~! and v2
=4ZVa?, we obtain: (2<d<4)

wi{e=ZV}

2
4(d N
_ar 4 nfe e ZrY2,2
d{d—zr(z)r(z 2)} *o

vy =
vy

_2

il Ol
(W/V}—(W,-’V)c}a_fi
(WiV), ’

From (28) and {47) we get the following expression
for the localization length in the center of the band:

(47)

L Z2V2xY {2

(W/V)—(W/V}c}”d—_z )

(Wi,

so that the critical exponent for the localization
length in the self-consistent theory is:

1
v—d_2 (49)
also for the Anderson transition in the center of the
band {Cf. Refs. 5, 6). From (49} and (42) it is seen
that Wegner’s scaling law s=(d —2)v for the conduc-
tivity exponent is also satisfied.
Thus, the critical behaviour at the mobility edge in
the self-consistent approach to the Anderson model
is the same, as in the model of free electrons, scat-
tered by the random impurities [6]. Also valid are all
the remarks concerning the inapplicability of pertur-
bation theory in the vicinity of the mobility edge
made in Ref. 6. Thus, the results obtained may give
at best only the qualitative description of the Ander-
son transition (this is especially so for the critical
exponents).
Finally, let us briefly analyze the two-dimensional
case, when there is a total localization of the band,
even for small disorder [1, 4-7]. Dealing again only
with the localization in the middle of the band
(= Z ¥V} and solving the {46}, we find:

R (e=ZV}=a {2

* TFor e2¢,, ie in the vicinity of some mobility edge inside the
band (34} essentially gives the same results, as obtained in [&],
because of effective mass approximation (35)

w

so that for the localization length in the center of
the band of a square {Z =4) lattice we get:

R, (e=ZV)=aVV2Z w5 (:=ZV)

=2ixoexp {4 (%)2} (51

De-Broglie wave length for the electron in this case
is ~a/f2 and from (51) it is clearly seen, that R
grows exponentially, starting with the value of /2
with W/V diminishing from (W/V)2=4/Inx,, which
gives (W/V),~2.40 for x,=2. Note, that the value of
(W/V), defined in this way is rather sensitive to the
change of x, in the interval 1 $x,52. It is probable,
that such a behaviour “explains™ the results of most
numerical calculations, giving for d=2 the finite val-
ue of Anderson’s critical ratio (W/¥),~6 [16, 22-24]
for the square Anderson lattice {Cf. the similar be-
haviour of the frequency dependent conductivity,
discussed in [6], and giving a kind of a “quasitran-
sition™ at a finite “mobility edge™).

mﬁ(s=ZV}=ZZzV2x§exp{—2Z (L)z} (50)

The authers appreciate the vseful discussions with AV, Myas-
nikov at the initial stages of this work. One of the authors
(M.V.5.) expresses his deep gratitude to Prof. W. Wonneberger for
the hospiiality, extended to him during his stay at the University
of Ulm, where this paper has been completed.

Appendix

The above discussion is slightly inprecise. The rea-
son for this is that the parameter E in the second
equality in (12) is, in fact, a “renormalized™ energy,
which includes ReX® 4(E), defined in the simplest
approximation, taking into account the diagrams
with no intersecting interaction lines [12]. This leads
to the shift of the band edge, due to the interaction
with radom field. We have:

- & 1
PNy O
where E, denotes the “bare” energy. Defining:
E(Eg)=E,—Re Z%(E,)
we can rewrite (52) in the form:
E,—E(E,)+ilmIRAE,)

—wg, P ! (53)

(2m)* E(Eo)—s(p)—1Im Z%4Ey)’

In terms of the “bare” energy the band edge E,_ is
defined from the obvious condition of the vanishing
density of states:

d
Li 2P ymorag,p—— 0

NE)=TF [ o —

T
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Fig. 1. “Mobility edge trajectory”. Broken line shows the position
of the band edge

which for our model is equivalent to the condition:

E(E)) o> —ZV:  ImEZR4E=E,)=0. (54)

We consider here the “left” edge of the band. Then,
from (53) and (54) we obtain the equation defining
Ey.:

1
Ey,= - ZV-Wa,[22

{21:)“ ZV+e(p)
Analogous treatment for the free-electron case was

given in [13]. In the simplest approximation (35) we
get:

(55)

1
=_—7V— 2
Boo==2V=W20 “I(zﬁ)‘ p*/2m*
. 2m* pé? w2 s,
=_ZV—W? A _ZV-—
= —ZV=W2208,~— 2 ZV— 5125 (56)

where we have introduced the upper cut-off p,=1/q,
and the last equality in (56} s written for hypercubic
lattice, so that Q,=d’, m*=(2Va*)~* and S,
=2-W=Lg=d2ir(df2),

Remember now, that the parameter ¢, entering (38)
is actually the distance from the physical band edge:
e=E,—E,.. Then, from (38) and (40) we obtain the
equation, defining the mobility edge position Ef in
terms of the “bare” energy. For hypercubic lattice
we get:

2 4
d X Na=d , (Wya—d

By~ v (__) 7
and for d=3, using (56) we find:

Ej 1 (W 3x321(ﬁf)4

— =l — ) == 58
zZv ! 2n22(V)+(4ﬂl)Z 14 (58
defining the “mobility edge trajectory”, shown in
Fig. | (the picture is just the same near the “right”
band edge), which is similar to that obtained in the
Anderson’s approach to localization [3, 22]. If we
let E°=0 in (58), we get a biquadratic equation, de-
termining the critical ratio (W/V), for the complete
localization of the band, taking the shift of the band

edge into account. The elementary solution, for x,
=2 and Z=6 (sc lattice) gives (W/V),~4.15. Com-
paring this with the corresponding value in Table |
shows that the influence of the shift of the band edge
is rather small, which justifies the simple approach,
used in the main part of this paper.

References

1. Sadowskii, M.V.: Usp. Fiz. Nauk 133, 223 (1981} (Sov. Phys.
Usp. 24, 96 (1981))

. Anderson, P.W.: Phys. Rev. 109, 1492 (1958}

. Economou, E.N,, Cohen, M.H.: Phys. Rev. BS, 2931 (1972)

. Vollhardt, D, Waifle, P.: Phys. Rev. B22, 4660 (1980)

. Vollhardt, D., Wolfle, P.: Phys. Rev. Lett. 48, 699 (1982)

. Myasnikov, AV, Sadovskil, M.V.: Fiz. Tverd. Tela. 24, 3569

{1982}
7. Abrahams, E., Anderson, P.W,, Licciardello, D.C., Ramakrish-
nan, T.V.: Phys. Rev, Lett. 42, 673 {1979)

8 Thouless, D.I.: Phys. Rep. 13, 93 {1974)

9. Preloviek, P.; Phys. Rev. B23, 1304 (1981)

10, Gétze, W.: I. Phys. CI12, 1279 (1979)

11. Anselm, AL: Vvedenye v Fiziku Poluprovodnikov (Introduc-
tion to the Physics of Semiconductors). Chap. IV (in Russian).
Moscow: “Nauka” 1978

12. Edwards, S.F.: Philos. Mag. 8, 1020 (1958)

13. Sadovskii, M.V.: Zh. Eksp. Theor, Fiz. 83, 1418 (1982)

14. Berezinskii, V.L., Gorkov, L.P.: Zh. Eksp. Theor. Fiz. 77, 2498
(1978}

15. Langer, J.S, Neal, T.: Phys. Rev. Lett. 16, 984 {1966)

16, Kramer, B, Mac Kinnon, A, Weaire, D.: Phys. Rev. B23,
6357 (1981)

17. Pichard, J., Sarma, G.: J. Phys. C14, 1127, L&17 (1981}

18. Mac Kinnon, A, Kramer, B.: Phys. Rev. Lett. 47, 1546 (1931

19. Licciardello, D.C., Economou, EN.: Phys. Rev. B1l, 3697
(1975}

20. Domany, E., Sarker, 5.: Phys. Rev. B23, 6018 (1981)

21. Mott, N.F,, Davis, E.A.: Electronic processes in non-crysial-
line materials. Oxford: Clarendon Press 1979

22, Licciardello, D.C., Thouless, D.J.: Phys. Rev. Lett. 35, 1475
(1975}

23, Stein, J., Krey, U.: Z. Phys. B - Condensed Matter 34, 287
(1979

24, Lee, P.A.: Phys. Rev. Lett. 42, 1492 (1979

e A e )

E.A. Kotov

Complex Research Institute
Far-Eastern Scientific
Research Center

USSR Academy of Sciences
Blagovestschensk, Amur obl.
USSR

M.V. Sadovskii

Institute for Metal Physics
Ural Scientific Research Center
USSR Academy of Sciences
Sverdlovsk, 620219

IJS3R

Note Added in Proof
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The Hartree-Fock corrections to the density of states and to the thermodynamic quantities near
the mobility threshold, necessitated by the interaction between the electrons, are calculated with-
in the framework of the formalism of exact eigenfunctions. Principal attention is paid to the
region of localized states. The “localization’ corrections directly connected with the electron-
return probability are found. Using a self-consistent localization theory, the known results of
Aronov and Altshuler are generalized to include the case of an insulator. The localization contri-
bution to the polarization operator, corresponding to a non-ergodic behavior of the system and
leading to a difference between the isothermal and adiabatic resposes, is considered. It is shown
that the static isothermal dielectric constant has a metallic behavior and corresponds to a finite
screening radius also in the dielectric “phase,” whereas both the high-frequency and the adiabatic
responses are described by expressions that are typical for dielectrics.

1. INTRODUCTION

In the theoretical study of electron localization in disor-
dered systems, which is attracting so much attention of late,
interelectron-interaction effects are usually disregarded.!
Yet it is known that an important role is played by these
effects both in metals with small impurity density,>* and for
electrons in strongly localized states.** In a number of re-
cent approaches®'! to metal-insulator transitions in disor-
dered systems attempts are made to take the influence of
interelectron interaction into account. All these studies deal
only with the metallic (or quasimetallic in the case of two-
dimensional systems) “*phase™ in the vicinity of the Ander-
son {or Mott] transition, and the insulator phase is disregard-
ed. The role of interelectron interactions for localized
electrons was considered, besides the already mentioned
Refs. 4 and 5, only in various attempts to develop a theory
for Fermi glasses.'>"* All these studies demonstrate the im-
portant, if not decisive, role of correlations in the description
of metal-insulator transitions in disordered systems. At the
same time, the results of these studies are highly contradic-
tory and the problem is still far from completely solved.
There is even no clear answer to such a fundamental ques-
tion as the possible existence of localization itself in systems
with interaction. The situation is aggravated by the known
difficulties' that arise in the theoretical description of the
Anderson transition even in the one-electron application.

This being the situation, it makes sense to analyze first
the case of weak interaction for strong disorder, as an at-
tempt to determine which physical processes are particular-
ly strongly influenced by the correlation. The present paper
is devoted to the first-order perturbation-theory corrections
to the density of states and to certain other characteristics of
the system in the vicinity of the Anderson transition; princi-
pal attention will be paid to the region of localized state. In
this sense, an attempt is made here to extend and generalize
the known results of Aronov and Al'tshuler? for the metallic
phase to include also the insulator state. We shall employ
mainly the method proposed in Ref. 14 to derive the main
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results of Ref. 2. We shall regard the Anderson single-elec-
tron problem as solved, and for many actual calculations we
shall use the self-consistent localization theory in the variant
proposed by Vollhardt and Wlfle,' which comprises appar-
ently a qualitatively correct interpolation analysis scheme
that permits a description of the entire region of the transi-
tion from a metallic into a localized phase.'*'®

2. GENERAL RELATIONS

Regarding the single-electron problem as solved, we in-
troduce a complete orthonormalized system of exact wave
functions @, ir} and the corresponding eigenvalues of the
electron energy in the random field of a disordered system.
These functions and energies can correspond to both local-
ized and delocalized states. We consider the single-electron
causal Green’s function in the representation of these exact
eigenfuctions, particularly its diagonal matrix element

Goo(e) =C¢| (e—H+ib sign e} ~t|v), (1)
where H is the total Hamiltonian that takes the interelectron
interaction into account and £ is the energy reckoned from
the Fermi level. The influence of the interaction is taken into
account by introducing a corresponding self-energy part
Z,(€) (Refs. 12-14),
Gwley=fe—e,—Z,(e}] ",

Following the standard procedure we introduced
the renormalized energy £, as the solution of the equation

{e)=A,(e) +il {e)signe. (2)

14,19

g—e—A () =0, {3)
and represent (2) at £ =&, in the form
va(a)=z"‘ [8_€V+iT“ Sign E’]_’.'! [4]
where
_ Ay {e) 11 _ .
Zv—v [1_T]E=§v' ?v——Z\,Tv(E——B\r). {5]

We introduce 14 the self-energy part SE{E) averaged
over some equal-energy surface £ = £, and over the config-
uration of the disordered-system random field that defines
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the single-electron problem:
Sa(e)=Be(e) s (e) =No (B) { Y 6 (E-e)le) )
(6)
where the angle brackets denote the aforementioned config-
uration averaging and Ny(E ) is the single-electron (averaged)
density of states.
We shall be interested in the single-electron density of

states with account taken of the interaction; we define this
state in the usual fashion

N(E)=—n" <Z Im G2 (E) > . (7

Assuming the corrections for the interaction to be small,
¥. €€, ~E,, it is easy to verify that in first-order approxima-
tion

SN(E) _ N(E)—N,(B)  08A:(z) + 88z (2,)

= 8
N (E) No(E) AE 98, ®)
For reasons explained below we shall call the quantity
GN(E) - aﬁﬁ(ﬁv) {9)
N.(E) IE

the correction to the thermodynamic density of states. This
density of states was first introduced in Ref. 14 (see also Ref.
8).

3. CORRECTIONS FOR INTERACTION: CONTRIBUTION
FROM LOCALIZATION

We shall consider hereafter a model problem in which
theinterelectron interaction is described by a static repelling
potential with a finite effective radius:

Hin= j— j drj dr’

MG RUEICE STROTNILSERIRZRN

v [10}

An examination of the Hartree and Fock diagrams (Fig. 1}
yields then

5= fdr farve-r) Y fes (e e e),

B\ = I drj ar’ v(r—r') Z, fop (0" (0) gu(r) 9. ('),
v (11}

where f, = fie,}is the Fermi distribution function. We have
accordingly from the definition (6)

4
¥
”._$ U z":-i—@—i—
PR oy g
a b
FIG. 1
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£ = I do f(E+wm) I drj dr’ v (e—rt") €pe(r) puye (r') 277,

(12}
where we have introduced the following spectral densities:

i
Cpa(r) Prae ()" = { ¥ 6(B-e)8(Eto—e)

X g’ (1) (1) " (1) o () ) , (13a)
1
Con(0)prau () = s (Z 8(E—e,) 6(E+o—¢.)

X0 () D) 9 (D () )

The spectral density {13b) was first considered by Berzinskii
and Gor’kov?" in connection with a general localization cri-
terion formulated in it. The gist of this criterion is that at
energies E < E, (where E_ is the mobility threshold}, i.e., in
the region of the localized states, these spectral densities ac-
quire a contribution that is a & function of &

pelt)pera{t’) 22 =Ap(r—1")8(0) tp (0, T—1'),
Lpz(P)pe.u(r’} 20 =4 (1—1}6 (0) +p: (@, r—r’};,
where the quantity

.45:(1'_1") = N :E) <Z|6 (E—E,.) !q:lp(l‘) |=|(Pnl(r’) |2>

+0, E<E, (15)

(13b)

{14a)
{14b)

is connected?! with the probability of the electron returning
to the initial point, so that the Berezinskii-Gor’kov localiza-
tion criterion is equivalent to the known Economou—Cohen
criterion.?? The validity of (14a) can be verified directly by
repeating the arguments of Ref, 20,

Substituting {14) in {12} we obtain the following contri-
butions to 3 ., which is due to the onset of localized states in
the system:

Eﬁ’fic=ﬁ£‘ia=if(E)j drj dr'v{z—1') Ag{r—1")

1 (8) [ v A (@), (16

where we have transformed in the last equation to the Four-
ier representation {d is the dimensionality of space). For a
point interaction v{r — r’') = v8{r — r') we have

_HF

dd
Sp =B} E:—)d—zls(q)ﬁif(E) veds, (17}
where A, is proportional?! to the total probability of the
electron returning to the initial point after an infinite time.

We note that for a point interaction, by virtue of a property
obvious from (13)

pe(F)pgr (1) 22 ={pg(r}pp- (r) >OF (18]

the “regular” contributions to X ¥ and 3 § due to p"in (14)
are equal (and of opposite sign).

For zero-spin fermions, the Hartree and the Fock con-
tributions (17) cancel each other. It can be easily seen from
{16) this cancellation does not depend on the interaction ra-
dius. When the spin is taken into account the Hartree contri-
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bution acquires an “extra” factor 2 connected with the sum-
mation over the spin in the electron loop of Fig. 1a. This

results in a nonzero localization contribution:
H4F L H4F

B tee=0x toc=] (E)ved s {19)

We write down for the sake of argument the equations for the
point interaction. We recognize that the main energy depen-
dence in (19] is determined by a Fermi function that varies
strongly near the Fermi energy E.. The quantity Ag at
E =~ E; can be regarded as a constant {a smooth function of
E). This assumption can, generally speaking, turn out to be
correct near the mobility threshold, when 4 vanishes, The
corresponding “critical exponent” is not known exactly, but
it can be concluded from the available estimates®' that A4 /
JE—0 also as E—E,. We then obtain from (9) and (19)

(@), 7z 85 mote, (- 255).

The singular {localization) contribution {20] is cancelled in
the total density of states defined in {7) by the second term of

(8):
1 3A)" (8) i}
N.(B) <Z| 3t E 6(E_E”)>

& H+F
1 ,
T N.(E) <2I d"j dr

Eg" B loc =
e [6: 1) 170 0") [7) v, T2

{20)

Gf(E}
IE

{21)
We shall see nevertheless that the thermodynamic density of
states (9) governs the behavior of a number of thermodynam-
ic quantities, and retains the localization contribution (20).

To understand better the physical meaning of the local-
jzation contribution to 2 Z* %, we note that in fact we are
dealing here with allowance for the interaction of electrons
that are in one and the same quantum state v. It can be seen
that in the case of diagrams ¢ and & of Fig. 1 the contribu-
tions from the interaction of electrons with equal spin pro-
jections {shown by arrows in Fig. 1) cancel out completely,
and 4 1 * Fis determined by the interaction of two electrons
with opposite spins, which are in a state v, i.e., by an effective
interaction of the Hubbard type:

Hop= -;—2 j dr j dr'v(r—r") oo ir) |2l oo {r') | *rwattes
(22)

where n,, is the operator of the number of electrons in a state
v and with a spin . Using the simplest estimate of A (Ref.
21} we have (Ex < E.)

HiF ~{ UnRr-:: (E)« E<E;

e 23
£ 0, E=E;’ (23)

where R (E) is the localization radius of the electronic
states with energy E. Comparing the results with Mott’s
known qualitative reasoning,” we see that 4 £ *  coincides
with the width of the narrow band of *‘singly occupied” elec-
tronic states produced below the Fermi level in the localiza-
tion region.

302 Sav. Phys. JETP 60 (2), August 1984

O—0 <>

Considering the Hartree—Fock corrections to the ther-
modynamic potential, which are determined by the plots of
Fig. 2, we obtain by direct calculation

(BQ p> = J‘ AEF(E)N(E)SE*. (24)

After integrating by parts we have

H4F

BQ=(B8Q>+ (80, = T_f dEN, (E)(—w-zx )ln“ﬂ_m).

(25)

Comparision of (25) and of the known expression for the
thermodynamic potential of free fermions:

Q=T {dEN(E)n(+e™) (26)

-

explains the use of the term “thermodynamic density of
states” in connection with the definition (9). The singular
{localization) part of the thermodynamic potential is given
by

59,°,=J‘ drj dr'v(r*—r’)J. Az (t—¥ YNo(E) FE)dE -

_ 2 S
—_jde f Ty CVADNAE) P (). ”

The corresponding contributions to the entropy and to the
heat capacity are

Sioc= aagmcz—jdENn(E)af (E) UUAE_'UnNu(EF)ABFs
aT Tr0
- (28)
aS!nc nz
D-:_T B ——— F/— Nﬂ Er AE ; 29
CromT 2t = 2 Ty (No(Br) A, )i (29

C\.. 1s connected with asmall { ~dA ¢ /dE ) correction to the
thermodynamic potential. The corresponding correction to
the density of states in (20) was neglected. The localization
correction to the correlation contribution to the compress-
ibility is also small:

2

P!
Sitioe=— 7 6Qm——vo _[ dEAENo(E)

—

F(E}

(Es) 45}

Thus, the singular contribution {20) to the thermody-
namic density of states does not lead to any contradiction
whatever with the third law of thermodynamics. The finite
contribution to the entropy as 7—0 (28) is obviously due to
the existence of “free” spins in the Mott strip.

(30}

4, REGULAR CONTRIBUTIONS

Up to now our analysis was quite general. We must now
assume a certain specific one-electron model for the Ander-
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son transition. We are principally interested in the contribu-
tions made to the density of states by the “regular®’ terms in
the spectral densities {14). We confine ourselves only to the
Fock contribution to (12) since, as noted in Refs. 3, 14, and
24, the Hartree contribution is small in terms of the param-
eter

F— JdQv(q—-Zp;smw—) / | aaw(0),

where p is the Fermi momentum and the integration is over
a solid angle on the Fermi surface. It is easily seen that F < |
if the interaction potential decreases over a length exceeding
the reciprocal Fermi momentum. It can be verified that the
estimate (31) remains in force also for the regular contribu-
tion to (12} in the localized phase. For a peint interaction, as
is clear from (18), the Hartree contribution is double (when
the spin is taken into account) the Fock contribution, so that
the results that follow must simply be taken with the sign
reversed.

As shown in Ref. 21, the connection between the Four-
ier transform of the spectral density {14b) and the two-parti-
cle Green’s function of the one-electron problem is

Im {®**{Ewq) —D**(Ewg)},

$31)

(32)

nN,(E)

Cpepaiody

where
i . p
0%4i5 (Eaq) =—— Y (G*(p,ps E+0) G*® (p_'p-E)),
2mi
e

q

P.=p+ 5 {33)
A similar representation can also be written for {14a). At
small ® and q, the function @*%(Ewgq), in contrast to
&* [Ewq), is regular.'* We shall therefore neglect its contri-
bution to the spectral density and assume it does not lead to a
substantial renormalization of the density of states. As the
one-electron model of the Anderson transition we employ
the self-consistent localization theory in the form proposed
by Vollhardt and Wélfle.'*"!® In this theory

D4 (Eroq) = —No(Er) [0TMep(qo)] [0*toMe(qu)
—2Eq*dm] -, (34)

and the relaxation kernel M is determined as ¢ — O by the
following self-consistent equation

i 1 d'q ) 27-1
M,,(m)-;{i-l-_ﬂNn(E’) oyt [i0+De, (@) }
(35)
where :
2B, i
_t 36
Ds, (@)= —>— o) (36)

is a generalized diffusion coefficient, 7, is the Born free-path

time, and 1 is the electron mass. The solution of (35} is
. 2 E
My, (©)=— &m')_ ,

Te

{37)
where

@ (Ery=—lim oM _(0)>0

]

for E;z < E_, 1.e., below the mobility threshold whose loca-
tion is defined by the equation eg(E,) = 0. From (32) and

303 Sov. Phys. JETP 80 (2), August 1964

(34) we easily obtain
1 D qus

ECEa it

(PEpEHn}lIF ==
(38)
(PEPE+m>qF = AEF (Q) & ({0)

i I)E-'Fq2

MERTER TP T
EF <Ec»
where
w2 (Ep) T
Agg(g) = - (1 + RL.(Ex) ¢y

@o® (Er) 1pp + Drpd

(39)
2E - /dma} is the square of the localiza-
= (2E/dm)rg_is the renormalized dif-

where R (Er) =
tion radius and Dz
fusion coefficient. From (12) and {38) we obtain for the regu-
lar contribuiton 3 £ at 7= 0:

L]

1 .0 dé
b34 reg = — -~ S dE S (23.[()1(1 v{q)
Dquz
(B"— £)* 4 [0o® (E¥) Tep + Dged'F 7

For the correction to the density of states we obtain corre-
spondingly

x (40)

NE) g
NolEr) —  9F 25
1 dd DEFq
- S ()q_}d v (q} E* 1 [0g (bF)IEF'l‘DE TF " (41)

Assumning now for simplicity the point-interaction model
and recalling that up to now the energy E was reckoned from
the Fermi energy £, we getfor 2 <d « 4

ollp
IE—E;I:s’(ﬂuz(Er)TxF.
(42)
?vN((g))”%dez D5 =0y (B iy 1 —E-nr,
LRSSy 3 o

IE—EFl €' (Ey) Teg

where S, =[29"'#72I(ds2))"'. The characteristic
energy E is connected here with the choice of the cutoff pa-
rameter on the upper limit of the integral with respect to g in
{41). This cutoff is necessary because the “diffusion” approx-
imation is not valid for the integrand and at large momenta,
In accord with the consideration of the analogous cutoff in
the integral of (35), which was carried out in Refs. 15 and 17,
we choose a cutoff parameter equal to the Fermi momentum,
so that

E=Dsp ps*. {43)
An alternative is the choice of a cutoff parameter equal to the
reciprocal / 7' of the Born mean free path,'® but near the
mobility threshold we have/ —' — p., so that the two choices
are equivalent. According to Lee’s scaling reasoning,® near
the mobility threshold, when R . (Ez)»/, p7 ', the cutoff
parameter is proportional to R 5" and E ~w}(E )7, This
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choice, however, contradicts the self-consistent localization
theory on which our calculations are based. In fact, use of
cutoff at momenta on the order of p or/ ~' in the basic self-
consistency equation (35) yields the usnal results’>-'? that
agree with the scaling picture of the Anderson transi-
tion.'*'® On the other hand, using in (35) cutoff in the sense
of Ref. 8 does not lead to equations in closed form. It must be
emphasized, however, that in the self-consistent theory we
still have the unsolved problem of determining the ¢ depen-
dence of the parameters w?(Er) and D _or 75 atlarge g,
since Eq. {35) is derived in the limit as ¢ — 0.
The estimate {50} is valid if the following condition

|E—Ex), @ {Er}1ep <E (44)

is satisfied. For the special case d = 2 we obtain in place of
(42)

8N (E)
No(&R)
v wEZEEl g g0 Erry
L}
_n 45)
4nZD (E |
VEEr nmo (EF)TEF, {E — Ep|<Cwo®(Er)1gp

At w2(Ez) =0, i.e., in the metallic phase, Eqs. {42) and {44}
agree with the usual results of Aronov and Al'tshuler.”* It
can be seen that at |E — Ex|»;(Ef )7, the metallic-phase

kink in the density of the states at the Fermi level become
smoothed out and is replaced by a smooth minimum. This
conclusion, as can be easily verified, remains in force regard-
less of the cutoff used in the integral (41]. A diagrammatic
analysis in Ref. 25 has shown that {42} yields the main cor-
rection to the density of states everywhere except in an ex-
ponentially small vicinity of the Fermi surface, where an
additional nonzero logarithmic contribution appears in the
dielectric state.

We present actual relations that are obtained in the self-
consistent localization theory. At 2 «d <4 and Ex S E_ the
solution of Eq. (35) produces in the dielectric phase (we omit
some inessential constants}'’

E (4—d}/2 E —E, 2f{d=1}
R Gl v M B =
(46)
E (4—d)/2 4 =¥ Ee—E, |~
een=p [1-() ) e | P
(47)
tEP dl d(ﬂ02 (EF) {d-2)/2
T 4—d[ SEg? ]
da Ep— E |
g [PrRuc B)Pd b [ =5 0 (48)

where A = (27E 75~ " is the dimensionless constant of per-
turbation theory in scattering by a disorder, and
v = (d — 2)~ ' is the critical exponent of the localization ra-
dius. The mobility threshold in the model of point scatterers
randomly distributed in space at a density p and with a scat-
tering amplitude V (Ref. 17}1s
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,d d 22 {4~—d)
~ - —d/R —_— E'c‘
E. [d—z(?‘“) /F(z )]

E =m0 (g V2 2704 49)

Where E_. is the *“strong-coupling” energy."? At Exr ~E_,
we have A ~1, and perturbation theory no longer holds.
From {40)-(48} at E; S E_. we have

k EF ;\rEF EF_EG v
B Te. ~ . ~ | , (50
o )~ TR B ) 4—d | E (30}
1 1 _ 1 | E,—E. | ¥
Dx,,""an—{PrRm(Er)]z d“";"‘ Z. » (51)
E _Ec d—2}y
EnEplpsRicc(Eg) ¥4 ~Ef FE I (52}

It can be seen that satisfaction of the condition (44) entails no
difficulty. For the correction to the density of states on the
Fermi level (|E — E | €w}(Er )7z} we obtain from {42) and
(50)-{52)as Ep — E,
SN(E:) 4-d
No(E;)  d—2

vom*Ey* " {1~ [ peRioc (Ex) 1%}

E _Ec - iy
"-‘—UnNo(EF) T ’

(53)
The divergence of the correction as £z —E,, which follows
from the last equality in {53} {a similar divergence occurs also
in the metallic phase} indicates that our analysis cannot be
used in the immediate vicinity of the mobility threshold. Our
estimates are meaningful so long as |[6N (E )/N,| €1. The di-
vergence becomes logarithmic if the cutoff in (41} is in accord
with the scheme of Ref. 8, in analogy with the corresponding
result obtained there for the metallic region.

The corrections obtained above to the density of states
can be found from the following qualitative arguments. Con-
sider the interaction between an electron in a state v with
energy E, on the one hand, and an electron in a state with
energy Ep, on the other. The relative correction to its wave
function is then in first-order perturbation theory

8. ¢
2 {dtHad), (54)
% .

where r = 0 is the instant when the interaction is turned on.
After a time ¢ the electron diffuses within the confines of the
volume (D Y. We estimate the matrix element of the in-

teraction for short-range repulsion at v,(Dz 1)~ 472 Then

imox
G[LP“ ~vo [ dtDe, )"~ oDz, {tnen —tos}. (55)
tmfa
It is natural to determine {,;,, here from the condition for the
applicability  of  the  diffusion approximation:
[Dg tuin 2~ pT 0 diey b ~ (D p2) ™' ~E ~'. The time
toax 18 determined by two factors. First, the matrix element
of the interaction vanishes at times ¢ > |E — E¢| because of
the of the temporal oscillations of the wave functions. Sec-
ond, in the region of the localized states the interaction elec-
trons cannot move apart by more than R, (E;}, and the
diffusion  approximation is valid so long as
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tSRE(ER)Dy, ~(w) TEF} ! Therefore  {,,,, ~min

[|E — Eg} ™", {@j7g,)~"}. Then, assuming that SN{E)/
Ny~8p, /¢, , we obtain directly {42). Of course, these esti-
mates are only purely explanatory.

The results provide a simple explanation of the analysis
of Aronov and Al’tshuler?? on the diclectric side of the An-
derson transition. The approximations used do not contain a
Coulomb gap,*”* primarily because of the short-range char-
acter of the interaction, and also perhaps because the model
is crude and is based only on allowance for Hartree-Fock
corrections.

5. POLARIZATION OPERATOR

We consider in this section, from a general viewpoint,
how the localization affects the behavior of the polarization
operator, i.e., actually the question of the character of the
screening of the electric field in a Fermi glass.

Using again the representation of exact eigenfunctions
of the one-electron problem, we have for the Fourier trans-
form of the polarization operator of non-interacting elec-
trons

fu_fv
Mgw)= < Z g.—e,t0tib sign o

X @u(ps) o (P+')‘Pu(P—')(Pu'(lJ—)>

_j dEIdQ f(E)—f(E+Q)

ELIE. ’» o
Q4o tidsignw Brotiagng o E) (osoniods

(56)

in the zero-temperature formalism and

fE)—f(E+Q)

H(qwm)—j dE j’ dQ—5

in the Matsubara technique (@,, = 2amT ). Substituting the
singular part of {14b) in {56), we obtain

e {qu) =0,
and a nonzero contribution comes only from the regular part
of (14b):

II{gw)=II,..(qw)

fE)—f(E+Q)
- .[ aE IdQ Q+u+idsignw

No(E) €psprsoda® (37)

N(E)ps(qR). (58]

The situation in the Matsubara technique is different:
ntnc (q(ﬂm?&o) =01

(59)
L (gon=0) = j a(- 220N vy 4@
=N, (Es) A F(Q) ,
so that
H(qmm)———j dE{(E) [1—[(E) IN.(E}4=(q)
(60)
HE)-H{E+Q) v
+j dEj 4Q = No(B) ps” (992).
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Taking into account the explicit form of the regular part of

the spectral density, which arises in the self-consistent the-

ory (38), we can obtain

D ¢

+ “’Oz{EF) Tgp — i T
(61)

In the metallic phase w3{Ez) =0, and (61) reduces to the

known expression for the polarization operator of a “dirty”

metal.>*’ in the localization region, recognizing that

@5 Er)rg, = Dg R o~ we

L, (q0) =Ny (E#) ¢* [ ¢*+Rie (Ex) . (62)

Analogous calculations yield for the Matsubara polarization
operator

H{qw) =1, (qu) =N, (E¥) De g
F

T (qond = Mo (B) {Ag (@60 &+ —22 O g )

[ ol i Wy DEF (U}m) gg ™

Dgp (— o) ¢
e D e e 6
1, m=0
B(Qm)—{o, me<0’
where the generalized diffusion coefficient is
2Er i @y {E!)
Dl' 'm . Mx m] = - ——
(m ) dm Mx ( m) F(m ) TEP idm
{64)

The difference obtained in the behavior of the polarization
operator at T = 0 and in the Matsubara technique, a differ-
ence that manifests itself only at zero frequency (screening of
the static field), is the consequence of the known difference
between the static adiabatic and static isothermal responses
in systems with non-ergodic behavior.?®?” The latter leads to
the appearance of a 8-function anomaly of the spectral den-
sity at zero frequency, which in our case is a consequence of
the Anderson localization—of a typically non-ergodic phen-
omenon. The Matsubara response *““senses” the nonergodi-
city manifestation,”” whereas the response determined by
the commutator Green’s functions is insensitive to it. The
polarization operator is connected with the electronic com-
pressibility. For the static isothermal compressibility we
have (cf. Ref. 27)

%" (q0) =II{quw.=0), (63)
whereas the adiabatic compressibility is
®*(g0) =IL,ee(qu~0). (66)

We get then from (58) and (59)

®7 (g0) =2 (q0) =No(Er) Ar, (@) =No(Er) [1+ 7 Rioe (Ex) .
(67)

The fact that A { g) determines the difference between the

isothermal and adiabatic compressibilities was first noted in
Refs. 28 and 29. This difference, naturally, appears only in
the static response. From (39)-{62] we obtain for the static
isothermal polarization operator

I (q0) =T gwn=0) = .. (g0} +11,., (g0)
1 g*
1+¢*Re,_(Es) ¢ TR (Ee)

=N.(Es) [ | =& (68)
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Accordingly, for the static adiabatic dielectric constant we
have

4 2
g*(qm+0)=1+%nreg(q0)

_ { i+%0*/g%, g2 Rie(Er),
1+xptR? (Ex), q<R;L(Es),

for

(69)

where x3 = 4me’N,|E ), whereas the static isothermal di-
electric constant is

/ 2 Dz
€ (g0) =1 + —= nf(qo)=1+°‘q2 (70)

qz
It is precisely the latter dielectric constant that agrees with a
real experiment on the screening of a static external field.® It
can be seen from {70) that the Fermi-glass screens a static
field."" This fact was first noted qualitatively in Refs. 30 and
31. Avany arbitraily low temperture the hopping conduction
over the localized states aligns the electrons in an Andersen
dielectric in a way that ensures complete screening. The
characteristic times are obviously determined here by the
frequency w* ~ D, ¢, Where D, is the coefficient of dif-
fusion due to the hopping conduction, and g~ 1/L, where
the length L is determined by the characteristic scale of the
external-field inhomogeneities in the given experiment*®*’
{e.g., by the distance between the capacitor electrodes). It is
precisely in the sense of the condition @ «< @* that one must
understand the static character of the field (and of the re-
sponse) in the formalism described above (in which hopping
conduction is not taken explicitly into account).

The divergence of the dielectric constant, observed in
the approach to the metal-insulator transition in the known
experiments on P-doped Si (Ref. 32 is probably due to the
divergence of the localization radivs R . (Er — E_ ) in (69).
It would be quite interesting to attempt a measurement of
the dielectric constant of this system in a static field.

The authors thank D. I. Khomskii and M. 1. Auslender
for a discussion of a number of processes touched upon in
this paper.

"In the employed formalism it is possible also to demonstrate directly that
the corrections to fT | ggl, which lead to singulacities such as (42} in the
density of states, are mutually cancelled out by the interaction. This agrees
fully with the important circumstance noted in Refs. 8 and 9, viz., the
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screening radiuvs is determined not by the density of state but by the quan-
tity IN /du = IT{g — 0,0}, where N is the total density of the electrons.
This was not taken into account in Ref. 6.
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A system in a state of Anderson localization in its normal state can go
superconducting below the critical temperature T, The Ginzburg-Landaun
coefficients are derived for the superconducting transition in the region of
Anderson localization. The behavior of the upper critical magnetic field H, as a
function of the degree of disorder is studied in the metallic and insulating regions.

The introduction of a sufficient amount of disorder in a metallic system gives rise
to a localization of electronic states near the Fermi level, i.e., to an Anderson transi-
tion."* On the other hand, the attraction of electrons near the Fermi level gives rise to
a superconducting ground state at low temperatures. We might ask about the relation-
ship between these two types of transitions, which lead to fundamentaily different
ground states. This question is also of applied importance in connection with research
on the supercenductivity of highly amphorous metals and compounds bombarded by
fast neutrons.

The effect of localization on superconductivity has recently been the subject of an
extensive discussion in the literature.”> In the present letter we show that a three-
dimensional system in the state of an Anderson insulator in its normal state can go
superconducting below a certain critical superconducting transition temperature T,.

Assuming that there is an effective attraction of electrons at the Fermi surface, we
use the Bardeen-Cooper-Schrieffer theory to calculate the coefficients of the Ginzburg-
Landau functional:

1 3 e 2
F=AIA[’+-BIAI‘+C|————A)A| . (1)

2 o b
The coefficients A, B, and C are determined by the Matsubara two-particle Green’s
function of the system of electrons in the normal state. This function ¢ iqw,, ), which
determines the kinetic properties of the normal state and the transition to localization,
can be found in the self-consistent theory of localization.*® As the degree of disorder
increases (with a decrease in the “seed” electron mean free path /), the mobility thresh-
old E, approaches the Fermi level E, and crosses it. At this point the conductivity
vanishes, and the system goes into the insulating region (£ < E_}. Near the transition
point {Ex =~ E,} we have

NEg)

P (quw,, )= — w,, = 2amT, ()

il | +iDy (1w, 17)! g3
where
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Dy = %UFI, 7=l
According to the BCS model, the coefficients 4 and B, remain independent of the
degree of disorder (the Anderson theorem) as long as there is a sufficiently large
number of states near the Fermi level in an energy laver on the order of T, in the
localization region. We are thus primarily interested in the coefficient C, which de-
scribes the superconducting response of the system. For an ordinary dirty supercon-
ductor, C is proportional to the conductivity of the system, ¢. This conductivity van-
ishes at £, = E_, and the question of the value of C near the Anderson transition and
in the localization region is less trivial. Using the relation

2
C=irT Z @(b(q,k”)l 5 & =(n+1mT (3)

o q*0
we find the following results for the square of the correlation length:

~ 1

T
zﬁn=5u§6—~;>; R, < (5P, E,<Eg.
0 c

- T -1
#(T) = (so:’)‘”(i ) ?) P OR> (W), E,2Ep. “
¢

fo= L18hv,/T,,

where R, =k 7 '|1 - Ez/E,| " is the correlation length of the Anderson transition,
o=0,keR,)"" is the static conductivity of the metal near the transition, o, is the
Drude conductivity of a dirty superconductor, and o, = I *k./7# is the minimal me-
tallic conductivity in the Mott sense [, =250 $/cm with & =~(3 A)~'], which deter-
mines the scale of the conductivity at the metal-insulator transition. In the insulating
region, R, determines the localization radius.

We see that the superconducting response is also preserved in the localization
region. It disappears only upon a violation of the inequality R, > (£, %)'/3, i.e., only for
highly localized states, for which the discrete spacing of the levels in a region on the
order of R, in size is important.

We calculated the behavior of the upper critical magnetic field H, (T), ignoring
the effect of the magnetic field on the Anderson transition. This approximation is
justified near T,. The relationship among o, the derivative (dH , /dt)r, and the state
density at the Fermi surface is

*

>0 (5a)

1; o
U dHy,
k=— = g *
SechN(EF} ar T, . o< o, (5b}

161% [MER)T, '
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FIG. 1.

where 0* zzo, (k€)% is a measure of the effect of localization on the superconduc-
tivity. This quantity is approximately equal to the minimal metallic conductivity. We
see from (5) that relation (5a), which is familiar relation in the theory of dirty supercon-
ductors, is violated as we approach the Anderson transition. Figure 1 shows the com-
plete dependence of the coefficient k& on the parameter

— g g A
a= 1.23;[1 + e {(kréol ] .

Also shown here is the dependence He) = — H,(0)/T.(dH ,/dT )y . As the degree of
disorder increases, this coefficient increases from the value 0.69, characteristic of ordi-
nary dirty superconductors, to 1.24. The positive curvature on the H, {T') curve gives
way to a negative curvature.

We know from the work of Anderson, Muttalib, and Ramakrishnan® that as a
system approaches the localization threshold, the critical temperature T, falls off
becanse of an intensification of the effective Coulomb repulsion of electrons {the at-
tenuation of the diffusion of electrons opposes their dispersal). Our calculations show
that in systems with low values of £ (on the order of 1000 K) and a rather high initial
temperature T, (on the order of 10-15 K in the absence of disorder) the localization
region can be reached while a significant value of T, is retained.

A behavior of o and (dH,, /dT); , which agrees with (5) and Fig. 1, has been
observed in some real systems: the bombarded ternary chalcogenides SnMo.S, (Ref. 9)
and Pb, _, U, Mo,S; (Ref. 10). Measurements® of the coefficient y in the specific heat
show that the state density N (Ep) is essentially independent of the degree of disorder.
We might note that compounds of both types are convenient for arranging the Ander-
son transition, because the values of Er in these compounds lie near a band edge and
because of the comparatively high temperatures, T, =~ 10-15 K. The pronounced dis-
ordering which results from bombardment causes 7T, to decrease to 1 K in these
materials, causes the residual resistance to increase to values » 1077 {2 cm, and leads
to a negative coefficient of the resistance which is significant in magnitude over the
entire temperature range studied. These results strongly indicate that these com-
pounds, when subjected to neutron bombardment, are in fact near an Anderson transi-
tion while retaining superconducting properties.
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The possibility of superconduciivity is considered for a strongly disordered
metal approaching the Anderson transition. A microscopic derivation of the
coefficients of the Ginzburg-Landau expansion is given for a system in the
vicinity of the mobility edge. The localization transition is described within the
Jramework of the self-consistent theory of localization. The superconducting
response persists in the localization region. The appropriate change in the
behavior of the upper critical field H,, is considered for the localization region.
The Coulomb repulsion grows as the Fermi level approaches the mobility edge,
leading to a degradation of the superconducting T.. However, under rather
rigid conditions superconductivity is possible both at the mobility edge and in
a narrow region below the mobility edge, i.e., in an Anderson insulator. Finally,
experimental data for superconducting molybdenum sulfides irradiated by fast
neutrons are discussed.

1. INTRODUCTION

The concept of localization forms the basis of the modern theory of
electrons in strongly disordered systems.'” Sufficiently strong disorder intro-
duced into an ideal metallic system leads to the localization of electronic
states in the vicinity of the Fermi level (Anderson transition).” The electronic
density of states at the Fermi level remains finite, but because of spatial
localization of the electronic wave functions, dc electrical conductivity at
zero temperature is impossible, i.e., the system becomes an insulator. At
the same time if there exists an attraction of electrons in the vicinity of the
Fermi level, the metallic system becomes superconducting at low tem-
peratures.* So the problem arises of the interplay of these two types of
transitions, leading to essentially different ground states of the system
(insulator versus superconductor). This question is also important from an
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experimental point of view due to a strong dependence of the superconduct-
ing properties of some compounds on the degree of the structural disorder,
which can be changed greatly by fast neutron irradiation.

The influence of localization on superconductivity has been dealt with
in a number of recent theoretical papers.>™'* Attention was paid particularly
to the study of localization corrections in two-dimensional superconduc-
tors.>'® However, the possibility of superconductivity in the vicinity of a
real Anderson transition was not studied. In this paper we address the
problem of superconductivity in a three-dimensional metal undergoing an
Anderson transition. From the experimental point of view we consider a
rather exotic situation. In fact in most metals the Anderson transition is
not realized even for the fully amorphous state. This is due to the rather
high values of the typical Fermi energy Ep. Possible candidates are metals
with low values of Ep (semimetals, narrow-band conductors) and also
quasi-one-dimensional and quasi-two-dimensional conductors.

In the first part of the paper we treat the probiem in the framework of
the BCS model,* which assumes the existence of an attractive interaction
between electrons near the Fermi level. For this model a statement can be
proved (Anderson theorem)'* that claims the unimportant influence of
structural disorder on the superconducting transition temperature T. The
arguments used in this proof are, in fact, independent of whether the
electronic states are localized or not.*™!' However a question arises about
the physical meaning of T, in the localization region, as to whether below
this temperature the system still has the Meissner response to an external
magnetic field and can sustain a persistent current. This problem can be
solved by the derivation of the Ginzburg-Landau (GL) equations for the
system in the vicinity of the Anderson transition. We shall demonstrate that
superconductivity persists for T < T, i.e., an Anderson insulator-supercon-
ductor transition is possible. On the basis of the GL equations, we study
the behavior of the upper critical field H,, in the region of the Anderson
transition. :

To justify the applicability of the BCS model we must show that the
electron-phonon mechanism of electron-electron attraction may dominate
over Coulomb repulsion even in the localization region. In a recent paper
Anderson et al.’? demonstrate that the diffusive nature of electron motion
in a disordered system leads to the growth of an effective repulsion of
electrons forming Cooper pairs and to the appropriate suppression of T,
with disorder. We shall show, however, that under rather rigid conditions
the value of T, remains finite both at the mobility edge and in some narrow
region below the mobility edge {Anderson insulator), although it is the
growth of the Coulomb repulsion that leads to the destruction of supercon-
ductivity in the insulator phase at some critical disorder.



Anderson Localization and Superconductivity L] 1

Finally, we discuss some experiments on superconductors irradiated
by fast neutrons, which give some evidence on the possible realization of
our theoretical estimates in real systems.

2. GINZBURG-LANDAU EQUATIONS
2.1. General Relations

Consider the electrons in a disordered system, assuming the existence
of an effective electron-electron attraction g, in an energy region of the
order of 2wp around the Fermi level (wp, is the Debye frequency). To study
the problem of superconductivity in such a system we must not only discuss
the value of T, but also consider the response to an external vector potential
A.

In the general case, the study of response functions for a superconduct-
ing system with localized one-electron states presents a rather difficult
problem. However, near T, the problem simplifies, and in fact we must
only show that the free energy density for our system can be represented
by the standard GL form'*'

2

F=F,+ A!A|2+%B|A|‘*+ C '(E-EEA)A

ar Hhe ()

where F, is the free energy density for the normal state and A is the
superconducting order parameter. Now the problem reduces to the micro-
scopic derivation of the coefficients A, B, and C in (1), taking into account
the possibility of electron localization in the disordered system, thus gen-
eralizing the results of Gorkov'>!® for “dirty” superconductors. In the
following we use the system of units # = I, restoring the value of 4 only in
some final expressions.

Within the BCS model the coefficients A and B in fact do not change
in comparison with the ordinary theory of “dirty” superconductors, even
as we approach the mobility edge, so long as the Anderson theorem can
be applied. Below we shall determine the appropriate conditions. Less trivial
is the behavior of the coefficients C, which in fact determines the supercon-
ducting response. In the limit of ordinary “dirty” superconductors it is
proportional to the diffusion coefficient of electrons, i.e., to the conductivity
at T=10. As we approach the mobility edge this conductivity goes to zero,
However, we shall show that in the region of the Anderson transition C
remains finite even in the region of localized states,

To determine the coefficients of the GL expansion it is sufficient to
study the two-particle Green’s functions for the normal system.'* We intro-
duce two-particle Matsubara Green’s functions for electrons in the normal
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system in the momentum representation’”'*:

] * d3p { dBPr
Yaomen) == | 0ar ) Gy
X{G(ps Pt — £, + 0, ) G(—pL —p.— &, )}

1 " dSP r djp!
$lqone,) = 2qi ) (20Y ) 2w)

(2)

X(G(P-#P:- &€y + wm)G(pr—p— - En}}

where the angular brackets denote averaging over the random configurations
of the disordered system, p.=p#*3q, &, =2n+ 7T, and w,, =27mT
Graphically these functions are represented (for w,, =2¢,) in Fig. 1, where
shaded blocks denote the exact vertex parts in the standard impurity diagram
technique.

Then for the coefficients 4, B, and C we get™'™'*

1
A=E+2m’TZ G(g=0, W, =2¢,) (3)

2

X o
C=iaT} 5:}3 F(qwm =2&,)q=0 4

We see that the superconducting properties are determined by the function
y describing the propagation of two electrons. At the same time the function
¢ describes the kinetic properties of the normal state and the localization
transition. In the case of time-reversal invariance, i.e., in the absence of
external magnetic field and magnetiv impurities, we have'®"

Y(qgw,,) = ¢(quw,) (5)

and our problem reduces to the calculation of ¢(qw,,).

RE BEq Y a
ampze) - OB -

2E Pl 2E:) =

0
©
8

Fig. 1. Diagrammatic representation for ¢ and ¢, Shaded blocks
denote the exact vertexes of the impurity diagram technique. There
is no summation over &, in the loops.
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Fig. 2. Anderson transition showing the density of sates
in the conduction band. States with E < E, are localized.
{a) Metallic phase ( Ec> E.): (b) insulator phase { Eg <t E_).

For a disordered system the electronic states of the conduction band
are localized near the band edge up to an energy E. (the mobility edge).
As the disorder grows, the value of E, moves upward and can pass the
Fermi level Eg (see Fig. 2). Thus we have an Anderson transition. As a
one-electron model of this transition we take Gotze’s self-consistent theory
of localization in the form proposed by Vollhardt and Wolfle."”"*' The main
attraction of this theory is the practical possibility of performing calculations
for the whole range of parameters of the system, from “good” metal to
Anderson insulator. For small q and w,, we have

__ N(Eg)
ol + D w,)

¢(qo,)= (6)
where the generalized diffusion coefficient at the Fermi level ﬁ(w,,,) is
determined by the self-consistency equation'”'®

D, i d*q
= =1- Wy 7
Dlan) | wNZ(EF)j (2my $(90m) 0

Here N{Eg) is the electronic density of states at the Fermi level in a
disordered system, D,=1vi7 is the “bare” diffusion coefficient, = is the
mean free time in the Born approximation, and vp is the Fermi velocity.
For a model of pointlike random scatterers with scattering amplitude V
and spatial density p we have 1/7=2mpV*N(Eg). In the following the
“bare” mean free time 7 and the appropriate mean free path ! = ppr will
characterize the degree of disorder. In the localization region these para-
meters obviously do not have the same simple meaning, which is clear in
the metallic state.

For the three-dimensional case (7) reduces to

ﬁ(wm)___l A ri[ D, 1-]”2

Dy A 2 Al D(em)”

18,21

(8)
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where A =(27wEg7)"! and A, is the value of A for Eg= E.. The solution of
(8) can be written approximately as

- o
D =M _ ®m . 173
(wm) ax [Dwm + 3D(:J§f U]z.—.’ Dl](_mmT) ] (9)
where
D =Dy(keR)™! (10)

is the renormalized diffusion coefficient, while the characteristic frequency
axg iS
5 {%v%R,‘z; Ep< E, (insulator) (an
w —1
* lo; Ep=E. (metal)
Here R, is the correlation length for the Anderson transition.'"'®*® For Eg
near E, we have

bt

L
ke

EF_Ec

R E.

(12)

AlTT 1
1-—— = —
’\c! kF

where » is the critical exponent. In the self-consistent theory, for the
three-dimensional case » = 1; however, experimentally the value may differ.
The frequency «, is in many respects similar to an order parameter in the
usual theory of phase transitions. It becomes nonzero in the localized phase
and determines the insulator nature of the electromagnetic respornse, e.g.,
the dielectric function.'”***' In principle it is a measurable characteristic
of the localized phase and gives information on R, [see (11}] in the insulator
region in the same manner as o defines it in the metal region (see below),

The position of the mobility edge in the conduction band for free
electrons in the model of pointlike scatterers is determined by the estimate”™

9 9 _
Ec=mm3(pV2)z=mEp(Erf) : (13)

Eg=E,

At the mobility edge (Ee = E,.} we have Ex7r=3/27 or kel =3/ w. With the
growth of disorder, i.c., of the value of pV?, r diminishes and R; grows in
the metallic region (Eg> E,), while the renormalized diffusion coefficient
(and conductivity) drops to zero at the transition at Er= E,, where R, =<0,
With further growth of disorder we enter the localization region, where R,
determines the localization length of an electron. Here R; drops as Er moves
deep into the localization region, while w, grows, similarly to the growth
of an order parameter in the condensed phase in the theory of phase
transitions.



Anderson Localization and Supercomductivity 95

Note that the equations of the self-consistent theory of localization are
derived with the essential use of perturbation theory over the parameter
(Epr)™". Actually, as we have seen above, this parameter is not small at the
mobility edge, and the self-consistent theory in fact has no controllable
small parameter.”®

For the metallic phase (Eg= E,) the experimentally measurable static
conductivity ¢ is determined by the renormalized diffusion coefficient and
can be expressed as

0'=232DN(EF)=0'0/kFRf=0'n_0'c . (14)

where ,=2e*D,N{ E;) is the usual Drude conductivity and o is its value
at the mobility edge (Ep= E,): o. = e’ky/ m'h. The last equality in (14) is
valid for v = 1. We shall use this relation following from the self-consistent
theory to simplify the analysis, although, as we have already stressed, the
experimental value of » may be quite different and for o~ o, the relation

(14) is replaced by
(=)
g=0|—
a;

In most experiments on the strongly disordered metals the typical scale
for o is determined by the loffe-Regel limit*?; the mean free path is of the
order of a few interatomic distances and o =~ o4~ 10° Q™' ecm™".* However,
near the Anderson transition the value of o, drops to &,, which is obviously
of the order of the minimum metallic conductivity due to Mott and Davis®:
.~ (2-5) X 10 Q™' em™". This is a characteristic conductivity scale for the
continuous Anderson transition.! Using (14), we can, in principle, relate
oy to the experimental value of the conductivity o; oy = o, + 0. However,
the value of &, should be considered as an obvious fitting parameter, to be
determined from experimental dependences.

An obvious limitation of our theory is the explicit neglect of the effect
of the electron-electron interaction upon the metal-insulator transition in
the disordered system. We assume the validity of the picture of the Anderson
transition® as described in the one-¢lectron approximation. However, it is
known®'*** that the electron interaction has an important effect in the vicinity
of this transition. Within the framework of the BSC model where the only
interelectron interaction is an attraction in the vicinity of the Fermi level,

*The loffe-Regel conductivity region is characterized by a very low negative temperature
coefficient of resistivity and strictly speaking cannot be described by the wsual Boltzmann-
Drude theory. In most of this paper we are concerned with still lower values of the conductivity,
of the order of o, typical of the vicinity of the Anderson transition. However, it is possible
that the actual behavior of the system in the Ioffe-Rege! region is intimately connected to
localization.



96 L. N. Bulaevskii and M. V. Sadovskii

described by the pairing constant g, we are free to assume the weakness of
this interaction, i.e., gN{Eg)« 1, and neglect its influence upon the pair
propagator ¢(q, ,,) completely. In a real system we apparently have to
consider electron-phonon and Coulomb interactions and disorder on an
equal footing (see below). Unfortunately, there is no complete theory of
the metal-insulator transition in disordered systems.

Thus we limit ourselves to the study of the coexistence of localization
and superconductivity in the framework of the BCS model in the weak
coupling limit.

2.2, Coeflicients of the GL. Expansion

The details of the calculations leading to the final expressions for the
GI. coefficients A, B, and C are given in Appendix A. Here we quote only
the results. The coefficients A and B, determining the transition temperature
and the order parameter near T, in complete accordance with the Anderson
theorem, are described by the usual expressions for “dirty” supercon-
ductors'>'®:

T T-T.
=N —_—==
A=N(E}ln T. N(Egr) T

(15)
_1L3)

B= 8 T?

N{(Eg): T.=1.130p e™""*
where A = gN(Eg). These expressions depend on disorder only through
N(Eg), but they are valid even below the mobility edge ( Ex< E.), i.e., In
an Anderson insulator.

Significant changes occur in the coefficient C of the gradient term of
the GL expansion. Using (4)-(6) and (9}, we find

-

T

8T,

N(Ep)D; R, < (&) Ex> E,

Dyl
L

/3 '
= N(E‘“)( ) ~ NEXEP  R> (&) B2 E.  (16)

1.78D

TR R < (&), Eg<E,
ot}

N(Eg)R7 In

where £ =0.18v¢/ T, is the superconducting coherence length. In the metai-
lic region, as the Fermi energy Ep approaches the mobility edge E, the
characteristic length R, grows and the coefficient C diminishes as the
renormalized diffusion coefficient D from (10} and is proportional to the
metallic conductivity (14). However, in the vicinity of the mobility edge,
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as o0, C diminishes more slowly and remains finite even for Ep<E,
{ Anderson insulator}, With further lowering of Eg deep into the localization
region, C is determined by the localization length R, which diminishes as
Eg moves apart from E..

Our analysis of the insulator region {Ep< E_} is limited to the range
of sufficiently large R, such that’

[N(E)RIT '« T. (17)

This is the condition of a large number of discrete energy levels within a
sphere of radius R, in the energy interval T, which is the necessary condition
for Cooper pairing of localized electrons. It is easy to see that (17) reduces
to

R >»[N(Ee)T.) P~ (&/k8)'° ~ (&) Er<E, (18)

Thus the final asymptotics in (16) in fact has no region of applicability,
and within the BCS model the condition of superconductivity in the insulator
phase is given by (17} and (18). The meaning of these results is that the
electron motion within a localization region of size R, is sufficient to produce
coherent Cooper pairs.

For the superconducting correlation length £(T) and the London
penetration length A, we obtain, using (1) and (14)-(16} (cf. Ref. 16)

2o (L=T
gm’"( T. )

-1 fof O"}(T* (EF>E.-:)

ota,’
(&) oc<ao*{Epz E,) (19)
A2 =32me’c IN(ERAZE(TY(1 - T/ T.)

From (19) we can see that both £*(T) and A initially drop proportionally
to o, while the disorder grows, but already in the metallic region, for
Ri=(&F)'?, these quantities diminish more siowly than the conductivity,
This change of behavior starts for

e<o*=a.(kefo)™? (20)

which is the key quantity for the effect of localization on the superconducting
coherence length. For typical values of &~ 100/ and /~kz' we have
a*=10° 0" cm™, i.e., the value of o* is smaller in general than the minimal
metallic conductivity. However, it is again better to understand it as a
parameter to be determined from experiments, showing the transition to a
behavior different from the predictions of the usuval theory of “dirty”
superconductors.

For the insulator phase the values of ¢(T) and A7’ remain finite,
although they diminish further with L The critical current for a thin supercon-

2
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ducting plate is proportional to A[*/&(T),'® and remains finite after o
becomes zero.

Finally, we note that our results give evidence of localization destruction
for electrons forming Cooper pairs. However, the character of the wave
functions and kinetic properties for one-particle excitations below T, are
at present unknown.

2.3. The Upper Critical Field

Direct information about £°( T} can be obtained through measurements
of the upper critical field H,,,'®

Ho=¢o/27EXT);  ¢o=mch/e (21)

Using (19), we obtain a relation connecting @, (dH,,/dT)r, and the value
of N{Eg), which can be determined through independent measurements of
the electronic specific heat:

8 2
—fﬁ%; o> o* (22a)

o (dch) _
N(Ep\ dT /4, b0 bed )
27 [N(EQ) T.]V"

ag<og* {22b}

On the rhs of (22a) only fundamental constants appear, and this relation
is often used for the interpretation of measurements on irradiated supercon-
ductors.?*** Using this relation, we can find values of N(Eg) for different
degrees of disorder from the measured values of (dH../dT)r,and conduc-
tivity o. However, near the metal-insulator transition, when o= o¥*, this
relation is already invalid and the described method of interpretation of
measurements of (dH,,/dT)y, simulates a fall of N(Eg) with o according
to (22b). In real systems this behavior was observed in Refs. 24 and 25 and
we stress the importance of independent experiments to determine N(Eg).
According to preliminary data obtained by the authors of Ref. 24 via specific
heat measurements, the value of N( E.) remains practically unchanged with
the growth of disorder.

Here it is appropriate to note that our derivation of the coefficient C
essentially used time-reversal invariance, as expressed by (5), which is
correct in the absence of external magnetic field (and magnetic impurities).
S0 our results are formally correct in the limit of an infinitesimal external
field, which is sufficient for the demonstration of the superconducting
(Meissner) response and for the determination of (dH,,/dT)r, because
H_ -0 for T— T, (see below). In a finite external field we must take into
account the influence of the magnetic field upon localization, which is
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expressed by the violation of (5), This problem is far from being solved,
However, if we neglect this influence, we can calculate the full dependence
of the orbital upper critical field H_,( T). This is determined by the equation®

T 1 1
=Tl {|e.,|+5<z|s,,|)rm¢o‘m} (23)

where 15(28,,) is determined from Eq. (8). Introducing the parameter

a=123 U;'*[H%(kpgo)—‘”]_ (24a)

and calculating b,, x, and § via the equations

2n+1=b,(b,—a)’; b,>a; S§=7 b,2n+1)?

n=0
(24b)
x x Vx
1+ +— ——+In3.56a%= '
[ 2{l+x)]lnx > T In3.56a” =0
we obtain the characteristic parameters:
_ HCZ(O) — 2
ra)= —Tc(dch/dT)Tc_za xS 05
5
e ()
8N(Ep)e’s’\ dT /1. 8S

These dependences are represented in Fig. 3. As we approach the mobility
edge, r{a) grows from the standard value of 0.69 typical for “dirty”
superconductors’® to the value 1.24 in the localization region, i.e., for o« o*.
This growth of #(a) transforms the positive curvature in the dependence of

h (T)=— ch( Ty/ Tc(dch/dT)T(

K
0
s X
[
K
753
1 2 3 a

Fig. 3. Calculated dependences of r and & of Eqs.
(25) on the effective disorder parameter a {Eq. (24a)].
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fea

> Fig. 4. Calculated dependence of h{T) = —ch( T/ T.(dH../
dT);, ontemperature T in the localization reglon o= o¥ (solid
curve}, and standard WHH dependencc for dirty supercon-
05 7%  ductors (dashed curve).

on T observed for o » o* into a negative one in the region of & < o*, Figure
4 shows h.,{ T) in the localization region, i.¢., for Eg=E,.

Now we discuss the conditions when it is possible to neglect the
magnetic field dependence of the diffusion coefficient D{w,,). It is well
known that a magnetic field diminishes the localization corrections due to
the “maximally crossed diagrams™”’ and breaks the validity of Eq. (5)."”
The relative change of D(w,) and the difference between ¢ and ¢ is
apparently Pmpomonal to D(mm}H [ @by, and near T, when w,, ~ T, the
change of I} w,,} is small over the parameter HD(T ¥/ &6 T. Thus, near T,
we can neglect the influence of magnetic field K., on diffusion due to
(T.- T}/ T,|« 1, and our method of calculation correctly determines the
values of k(a). However, possible magnetic field corrections to r{a) may
be important. For T 0 the critical field H., grows, suppressing the locali-
zation corrections, and D(w,,) grows, thus diminishing H.,. However,
according to Coffey et al,' this growth of D(w,) leads to the partial
cancellation of the Coulomb contribution to the effective pairing constant
g (see below). This effect was studied by the authors of Ref. 13 for the
metallic region and o > o*. However, they did not take into account the
dependence of the effective diffusion coefficient, which becomes important
for o~ o*. Our results show that the appropriate changes of H_, are not
small, so that taking account of changes in g, as in Ref. 13, is not sufficient
for the correct determination of H_»(0). Thus, the final value of the correction
to our estimate of r{a) is not clear at present, and the difference between
experimental values and our value of r{a) can give an estimate of the
magnetic field influence on the diffusion coeflicient 15((»,,,), ie., upon
localization.*

*Experimentally, dependences of h.,(T) similar to that shown in Fig. 4 were observed by
Tenhover et al?® for amorphous MoRe. However their data for k do not differ from the
standard value 0.69 [in calculating k, they use the experimental values of o, (dH_»/ dT )},
and of the coefficient ¥ in the temperature dependence of the electronic specific heat].
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3. COULOMB INTERACTION FOR STRONGLY
DISORDERED SUPERCONDUCTORS

3.1. Coulomb Kernel for the Gap Equation

In the BCS model discussed above we have assumed the existence of
an effective pairing interaction g in the energy region of the order of 2wp
around the Fermi level. However, in real systems the pairing interaction is
determined by the interplay between the attraction due to electron-phonon
coupling and Coulomb repulsion.'® Clearly, for a strongly disordered system
in the vicinity of the Anderson transition both interactions can change
appreciably in comparison with a “pure” system.

Et is well known that the Coulomb contribution to the effective pairing
interaction is significantly weakened in comparison with the phonon contri-
bution, due to the retarded nature of the electron-electron interaction via
the exchange of virtual phonons. For the electron-phonon interaction the
characteristic time is wp', while for the Coulomb interaction in a “pure”
system it is of the order of Ef' because this is the time during which the
electrons pass each other in the Cooper pair. Both interactions are practically
pointlike due to screening. With the growth of disorder an electron leaves
the given region in space more slowly and this leads to an effective growth
of Coulomb repulsion in the Cooper pair and to the corresponding lowering
of T, This mechanism for the degradation of T, with disorder was studied
by Anderson et al'” using the scaling hypothesis. Below we shall consider
this suppression of T, within the self-consistent theory. In the metallic
region our estimates are in qualitative agreement with Ref. 12, although
guantitatively they are different. However, our analysis of T, leads to the
conclusion that superconductivity can survive in the localized phase if rather
rigid conditions are satisfied.

In a strongly disordered system we must consider the matrix element
of the screened Coulomb interaction v(r—r') over exact eigenfunctions
¢.(r) associated with exact eigenenergies &, of an electron in the random
field of this system:

{(prjo(r—r)pu) = J dr I dr' o(r—r)ek (Yo () e, (P, ()  (26)

Averaging this matrix element over two isoenergetic surfaces Er and Ep+ o
and over the disorder, we obtain the Coulomb kernel for the superconducting
gap equation in the following form:

Ke(w)= L {uv|o(r—v)|p)8(Ee—e,) S(Ep+w*e,..)>

wEat
N(EF) T

- Jdr j dr' o(r 1) pe(T)perult)) (27)
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Here we have introduced Berezinskii-Gorkov spectral density™:

|
{per)pE+u(V)) =m<2 e (e (el(r)e.(r)

X 8(Ep—e,) S(Ep+w—e“)> (28)

which gives the complete information on the nature of the clectronic states.
In particular, in the localization region, i.e., for Er < E,, this spectral density
contains a singular 8{w) contribution®:

(o (D prta (T} =Plr—-r) d(w)+- - (29)

where

Pir—r) == (3 8(Be= el e (F ) (30)

1
N{Eg)
is the generalized inverse participation ratio connected with a finite probabil-
ity of an electron returning to the initial point in an infinite time.*

Fourier transforming (27), we get
3

_| 49
Ke(w) = .[ 2n) QP PEA0 g (31)

Below we shall assume a pointlike interaction v{q)=v,. For w« +~' and
g« I"! the Berezinskii-Gorkov spectral density posesses a diffusion contri-
bution®”:

1
dPe. PE+0le = N(ED Im ¢**(qw) (32)

Within the self-consistent theory of localization'”%! ¢**(qe) is determined

by an analytic continuation iw,, = « + i in {(6). For the metallic region we
have

mag s N(Eo)
(?5 (qm)_ w+iﬁ(w)q2 (33}
where
D. o] « “1(_3'_)’
ﬁ'(.{r.i)z : @ wc_*r o (34)
Dy{—iwr)'?; ] > e

Without disorder (™! = 0} the diffusion contribution vanishes and the kernel
K{w) must reduce to the ordinary Coulomb potential u = N( Eg)vo. Thus
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we use the approximate relation

Ke(w)=p+Ki(w)

d
K&(w) =1, J fh—“F«ps,psm»z (35)

reproducing the main difference between pure and disordered metals by
the value K2(w). Using the above relations, we shall find Kc(w) and solve
the linearized gap equation for the order parameter A{w) to determine T,
and the conditions for the existence of superconductivity.

3.2, Metallic Region
From (32)-(34) we obtain*

dSq o, [ 1 |“"|UI!2 }
Kd - dz ¢ g —_——
@) vavl.**"—uw)g((PsFﬂspw»q 211,3“1)(&,)” | D{w)*?
1 |w|l;2 | <
————— . w we
2& Df D3/2 (36)
3
27 I lw| > w,

Dol(wr) 7>’

Here we have introduced the upper outoff at g of the order of 1~'.*'*** Then
we obtain the following approximate expression for the Coulomb kernel
in the metallic region and near the mobility edge (see Figs. 5a and 5b):

Ke(w)= pé(Ep—|o|}

7.

i |eo] < o (37a)
s
kel {1
o™ ec<lol<rT~Ee  (37b)
'F L

From (37) it can be readily seen that in the vicinity of the Anderson transition
we obtain a considerable growth of the Coulomb repulsion due to diffusion
renormalization, which was first considered by Altshuler and Aronov.*
The situation with regard to the electron-phonon contribution to the
pairing interaction is different. Diffusion renormalization of the electron-
phonon vertex does not appear,”~* because the appropriate corrections are

*These expressions actually define the Fock correction to the slectronic density of states
—3N(E)/ N(Ep} due to electron-¢lectron interaction.?' In the region of “high” frequencies
|@} > w, they slightly modify the expressions of Ref. 31, where the w dependence of D{w) ~
w'’? was neglected. _
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Fig. 5. Coulomb kernel {a) in the metallic region, (b) at
w the mobility edge, (¢) and in the insulator.

cancelled when we take account of impurity vibrations. Of course, the value
of the pairing interaction due to the electron-phonon interaction in a
disordered system does change in comparison with the pure case. However,
this change is relatively unimportant.'>** Thus, following Ref. 12, we can
assume that this interaction is described by some dimensionless parameter
A, which is nonzero for the energies in an interval of the order of 2wy
around the Fermi level, and is weakly dependent on disorder.

The transition temperature T, is determined by the linearized gap
equation, which we can take in the weak coupling form:

[} f

A(w)zae(wn—m)j d—m:A(w') th —
a o ZTc
El__d ' ¥
_G(EF—w)J. 2 Ke(w—-w')A(w') th— (38)
0 L] ZT,_-

Consider first the metallic region and w, » wp, which according to the
estimate of w, in (34) corresponds roughly to o= g, for typical values of
Er/ wp= 107, i.e., the system is not very close to the Anderson transition.
We calculate the change in T, due to a diffusion contribution in the Coulomb
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kernel (37), using perturbation th ory with respect to KXo):

ST, _({®do [®do, e e
Tco*{.[n m.[o o' AO(m}thznoKC(w m)AO(w)th2Tc0]

l =) ) ® -2% -1
X{znoL do [Ao(@)] ("hzno) } (39

where Ay{w) is the zeroth-order solution (the usual two-step solution'®) of
(38) for the ordinary Coulomb kernel Ko{w)= u8{Er—w). Using (37a),
we obtain

5T, e 1 o,
—_— 5 40
To G-l kel o “0)
where
T.o= 1.130@p exp (— ) ni= £ (41)
A-ps/ 1+ u In (Ep/wp)

are the usual expressions for the critical temperature of the pure system
and the standard Coulomb pseudopotential.'® Actually the change of T,
given by (40) is equivalent to the change of uf by the value

St =~ poi/o(o+a,) (42)

where we have used (14) and = a.(kgl) to exlude the factor of (kpl)™*
in (40). According to (42), the Coulomb pseudopotential u* grows as o
drops and this dependence on ¢ here is stronger than in the similar
expression of Ref. 12. This is due to our use of the expressions from the
self-consistent theory of localization. The results of Ref. 12 can be obtained
using another form of the generalized diffusion coefficient, equivalent to a
scaling hypothesis on the g dependence introduced by Lee®>: D{w > 0, g) =~
(Dyl)q for gR;» 1. The self-consistent theory gives another limit: D(w, g -
0) = (DlY**(—iw)"’® at the mobility edge. Qur expression for x* allows a
noticeable change of u* for the conductivity region =< 10° Q™' em™". Such
a dependence can explain the typical drop of T, in irradiated superconduc-
tors as their resistivity in the normal state grows®*** in the Ioffe-Regel
region, The expression for p* of Ref. 12 can explain the experimental data
only by assuming that the values of the conductivity scale an order of
magnitude larger than the typical lofie-Regel value, for which there seems
to be no valid theoretical foundation.

Consider now the situation at the mobility edge itself, when ¢ =0 and
w, =0, and K-(w) is determined by the second expression in (37) for all
frequencies below 7 '~ Er (see Fig. 5b). In this case, as is shown in
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Appendix B, the Coulomb effect on T, can again be represented by
the effective Coulomb pseudopotential u*. However, now we have (a =
const=1)

p*=ap(wpr)™'” (43)

The value of T, can remain finite at the mobility edge under rather rigid
conditions: the parameters Ex~ v~ ' and u must be sufficiently small, while
A must be close to unity. As a crude estimate we take A =1, u<0.2, and
Er<10°T,,. Apparently such a situation can be realized in some Chevrel
phase superconductors®® (see below).

Using (42) and {43), we can write down a simple interpolation formula
for the dependence of u* on &

ap(wpr)™' - pd
1+{wp7) o(oc+0o,)/ 02

wp o
= —— +—
“eT 2EF(I Uc)

This expression describes the smooth crossover from the region where there
is a weak effect of localization on T, [Eq. (42)] to the vicinity of the Anderson
transition [Eq. (43)] at w. = wp.

In Fig. 6 we compare the theoretical predictions of Eq. (44) with the
experimental data for T, obtained in Ref. 24 for SnMo,S,. We have calcu-
lated the dependence of T, on o using the standard McMillan formula for
T.."? with u*(o) given by (44). Following Ref. 24, we take the preexponential
factor in the McMillan formula to be equal to 125 K, w¥ =0.1, and A = 1.06.
Then, for Eg/wp =35, we get o ~0.13. The theoretical curves in Fig. 6 are
given for o, = 1500 Q' ¢m ™" and « =~ 1.5 and 2.0 in (44). Taking into account
the crudeness of our theory, the agreement is quite satisfactory. Further
discussion will be given in Section 4.

o)y =pg+
(44)

Fig. 6. Transition temperature versus condue-
tivity. Comparison of theoretical curves with
experimental data of Ref. 24. See text for
details.
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3.3. Localization Region

Consider now the region of Eg< E_, i.e., an Anderson insulator. Accord-
ing to (27) and (29), in this case the Coulomb kernel has a 5(w) contribution
connected to electron repulsion in one quantum state [see (30} and Ref.
31; see also Fig. 5c]:

K'{0)=19P8{w); P=P(x-r),p~R; (45)

This mechanism acts in addition to those considered above. Using (45) as
a full Coulomb kernel, we can solve (38) exactly (Appendix B). Then we
obtain an equation for T, in the approximate form

r o (l._#P_ \_ (l)
Inr ¢(2+4T6N(EF)) 4P (46)

where T* is taken as the critical temperature at the mobility edge, i.e.,
determined by (41) with p& replaced by (43). In this way we actually
overestimate the inftuence of Coulomb repulsion in the localization region.
We see that this extra repulsion acts upon the superconducting T. as
magnetic impurities'® with an effective spin-flip time:

1/ 7= muP{ N(Eg} ~ u/ N(Eg)R] (47)
Superconductivity survives for ' < 0.57T*, i.e., for
R>[p/ N(Ee)THY" ~ (£oks™)" > ~ (£11)"? (48)

where the last estimates are roughly valid for typical parameters and corre-
spond to the condition (18). Thus the Coulomb repulsion of electrons in
the one-quantum state, important in the localization region,”' leads to a
rapid destruction of superconductivity. The size of a possible coexistence
region is roughly determined by (18) and (48).

The Coulomb gap effects’” are unimportant here. The width of the
Coulomb gap, according to Efros and Shklovskii,” is given by the estimate

Ac=(e’/x* ) N(Eg)]"? (49)

where « is the dielectric function in the insulator region. Near the mobility
edge, in the self-consistent theory we have®'

k =47 N E5) R? (50)

Thus Ac~[N(ER)R]T™' and Ac« T, if the condition (18) is satisfied. So
the Coulomb gap can be safely neglected in the “coexistence’ region.
This treatment again assumes that the electron-electron interaction is
weak (p« 1) and can be described by the lowest order of perturbation
theory. The influence of this interaction upon the metal-insulator transition,
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i.e., on the spectral density (28), is neglected.’’ However, one has to keep
in mind the possible importance of Coulomb interactions in a real system,
although, as we have mentioned, a complete theory of the metal-insulator
transition in disordered systems is still lacking.

4. CONCLUSION

An experimental investigation of the effects discussed in this paper
seems possible by the study of “high-temperature™ superconductors disor-
dered by irradiation with fast neutrons. Among the numerous experiments
of this kind, the most interesting appear to be some results on irradiated
molybdenum sulfides (Chevrel phase superconductors). For these com-
pounds high values of initial T.,= 15 K are typical, as well as rather narrow
energy bands. According to band-structure calculations,’ the Fermi level
in these compounds is very close to the upper edge of the conduction band,
and characteristic values of Ep are of the order of 10° K. These values
seem to be ideal from the point of view of the above criteria.

We remark vpon the results of studies of irradiated SnMosS, (Ref. 24)
and Pb,_,U,Mo,S;.*° Strong disordering of these compounds leads to a
lowering of T, to values of the order of | K, with the corresponding growth
of the residual resistance up to values of several units of 107 Q-cm, in
agreement with the estimates of minimal metallic conductivity due to Mott
and Davis.”® The temperature coefficient of resistance becomes negative at
all temperatures and of quite a significant value. The observed resistance
is greater than the values typical for most “dirty” alloys from the Ioffe-
Regal-Mooij region.”® From the point of view of empirical criteria for
localization,® these results seem very attractive. We have already noted that
the investigated behavior of (dH,,/dT)y._in these systems is also in qualita-
tive agreement with theoretical predictions.

Interestingly, the situation with regard to o, also seems satisfying {see
Fig. 6). The value of 7, =~ 10° Q™' cm ™, although different from the estimates
of minimal metallic conductivity, are more appropriate than the values of
this parameter determined from similar fits in Ref. 12. it has already been
noted® that the “critical region” in o during the metal-insulator transition
in impurity bands is rather large experimentally. Accordingly, the values
of o, determined from these experiments are an order of magnitude larger
than the Mott estimates for .. This seems to be in accordance with our
values of &, determined from the T, dependence on ¢. In any event, one
should not have expected good agreement between such a crude theory and
experiment, and these data allow us to claim with some confidence that
these compounds, irradiated with a sufficiently large fluence of fast neutrons,
are really in the vicinity of the Anderson transition, while conserving
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superconductivity. Of course, on the basis of existing data we cannot claim
that either of these systems is actually in the state of an Anderson insulator.
In these respects the accurate measurement of resistivity for very low
temperatures in the normal state [i.e., for external magnetic fields greater
than H_,{0)] may be very important.

Finally, we note that the strong anisotropy of electron motion and
relatively narrow energy bands in recently discovered organic superconduc-
tors® can lead to the possibility of Anderson localization in these systems
for a weak disorder, i.e., for 7' « Eg, so that the criteria for the coexistence
of superconductivity and localization may greatly improve.

APPENDIX A

Here we give some details of the derivation of the expressions (15)
and {16) for the GL coefficients. Using (3), (5}, and (6), we obtain
1 n* | l wn T
A= g—ZN(EF) "Z;:O ] . N(Eg)In1.13 T N{Eg)In T (A1)
where n* = wp/2aT has been introduced to cut off the logarithmic diver-
gence, taking into account that electron attraction exists in the energy region
of 2wp around the Fermi level. The generalized diffusion coefficient 5(0),,,)_
does not contribute [due to g =0 in (3}]). This is a reflection of the Anderson
theorem'*: disorder influences T, only through changes in the density of
states N(Ep).

We shall calculate the coefficient B, neglecting the weak dependence
on q. Then it is seen from Fig. 7 that the contribution of the diagrams in
Figs. 7a and 7b is small in comparison with that of Fig. 7a. The “triangular”
vertex can be found in the self-consistent theory of localization as described
in Ref. 31. We have

y(q=0, w, =2e,)=1+1/(27]e,]) (A2)

where the first term takes account of “high” frequencies, while the next is

#*
g 45 2
P,
SE S
AN =

fcl

Fig. 7. Diagrams for calculating the coefficient B.
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a diffusion contribution. Then, from Fig. 7a we get

B=N(EATY | dv(q=0,0,=2e,)G(e,8) G (—2,8,)

-0

1 T3
= N(EITS 5 =50 ! )N(EFJ (A3)
n=0 €y 8o
where
—1
Gl = (=5 22) (ad)

is the usunal approximation for the one-particle Green's function used in
the self-consistent theory.’®?' Consider now calculations for C. Using
{4)-(6), we find for the metallic region {Er> E.), not very close to the
mobility edge, when ﬁ(mm)= D,

2
1
C=—igTN(E _—
iwIN( F)an 2ilea|+iDg?| 40
1 N Eg)D 1
(Fe) T N(E)D (AS5)

£2¢2°  aT 2o@n+17 8T

Analogously, for an insulator ( Ex << E.), but also not so close to the mobility
edge, when

W

D =p—
(o) w,,+3Dwi/ vt

[see (8)], we obtain
T 1 »
C =3 TN(Egp) X ;ED(Z|€»|)

1
" 2n+1’+(2n+1)3Dw)/ 2w ToE

e 120 )]
T 3wl 3 AnTvd 2

—N(EF)R[ (1+ D )—1,:';(1)]—-—N(EF}R lnITBD {A6)

=7TN(Er)D

2 47TR? 2 aTR?

where the approximate expression is valid for DR*» 47T,
In the vicinity of the mobility edge, both for a metal and an insulator,
we have'®?!

D(an) = (7/2)*Dofwnr)'”* = (/W3 Del) 0}
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so that
c=2TN(ED) : éo(zienl} 27%(%)’”(130”2;3“(&) ZT#
el

Expression (A7) dominates over (AS) for
D/ T, = Do/ RT. < DY/ T)?*
which defines the limits of applicability given in (16).

APPENDIX B

At the mobility edge w. =0 and the Coulomb kernel in (38} is deter-
mtned mainly by the second term in (37b). Here we try to find 2 solution
of (38) in the form

Alw)=4,60(wp~|wl)+ flo) (B1)
Then we get an integral equation for f{w),
. . [ &% 1 o
fx)=p@ A F(x) - L dx’g(x-—x’]f(x’);thﬁx’ (B2)
where
! 1 . wp
F(x)= L dx' g{x—x") 7 th Z—TCx’
g(xy=x7"?  x=w/ep, fg=plepr)”? (B3)

Here F(x)/In(wp/ 7.} changes from 4.2 to 1 for x changing from 0 1o i,
and for x > | we get the asymptotic behavior F(x)=x""?in (wp/ T;). Using
the small difference between (ewp/ T.)"" and In (wp/ T,} for any reasonable
values of wp, and T, and the weak dependence of F(x) on x for ¢<x <1,
we come to the conclusion that the unknown function f(x} from (B2} is
weakly x dependent for x < 1 and f{x)~ x™"* for x > 1. Taking all this into
account, we get the following equation for T,:

[1_ (Byi—m) In (wp/T.) ]
i+ (Bagi—m)In (wo/ To)

I=Aln2e

T, (B4)
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where

-2 t
wWp 1 0 wp
=11 dax ——— — Jlal S
B ( n Tc) L dx L x xx’lx—x'l'”th ZTCxth2Tcx 1

m=3G7(1+B4i);  1<B,<42; 3<By<3

(B5)

For & » | we have 8,~1 and 85~ 3. Thus from { B4) we obtain an estimate
w¥= B4 with 0.5< g <3; actually 8 =1 for large values of g. This is the
result given as (43).

Below the mobility edge ( Er < E.) we can solve (38) with the Coulomb
kernel given in (45) exactly. The additional Coulomb effects considered
above, connected with “regular” contributions to the spectral density (28),”'
can be taken into account with a simple substitution A -+ A*=A —u*, where
u* is given by (43). Actually, we can convince ourselves that such a
procedure overestimates the Coulomb repulsion in the localization region.
It is easily seen that the solution of {38) in this case can be written as

f(wp—|w|)A,

A =
(@) = TaP/2N Er)w] th (w/2T,) (B6)
where
“D { w
=a*| dw A(w)—th==
A=A L w A(w) — th3= (B7)
giving the equation for T, of the following form:
“p th(@/2T,)
1=A% dow B8
.L o +[#P/2N(Ee)lth (@/27,) (B®)

which reduces to {46) with rather good accuracy.
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Increase of spatial fluctuations in superconductors near
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The superconducting order parameter has been found to exhibit strong, impurity-
induced spatial fluctuations over a certain temperature interval near T, . Far from
the Anderson localization threshold, this interval is very narrow in comparison
with the interval of strong thermodynamic fluctuations, and the superconducting
order parameter is a self-averaging quantity. Because of the disorder, the
fluctuations near the localization threshold are appreciable over the entire region
of manifestation of the superconductivity.

In the work of Bulaevskif and Sadovskii' and Kapitulnik and Kotliar® the theory
formulated by Abrikosov and Gor'’kov and by Anderson for dirty three-dimensional
superconductors with k-/>1 was extended to compounds with a very high level of
disorder which are near the Anderson metal-insulator transition (in these compounds
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the mean free path of an electron /=% 7 '). These authors'” have shown that the /
dependence of the superconducting correlation length & =£(T = 0) = (£,/)'* for
krI51 gives way at the localization threshold to the dependence £~ (£,/%)"/? where
&, =0.18 v./T,. A change of this sort accounts for the fact that at the localization
threshold the interval of strong thermodynamic fluctuations near 7., which is defined
by the Ginzburg parameter fg = E2/T2k%1% is on the order of unity’ {(here
t=|T-T.\/T.).

The results obtained by Bulaevskii and Sadovskii' and Kapitulnik and Kotliar,”
and all the preceding resuits for dirty superconductors were obtained under the as-
sumption that the superconducting order parameter is self-averaged. In other words, it
was assumed that the order parameter, averaged over the impurity configurations,
adequately describes the behavior of the system. In order for this assumption to be
true, the impurity-induced fluctuations of the order parameter in the sample must be
small. We will find below a temperature interval ¢ near 7, where this condition is not
satisfied. We will show that ¢, ~¢ 7 <t for k-/>1 and that the assumption that the
order parameter is self-averaged far from the localization threshold is correct. At the
localization threshold, however, #, £ t5 = | because of strong fluctuations of the elec-
tronic characteristics near the Anderson transition. Here the equations for the average
order parameter cannot be used to describe superconductivity.

To estimate the fluctuation region ¢, m we use the functional for the unaveraged
order parameter A(r)

F (&) = farlg™ | A@ 12— far'K @ r)AmAX') + %BN{EF) lA@1],

K@) = T I a00E) 000 (- c)(-ig,-¢c) (D)

€ =7T(2n + 1),
where @, (r) and €, are exact intrinsic wave functions and energies of electrons for a
given impurity configuration, and N(Ey) is the average density of the electronic states
at the Fermi level. The quantities ¢, (r) and &, are random values, so that the kernel
K(ryr'), which depends on the arrangement of the impurities, fluctuates in space,
causing corresponding fluctuations of the order parameter A(r). We ignore the fluctu-
ations of the effective electron-attraction parameter g and also the coefficient
B(B=T{(3)/8+"T".

Assuming that the fluctuations of the kernel are small, we find from (1) the
Ginzburg-Landau equation which describes the slow variations of the order parameter
A{r) (the fluctuations of the kernel on the scale lower than £ average out and lead to

Cxipg £ owl ¢ ey Byltg £l

7 : - FIG. 1.
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only a shift of the transition temperature). The Ginzburg-Landau equation is

o -
T ™0 L 4 —~B|A(r)|2+ca—,]A(s)=o,
] §

L Tl
C= A fRofriridr, Kor—1) =< K@, 1)>,

“p
aw =  ZE L [N("E)

- = 2 505 _
e 1], NEE) = 219,017 56~ €,),

(2)

where { ... ) denotes averaging over the impurities, C = £ 2, and N(r,E) is the local
density of the electronic states. In (2} we have ignored the fluctuations of the coeffi-
cient C, and replaced §K, (r,rYA(r)dr' by A(r)SK (rn')dr’ = A(r)A(r), where
K (r,y') =K(ry') — Ky(r —r'). The parameter T.o in (2) is the transition tempera-
ture in which the long-wave fluctuations of the kernel are ignored.

We see from (2) that in the model under consideration the fluctuations A(r)
depend on the distribution of the random N(r,£). For a further analysis we must find
the correlation function of this quantity, S(rw), which can be determined in terms of
the leading and retarded Green’s functions of the electron, G, g (r,r'), by means of the
relation

S, w) = [NEg)]™? <N(Ep+ WINO,E)>—1
= [MEg} 17 *Re [< G, (5,1, Ep+ w)GR(0,0,E,)
— G, Ept w)G,(0,0,E;) > -1 (3)

Equation (2) with an arbitrary correlation function of 4(r) was considered pre-
viously** in a study of the effect of structural inhomogeneities of samples on their
superconducting properties. The analysis below is carried out m a similar manner, It
follows from Refs. 3 and 4 that the superconducting properties of the system consid-
ered depend essentially on the behavior of the correlation function S(g,2)} at small
values of ¢ and a.

Far from the localization threshold, the function S(¢q,.@) for g</~' and
o<t~ = v./! was found in Ref. 5 for a model of many orbitals at a lattice site. For
kpi» 1 the same result can be obtained by using a standard procedure of summing a
perturbation-theory series over the scattering by impurities for (3). At small values of
¢ and &, the dominant contribution comes from the diagram in Fig. 1, where the wavy
line corresponds to a diffusion, and also from a similar diagram with a cooperon. The
function S(g,0) is a singular function for small ¢ and @

1 1
Re ,
INER)PDY? 7 (- iw + Dog®)'?

Stq, w) =~ (4)

where D, = Iy /3. The scaling function S(q.@) is known at the localization thresh-
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old®;
S(q w) ™~ L} FlaL,), L =[wNEL) T V2. (5)

This function can also be found from (4) if D, is replaced by the effective diffu-
ston coefficient D(g,w) = L T 'f(qL, ). A further analysis shows that upon integration
over ¢ and & the dominant contribution will come from the region ¢ <. In the limit
g/w—0 we have f=1 and F(x)= (1 4+ x4~ '%,

Using (2), (4), and (5) and carrying out some calculations similar to those in
Ref. 3, we find that fluctuations of N(r,E) cause a shift in the transition temperature
from T, to T, and T, > 7. Furthermore, the impurities cause the spatial fluctu-
ations of the order parameter to increase as 7T, . Below T, the fluctuational contri-
bution due to disorder in the region kp/>1 at 7€l is given by

(Az)_(A)z B rDuz 2_!.[ ID 111]

where 1, ~t L = T2/E %k $1°. The contribution of thermodynamic fluctuations, 4, to
the dispersion is (15/1)'/% In a three-dimensional system with k-/51, the disorder-
induced fluctuations are thus considerably weaker than thermodynamic fluctuations.

At the localization threshold below T.. for 1«1 the quantity (¢, /£)"/? on the right
sides of expressions (6) should be replaced by |Int |/J/7 . In this region the contribution
of thermodynamic fluctuations is on the order of 1/t and, in order of magnitude,
fr, = tg =1, although there is reason to assume that disorder-induced fluctuations are
slightly stronger than thermodynamic fluctuations. In the dielectric region the term
[N(E:)] ~'5(w) should be added to the function S(g,«) for small values of g<R .
Here ¢, and f; have a component which increases approximately as
[N(Ez)T.R}] " as the localization length, R, is decreased. The weak spatial fluctu-
ations (f,<t;) become strong fluctuations, I, =tz =1, when the conductivity is
O=o*=0o, (kp&y)~'?, where o.=e*kz/m is on the order of (2-5)X10?
N '.em™

We see that the impurities cause not only the superconducting correlation fength,
£, to decrease but also account for the spatial fluctuations of the order parameter of
the sample, which increase as the Anderson transition is approached. Because of
strong spatial fluctuations of the order parameter of the sample over the entire tem-
perature range, a percolation mechanism for the screening and superconducting cur-
rent flow is typical for a superconductor near the localization threshold.* The quasi-
particle spectrum in them is apparently gap-free.
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sion.
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A parameter 7, is introduced to describe the temperature region near 7', in which the
statistical spatial fluctuations of the order parameter are strong. It is shown on the basis of the
Ginzburg-Landau functional, with the aid of the replica method, that two temperature
superconductivity regimes are realized, depending on the degree of the disorder. At

Tp > 75 = 2.497;, where 7 is the Ginzburg parameter that characterizes the size of the
region of strong thermodynamic fluctuations, the superconductivity is produced in spatially
inhomogenecous fashion with droplike seeds. The drop density and their contribution to the
free energy and to the diamagnetic susceptibility are obtained in a2 model of non-interacting
drops. If 7, <7}, superconductivity sets in below T, simultaneously in the entire volume, i.e.,

the usual second-order transition is realized.

INTRODUCTION

The theory of dirty superconductors, developed by
Abrikosov and Gor’kov'~? and by Anderson,” is the basis of
the quantitative description of the superconducting proper-
ties of a large number of disordered alloys. As the theory of
strongly disordered system progressed, however, it became
clear that the main results of Refs. 1-3 must be modified 1o
fit mean free paths / of the order of the Fermi wave number
k 7! ¢of the order of the interatomic distance }. A growth of
disorder in three-dimensional systems causes the electron
diffusion to stop at mean free path / shorter than a certain
value [, =k 7', the electron diffusion ceases, the electronic
states near the Fermi level become localized, and the system
goes over into the state of an Anderson dielectric.** This
metal-insulator transition manifests itself in a continuous
vanishing of the metallic conductivity (at T =0) as//,. At
I3 I_ the conductivity is determined by the standard Drude
formula and o~/ whereas at /2! it decreases like
o~ (-1}, where v is a certain critical exponent. The
transition from diffusion te localization takes place at con-

-ductivities o on the other of the so-called minimal metallic
conductivity o, = (e’k /T f) = (2-5)- 1 O~ '"cm~". The
theory of dirty superconductors does not take localization
effects into account and is valid for conductivities in the in-
terval (E /T, )a. »o>0,.

The data known so far on the behavior of superconduc-
tors near the localization threshold are the following.

1. Assuming the density of states N(E ) to be indepen-
dent of the Fermi level and the dimensionless electron-pho-
ton interaction parameter 4, ,, to beindependent of /, it can

‘be shown that 7, decreases with decrease of /, owing to the
cerresponding growth of the Coulomb pseudopotential i *.
This effect is due to the increase of the delay of the Coulomb
repulsion in the Cooper pair as the diffusion coefficient de-
creases on approaching the Anderson transition. The de-
crease of the superconducting transition temperature 7, be-
gins in the region o> ¢. and becomes rapid at o 5o, (Refs,
6-8). Belitz” calculated the decrease of 7, due to the de-
crease of the effective density of the electronic states on the
Fermi level under the influence of the Coulomb repulsion in
the presence of impurities (the Al'tshuler-Aronov effect),
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The enhancement of the spin fluctuations with increase of
disorder, and the appearance of localied magnetic moments
near the localization threshold, due to the electron repul-
sion,'” can also causea decrease of T, in ultradirty supercon-
ductors,'"'? but there is still no consistent quantitative the-
ory of this effect. We note that the decrease of T due to the
mutual influence of the disorder and of the Coulomb effect
was first considered by Ovchinnikov'? and by Maekawa and
Fukuyama (see Refs. 4 and 13) within the framework of the
BCS model with allowance for the lowest localized correc-
tions.

2. Bulaevskii and Sadovskii’ and later Kapitulnik and
Kotliar'* found the superconducting coherence length £ (at
T =0} in the region o<, and also in the localization re-
gion ({</. ). At the mobility threshold itself, where
I=1 =k;'ande =0, we have

B~ (Boksm?) ",

In contrast to the standard theory of dirty superconductors
with /> /. (Refs. 1 and 2), in which £ >~ &, / is proportional
to 7, as /=1, we have o -0 whereas £ remains different
from zero both at the mobility threshold (/ = £, ) and in the
localization region, i.e., in an Anderson dielectric. The same
result was obtained recently by Ma and Li'* who used an-
other method. Obviously, there results are valid only if T,
does not vanish all the way to the Anderson transition, a
situation possible only if rather strigent conditions imposed
by the effects noted in Sec. 1 are met, The fact that & 2 differs
from zero when o vanishes at /</, means conservation of the
superconducting response in the phase of an Anderson di-
electric.

3. As the disorder increases, the region of thermody-
namic fluctuations near T, increases. The width of this re-
gion is defined as 75 7., where the characteristic Ginzburg
parameter for dirty superconductors is equal to
1o = [7*T.N(E;)£>] 2 Kapitulnik and Kotliar'* noted
that near the mobility threshold, where & = (&.k )"/, the
parameter 7, does not contain a small quantity such as T, /
E. (is not excluded, of course, that 7. remains small be-
cause of a small numerical factor}. Therefore a supercon-
ducting transition near the location threshold can in princi-

E,=0.18%p/T..
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plenot become an analogofaA transition in He*. Allowance
for the Auctuations would lead in fact to a change of the
critical exponents in the temperature dependence of the
thermodynamic quantities near 7, compared with the corre-
sponding exponents of the molecular-field theory.

All the cited theoretical analysis of the influence of dis-
order on superconductivity were made under the assump-
tion that the superconducting order parameter is self-aver-
aging. This remarks pertains both the the classical papers on
dirty superconductors'™ and to all recent studies of super-
conductivity near and in the Anderson localization
state.* ' It is assumed here that the spatial fluctuations of
the superconducting order parameter A(r) are small, and
the use of the parameter {A(r)) is justified. It seems natural
for such a procedure to be valid at o» o, but there are no
grounds for believing it to be correct near the localization
threshold.". In such a system the electronic characteristics
fluctuate strongly, and we shall in Sec. 1 below that these
fluctuations actually lead to substantial spatial fluctuations
of the parameter A(r) (a brief summary of this section is
given in Ref. 17).

In Sec. II we consider superconductors with spatial
fluctuation of the local “temperature” of the superconduct-
ing transition. We shall show that if the amplitude of such
statistical fluctuations exceeds a critical value, the supercon-
ductivity manifests itself with decrease of temperature in a
spatially inhomogeneous manner, in the form of supercon-
ducting drops. We shall find the density of these drops as a
function of temperature. In the model of noninteracting
drops, we shall obtain also their contribution to the free en-
ergy of the system, and the diamagnetic susceptibility.

I. ESTIMATE OF THE REGION OF STRONG STATISTICAL
FLUCTUATIONS OF THE SUPERCONDUCTING ORDER
PARAMETER.

Asastarting point, we consider the usual BCS Hamilto-
nian

HE=FH T int Hy, Hu= j dv B (v) /8=,
jdnp +{r) [ ! (zﬁV———A(r )+L ]q; (), (1)

Hin = E ) j drlspn(f)¢+(f)¢+(l‘ U,‘(l‘)“li(f),

where B = curl A and u(r) is a random potential in the dis-
ardered system. The pairing interaction can also fluctuate in
space, but we assume hereafter that this interaction is weak,
Agpn (KY€ 1.

Let us write down Ginzburg-Landau functional for the
non-averaged order parameter A(r). We introduce to this
end the exact energy eigenvalues £, and the exact eigenfunc-
tions g (r) of the electrons, corresponding to the Hamilto-
nian #°, We obtain with their aid a superconducting func-
tional in the form'®

BZ
.‘?'.{A(r),A(r)}=J dr{ 8:) + N(Es) Jdr’
S(r—r") , , 1 1
m K(l‘ l')] I‘)A (I‘)‘!“——'?ﬂ’\' Er [A I')I }
n_ T @ (1) g (1) " (1) ¢ (1) (2)
A= (o) (—ten—ev)

f PRy
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e.=nT(2n+1), 1=T%(3)/8n'T"

The statistical fluctuations of A, ,, (r) and of the kernel
K(r,r), {in view of the random character of the values of
@, (r) and €, ) cavse spatial fluctuations of the supercon-
ducting order parameter A(r). We have neglected in (2) the
fluctuations of the parameter 4; it will be seen from the anal-
ysis that follows that they are less substantial than the fluctu-
ations of the kernel X {r,x'). Assuming the fluctuations of the
kernel X (r,r’) and of the parameter A(r) to be small, we
estimate the temperature region in which this assumption
turns out to be incorrect and where a description with the aid
of the averaged order parameter is inadequate. It will be
shown below that the variance is determined mainly by the
long-wave variation of A(r). We can herefore transform
from (2) to the GL functional for the order parameter:

Fo A1), Alr}}= jd { +"\(Er)[ (tHe(eyya(n) |

e [(v —EA(I))M) E=TINCINIE

{3a)
=_{15.[Ko(")"3d1’= K, (r—r")={K(r, "),
T
T= T -1, {3b)

where T, is the transition temperature determined by the
averaged kernel K (r — r’) with allowance for the short-
wave fluctuations of the kernel X(r,r'}. In the derivation of
(3) we neglected the fluctvations of the coefficient & °. The
function t{r) plays here the role of the fluctuation local criti-
cal “temnperature,” It takes into account the fluctuations of
the pairing interaction, for which
te) =A Su(r) — (A 74 (r)), and also the fluctuations of
the dipole density of the clectronic states A (r,Er):

dE  E [ N(LE)
Ho=l g e _l]'
{(4)

N(t,E)= 2 |pelr) P6{E—es), N(ER)=(N{(r,Es)>.

The functional for the fluctuations of the pairing interaction
was investigated by Larkin and Ovchinnikov'? in connection
with a study of the influence of structure inhomogeneities of
the samples on their superconducting properties; the analy-
sis that follows will be similar. Within the framework of per-
turbation theory in the fluctuation A(r) we obtain from (3)
the renormalized temperature 7, and the variance of A(r):

Fo=To _ 1 I v{q)dyq
Teo {2xn)* B gl

L @)= drer (e (o),

(5a)
v{q)dq . (5b)

an—war_ 1 g
(g +2|t])’

A (2n)®

It follows from (5a) that the fluctuation-induced shift of T'.
is positive and the contribution made to it by the short-wave
fluctuations is generally speaking not small, According to
(5b), the fluctuations of A(r) are determined mainly by the
behavior of the correlation function y(q) at small g.

The value of ¥(q) neglecting the fluctnations of the
pairing interactions, was obtained in Ref. 17. In dirty super-
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conducters with o»o,. (ie, />k;7') we have
y(0)=EN ~HE D %, where D, =v,!/3 is the classical
diffusion coefficient. We then obtain from (5)

To=y*(0)E°%, (6}

where £ = (£,/)"/2. The parameter 7, introduced by us de-
fines the region in which statistical {spatial) fluctuations of
the order parameter are significant." It can be seen from {6)
that rp =75 €75 €1, in dirty superconductors, i.c., the sta-
tistical fluctuations are unimportant even in region where
thermodynamic flucturations are noticable enough.

The situation changes radically in the vicinity of the
mobility threshold, where® »(q) =& *In(1/£¢). From ({5)
we obtain for the variance of A(r) the expression

CAD A A= (1o/T) ",

{A® 1 1
22 s —Tn——. 7
@ T T "

According to {7), the statistical fluctuations near the mobil-
ity threshold turn out to be most substantial, and are strong-
er here than the thermodynamic fluctuations in view of the
logarithmic factor in y¥(q). Thus, near the localization
threshold we have 7, 2 75 = 1. The transition from the re-
gime of weak statistical fluctuations {7, €7 ) to the regime
of strong omes (7, 27} takes place at the values
o=o*=o, (kpéy) ™" of the conductivity, the physical
meaning of which was discussed in Ref. 7. At this conductiv-
ity, a transition takes place from the usual theory of dirty
superconductors to the relations typical of the vicinity of the
localization threshold.

Below the localization threshold. The region of strong
A(r) fluctuations expands even more. This is due to the ap-
pearance of an additional delta-function singularity in the
correlator of the local density of states.?' We obtain accord-
ingly in y{(q) an additional term [N(E;}T, (1 + R%* ],
where R, is the localization radius of the electronic states on
the Fermi level. The variance of A(r) acquires according to
(5} at R, » £(T} another term in addition to {7)

ADKAY—1=IN(E)} TR '),

which increases rapidly with decrease of the localization ra-
dius R; (R; = oo at the localization threshold). It is shown
in Ref. 7 that if T, remains different from zero at the local-
ization threshold, the Copper pairing survives with further
increase of the disorder and with decrease of R, only to val-
ues R, » [N(Eg)T.] '3, This inequality means that the
energy interval T, spans many discreate levels whose centers
are located inside a region with radius R, (see also Ref, 15).
In addition, it guarantees that the localization radius ex-
ceeds substantially the characteristic dimension of the coo-
per pairs. We see now that under the same condition the
relative variance of A{r) remains at a level on the order of
unity in the entire temperal interval in which superconduc-
tivity exists in the dielectric phase.

If the statistical fluctuations of #(r)are caused by ran-
domly disposed regions with dimensions @, where
k 7 '<¢a £, and with increased values of the electron-pho-
ton interaction parameter A,,, + 84,,, (in view of the
change of the structure of the dislocations, twinning planes,
etc), we have for such a model

{0y =c{1—c)a*{h., pnfhe, )?,  To=1:(D)E"", (8)
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where ¢ is the relative total volume of the regions with al-
tered parameter A, ,,. In this case, at c=1 and 64, ,,/
Aepn =1, the regime of strong statistical fluctuations
Tp 2T isrealizedatay k 5 '(Ep /T, )" This condition is
compatible with the restriction 2 €£ assumed above. Note
thatata » ¢ the appearance of inhomogeneous superconduc-
tivity is not surprising: on cooling it is formed initially only
in regions with increased transition ‘“‘temperature” corre-
sponding to the parameter 4, ., + 64, ,, . A much less trivial
factor is that at @ €£ there is likewise no averaging of the
superconducting properties if the level of the fluctuations of
t(r) [due to the fluctuations of N(r,.E:) or of Aepr k01 ] is
high enough.

Il. SUPERCONDUCTING TRANSITION IN SYSTEMS WITH
STRONG DISORDER

1. Fermulation of problem

We consider now superconductivity in systems with
strong spatial statistical (Gaussian fluctuations of the local
transition “temperature” T, (r). We shall show that in this
model, depending on the degree of disorder, i.e., on the ratio
T /Tg, two types of superconducting transition are possible
At 75 « 7% = 2.497; the superconductivity is a second-or-
der phase transition at the point T,. The superconducting
order parameter is in this case equal to zero at T'> T, and is
spatially homogeneous over scales exceeding the correlation
length £(T") below T, . Statistical fluctuations lead only to a
change of the critical exponents in the temperature depend-
ence of the basic characteristics of the system £(T), A, (1),
and others,?2?

At tp > 7% the superconducting state appears in inho-
mogeneous fashion even if the correlation radius a of the
disorder-induced fluctuations of the temperature 7. (r) is
small compared with the superconducting correlation
length £ (we refer to disorder of this type, with g€, as
microscopic ). The first to deduce the possibility of an inho-
mogeneous superconducting transition for microscopic dis-
order were loffe and Larkin,?*. Investigating the case of ex-
tremely strong disorder (in fact 7, » (757)!/?), they have
shown that as the temperature is lowered the normal phase
aguires localized superconducting regions (drops) with
characteristic dimension £( 7). Far from T, their density is
low, but with further cooling the density and dimensions of
the drops increase and they begin to overlap. The supercon-
ducting transition becomes percolative in this case.

The loffe-Larkin transition, valid in the limit of very
strong disorder, did not take thermodynamic fluctuations
into account and provided no criterion for the transition
from the homogeneous superconductivity to the inhomo-
geneous ones. The corresponding criterion 7, > 7%
=~ 2.497; will be obtained below for a model with Gaussian
fluctuations of T, (r).

According to the estimates given in Sec. 1, if the impuri-
ties influence only the local density of states N{r, E; ) in the
system, the parameter r,/r; increases from a very small
value to values greater than unity as the disorder increases
and a transition takes place from the /> k ;! regime to the
electron localization regime (/= % 7 '). An onset of an inho-
mogenecus superconducting regime is therefore to be ex-
pected as the localization threshold is approached. In a sys-
tem that contain regions with increased value of the
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parameter A, ,, under conditions /3 k 7', this regime can be
realized also at parameter values 7, €1, since 7; € 1in such
a system,

Qur treatment of superconductors with large disorder
will be based on the GL functional (3a} with a Gaussian
distribution of the temperature ¢(r). Given the distribution
t(r), the free energy of the system and the order-parameter
correlator are equal to

Z= jD{A' Alexp[—F o {A, A}/T],
(%a)

Fit(r)}=-TnZ,

(AIYAG) =2 | DA, AYA (M)A

(9b)
and they must be averaged, assuming that the correlator

G’ ) > =28(r~1"), v=1,"%, {10

is known. For Gaussian fluctuations with a correlator (10},
the probability of a configuration with a given ¢{r) distribu-
tion is

Ple(r) =exp[—%jdr£’(r)]. (11)
The problem reduces thus to calculation of the functions
FAr(r)} and {A(r)A{r')} (9b) and their subsequent aver-
aging with the aid of (11).

We confine ourselves in this article to consideration of
noninteracting drops. We can then disregard the presence of
vortices in the sample, and in each drop the phase of the
order parameter A(r) can be regarded as nonsingular.* Fol-
lowing the gauge transformation

A=A {r)+ {2} Vi lr).
Ay —~A(r)exp[-ig(n) ],

where p(r) is the phase of the order parameter, the quantity
A(r) in (9b) is real and the GL functional becomes

B {r}

+ N(EF) [(1:+t(r VYA (r)

} (12)

Integration over the phase in (9) adds to the partition func-
tion an inessential constant factor which we shall disregard
hereafter. To calculate the free energy of a system of nonin-
teracting drops we shall use an approach similar to the fluc-
tuation theory of nucleation of a new phase in first-order
transitions, and also the replica method.

Fo{A(r),Alr) )= jdr{
4eE?
T

+ Aﬁ‘(r)

A*(r) A (e} + EX{(VA(r))* +

2. Fluctuation theory of drops

Superconducting drops can appear in a specified 1(r)
configuration only in regions with locally higher supercon-
ducting-transition temperatures. We shall number these re-
gions by the subscript i. The order parameter in each region
is determined by a nontrivial localized solution A%? (r) #0of
the GL equation, and the contribution of such a drop to the
partition function of the system is

”}{I(l’}} )

1

N e esp -
m{t }=§'GL{0,ﬁd{n ()}
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(r’)exp[—f?'aa{A| A}/T]v

1 &
EX

where E " is the drop energy, and the factor ¥ is deter-
mined by the contribution of the A(r) configurations that
are close to the classical solution A%” (r). Summing the con-
tribution of configurations containing an arbitrary number
of drops and neglecting their interaction with one another,
we obtain the partition function (9a} of the system,

£SO
[1+23\f‘”e\p( )
. pth
ZN“}N“‘ ex ( E. -;E )+]
i)
—Znexp[zl N ’exp( Ee )] (13)

Here Z, is the partition function of the system in the absence
of drops. Substituting (13) in (9a) and averaging the free
energy of the system over the 7(r) configurations, we get

Pom I D808 v e jesp( - __,.L GUARY

(14)

where N is a normalization factor and 5 ; assumes the role
of the free energy of the drop:

Fft(0) Y=E. {t ()} =T In P{t(r)}. (15)

The main contribution to the functional integrat {14) is
made by the configurations £,(r ) that realize an extrermnum of
the functional (15):

tc-(r}=_?ﬂd2(l‘)' ?=TN(EFNT=- {16)

Note that ¢,(r) is negative, since the drops appear in regions
of higher superconducting-transition temperatures. Substi-
tution of (16) in the GL equation that corresponds to the
functional (3a) leads to a nonlinear equation for the order
parameter A(r) in the superconducting drop. In dimension-
less variables, this equation is

A.J(;-)=(ﬁ)mx[_§*(%], E(T)=§.-T' (17)

o)) —pi@) ty' (xy=0, plz—e<)=0 (18)
The asymptote of the function y(x) at x» 1 is determined
from the linearized form of Eq. (18), and y(x) ~x~"e ™™,
The superconducting nuclei are thus localized over a scale of
the order of the correlation radius £ (7). The quantity 5,

is obtained by substituting (16) and (17) in (15):

F nin AE’" Al/p)"

S = T = e N ES T 1 Tttt

A<7.

{19a}

It determines, with exponential accuracy, the free energy
{14) of the drops. The constant 4 in (19a) is equal 10*

— nﬂfd.rxz[f(-r}'i'(%)z_

Note that the energy E, {£,(r)} of superconducting drops is
negative, and their production is energywise favored com-
pared with the case of the spatially homogeneous solution

%x‘(:x}] =378 (19b)
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A(r) = 0. According to (19a}, superconducting drops can
exist only in the presence of sufficiently strong statistical
fluctuations 7, > 75; a rigorous restriction will be obtained
below.

To determine the pre-exponential factor in (14) one
must turn to the solution of the complete problem (113},
(13). Neglecting its thermodynamic fluctuations, the order
parameter can be obtained within the framework of the
Toffe-Larkin method.** We obtain for the free energy of the
system and for the drop density g, the expressions

F(ty=—TE(T) (to/15) " exp [ 8o (1}],
P A1) =E"HT) 86 {1) exp [*SO{T)]-

The exponent S,(7) is defined here by Eq. (19a) with A = 0.
Note that the pre-exponential factor in (20a) differs from
that obtained in Ref. 24, which contains an inaccurate
expression for the free energy of one drop. It is seen from
(19a) that at A €¥S 5 (1) we obtain for S;{) the result of
the loffe-Larkin theory of weak thermodynamic fluctu-
ations. This means that their approach is valid if the inequal-
ity 7, €7 €7} /7 holds, and this is possible only if 75, 3 7.
It follows from (20) that in the region where these expres-
sions are valid the average energy F, /p, of each drop is large
compared with the temperature, and the two become com-
parable at 2 =75 ;' (r). We confine ourselves hereafter to
the region A3 785 '(7) ie., 7> 7} /v, where the contribu-
tion of the thermal fluctuations becomes substantial. It will
be shown below that its precisely in this limit that the fluctu-
ations of the order parameter are small relative to the most
probable configuration { 17). This enables us to use standard
field-theoretical methods to find the free energy of the sys-
tem and the corder-parameter correlator in the region of
strong thermodynamic fluctuations,

{20a)
(20b)

3. Replica method and instantons

To average the logarithm of the partition function (%9a)
over t(r) with weight (11) we use the replica method, which
permits the averaging to be carried out in explicit form.?¢

We express the average free energy (9a) of the systemin
the form

Fe—Tlim — [Z—1]. 21)

o T
To calculate {(Z” ) in accordance with the idea of the replica
method, we agsume first » to be an arbitrary integer. Ex-
pressing Z” in terms of an n-fold functional integral over the
the fields of the replicas A, (r}, &, (r), @ = 1,...,# and car-
rying out exact Gaussian averaging over £(r), we get

{Zr= SD{AM Au} GKP[-‘S:;{AM Ag} 1,
(22)

SulAu A} = Jar {2 B;;(r] + N(g LY [-rAa‘(r)

3t Do)
"szz

+A @+ B TA) + A8 )|

cn
——;N(E,-) T4 [2, Ad(r) ] } .

[T

Note that the random quantities £(r) have already dropped
out of these expressions, and that the action S, {A,,A_ } is
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translationally invariant. For the mean value of the order-
parameter correlator (9b) we get

ADANX)?

3
—tim - D{As, AuJexpl~Su{An A} ] DiAe®1Aalr),

n o
- e |

(23
where we have symmetrized over the replica indices.

Far from the region of strong fluctuations of the order
parameter |r{»7,,7; the functional integrals (22) and
{23) can be calculated by the saddle-point method. The ex-
ternal trajectories are classical solutions for the action (22),
and when calculating the functional integrals account must
be taken of the Gaussian fluctuations about them. The extre-
mal trajectories are defined by

[ T—EVHRAS (r) — 7 2, Ad (r)] Ac(r}=0, A, {¢r)=0.

(24}

These equations for A, (r} have a spatially homogeneous
solution and localized (instanton} solutions. The latter cor-
respond at 7> 0 to superconducting drops. We confine our-
selves in this article to considerations of non-interacting
drops and consider only instanton solutions above T, (at
7>0). We shall be interested herecafter only in those solu-
tions that admit analytic continuation as # —+0. We designate
them A’ (r), where the superseript i labels the type of solu-
tion. To find their contribution we must expand the action
{22) accurate to terms quadratic in the deviations
@. (1) = A, (r) — AP (r). Itis shown in the Appendix that
the fluctuations of the fields A, (r) can be neglected when
isolated seeds are considered. The action (22) takes then the
form

1 T
S.{3a}=5.4A8" }+?J drz. (a5 ). (25)
%)

To calculate the functional integral over the fields ¢, we
expand them in terms of the normalized eigenfunctions of
the operator MV ;

P (1’) = Z Calfan (1') y Z ‘M;;) Pap =& P (26)

& B
Substitution of (36) in {25) yields for the action the expres-
sion
1
S“{A“}ns,,{fh\;"w—z-z ey, (27
3

The Gaussian functional integral in (22) is calculated by
replacing the integration variables

§{ pieay...=11 (::) (28)

and its valye is determined by the eigenvalue spectrum of the
operator M,

AtA = 0 Egs. (24) are symmetric with respect to rota-
tions in replica space, and admit of solutions of the form*?’

A ()= Au(r)ee,  Ba(r)e= (,,;_ ) x[ ﬁ] ,
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Y e, (29)

Mo |

where ¢, is an arbitary unit vector in replica space, and the
function y(x) was defined earlier. Such instantons corre-
sponds to the already considered limiting case of weak ther-
modynamic fluctuations, and the action on them is given by
S,(r) from (1%a) at A = 0.

AtA #0this symmetry of the action (22) is violated by
theterm A A2 (it plays the role of cubic anisotropy in replica
space), and there are » types of instanton solutions of Eqgs.
(24):

m (r)=A:(r)Bae,  i=1,...,n (30

The function A4 {r) is defined in (17} and the index { charac-
terizes the direction, in replica space, along which spontane-
ous symmetry breaking takes place.” A number of impor-
tant relations between the integrals of the function y (x) can
be found by noting that Eq. {18) can be obtained from the
condition that the functional A{y(x)} (19b) have an extre-
mum with respect to ¥ (x}. To this end, we replace y (x} in it
by ay(8x). The minimum of the function A(a,f) with re-
spect to @ and & should be reached at @ = F =1, so that

u_[ dr 2y {(x)= —;— ;[dx z’( ‘-il'—) ’ = —2~njdx ) = Sii- .

dx
an

The action {22) on the instanton solution (30) is equal to
the value of S;(7) given in (19a). It follows from (22} that
the instanton contribution to {(Z" ) is proportional to »
exp[ — S,(7)], where the factor n is the result of summation
of contributions of all # types of solutions (30). Substituting
this expression in (21), we get for the free energy of the seeds
the result (14} and (19) of the fuctuation theory.
Allowance for the fluctuations of the replica fields in the
vicinity of the classical solution enables us to find the pre-
exponential facter in (14).

4, Pre-exponential factor in the case of strong
thermodynamic fluctuations

The pre-exponential factor in F; is determined by the
replica-field conﬁgug\ations {26) near the external solution
(30). The operator M“"! on the solutions (30} is equal to

BE =B Bt N - (1—b40) 180s,

ﬂL,r = ﬂ%{)_ [“E=V2+TUL,T(V) ];
Up(r)=1-3{r/E(T)], (3
Ur(r) =1—(1-2/3) """ [/E(D)].

Its eigenfunctions are

Pra (B = @7 (Nbas, B,  (33)

where the functions ¢ £7(r) are the solutions of the eigen-
value equations for the aperators M, r:

q:':u (l‘) = q:'hL (l‘) ﬁui:

Reocgy (1)=&t e (o). (34)

These equations have the form of Schrodinger equations
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with the potential I/,  (r) shown schematically in Fig. 1.
Let us examine the spectrum of these equations. The poten-
tial I/, (r) always have a discrete level with zero eigenvalue
gF = 0. Its presence is connected with the translational sym-
metry of Eq. (22). A solution of (24), other than (30} and
having the same action, is the function A}’ (r + r,) with a
shift of the localization center by an arbitrary vector ry. The
corresponding deviation @, (r) following a translation by an
infinitely small vector 8r, takes the form

Falr) = [As(rt8r) —Ag(r) ] 6us= (J"01y) @, (1) Basy (35)
g =02 T
AAg \F S, ()T
n=fa Ze) = SIS (36)

It can be verified by directly substituting (36) in {33) that
the functions ¢ Ty (1) are eigenfunctions of the operator
M, with zero eigenvalues. In (36) we have expressed with
the aid of (17) and (31}, in terms of the action (22), the
integral that determines J, . Comparison of (35) with the
general expression (26) yields the differential of the coeffi-
cient ¢; L of the expansion (26): def = J }%dr,. Since the
eigenvalue is threefold degenerate, J ;"% is the Jacobian of the
transition from the coefficients ¢{ to the collective variables
r, that determine the position of the superconducting drop.
The integral with respect to r,, yields the volume of the sys-
tem V. By calculating the remaining Gaussian integrals with
respect to¢, in (27) and (28}, we obtain the contribution of
the instanton configurations (30) to (Z" ) (22):

nV (Jo/2a) " [dot! ] ~% [det &)~ exp [—~Se(1)]. (37)

the determinant of the operator is equal to the product of all
its eigenvalues, and the prime denotes exclusion of the zero
eigenvalues from this product. Substituting (37) in (21), we
obtain the contribution of the superconducting drops to the
free energy of the systent:

Fl=_ea(T)T$
TSty %[ det M. - _
o= [ Lo ] S 2 [ e empl-5,). Go9)

To determine §, we must find the remaining eigenvalues of
the operators M ;. and M r (32).

We consider first the operator ML The angular de-
pendence of the eigenfunction {36) obtained above corre-
sponds to p-type state with orbital monmtun { = 1. The min-

nyf') UL(-F)

FI1G. 1.
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imum eigenvalue 5 should correspond to a nondegenerate s
state with / = (. The operator M, should have thus at least
one negative eigenvalue £5 < £ = 0. A more rigorous analy-
sis (Ref. 28) shows that such an eigenvalues is unique. The
remaining eigenvalues £; with &> 1 are positive. The de-
scribed eigenvalue spectrum of the operator M . 1s shown in
Fig. 2 (the continuous section of the spectrum is shaded).

_We consider now the eigenvalue spectrum of the opera-
lorM,» The quantity g, in (38) is positive only if the opera-
tor M r has a single negative eigenvalue. We shall show be-
low that this situation is realized if the condition
0<d <A *=12%/3, is met, a condition that defines in fact
that region of existence of superconducting drops. The spec-
trum of the eigenvalues of the operator M, is shown in Fig.
2.

Inthecase 4 €4 * the minimum eigenvalue ] <Ocanbe
obtained by perturbation theory in the small parameter 4 /
A* Atzl 0 the operator M (32) has a single zero eigen-
value £] = 0. The corresponding Goldstone mode is con-
nected with the isotropy of Egs. {24} in replica space, and
corresponds to rotation of the unit vector ¢, (29} in replica
space

@a (1) =Aa(r)dea= (Jr"Bea) 0" (1), (39

where the normalization component J;- and the function @ ¢
are equal to

GO =TT A, Tr= [drAs () = So(n) Tr2N (B,

(40)
It is easy to verify that the function (40) at A = Oisindeed a
solution of Eq. {34) with zero eigenvalue ¢ = 0, Compar-
ing (39) with (26) we obtain the relation

CQ¢T=JTI'&685. (41 )

Atsmall A €4 * we can neglect the change of the eigenfunc-
tion {40) of the operator M. Tts minimum eigenvalue £] is
obtained by multiplying both halves of Eq. (34) for £] and
by integrating with respect to the coordinate r:

= 27LN(EF Id A (r)/fdra.:(r __3171'

(42)
where we have used relations (17} and {(30). The condition
for the validity of the approach based on the instanton solu-
tions (30) can be formulated in the form {(e,}?) <1,
Since, as follows from (27), the characteristic values (c¢J)?
are proportional to |¢5|™’, this condition takes the form
A$¥S ¢ "(r). The opposite case of small A was considered
above using the Ioffe-Larkin  approach. If
}'Sﬂ '(7) €A €A * = 2y/3, all the eigenvalues of the opera-
tor M r except £] can be calculated under the assumption
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that 4 = 0, and the eigenvalue £] is given by Eq. (42). It is
easly seen that in this case all the eigenvalues of the operators
MT and M,_ except g} and £F are proportional to rN(E) /T
and are independent of  and 4. A dimensional estimate of
the ratio of their determinants yields therfore

|[lEL T}‘dt‘l ML]—[N(EF}Tlez (43)
Substituting (42} and (43) in (38) we get
1
8, ()= ET0) ( ) 8, ()exp[—S:{1)]
~E'3(T) e‘(p[ S. (1) . (44)

When calculating the order-parameter correlator (23)
it suffices to take into account in the pre-exponential factor
only the fluctoations due to the translational mode with zero
eigenvalue:

Ay = As(r) Buste @uoa () = Au(r+ry) 80, (45)
We obtain as a result
AMA([E)>=0,(v) j dry Ag(rr) Ad{r +r). {46)

The integration with respect to the coordinate r;, in (46)
means in fact averaging over different drop-localization po-
sitions. After averaging, the correlator (46) depends only on
the coordinate difference. Note that in view of the possible
scatter of the drop amplitudes the parameter does not deter-
mine their density. To find the latter we must obtain the
distribution of the deop amplitudes. At A =75, '(7) ex-
pressions (38) and (44) are transformed into {20a) and
(20b). . .

AtA = 1* = 2y/3 the operators M, and M, coincide.
Accordingly, all their eigenvalues are equal and the operator
M, has a single negative eigenvalue £] =0. At small
A% — 1 &4 *we obtain the eigenvalue £ by perturbation the-
ory with the aid of the corresponding function (36):

o= B sy Jarncio( 22) / (22

The remaining eigenvalues of the operator M r are positive
at 4 <A *, Using the result (47) for £ and setting the re-
maining £] = £f for k £0, we obtain at 2 * — 1 &A*

1 7\.' ]
8.(1) = 03 (741 ) S (r)exp[—Si(t} ],

Al L
2 nea(X2)".
2 Ta

]

(48)

AsA -4 *theeigenvalue£] —0and account must be taken of
the non-Gaussian character of the field fluctuations ¢, (r).
These fluctuations can lead to a change of relation (48) in
the region of smallA * — A S5 4 (7). Thus, superconduct-
ing drops exist only if 7, > 7%, and their density vanishes as
A=A * because the superconductivity is destroyed in the
drops by thermodynamic fluctuations.

In the calculation of the order-parameter correlator it is
necessary, in the case A * — 4 €4 *, to take into account in
(23), besides the zeroth translational mode, also the contri-
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bution of # — 1 modes of the operator M 7, with eigenvalues
£7 that tend to zeroas A — A *. Neglecting the contribution of
the remaining mode, we can, in analogy with the derivation
of (45), replace in (23) the quantity

Y A
ol
by
nL\d(r-{-J,_"‘Zc,,u) Ag (r’ +J Z,cm ) (49)

Integrating over all the coefficients ¢, in (28) and (23), we
obtain for the order parameter the results (46), where the
factor 8, (7} is defined in {38). Note that over large scales
the function (43) decreases like exp[ — [r — ¢¥'|/£(T) ] and
_does not contain the Ornstein-Zernike factor [¢' —r| ™"

CONCLUSION

We have shown here that in the case of sufficiently
strong statistical fluctuations of the order parameter
7p > 7% superconductivity is produced in the form of isolat-
ed seeds-superconducting drops. We found the free energy of
such an inhomogeneous superconducting state and the cor-
relator of the order parameter in the temperature region
7% 75, where the function 8, defined in (38) is exponential-
ly small: 8, ~exp[ — A (7/7p)"/2]. The drops can be re-
garded here as noninteracting. They make an exponentially
small contribution to the heat capacity of the system, to the
conductivity, and to the diamagnetic susceptibility. To cal-
culate the latter, we find the changes induced in the expo-
nents of (19), (15}, and (20) by a change of the external
field &

4e’E*N(Ep)

3heT
Differentiating the free energy F, {(#,H) with respect to H,
we get

fe=—FAT}S(T)E(T)/ D", (5D

AS K, )= H’jdrr""Af(r}. (30)

where @, is the flux quantum.

The order parameter is locally small inside the drop in
the region &(T) = £r~'"? only to the extent that »'/? is
small, and local measurements {for example, with the aid of
a tunnel-effect microscope} can reveal the appearance of the
drops.

The theory predicts thus a strong enhancement of the
thermodynamic and statistical fluctuations of the supercon-
ducting order parameter near the localization threshold.
The thermodynamic fluctuations by themselves leave the
system spatially homogeneous and therefore donot lead to a
qualitatively new behavior. Statistical fluctuations alter the
superconducting transition radically—it becomes percola-
tive.”* Although, there is as yet no quantitative theory of
such a transition in the temperature region where the drop
density is large, a number of qualitative conclusions that
lend themselves to experimental verfication can be drawn.

A trapsition in an inhomogeneous superconductivity
regime should be strongly smeared in temperature, and the
degree of smearing should depend on the current flow in the
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measurements of R and on the field in the measurements of
the magnetic susceptibility y, . In view of the strong fluctu-
ations of A (r) there may be no BCS singularity in the density
of states of the quasiparticles, and at 7, 2 1 it will have a
zero-gap character down to zero temperature (the same re-
sult is produced alse by an increase of the frequency of the
electron inelastic collisions near the localization threshold,
owing to the enhancement of the Coulomb repulsion of the
electrons™). Finally, the inhomogeneous characterof the su-
perconductivity (of the drop) can be observed with the aid
of local measurements, e.g., by tunnel-effect microscopy.

A substantial broadening of the superconducting tran-
sition and a smearing of the singularity in the density of
states of the quasiparticles was indeed observed in granulat-

- ed aluminum as the conductivity was lowered below 1000

O~ "em~! (Ref. 29). These facts offer evidence of the in-
creasing role of the fluctuations, although the only assump-
tion made to intepret the zero-gap character of the spectrum
ato = 100~ "-cm™' was that the frequency of the electron
inelastic collisions increases near the localization threshold.

Similar peculiarities of the superconducting behavior
should cccur also in systems with strong statistical fluctu-
ations of the pairing interaction, independently of their
proximity to the localization threshold. Naturally, far from
the Anderson transition, there are in this case no grounds
whatever for enhancement of the inelastic scattering of the
electron, and the zero gap in the quasiparticle spectrum can
be due only to statistical fluctuations of the superconducting
order parameter,

The authors are grateful to B. L. Al'tshuler, §. L. Ginz-
burg, L. P. Gor’kov, I. A. Korenblit, A. I. Larkin, D. E.
Khmel'nitskii, and E. F. Shender for a helpful discussion of
the questions touched upon in the paper.

APPENDIX

Let us show that thermodynamic fluctuations of the
magnetic field in superconducting drops, which we have ne-
glected above, have no effect in dirty superconductors.

We expand the action (22) in the vicinity of the instan-
ton solution (30) in the deviations of 4,,, and ¢, accurate to
quadratic terms (4,,, are the components of the vector A,
and 4 = 1,2,3). The action (25) acquires then an additional
term that describes the fluctuations of the magnetic field:

1
—2- 2 j dl'{ApaKm.vﬂAvﬂ); {A-l )
T

where the quadratic-form operator Kis equal to

R = RuuebunbasT K runbap (1=—80i), (A.2)
1
K;-.‘\-(r—r')=—2—1-D,.v"(r——r'), (A.3)
1 8N (E; )&
Ko, ¥)= = Dot 1)+ 2 e A1) B (A)
C

Here D, {r) is the photon Green’s function and is equal to
8,.../r in the Coulomb gauge. Calculating the Gaussian inte-
grals with respect to ¢, and 4, , we find that the magnetic-
field fluctuations lead to the appearance of an additional
multiplier & in the pre-exponential factor in (38). Regard-
ing in (A.4) the term containing A3 as a perturbation, we
obtain for the factor @ the expression
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The first term in the exponential of (A.5) gives the renor-
malization of the superconducting-transition temperature.
It is the same for both the spatiaily homogeneous state and
for drops, and can hereafter be regarded as carried out. The
second term in the exponential of (A.5) describes the influ-
ence of the screening of the fluctuating magnetic field on the
form of superconducting seed. Substituting in (A.5) the in-
stanton solutions for A; (r) and integrating with respect tor
and r’, we obtain the condition under which this term in
{A.4} is small and the inflence of the magnetic field on the
drop is negligble, in the form
Lk (R EAE(T) ) {A.6)
This condition is certainly met in type-I1 superconductors
with A, % &,. Intype-I superconductors it restricts the value
of the critical disorder at which the magnetic-field thermo-
dynamic fluctuations influence the properties of the seeds.

""The question of the size of the statistical fluctuations in dirty supercon-
ductors was first raised in Ref. 16.

*The parameter rg "2 = T N(E)E " = {7}, where .+ is the number of
levels in the system in the energy interval 7, in a volume £% The a
condition that the fluctuation region be narrow is {. # '} » 1. The param.
eter 7= (L — {F)/(017Y:, and determines the fluctuations of
the relative number of levels.

*This result was obtained using the scaling dependence of the correlation
function {N{r.£, + @) N(0,E¢}) near the mobility threshold.™

"'"When the drop interaction is evaluated, it is necessary to take into ac-
count the vortices in the region between the drops; the vortices destroy
the phase coherence of the different seeds. A similar situation is encoun-
tered in granulated superconductors.

“Atinteger n 22, Egs. {24) have besides the solution (30) also solutions
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with spontanecusly broken symmetry along two and more coordinate
axes in replica space. Such solutions, however, do not admit analytic
continuation # — 0 and will not be considered further.
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Abstract. The paper suggests an effective procedure for summing all Feynman
diagrams for the two-particle Green function in a one-dimensional model with a
Gaussian random field whose correlator is Lorentzian (in the momentum space)
with its maximum at Q = 2pp, with pp the Fermi momentum. This model can be
considered a Gaussian model of the Peierls transition (charge density and spin density
waves) in a fluctuation region with a well-developed short-range order. The authors
formulate a recurrence procedure for calculating the vertex part, which describes the
response of the system to an external electromagnetic field, and obtain a general
picture of the evolution of the frequency dependence of conductivity as a function
of the short-range order correlation length, which describes absorption through a
pseudogap and localization.

1. Introduction

There is only a limited number of models of the electronic properties of one-
dimensional disordered systems that allow an exact solution [1, 2]. The interest in such
models is due to the general problem of studying the electronic states in disordered
systems and to specific problems of the physics of quasi-one-dimensional systems.
Attention has especially focused on the manifestation of Anderson localization in the
one-dimensional case for arbitrarily weak disorder {3-5]. Resolving this problem has
proved extremely difficult since localization is determined by the properties of the
two-particle Green function, about which very few exact statements are known.

The majority of exact results in the theory of one-dimensional disordered systems
have been obtained by employing sophisticated mathematical techniques specially
designed to describe one-dimensional problems and unsuitable for generalization to
the multidimensional case. Only in a few cases have exact solutions been obtained via
standard methods of the quantum theory of multiparticle systems [6]. Such models
are of special interest primarily from the stand-point of checking the effectiveness of
standard approximation methods. They could also lead to instructive results easily
generalized to the multidimensional case.

A model of this kind was suggested some time ago by one of the present
authors [7-9). Within its framework it was established that the scattering of an
electron on short-range order Gaussian fluctuations with a characteristic period
determined by the wavevector Q@ o 2pp (pp is the Fermi momentum) leads to the
formation of a ‘pseudogap’ in the neighbourhood of the Fermi level that evolves

0960-0175/91/040391+16$03.50 (© 1991 IOP Publishing Ltd 391
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with variations in the short-range order correlation radius [9]. In the approximation
of large correlation radii there has also been obtained an exact analytical solution
for the two-particle Green function describing, among other things, the absorption
of electromagnetic radiation through the pseudogap (7, 8]. For the particular
case of commensurate fluctuations a similar model was considered in Wonneberger
and Lautenschlager [10]. The results obtained in these papers have been used to
interpret the optical properties of quasi-one-dimensional systems undergoing a Peierls
transition [8, 11] and in some other problems (e.g., see [12]). Lately a model of the same
kind has been suggested for interpreting a number of properties of high-temperature
superconductors [13-15]. The authors of [15] suggest a general recurrence procedure
for calculating the two-particle Green function that is valid for arbitrary short-range
correlation radii and allows for all the respective perturbation-theory diagrams.

The present paper is devoted to a thorough study of the solution used in [15],
an analysis of its special features from the viewpoint of the theory of one-dimensional
disordered systems, and a comparison of the ‘exact’ results with those obtained within
the framework of standard approximation methods.

2. The model

We consider an electron placed in a Gaussian random field A(z) with a correlation
function

(A(z)A(z")) = A% exp{— |z — 2’| ="} cos [2pp(z — 2')] (1)

where A? is the mean square of a field fluctuation, and £ the short-range order
correlation radius. Such a correlator appears, for instance, in fluctuations of the
order parameter in the Ginzburg-Landau model for a Peierls transition [16]. In what
follows A and £ are considered parameters of the theory. The Fourier transform of (1)
is

(AgA_g) = A%5(Q)

_ 2 K K
=24 ((Q e T @ I T ~'~’) @)

with x = =1, The simplest self-energy part of the one-electron Green function has
the form (figure 1)

_ A2 [4Q 5(Q)
X(e.p) =4 2r e—§,_q—ibsgné, g
T e+€, +ivprsgné,
= A%Gy(s; —€, —ivpsgné,) (p o pp) (3)

where ¢, = vgp(|p| — pp), vp is the Fermi velocity, and we have allowed for the fact
that fp_sz = —fp.

We also consider the case of commensurate fluctuations [10], when £, =
—~W cos(pa), with a the lattice constant, and 2pp = v /a (half-filled bands, period
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Figure 1. The simplest contribution to the self-energy part.

doubling). The diagram in figure 1 and the result of the (3) type were basic to
the analysis conducted in [16]. In [7, 8] all Feynman diagrams for the one- and
two-particle Green functions were summed for the asymptotic limit x — 0. An
effective summation of all the diagrams for the onme-particle Green function was
carried out in [9] for arbitrary values of x. In the nth order of the perturbation
expansions in A? there are n! diagrams in the case of incommensurate fluctuations
and (2n — 1)!! = (2n — 1)!/2"~1(n — 1)! in the case of commensurate fluctuations
(period doubling) [9]. Figure 2 shows all the important diagrams of the third order
in AZ? for the one-electron Green function in the incommensurate case. The rules for
calculating the contributions of arbitrary diagrams have been thoroughly discussed
in [9]. Generally, the contribution of any diagram is determined by the position of
the ‘initial’ and ‘final’ vertexes for the interaction lines. Here to each one-electron line
following the ‘initial’ vertex there is assigned (see equation (3)) an expression of the
free-particle propagator type in which ivpx sgn §, is added to the denominator, while in
a similar line following the ‘final’ vertex this term is subtracted from the denominator.
The integers in figure 2 stand for the number of such contributions in each of the
corresponding denominators. The reader can easily see that the contribution of any
diagram with crossed interaction lines can be uniquely represented by a respective
diagram without crossed interaction lines, since their contributions are equal (e.g., in
figure 2 diagram (d) provides the same contribution as diagram (e)). The general
procedure for such assigning is given in [9], in accordance with the method first
suggested by Elyutin [17]. Each vertex is assigned an integer equal to the number
of terms ivpx in the denominator of the electron line following the given vertex. The
initial vertex is assigned the integer N,, = n—1+1, where N, _, is the integer assigned
to the closest vertex on the left. The final vertex is assigned the integer N,_; — 1,
where N = 0 and n is the ordinal number of the vertex.
We introduce

_f(k+1)/2 fk=2m+1
”“”‘{5:/2) if k = 2m )

for the case of incommensurate fluctuations and
v(k)=k (5)

for the case of commensurate fluctuations. It can easily be verified that the number
of irreducible diagrams for the self-energy part that are equal to the given diagram
without crossed interaction lines is given by the product of the factors v(N,) for all
the initial vertexes of a given diagram. Hence, further analysis can be carried out in

terms of diagrams without crossings, assigning to all initial vertexes the additional
factors v(N,) [9, 17].
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Figure 2. A%-order diagrams for the Green function (the incommensurate case).
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Figure 3. The diagrammatic structure of the recurrence procedure for the self-
energy part.

Applying Elyutin’s method makes it possible to build an exact representation for
the one-electron Green function in the form of a continued fraction [9]. The structure
of this solution is based on the ordinary Dyson equation

G (e,6,) = G (6,6,) - Bu(e.6,) (6)
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where for the self-energy part we have (figure 3(a))

- 1
B(66) = M) ke
= sz(l)Gg(e, —-§, — ivpsgné, )2, (¢, §,) ™

and for Z,(¢,£,) we have the expansion depicted in figure 3(b), where there are no
diagrams with crossed interaction lines but where the kth vertex (counting from

which allows taking into account the contributions of all the diagrams with crossed
interaction lines. Respectively, =, (¢,€,) can be written as

1
Gy (e, =€, —ivpxsgnéy) — I,(c,§,)

(8)

Ei6§) = G;z(e, —§, — ivpxsgné,)

where I,(¢,£,) is expressed by the sum of irreducible diagrams shown in figure 3(c):

E2(6’ fp) = sz(2)Gg(€) fp + 2iv[-"C sgn fp )EZ(ev fp) (9)

1

= = G-2 :
Ex(s,€p) = Gg *(&, €, + 2ivpasgn fp)G[{l(e,fp T 2ivprsgnt,) - Ta(66,) (10)
etc. The final result is
Zy(e, &) = A’G] (e, (-1)* (¢, + ikvpsgné,)) vik) Ekte.;,) (11)
Zule. &) = G5 (6, (~1)* (&, + ikvpasgné,))
x 1 : ! (12)
G(-J. (E, (—l)k(fp + lkalcsgn fp)) - 2k+1(€v fp)
Si(e,€,) = Au(k) .
P Gal (6, (—l)k(fp + ikaK sgn €p)) - 2k+l(€v fp)
= A%(k)Gy (e, €,) (13)
Gile,&,) = [ — (~1)* (&, +ikversgng,) — Au(k +1)Gy,, (e,6,)] (14)

with G,4(¢,¢,) = G(e,€,)- These recurrence relations yield an exact representation
of the one-electron Green function in the form of a continued fraction. The results
of numerical calculations of the corresponding electronic state density for different
values of the short-range order correlation radius ¢ = x~! are given in [9]. The results
exhibit, among other things, the formation of a pseudogap approximately 2A wide in
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the vicinity of the Fermi level [7-11, 16] that gradually fills up (degrades) as ¢ gets
smaller.

Figures 4 and 5 illustrate the results of numerical calculations of the spectral
density '

Ae§) = ~ImGR(c,6,) (15)

of the respective Green function (14) for different values of the parameter W = vgx/A
(i.e., virtually the reciprocal correlation length). The energy scale is given in units
of A (i.e., E=¢/A and z =§,/A).

In the case of well-defined quasiparticles the spectral density is simply (e — &,).
The results depicted in figures 4 and 5 suggest that at small values of the parameter W
(large correlation lengths § > vg/A) our solution contains no contributions of
the quasiparticle type. This fact was noted in [7, 8], where it was demonstrated
explicitly that there are no pole contributions to G(g,§,) in the approximation of
large correlation lengths. At the same time, figures 4 a.ndp 5 show that at fairly large
values of W (small correlation lengths) the spectral density is represented by a fairly
sharp peak at € « &, corresponding to weakly damped one-electron excitations. The
physical meaning of this result is simple. In the limit of £ = x~! — 0 the random
field correlator (1) becomes short-ranged but is not reduced to the common (3, 5]
‘white noise’ limit. Although in this case all momenta in the integral with respect
to @ become important, the scattering amplitude

2
(AgA_g) -‘i— (16)

so that the effective scattering rate

1 L A2 A?

s 21"No(5r‘)_n = on
=4, 0 a K—o0 17)
W

with Ny(€) = 1/27vp the one-electron density of states of free electrons. Correspond-
ingly, in the limit of x — oo the freedom of the electrons becomes ever greater. This
fact is important for the interpretation of the results that are given below. Similar
behaviour (as figure 4 shows) appears as §, grows, that is, as one moves away from
the Fermi surface.

3. The two-particlé Green function and the electromagnetic response

Let us now analyse the two-particle Green function (the vertex part), which determines
the frequency dependence of conductivity and the dielectric constant of the system.
We begin by studying the response to a variation of the external scalar potential,
60, o"
qw

6G(e,6,) = Gl&, )T (6,656 +w, €54 )G(E + W, 6540604 (18)
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Figure 4. The surfaces of constant spectral density A(E,z): E = ¢/A, z = {,/A,
and W = vps/A. (a) W = 0.1, (b) W = 0.5, (c) W = 1.0, and (d) W = 5.0.
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Figure 5. Characteristic cross sections of the surfaces of constant spectral density
AE,z): (a) z =0at W =0.1(1), W = 0.5(2), W = 1.0(3), and W = 5.0(4);
(b)z=05at W=0.1(1), W=0.5(2), and W = 5.0(3).

where the vertex part

§G~(e,¢,)

J(e,bpie+w,&ppg) == 5o
q.w

(19)

for free particles (the free-particle Green function) is determined solely by the charge e.
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Equation (6) yields

86X, (e,
J(e,&pretw,bppg) =€+ _61(—6’)
Pow

Ee+\71(e’€p;€+w1€p+q)’ (20)

The problem reduces to calculating the variational derivatives of diagrams of the
type depicted in figure 3; the graphs with crossed lines may be ignored because they
are taken into account by the respective combinatorial factors at the ‘initial’ vertexes.

Combining (13) and (14), we introduce the following hierarchy of vertex parts:

§GT(e,&,)
Ji(e &pie +w,€p+q) = ——-167—-&-
q.w .
+ 622(€i€p)
LT

=e+ J2(€1€p;e +wl€p+q)

§Gil1(e,&,)
J,,_l(e,fp;é‘ + w,€p+q) = ——%‘L
q.w

=e + M
604w
e+ Jil6:épie+w, o) - (21)

with J,_o = J (e,fp;e +w,§, +q). An important assumption is present here, namely,
that the variational derivatives of the free-particle Green functions (with contributions
ivpk in the denominators) are still determined by the ‘bare’ charge e.

In what follows we will be mainly interested in the vertex of the RA type, with
the incoming line of the A (advanced) type and the outgoing of the R (retarded) type.
We can try to calculate the corresponding contributiens to the variational derivatives
5T, (e, £p)/6¢qw explicitly. Let us consider the simplest diagram for the first-order
correction in A? to the vertex part (figure 6(3)) For the corresponding contribution
we easily find that

(I)RA(E &ie+w, €p+,)

d .
- A‘/ 4Q S(Q)GA(E & g)GB(e + byt

=A?[G) (e, €p+an) G +w,— fpﬂ w!‘ x))]

W+ vpq

= A%Gh (e, -{ +ivpK)GR(e +w,_—£p+q ivpk) (l + 2_1:_)2”‘1) (22)

where we have used the identity

GA(6,6,)GR(e +w,&,,,) = [GA(e,E,) — GR(e +w,E,,,)]

w—vpq
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e+ o, §p+q:
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(b
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©
V(K)

Figure 6. The simplest diagrams for the vertex part.

‘Dressing’ all the internal electron lines and employing the identity

GA(e,4)GMe +w,§4,) = [GA(6,6,) — CMe+w,600))

1
X . :
W= Vpg— 2?(6 + u’fp-l-q) + 2?(5’&.,;)

(23)

we obtain the contribution of the diagram in figure 6(b) in the following form:

TP (e, 6,6 +w, 6y ,) = ATGR(e,£,)GR (e + w,psq)

« (14 2iufx
w +vpa— TF(e +w, &pp) + Z2(E,6,)
x J{A (e, 656 +w,6p4,) (24)
where we have assumed that an extra interaction line simply transforms the respective

self-energy parts E?‘A into Eg'A in the spirit of the procedure discussed in section 2.
A straightforward generalization for the contribution of the diagram depicted in
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figure 6(c), with the lines dressed according to the rules suggested above, has the
form

TEME i€ +0,6p4g) = ATURIGR(E, §,)GE (e + w164

x 1+ 2ivFK k
w= (_l)k vpq — 2?_’_1(6 + w’£p+q) + E‘:+l(€’ fp)
X J,f“(e,fp;e +w,€pq)- (25)

The main feature here is the absence of terms of the ivgpk type in the denominator
in the second term within the braces, which in the summation procedure discussed
in section 1 wereshifted"from the proper self-energy parts to the corresponding free-
particle Green functions.

In addition to the above assumptions concerning the properties of variational
derivatives of the free-particle Green functions, this procedure forms the basis of
the suggested method. This procedure does indeed take into account all the
Feynman diagrams emerging in the problem, but it is based on important assumptions
concerning the structure of separate terms in the series. Below we suggest additional
arguments in favour of the validity of these assumptions.

V(1)

Figure 7. Diagrammatic representation of the equations for the vertex hierarchy.

As a result we arrive at the following fundamental recurrence relations for the
vertex part:

I (6,656 +w,6py,)
=e+ sz(k)G:(ey Ep)GE'(E + w, pr)J{‘A(e, fp; €+ w, Ep+q)
5 {1 . Zivgrk i
w— (=1)*vgq+ v(k + 1)A2 [GR, ,(6,€,) - Gh (e +w, &4 )] |
(26)




402 M V Sadovskii and A A Timofeev

Diagrammatically these relations are depicted in figure 7

Further analysis can easily be done numerically: we truncate the continuous
fraction for the G-function at a distant ‘storey’ assuming that the corresponding T,
is zero and that J, = e and then ‘raise’ to the physical limit of £ = 0. One can easily
verify that on the limit of x — 0 the suggested procedure leads to the series that was
summed analytically in {7, 8].

To find the frequency dependence of the conductivity we can use the general
relations discussed in [18, 19]. The conductivity is expressed in terms of the density—
density retarded response function (the polarization operator) x®(g,w) as follows:

o = lim (%) e | @
The dielectric constant can also be easily fdund:
Reg(w)-1= _4?11' Imo(w) Ime(w) = :l Reo(w).
The general expressioﬁ for Xn(q,w) ﬂu the following form [18, 19]:
X(0,) = [ de (e +0) - FOIR™(e,0.0))
+ [0 00 - fe+)eM g0 (28)

where f(€) is the Fermi distribution function, and the two-particle Green functions
@RA, ORR and $AA are represented by loop diagrams of the type depicted in figure 8.

et+ow,p+q

1
-3 C L)

B'p

Figure 8. Diagrammatic representation of R4 (¢, ¢,w).

For T = 0 and w < € we have [19]
xn(q,w) = w[<1>“(0, q,w) — <I>RA(0, 0,w)}. . (29)

We note the existence of an important relation of the Ward identity type [18, 19]
that reflects the law of conservation of the number of particles (and is valid for w < €p):
®™A(0,0,w) = -I—V-(:L) (30)

with N(ep) the exact (renormalized) density of states at the Fermi level. This equation

was employed in deriving (29) and can be used to directly monitor the suggested
recurrence procedure of calculating the two-particle Green function.



The two-particle Green function 403

4. Results and discussion

As noted in [9], the recurrence procedure for finding the one-particle Green function
(the density of states) converges very rapidly; a typical calculation time for the density
of states at a given energy (with a high accuracy) amounts to less than one minute
when a standard IBM PC/AT is used (if one starts from the ‘storey’ with k = 50-100).
The situation is more complicated when corductivity and the dielectric constant are
calculated and the procedure is more sensitive to the choice of parameters of interest to
us. In the main section of the frequency interval, 0.5A < w < 3A, and for intermediate
values of £ = k™! (0.2A < vpx < 2A), satisfactory convergence is achieved for
k < (2-5) x 10? and the calculation time for conductivity at a fixed frequency amounts
to several minutes. Outside the specified intervals the convergence grows markedly
worse and becomes especially poor in the limit of very low frequencies and in the case
of extremely large correlation lengths (note that in the latter case the exact analytical
solution can be used [7, 8]).

The reliability of the suggested recurrence procedure can be verified by directly
checking the validity of the exact formula (30). In doing so, one finds that calculating
N(ep) in terms of the two-particle Green function ®R4(0,w) yields (at least forw < A)
a result agreeing perfectly with that of N{ep) calculated in terms of the one-electron
Green function for various values of parameter x. This can, apparently, serve as a
strong indication that the employed method is correct, which makes it possible to
speak of an ‘exact’ solution.
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Figure 9. The frequency dependence of the real part of conductivity in the

case of incommensurate fluctuations: W = 0.1(1), W = 0.5(2), W = 1.0(3),
and W = 2.0(4); the * stand for the exact solution at W = 0 [7, 8].

In figure 9 we give the results of calculating the frequency dependence of
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conductivity for the case of incommensurate short-range order fluctuations. The
conductivity is given everywhere in units of wg/47rA (there is an error in [15)
concerning this scale—the presence of an extra factor of 2 in the denominator), with
w,, the plasma frequency, and the correlation length is determined by parameter W =
vpk/A. For the sake of comparison we also give the results of an exact analytical
solution in the limit of W — 0 [7, 8]. One can clearly see the successive degradation
of the intensity of absorption through the pseudogap as £ decreases (or W grows).
For small W (or large £), the localized behaviour of Reo(w) in the low-frequency
region, Reo(w — 0) — 0, manifests itself in a way that is qualitatively similar to the
behaviour discovered in another model [5). There appears a characteristic additional
maximum in the conductivity similar to the maximum obtained in the problem of
conductivity in a system of §-correlated impurities (‘white noise’) [5]. As W grows,
the apparent localized behaviour disappears, changing to the Drude-like behaviour
characteristic of free electrons. Thus, our model demonstrates an ‘effective’ Anderson
transition, notwithstanding its one-dimensional nature.

Though this may seem to be paradoxical behaviour, it has a simple qualitative
explanation based on the decrease of the effective scattering amplitude in the limit
of large , a property discussed in section 2. Naturally, the frequency region where
localization effects manifest themselves is drastically narrowed in the process and for
all practical purposes disappears as the electrons’ freedom increases. It is in this sense
that we can speak of an effective Anderson transition.
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Figure 10. The frequency dependence of the real part of conductivity in the case of
commensurate fluctuations: W = 0.5 (1), W = 2.0(2), W = 4.0(3), and W = 8.0(4).

Figure 10 demonstrates the results of calculating Re o(w) for the case of commen-
surable short-range order fluctuations. Qualitatively, the picture noticeably differs
from the incommensurate case: there is no additional maximum in the low-frequency
region for small W. At the same time, the effective Anderson transition from the
localized behaviour to the Drude-like becomes even more evident.
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The suggested method can also be used to establish the frequency behaviour of
the dielectric constant Ree(w). The corresponding results are given in [15].
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Figure 11. Comparison of the results of an ‘exact’ analysis with those obtained
in the ‘ladder’ approximation: (a) W = 0.1(1) the ‘exact’ solution and (2) the
‘ladder’ approximation; (b) W = 1.0(1) the ‘exact’ solution and (2) the ‘ladder’
approximation.

It is interesting to compare the results of an ‘exact’ analysis with those of calcu-
lations carried out in the standard ‘ladder’ approximation, that is, an approximation
that does not allow for diagrams with crossed interaction lines. In our method
the transition to the ‘ladder’ approximation is very simple: one needs only to set
all combinatorial factors v(k) equal to unity (in both the incommensurate and the
commensurate case). Figure 11 depicts the most characteristic curves for Re o plotted
against w for the incommensurate case. The reader can clearly see that for small W
(figure 11(a)) the ‘ladder’ approximation gives a behaviour that drastically differs
from ‘exact’. Localized behaviour is distinctly absent from the low-frequency region,
which is natural since localization is determined by diagrams with crossed interaction
lines [18). At the same time, for fairly large W (figure 11(b)) in the main frequency
region the ‘ladder’ approximation yields results that are close to ‘exact’. However, for
low frequencies here, too, distinct discrepancies emerge: all tendency to localization
vanishes. The same behaviour is observed in the commensurate case.

Note that the suggested method can also be easily used to analyse the one-
dimensional model with a Gaussian random field correlator in the form of a simple
Lorentzian centred at zero momentum transfer, Q ~ 0. Naturally, this model generates
a density of states with a characteristic ‘tail’ at the band’s edge. However, calculating
the two-particle Green function yields trivial free behaviour in this model. For
instance, it can easily be verified that Ree(w) = 1 - w2 Jw?. This result is an obvious
corollary of the absence (in the one-dimensional case) of dissipation in scattering with
low momentum transfer, Q < 2pp. The electrons simply re-scatter near +pp, the
endpoints of the ‘Fermi line’. Current dissipation requires scattering by @ ~ 2pg,
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which makes the electrons hop from one endpoint of the Fermi line to the other.

5. Conclusion

We have proposed an effective recurrence procedure for calculating the two-particle
Green function in a one-dimensional model with a Gaussian random field of a special
type that can describe short-range order fluctuations in systems of the Peierls type [8,
9] and, possibly, in high-T, systems [15]. The procedure allows for all the Feynman
diagrams that appear in the given problem and in this sense is ‘exact’, although it is
based on certain assumptions concerning the structure of the terms in the perturbation
series. The reliability of these assumptions is verified by the meaningfulness of the
limiting cases of k — 0 and x — oo and by the fact that the exact ‘Ward’ identity
holds for all values of .

The general pattern of the evolution of the frequency dependence of conductivity
for various values of the short-range order correlation length describes absorption
through a pseudogap and localized behaviour in the region of low w and W. As W
grows (or the correlation length decreases) an ‘effective’ Anderson transition occurs in
the system, and this would seem to explain the drop in the scattering amplitude and
the gradual transition to ‘free’ particles as W grows. From the practical viewpoint the
frequency range where localization manifests itself narrows drastically and disappears.
Such behaviour may lead to interesting consequences in real quasi-one-dimensional
systems. .
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Abstract. This paper deals with calculations within the self-consistent localization
theory of the conductivity, critical disorder, and the localization radius for the two-
band model with Gaussian disorder. It demonstrates that at the Fermi level the
localized states corresponding to the narrow band cannot coexist with the delocalized
states in the wide band. Hybridization of the states of the narrow and wide bands
leads to the delocalization of the system. The critical disorder corresponding to
localization exceeds the values characteristic of an unhybridized wide band. Within
a certain range of parameters of the system the behaviour of the conductivity may
be nonmonoctonic; for instance, it can increase with disorder owing to the evolution
of the hybridization pseudogap in the density of states.

We study the Anderson localization of electrons in the two-band model with
hybridization. Such a statement of the problem is of interest both from the viewpoint
of possible applications to real disordered systems, such as alloys and compounds of
transition metals and systems with heavy fermions, and for solving some questions of
principal importance. Of greatest interest here, obviously, is the case of a relatively
narrow (d) band that is near the Fermi level and inside a broad (s) band. This
situation is not at all exotic from the experimenter’s viewpoint, while from the
theoretician’s viewpoint it is interesting because for unhybridized bands the critical
disorder corresponding to the localization of electronic states varies considerably—it is
easicr to localize a narrow band [1]. At times, especially when discussing experiments,
some researchers assume that at the Fermi level the localized states, corresponding to
the narrow band, ‘coexist’ with the delocalized states. The fact that this is impossible
in principle has generally been known for a long time: hybridization with states of
the broad band is certain to transform the localized states of the narrow band into
delocalized states [2, 3].

At the same time the question of localization and the specific properties of
localization in the two-band model have not, to our knowledge, received special
attention. Below we consider this problem within the framework of the self-consistent
localization theory [5-8], which makes it possible to carry out all calculations to the
final result. We show that localization in the two-band model does indeed possess a
number of features that can manifest themselves in experiments. For one thing, no
‘coexistence’ of localized and delocalized states is possible in the above sense, and the
Anderson transition may occur only when a value of critical disorder exceeding that
corresponding to localization of the electronic states of the unhybridized broad band
1s reached.
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Our approach is based on the generalized Anderson model [1] with diagonal
disorder, whose Hamiltonian in the momentum representation has the following form:

H = memi B g = (€452 - 7(1 = 8#)]6, o + V64 (1)

with 4 and v the band indices. Here and in what follows we assume (if the opposite
is not obvious) the summation convention over repeated indices valid, al* and ak
are operators of creation and annihilation of a ‘u’-electron with momentum k, ek
is the spectrum of the ‘u’-electron in the tight binding approximation, and %

the hybridization constant. The scattering potentials V) are assumed dzstrlbuted,
according to the Gaussian delta-correlated law

(Vqﬁqu‘) = 53“64.—9‘“’2 (2)

with W the width of the disorder. Here we have ignored the off-diagonal correlations
in the scattering potential, which simplifies calculations considerably.

We define the one-particle Green function averaged over the realizations of the
random potential,

K7 (E% )b = (G2 (b, K, £%)) (3)

with £% = £ + i6, as the solution of the equation
[(6% - ef)8#e —9(1 — 65°) — 54 (£%)| gz (e%) = o7 ()
where we have introduced T}(£%), the self-energy part, The contributions of the s-

and d-states to the density of states of the system, p(€) = p*(£) + p?(€), have the
following form:

@y L ss(dd) ; oy §
pPRNE) = ?rlmzk:gk (E7). (5)

The dynamical conductivity of the system is [4, 8]

2e2 1w
og.(w) = w0 qli_{ra( = )xﬁ}i(q;w)

where xﬁ;(q;u) is the density response function, and ° is the volume per lattice site.
For ¢ and w small we have

Xoh(g50) 2w, (0 EF +w, E7) + p(€p) + Ow, ¢%) (6)
where

®,, (068 +w,&7) =660 Y Wi (g 6F +w, &)

ke ke’

vor - ]' o ! 14 ! =
Vi (068 +w,67) = —5=(GH (bt k' +i £ +0)G* (k'— k—; £7))
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is the two-particle Green function averaged over the realizations of the random
potential and satisfies the Bethe-Salpeter equation

v " _ 1 ”
whreh (g &F +w, E7) = Ght (EF + w)GLl (EF) [-%5,,,,.5 a5th

+ZU§£EA q,8$+u,£§)¢2ﬁi’?(q;é‘$+ w,é}‘)] (8)

k'

with U,’:Zf"ﬂ (g;€F 4 w,&F) the irreducible vertex part. Here k+ =k =+ q/2.
In the self-consistent Born approximation with ¢ and w small

pie(e2) ~ FiAL fta AR = 2p) (G)W?
4 .ﬁ::(d)
ULLeP af(g; 68 +w, &7 ) = 67 612 6YP UL e — (9)
(€r)
2 i
ti)pp(q;fg"' + w,é’F) ~ p(gp) m
with D, the Born diffusion coefficient of the system,
p(Er)De, = p°*(Ep) Dg, + p°(€p) D5, (10)
s 1 58 52 L & 8
D, = E?r_p’f?p_)z{ Im G (£4)] (Vaed)” + [ImG* (63)]7 (Vaek Vaei) }-

ke

Here d is the dimensionality of the space, and Dgp is obtained from D by
interchanging the band indices s and d.

Combining the calculation of the two-particle Green function with the self-
consistent approach to localization theory in the spirit of [5-10] yields

i

—iw + DSF(W)QQ (1)

D, (q;é';\' + “:SPT) >~ p(&r)

where we have introduced Dg_(w), the generalized diffusion coefficient of the system,
which can be found by solving the following self-consistent system of equations:

P(EF) De (W) =p° (EF)DSEF(‘*’) + Pd (EF) Dgp (w) (12)
s s o o 5 st ps (EF')Dér-‘(w)
_ 68 p* (€r) DE, (w)
WP(‘C"F) Z —iw + D, (w)g?
(13)

EF DEP(W)
+ Dg, (w)e?

4 (51-” Dsp(w)
B wp(ep) Z “iw+ D, ()42

*(€0) D, () = 4 (&) D2, ~ sF) Z -
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where

85 QA::P

eé'p = dﬂ'p Da Z{A (gF)}

x {[Im G (£4)]7 (Vael)? + Im Gy (SP)]Q(Vhfivhfi)}
(14)

sd __ Qﬁgp A £+ Ex
e“""_d‘rp £ }Dd Z{ g ( )}

« {[m G (&) (Ve +1m G (62)]2(Vuek Vi) )

The coefficients Of2 and Of can be obtained from the corresponding relations by
interchanging s and d.

Equation (11)-(14) formulate of the self-consistent localization theory for the two-
band model with hybridization. If in the first equation in (13) we put p%(£) =0 and
in the second p*(€) = 0, the two transform, as ¥ — 0, into the appropriate equations
for the unhybridized s- and d-bands.

In the metallic region, equations (6) and (11)- (13) yield the follow ing expression
for the DC conductivity: o = oy, — 0., Where g, = 0§ + of, and

Teore = [ (03 +9%) + (c§ + 9%

= {[(o% = %) + (o8 - 9%)]"

4[035 (ﬂdd _ ﬁds) + Ug (ﬂss _ ,ﬁsd) _ (ﬁ”}jdd . t?ss,add)] }1/2] . (15)

Here
S5 _ (d) y_ 2
= szOp Er) D W= s O
I 5% 1 (16)
«)= | G e
lg| < ka

with &, the cut-off momentum. In the metallic region, as w — 0, we have
—iw/Dg_(w) — 0 and

742k (d/2 - 1)

d> 2.
w—0 = T AT(d]2) T

46— P w)]

We define the critical disorder 1V, corresponding to the localization of the electronic
states of the system for £ fixed by the condition o, [W,] = 0, which yields

o.sB (ﬂdd _ ﬁds) + O’% (ﬂss _ t?sd)

Pssq9dd _ 3ds gsd =1L (I?)
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For 4 small,

s ad )
= + | === + 0 72 =]
( ues )vzo ('de =0 ()

which shows that the critical disorder W, is greater than rnax{W:, ch} and increases
with 4.

In the region of localized states, oy < Teoprs We define the localization radius £
by the following relation [6, 7]

i (5, 1) = &

At d = 3, combining equations (12) and (13), we arrive at an equation determining
the localization radius for different sets of the system parameters:

0.1[33 (ﬁdd = L?dB) + adB (T}“ e ﬁSd) (19)
988 gdd _ jdsgsd !

1 -
g-k—ﬁ-tanh Heky) =1~

Numerical calculations are done for a simple cubic lattice with a half-filled band.
We introduce the following model density of states [11]:

Po(€) = ; 5(€ ~ €4)
- ?213 [1 - (éﬂma(w —I€]) (20)
Zk: (€ — ) (Vaca)® = % [1 - (%ﬂmﬂ(w =)

where w is the band halfwidth, —w < g, < w, V_,, = aw/\/ﬁ is the maximum
velocity in the semielliptical band, and a the lattice parameter. We also assume
that for unperturbed bands &} = ¢, and € = ag,, 0 < a < I, with a the scaling
parameter.

For a fixed set of system parameters {a,v, W, £} we calculate the ‘Born damping’
A% as the solution of the self-consistent system of equations (9) with the initial
approximation

_ Po(gfa).

(8]

PE)=po(E)  p(E)

Equations (16), (14) and (10) can now be used to calculate the contributions to the
Born conductivity o and the coefficients 9#*. For the cut-off momentum one usually
takes ky = x7/a, with K ~ 1,...,2 a parameter. In our calculations x = 2 /9.

The results of numerical calculations with @ = 0.1 are presented in figures 1-5,
where p(€) is given in units of (rw)~}!; £, ¥, and W are in units of w; ¢ in units of
o, = e?/9mha; and £ in units of a.

Figure 1 demonstrates the behaviour of the density of states p(€) for various values
of the hybridization constant y. When hybridization occurs, the curve of p plotted
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Figure 1. Density of states p(£) for various values of the hybridization constant -,

against £ acquires what is known as a pseudogap, whose depth increases with v for
W fixed. For ¥ > a'/?w, in the limit of W — 0, the density of states p(E) at the
middle of the band vanishes and a hybridization gap forms. A further increase in ¥
causes the hybridization gap to broaden. As W grows with 7 fixed, the hybridization
gap closes and the depth of the pseudogap decreases owing to the increase in p(&).

Figure 2 depicts the curves for the system’s DC conductivity o plotted against the
disorder width W for different values of the hybridization constant v. For v < a!/?w,
the conductivity decreases as W grows and vanishes at W = W,_(«y), which corresponds
to an Anderson transition. The nonmonotonicity of o for small values of W, due to
the hybridization pseudogap, increases with «, and for ¥ > a'/?w a metal-insulator
transition caused by the formation of a hybridization gap may occur. In this event in
the region of small values of IV a rather exotic increase in & with W is observed at a
fixed value of v, an increase is due to the evolution of the hybridization pseudogap in
the density of states. A further increase in W at a fixed v brings about an increase in
the localization correction. This leads to growth saturation and a rapid decrease in o,
with ¢ vanishing at W = W_(v).

The dependence of the critical disorder W, on the hybridization constant v is
depicted in figure 3. We see that W, increases with 7.

Figure 4 depicts the curves for o, DC conductivity, plotted against the hybridization
constant v for different values of the disorder width W.

The system is in the localized states region, for W > W, where W2 > W3, with
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Figure 2. DC conductivity o of the system as the function of the disorder width WV

for different values of the hybridization constant . The broken curves correspond to
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Figure 3. Critical disorder W, as a function of the hybridization constant ~. The
broken horizontal line depicts W2, the critical disorder of the unhybridized s-band.

WO the critical disorder of the system as ¥ — 0, and for y < 7, where 7, is determined
from the condition V,(y,) = W. As v increases at a fixed WV, the system may become
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Figure 4. The DC conductivity of the system, o, as a function of the hybridization
constant v for different values of the disorder width W.

delocalized for 4 > 4,. A further increase in v at a fixed W leads to an increase
in ¢ owing, apparently, to the contribution of band-to-band transitions. The value
of o rapidly becomes saturated and, later, decreases because of the widening of the
hybridization pseudogap in the density of states.

For W < W7, an increase in v in the region of small values of v also leads to
an increase in ¢ owing to the contribution of band-to-band transitions, and again the
value of o becomes rapidly saturated and then falls off owing to the evolution of the
hybridization pseudogap in the density of states.

The curves in figure 5 for the localization radius € as the function of the disorder
width W at different values of the hybridization constant v demonstrate the divergence
of £ as W — W, with the critical disorder W, obviously depending on 7.

Our results show that an Anderson transition in the two-band model possesses
a number of features setting it apart from the standard case. Hybridization of
states of the narrow and wide bands leads to delocalization in the system, and
the critical disorder corresponding to localization exceeds the value characteristic
of an unhybridized wide band. This indicates that at the Fermi level the localized
states corresponding to the narrow band cannot coexist with the delocalized states
corresponding to the wide band. From the experimenter’s viewpoint, the most
interesting is the nonmonotonic behaviour of conductivity (for one thing, the increase
in conductivity with disorder).
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Figure 5. The localization radius ¢ of the system plotted against the disorder
width W for different values of the hybridization constant 5.
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Suppression of superconductivity close to the metal-insulator transition in strongly

disordered systems
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By means of the self-consistent theory proposed earlier for a metal—insulator transition in
strongly disordered systems, which takes into account interelectron interaction effects, the effects
of the suppression of the superconducting-transition temperature 7'., caused by the formation

of a Coulomb pseudo-gap in the density of states, are studied in a wide interval of disorder
values—from a weakly disordered metal to an Anderson insulator. It is shown that the

proposed theory gives a satisfactory description of the experimental data for a number of systems
that have been studied. © 1997 American Institute of Physics. [S1063-7761(97)01607-7]

1. INTRODUCTION

The problem of the degradation of the superconducting-
transition temperature under conditions of strong disordering
has attracted the attention of theoreticians for a rather long
time.! It is closely associated with the question of the break-
down of the superconducting state close to the metal—
insulator transition caused by disordering.> A number of
mechanisms for the suppression of 7, have been proposed,
such as an increase of the Coulomb pseudopotential,>* the
effect of Coulomb corrections to the density of states,5 etc.
Most of these papers discussed only small corrections to T,
because of these mechanisms.

The theory of the metal—insulator transition proposed in
Refs. 6 and 7, which generalizes the self-consistent localiza-
tion theory®® in the direction of taking into account
electron—electron interaction effects, made it possible to
study the behavior of a generalized diffusion coefficient over
a wide range of variation of the system parameters both in
the metallic and in the insulator regions. The substantial in-
fluence of electron—electron interaction on the generalized
diffusion coefficient was treated. These results were used to
study the behavior of the single-particle density of states of
the system, taking into account the influence of electron—
electron interaction effects.

The results of the corresponding calculations demon-
strate the formation and evolution of a Coulomb pseudo-gap
in the density of states of a system close to the Fermi level.
In the metallic region, the behavior of the density of states
close to the Coulomb pseudo-gap corresponds to the ordi-
nary Al’tshuler—Aronov root correction.'© When one ap-
proaches the metal—insulator transition as the disorder pa-
rameter increases, the depth of the pseudo-gap increases and
the effective width of the region of the root behavior de-
creases; at the metal—insulator transition point, the density of
states at the Fermi level goes to zero, i.e., a Coulomb gap
forms. In the insulator region, for the case of a band of finite
width in the region of the Coulomb gap, a quadratic depen-
dence of the density of states is obtained. The effective width
of the corresponding region increases with increasing disor-
der parameter. This recalls the well-known behavior of the
Efros—Shklovskii Coulomb gap'! in the insulator region far
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from the metal—insulator transition point. Such behavior of
the density of states gives good qualitative agreement with
experiments in a number of disordered systems close to the
metal—insulator transition,' from amorphous alloys'>~!° to
disordered single-crystal metal oxides, including high-
temperature superconductors.17

In this paper, the results of calculations of the density of
states of a system for the case of a band of finite width are
used to numerically study how Coulomb pseudo-gap effects
in the density of states affect the suppression of supercon-
ductivity close to the metal—insulator transition.

Superconductivity in strongly disordered systems will be
treated in terms of a simple BCS model. In the weak-binding
approximation, the linearized equation for the gap has the
following form:?

o 1 !
se-— [ aevies e Z—gtanh(fT )A(§'>.
(1

Here N(§) is the density of states of the disordered system
averaged over the implementations of the disorder, allowing
for electron—electron interaction effects, and V(&,&') is the
effective interaction potential. The only difference from the
standard approach is that the nontrivial dependence of N(§)
on electron energy & measured from the Fermi level E is
taken into account here.

It is assumed in BCS theory that an effective electron—
electron attraction exists, which is determined by a certain
balance between pairing due to electron—phonon interaction
and Coulomb repulsion. The following will be regarded as
the effective interaction potential:

V(§7§,):Vc(§7§,)+vph(§’§,)7 (2)

where V,(£,6)=V 0(Ep—|€))0(E;—|€']) and Vy(£.6")
=—Vub(wp—|£)6(wp—|&']) are the electron—electron
and electron—phonon interaction potentials, respectively, and
wp is the Debye frequency. The constants V.>0 and V,,>0
correspond to repulsion and attraction, acting in substantially
different energy intervals: Ep> wp, .

After substituting this expression into Eq. (1) and trans-
forming, using the parity of the slit function A(£), we get

© 1997 American Institute of Physics 104



A(§)=[Vpb(wp— &)~V 0(Ep—§)]

¢ ,
xJO d¢' N(§)?tanh< ) A(E) =V, 0(E;

EF ! ! l g, !
—S)Jwai N(E) ?tanh(ZTc)A(g ENE)

As usual, we shall seek the solution of this equation in a
two-step form:'®

Aph’ |§|<wD’

A(E)= 4
(5) [AC» wD<|§|<EF’ ( )
where A, and A, are certain constants that can be deter-
mined, after substituting Eq. (4) into Eq. (3), from a system
of homogeneous equations of the following form:

Erp
11_(Vph )NO(O)K< T) Aph"'VNo(O)[ (ZT)
@p
{22l]a o
2 )
Ep
VNO(O)K Aph+ 1+VN0(0)[ ( T‘>
Wp
—K<2—TC) ACZO.

Here Ny(0) is the single-particle density of states of nonin-
teracting electrons at the Fermi level, and we have intro-
duced the notation

N(2T.§')
o | (6)

& 1
K(§)=ﬁ)d§’ — tanh §’[ No(0)

3

The condition for this homogeneous system of equations
to be solvable is the equation for determining T, :

(A= M*)K(ZT) 1,

Ep Wp !

K(zTc) {57 ] ’ 7
where u* is the Coulomb pseudopotential, u=V_.Ny(0) is
the Coulomb repulsion constant, and A=V Ny(0) is the
pairing constant due to the electron—phonon interaction. In
the pure limit, when the density of states at the Fermi level
can be regarded as constant, the usual equation of BCS
theory follows from this.

Equation (7) for determining 7, has been studied nu-
merically over a wide region of variation of the system pa-
rameters in both the metal and the insulating states. The den-
sity of states of the system was computed using the lower-
order corrections in the interelectron interaction:*’

wEr=py 4+

1 d’p
N(§)=—;Imf WGR(p,f), (8)
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FIG. 1. Density of states of a system in the case of a band of finite width
2Er when (8/3m)u=1.0, for various values of the disorder parameter
(pFl)_lz 1—0.1...,5—0.5 in the metallic region, 7—0.7...,/10—1.0 in the
insulator region. The dashed curve 6 corresponds to the metal—insulator
transition point. Energy € is in units of Doké in the graph.

where G*M(p,&)=[¢—&,xiy— SEA(p, )] is the re-
tarded (advanced) single-particle Green’s function, and
EféA)(p,f) is the Fock contribution to the eigenenergy
part:é‘10

2§5A>(p,§)~4w2mva‘(0>G"<R>(p,§>
J J‘|‘l|<ko 277)3

x [—zw+D<w>q2]2'

)

Here D(w) is a generalized diffusion coefficient, which sat-

isfies the following self-consistent nonlinear integral
equation:®’

D(w) 1 D(w) J d*q

D mNo(0) Dy Jiq<k, (27)°

1
X—
—iw+D(w)g*

81 ,LLDO

- 7Ny (0) f quo (2m)’

X(—I(Q+w)+D(Q+cu)qz)(—IQ+D(Q)q2)2’
(10)

where Do=Ep/3my is the classical diffusion coefficient,
vy=1/27 is the Born damping, 7 is the free path time,
ko=min{pp,I"'} is the cutoff momentum, p, is the Fermi
momentum, and [ is the free path length. The values shown
below for static conductivity were also obtained by numeri-
cally solving Eq. (10).%7

Figure 1 shows the behavior of the density of states of
the system close to the Fermi level, demonstrating the evo-
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FIG. 2. Degradation of T, as a function of the disorder parameter (p /)~
for a fixed pairing constant N\ (A =0.5—continuous curves, A = 1.0—dashed
curves) for various values of the Coulomb repulsion constant (8/37)u:
1—0.2,--- ,5—1.0. The inset shows the dependence of T. on the static con-
ductivity o of the system for the corresponding values of the pairing con-
stant X and Coulomb repulsion constant u.

lution of the Coulomb pseudo-gap as the disorder parameter
increases. It is this behavior that results in suppression of the
superconducting transition temperature.

The graphs in Fig. 2 demonstrate the suppression of T
with increasing disorder parameter (p )~ ' for various val-
ues of the Coulomb repulsion constant u with fixed pairing
constant \. For large u, as disorder (pyl)~! increases, T,
rapidly decreases and goes to zero in the metallic region far
from the metal—insulator transition. When u is reduced, the
falloff of T, with increasing disorder (pI)~ ! slows down,
and, for small u and large \ (dashed curves in figure), su-
perconductivity can occur in the insulating region.” The latter
is clearly demonstrated by the graphs in the inset of Fig. 2,
which shows the dependence of T, on the static conductivity
o of the system for corresponding values of the pairing con-
stant N and the Coulomb repulsion constant w. For large wu,
T. rapidly decreases as conductivity o decreases, and super-
conductivity is suppressed in the metallic region rather far
from the metal—insulator transition. When u is reduced, the
falloff of T. slows down with decreasing conductivity o,
and, for small w and rather large \ (dashed curves in inset),
T, remains finite in the limit c—0.

The graphs in Fig. 3 demonstrate the degradation of T,
as the disorder parameter (pyl) ' increases for various val-
ues of the pairing constant A with fixed Coulomb repulsion
constant w. For small \, as the disorder (py[) ' increases,
T. rapidly decreases and goes to zero in the metallic region
far from the metal—insulator transition. When \ is increased,
the decrease of T, with increasing disorder (ppl)~' slows
down, and, for sufficiently large A\, the superconductivity is
suppressed only in the insulating region. The dependence of
the Coulomb pseudopotential w* on the disorder parameter
(prl)~ ! shown in the inset of Fig. 3 for corresponding val-
ues of the pairing constant A and the Coulomb repulsion
constant u demonstrates an insignificant increase of the Cou-
lomb pseudopotential u* with increasing disorder (pyl) !
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FIG. 3. Degradation of T, as a function of the disorder parameter (p )~
for fixed Coulomb repulsion constant (8/37)u=0.4 for various values of
the pairing constant \: /—0.3, 2—0.4,..., &—1.0. The inset shows the de-
pendence of the Coulomb pseudopotential x* on the disorder parameter
(ppD)~! for the corresponding values of the pairing constant A and the
Coulomb repulsion . The arrow shows the position of the metal—insulator
transition point .

close to the superconductivity-suppression point. This is ap-
parently fairly natural, since the different processes that
renormalize the matrix element of the Coulomb interaction
in Eq. (2) because of Anderson localization effects and
electron—electron interaction and that substantially increase
the Coulomb pseudopotential close to the metal—insulator
transition” are not considered in this case.

Similar behavior of T. as a function of static conductiv-
ity o and of the disorder parameter was experimentally ob-
served in a number of disordered systems that remain super-
conducting close to the metal—insulator transition caused by
disordering."*!'>~1719=21 The results of our numerical calcu-
lations agree well with experiments in the amorphous alloys
InO, ," Nb_Si,_ ., and Au,Si,_,.""

Reference 14 presented the results of measurements of
the disorder parameter (ppl)~' for the amorphous alloy
InO,, as well as data for T, and static conductivity close to
the metal—insulator transition.

According to Refs. 6 and 7, the static conductivity of the
system close to the metal—insulator transition has the follow-
ing form:

o= (pr)W(n)—1]. (11)

Here o is some characteristic conductivity scale close to the
metal—insulator transition, and W.(u) is the disorder param-
eter corresponding to the metal—insulator transition, which
depends on the Coulomb repulsion constant.

Approximating the experiment for the static conductivity
of the amorphous alloy InO, by Eq. (11) makes it possible to
estimate the characteristic conductivity scale o, and, from
the value of W, the Coulomb repulsion constant w. Satis-
factory correlations (see inset in Fig. 3) are obtained
for the following values of the parameters: o,=324.95
(Q-cm)~ !, W,=0.606, and u=1.0.
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FIG. 4. Behavior of T, as a function of static conductivity o for the amor-
phous alloy InO, . The inset shows the results of an approximation of the
data for the static conductivity o as a function of the disorder parameter

(pe) ™"

Figure 4 shows a comparison of our results with the
experimental data for 7. as a function of the static conduc-
tivity o of the amorphous alloy InO,, using 7,.,=3.41 K,
wp=112K, and E;=9.98X10* K, [wp/Ep]=1.1Xx10"3
for pure In and the resulting values of o, and w, which
makes it possible to estimate the pairing constant A. Satisfac-
tory correlation is obtained for A =0.45. The dashed curves
correspond to the values A=0.4 and 0.5.

Let us consider the results of studies of the dependence
of T, and the static conductivity on the Si concentration in
the amorphous alloys Nb,Si, _, (Refs. 15, 16) and Au,Si;_,
(Refs. 19-21) close to the metal—insulator transition. As-
suming a disorder parameter proportional to the Si concen-
tration for these systems, so that (pzl) " '~1—x, we trans-
form Eq. (11) for the static conductivity close to the metal—
insulator transition to the form

X=X,
o=y . (12)

where x, is the critical concentration (corresponding to Nb or
Au) at the metal—insulator transition point.

Approximating the experiment for the static conductivity
of the amorphous alloys Nb,Si; _, and Au,Si, _, by Eq. (12)
makes it possible to estimate the characteristic conductivity
scale o and the critical concentration x.. Satisfactory cor-
relations (see the inset in Figs. 5 and 6) are obtained for the
following values of the parameters:

Nb,Si;_,: 0(=1963.9 (Q-cm)~!, x.=0.115;

AuSi|_,: 0(=2782.13 (Q-cm)” !, x,=0.14.

The graphs in Figs. 5 and 6 demonstrate the comparison
of our results with the experimental data for 7. as a function
of static conductivity o in the amorphous alloys Nb,Si;_,
and Au,Si;_,, using the values of o, shown above and the
following parameters: 7.,=9.26 K, wp=276 K, and
Ep=6.18X10* K, [wp/Ep]=3.0X10"% for pure Nb;
T.0=T. nax=0.86 K, 0p,=170 K, and Er=6.42X10*K,
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FIG. 5. Behavior of 7T, as a function of static conductivity ¢ for the amor-
phous alloy Nb,Si,_,. The inset shows the results of an approximation of
the data for the static conductivity o as a function of the Nb concentration.

[wp/Er]=09%x10"3 for Au,Si;_,. This comparison
makes it possible to estimate the pairing constant A. Assum-
ing a Coulomb repulsion constant of w=1 for these systems,
satisfactory correlation can be obtained with A=0.54 for
Nb,Si;_, and with A=0.62 for Au,Si;_,.

Of course, these computations, which are based on the
BCS model, are oversimplified. A consistent approach to the
problem of computing the superconducting transition tem-
perature must be based on a solution of the Eliashberg equa-
tions and must use realistic models of the electron—electron
interaction.'® This is especially true of the results given
above for large values of the pairing constant N, which dem-
onstrate that superconductivity can exist in the insulating re-
gion. At the same time, we have not questioned the genesis
of the initial T, in a pure system in this paper, but have been
occupied only with the question of how 7. depends on the
disorder. In this sense, the results can be qualitatively applied
in the strong bonding region. We should point out that it is
still necessary to more consistently take into account disor-

(T
1.0 o
0.8
0.61
0.4
0.2
01 02 03 04 03
0 500 1000 1500

a, (Q-cm)”

FIG. 6. Behavior of 7. as a function of static conductivity o for the amor-
phous alloy Au,Si;_,. The inset shows the results of an approximation of
the data for the static conductivity o as a function of the Au concentration.
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der effects in the Coulomb-interaction matrix element, which
is associated with an additional T .-degradation
mechanism.>™* As was pointed out above, this paper has
taken into account only the effects of the formation of a
Coulomb pseudo-gap in the density of states. It is possible
that the satisfactory agreement with experiment obtained
above indicates that the effects of the variation of the density
of states play a dominant role in the 7.-degradation mecha-
nism, as was noted earlier (at the level of small corrections)
in Ref. 5.

This work was carried out with the partial financial sup-
port of the Russian Fund for Fundamental Research (Grant
96-02-16065) and also as part of Project IX.1 of the Statis-
tical Physics Program of the State Committee for Science
and Technology of Russia.
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The Ginzburg—-Landau expansion and the slope of the upper critical field in
superconductors with anisotropic normal-impurity scattering
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We carry out the Ginzburg—Landau expansion for superconductors with anisotropic s and d
pairing in the presence of anisotropic normal-impurity scattering, which enhances the stability of d
pairing with respect to disordering. We find that the slope of the curve of the upper critical

field, |dH ., /d T|Tc’ in superconductors with d pairing behaves nonlinearly as disorder grows: at

low scattering anisotropy the slope rapidly decreases with increasing impurity concentration,

then gradually but nonlinearly increases with concentration, reaches its maximum, and then rapidly
decreases, vanishing at the critical impurity concentration. In superconductors with anisotropic

s pairing, |dH,/dT|;_always increases with impurity concentration, finally reaching

the familiar asymptotic value characteristic of the isotropic case, irrespective of whether there is
anisotropic impurity scattering. © 1997 American Institute of Physics. [S1063-7761(97)01412-1]

1. INTRODUCTION

The problem of determining the type of Cooper pairing
is still occupying center stage in high-T. superconductivity
studies. Most experiments and a number of theoretical
models' indicate that the majority of high-T. oxides have
d,>_ 2-anisotropic pairing with the zeros of the gap function
lying on the Fermi surface. Other variants of anisotropic
pairing have also been proposed, e.g., the so-called aniso-
tropic s pairing,> which also gives rise to zeros in the gap
function (but without a change in sign in the order param-
eter) or to minima in the gap function at the Fermi surface in
the same directions in the Brillouin zone as in the case of d
pairing (here, too, there are experimental indications that
verify this fact). Borkovski and Hirschfeld* and Fehren-
bacher and Norman® pointed out that controlled injection of
normal impurities (disordering) can serve as an effective
method of experimentally distinguishing the above types of
anisotropic pairing, since it would lead to a markedly differ-
ent behavior of the density of states in these types of super-
conductor. In our previous paper (see Ref. 6) we found that
measuring the evolution of the slope of the curve of the
upper critical field, |dH.,/dT|; , as the degree of disorder
changes, at least in principle, serve the same purpose: in
superconductors with d pairing the magnitude of this slope
rapidly decreases with increasing disorder, while in the case
of anisotropic s pairing the slope of the field increases with
disorder, which is similar to the behavior in the isotropic
case.

Recently, Haran and Nagi’ examined an interesting
model with anisotropic impurity scattering. They found that
when the d-type scattering anisotropy is strong, the breaking
of d-type Cooper pairs decreases substantially because of
normal-impurity scattering, which in the isotropic case is de-
scribed by the well-known Abrikosov—Gor’kov formula for
magnetic impurities in a isotropic superconduct01r.4_6 Thus,
by allowing for anisotropic impurity scattering we can, at
least in principle, resolve one of the main problems of high-
T. superconductor physics: the contradiction between the
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clear indications that d pairing exists in high-7'. supercon-
ductors and the relative stability of such superconductors
with respect to disordering.® This explanation of the remark-
able stability of high-T, superconducting cuprates with re-
spect to disordering, if there is indeed d pairing in such cu-
prates, is not the only one (see, e.g., the explanation given in
Ref. 9), but the simplicity of the model of Ref. 7 is appealing
and stimulates calculations of other characteristics of super-
conductors with ‘‘exotic’’ types of pairing, with allowance
for the possible role of anisotropic normal-impurity scatter-
ing. The present paper is a direct generalization of Ref. 6 to
this case. It will be shown that allowance for anisotropic
impurity scattering leads (in the case of d pairing) to striking
anomalies in the behavior of the slope of the curve of the
upper critical field as a function of the degree of disorder
(impurity concentration). As in Ref. 6, we base our reasoning
on a microscopic derivation of the Ginzburg—Landau expan-
sion in the impurity system.

2. THE GINZBURG-LANDAU EXPANSION

Let us consider a two-dimensional electron system with
an isotropic Fermi surface and a separable Cooper-pairing
potential of the form*’

V(p.p )=V(h,¢")=—Ve(d)e(d'), ey

where ¢ is the polar angle determining the direction of the
electron momentum p in the highly conducting plane, and
for e(¢) we adopt the simplest model:

V2 cos(2 )
| V2]cos(2¢)| (anisotropic s pairing).

d pairing),
e(4) (o peimne @)
We assume, as usual, that the attraction constant V is
finite in a layer of thickness 2w, in the vicinity of the Fermi
level (w, is the characteristic frequency of the photons that
ensure the attraction of the electrons). In this case the super-
conducting gap (the order parameter) has the form

A(p)=A(¢)=Ae(P), ®3)
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where the positions of the zeros of the gap function at the
Fermi surface for the s and d cases coincide.

We take a superconductor containing ‘‘normal’’ (non-
magnetic) impurities that are distributed at random in space
with a concentration p. Following Haran and Nagi,” we as-
sume that the square of the impurity scattering amplitude can
be written as

|Vimp(p’p,)|25|Vimp(¢’¢,)|2=|VO|2
+ViIPA()f(9'). 4)

where V) is the amplitude of isotropic point scattering, V is
the amplitude of anisotropic scattering, and the model func-
tion f(¢) (depending on the same polar angle that defines
the direction of the electron momentum) determines the na-
ture of the anisotropic impurity scattering. We assume that
the scattering is ‘‘essentially’’ isotropic and introduce the
following constraints:’

IVi2<|Vol2 (f)=0, (%=1, (5)

where the angle brackets stand for averaging over the direc-
tions of momentum at the Fermi surface (the angle ¢). Ac-
cordingly, the second term in (4) describes the deviations
from isotropic scattering.

The normal and anomalous Green’s functions in such a
superconductor are'”

i+
Glop=- =
w*+&,+|A(p)]|
A
F(w,p)=¢, (6)

o’ + &+ |A(p)?

where w=2n+1)nwT,

_ dp’
w(p)=w+ipf #IVimp(p—p’)lzG(w,p’),

!

d
g Vam(B= P F(0p). (1)

and £ is the electron energy measured from the Fermi level.
To find the transition, or critical, temperature 7. we can
restrict ourselves to the linear approximation in A in Egs. (7):

N(0)
2w

5(p)=A(p)+pf

w= w+ip

fdsf aB{Val+ VI = gz,

N(0)
A=A+p—— =
21 A~
Xfﬂffo d<i5{|Vo|2"‘|V1|2f(<25)f(¢>')}a—;z—J“;r2
(8)

The linearized equation for the gap function, which de-
termines the transition temperature 7., is
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A(p')
A —T. =3
(p)=-T.2 f (277)2 VR = ©)
P
Applying standard methods to Eq. (9) and the renormaliza-
tion equations (8), we arrive at an equation for the transition
temperature 7, in general form:

Fe—orsterr-noly 2] -o{ 3

e ol 2w 32 (-2
(10)

where T,y is the transition temperature in the absence of
impurities, W (x) is the logarithmic derivative of the gamma
function, y,= prON(O) and y;= pr N(O) are, respec-
tively, the isotropic and anisotropic scattering frequencies,
and (ef)* determines the overlap of the functions e(p) and
f(p).

For simplicity we select the function f(p) in a form
similar to (2):

f(p)=/(p)=

which ensures a maximum overlap in the d case. A more
general approach can be found in Ref. 7. We can now write
the renormalization equations (8) as follows:

v2 cos(2¢), (11)

w= w+l—fd§~2+§2
cos(2q§)f dgf d¢' cos(2¢’ ) gz,
~_ "}/() ’A‘
A—A'Fl? d§52+§2
Y ' '
+l7r_]2COS(2¢)j dgj d¢' cos(2¢') e
(12)

e ——

20 }6!7;0

FIG. 1. T, as a function of the disorder parameter y,/T.,. The dashed
curve corresponds to the case of s pairing and the solid curves, to the case
of anisotropic d pairing for the following values of y;/vy,: curve I, 0.0;
curve 2, 0.3; curve 3, 0.5; curve 4, 0.6; curve 5, 0.7; curve 6, 0.8; curve 7,
0.9; and curve 8, 0.95.
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W

(P el ) + e(@)

-po

This yields the well-known expression for the renormalized
frequency in both cases of interest:

(13)

In the case of d pairing the symmetry of the gap function
in the presence of impurities does not change:

0=+, sgn .

. | o]

A

_—. (14)
lo| =

When there is s pairing, the gap is renormalized by a con-
stant independent of the angle ¢ and the frequency 7y :

2\/2'}/0

o]

A=A+A, (15)
As a result, the equation for T, in a superconducting with d
pairing becomes

Y 1) )

1__
Yo

Yo
27T,

c

T(‘ 0

In (16)

—\Pl) vy
2 2

For a superconductor with anisotropic s pairing we have

o 2ol

T,
Tc 0

Yo
2 * 27T,

In

1
T

2

|

20

%'Ty

FIG. 3. The dimensionless coefficient K, /K 4, as a function of the disorder
parameter y,/T.,. The dashed curve corresponds to the case of s pairing
and the solid curves to the case of anisotropic d pairing, for the following
values of y; /vy,: curve 1, 0.0; curve 2, 0.4; curve 3, 0.6; curve 4, 0.7; curve
5, 0.8; curve 6, 0.9; and curve 7, 0.95.

1164 JETP 85 (6), December 1997

FIG. 2. The diagrammatic representation of the Ginzburg—

b Landau expansion. The electron lines are ‘‘dressed’’ by
impurity scattering; I' is the vertex part of the impurity
scattering calculated in the ladder approximation. The dia-
grams (c) and (d) are calculated for =0 and T=T,, and
p==p*ql2

e(¢)
d

Note that in Eq. (17) there is no dependence on the aniso-
tropic scattering rate.

Figure 1 plots T, vs. ¥ /T, for the case of d pairing for
different values of vy, /vy,. For an s-type superconductor the
transition temperature 7. becomes weakly suppressed as
vo/T .o increases. For a d-type superconductor the transition
temperature 7. at small values of y; becomes suppressed
very rapidly, but as 7y;/7y, increases, the critical value
Yoc!T.o at which superconductivity disappears rapidly in-
creases.

As usual, for the order parameter in which the free en-
ergy is expanded we take the gap function. Here we assume
that the amplitude A(T) is a slowly varying function of po-
sition. In momentum space we have the following Fourier
transfer of the order parameter:

A(¢.q)=4,(T)e(¢). (18)

The Ginzburg—Landau expansion for the difference of
free energies of the superconducting and normal states has
the following form (accurate to within terms quadratic in A

in the region of small values of g):
FS—F,,=A|Aq|2+q2C|Aq|2; (19)

it is determined by the diagrams (see Fig. 2) of the loop
expansion for the electron free energy in the order-parameter

FIG. 4. The dimensionless coefficient K~ /K as a function of the disorder
parameter 7y, /T.o. The dashed curve corresponds to the case of s pairing
and the solid curves to the case of anisotropic d pairing, for the following
values of y, /yy: curve 1, 0.0; curve 2, 0.4; curve 3, 0.6; curve 4, 0.7; curve
5, 0.8; curve 6, 0.9; and curve 7, 0.95.
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fluctuation field with a small wave vector q. Subtraction of
the diagrams (c) and (d) guarantees that the coefficient A
vanishes at the transition point 7=7T,.. In Appendices A and
B we give the details of calculations of, respectively, the
vertex part I, and the Ginzburg—Landau coefficients for a
d-type superconductor. Note that for d-type superconductors
the ‘‘diffusion’’ renormalization due to the diagrams of type
(b) and (d) is zero to within terms quadratic in ¢, provided
that the anisotropy of impurity scattering is ignored. For an
s-type superconductor the calculations are similar, but here
there is no dependence on the anisotropic component of the
scattering.

As a result, the Ginzburg—Landau coefficients can be
written as

A=A¢K,, C=CyKc, (20)
where A, and C, are the usual expressions for isotropic s
pairing:11

T-T, 7¢(3) vk
Ay=N(0) T CO_N(O)WT_g’

c

21

here v and N(0) are the electron velocity and the density of
states at the Fermi surface. All properties of the models are
contained in the dimensionless coefficients K, and K. In
the absence of impurities we have K3=1 and K&-=3/2 in
both models. For a system with impurities we have the fol-
lowing.

(A) d pairing:

K= J‘" a¢
A amT, )., €
o+ €

X j dow
2T,

Xf dw

(0 + y)) (0 + (yo— 71)2)005h2<2w )

o+§ Y120+ v1)

4T,

(02+ y3)cosh?

K= 37TTC [ZWTC|: (l+70_71)
TGN 7 2 27T,

1 Yo
—+
2 27TTC)

4

,1 Yo~ Y1
+v (§+ 2T, ||} (23)

(B) anisotropic s pairing:

L [1 e
AT aT, {4 -0, &
» w+ 2
XJ dw ¢ —i—ﬂ
o s o ) w+é T
(0"~ yy)cosh 2T,
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FIG. 5. The normalized slope of the curve of the upper critical field,
h=|dH ., 1dT|; /|dH 1dT|; , as a function of the disorder parameter
vo/T.o. The dashed curve corresponds to the case of s pairing and the solid
curves to the case of anisotropic d pairing for the following values of
1 /yy: curve 1, 0.0; curve 2, 0.4; curve 3, 0.5; curve 4, 0.6; curve 5, 0.7;
curve 6, 0.8; curve 7, 0.9; and curve 8, 0.95.

o 1
X J dw - , (24)
(w>+ yﬁ)cosh2< 2TC>

Ke=~ %7703

3(m*=8) (1
2 2aT.

.\ 2472 T? | TC+ 67 T,
n—— . .
743) vy (7 =8)y* " Tey  7L(3) o

(25)

The results of numerical calculations of the dimensionless
coefficients as functions of the parameter y, /T, in the case
of d pairing for different values of vy,/7y, are depicted in
Figs. 3 and 4.

3. THE UPPER CRITICAL FIELD

As is well knovvn,11 the behavior of the Ginzburg—

Landau coefficients A and C determines the temperature de-
pendence of the upper critical magnetic field near T :
b0 ¢y A
Ho=g 3 ="5_7> (26)
2mwEN(T) 27 C
where ¢o=cm/e is the magnetic flux quantum, and &(7T) is
the temperature-dependent coherence length. From this we
can easily find the slope of the curve representing the tem-
perature dependence of H., near T,, i.e., the temperature
derivative of the field:

dch _ 247T¢0 KA
ar |, 7{3)v; ‘K¢

(27)

TC

For an s-type superconductor the slope of the curve of the
upper critical field is independent of the anisotropic scatter-
ing. Figure 5 depicts the dependence of the dimensionless
parameter h=|dH62/dT|TC/|dH62/dT|TC0 on the disorder
parameter vy, /7T, in the case of d pairing for different values
of v, /7v,. In the case of anisotropic s pairing, the slope of
the curve of the upper critical field increases with disorder
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as usual,’ and in the strong scattering limit, yo>T., the
dependence of /& on vy, becomes linear and the slope is given
by the well-known Gor’kov formula'?

dch _8e? -
—?ﬁl’o, (28)

T(.‘

0)

where 0'=N(0)82U%-/3’)/0 is the electron conductivity in the
normal phase with isotropic s pairing, characteristic of ordi-
nary dirty superconductors. Hence strong disorder suppresses
the anisotropy of the gap, and we pass to the usual limit of a
dirty superconductor.

In the case of d pairing, the slope of the curve of the
field H ., for small values of vy, /vy, rapidly drops to zero on
the scale yp~T,y. In the interval 0.5<1v,/y,=<0.6 the be-
havior of the slope changes dramatically: first & increases
slowly but nonlinearly with y, /T, then it passes through a
maximum, and then rapidly drops. The length of the section
where the slope grows rapidly increases as y;— vy,. We be-
lieve that such strong anomalies in the way the slope of the
curve of the upper critical field depends on the disorder pa-
rameter can be used to determine the pairing type and the
possible role of anisotropic scattering in unusual supercon-
ductors. Unfortunately, in the case of high-T'. superconduct-
ing systems the situation is complicated by the well-known
nonlinearity of the temperature dependence of H,, a feature
observed in a broad temperature range starting at 7., and by
a certain indeterminancy in the experimental methods used
to determine H ., .
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the High-T'. Superconductivity State Program of the Russian
Ministry of Science (Project 96-051).

APPENDIX A: CALCULATION OF THE VERTEX PART I'y,,,/
IN THE LADDER APPROXIMATION

The Bethe—Salpeter equation for the vertex part is

Lppr=U(p.p")+ 2 Up.p" )G ()G (0") e
. (A1)

where U(p,p’) is the irreducible vertex part. We take
U(p,p’) in the form (the ladder approximation)
U(p.p")=pVo+pVif(D)f(p'). (A2)
Then Eq. (A1) can be written as follows:
Lo =pVot+pVif(R)f(p')+pVo¥ (p')
+pVif(p)P(p"), (A3)
where
W(p')=2 G )G P )Ty,
p//
®(p)=2 f(p")GH(P)G (P )Ty - (A4)
PN

From (A3) we can obtain a self-consisted system of equation
for the functions W(p') and ®(p’):

W(p')=pVRl+pVif(p )+ pVal, W (p')+pViLd(p'),
D(p')=pVila+pVif(p' )3+ pVel, V(p')+pVil;P(p'),

(AS)
where

11=§ G*(p)G*(p).

Izzg £(p)GR(p)G*(p).

13=§ F(p)G*(p)G*(p). (A6)

Solving the system of equations (A5), we arrive at expres-
sions for W(p') and ®(p’) and hence for the vertex part:

pVi(1=pVils+pVif(p )LL) +pVi(f(p)f(p')(1—pVil, >+pv0f<p>12>

e (I- PVQI )(1=pVy I%) PVOPV Iz
[
APPENDIX B: THE GINZBURG-LANDAU COEFFICIENTS K ZN(O)WU%TC E 1 ®1)
The diagram (a) in Fig. 2 corresponds to 1 8 o |o?
T . —
_ WAsz J' dp2 cos*(2¢)G ,(p+)G_ ,(p_)= The diagram (c) in Fig. 2 corresponds to
dé T
—AZTN(0 f~— ————A2 f 2 cos?(2 =
INOZ | = G2 | dp2 oS 24)Gu(P)G o)
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2
—AqTL.N(O)g f el (B2)
The diagram with a ““diffuson’” (Fig. 2b) yields
—T2 X V2 cos(2¢)GR(p1)GH(p)T
© pp’
X2 cos(2¢")GR(p’)G*(pL). (B3)

If we take (A6) and (A7) into account, Eq. (B3) becomes
1 vilel=y)e?

8lol*(lo]—=71)?]
(B4)

SINOTNZ | =

Note that when there is no anisotropic scattering component,
for d-type superconductors the diffusion renormalization due
to the diagrams of the type depicted in Fig. 2c is zero to
within terms quadratic in q.

Reasoning along similar lines, we arrive at an expression
corresponding to the diagram (d) in Fig. 2:

1

—TN(0) 7y, > (B5)

@ Jal(lol=7)
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Writing the expression for F,—F, and separating out the
coefficients of ¢ raised to the zeroth power and of g2, we can
obtain the expressions for the corresponding Ginzburg—
Landau coefficients.
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We construct an algorithm for calculating the generating function for the number of skeleton
graphs of the irreducible self-energy and vertex parts in the diagram technique for

problems with a Gaussian random field. The exact recursion relation, defining the number of
graphs in any order of perturbation theory, and the asymptotics in the high-order limit are found.
The results obtained are applied to an analysis of the problem of an electron in a Gaussian
random field with a white-noise correlator. A closed integral equation for the one-electron Green’s
function, the kernel of which is determined by the generating function, can be constructed

in the approximation of equal skeleton graphs for the self-energy part in a given order of
perturbation theory. An analysis shows that the approximation considered gives a

qualitatively correct description of the tail of the state density in the region of negative energies
and, probably, is fully applicable in the most interesting region of strong scattering near

the edge of the original band where the asymptotics of the Green’s function and the state density
can be determined in the limit of infinitely strong scattering. © 1998 American Institute of

Physics. [S1063-7761(98)02102-7]

1. INTRODUCTION

Methods of summing Feynman diagrams are widely
used in the consideration of a broad class of problems in
theoretical physics in which the propagation of elementary
perturbations (or quasiparticles) in statistically random fields
created by an inhomogeneity is investigated. The simplest
example of such a system is an electron propagating in a
system of impurity atoms. It was precisely for this problem
that the diagram technique to be considered in this paper was
first formulated. A similar technique is used in considering
problems of statistical radiophysics and optics associated
with the propagation of electromagnetic waves in disordered
media.’ The equivalent mathematical approach is applicable
for a number of problems in the theory of critical phenomena
in disordered systems,* in the problem of a polymer chain
with an excluded volume and other problems in the physics
of polymer systems.’ Exactly the same diagram technique
describes the regular model of critical phenomena with a
zero-component order parameter.*

Information about the combinatorial analysis of graphs,
i.e., about the number of diagrams of a given type in a given
order of perturbation theory, is extremely useful in consider-
ing problems associated with the summation of Feynman
diagrams. In this paper we will investigate in detail the ques-
tion of the combinatorial analysis of diagrams in the above-
mentioned class of problems.

2. GENERATING FUNCTION OF SKELETON DIAGRAMS:
RECURSION RELATION

To be specific we will discuss the problem of an electron
with energy E and momentum p, propagating in a Gaussian
random field (a system of random impurities).'> The average

1063-7761/98/86(2)/8/$15.00

one-particle Green’s function is defined by the diagram se-
ries shown in Fig. 1a. This expansion is reduced in the usual
fashion to the Dyson form:

1

G e, S (Ep)

(1
where ¢ »= p2/2m is the spectrum of a free electron, and the
eigen-energy part %(E,p) is determined by the skeleton
graphs of Fig. 1b, in which the interior electron line repre-
sents the total (or dressed) Green’s function G(E,p).

The total number of graphs in the Nth order of perturba-
tion theory in the expansion of Fig. 1a, as it is easy to see, is
equal to

(2N—1)!

= — MWW=
Gy=(N=1)!1= vy

2
this is determined simply by the number of methods of con-
necting 2N vertices by N impurity lines. The problem of
determining the analogous number of graphs 2, in the ex-
pansion of Fig. 1b is much more complicated, and as far as
we know there is no exact answer in the literature. The
simple inequality

(2N—1)11>3,>(2N-3)!1, 3)

was found in Ref. 6, which only gives a fairly rough estimate
of the quantity 3. As we will see, the problem can be
solved exactly. This follows directly from the exact solution
of the problem of an electron in a random potential V(r)
=V, where the quantity V does not depend on the spatial
coordinate r but has a Gaussian distribution with width
(V?)=W?2. It is natural that in this case the diagram tech-
nique has the standard form of Fig. 1, and each line of im-
purity interaction transfers zero momentum, i.e., it corre-

© 1998 American Institute of Physics
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E-(‘?l:» = &9)4--»-!1::‘5-:— +.4M++bf3\.3» +.i:35&..+...

a

NN
) L5008
Up)= L+ L8N+ RN L

.ﬁxﬁ

b

sponds (in the momentum representation) to the correlator
(2m)¢W?8(q) (d is the dimensionality of space).”® All con-
tributions of the same order in the expansion of Fig. la turn
out to be the same, and the series for the Green’s function is
represented in the form’

o0

G(E.p)=Gy(E.p){ 1+ > 2N—-1)11G2V(E,p)WN|.
N

4)

Then through the use of the representation

(N D)1= fw di PN 21 5)

o )

the series (4) is easily summed and we obtain"

G(E,p)=i‘l’<;), (6)

W S\ WGy(E,p)

where the function

Vo= [T arer )

oY r—z

has been introduced.

Let us consider the self-energy part, corresponding to the
Green’s function (6). Since the addition of an impurity line
leads in this problem simply to the additional multiplier
W2G?, the self-energy part defined by the expansion of Fig.
1b can be written in the form

3 =Q(W*G*)W?G, (8)

where Q(x) is some function. We will see that this function
is the generating function of the number of skeleton graphs
for the self-energy part, i.e., its Taylor series expansion co-
efficients give the desired numbers 2, .

Let us write the Dyson equation for the problem being
considered:

G=Gy+Gy2G=Gy(1+Q(W?G*)W?G?). 9)

Introducing z=(WG,) "' and y=W?>G?, we obtain the
following parametric representation of Q(y) from Egs. (6)
and (9):

1+y0(y)=2%(2)=2\y,
y=\112(z). (10)

FIG. 1. Diagram series for average one-electron Green’s
function (a) and self-energy part (b). Dashed line corre-
sponds to mean-square correlator of random field, G, is the
free Green’s function.

This representation of the function Q is rather inconvenient.
Let us show that a differential equation can be obtained for
it. It is easy to prove that the function W(z) satisfies the
usual dispersion relation”

= Im W(r)

1
Re \If(z)=—f dt ————,
T ) t—z

1

1
—Im¥(n)=7 e 2, (11)

§

from which it follows immediately that W(z) satisfies the
differential equation

dv
—=1—2zV¥ (12)
dz

with the initial condition

W(z=+i0)=TFiJm/2 . (13)

Differentiating the first equation in (10) with respect to y, we
obtain
dz 1

I 17} 2
dy 27 2y

d
%SO+yQOO—1. (14)

Differentiating the second equation in (10) with respect to z
and using Eq. (12), we have

dy d¥(z)
d_zqu(z) y =2V (z)(1-2z¥(z))
Z Z
=-2y"0(y). (15)

By equating Eqgs. (14) and (15), we obtain a nonlinear dif-
ferential equation for Q(y):

do(y) 1 _
oy e ') +y(Q) ()} (16)
Using Egs. (10) and (13), we obtain y=W2(z)|.—+,
= —/2, so that
m| z¥(z)—1 2
(‘5»“—f7—‘ K3 an

z=%i0
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TABLE L.
N Ty=ay by=ay/(2N+1)!! Sy=dy_ Uy=0Q2N-1ay_,
1 1 0.3333 1 1
2 4 0.2667 1
3 27 0.2571 4 20
4 248 0.2624 27 189
5 2830 0.2722 248 2232
6 38232 0.2829 2830 3120
7 593859 0.2930 38232 497016
8 10401712 0.3019 593859 8907885
9 202601898 0.3158 10401712 176829104
10 4342263000 0.3211 202601898 3849436062
1 5 1 5 1 5 1 9
N>1 ;[l—m}(ﬂ\“‘l)” z{l—m} E{l—m}(ZN—l)” z[l—m(2N+l)”

which is the initial condition for Eq. (16). Note that the point
0(0)=1, with an obviousness that follows from the diagram
representation for X, is a singular point for Eq. (16) and
cannot serve as the initial condition.

Equation (16) can be rewritten in a form that is more
convenient for further analysis

d
O(y)=1+y @sz(y). (18)

We are interested in the Taylor series expansion of Q(y):

o0

0(y)=2 ay".

n=0

(19)

Since the number of skeleton diagrams of Nth order for the
self-energy part is simply the coefficient for WV in the se-
ries expansion of %, in powers of W2, it is easy to see that Eq.
(8) gives the desired 3 in the form

(20)

This also means that the function Q(y) is the generating
function for the combinatorial factors 2, of interest to us.

The substitution of Eq. (19) into (18) leads to the follow-
ing recursion relation for the coefficients a,, :

Sy=ay-1-

n—1

Cln:}’lE Anly—1—m» (21)
m=0
* l"“‘l
7 '
a /;y/ = ii- + ,:x\ + + +
—
- -
b vl = §+ }( + + + )(f +
] Fi N
- o
. .
¢ éj = i + U éa
)

FIG. 2. Diagram series for the total vertex part I' (a), for the irreducible
vertex U (b), and the Bethe—Salpeter equation interrelating I and U (c).

where aq= 1. It follows directly from a,=1 that Q(0)=1. It
is precisely in this sense that this point is singular—the rela-
tion Q(0)=1 is satisfied for any initial conditions for which
Eq. (18) has a solution.

From Eq. (21) it is easy to find the a, values for small ;
the corresponding results are listed in Table I.

By knowing the combinatorial analysis of the diagrams
for the self-energy part, we can easily reproduce the combi-
natorial analysis for the two-particle Green’s function—both
for the total vertex part I' and for the irreducible vertex U,
the diagram expansion for which is given in Fig. 2. Actually,
the self-energy part 3, is related to the total vertex I" by the
equation represented graphically in Fig. 3. For a problem
with zero transferred momentum’® this equation has the
form

S =W2G(1+G™). (22)

Therefore, for the number of Nth-order diagrams in the total
vertex I'y we obtain immediately

Cy=2yi1=ay. (23)

Thus, the function Q(y) is also the generating function for
the number of diagrams of the total vertex part.

The number of Nth-order diagrams for the irreducible
vertex Uy can easily be obtained if it is noted that a break of
any of the 2N—1 interior Green’s lines in the diagram for
the Nth-order self-energy part generates the corresponding
diagram for the Nth-order contribution to the irreducible ver-

tex U (Fig. 4). Therefore,
Uy=2N—1)Sy=(2N—1)ay_,. (24)

In the Appendix we rederive the differential equation
(18) for the generating function Q(y) using only the Bethe—

o P> T

FIG. 3. Equations relating the eigen-energy part to the total vertex.
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FIG. 4. Breaking of any of 2N —1 interior lines of the Green’s function in
Nth-order skeleton diagram for self-energy part produces corresponding dia-
gram for U.

Salpeter equation, which relates U to I', and the Ward iden-
tity, without using the explicit form of the Green’s function

(6).

3. ASYMPTOTICS FOR THE NUMBER OF DIAGRAMS FOR
LARGE N

In the high-order limit N>1 it becomes inconvenient to
use the recursion relation (21) in view of the factorial in-
crease in the number of diagrams.® At the same time the very
fact of factorial growth can be used for a considerable sim-
plification of the problem. We rewrite Eq. (21) in the form

a,=naga,_+tna,a,_,+tnaa,_s+..., (25)

where ay=1, a;=1, a,=4. It is natural to assume that in the
limit of large n we have a,~(2n+pB)a,_;; then a,_,
~a,_1/(2n—2+ B), etc. The substitution of these expres-
sions into Eq. (25) immediately gives 8=1 and

1
=|2n+1+0[~ )anl. (26)

This means that in the limit of large n we have a,~(2n
+1)!! We define b, as

ay

b=

27)

Substituting Eq. (27) into (21), we obtain a recursion relation
for b, :

n—1

2m+ 1)1 (2n—2m—1)!! -
m=0 (2n+1)" "

n—1l—m>
(28)

and by=1. In the limit of large n and taking into account
b,=1/3, b,=4/15, which limits the accuracy to the order of

b/n* (where b~b,~b,_,~b,_,~b,_;), we obtain
I S o WP [ 29
n=on=by =g 3 (29)

Thus, in the limit of large n we can write the following
differential equation for b, :

db, 5b, b
3521?+0&J’ (30)
from which it immediately follows that
51 1 51 1
F)):b[l‘zz“) —)}
(1)

b,=bexp| ———+0

" p( 4n

Of course, on the basis of such an analysis it is impossible to
determine the constant b=1im b, as n—%. A numerical

E. Z. Kuchinski and M. V. Sadovski

0.36f

032
0.28
024

0.20

0.16

FIG. 5. Behavior of b, with increase in n. Points correspond to b, values
obtained from recursion relation (28), the curve corresponds to the
asymptotic dependence e !(1—5/4n), the dashed line corresponds to the
asymptotic function 1/e.

analysis of the behavior of b, using the recursion relation
(28) completely corroborates the relationship (31) (see Fig.
5) and gives b= 1/e=0.36787944... (Calculations were car-
ried out up to n= 5000, which ensures the stated accuracy.)
We know of no analytical method for obtaining this curious
result.

Finally, the asymptotics of the number of diagrams of
different types for large N have the form”

2N=aN_l=bN_1(2N—l)!!
1 1 > l+0 ! 2N—1)!!
“o|'Taw (NIt
_ ! 1- > 1+0 : 2NT N+1
 Jme 4NN 2
(32)
I'y= ! 1 51+0 : 2N+ 1)
NTANT, 4N N2 ( !
1 51 3
_ _ T N+1 e
\/;e{l 4N )]2 FN+2, (33)
2N—1 ! 1 > 1+O ! 2N—1
Un=( Jay- 1= AN 2 ( )
X2N—-1)!! : 1 2] O 1 2N+1)!!
( )..— ZN+ 2N+1)!!
1 91 1 3
= ———+0| | 12""'T| N+ 5.
N [1 N 0 NZ)JZ I'\'N 2) (34)
It is interesting to note that
EN . 1 . 51 1 1 35
Gy T mantolw e (33)
Ov - Liol -1 36
T, TNt (36)
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Table I summarizes the principal results for the number of
graphs of different types.

4. ELECTRON IN GAUSSIAN RANDOM FIELD WITH WHITE-
NOISE CORRELATOR

As an example of the practical use of the results obtained
above let us consider the problem of an electron in a Gauss-
ian random field with a white-noise correlator when the im-
purity interaction line corresponds to the expression'>°

o(P1,P2.P3.P4) = W?S(p1— P2+ P3—P4)s (37)

where W?=pV?, pis the density of impurity atoms, and V is
the Born amplitude of scattering at a point impurity. It is
well-known that the principal difficulties in this problem
arise at energies defined by the condition’

|E|l=¥(E) or |E|<E,.. (38)

where y(E)=mpV>N(E) is the Born damping (N(E) is the
state density, corresponding to the energy E), E,.
~m 4= D(pV?)24=D s the characteristic size of the criti-
cal region near the band edge, where strong scattering arises.
These difficulties are associated primarily with the impossi-
bility of selecting a particular dominant sequence of Feyn-
man diagrams similarly to what is done in the weak scatter-
ing region4)
E>y(E), E>E.."? Actually, all diagrams for the self-
energy part are of the same order in the |E|<E, region and
must be taken into account.

The perturbation theory series for the self-energy part is
shown in Fig. 1b in terms of skeleton graphs. By means of
simple variable replacements one can show that all third-
order graphs in this expansion are equal to one another (dia-
grams of Fig. 1b (1-4)). Although this equality breaks down
in even the next order, it is reasonable to formulate an ap-
proximation in which it is assumed that all graphs of this
type are equal in each order of perturbation theory. Such an
approximation should give satisfactory results primarily in
the critical region |E|<E,,, where all contributions have at
least the same order of magnitude. We choose as the base
graph in each order the maximally intersecting type shown in
Fig. 6a. The sequence of interaction lines entering into it for
systems that are invariant with respect to time reversal can be
transformed into a ladder, as shown in Fig. 6b. Then the
complete series for the self-energy part in our approximation
is represented in the form

2(p>=n§l W23, > > [W2G(p,+p,+p)G

P P2

X(=p)]""'G(py)
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P

' FIG. 6. (a)—base graph used in constructing approximation for
eigen-energy part, (b)—expanded sequence of maximally inter-
secting graphs gives ladder in the case of system invariance with

p respect to time reversal operation.

=p2 WZQ[WZPE G(m—pﬁp)G(m)}G(pl),

(39)

where the definitions (19) and (20) were used, as well as the
property G(p)=G(—p) in an isotropic system. Correspond-
ingly, we obtain the closed equation for the average one-
particle Green’s function in the form

G*'<p>=Ga‘(p>—W2§ 0 WZPE G(p—q)

XG(pl)}G(pr q), (40)

where G, I p)=E—p?*/2m. The entire nontrivial part of the
problem being considered is now expressed by means of the
generating function Q(y), which determines the kernel of
the complex nonlinear integral equation (40). Restricting
consideration to the first term of the expansion (19) gives
0=1, and Eq. (40) reduces to the standard problem of sum-
ming nonintersecting graphs.l’2 An obvious advantage of the
result (40) compared with the standard approach,'? based on
identifying the dominant sequence of diagrams (for example,
taking account of only the first graph in Fig. 1b), is that it
formally accounts for all diagrams, which is done, however,
in the approximation that all skeleton graphs for the self-
energy part are equal in a given order of perturbation theory.

Equation (40) is an extremely complicated nonlinear in-
tegral equation and cannot be solved in general form, and
what is more we do not know the general form of the func-
tion Q(y) (which, moreover, enters into Eq. (40) as a func-
tion of a complex argument). We will restrict ourselves be-
low to some qualitative analysis of the consequences arising
from Eq. (40). We write Eq. (40) in compact form as

G~ (p)=Gy ()~ W*QIW*G®G]eG, (41)
where the generalized product (or convolution) of functions
Fod=2 F(p—q)®(p). (42)

P
has been introduced, and we return to the system of Egs. (10)

which define the function Q parametrically. The second
equation in (10) is now written as

1
G®G:W‘P2(Z). (43)
We saw above that z=W~'G, ' holds in the problem with

zero transferred momentum. Let us examine the limit W
—0 in Eq. (43). Then the left side of Eq. (43) is reduced to
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G(®G, and on the right side one can assume, by analogy
with the problem with zero transferred momentum, z
~W™! and can use the asymptotic form W (z)~1/z for |z]
> 1. There is some error here since the exact form of W(z) is

\I’(z)ZR(z)Ii\/Ee_Zz/z (44)
5 ,

where an asymptotic expansion of the form

z 1 1 3
R(Z):efzz/zj e Pdr=—+ P B
0 z Uz
+ il <7T 45
=< -
g arg <y (45)

exists for R(z). We use the asymptotic form ¥ (z)~1/z,
which is not completely true, but the results obtained by
using this approximation are corroborated in a more rigorous
but much more lengthy analysis. Thus, in the limit
W—0 Eq. (43) reduces to

1+0(W?)
or z=——— (46)

W\G,®G,

Correspondingly, in the limit W—0 we can write

Go® o=y

1
WG, G,

in place of (43). Let us consider the energy region E <O,
where the fluctuational tail of the state density arises.”'® In
this case we have z € Re from Eq. (46). By means of Egs.
(44) and (46) we obtain

2 T
GRG~Gy®Gy—i — \/;\/G()@GO

W

. 47)

1 2
G®G:W\I’

1
X —_
eXp‘ 2W2G0®G0]’ (“8)

from (47), where, as we now see, the second term also pro-
duces a fluctuational tail of the state density. Using

2
% G®G=§ % G(p—q)G(p>=(§ G<p>) .

we obtain immediately from Eq. (48) the state density in the
form

N(E)=— % Ep‘, Im GR(E.p)

1 ZG®Gy exp{—1/(2W?G,®G)}
\/2’7TW |EPG0(E,]7)| .

(49)

Thereafter everything is determined by the specific form of
G(®G, in spaces of different dimension.

In the one-dimensional (d=1) case all of the integrals
entering into Eq. (49) are calculated exactly. After rather
involved but fairly elementary calculations we obtain
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N(E) = —— |22 L 50
( )—ﬁ ECXP prrerraa (50)

The argument of the exponential in Eq. (50) differs from the
known exact result of Halperin'! (see also Chapter 11 in Ref.
10) by the absence of a 4/3 multiplier. The pre-exponential
function in Eq. (50) also differs from the exact, which is
~|E|/W?."" Nevertheless, the behavior of the state density
tail is reproduced quite satisfactorily in a qualitative sense in
our approximation. In this regard let us recall the widespread
notion that the state density tail cannot be obtained at all
from perturbation theory.

Analogous (but still approximate) calculations of the
state density using Eq. (49) for d=3 yield

|E|1/2 ]

pRATE G

N(E) ~exp[ —v2
Here the exponential once more coincides with the known
result of the nonperturbative instanton approach within the
accuracy of a constant.”!'>~1* The pre-exponential multiplier,
omitted in Eq. (51), following from Eq. (49), does not coin-
cide with any of the known versions obtained in the cited
papers. Nevertheless, the result (51) for the dominant expo-
nent is also quite satisfactory despite the approximate char-
acter of Eq.s) (40).

An analysis of the consequences of Eq. (40) in the
strong-coupling region,” defined by condition (38), i.e., in the
vicinity of the edge of the initial band where a transition
from spatial to localized states occurs, is of special interest.
There is every basis for assuming that in this region the
approximation of equal contributions to the self-energy part
in a given order of perturbation theory can turn out to be
good simply because of the known fact that they are equal in
order of magnitude. A strong condition of the type (38),
obviously, is equivalent to passing to the limit W—oo. In this
limit in the zeroth approximation one can ignore in Eq. (41)
the first term on the right side compared with the second and
can write

G ' (p)=—W?Q[W?*G®G]®G. (52)

We see that this corresponds to the limit z= %0 in Eq. (43)
for y=— /2 in Eq. (10). In this case Eq. (43) is reduced to

W2 GRG=Y(z==*i0)=—m/2, (53)
and we have from Eq. (17)
Q[W*GeG]=2/. (54)

The formal solution of Eq. (53) has the form

G==* \/; ! (55)
=+i\———,
2w

where ./"=Z2 1 is the number of states in the band. It is easy
to see that this equation is satisfied by the direct substitution
of Egs. (55) and (54) into (52). Thus, in a first approximation
in the limit W— one can write the Green’s function (41) in
the form
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FIG. 7. State density in one-dimensional system for different values of the
mean square of random field W2(2m)"*/EJ*: 1—0.25, 2—2, 3—16. Solid
curves represent exact solution, dotted curves represent self-consistent Born

approximation (56). Energy is given in units of E, and the state density in
units of 2m/E, where E| is arbitrary.

1
Gy '(p)— (2mWZ,G(p)’

G(p)= (56)
which agrees surprisingly well with the result of the self-
consistent Born approximation (the first diagram in Fig. 1b
or Fig. 3)"% to within the redundant multiplier 2/7r. Equation
(56) leads in an obvious manner to the state density of the
Born approximation Ny(E), which practically coincides for
d =13 with the state density of the free electron model (with a
one-loop displacement of the band edge taken into account).
Figure 7 shows a comparison of the results following from
Eq. (56) for the state density in a one-dimensional (d=1)
system with the exact Halperin result,'! demonstrating satis-
factory agreement of these results in the strong-coupling re-
gion |E|<E,.~m"3W*3, the width of which increases with
an increase in W. It must be pointed out that although the tail
of the state density is suppressed with an increase in W (see
Eq. (50)), the intermediate region where |E|~ E . increases.

It is possible that a result of the form (56) makes it
possible to justify qualitatively using the simplest Born ap-
proximation for the one-electron Green’s function in ap-
proaches such as the self-consistent localization
theory”!>—the mobility threshold occurs in the strong-
coupling region |E|<E,, (38), where the approximation (56)
turns out to be quite satisfactory and the Green’s function
actually has the simple Born form.

This work was partially supported by the Russian Fund
for Fundamental Research (Project 96-02-16065) and was
also carried out within the framework of Project IX.I of the
Statistical Physics Government Program of the Russian Min-
istry of Science. The authors are grateful to A. 1. Posazhen-
nikova for assisting with the numerical calculations.

APPENDIX

Let us derive Eq. (18) for the generating function Q(y)
without using the explicit form of the one-particle Green’s
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function (6). In problems with zero momentum transfer mo-
mentum the Bethe—Salpeter equation of Fig. 2¢ has the form

r=U+UGY, (A1)
so that
U
I=1=ue (A2)

Using Egs. (A2) and (22), we obtain an equation relating the
self-energy part to the irreducible vertex U:

WG
> = T2 (A3)
We use the Ward identity
Wzi = UG, (A4)
aw|. W

the validity of which is easy to see by means of Egs. (8) and
(24), and Eq. (A2) in order to write

Wza E—UG—1 1 W2G
aWGW_ G 3
or
|l =
— w2 2 -
py WG+WGE(9WGW. (A5)

Using Eq. (8), we obtain the desired differential equation for
Q:

d
Q(W?*G?)=1+W>GQ(W?G?) W WGQ(W?G?)
G
— 2~2 2212 22
1+ WG ] W2G?Q*(W?*G?),
which is rewritten as

d 2

Q(y)=1+y EyQ (). (A6)

Note, however, that from these arguments it is impossible to
find the correct boundary condition (17), which is closely
related to the relation (11), reflecting the causality principle.

DFrom a mathematical viewpoint this means Borel summation.

IThe sign of the imaginary part corresponds to treating the retarded or
advanced Green’s functions.

9An asymptotic limit of the form (32), 3 y~c-2"T'(N+ ), was obtained in
Ref. 6 by the Lipatov method; however, the coefficients ¢ and 8 were not
found.

“In this case the nonintersecting diagrams dominate, so that one can take
account of only the first diagram in Fig. 1b.

SFor d>4 knowledge of the asymptotic form (32) and the statistical analy-
sis of Ref. 6 make it possible to determine the correct exponent of W~ ! in
the pre-exponential function of the state density. In this case our approxi-
mation is equivalent to the hypothesis, used in Ref. 6, that the high-order
contributions are stationary, which is valid for d>4.
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We propose a simple model of the electron spectrum of a two-dimensional system with hot
sections on the Fermi surface that significantly transforms the spectral density (pseudogap) in these
sections. Using this model, we set up a Ginzburg—Landau expansion for s and d type

Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main

properties of a superconductor.
[S1063-7761(99)01802-8]

1. INTRODUCTION

Among the various anomalies in the properties of high-
T . superconductors, the existence of a pseudogap in the elec-
tron spectrum of such materials at carrier concentrations be-
low the optimum value has drawn much attention.'> The
most striking proof of the existence of this remarkable state
has been obtained in measurements of photoemission spectra
with angular resolution in the BSCCO system,>* which dem-
onstrated that the normal phase (7>7,) exhibits essentially
anisotropic variations in the spectral density of the current
carriers. In particular, in these experiments the maximum
pseudogap value was observed near the point (77,0) in the
Brillouin zone, while no pseudogap was observed along the
diagonal. Correspondingly, the Fermi surface disintegrates
near the point (7,0), while along the diagonal the surface
remains intact. In this sense it is common to speak of a d
type pseudogap symmetry, which coincides with the symme-
try of a superconducting gap in such systems. These anoma-
lies exist up to temperatures 7=T%* much higher than T, .

There are many theoretical approaches that attempt to
give an explanation of such anomalies. Two main groups of
these approaches can be singled out: the pattern of formation
of Cooper pairs above T, (see Ref. 1, 5 and 6), and an alter-
nation scheme based on the assumption that fluctuations of
antiferromagnetic short-range order play the key role.””!!

Most papers on the subject deal mainly with the study of
the pseudogap state of a high-7'. system in the normal phase
(T>T,). Our goal was to investigate the qualitative effects
of the influence of a pseudogap in the electron spectrum on
the main superconducting properties. We use the ideas de-
veloped in Refs. 7-11 but propose a very simple model of
the pseudogap state in the normal phase, a model that allows
a complete analytical investigation. On the basis of this
model we do a microscopic derivation of the Ginzburg—
Landau expansion for systems with s and d pairings and
study the qualitative effects of the influence of a pseudogap
(the disintegration of sections of the Fermi surface) on the
main properties of the superconducting state.

1063-7761/99/88(2)/9/$15.00
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2. ELEMENTARY MODEL OF A PSEUDOGAP STATE OF A
TWO-DIMENSIONAL ELECTRON SYSTEM

As noted earlier, we adopt the simplest possible model
of a pseudogap state, a model based on the picture of well-
developed fluctuations of short-range antiferromagnetic or-
der and close the model of ‘‘hot points’ on the Fermi
surface.'™! Let us assume that the Fermi surface of the two-
dimensional electron system has the shape depicted in Fig. 1.
A similar Fermi surface was proposed by Zheleznyak
et al.,'"> who remarked that this Fermi surface resembles very
closely the one observed by Dessau et al.'*!'* for some high-
T. systems. We assume that the short-range order fluctua-
tions are static and Gaussian and define their correlation
function as follows (cf. Ref. 7):

1 ¢! ¢!
S(q)=— 1

W= (4:— Q)7+ €7 (g, Q) +¢&7? W
for —pgquipi) and —p2$q},$p2, where £ is the corre-
lation length of the fluctuations, and O, = Q,=2p. For val-
ues of g, and g, that lie outside the specified ranges we
assume that S(q) =0. The effective interaction between elec-
trons and these fluctuations will be described by the quantity
2m)*W?s (q), where the parameter W with the dimensions
of energy defines the energy scale (width) of the pseudogap.
Thus, we assume that only electrons belonging to the ‘‘hot’’
sections of the Fermi surface are scattered by the short-range
fluctuations, with the scattering being actually one-
dimensional.

The choice of the scattering vector Q= (2p,2pf) pre-
supposes a pattern of incommensurate fluctuations.Below we
will consider the case of commensurate scattering with
Q= (m/a,mla), where a is the lattice constant. In the limit
&—, such a model allows an exact solution by the methods
proposed by Sadovskir,'>'® while for finite £ one can employ
the method developed by Sadovskii and Timofeev'”!® (with
certain reservations; see Refs. 10, 11, and 19). Below we
examine the simple case with §é—oo, where the effective
interaction with fluctuations (1) takes the simplest form

(2m)*W?8(q.—2pF) 8(q,=2pF) 2

© 1999 American Institute of Physics
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FIG. 1. The Fermi surface of a two-dimensional system. The hot sections
are depicted by thick straight lines, whose width is of order ~ &'

for —pgqu<p)Oc and —pgquSpg . Here we can easily
sum the entire perturbation series for an electron scattered by
such fluctuations'>!'® and obtain the one-electron Green’s
function in the form

ien—l—gp
(i€)*—E—(WHP)

where &,=v(|p|—pr), with vy the velocity at the Fermi
surface, €,=(2n+1)7wT, and W(¢) is defined for 0<¢
=< 1/2 as follows:

Gley.p) = f:czzexm—z:) )

0, as¢s—-—a.

Here a=tan71(p2/pF), and ¢ is the polar angle, which
specifies the director of the vector p in the (p,,p,) plane.
For other values of ¢, the parameter W(¢) is determined
quite similarly to (4) by symmetry considerations. Clearly,
by varying a within the range O0<a<w/4, we actually
change the size of the hot sections on the Fermi surface, in
which sections the nesting condition §, o= —§, is satisfied.
In particular, &= /4 corresponds to a square Fermi surface
on which the nesting condition is satisfied everywhere. Out-
side the hot sections [the second inequality in (4)] the
Green’s function (3) simply coincides with the free-electron
Green’s function.

The spectral density corresponding to the Green’s func-
tion (3), is

1
plet,)=——sgneImG(eg,) (5)

( 2 &2
et Esen )8~ Eexp — -,

N

w
—0[$¢$E,

(6)
o(e—§p),

) T
if a$¢<§—a,
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FIG. 2. Spectral density of the Green’s function in a hot section of the Fermi
surface: curve 1, §1,=O; curve 2, §p=0.1W; and curve 3, §[,=0.5W.

and has a similar form in the other quadrants of the Brillouin
zone. Equation (6) demonstrates the non-Fermi-liquid
(pseudogap) behavior with a d-type symmetry in the vicinity
of the hot sections of the Fermi surface and the free behavior
in the cold sections. The behavior of the spectral density in a
hot section of the Fermi surface is depicted schematically in
Fig. 2. Allowing for the fact that the integral with respect to
the polar angle ¢ of an arbitrary function f{W(¢)], with
W(¢) defined in (4), is obviously

2@
fo d¢ fIW(P)]=8af[W()]+(2m—8a)f(0), (7)

we can use (6) to easily find the density of states:

N(E) 1 (27d¢ (=
No(o):_;jo e 7°Cd§pImGR(Efp)

No(0), ®)

_ 2 N+ 4
=« we)+| 7 —a

where Ny(0) is the density of free-electron states at the
Fermi level, and Ny(¢€) is the density of states in the one-
dimensional problem (a square Fermi surface) found in Refs.
15 and 16:

MlO_|el [ e
No(e) W] Jo JEIwr—¢
. |e € €
=2 wlexp _ﬁ ErﬁW, 9)

where Erfix is the probability integral (error function) of
imaginary argument.

Figure 3 depicts the density-of-state curves in our model
for different values of the parameter «, i.e., for hot sections
of different size. We see that the pseudogap in the density of
states becomes obscured rather quickly as the area of the hot
sections decreases and generally is not very distinct. In a
certain sense the effect of a decreasing « is similar to the
effect of a decreasing correlation length ¢ of the
fluctuations,'”! so that in this sense the above approxima-
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FIG. 3. Density of electron states for hot sections of different size: curve 7,
a=1/4; curve 2, a=7/6; curve 3, a=m/8; curve 4, a=/12; and curve
5, a=m/24.

tion £—% may not be a stringent restriction on the applica-
bility of the model. One advantage of this approximation is
the possibility of obtaining all the results in analytical form.

Concluding Sec. 2, we examine briefly the case of com-
mensurate fluctuations, Q= (#/a,w/a). Figure 4 depicts the
model of the Fermi surface used in this problem. The hot
sections touch the boundaries of a new Brillouin zone that
appears after long-range order (e.g., antiferromagnetic) has
set in, and the strong scattering by fluctuations occurs at
Q= (m/a,m/a). In this geometry the pseudogap opens in the
direction of the diagonals of the Brillouin zone, which does
not correspond to experiments involving high-7'. supercon-
ductors but is of certain theoretical interest. The problem is
solved in the same way as in the previous case and general-
izes the solution of the one-dimensional model first found
by Wonneberger and Lautenschlager.!” The one-electron
Green’s function is similar to (3), and W(¢) is again a func-
tion with a period /2, but ‘‘turned’’ with respect to the

-
§_~<

-ala U

msd pg

-l

FIG. 4. The Fermi surface in the Brillouin zone of a two-dimensional sys-
tem in the hot-section model for the case of short-range order fluctuations
corresponding to period doubling. Also shown are the boundaries of the new
Brillouin zone, which arises after long-range order sets in (e.g., due to an
antiferromagnetic transition).
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previous model through an angle of w/4 for — w/4+ a<d¢
s7/4+ a:

W, @wl4—as<dp<ml/d+a,

W(¢)=[ (10)

0, — /4 +a<sd=7w/4 —a,

where 0=<a= /4. Moreover, in the present case we must
allow for a different combination of the Feynman diagrams,
which must correspond to electron scattering by commensu-
rate fluctuations.'® As a result, in (3) we must replace

f:dzexp(—g) (11)

with
» df {
fo —2\/W_§exp< - 4—) (12)

3. THE EQUATION FOR T,

Let us now investigate the problem of superconductivity
in the adopted model. We assume that the potential for Coo-
per pairing has the usual separable form>

V(p.p )=V(h,¢")=—Ve(d)e(d'), (13)

where as before ¢ is the angle specifying the direction of
electron momentum p in the plane, and e(¢) obeys the fol-
lowing model:

1 (s pairing),
V2 cos2¢  (d pairing).
As usual, the attractive constant V is assumed finite in a
certain strip of width 2w, in the vicinity of the Fermi level
(w, is the characteristic frequency of the photons ensuring

the attraction of electrons). In this case the superconducting
gap (the order parameter) has the form

A(p)=A(¢)=Ae(P). (15)

The equation for the transition temperature 7. can be
obtained from the ordinary equation for Cooper instability,

e(p)= (14)

1—x(0,0)=0, (16)

where the generalized Cooper susceptibility x(0,0) can be
calculated by exact summation of the entire series of dia-
grams that allow for scattering by the short-range order fluc-
tuations (2), in the same way the polarization operator was
calculated by Sadovskii.'>'® As a result the equation for T,
becomes

1 o = d’p )
‘7—_]0 dgexp(—{) Tc; jo (277)26 (PG w2

X(€,;p.P)Gw2(—€,5—P,—P)+ Fey2
X(€,:p.P— QF sp2(—€,:—p.—p+Q)}, (17)

where
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FIG. 5. T./T., as a function of the effective
pseudogap width W/T ., for hot sections of differ-
ent size in the incommensurate fluctuation model
for (a) s pairing (curve I, a=m/4; curve 2,
a=1/6; curve 3, a=m/8; and curve 4,
a=m/12), and (b) d pairing (curve I, a=m/4;
curve 2, a=/6; curve 3, a=/8; and curve 4,
a=1/12).
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(i€,) =&~ (W ()
VLW ()

(18)

Forten O o e Wi e

are, respectively, the normal and anomalous Green’s func-
tions of a system with a dielectric gap.'>!'®
Applying standard transformations to (17), we get

1_ 0o
v—kdg

s dp )
(0T | o eIV

(19)
Summing over the frequencies yields
1 N(O) (= °°
v Ffo dé“exp(—s“)fimdf
f” doe*(¢) VE+ W ()
X tanh . (20)
0 2VE+HIW () 2T.

If we now integrate with respect to ¢ as we did in (7),

we arrive at the following formulas:
1 ztczfoodg ( g)fwc d¢ hv§2+§wz
—=— exp(— tan

g mlo P 0 JE+IW? 2T.

fw' 9 ann =S 1)

for s pairing, and

1 4da+sinda

g 2

*® w(‘ dg
fo dgeXp(_ojo JE+IW?
e+ w? |

2T

X tanh —tanh —
21

0 f 2 Tc
(22)

77—4a—sin4afwc dé ¢

c

for d pairing. Here g=N(0)V is the dimensionless Cooper-
pairing constant. Figure 5 depicts curves representing the
dependence of T./T., on the parameter W/T.,, which
specifies the effective pseudogap width, for different values
of a (here T, is the transition temperature of an ideal sys-
tem without a pseudogap). We see that for both types of
pairing the occurrence of a pseudogap in the hot sections of
the Fermi surface causes significant suppression of 7., and
the larger these hot sections are the stronger the suppression.
Naturally, the suppression of T is stronger in the case of d
pairing than in the case of s pairing, since the dielectrization
of the spectrum (pseudogap) is in antiphase with the pairing
interaction.

For commensurate fluctuations (Fig. 4) and d-type pair-
ing, the equation for 7. becomes

1 _4a—sin4aJ°°d§exp(—§/4) o, d&
o 2m¢ 0 JE+IW?
VE+ IW? 7T—4a+sin4a/J‘wc dé &

+ — tanh .
2T, 27 , €@

(23)

Curves presenting the dependence of T./T ., on the pa-
rameter W/T ., for different values of « in this case are de-
picted in Fig. 6. Here the suppression of T, by the pseudogap
is less noticeable, since the superconducting gap reaches its
maximum on the cold sections of the Fermi surface, where
there is no pseudogap.

E_ 2w

X tanh

4. THE GINZBURG-LANDAU EXPANSION

The standard Ginzburg—Landau expansion for the differ-
ence in the free-energy densities of the superconducting and
normal states is

2 2 2 B 4
F—F,=A|A|>+4°C|A ]| +5|Aq| , (24)

where A, is the Fourier transform of the order parameter:

A(g.q)=A,e(). (25)
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WIT,

FIG. 6. T, /T, as a function of the effective pseudogap width W/T . for hot
sections of different size in the commensurate fluctuation model for the case
of d pairing: curve I, a= m/4; curve 2, a=m/6; curve 3, = w/8; and curve
4, a=/12.

Expansion (24) can be represented by the diagrams of
the loop expansion for the free energy in the field of the
order parameter fluctuations with a small wave vector q.
These diagrams are depicted in Fig. 7, where all processes of
scattering by short-range order fluctuations (2) are summed
exactly in all loops (this can easily be done if we use the
method developed in Refs. 15 and 16). In all other respects
the method of calculation is similar to that used Ref. 20." As
in Ref. 20, subtraction of the second diagram in Fig. 7 en-
sures the vanishing of the coefficient A at the transition point
T=T,.. As a result, the Ginzburg—Landau coefficients can
be written

A:A()KA, C:COKC’ B:BOKB’ (26)

where by Ay, Cy, and B, we denote the expressions for the
case of a two-dimensional isotropic s superconductor in the
absence of a pseudogap (a=0),

T-T. 7¢(3) vy
Ay=N(0) T Co=N(0) o T—z,
74(3)
BOzN(O)FZTz’ (27)

and all the features of the models are reflected in the dimen-
sionless coefficients K, , K., and Kp. In the absence of a
pseudogap, all these coefficients are equal to unity, while in
the case of d pairing only Kj differs from unity, or
Kg=3/2.

=P _€“
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In particular, straightforward calculations yield

A=N(0)

T—T, 1Jocd B Jw(,d
T T hew(=D) | e

« j 2m dee*(¢)
0 cosh®(VE+ WX )2T,)’

so that after integrating with respect to ¢ we get

(28)

1 o
Ka=g7 Ba | dte(=0)

o, dé
Xfo coshz(\/§2+§W2(¢)/2Tc)+1 Ao )

where
4
e (s pairing),
T
B.= (30)

4a+sinda
———  (d pairing).

Figure 8 depicts curves representing the dependence of K,
on the effective pseudogap width W/T ., for different values
of a. Here we show only the curves for the case of s pairing.
Qualitatively the corresponding curves for d pairing are simi-
lar, but all variations are on essentially smaller scales of
WIT,q, as in Fig. 5.

To calculate C, we must perform an expansion in a
Taylor series in powers of q in the expression

o0 o d2p )
— fo d{exp(—{) T@ fo o (DG w2 g

X(€,:P+ P+)Gerwr(p)(—€5—P— = P-) T Fry2g)

X(€,3P+ P+ —QF w2 py(—€,5—p-,—p-+Q)},(31)

where p.=p=q/2, and select the terms with q>. To sim-
plify presentation, from now on we will use the notation

G (¢)(€,:p.P) =G,

Ferwag)(€,:pp— Q) =F,,_o.

After lengthy calculations we arrive at an expression for
the coefficient C:

FIG. 7. The diagrammatic representation of the
Ginzburg—Landau expansion in the field of short-

bl range order fluctuations. The electron lines repre-
sent Nambu matrices composed of normal and
anomalous Green’s functions (18), and the loops
- are averaged over the parameter ¢ with a distribu-

tion (11) or (12). The second loop is calculated
for g=0 and T=T..
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FIG. 8. The coefficient K, as a function of the effective pseudogap width
WIT,, for hot sections of different size in the incommensurate fluctuation
model for the case of s pairing: curve 1/, «=m/4; curve 2, a= 7/6; curve 3,
a=1/8; and curve 4, a=m/12.

=- N() 22 f d{ exp(— g)fdf

Xf2"d¢ez(¢)(§2 3€,—3(W2($))cos” ¢
0 2ep+ E+IW(9))?

Accordingly, after integrating over ¢ and the angle ¢,
we arrive at an expression for the dimensionless coefficient
KC .

- (32)

47T (= 3 1
Kc Bc7§(3) fo d{exp(—{) . (\/W)3 +1-B.,
(33)
where B.=f, [see Eq. (30)]. The respective relations be-
tween K and the parameter W/T . for the case of s pairing
are depicted in Fig. 9. The pattern is similar for d pairing, but
all variations are on essentially smaller scales of W/T .
Examining the fourth-order term in the Ginzburg—
Landau expansion is even more difficult technically. To ob-
tain an expression for the coefficient B, we must find the
trace of the product of four Green’s functions G, each of
which is a Nambu matrix composed of normal and anoma-
lous Green’s functions (18):

~ ( Gp,p Fp,p*Q )

G,= .
P F GP*Q-P*Q

P—Q.p
After we find the trace of the matrix f} é (A}p(A}_p, we can
write an expression for B:
©d?p e*( )
B=N(0)T., Z f dgexp( g)f fz )(j)

2
x{(Gp,pG*pﬁp+Fp,p*QF*pﬁerQ)
+GP,PG*P,*PF*P+Q,I’FP*Q»P
+G—p+Q,—p+QG—p,—pr,p—QFp—Q,p

+ Gp.pGp*Q,p*QF*p+Q,*PF*pﬁp+Q
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+Gp—Q,p—QG—erQ,—p+QFp,p—QF—p,—p+Q}' (34)

Here we can directly verify that the sum of the last two terms
in (34) yields a zero contribution, so that

4
B= N(O)TE J d{exp(— g)J 572;)(?)
X(Gl””G_P"P—'—FPVP—QF—p,—p+Q)2~ (35)
This implies that
N(0)T, =

- 2 fo dZ exp(—{)

N 2w det()
XJ*”%JO (E2+ &8+ W ())? (36)

and after integrating with respect to £ and ¢ we arrive at an
expression for K similar to (33):

33

4T, (= 1
Kp=By=rae | dlexp(—0)> ———=—+1-8,,
B Bb7£(3) fo Zexp( 5);( o) By
37)
where
4
—a, (s pairing),
T
= 38
Bo 4a 4sinda  sin8a . (38)
—+ + , (d pairing).
T 3w 6m

Thus, for s pairing the coefficients Kz and K~ simply coin-
cide.

To conclude Sec. 4 we give the explicit expressions for
the dimensionless Ginzburg—Landau coefficients for the case
of d pairing in the model of commensurate short-range order
fluctuations:

0.6F

0.4f

02F

-

0 4 8 12 16 20
WIT,

FIG. 9. The coefficient K as a function of the effective pseudogap width
WI/T,, for hot sections of different size in the incommensurate fluctuation
model for the case of s pairing: curve I, @=m/4; curve 2, a= 7/6; curve 3,
a=1/8; and curve 4, a=m/12.
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B 1 (>d{exp(—{/4)
KA_ﬁa 2TCJ’0 2\/77_—(

. dé
—Ba> 39
8 fO cosh?(E+ {W?I2T,) 1=k (39)

B 47372 (=d{ exp(— {/4)
N O N =

Kc

1
X ———+1-B.4, (40)
> gy e
where
4a—sinda
Ba:Bc:T’
4a  sinda
= — (5+cosda). (41)
T 61

It is also easy to write the formulas reflecting the dependence
of these coefficients on W/T,., and different values of «.
Qualitatively these expressions are similar to those in the
incommensurate case, and the main difference are due to a
different scale along the W/T,, axis (cf. Fig. 6).

5. PHYSICAL CHARACTERISTICS OF SUPERCONDUCTORS
WITH A PSEUDOGAP

As is known, the Ginzburg—Landau equations determine
two characteristic lengths, the coherence length and the pen-
etration depth for the magnetic field.

The coherence length at a given temperature, &(7), is
the characteristic scale of inhomogeneity in the order param-
eter A, which means it is actually the size of the Cooper pair:

(T)= ¢ (42)
E(T)=— .
In ordinary superconductors (in the absence of a pseudogap),

Co

Eaes(T)=— A, (43)

£o

Epes(T)~0.714 —, (44)
Bes JI-TIT,
where £y=0.18v /T, . For our case we have
XT) K
&(T) K us)

Exes(T) Ky

The corresponding dependence of &(T)/ szcs( T) on the pa-
rameter W/T ., for the case of d pairing and incommensurate
short-range order fluctuations is depicted in Fig. 10.

The penetration depth for the magnetic field in an ordi-
nary superconductors is given by the formula

Ao

1
Npes(T) = — —o
es(T) i

(46)
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2
EATYE AT)

FIG. 10. The coherence length &*(T)/ §2BCS(T) as a function of the effective
pseudogap width W/T, in the model of d pairing: curve /, a= w/4; curve
2, a=7/8; and curve 3, a=m/12.

where )\%=mc2/47me2 determines the penetration depth at
T=0. For the general case we have an expression for the
penetration depth in terms of the Ginzburg—Landau coeffi-
cients:
N (T)= B (47)
32me? ACT
Then in the adopted model we have

)\ ( T) ( KB ) 172
Mpes(T) | KaKc
Curves representing the dependence of this parameter on the
effective pseudogap width for the case of d pairing are de-

picted in Fig. 11.
Now let us calculate the Ginzburg—Landau parameter

MDY ¢ [B

(48)

A(TYWA (T

10

8 o

6-

4} I

2 2
—_ﬁ"/-—-\

3
0 i 2 3 4

FIG. 11. The penetration depth N(T)/Agcs(T) as a function of the effective
pseudogap width W/T,, in the model of d pairing: curve I, «=m/4; curve
2, a=1/8; and curve 3, a=m/12.
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FIG. 12. The Ginzburg—Landau parameter «/kpcs as a function of the
effective pseudogap width W/T., in the model of d pairing: curve I,
a=1/4; curve 2, a=/8; and curve 3, a=m/12.

In this model of a superconductor,

x Ky
= (50)

KBcs

where

3¢ T.
BT TI03) ¢ v2IN(0)

is the Ginzburg—Landau parameter for the ordinary case.
Curves representing the dependence of «/kpcg on W/ T, for
the case of d pairing are depicted in Fig. 12.
Near T, the upper critical field H ., is expressed in terms
of Ginzburg—Landau coefficients:
by A

Hd=—5;5, (52)

(51)

where ¢o=cm/e is the quantum of magnetic flux. Then the
slope of the curve for the upper critical field near T, is

dch _ 247T¢0 KA
dT | 743w Kc’

(53)

Curves representing the dependence of the slope of the
curves for the field, |dH ., /dT|; , normalized to the slope of
the curves for the field at T.,, on the effective pseudogap
width W/T ., for the case of d pairing are depicted in Fig. 13.
We see that the slope rapidly decreases with increasing
pseudogap width.

We can also calculate the size of the heat-capacity dis-
continuity at the transition point, which is generally calcu-
lated by the formula

c,—C, T.[ A \?
Q  B\T-1.)° 59

where C; and C,, are the heat capacities of the superconduct-
ing and normal states, respectively, and ) is the volume.
This readily yields a formula for the size of the heat-capacity
discontinuity at 7., (W=0):
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FIG. 13. The normalized slope of the curves for the upper critical field as a
function of the effective pseudogap width W/T ., in the model of d pairing:
curve I, a=m/4; curve 2, a=m/8; and curve 3, a=m/12.

CJ_CVL 8’7T2TL.0
) -
T

Q 0 7¢(3) ¢

c0
Then the size of the heat-capacity discontinuity in our model
can be expressed in terms of the dimensionless coefficients
K, and Kp as follows:
(Cs_Cn)TL, _ TC Kf‘
(Cs_ Cn)T(,O TL'O KB ’

(56)

Curves representing the dependence of the size of the heat-
capacity discontinuity on the effective pseudogap width for
the case of d pairing are depicted in Fig. 14. We see that the
discontinuity diminishes as the pseudogap widens.

Curves representing the dependence of the above quan-
tities for the case of s pairing and for the model of commen-
surate fluctuations are more or less (qualitatively) similar to

(ACKHHAC),
1.0

0.8

0.6r

0 1 2 3 4
WIT,

FIG. 14. The normalized size of the heat-capacity discontinuity as a func-
tion of the effective pseudogap width W/T . in the model of d pairing: curve
1, a=m/4; curve 2, a=/8; and curve 3, a=7/12.
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those depicted in Figs. 10—14, differing in the scale along the
WIT,, axis, in accordance with Figs. 5 and 6.

6. CONCLUSION

We have studied a very simple model of a pseudogap in
a two-dimensional electron model, which nevertheless quali-
tatively explains a number of observed features of the elec-
tron structure of underdoped high-T'. superconducting sys-
tems. In particular, with this model one can easily obtain the
d symmetry of the pseudogap state, a symmetry that is due to
the pattern of the hot sections on the Fermi surface caused by
strong scattering by fluctuations of short-range (antiferro-
magnetic) order. Naturally, the model can be directly gener-
alized to the case of a large number of hot sections, and it
can reformulated in a way that is closer to the model of hot
points (Refs. 10 and 11); other generalizations can also be
made fairly easily.

The main simplifying assumption (and the main draw-
back) of the model is that we use the é—oo limit for the
fluctuation correlation length, due to which the main results
can be written as formulas. In reality £ is not very large and
depends on the temperature and the degree of doping, so that
it is an important parameter that controls the physical picture
of all phenomena. Our model allows, at least in principle, a
generalization to finite & in the sense of Refs. 17 and 18, but
all calculations becomes extremely involved. At the same
time it is clear that the effect of a finite ¢ reduces mainly to
a situation in which the pseudogap becomes closed,!”!® so
that in this sense (as noted earlier) it simulates a decrease in
the size of the hot sections in our model. This is true for
effects basically controlled by the density of states (an ex-
ample of a corresponding quantity is the transition tempera-
ture 7.). At the same time, this is not true of *‘kinetic’’
quantities (determined by the two-particle Green’s function),
such as the coefficient C of the gradient term in the
Ginzburg—Landau expansion.

Another radical simplification of our model is the as-
sumption that short-range order fluctuations are static and
Gaussian. The validity of this assumption can be justified in
the high-temperature limit 7> w, where wg is the charac-
teristic frequency of spin fluctuations.”™'! Accordingly, the
validity of the assumption that the fluctuations are static is
questionable at temperatures near 7. Nevertheless, our in-
vestigation shows that the Ginzburg—Landau expansion pro-
vides a good description of the influence of the main effect
of ‘‘disintegration’’ of certain sections of the Fermi surface
on the main characteristics of a superconductor with a
pseudogap, and demonstrates the important role of pseudo-
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gap anomalies in the formation of a superconducting state in
the region of the phase diagram of high-7,. systems where
these effects manifest themselves already in the normal
phase. More realistic models will be analyzed later.
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We analyze several almost exactly solvable models of the electronic spectrum of two-
dimensional systems with well-developed short-range-order dielectric (e.g., antiferromagnetic) or
superconducting fluctuations that give rise to an anisotropic pseudogap state in certain

segments of the Fermi surface. We develop a recurrence procedure for calculating the one-
electron Green’s function that is equivalent to summing all Feynman diagrams. The procedure is
based on an approximate ansatz for higher order terms in the perturbation series. We do
detailed calculations of the spectral densities and the one-electron density of states. Finally, we
analyze the limits of the adopted approximations and some important points concerning

the substantiation of these approximations.
[S1063-7761(99)01805-3]

1. INTRODUCTION

In recent years there has been an upsurge of interest in
observations of the pseudogap in the spectrum of elementary
excitations of high-7'. superconductors in the range of cur-
rent carrier concentrations below the optimum.'? The corre-
sponding anomalies were observed in a number of experi-
ments, such as measurements of optical conductivity, NMR,
inelastic neutron scattering, and angle-resolved photoemis-
sion (ARPES; see the review cited in Ref. 1). Probably the
most striking evidence that such an unusual state exists was
obtained in ARPES experiments,* which demonstrated the
presence of essentially anisotropic changes in the current-
carrier spectral density within a broad temperature range in
the normal (nonsuperconducting) phase of these systems (see
the review in Ref. 2). A remarkable feature observed in these
experiments was the presence of a maximum of the corre-
sponding anomalies close to the point (77,0) in the Brillouin
zone, while no such anomalies were observed in the direc-
tion of the zone diagonal [the point (7, )], which actually
means that near the point (7,0) the Fermi surface is de-
stroyed, while the Fermi-liquid behavior in the direction of
the zone diagonal is retained. In this sense it is usually said
that the pseudogap symmetry is of the d-wave type, which
coincides with the symmetry of the superconducting energy
gap in these compounds.’? At the same time, the very fact
that these anomalies exist at temperatures much higher than
the superconducting transition temperature and at nonopti-
mal carrier concentrations could point to a different nature of
these anomalies, not related directly to Cooper pairing.

There are many theoretical papers in which the authors
attempt to explain the observed anomalies. Two main areas
of such research can be identified. One is based on the idea
that Cooper pairs form at temperatures higher than the super-
conducting transition temperature.l’s’7 In the other it is as-
sumed that pseudogap phenomena are due primarily to anti-
ferromagnetic (AFM) short-range-order fluctuations.®~!?

Some time ago one of the authors of the present paper

1063-7761/99/88(5)/12/$15.00
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(M.V.S.) proposed an exactly solvable model of pseudogap
formation in a one-dimensional system due to well-
developed short-range-order charge density wave (CDW) or
spin density wave (SDW) fluctuations (see Refs. 13-17).
Recently this model has attracted the attention of researchers
in connection with attempts to explain the pseudogap state of
high-T.. cuprates.'"'>13-2% In particular, Schmalian et al.'""!?
made an important generalization of this model to the case of
a two-dimensional system of electrons that is in the random
field of well-developed spin fluctuations (short-range-order
AFM fluctuations). In the model of hot spots on the Fermi
surface developed in Refs. 11 and 12, the researchers ob-
tained, via the formal scheme developed in Refs. 15-17, a
detailed description of pseudogap anomalies at high tempera-
tures (the weak-pseudogap region). Tchernyshyov'® and
Ren® used a simplified variant of the model developed in
Refs. 13 and 14, which corresponds to the limit of very large
correlation lengths of short-range-order fluctuations, to de-
scribe the pseudogap state determined by well-developed
fluctuations of superconducting (SC) short range order. In a
recent paper,”! this simplified model was used to analyze the
Ginzburg—Landau expansion (for different types of Cooper
pairing) in a system with strong CDW (SDW, AFM) fluctua-
tions using the model of hot patches on the Fermi surface
proposed in the paper. At the same time, Tchernyshyov®
reviewed in detail the model developed in Refs. 13—17 and
found an error in the earlier papers'>~!7 in the analysis of the
case of finite correlation lengths of short-range-order fluctua-
tions. In Ref. 12 it was suggested that this error is insignifi-
cant, especially in analyzing the two-dimensional hot-spot
model, which is of the main interest to the physics of high-T',
systems.

The aim of the present paper is to analyze a number of
important aspects of the almost exactly solvable model,
mainly in the two-dimensional case. To this end we consider
both the case of short-range-order CDW (SDW, AFM) fluc-
tuations in the hot-spot model''? and the possibility of using
the model within the framework of fluctuation Cooper

© 1999 American Institute of Physics
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pairing7’19’20 (SC short-range-order fluctuations), in particu-
lar, in the most interesting case of d-wave pairing. In addi-
tion to a general analysis of the reliability of the formal
scheme used in Refs. 11-17, we do detailed calculations of
the spectral density and the one-electron density of states for
the hot-spot model'"!?> and in the scenario of fluctuation
Cooper pairing.

2. THE HOT-SPOT MODEL

2.1. Description of model and an “almost exact” solution
for the Green’s function

The model of a nearly ferromagnetic Fermi liquid**** is

based on the picture of well-developed fluctuations of AFM
short-rang-order fluctuations within a wide region of the
phase diagram of high-7, systems. This model introduces the
effective interaction of electrons and spin fluctuations that is
described by the dynamic spin susceptibility x,(w), which is
determined mainly from the fit to the data of NMR
experiments:24

g*é
1+ 8(q-Q)*—iw/wy

where g is the coupling constant, ¢ is the correlation length
of the spin fluctuations, Q= (m/a,w/a) is the vector of an-
tiferromagnetic ordering in the insulator phase, wy is the
characteristic frequency of spin fluctuations, and a is the lat-
tice constant (of a square lattice).

Since the dynamic spin susceptibility x4(w) has peaks at
wave vectors that are in the vicinity of (7/a,m/a), two types
of quasiparticle arise in the system: ‘‘hot’’ quasiparticles
with momenta in the vicinity of hot spots on the Fermi sur-
face, and “‘cold’’ quasiparticles with momenta in the parts of
the Fermi surface surrounding the diagonals of the Brillouin
zone, |p,|=|p,| (see Refs. 11 and 12). Such terminology is
related to the fact that quasiparticles from the vicinity of hot
spots are strongly scattered through a vector of order Q by
spin fluctuations (1), while for particles with momenta far
from hot spots this interaction is relatively weak.

In what follows we consider the case of high tempera-
tures, 7wI>wy, which corresponds to the ‘‘weak
pseudogap’” region in the phase diagram.'''? In this case
spin dynamics in irrelevant and we can limit ourselves to the
static approximation:

Veff(w?q):gz)(q(w)~ (1)

§2
1+£q-Q*
where A is an effective parameter with the dimensions of

energy, which in the model of AFM fluctuations can be
written'?

Ver(q) =A% (2)

R2=g2T > xqliw,)=g*(SH/3, 3)
mq

with S; the spin at a lattice site (Cu ions in the CuO, plane
for high-T, cuprates). Below we consider A (as well as &) a
phenomenological parameter that determines the effective
width of the pseudogap.
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FIG. 1. First- and second-order self-energy diagrams for an electron inter-
acting with short-range-order fluctuations.

Calculations can be simplified significantly if we replace
(2) with a model interaction of the form (cf. a similar model
in Ref. 8)

2¢7! 2¢7!
E74(q,= Q)7 € 7+(q,-0))%
where A2=A?%/4. Actually, Eq. (4) is quite similar to (2) and
differs quantitatively very little in the most important region
la-Ql<¢ .
Consider the first-order correction in V. to the electron
self-energy, represented by the diagram in Fig. la:

1
2(811 7P):§q: Veff(q) i

Sn_§p+q.

Ver(@) =42 )

®)

The main contribution to the sum over q is provided by the
region close to Q=(m/a,m/a). Then, writing
§p+q:§p+Q+k%§p+Q+Vp+Q'k’ (6)

Where1 vg+Q=z9§P+Q/¢9pa, and integrating over k, we
obtain")

A2
2(g,.p)= ,
isn_ §p+Q+ (lU);C)+Q| + |vi)+Q|)K Sign €n
(7
with k=¢71.
The spectrum of bare (free) quasiparticles can be taken
from Refs. 11 and 12:

&p=—2t(cosp,a+cosp,a)—4t' cosp.acospya, (8)

where ¢ is the nearest-neighbor-hopping integral, ¢’ is the
next-nearest-neighbor-hopping integral for a square lattice,
and u is the chemical potential. When real high-T,. systems
were analyzed in Refs. 11 and 12, it was assumed, e.g., for
YBa,Cu;04, 5, that t=0.25¢eV and ¢t' = —0.45¢, and u was
fixed by hole concentration. Below we show that the analysis
of the situation for different relationships between ¢ and ¢’
produces interesting results.
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We now turn to second-order corrections to self-energy,
which are depicted in Figs. 1b and lc. Using (4) we obtain

2(b)=A4 J'&J'& K K K
7 7’ K2+k%x K2+k%y K2+k§X

K 1

5 .

K2+k2y 1&,— §p+Q_v;+lex_vz+ley
1

isn_ gp_ v;(k1x+k2x) - vi;(kl)r+k2y)

X

1
x- . S ©)
lsn_§p+Q_Up+Qk1x_vb+Qk1y

dk, « K K

? K2+k%x K2+k%y K2+k§x

k
E(C)=A4fd—21
aa

K 1

2 :

K2+k2y le,— ngrQ_ v;+Qk1x_vi)+Qk1y
1

ie,— ép_ v;(k1x+k2x) - v%(kly+k2y)

X

1
X - - 5 , (10)
le,— §p+Q_ Up+Qk2x_ vp+Qk2_v

where we have employed the spectrum (8), from which, in
particular, it follows that £,,,0=§, and v,,,9=V, at Q
=(mla,wla). If v; and v{,+Q are of the same sign, the inte-
grals in (9) and (10) are determined solely by the poles of the
Lorentzians determining the interaction with short-range-
order fluctuations. Doing an elementary contour integration,
we getz)

2(b)=3(c)
1

— A4
[i8i1_§p+Q+i(|U;;+Q| + |v£+Q|)K]2

1

X .
ig,— &yt i2(|vpl+ vy

(11)

Here and below we assume, for the sake of definiteness, that
e, is positive. Clearly, when the velocity projections are of
the same sign, we can use this approach to calculate the
contributions of any higher-order diagrams. Accordingly, the
contribution of an Nth-order diagram to the self-energy part
in the interaction (4) is

2N—1

1
(N) — A2N

(e, p)=4A 11;[1 ig,—&+inv Kk’ (12)
where &=¢,,q and v;=[vy, ol +|v}s ol for odd j, and &;
=&, and v ;=|vy|+[v}| for even j. Here n; is the number of
interaction lines surrounding the jth Green’s function in a
given diagram.

In this case any diagram with crossing interaction lines
is equal to a diagram of the same order with noncrossing
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interaction lines. Hence actually we may consider only dia-
grams with noncrossing interaction lines, taking into account
the diagrams with crossing lines by introducing additional
combinatorial factors into the interaction vertices. This
method was first introduced (in another problem) by
Elyutin® and was used in Refs. 15—17 for a one-dimension
model of the pseudogap state.

As a result we arrive at the following expression for the
one-electron Green’s function in the form of a recurrence
relation (the continued fraction representation; see Refs. 15—
17):

G '(e,.£)=Gy (e,.6) —21(8,.&p), (13)
v(k)
ig, = &tikvik—2 (8., 6p)]

where &= &, q and v;= lvp+ol T vyl for odd &, and &
=&, and v, =|vy| +|vy| for even k. The combinatorial factor

v(k)=k (15)

corresponds to our case of commensurate fluctuations with
Q= (m/a,m/a) (see Ref. 15). Clearly, one can easily analyze
the vase of incommensurate fluctuations, where Q is not
locked to the period of the reciprocal lattice. In this case,
diagrams with interaction lines surrounding an odd number
of vertices are significantly smaller than diagrams with inter-
action lines surrounding an even number of vertices. Hence
only the latter diagrams should be taken into account.'>~!
As a result, the recurrence relation (14) is retained, but the
combinations of the diagrams and hence the combinatorial
factor change:'”

Ek(‘gn sgp):Az (14)

k+1
— for k odd,

v(k)= r (16)
3 for k even.

In Refs. 11 and 12, the spin structure of the interaction in the
“‘almost antiferromagnetic’” Fermi-liquid model (the spin-
fermion model of Ref. 12) was taken into account. This leads
to more complicated combinations in the commensurate case
with Q= (7/a,m/a). More precisely, spin-conserving scat-
tering yields formally commensurate combinations, while
spin-flip scattering is described by diagrams of the incom-
mensurate type (a ‘‘charged’’ random field, to use the termi-
nology of Ref. 12). As result, the recurrence relation for the
Green’s function is still of the form (14), but the combinato-
rial factor v(k) is now!'"!?
k+2

for k odd,

v(k)= (17)
— for k even.

As noted earlier, the solution (14) can be obtained only
if the signs of the velocity projections U;JrQ(vi;JrQ) and
v;(vi;) are the same. Below we analyze the situation when
this is really the case. When the signs are different, the inte-
grals of the form (9) and (10), corresponding to higher-order
corrections, cannot be calculated in such a simple form as
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above because contributions from the poles of the electron
Green’s functions become important. Here instead of simple
expressions of the form (11) we have much more compli-
cated expressions and (even more importantly) the very fact
that broad classes of diagrams with crossing and noncrossing
interaction lines are equal is not true any more [the reader
will recall that it was this fact that made it possible to clas-
sify higher-order contributions and to obtain the ‘‘exact’’
solution (14)]. This problem is important only for the case of
finite correlation lengths §= k! of fluctuations, while in the
limit é&—0o (xk—0) the exact solution for the Green’s func-
tion is independent of the velocities v, and v,,q and can
easily be obtained in analytic form by the methods developed
in Refs. 13 and 14 (see also Ref. 12). In the one-dimensional
model considered in Refs. 13—17, the signs of the corre-
sponding velocity projections are always different (they cor-
respond to electrons travelling “‘right’” and “left’’). This fact
was stressed in a recent paper by Tchernyshyov.” In the
Appendix we analyze these difficulties in detail for the one-
dimensional case and show that the ansatz of the form (12)
used in Refs. 15-17 for the contributions of higher-order
diagrams and the solution (14) yield a very good approxima-
tion even when the velocity projections have opposite signs.
Obviously, this solution is exact in the limits é—% (k
—0) and é—0 (k—) and provides a fairly good (quanti-
tative) description in the region of finite correlation lengths.

2.2. Analysis of the spectrum

For the energy spectrum (8) we can easily specify the
conditions (the relationships between ¢, t', and u) for the
solution (14) to be exact. First, let us define the region of the
parameters £, t', and u where there are hot spots on the
Fermi surface, i.e., the conditions for the existence of points
connected by the vector Q= (m/a,m/a). If p=(p,.p,)
specifies the position of a hot spot on the Fermi surface, the
point p+q=(p,+m/a, p,+m/a) must also belong to the
Fermi surface, so that for the spectrum (8) we have

—2t(cos pa+cospya)—4t’ cosp,acosp,a—u=0,
(18)

2t(cos pya+cospya)—4t'cospacospya—pu=0.
This yields the conditions needed for hot spots to exist:
Cos pya=—cosp,a, cos’ p,a= uldt'. (19)
Thus, hot spots on the Fermi surface exist if

0=< w/4t' <1. (20)

We now define the region of the parameters 7, ', and u
where the solution (14) is exact by requiring that the prod-

X_ X v,y .
ucts vpUp 4 and vypvy g be positive. We have
e
Up_&p =2tasinp,a+4tasinp.acosp,a,
X
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FIG. 2. The region of parameters where hot spots exist (hatched) and the
region where such spots exist and the velocity projections have the same
sign (doubly hatched).

v =2tasinp,a+4t'asinpacosp,a,

2
t
2t') ]

2
cossza—(L) ] (21)

)
Py y

X, .x _ 2.2 .2 2 —
VpUpro= 16t w”sin” p.a| cos”pya

S 2.2 2
UpUprQ= 16t u”sin" pa Py

Clearly, for the Fermi surface to have points where the pro-
jections of velocities have the same sign, |t'/t| must be
greater than 1/2. Here we are chiefly interested in the region
surrounding the hot spots, where on account of (19) we have

- o\t
VUt Q= UVt @=41a” 1—; —2—1). (22)

t

Thus, the projections of velocities at hot spots have the same
sign if

wt' 12> 1. (23)

Obviously, the same condition ensures that v,v,, q is posi-
tive (this is needed for the solution (14) to be valid in the
model described in Refs. 11 and 12).

Figure 2 depicts the region of parameters where hot
spots exist (the hatched area), or 0<u/4t'<1, and the re-
gion where such spots exist and the velocity projections have
the same sign (ut'>1). Figure 3 depicts, for different val-
ues of the chemical potential w (band filling), the Fermi sur-
faces specified by the spectrum (8) for which these condi-
tions are either met or not met.

2.3. Spectral density and density of states

Let us examine the spectral density

A(E,p)=— %Im GR(E,p), (24)
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FIG. 3. Fermi surfaces defined by the

spectrum (8) for different values of the
chemical potential x (band filling) and the
parameter ¢'/t. (a) The case where '/t
=—0.6 and u/t has the following values:
curve I, —2.2; curve 2, —1.8; curve 3,

—1.666; curve 4, —1.63; curve 5, —1.6;
curve 6, 0; and curve 7, 2; the solution
(14) is exact in the vicinity of hot spots
(the velocity projections are of the same
sign) for w/t<—1.666 ..., and hot spots
exist if w/t is negative. (b) The case where
t'/t=—0.4 (which is characteristic of
high-T. cuprates) and w/t has the follow-
ing values: curve I, —2.2; curve 2, —2;
curve 3, —1.6; curve 4, —1.3; curve 5, 0;

where GR®(E,p) is the retarded Green’s function obtained by
ordinary analytic continuous of (13) into the real energy axis
E. Figure 4 depicts the energy dependence of A(E,p) ob-
tained from (13) and (14) for different variants of the com-
binatorial factors (15) and (16). Since the energy dependence
of the spectral density in the case of the combinations (17)
for the spin-fermion model is qualitatively (and even quan-
titatively) very close to that obtained in the incommensurate
case, Eq. (16), we have not displayed it in Fig. 4a so as to
save space. For t'/t=—0.6 and u/t=—1.8<t/t'=1.666,
the projections of the velocities at the hot spots have the
same sign and the solution (14) defines the Green’s function
exactly. We see that in the incommensurate case (16) (Fig.
4a) as well as for the combinations (17) of the spin-fermion
model, the spectral density at a hot spot clearly exhibits non-
Fermi-liquid behavior (for large values of the correlation
length & of the fluctuations). In the case of commensurate
combinations, Eq. (15) (Fig. 4b), it is precisely at a hot spot
that the spectral density has a single peak and, in this sense,
is similar to the spectral density of an ordinary Fermi liquid
even when ¢ is large. However, even in the vicinity of a hot
spot the spectral density acquires two non-Fermi-liquid
peaks (the ‘‘shadow’’ band) for large values of & (see the
inset in Fig. 4b).

curve 6, 2; and curve 7, 4; hot spots exist
if —1.6<u/t<0.

Far from hot spots, the velocity projections have, in gen-
eral, opposite signs, even if condition (23) is met. Accord-
ingly, the recurrence relation (14) for the Green’s function is
not exact. At the same time, as ¢ increases, the region with
the hot spot in the momentum space narrows and the accu-
racy of our approximation grows. However, from a discus-
sion in the Appendix it becomes clear that our ansatz (12)
and the solution (14) only slightly overestimate the role of
the finiteness of the correlation length &. There we also pro-
pose a slightly different variant of the solution, Eq. (A11),
which somewhat underestimates this role. The insets in Fig.
4 depict the energy dependence of the spectral density far
from a hot spot for different combinations, (15) and (16).

Figure 5 depicts the energy dependence of the spectral
density for the combinations (15) and (16) at a hot spot with
t'/t=—0.4, which, according to Schmalian et al.,“’]2 corre-
sponds to the YBa,Cu;0g . s system. The spectral density in
the case of the combinations (17) of the spin-fermion model
is very close to that obtained in the incommensurate case
(16). For such a value of ¢/t', even at hot spots the velocity
projections have opposite signs. However, the spectral den-
sity (in the incommensurate case) obtained from the solution
with ‘‘alternating’” «, Eq. (A11) (the dashed curve in Fig.
5a) is seen to be very close to that obtained from (14). This

A(E.p)
35

30k
251
20r
15}

10F

FIG. 4. Energy dependence of the spectral
density at a hot spot (p.a/m=0.1666 and
pyal m=0.8333) for different diagram com-
binations at ¢'/t=—0.6 and w/t=-—1.8,
when the solution (14) is exact: (a) the in-
commensurate case, and (b) the commensu-
rate case. The correlation length corresponds
to the following values of xa: curve 7, 0.01;
curve 2, 0.1; and curve 3, 0.5; A=0.1z. The
insets depict the energy dependence of the
spectral density for the corresponding dia-
gram combinations at ka=0.01: curve /, at
the hot spot p.a/m=0.1666 and p,a/m
=0.8333; curve 2, near the hot spot p .a/m
=0.1663 and pyu/ﬂ':O.SISS; and curve 3,
far from the hot spot p.a/7m=0.0 and

pyalw=0.333.
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FIG. 5. Energy dependence of the spectral

AE.p
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0.1

suggests that the ansatz (12) and solution (14) quantitatively
are close to an exact solution. We stress once more that the
solution (14) is exact in the limits é&— and £—0, while for
finite & it provides a good interpolation between the two
limits.

Now consider the one-electron density of states,

1
N(E)= % A(E.p)=—— % Im GR(E,p), (25)
determined by the integral of the spectral density A(E,p)
over the entire Brillouin zone. Earlier we have seen that al-
though for some topologies of the initial Fermi surface (band
fillings) we can guarantee that near hot spots the signs of the
velocity projections are the same, far from hot spots the signs
are usually different, and the solution (14) based on the an-
satz (12) is only an approximation. Correspondingly, using
the solution (14) to calculate the density of states also yields
an approximation, according to (25). Figure 6 depicts the
densities of states obtained from (13), (15), and (25) with
allowance for the spectrum (8), for different diagram combi-
nations, Egs. (15), (16), and (17), at t'/t= — 0.4 (Fig. 6a) and
t'/t=—0.6 (Fig. 6b). We see that at ¢'/t=—0.4 the density
of states vs. energy curves acquire a dip (pseudogap). This
decrease in the density of states is weakly dependent on the

density at a hot spot (p.a/m=0.142 and
pyal m=0.857) for different diagram combi-
nations at t'/t=—04 and w/t=-1.3,
which approximately corresponds to high-T,
cuprates: (a) the incommensurate case [the
dashed curve represents the spectral density
for the incommensurate case obtained by
(A11)], and (b) the commensurate case. The
correlation length corresponds to the follow-

ing values of ka: curve 1, 0.01; curve 2, 0.1;
and curve 3, 0.5; A=0.1¢. The insets depict
the energy dependence of the spectral den-
sity for the corresponding diagram combina-
tions at ka=0.01: curve /, at the hot spot
pealm=0.142 and p,a/7=0.857; curve 2,
near the hot spot pxd/*n':O.145 and pal/m
=(.843; and curve 3, far from the hot spot
pyalw=pal7m=0.375.

. 0.3
Elt

correlation length & (see the inset in Fig. 6a). If the band
filling is such that the Fermi level u lands in this energy
interval, there are hot spots on the Fermi surface. At ¢'/t=
— 0.6, the region where the hot spots exist is rather wide, but
nevertheless the pseudogap in the density of states is essen-
tially unobservable. What can be seen is a smearing of the
Van Hove singularity, a singularity that exists when there is
no scattering by fluctuations.

3. MODEL OF “SUPERCONDUCTING” FLUCTUATIONS

3.1. Description of model and the solution for the Green’s
function

As noted earlier, pseudogap phenomena can probably be
explained by employing the idea of fluctuation Cooper pair-
ing at temperatures above the superconducting transition
temperature T, (see Refs. 1, 5—7). Consider the simplest pos-
sible model approach to this problem. Figure 7a depicts the
self-energy diagram of first order in the fluctuation propaga-
tor of Cooper pairs for 7>T .. Bearing in mind that we wish
to consider both ordinary s-wave pairing and d-wave pairing,
which is a characteristic feature of high-7'. systems, we in-
troduce the pairing interaction of the simplest (separable)
form

N(E) N(E)
0Ef ;
08 200 b 0.6f
0.4
0.6 L.5p
0.2
N

04

FIG. 6. One-electron density of states for
different diagram combinations: (a) the case
where ¢'/t=—0.4 and u/t=—1.3, and (b)
the case where ¢'/t=—0.6 and w/t=—1.8.
Curves [ correspond to the incommensurate
case, curves 2 to the commensurate case,
curves 3 to the combinations of the spin-
fermion model, and curves 4 to the case

1] L i L 1 i
-24-20-16-1.2-08 04

where there is no AFM fluctuations. The
dotted curves represent the spectral density
for the incommensurate case obtained by
(Al11), A/t=1, and the correlation length
corresponds to ka=0.1. The insets depict
the one-electron densities of states energy
for the corresponding diagram combinations

=24 20 -146 -12 08 04 0

at ka=0.1 (curves /) and ka=0.01 (curves
2).
El
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a

V(p.p')=—Ve(p)e(d'). (26)

where ¢ is the polar angle specifying the direction of the
electron momentum p in the plane, and for e(¢) we use the
model dependence adopted in Refs. 26 and 27:

1 for s—wave pairing,

\/Ecos2¢

As usual, the coupling constant V is assumed finite for elec-
trons within an energy layer near the Fermi surface. Then the
self-energy part corresponding to Fig. 7a takes the form

e(¢p)= 27)

for d—wave pairing.

2(8,, ’p) = Z Veff(iwm ’q)G(iwm_ ig,,— P“'Q)a (28)
mp

where the effective interaction with SC fluctuations is given
by the expression

Veff(iwm 3 q)
Ve’ ()

1=VT 2, Golie, .p)Goliw,—ie,, —p+q>e2<¢>'
np
(29)

Below we assume that the SC fluctuations are static, so that
in (33) we can limit ourselves to the term with w,,=0. Here
the static approximation is valid for 77> wgc=8(T
—T.)/m, which is formally similar to the condition =T
> wy used in the hot-spot model. The closer the system is to
the superconducting transition point, the better the condition
is met. Then the effective interaction can be written

A%e*(¢)
Ver(q) =~ m (30)
where
&o
fo” O.ISUF/TC, (31)

€)= —,
(T— Tc)/ T.

with &, the ordinary coherence length of the superconductor,
and A2=1/N(E) 53 (here N(E) is the density of states at
the Fermi level Er). Of course, within the elementary BCS
model considered here,

- T, Ay

A%27T2TC _"“AO _<AO

F Erp

(where A, is the energy gap of the superconductor at T
=0), and so the obvious problem of explaining the scale of
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FIG. 7. Self-energy diagrams in the model of SC fluctuations:
(a) the first-order diagram with an ‘‘explanation’” of the mean-
ing of the wave line, the fluctuation operator of Cooper pairs
(the dashed lines correspond to pairing interaction), and (b) the
second-order diagram.

the anomalies observed in the experiments arises. However,
below we again assume that & and A are phenomenological
parameters of the theory, bearing in mind that in high-T
systems these parameters should be found from experiments
rather than from a simple BCS-type theory, which does not
apply to this case anyway.

Reasoning in the same way as we did in passing from (2)
to (4), instead of (30) we introduce the model interaction

267! 2¢7!
:_AZ 2
Veff(q) e (¢) 572+q)2c 6724—(13’

where A?= A?%/4. Quantitatively this is very close to Eq. (30)
and simplifies calculations significantly by making it pos-
sible to classify the contributions of higher-order diagrams.
In this case the first-order contribution of the diagram in Fig.
7a has the form

(32)

A%e* ()
ie,+&ti(Ju]+]v,|)ksigne,’

3M(e,,p)= (33)

where v, =vpC0s §, v, =vpsin ¢, and k= & 1. The contri-
bution of the second-order diagram in Fig. 7b is

3P (e,,p)=(A%(¢))’

Xf dQIx K fdQIy K
e ) T e

XJdQIX K fdQI)r K
w K2+q§x ™ K2+q§y

1 1
X N s
(i8,1+§p—V1'q1)2 i£,~ &= V2 Q1 V2
(34)
where vi=—v,=vp. We can easily see that in the given

problem we have essentially the same rules of the diagram-
matic technique as in the hot-spot model with combinations
corresponding to the incommensurate case. This becomes es-
pecially obvious if we study the topology of the interaction
line (the fluctuation propagator of Cooper pairs) in the dia-
gram of Fig. 7a: we see that in higher orders the only dia-
grams that exist are those in which the interaction line sur-
rounds an even number of vertices. Equation (34) is similar
to (9), but the signs of the velocity projections in the denomi-
nators of the Green’s functions are always different, v;
= —v,. Hence contributions to the integrals over momentum



JETP 88 (5), May 1999

E. Z. Kuchinski and M. V. Sadovski 975

FIG. 8. (a) Energy dependence of the spec-
tral density A(E,p) for the case of d-wave
fluctuation pairing at different values of the
polar angle ¢, which defines the direction of
electron momentum in the plane: curve I,
¢=0; and curve 2, ¢= /6. The correlation
length corresponds to vyx/A=0.5 (solid
curves). (b) Energy dependence of the prod-
uct f(E)A(E,p) (f(E) is the Fermi func-
tion): curve I, ¢=0; curve 2, ¢=/6;
curve 3, ¢p=/4.83. The temperature (in the
Fermi function) is 7=0.1A, and vpx/A
=0.5.
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transfer in higher-order diagrams are provided not only by
the poles of Lorentzians but also by the poles of the Green’s
functions. Nevertheless (bearing in mind the discussion in
the Appendix) we can estimate the contribution of higher-
order diagrams by using the ansatz (12), i.e., we calculate all
the integrals in, say, (34) as if the velocity projections were
of the same sign, and then in the answer we put vi=—v,
=vp. We again arrive at a recurrence relation for the
Green’s function of the form (14):

E:‘Ic(en 7§p)

_ A?e*(p)v(k)
isn_(_ 1)k§p+ ikUFK(|COS ¢|+|§1n ¢|)_Ek+l(8n sfp) ’

35)

where v (k) has been defined in (16). Of course, Eq. (35) is

an approximation, but it gives the exact result in the limits

k—0 (§—0) and k— (£—0) and provides a fairly good

(quantitative) interpolation between these two limits for fi-

nite correlation lengths.

3.2. Spectral density and density of states

Figure 8a depicts the energy dependence of the spectral
density A(E,p) [Eq. (24)] of the one-particle Green’s func-

tion calculated by (35) for different values of the polar angle
¢ determining the direction of electron momentum in the
plane (here we assume that |p|=py) for the case of d-wave
fluctuation pairing. Clearly, in the vicinity of the point
(m/a,0) of the Brillouin zone, the spectral density exhibits
non-Fermi-liquid (pseudogap) behavior. As the vector p ro-
tates in the direction of the zone diagonal, the double-peak
structure disappears and the spectral density becomes a typi-
cal Fermi-liquid spectral density with a single peak, and the
closer the value of ¢ is to w/4 the narrower the peak. The
spectral density undergoes a similar transformation as the
correlation length & becomes smaller.

Figure 8b depicts the evolution of f(E)A(E,p) (here
f(E) is the Fermi distribution), which is actually the param-
eter measured in ARPES experiments.” Note that the curves
in Fig. 8b closely resemble the curves obtained in Refs. 11
and 12 in the hot-spot model. The picture of destruction of
the Fermi surface suggested by these calculations is very
similar to the one that follows from the experimental data
obtained by Norman ez al.?® for Bi,Sr,CaCu,Og., 5.

In the case of s-wave fluctuation pairing, the pseudogap
appears isotropically on the entire Fermi surface, and the
spectral density is of the non-Fermi-liquid type everywhere
for large fluctuation lengths & of SC fluctuations.

N(e)!NU(EF) N(E)JWG(EF)
.4 1.4
a. b
1.2r
FIG. 9. One-electron density of states in the
Lor model of SC fluctuations: (a) in the case of
s-wavepairing, and (b) in the case of d-wave
0.8 pairing. The curves are built for the follow-
ing values of the parameter vrk/A, which
determines the correlation lengths of short-
0.6 range-order fluctuations: 0.1 (curve /), 0.5
(curve 2), 1.0 (curve 3), and 2.0 (curve 4).
0.4
: 1 1 0.2 s . N
O 0.5 1.0 1.5 200 0.5 1.0 1.5 20
EfA EiA
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In Fig. 9 we present the results of calculations of the
one-electron density of states using (35) for the case of
s-wave pairing (Fig. 9a) and in the case of d-wave pairing
(Fig. 9b) for different correlation lengths of the SC fluctua-
tions. We see that for d-wave pairing the pseudogap in the
density of states is not so pronounced as for s-wave pairing,
even for large correlation lengths of the fluctuations. At the
same, Fig. 9 clearly shows that in the model of SC fluctua-
tions the pseudogap is more pronounced than the hot-spot
model discussed earlier.

4. CONCLUSION

We have examined almost exactly solvable models of
the pseudogap state of the electronic spectrum of two-
dimensional systems. These models are based on alternative
scenarios of the origin of these anomalies: the picture of
““dielectric” (AFM, SDW, CDW) fluctuations, which gives
rise to the hot-spot model, and the picture of fluctuational
formation of Cooper pairs above T, (SC fluctuations). The
term ‘‘almost exactly solvable’” means that in this approach
it is possible to sum the entire series of Feynman diagrams
for the one-electron Green’s function (and actually also for
the two-electron Green’s function'®!7), using for the higher-
order diagrams the approximate ansatz (12). As shown in the
Appendix and also by the numerical examples in the main
body of the text, the ansatz guarantees a rather good approxi-
mation (speaking quantitatively) to the exact solution in the
region of finite correlation lengths & of short-range-order
fluctuations, while in the limits §— and £&—0 our solution
is exact.

Our calculations of spectral densities have shown that in
both scenarios we can obtain a rather appealing picture (from
the standpoint of possible comparison with the experimental
data in high-T,. cuprates) of destruction of the Fermi-liquid
state in specific (hot) parts of the Fermi surface, with the
Fermi-liquid state retained in the remaining (cold) part of the
Fermi surface. Such non-Fermi-liquid behavior is due to the
strong scattering of electrons by short-range-order fluctua-
tions, and the larger the correlation length ¢ the more pro-
nounced the behavior. At the same time, there are certain
differences between these two scenarios, which can, in prin-
ciple, be utilized in the analysis of the situation in real sys-
tems. In particular, in the hot-spot model (AFM fluctuations),
the pseudogap in the density of states is relatively small (see
Fig. 6). In the model of SC fluctuations the pseudogap in the
density of states is much more visible (see Fig. 9). At the
same time, the model of dielectric AFM fluctuations appears
to be more attractive even from a simple consideration of the
phase diagram of a high-T'. system: pseudogap anomalies are
observed in the underdoped region, and the closer the system
is to a dielectric AFM state the more pronounced are the
anomalies. It is in this region that we can expect the short-
range-order dielectric (AFM) fluctuations to play a more im-
portant role, the correlation length & to increase, etc. It is
rather difficult to understand why in this region of the phase
diagram the fluctuational formation of Cooper pairs (SC
fluctuations) may become more important. On the contrary,
it would seem that such formation should manifest itself in
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the region close to optimal doping (corresponding to the
maximum superconducting transition temperature). More-
over, an obvious problem inherent in this scenario is that of
explaining the characteristic scales of the anomalies (in tem-
perature and in energy). The problem cannot be resolved by
using simple approaches based on the BCS theory—the so-
lution requires new microscopic approaches.>’ The models
considered in the present paper are useful in analyzing the
pseudogap formation in both scenarios, since they are actu-
ally based on a fairly general (semiphenomenological) form
of the correlation function of short-range-order fluctuations.

The authors would like to express their gratitude to Oleg
Tchernyshyov for supplying the preliminary information on
his analysis of the one-dimensional model. This was partially
supported by the Russian Fund for Fundamental Research
(Project 96-02-16065) and Project No. IX.1 of the Statistical
Physics State Program and Project No. 96-051 of the High-
T. Superconductors State Program of the Russian Ministry
of Science.

APPENDIX: ANALYSIS OF THE ONE-DIMENSIONAL MODEL

Let us examine in greater detail the use of the ansatz
(12) in estimating the contributions of higher-order dia-
grams. We limit ourselves to the analysis of the one-
dimensional model,'>~!7 since in one dimension the problem
is most serious.”” We are interested in the vicinity of the
Fermi points +pyr and —py, with electrons scattered by
Gaussian short-range-order fluctuations scattering by a mo-
mentum Q~ * —2pp, shifting them from one end of the
Fermi line to the other with an accuracy of order ¢ '=«k
(Refs. 13—17). We examine the electronic spectrum in the
linearized approximation, f,,t pre * —vpp, and assume, for
the sake of brevity, that v =1. Here the system consists of
two types of electron: those electrons that move to the left,
and those that move to the right. It is convenient to do our
analysis in a representation”” in which the equation of mo-

tion for the electrons in the given model takes the form'®??
1 d . 9 ¥ 3 0 A(x) &
= —ioy - (t,x)= A*(x) 0 (t,x).
(AD)

We limit ourselves to incommensurate fluctuations, i.e.,
A*(x)# A(x). The spinor ‘f’=($*) describes ‘‘right’” and
““left’” electrons. The fluctuations A(x) are assumed Gauss-
ian with (A(x))=0 and (A*(x)A(x"))=|A|%exp(—xlx
—x'|). The free propagator in the frequency—coordinate rep-
resentation is

Gy(ex)=ib(eo3x)sign(e)exp(ieosx), (A2)

with o3=+1 for right particles and o3=—1 for left par-
ticles. A particle traversing a path of length / produces a
phase factor ¢’®’. When calculating specific diagrams, it is
convenient to change the integration variables from the co-
ordinates x; of interaction vertices to the lengths /; of paths
traversed by particles from one scattering act to another.??
Here it is important to account for the fact that these path
lengths are not independent, since for a given diagram the
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total particle displacement x—x' is always fixed. The rules
of the diagrammatic technique for calculating G(e,x—x")
that result are as follows:*

1. A solid line of length I,
—ieile=(=1)p)

yields a factor

2. A wavy (interaction) line connecting vertices m and n

gives a factor

3. Integration over all [, is done from 0 to .

4. Integration over p is done with a weighting factor
PO

In calculating G(e,p) the last rule can simply be
dropped. These rules show that allowing for the finiteness of
the correlation length é=«"! leads in each diagram to a
damping of the corresponding transition amplitude with the
displacement of the particle. Taking this effect into account
exactly constitutes a complicated problem, but lower and up-
per bounds on this effect can be found. On the one hand, we
have the obvious inequality

n—1

2 (=D

IAIZGXP(—lem—xn|)=|Alzexp( —K

n—1

> (=1,

k=m

>exp (A3)

n—1
- K E l k) .

k=m
By using the right-hand side of (A3) as the interaction line
we overestimate the transition amplitude damping (i.e., ef-
fectively overestimate «). We can easily see that the use of
this approximation in calculating the Green’s function in the
momentum representation amounts to adding i« to the de-
nominator in each Green’s function surrounded by the inter-
action line and yields an expression for any higher-order cor-
rection of the form (12) (cf. Ref. 22). For instance, the
following expression corresponds to the diagram in Fig. 1b
(we assume that £>0 and §=0%):

exp( —K

1 1
_ A4
AG(s.p)=A e—p+idle+tp+tik
1 1

(Ad)

X
e—pt2ik etpti)e—p+ié’

which is similar to (9) and (11). On the other hand, we can
employ the inequality

n—1

> (=1,

k=m

<exp

n—1
exp(—K —KkZ (—l)k_’”lk).

By using the right-hand side of (A5) for the interaction line
we underestimate the transition amplitude damping (i.e., ef-
fectively underestimate «). It may seem that this choice of
the expression for the interaction line can even increase the
transition amplitude over its value at k=0, but this is not so.
Since we are considering the incommensurate case, where
the interaction line surrounds only an even number of verti-
ces (i.e., an odd number of /), the choice of a specific sign
in the exponent after the absolute-value sign has been re-
moved is determined by what number of [, is greater, the
odd or the even. This leads to a situation in which the effec-
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tive transition amplitude of any higher-order diagram can
only decrease. For the diagram in Fig. 1b in the coordinate
representation the contribution of the interaction lines is

67K1267K|117[2713‘—>67K12€7K(11712+l3):€7'(([1+l3).
(A6)
In the momentum representation this yields

1 1 1

A4
AG(e,p)=A e—p+idletp+ike—p+ide+p+ik
o ! A7
pe——s w

An analysis of any higher-order diagram shows that in this
case the contributions of all N-order diagrams are equal and
in the momentum representation have the form (the
alternating-« ansatz)

GN<s,p)=|A|2N( (A8)

e—p+id)Nt! (s+p+iK)N.

Then the entire series can easily be summed, much like the
case with k=0 (Refs. 13 and 14), and for the Green’s func-
tion we obtain

©

GR(e,p)= 2, N!Gyle,p)
N=0

* etp+ik
=f dle ¢ .
0 (8—p+i5)(8+p+iK)—§|A|2
(A9)

This expression can easily be used to calculate the corre-
sponding spectral density or the one-particle density of
states:

N(e) UK [ °°
N(Ep) _Tﬁxdgf’fo i

Xe ¢

A2
(2= &= LA+ (vpK) (e = £,)%
(A10)

where we have restored v . In Fig. 10 we compare the den-
sities of states for different values of « (or correlation length)
that we calculated by the alternating-x ansatz and a recur-
rence relation of the form (12) in the one-dimensional
model.’’~17 We see that the results are quantitatively close
for almost all values of k. Since, as noted earlier, our main
ansatz (12) and (A4) somewhat overestimates the role of the
finiteness of «, while the alternating-xansatz (A7) underes-
timates it, we can easily see that the exact value of the den-
sity of states differs little from the these two approximation
to the contributions of higher-order diagrams. The situation
with the spectral densities is similar. Actually this means that
the results for the main physical quantities determined by the
one-electron Green’s function are not strongly dependent on
the way in which a finite « enters the expressions for higher-
order diagrams. What is important is that we must take into
account (at least approximately) all perturbation-theory dia-
grams with allowance for their different combinations. This
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FIG. 10. One-electron density of states in the one-dimensional model for
different values of the parameter v zx/A: 0.1 (curve 7), 0.8 (curve 2), and
1.2 (curve 3). The solid curves represent the results of calculations by for-
mulas of the form (12) and (14) (Ref. 15), and the dashed curves represent
the results of calculations by (A10).

should not come as a big surprise, since the main effect of
pseudogap formation is due primarily to backward scattering
by a vector Q~2pr, which is accounted for exactly in the
limit £—0, while the effect of a finite « reduces to an addi-
tional weak modulation of the random field, which leads to
damping of the field’s correlator and smearing of the
pseudogap.

Naturally, the alternating-« ansatz can also be written in
the form of a recurrence relation of the form (14) for two-
dimensional models, which were discussed in the main body
of the text. For instance, if the hot-spot model we have

v(k)

isn_ §k+ iakka_Ek+ l(en ’gp) ’

(A11)
where a;=1 for odd k, and «a;=0 for even k. The other
notation is explained in the main body of the text. The data
on the density of states obtained via (A11) are depicted in
Fig. 6 and corroborate our conclusions. For the model of SC
fluctuations an expression similar to (A11) can also easily be
written.

Note that the alternating-« ansatz is formal and is used
here only to show that this more or less arbitrary approxima-
tion (which underestimates the role of the finiteness of « in
higher-order diagrams) leads to results that are quantitatively
very close to those obtained by the building-up-« ansatz (12)
and (A4) (which generally overestimates this role). The latter
approximation was used in Refs. 15—18 and in the main part
of the present paper and has a much deeper meaning. As
noted earlier, this approximation is exact in the vicinity of
hot spots for values of the parameters of the bare spectrum, ¢,
t', and u (topologies of the Fermi surface), that guarantee
equal signs for the velocity projections at the hot spots con-
nected by the vector Q. Reasoning along similar lines, in the
one-dimensional model we can obtain an expression of the
form (12) or (A4) for the higher-order contributions if we
consider a model for the correlator of short-range-order fluc-

2k(sn aé:p) = Az
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tuations with its maximum at an arbitrary scattering vector Q
much shorter than pp. In this case, for large correlation
lengths ¢, the electrons are scattered by fluctuations, staying
always on one branch (right or left) of the spectrum. Here
expressions if the form (A4) remain exact. After this is done,
in the final expressions for the contributions of higher-order
diagrams we perform a continuation to the region Q~2p of
interest to us, since the only dependence on Q is already
present via the bare electron spectrum. A similar result can
be achieved by varying the chemical potential x (band fill-

ing).

*E-mail: kuchinsk @ief.uran.ru
DE-mail: sadovski@ief.uran.ru
YA model similar in meaning to the one used here but differing somewhat

from (4) was employed by Schmalian ez al.:''"12
5 2 g* 1 2 g* 1

E24kT E24K
where k| and k, are the projections of the vector k parallel and perpen-
dicular to v, ¢, so that a result similar to (7) is obtained:

AZ
3(e,.p)= 7 _ - .
LZ A &proTilVprolk signe,

PIn the model of Ve employed by Schmalian et al'"'? for the case

Vp'Vp1@=>0 the following expression can be derived in a similar way:

1

Vesr(k) = A

S(b)=3(c)=A*
¢ [i8n7§p+Q+i|vp+Q|K]2

1
X - - s
ie,— £proti2|vy|([cosg|+]sin &)«
where ¢ is the angle between v, and vy, ¢ .
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Abstract—An analysisis made of characteristics of the superconducting state (s- and d-pairing) using asimple,
exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as anti-
ferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap
averaged over these fluctuationsis nonzero at temperatures higher than the mean-field superconducting transi-
tion temperature T, over the entire sample. At temperatures T > T, superconductivity evidently existsinisolated
sections (“drops’). Studies are made of the spectral density and the density of states in which superconducting
characteristicsexist in therange T > T, however, in this sense the temperature T = T, itself is no different in any
way. These anomalies show qualitative agreement with various experiments using underdoped high-tempera-
ture superconducting cuprates. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Among the numerous anomalies in the electronic
properties of high-temperature superconductors partic-
ular interest is being directed toward the pseudogap
state observed mainly at below-optimum carrier con-
centrations [1, 2]. These anomalies appear in many
experiments such as optical conductivity measure-
ments, NMR, inelastic neutron scattering, angle-
resolved photoemission spectroscopy (ARPES), and so
on (see the review [1]). Particularly clear evidence of
the existence of this state is observed in ARPES exper-
iments[1, 3] which demonstrate essentially anisotropic
changes in the spectral density of the carriers over a
wide range of temperature in the normal and supercon-
ducting phases of these systems. The maximum of
these anomalies is observed near the point (11, 0) in the
Brillouin zone, while they are amost completely
absent in the direction of the zone diagonal [near the
point (1T, 10). Qualitatively these anomalies can be con-
sidered as the complete “destruction” of the Fermi sur-
face near the point (11, 0), with Fermi-liquid behavior
conserved in the direction of the diagonal. In this sense
itisusual to talk of the “d-symmetry” of the pseudogap
matching the symmetry of the superconducting gap in
these compounds [1-3]. However, the fact that
pseudogap anomalies are observed up to temperatures
T~T*, appreciably higher than T, may indicate that the
nature of these anomaliesis completely different and is
not directly related to superconducting pairing. This
conclusion is also supported by the fact that the
pseudogap state is mainly observed for nonoptimum
compositions close to the antiferromagnetic phase of
high-temperature superconducting cuprates.

In the theoretical context, attempts to construct
models of the pseudogap state of high-temperature

superconductors follow two main approaches. One is
based on the very popular model of the formation of
Cooper pairs above the superconducting transition tem-
perature[2, 4—7]. The other assumesthat the pseudogap
state is caused by fluctuations of the antiferromagnetic
short-range order (see, for example, [8-12]).

Most theoretical studies have been made of the
pseudogap statein the normal phaseaT > T.. In arecent
study [13] Posazhennikova and Sadovskii proposed a
very simple, exactly solvable model of the pseudogap
state, based on the concept that the Fermi surface has
“hot” (planar) sections, and this model was used to con-
struct a Ginzburg—Landau expansion for various types
of Cooper pairing and to study the qualitative effects of
the pseudogap (caused by fluctuations of the antiferro-
magnetic short-range order) on the fundamental prop-
erties of superconductors near T.. The present paper is
devoted to the further development of this simplified
model and analyzes the characteristic features of the
superconducting state over the entire temperature range
T<T.

2. MODEL OF THE PSEUDOGAP STATE

We shall analyze an extremely simplified model of
the pseudogap state [13] based on a pattern of well-
devel oped fluctuations of the short-range antiferromag-
netic order, similar to the model of “hot spots’ on the
Fermi surface [11].! We shall assume that the Fermi
surface of a two-dimensional electron system has the
form shownin Fig. 1. Thistype of Fermi surface hasin
fact been observed in ARPES experiments on high-

1 We note that our analysis can essentially also be applied to the
case of short-range order fluctuations of the charge density wave
type and other similar models.

1063-7761/00/9003-0535%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Fermi surface of atwo-dimensional system. The hot
sections, of width ~&~L, are shown by the heavy lines.

temperature superconducting cuprates (see, for exam-
ple, the very recent studies [14, 15]). We shall assume
that the fluctuations of the short-range order are static
and Gaussian, determining their correlation functionin
the following form (see [8]):

&t E‘l
S(q) - 5 ) 2! (1)
nz(qx Q) +E7(q—-Q,)*+E

where ¢ isthe correlation length of the fluctuations and
the scattering vector is taken in the form Q, = +2k,
Q =00rQ,==*2kg Q,=0. We postulate that only elec-
trons from the planar (“hot™) parts of the Fermi surface
shown in Fig. 1 interact with these fluctuations and this
scattering is in fact one-dimensional. The effective
electron interaction with these fluctuations will be
described by (2m2W2Y(q) where the parameter W has
the dimensions of energy and determlnes the energy
scale (width) of the pseudogap.? The choice of scatter-
ing vector Q = (£ 2K, 0) or Q = (0, +2k;) implies a pat-
tern of incommensurate fluctuations (it is possible to
generalize to the commensurate case [13] but we do not
consider thishere). Inthelimit & — oo, thismodel can
have an exact solution using methods proposed for the
one-dimensional casein [16]. For finite { we can con-
struct an “almost” exact solution [11, 12] using a gen-
eralization of the one-dimensional approach developed
in [17, 18]. In the present study we only consider the
simplest variant of the model with § —» o, when the
effective interaction with the fluctuations (1) has the
very simple form:®

(2m)* W 8(ql + 2P£)8(ql,) +3(ay £ 2pe)3(a)} - (2)

In this case we can easily sum al the perturbation the-
ory seriesfor an electron scattered at these fluctuations

2Wecan say that we are introducing the effective interaction “ con-
stant” with fluctuations of the type W, = W[6( pg —pY6( pg +p) +

a(py —Pe(p; + py)].

3 We stress that because of the Gaussian nature of the fluctuations
the limit & —— 0 does not imply the establishment of any long-
range order.
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[16] and for the single-electron Green's function we
obtain [13]

00

G(e,, p) = J’dDQP(D) 5

(ien)’ —zp D(9)*
—pe) (vg isthe velocity at the Fermi

©)

where &, = VF(lpl

surface), €, = (2n + 1)TT, and the fluctuating dielectric
gap D(¢)) isonly nonzero in the hot sections:
0 n_ n
DD’ O<g<a, 5 GS([)SZ,
D(g) = O - (4)
%b, as@s< E —-a,

wherea = arctan( pg /pe) and @isthe polar angle deter-
mining the direction of the vector p in the plane p,p,.
For other values of ¢ the value of D(¢) is obviously
determined by analogy with (4) from symmetry con-
cepts.

The amplitude of the dielectric gap D is random and
obeys a Rayleigh digtribution [17] (its phase is then also
random and uniformly distributed on theinterva (0, 2m)):

D?
—exp% WzEf (5)

Thus, at the hot sections the Green’s function has the
form of a“normal” Gor’ kov Green's function averaged
over the fluctuations of the dielectric gap D distributed
in accordance with (5). The “anomalous’ Gor’kov
functions at these “dielectrified” sections are zero
(because of the random phases of the dielectric gap D),
which corresponds to the absence of any long-range
order but their pair averages are nonzero and make
some contribution to the two-particle Green’s function
[13, 16]. By varying the parameter a in (4) intherange
0 < a < 174, we can change the size of the hot sections
on the Fermi surface for which the nesting conditions
{p—q = —<p Is sdtisfied. In particular o = 174 corre-
sponds to a square Fermi surface. Outside the hot sec-
tions [the second inequality in (4)] the Green’s func-
tion (3) is smply the same as the Green’s function of
the free electrons.

Results of calculations of the electron density of
states and the spectral density corresponding to (3) are
presented in [13] and demonstrate the formation of a
pseudogap (having the characteristic width ~2W) and
non-Fermi-liquid behavior at the hot sections. In the
model having a finite correlation length & the Green's
function for these sections is represented as a continu-
ousfraction [19] (seesimilar resultsin[11, 12, 17, 18]).
Inthis case, the spectral density demonstratesincreasingly
smeared behavior (compared with the case § — o) with
decreasing &, which was described in detail in [11, 12,
18]. In[19] thismodel was used to cal culate the optical
conductivity of a two-dimensional system in the
pseudogap state.

?(D) =

No. 3 2000



SUPERCONDUCTIVITY IN A SIMPLE MODEL OF THE PSEUDOGAP STATE

3. SUPERCONDUCTIVITY
IN THE PSEUDOGAP STATE

We shall now analyze superconductivity using this
model. We shall assume that superconducting pairingis
caused by an attractive potential which has the follow-
ing very simple form [13]:

V(p, p) = V(o ¢) = -Ve(p)e(). (6)

Here @ is the angle which, as before, determines the
direction of the electron momentum p in the plane and
for e(¢) we take the smplest model dependence:

o(q) = (L (s-pairing), @
¥ = Bzcos(29)  (d-pairing).

The attraction constant V is usually assumed to be non-
zeroin acertain layer of width 2w, near the Fermi level
(w, isthe characteristic quantum frequency responsible
for the attraction of electrons). In this case, the super-
conducting gap has the form

A(p) =A(9) = Ae(9). (8)

We shall first consider superconductivity in asystemin
which there is afixed dielectric gap D at the “hot” sec-
tions of the Fermi surface. The problem of supercon-
ductivity in a system with a partially dielectrified spec-
trum at various parts of the Fermi surface has been
addressed in various studies (see, for example [20, 21])
and was analyzed by Bilbro and McMillan [22] using a
model very close to our case, from which we can use
some of the results directly or simply generalize them.

In particular, for s-pairing the equation for the
superconducting gap A in this model has the form

o O tapi& +D°+A%D)

. 2T
1= A[dEm
-[ % JE2+ D%+ AY(D)
©)
e+ A%(D) o
+(1-8) 2t__H
JE+' D) [

where A = VN(0) is the dimensionless pair-interaction
constant [Ny(0) is the density of states of free electrons
at the Fermi level] and the parameter o = 4a/Tt deter-
mines the fraction of hot (planar) sections on the Fermi
surface.

In equation (9) the first term on the right-hand side

corresponds to the contribution of hot (dielectrified)
sections for which the electron spectrum has the form

[22] E, = /&5 + D?+ A% and the second term givesthe
contribution of the “cold” (metal) sections where the
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spectrum has the usual form in BCS theory: E, =

J&2 + A%, Equation (9) determines the superconduct-

ing gap A(D) for afixed dielectric gap D which is non-
zero at the “hot” sections.

For d-pairing the similar equation has the form

W,

-
1=A=-[dé
!

a &+ D2+ 4%(D)€(g)

 Jdoe’ (@ — ——— (10)
5 J& + D*+ 2%(D)e%(g)

e I DY

+ J’d(pez((p) — Al - 0

a JE+a (D)) O

It can be seen from these equations that A(D) decreases
with increasing D and A(O) isthe same as the usual gap
A, in the absence of any dielectrification at the planar
sectionswhich appears at thetemperature T = T, deter-
mined by

(11)

_LedE o E
1 =A[—=tanh
,(I:E 2TcO

both for s- and d-pairing.

For D —» oo the first termsin (9) and (10) vanish
since the corresponding equationsfor A, = A(D — )

have the form
L cdE(A=d), | JE+AL
1—)\I > 2tanh 5T
O/\/E +Aoo
(s-pairing),
1= 22 [ 2012010
el T
(d-pairing).
Equation (12) agrees with the equation for thegap D = 0

with the renormalized coupling constant A = A(1—a)
so that for s-pairing

A, = Ay (A=A1-@)) (14)

and thus a nonzero gap for D —» o appears when
T < Tow

(12)

e 4

(13)

Te = Ty (A= A(1=@)). (15)
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For the case of d-pairing we obtain from equation (13)

Tew = Teo (A= A(1—-0y)), (16)
where
o, = G +%“5‘) (17)

isthe effective fraction of planar sections for d-pairing.
Hence, for T < T, the gap is nonzero for any values of
D and decreasesfrom Ay to A, withincreasing D. When
Te < T< Ty, thegapisonly nonzerowhen D < D,,,.. The
corresponding dependences of A on D are easily
obtained by solving equations (9) and (10) numerically.

In our model of the pseudogap state the dielectric
gap D is not fixed but is arandom quantity with adis-
tribution given by (5). The equations obtained above
must be averaged over all these fluctuations. Then we
can directly calculate the exact superconducting gap
[AJaveraged over the fluctuations of D:

[

[MO= IdD@(D)A(D)
(18)

QA(D)

The dependences A(D) described above have the result
that the average gap (18) is nonzero asfar as T = T,
i.e., as far as the superconducting transition tempera-
ture in the absence of pseudogap anomalies. However,
the superconducting transition temperature T, in a
superconductor with a pseudogap is clearly lower than
Ty [13]. This paradoxical behavior of [AOevidently
implies that local regions with A # O (superconducting
drops) induced by fluctuations of D appear over the
entire temperature range T, < T < T4 and a supercon-
ducting state coherent over the entire sample is only
established intheregion T < T.. Quite clearly, this qual-
itative picture can only be completely substantiated by
analyzing amore realistic model where the fluctuations
of the antlferromagnetl c short-range order have afinite
length £.4 However, the simplicity of the {§ — o
model considered here means that an exact sol ution can
be obtained immediately for (AL

In order to determine the superconducting transition
temperature T, in the entire sample we shall use the
standard procedure of the mean-field approximation
(see, for example, a similar procedure applied to a
superconductor with impurities [24]) which is under
the assumption of self-averaging of the superconduct-
ing gap over the fluctuations of D (i.e., A isindependent

= —J’dDDexp

4 The qualitative situation here resembles the formation of an inho-
mogeneous superconducting state induced by strong fluctuations
of the local density of states near the Anderson metal—insulator
transition [23, 24].
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of the fluctuations of D). The equations for the mean-
field gap A then have the form

0
0, D
1= )\J’dE[p(—J’dDDexpD D°0

D
u

JE +D?+ DY

tanh
x 2T +(1-a)

JE D+ Ay

(19)

EZ + Ar2nf
2T

JE + D

tanh

o o o

for s-pairing and

£

=
1

A=[d¢

=EEN

O%

DQRODPO
S
O
2
i=]
m
|O
O

JE+ D2 + 02, €%()
2T

JE+ D2+ 02, e%()

a tanh

x jdcpez(cp)
0

(20)

&+ A% ()
2T

JE + D% e (@)

4 tanh
+ J’d(pez((p)

o o

for d-pairing.

From equations (19) and (20) we can easily derive
the corresponding equations for T.. For example, for
s-pairing we have

0. 2 0 D’
1 = A[pm—(dDDexp=——
0 WZ_!. Ol WZD
(21)

“EZ+D +(1- O()J'd&tanh 5

2TC 0

UETD

For d-pairing @ in (21) must be replaced by o, from
(17). These equations for T, are the same as those
obtained in the microscopic derivation of the Gin-
zburg-Landau expansion using this model in [13]
where they were studied in detail. In general we always
have Te,, < T.< T
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Thetemperature dependences of the average gap (AL
and the mean-field gap A,y obtained by means of a
numerical solution of the equations from our model for
the case of s-pairing are plotted in Fig. 2°The gap A
vanisheswhen T = T, < T, while [Ais honzero as far
asT =T, and the correspondi ng “tails’ in the temper-
ature dependence of [Allintherange T, < T < Ty are, in
our view, consistent with the existence of supercon-
ducting “drops’ in this region in the absence of super-
conductivity over the entire sample, as was described
above. We note that the temperature dependences
[A(T)Opresented in Fig. 2 are similar to those for the
gap in underdoped high-temperature superconducting
cuprates extracted from ARPES experiments [3, 25]
and from measurements of the specific heat [26]
assuming that the observed temperature T, in these
samples corresponds to our mean-field T, whereas
dropswith [A[ O existintherange T> T, asfar as T,
which is substantially higher than T.. This interpreta-
tion of the data would imply that in the absence of a
pseudogap the underdoped cuprates would have a sig-
nificantly higher superconducting transition tempera-
ture.

Although, in our opinion, superconductivity is not
present over the entire sample when T, < T < T, the
existence of a nonzero average gap [ALin this region
leads to the appearance of various anomalies in the
observable quantities, such as the tunneling density of
states and the spectral density measured in ARPES
experiments, as we shall see subsequently.

4. SPECTRAL DENSITY AND DENSITY
OF STATES

The delayed electron Green's function near the hot
section of the Fermi surface in the superconducting
state has the form

00

GY(E &, = J’dD@(D)

(22)
X E+ Ep ]
(E+i0)*~&;-D*~A%(D)e*(¢)
The corresponding spectral density is.
1
A(E. &) = —ZImMG"(E, &,)
2" D’
- V?IdDDexpE—VVZ%E+ £,) (23)
0

x 8(E5 + D* + A*(D)e’(g) — E).

5 For d-pairing the temperature dependences of [AQand Ay are
qualitatively similar to the corresponding dependences for s-pair-

ing.
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TIT,q

Fig. 2. Temperature dependences of the superconducting
gaps A (dotted curves), [AC(solid curves), and Aq (dashed

curve) for s-pairing: (1) A =0.4, a =2/3, wy/W=3 (TdTn=
0.42),(Q A =04, a =0.2, w/W=1(TJTg = 0.71).

Using the mean-field procedure, in which we assume
that A = A; does not depend on D, we obtain

El + nE
An(E,E,) = llE_jg
W
A7 (@) - EZD
x ex Dp i 24
pD W (24)
x B(E*— &5~ A% e(9)).

In this approximation a gap appearsin the spectral den-
sity at the Fermi surface (¢, = 0) when [E| < A, and dis-
appearswhen T — T.(A,+ — 0). Infact we have seen
that the gap A depends strongly on the dielectric gap D
[see (9) and (10)] so that from (23) we have

E|+&,sgnE 0 DO
MEG) = 3 e
i (25)
x1+80)  eg)
dD? D=D

where D, are the positive roots of the equation D? + Ef, +
A%(D)eX(q) — E? = 0. The energy dependences of the
spectral density for §, =0, i.e., for the electron momen-
tum at the Fermi surface (we shall subsequently confine
our analysisto this case) are plotted in Figs. 3 and 4 for
s and d-pairing respectively.
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0 0.4 0.8 1.2 1.6 2.0
E/W

Fig. 3. Spectral density at the Fermi surface for s-pairing
and T/Tg = (1) 0.8, (2) 0.4, (3) 0.1: () A = 0.4, a =0.2,
WJW=1(TSTen=0.71, T/T = 0.54); dotted curve—mean-
field spectral density A (E) for T/Teg = 0.4; (b) A = 0.4,
G = 2/3, /W =3 (TdTyy = 042, Teo/Tep = 7 x 1079); the
dotted curve gives the mean-field spectral density A (E) for
TIT=0.1.

For T, < T < Ty, adiscontinuity is observed in the
spectral density at E = D, caused by a discontinuity
in the derivative dA%(D)/dD? at D = D (i.€., the max-
imum value of D at which the gap A(D) is nonzero).
Effects involving the finite correlation length & of the
fluctuations inevitably smooth this discontinuity,
although the characteristic dip after the principal spec-
tral density peak is conserved. A similar dip was
observed in the ARPES experiments [1, 3] athough
this has not yet been fully interpreted.
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AE)W
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0.4

03} 2
0217

0.1}

3 (b)

T
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0.4
0.2
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E/W

Fig. 4. Spectral density at the Fermi surface in the direction
@ = 0 for d-pairing when T/Tg = (1) 0.8, (2) 0.6, (3) 0.1:

(@A=04,a =0.2, 0/W=1(TyTy=0.42, Toe/ T =0.2);
(b)A=04, & =2/3, w/W=5 (T Ty = 0.48, Tooo/ Ty ~ 10729).

The dotted curves give the mean-field spectral density
A (E) for T/To=0.1.

For the case of s-pairing the value of D? + A(D)
increases with increasing D so that the equation D? +
A?(D) —E?2 = 0only hasrootsfor |E| > A,. Thus, the gap
in the spectral density is observed when |E| < A, so that
the width of this gap is determined by the value of A,
and not A In addition, the gap in the spectral density
appears when T = T, and the behavior of the spectral
density at the point T = T, does not exhibit qualitative
changes.
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For d-pairing when the pseudogap width Wisfairly
small and the fraction of planar sectionsaissmall, the
value of D? + A%(D)e?() also increases with increasing
D and the width of the gap in the spectral density
becomes equal to Aye(@) as in the case of s-pairing.
However, as the pseudogap width W and the fraction of
planar sections increase, D? + A*(D)e’(¢) decreases
with increasing D for fairly small D with the result that
the width of the gap in the spectral density becomes
smaller than A, and for E = A, a discontinuity appears
in the spectral density (the discontinuity at E = D, iS
also retained).

We shall now analyze the tunneling density of states
N(E). For s-pairing we have

00

N(E) _ IdDDexpD

No(0) ~

DD

o e
0 JE?—D?—A¥(D)

X

0(E°—D’-A%(D)) (26)

|E|
JE?=N*(D)

Under the assumption of self-averaging the gap A is
equal to A,; and does not depend on the fluctuations of
D, and then

+(1-a) G(EZ—AZ(D))El

JE?—nZ,

J’ dDDexpD DZE

Nmf(E)
No(0)

. 2
W2

DD%DD

~ O
S = I N |- =

A/E D*—A% E -2 O

x O(E*=AZ,).

In this approximation when |E| < Ay agap appearsin the
density of statesand disgppearswhen T— T (A — 0)
but in this case a singularity remains (as discussed in
[13]) in the form of a pseudogap caused by the antifer-
romagnetic fluctuations:

(27)

DD
2]

N(E) _

= cx— dDDex L
No(0) I PO

(28)
|El
JE?-D?
In fact A(D) in (26) depends strongly on D in accor-
dance with (9). It can be seen from (26) and the corre-

sponding dependence A(D) that when T< T, agap is
observed in the density of states for E < A,, but when

X

+(1-a).
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T > T.., N0 gap is observed but some contribution to the
pseudogap associated with the superconducting pairing
still remains. For T, < T < Ty, the gap function A(D) is
nonzero when D < D, so that differences from the
pseudogap behavior caused only by antiferromagnetic
fluctuations are observed in the density of states when
T, < T < Ty and the antiferromagnetic pseudogap (28)
isonly retained when T > T,

Figure 5 shows the behavior of the density of states
inthe s-case at various temperatures. A kink on the den-
sity of statesis observed at [E| = Agand when T > T, a
second kink isobserved for [E| = A, > 4 athough this
kink is only appreciable at high temperatures T ~ T,
The density of states only undergoes quditative
changes at T = T, and there are no particular features
at the mean-field temperature T..

For d-pairing the expression for the density of states
has the form

N(E)
No(0)

_42 p 0 D’
0

j I2
x Ofde
Bo[ JE?—D?-%(D)€e¥(g)

x B(E*-A*(D)€’(¢) - D?)

(29)

4

+ [ do [El

JE2—p*(D)eX ()

Under the assumption of self-averaging the gap A is
equal to A,y and does not depend on D. The width of the
superconducting pseudogap in the density of statesis
then of the order A4, the corresponding contribution
disappears when T — T, and only the pseudogap
associated with the antiferromagnetic fluctuations (28)
remains. In reality in (29) A depends on D and is deter-
mined by equation (10).

The behavior of the density of statesinthed caseis
shownin Fig. 6. Asin the case of s-pairing a substantial
difference is observed between the exact density of
states and that obtained in the mean-field approxima-
tion as a result of fluctuations of the superconducting
gap (superconducting drops) caused by antiferromag-
netic fluctuations of the short-range order. The exact
density of states does not in fact sense the supercon-
ducting transition in the entire system which takes
place at T = T,. In this case, the characteristic width of
the superconducting gap (pseudogap) in the density of
states is of the order A and not A, as follows from the
mean-field approximation. The corresponding contri-
butions become observableat T =Ty > T..

8(E*~ AX(D)eX(@) O
|
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N(E)/Ny(0)

!
N
(e

20|

|
0.20
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(b)
12f
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a
4
04 i
7
4
. 1 1 1 1 ]
0 04 08 12 16 20
EW

Fig. 5. Spectral density for s-pairing: (&) A = 0.4, @ =0.2,
WJW = 1 (T/Teg = 0.71, TSTq = 0.54), T/Tg = 0.8 (1),
0.71(2),0.54 (3), 0.4 (4); dotted curveis mean-field density
of states N ¢(E) for T/ Tg = 0.4; inset shows density of states
for TyTep=04; () A =04, & = 2/3, /W= 3 (T/Tp =042,
Teo/ Tep = 7 % 1079), T/Tn = 0.8 (1), 0.42 (2), 0.2 (3), 0.05 (4);
dotted curve is mean-field density of states N (E) for TdTg =

0.2, dashed curve displays pseudogap behavior of dendty of
satesfor T> Tep.

5. CONCLUSIONS

In this study we have continued our investigation of
characteristic features of the superconducting state
using a highly simplified model of the pseudogap in a
two-dimensional electron system which can have an
exact solution [13]. The main simplifying assumption
of our model (in addition to the condition of static fluc-
tuations) involves using the limit § — o for the corre-
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N(E)/Ny(0)
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(b)

1.2+

1 1 ]
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E/W

Fig. 6. Spectral density for d-pairing: (&) A = 0.4, & =0.2,
WdW=1(TJTen=042, TYTn=0.2), T/Ten = 0.8 (1), 0.42 (2),
0.2 (3); dotted curve is mean-field density of states Ny#(E)
for T/T,g = 0.2; inset shows density of statesfor T/Tg=0.2;
() A =04, & =2/3, (/W=5(TdTp=0.48, Toe/Toy ~ 1075),
T/ = 0.8 (1), 0.48 (2), 0.1 (3); dotted curve is mean-field
density of states N,(E) for T/Tg = 0.1, dashed curve dis-
plays pseudogap behavior of density of statesfor T > T.

lation length of the antiferromagnetic fluctuations of
the short-range order, which allows us to obtain funda-
mental equationsin afairly clear form. In particular, in
thislimit we can easily find an exact expression for the
average superconducting gap (18). In principle, this
model of a pseudogap state can be generalized to finite
correlation lengths [11, 12, 19] although it is unclear
how far an analysis of superconductivity outside the
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scope of the mean-field approach can be carried out as
part of this generalization, as we did above for the case
§ — oo. It is qualitatively clear that finite ¢ leads to
some smearing of characteristics such askinks and dis-
continuities, which were obtained in the & — o model
in the dependences of T, and other characteristics of the
superconducting state on €.

The results obtained above indicate that the
pseudogap state induced by antiferromagnetic fluctua-
tions of the short-range order (or similar fluctuations of
charge density waves) not only leadsto important char-
acteristics of thenormal state[11, 12, 19] but also gives
fairly unusual properties of the superconducting state
caused by the partial dielectrification of the electron
spectrum (non-Fermi-liquid behavior) at the hot sec-
tions of the Fermi surface. These characteristics corre-
late with various anomalies observed in the supercon-
ducting state of underdoped high-temperature super-
conducting cuprates. Naturally a more serious
comparison with the experiment can only be made
using a more redlistic approach which particularly
allows for the effects of finite correlation length ¢
which inreal systems are relatively small. At low tem-
peraturesit isa so important to alow for the fluctuation
dynamics.
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Abstract—~Peculiarities of the superconducting state (s and d pairing) are considered in a simple model of the
pseudogap state caused by short-range fluctuations (e.g., of the antiferromagnetic type), which is based on the
model of a Fermi surface with “hot” regions. A system of Gor’kov recurrence equations is constructed taking
into account all diagrams in perturbation theory in the electron interaction with short-range fluctuations. The
superconducting transition temperature is determined, and the temperature variation of the energy gap depend-
ing on the pseudogap width and the correlation length of short-range fluctuations is analyzed. In a similar
approximation, amicroscopic derivation of the Ginzburg—L andau expansion is carried out, and the behavior of
the main physical parameters of the superconductor near the transition temperature is studied depending on the
pseudogap width as well as the correlation length of the fluctuations. The obtained results are in qualitative
agreement with a number of experiments with underdoped HTSC cuprates. © 2001 MAIK “ Nauka/lnterperi-

odica” .

1. INTRODUCTION

The pseudogap state observed in a wide region on
the phase diagram for HTSC cuprates leads to numer-
ous anomalies in their properties in the normal as well
as superconducting states [1]. These anomalies can be
explained using two basic theoretical scenarios. The
first is based on the model of the formation of Cooper
pairs even above the superconducting transition tem-
perature [2-4], followed by the stabilization of their
phase coherence at T < T.. The second assumes that the
origin of the pseudogap state is associated with fluctu-
ations of the antiferromagnetic (AFM) short-range
order existing in the region of underdoped composi-
tions on the phase diagram [5-7]. A number of recent
experimental results convincingly demonstrate the
validity of the second scenario [8, 9].

Most of theoretical publications are devoted to an
analysisof the models of the pseudogap statein the nor-
mal phaseat T > T.. We proposed [10, 11] avery simple
exactly solvable model of the pseudogap, which is
based on the concept of “hot” (planar) regions existing
on the Fermi surface. In the framework of this model,
the Ginzburg-Landau expansion was constructed for
various types of Cooper pairing [10] and the peculiari-
ties of the superconducting state in the range of T < T,
[11], caused by short-range fluctuations of the AFM
type, were analyzed. We used an extremely simplified
model of Gaussian short-range fluctuations with an
infinitely large correlation length, which allowed us to
obtain the exact solution for the pseudogap state. Inreal

systems, the correlation length of AFM fluctuations is
finite and comparatively small [6]. The present work is
mainly devoted to the generalization of the main results
obtained by us earlier [10, 11] to the case of finite cor-
relation lengths of the short-range AFM fluctuations
and to the analysis of the main parameters of the super-
conducting state as functions of this correlation length
and the effective width of the pseudogap.

2. MODEL OF THE PSEUDOGAP STATE

The simplified model of the pseudogap state [10,
11] under investigation is based on the pattern of well-
developed fluctuations of the antiferromagnetic short-
range order and is close to the model of “hot points’ on
the Fermi surface [6]. We assume that the Fermi surface
of a 2D electronic system has the form depicted in
Fig. 1. Such aFermi surface was observed in a number
of ARPES experiments on HTSC cuprates [12, 13]. It
should be noted that the assumption concerning the
existence of planeregionsis not of fundamental impor-
tance for our model. However, it considerably simpli-
fied the calculations which could also be in principle
made in a more realistic model of hot points. Such a
model of the Fermi surface was applied long ago to
HTSC cuprates by many authors [14-16] who thor-
oughly analyzed, among other things, the microscopic
criteria for the existence of the antiferromagnetic and
superconducting phases. We will be using a purely phe-
nomenological model presuming the existencein asys-
tem of static Gaussian fluctuations of a short-range
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order with a correlation function (structural factor) of
the form [5]

_ 1 &t &t
S(q) - 5 2 _ 2 Y (1)
(90— Q) +E7%(q,- Q) +&7

where & isthe correlation length of the fluctuations, and
the scattering vector is taken in the form Q, = +2k,
Q =0, 0r Q =2k, Q, =0, which envisages the pres-
ence of incommensurate fluctuations. The factorized
form of correlator (1) introduced in [5] considerably
simplifies the calculations and is virtually identical
guantitatively to the conventional isotropic Lorentzian
in the range |g — Q| < &, which is the most important
for our analysis[7].

The least physically justified assumption concerns
the static form of fluctuations and can be used only at
high temperatures [6, 7]. At low temperatures, includ-
ing those corresponding to the superconducting phase,
the spin dynamics may naturally turn out to be quite
significant. This also applies to the microscopic theory
of Cooper pairing in the model of a“nearly antiferro-
magnetic” Fermi liquid [17, 18]. However, we
assume that the static approximation used here is
sufficient for an analysis of the qualitative effect of
pseudogap formation on the superconductivity, which
will be described by using a purely phenomenol ogical
approach of the BCS theory.

We present the effective interaction of electrons
with AFM fluctuations in the form

Vi = (2)°W’S(q), )

where parameter W determinesthe energy scale (width)
of the pseudogap. We assume that only the electrons
belonging to planar (hot) regions on the Fermi surface
interact with fluctuations, so that the value of W effec-
tively differs from zero only for these electrons [10,
11]. We completely disregard the spin structure of the
interaction, which could be easily taken into account
[6], but thiswould make our calcul ations more cumber-
some. Inthis sense, our analysis can be applied literally
to a description of the interaction between short-range
fluctuations and charge density waves rather than spin
density waves. We also assume that this smplifying
assumption isinsignificant for an analysis of the quali-
tative effects of the pseudogap state on superconductiv-
ity that we are interested in.

The factorized form of correlator (1), and hence of
the effective interaction (2), makes the scattering from
fluctuations one-dimensional. In the limit of an infi-
nitely large correlation length (§ — ), the model of
scattering from such fluctuations has an exact solution
[10, 11, 19]. For afinite &, we can construct an “amost
exact” solution [7] generalizing the one-dimensiona
approach proposed in [20]. In this case, the sum of the
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PF YO WPF

Fig. 1. Fermi surface of a two-dimensional system. Hot
regions are shown by bold lines of thickness ~& L.

entire diagrammatic series for the one-particle Green’s
function for electrons from the planar regions on the
Fermi surface (where the nesting condition &, . o = —¢,
for the electron spectrum is satisfied) can be (approxi-
mately) determined.

For the contribution of an arbitrary diagram, we can
write the following ansatz for the N-order eigenenergy
component in the interaction (2) [7, 20]:

2N-1

2™ (en p) = W 7] Gog (. P).
i=1

3
1

ig,—(-1)'E, +ikk

Gij(‘c'n! p) =

where k = vg&™? (vr is the Fermi velocity), k; is the
number of interaction curves embracing the jth electron
line in the diagram (starting from the origin), and €, =
21T (n + 1/2) (we assume for definiteness that €, > 0).
Thus, the contribution of any diagram is actually deter-
mined only by the set of integers k. Any diagram with
the intersection of the lines of interaction isidentical to
a certain diagram of the same order without intersec-
tion of interaction lines, and the contribution of al dia-
grams with intersections can be taken into account
through the combinatorial factors v(k;) ascribed to
interaction lines on diagrams without intersections [ 20,
7, 6]. In the model of incommensurate fluctuations
under investigation, we have

K+l torodd K,

O 2

v(k) = (4)
Eéz foreven k.

Asaresult, we arrive at the following recurrence proce-
dure (presentation in the form of a chain fraction) for
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Fig. 2. Diagrammatic representation of the recurrence rela-
tion for aone-particle Green's function.

the one-particle Green's function G(g,, p) for electrons
from hot regions [20, 7, 6]:

Gk(sn’ p)

1

T enm (1% + K- WU K+ DGy a(ep) )

G(Sni p) = Go(sn’ p)

The diagrammatic representation of this procedure is
illustrated in Fig. 2.

Ansatz (3) for the contribution of an arbitrary
N-order diagram is usually not exact [7, 21]. However,
in the 2D case, we can indicate the topologies of the
Fermi surface for which representation (3) is exact [7].
In the remaining cases, it can be proved [7] that this
representation exaggerates (in a certain sense) the role
of the finiteness of the correlation length & in the given
order of perturbation theory. In the 1D case, when this
problem is especially vital [7, 21], it turns out that the
calculations of the density of states on the basis of
approximation (3) for incommensurate fluctuations
give anearly perfect quantitative coincidence [22] with
the results of the exact numerical simulation of this
problem, which was carried out in [23, 24] Linthelimit
& — o0, ansatz (3) can bereduced to the exact solution
[19], whileinthe limit § — O, it leadsto aphysically
correct limit of free electrons for afixed value of W.

Outside hot regions, electrons do not interact with
fluctuations atogether in our model, and the Green’'s
function remains free:

1
i“':n_zp.

G(enp) = Goo(€nP) = (6)

The model considered above leads to a non-Fermi-lig-
uid (two-hump) behavior of the spectral density in hot
regions on the Fermi surface and to a blurred
pseudogap in the density of states (cf. similar resultsin
the model of hot points [6, 7]). In cold regions of the
Fermi surface, we observe the conventional Fermi-lig-
uid behavior (free electrons).

LIn the case of a one-dimensional problem with commensurate
fluctuations, ansatz (3) failsto describe only aweak Dyson singu-
larity in the density of states near the center of the pseudogap [23,
24], also providing a quantitatively good approximation to the
exact results beyond the pseudogap. Note that in the 2D case, the
Dyson singularity in the density of statesisjust absent in all prob-
ability.
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3. GOR'KOV EQUATIONS FOR A
SUPERCONDUCTOR WITH A PSEUDOGAP

In our previous publications [10, 11], we analyzed
the peculiarities of the superconducting state in the
exactly solvable model of the pseudogap state induced
by short-range AFM fluctuations with an infinitely
large correlation length (§ —= o). Among other
things, it was proved [11] that AFM fluctuations may
lead to strong fluctuations of the semiconducting order
parameter (energy gap A), which violate the standard
assumption concerning the self-averaging of the gap
[25-27]. This assumption makes it possible to average
(over the configurations of the random field of static
short-range fluctuations) the order parameter A and var-
ious combinations of the electron Green's functions
appearing in the basic equations of the theory. The con-
ventional arguments in favor of such an independent
averaging are usually formulated as follows [25, 27].
The value of A varies over characteristic scales of
length of the order of the coherence length &, ~ v/A,
inthe BCStheory, while Green’sfunctionsvary rapidly
over much smaller scales of the order of atomic spac-
ings. Naturally, the latter assumption becomes incor-
rect when a new characteristic length & —» co appears
for the electronic subsystem. At the same time, if the
antiferromagnetic correlation length § < &, (i.e, if
AFM correlations correlate over distances smaller than
the characteristic size of Cooper pairs), the assumption
concerning the self-averaging of A must be preserved,
being violated only in the region where § > &,. For this
reason, the subsequent anaysis will be carried out
assuming self-averaging of the energy gap of a super-
conductor over AFM fluctuations. Thisallows usto use
the standard approach of the theory of disordered
superconductors (mean-field approximation in the lan-
guage of [11]). In this case, the interesting question
concerning superconductivity in the absence of self-
averaging of the order parameter is not considered. It
should be noted that for real HT SC cuprates, we appar-
ently always have & ~ &;, so that these materialsfall in
the most complicated range of parameters of the theory.

Following [10, 11], we assume that the supercon-
ducting pairing is governed by the attraction potential
of the following simplest form:

V(p,p') = V(o @) = -Ve(g)e(9), ()

where @ is the polar angle determining the direction of
the electron momentum p in a plane, and for (@) we
assume the following ssimplest model dependence:

&(q) = L (s-pairing), ®
¥ = Bscos(29)  (d-pairing).

As usual, the constant of attraction V is assumed to be
other than zero in a certain layer of width 2w, in the
vicinity of the Fermi level (w is the characteristic fre-
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W2 (k+1)
e s + >+ —
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Fig. 3. Diagrammatic representation of the recurrence relation for Gor’ kov’s equations.

guency of quanta ensuring the attraction of electrons).
In this case, the superconducting gap has the form

A(p) =A(9) = Ae(9). 9)

In order to simplify the notation, we will henceforth
assumethat the gap A just standsfor A(¢) and will write
explicitly the angular dependence only when required.

The perturbation theory in the interaction with AFM
fluctuations (1) for the superconducting state must be
constructed on “free” normal and anomalous Green's
functions for the superconductor:

ie,+¢&
Gu(&m p) = ————2—,
olenP) = 7 &+ A (10)
+ AU
Foo(€n P) =

2, ¢2 2’
Ent &+ A

In the adopted model with planar regions on the Fermi
surface, the el ectron spectrum in the regions orthogonal
to the p, axis hasthe form &, = ve(|py| — pg) since the
electron velocity v is perpendicular of the p, axis (a
symmetric situation is also observed in the regions
orthogona to p,). Consequently, in the case of s-pair-
ing, when the value of A isindependent of the direction
of the momentum, the problem becomes completely
one-dimensional in the model with an interaction of
form (1) and (2). In the case of d-pairing, the situation
is more complicated since the value of A(¢@) depends on
p, evenin the planar regions orthogonal to p, (and, sym-
metrically, on the regions orthogonal to p,). For this
reason, it is convenient to analyze d-pairing by using
instead of Eq. (1) the correlator of fluctuations in the
form

E—l

14
= = 5
@ M 7 2pp) 2+ €2 @)
(11)
&t O
+ Pe) «
(9, F2pg)’+ &7 (q)%

In this case, the interaction does not affect p, and p, in
the planar regions orthogonal, respectively, to p, and p,,
and the problem becomes completely one-dimensional
again.
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We can now formulate an analogue of approxima-
tion (3) for the superconducting state also. The details
of the substantiation of the relations presented below
are given in Appendix A. The contribution of an arbi-
trary N-order diagram in interaction (2) to the total nor-
mal or anomalous Green's function has the form of a

product of N + 1 “free” normal Gij and anomalous

(ng;) Green's functions with frequencies and gaps

renormalized in acertain way (seebelow). Herek; isthe
number of the interaction curves embracing the given
jth electron line (starting from the origin of the dia-
gram). Asin the normal phase, the contribution of any
diagram is determined by the set of integersk;, and each
diagram with the intersection of interaction curves is
equivalent to a certain diagram of the same order with-
out intersection of these curves. Consequently, we can
again consider only diagrams without intersections of
interaction curves, taking into account the contribution
of the remaining diagrams through the same combina-
torial factors v (k) ascribed to the interaction curves as
in the normal phase. As a result, we obtain a diagram-
matic analogue of the Gor’kov eguations [28] pre-
sented in Fig. 3. Accordingly, we have two coupled
recurrence equations for the norma and anomalous
Green's functions:

Gy = Goy + GGGy — Gy FFy
~FoG*Fy —FolF Gy,
+ + + = + -t (12)
Fr = Fox + Fo GGy + —Fo FFy
+ G5 G*F, + G5F G,
where

G=Wv(k+1)Gy,., F =Wv(k+1)Fy,,, (13)

ig, + (1) €
Golen p) =~ D 5y
Ent &+ Al 14
. A*
Fox(€n P) = =

E2+82+[0*

No. 3 2001



484
and the renormalized frequency € and gap A

A=nd no=1+—% (15

Jeb+10)?

have been introduced in analogy with the case of super-
conductors with impurities [28].

Equations (12)—(15) can easily be used to derive a
system of recurrence relations directly for the real and
imaginary components of the normal Green’s function
and for the anomal ous Green's function:

8n = nkena

e
~ =2 k “N2 (%, 22!
(E-ImG)" + ((-1)*¢, + ReG) " +|A + F|

ImG, =

ReG,
_ (-1)'¢, + ReG
(E-ImG)”+ ((-1)'¢, + ReG)" + A + F|*

(16)

E = A*+|E+
k= - ~ .2 K ~2 |7 ~2t
(E-ImG)" + ((-1)*¢, + ReG)" +|A + F|

Let usintroduce the following notation:
IMG, = —€,J), ReG, = —~(-1)¢,R,, Fy = A* f,.(17)

It turns out that the recurrence relations for J, and f, are
completely identical in this case so that J, = f,.. Finally,
we arrive at the following system of recurrence rela-
tionsfor J, and R,

Je = [N+ Wov (k+1)J,, 4]
x[(2+0%) (N + WAV (k+ 1), 1)’

+E(1+ WAV (K+ DR )]

(18)
Re=[1+W v (k+1)R.4]

x [(2+ 82 P (N + WAV (K + 1)y, 1)°
+E2(1+ WAV (K+ 1)Rer)]

The normal and anomalous Green's functions for the
superconductor we are interested in can be defined in
terms of R, and J,,

ImG =-¢,J,, ReG=-¢R,, F'=24*J,
and have the form of atotally summed seriesin the per-
turbation theory in the interaction of an electron with
short-range antiferromagnetic fluctuations in the semi-
conductor.

(19)
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4. SUPERCONDUCTING TRANSITION
TEMPERATURE AND THE TEMPERATURE
DEPENDENCE OF THE GAP

The energy gap in a superconductor is defined by
the equation

Ap) = =T > Valp, P)F(enp).  (20)
P &,

The anomalous Green's function on planar regions of
the Fermi surface can be determined from Egs. (19) by
using the recurrence procedure (18). In our model, the
scattering from AFM fluctuations on the remaining
(cold) part of the Fermi surfaceis absent, and the anom-
alous Green's function has the same form asin Egs. (10).
As a reault, Eg. (20) for s-pairing taking into account
dependence (8) assumes the form

U w,
U~
1= A@MTS [dEIq(e,
ép( szn_{ € Jo(€n€)
(21)
2 2
“ tanh EZ_T_AE
+ (1) [l —= ]
0 E+ A O
O

where A = VN,(0) is the dimensionless constant of the
pairing interaction (Ny(0O) isthe density of statesfor free
electrons at the Fermi level) and a = 4a/m wherea is
the angular dimension of a planar region on the Fermi
surface (see Fig. 1). In our further numerical calcula-
tions, we will assume (quite arbitrarily) that a = 2/3,
i.e, a =106, which is close, for example, to the results
obtained in [12].

In the case of d-pairing, we must take into account
the angular dependence of gap (9), and Eg. (20)
assumes the form

W,

O q e
1= )\%ET{d(pez((p) z J%daJo(snz)

0
[z2 2.2 (22)
4 W, tanhw E
+ [ dge’(9) [ — =1
a 0 NE +Ae(@) E

Figure 4 shows the temperature dependences of the gap
width calculated from Eqg. (21) in the case of s-pairing
for various values of correlation length (parameter
K = ve&) of the fluctuations. In the case of d-pairing,
the corresponding qualitative dependences are quite
similar.
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0 02 04 06 0.8 1.0
T/TCO

Fig. 4. Temperature dependence of the superconducting gap
width in the case of s-pairing for various values of correla-

tionlength (parameter k = v,:E‘l) for AFM fluctuations, cal-
culated for A = 0.4, w/W=3,k/W=0(1), 1.0(2), and 10.0(3).
The dashed curve describes A(T) in the absence of a
pseudogap.

The equation for the superconducting transition
temperature T, follows directly from Egs. (21) and (22)
for A — 0. Inthiscase, Jo(A — 0) isindependent of
@ and isthe samefor s- and d-pairing. Accordingly, the
equation for T, hasthe form

[l 0,
O

1= }\mefchZ I d&Jo(eng; A —=0)
E €y —W

(23)

* tanh&/(2T
Hl_adf)J’dEM
0

[ .|

where the “effective” fraction of planar regions on the
Fermi surface is defined as

55( (s-pairing),
= 0 - 24
Gt Ep(+1—lTsin(T[a) (d-pairing). (24)
0

The theoretical dependence of T. on the pseudogap
width W and correlation length (parameter kK = V&™)
are shown in Fig. 5 (T, is the superconducting transi-
tion temperature in the absence of a pseudogap).

The general qualitative conclusion isthe same asin
[10, 11]: the pseudogap suppresses superconductivity
due to a partial “dielectrization” of the electron spec-
trum in hot regions on the Fermi surface. The suppres-
sion effect isthe strongest for k = 0 (infinitely large cor-
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Fig. 5. Dependence of the superconducting transition tem-
perature on the pseudogap width W and the correlation

length (parameter k = vE™2) for AFM fluctuations: k/W =

0.1(2), 1.0(2), and 10.0 (3). The dashed curve corresponds
tok =0[10]. Theinset shows the dependence of T, on k for

WiTg = 5.

relation length of AFM fluctuations) [10, 11] and
decreases with the correlation length, which is quitein
accordance with the experimental phase diagram of
HTSC systems.

It should be emphasized once again that all the
results described above are valid under the assumption
of the self-averaging of the superconducting order
parameter (gap) in AFM fluctuations (mean-field
approximation [11]), which holds for not very large
values of the correlation length & < &, where &, is the
coherence length for the superconductor (the size of
Cooper pairsat T = 0). For & > &, considerable non-
self-averaging effects appear, which are manifested in
the emergence of characteristic “tails’ on the tempera-
ture dependence of the averaged gap in the temperature
range T, < T < Ty [11].

5. COOPER INSTABILITY. RECURRENCE
PROCEDURE FOR THE VERTEX PART

It iswell known that the superconducting transition
temperature can also be determined in a different way,
namely, from the equation for the Cooper instability of
the normal phase:

1-Vx(0,0) = 0, (25)

where the generalized Cooper susceptibility is
described by the graph in Fig. 6. In this case, we are
dealing with the problem of calculation of the “triangu-
lar” vertex component taking into account the interac-
tion with AFM fluctuations. For the one-dimensional
analogue of our problem (and for real frequencies,
T =0), the corresponding recurrence procedure was
formulated in [29]. For the 2D model considered by us
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Fig. 6. Diagram for the generalized Cooper susceptibility.

here, this procedure was used for cal culating the optical
conductivity [30]. The procedure can easily be general-
ized to the case of Matsubara frequencies. Henceforth,
we will assume for definitenessthat €, > 0. This gives

Me1(En —€m ) = 1+ W2V (k)G Gk

N 2ikk E
O 2ig,—(-1)*veq—W2v(k+ 1)(Gy. 1 —Cks+1)0
(26)

X I_k(sn! <€ q)l
r(snv —€n q) = I_0($nv —€n q)!
where G, = G,(g,,, p + q) and Gy = G,(-¢,, p) are cal-
culated in accordance with relations (5).
In order to find T, we consider the vortex where q =

0. In this case, Gx = G, and the vertices I', become

real-valued, which considerably simplifies procedure
(26). Using a notation similar to (17), we obtain from
relations (5) and (26)

I
1+ WV (K+1)Je,,

Feey = 1+Wov(K) F., @70

while for R, and J, we have recurrence relations coin-
ciding with Egs. (18) for A= 0.

The following exact relation (which will be proved
below) of the type of the Word identity holds:

G(Snv p)G(_Sn’ p)r(ena _Sn! 0)
= (E2R5(Em &p) *+ €2d0(En &p))

X T o(n £ 0) = Jo(En &) = —= (£ D).

(28)

A numerical analysis completely confirms the validity
of this relation, demonstrating complete matching
between the recurrence procedures for the one-particle

Green's function and for the vertex component.2 Since
Jo(A — 0) coincides with J, in the normal phase, rela-
tion (28) just leads to the coincidence of the equation for
T, obtained from the Cooper instability condition (25),

2 Note that an analytic proof of this relation through a direct com-
parison of the recurrence procedures themselves for the Green's
function and the vertex component is not at all obvious.
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0J 0,
12N DTy [ OBERi(en &)+ ehdolen &)
o "™ (29)

W

T e =60, O) + (1= ) [l 221
0

¢ 0

and Eq. (23) obtained as aresult of the linearization of
the equation for the gap in spite of the apparently dif-
ferent recurrence procedures used for their derivation
and taking into account AFM fluctuations.

6. THE GINZBURG-LANDAU EXPANSION

The Ginzburg—Landau expansion in the exactly
solvable modd of a pseudogap with an infinitely large
correlation length of AFM fluctuations was constructed
in [10]. Here, we will generaize these results to the
case of finite correlation lengths.

We write the Ginzburg-Landau expansion for the
difference in the free energy densities of the supercon-
ducting and normal states in the standard form

B
Fs—F, = A|Aq|2 + qZC|Aq|2 + §|Aq|41 (30)
where A, is the amplitude of the Fourier component of
the order parameter:

A(@ q) = Aqe(9). (31)

Expansion (30) isdetermined by the graphs of theloop-
type expansion for the free energy in the field of order
parameter fluctuations with asmall wave vector g [10].

We present the Ginzburg—Landau coefficientsin the
form
A = AgKn, C = CoKe, B = ByKg, (32

where A,, C,, and B, denote the standard expressions
for these coefficients in the case of an isotropic s-pair-
ing:

_ T-T. _ 7(3)Vr
Ao = No(0)——, Co = No(0) >3,
¢ - 3217 T2 33)
B, = NO(O)8—T[2T§.

In this case, al the peculiarities of the model under
investigation, which are associated with the emergence
of apseudogap, are contained in the dimensionless coef-
ficients K,, K¢, and Kg. In the absence of a pseudogap,
all these coefficients are equal to unity (Kg = 3/2 only in
the case of d-pairing). For this reason, we will normal-
ize coefficient K for d-pairing to this value, presenting

the numerical resultsfor Kg = (2/13)Kg.
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Let us consider the generalized Cooper susceptibil-
ity (Fig. 6)

X(9,0; T) = —TZZG(SW p+q)
& P
X G(~€p, P)EX(Q)T (€, —€n, Q).

Using relations (28), we can easily write coefficients K,
and K¢ in the form

X(q! 0: T) _X(O, 01 Tc) = qa TC

(34)

Ka =

A, T OUET T,
0 o,
0Ty [dedend)
E €n=T[T(2n+l)_wc (35)
o E
=T dg Jo(en, &) O+ 1 -0,
E=TT (2n+ 1)_(0C %
. ,0: T)=x(0,0; T
K, = IImx(q )2 X( c)
q-0 q Co
0 o
21T 0 -
= —Cg = O IdEJo(5n1E)
7Z (3) VFq %n =nT(2n+ ;|_)_wC (36)
1 0
- Y [UEGE.E+5vecH
£=TT (2n+1)—0
D
X T (€~ 0) G €, & — quwl O
D

The situation with coefficient B in the general case is
much more complicated. Considerable simplifications
can be made by confining the analysistothecaseof q=0
in the order |A,l*, as is usudly done in actua practice.
Then coefficient B can be determined directly from the
anomalous Green's function F for which we aready have
the recurrence procedure (18) and (19). Indeed, let us con-
sider the diagrammatic series for the anomalous Green's
function presented in Fig. 7a. It can easily be seen that

F(en, P) _
0 - G(Sn’ p)G(_Snl p) (37)
= G(sn! p)G(_sn’ p)r(snv —<€n 0)1

which, by the way, immediately proves relation (28)
taking into account Egs. (19). Consequently, for the

lim
A~
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(@)

N* A

%

A e

(b)

Fig. 7. (a) Disgrammatic series for the anomalous Green's
function; dashed curves correspond to AFM fluctuations;
(b) diagram defining coefficient Kg.

bipartite loop x(0, 0), we have

x(0,0) = TZZH F(s”’ 2
(38)

=Ty S (8 =0).
p €

For the “four-tail” diagram in Fig. 7b defining coeffi-
cient B, we similarly obtain

' F(g,, p)/A—iimoF(snp)/A
Ty3im
Jo(B) — Jo(A 0)

= —TZZHAO ,

where Jy(4) is determl ned through the recurrence pro-
cedure (18). As a result, for the dimensionless coeffi-
cient Kg, we have

A2
(39)

8 TS
A TE) 40
dEIl J(8=0)- J(A)+l—0( 0
Z A0 A2 B
where
a (s-pairing), (1)

% = 15+ Xsnmd + sin2md  (d-pairing)

3m 6Tt 9
The obtained relations allow us to carry out direct
numerical calculations of the coefficients K,, K¢, and
Kg. Figure 8 shows, by way of an example, the calcu-
lated dependence of K on the pseudogap width W and
on the correlation length of AFM fluctuations (parame-
ter kK = v&€1). The corresponding dependences for K,
and K are qualitatively similar. In particular, for k =0,
wejust have Kg = K¢ [10].
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Fig. 8. Dependence of coefficient Kc on the pseudogap

width W and the correlation length (parameter k = vE™)

for AFM fluctuations: k/W = 0.1 (1), 1.0 (2), and 10.0 (3).
Thedashed curve correspondsto k = 0[10]. Theinset shows
the dependence of K on k for W/Tg = 5.

7. PHYSICAL PARAMETERS
OF SUPERCONDUCTORS WITH A PSEUDOGAP

The Ginzburg—L andau equations define two charac-
teristic lengths for superconductors. the coherence
length and the magnetic field penetration depth.

The coherence length &(T) at a given temperature
determines the characteristic scale of inhomogeneities
in the order parameter A:

£X(T) = —CIA. (42)

In the absence of a pseudogap, we have
Eacs(T) = —Col A, (43)
Eacs(T)=0.748,/ J1-TIT,, (44)

where &, = 0.18v/T.. Inthe model under investigation,
we can write
& (T)/&aes(T) = Kc/K. (45)

The corresponding dependences of EZ(T)/EQCS(T) on
the pseudogap width W and on the correlation length of
fluctuations (parameter K) in the case of d-pairing are
presented in Fig. 9. Note that the coherence length var-
iesinsignificantly.

For the magnetic field penetration depth in a super-
conductor without a pseudogap, we have

1 A
Ages(T) = —= 2

J2, =TT,

(46)
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WIT,

Fig. 9. Dependence of the coherence length on the
pseudogap width W and the correlation length (parameter
K = v&™1) for AFM fluctuations: k/W=0.1(1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to k = 0 [10]. The
inset shows the dependence of the coherence length on k for
WITy =5.

where A2 = mc2/4tne? defines the penetration depth at
T =0. In the general case, we have

¢ B

AN(T) = - —, 4
(T) S AC (47)
Then, in the model under investigation, we can write
AT Kg 1*?
( ) — [0 ns DU (48)

)\BCS(T) - l:KAKCE| .

The dependences of these quantity in the case of d-pair-
ing are presented graphically in Fig. 10.

A/Agcs

1.8

1.6

1.4

1.2

1.0

0.8

0 2 4 6 8 10
W/ TCO

Fig. 10. Dependence of the penetration depth on the
pseudogap width W and the correlation length (parameter
k = veE) for AFM fluctuations: k/W=0.1 (1), 1.0 (2), and
10.0 (3). Theinset shows the dependence of the penetration
depth onk for WiTy = 5.
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\dH /dT|
1.6 1.0

1.2

0.8

0.4

W/ TCO

Fig. 11. Dependence of the slope of the upper critical field
on the pseudogap width and on the correlation length

(parameter K = VFE‘l) for AFM fluctuations: k/W= 0.1 (1),

1.0(2), and 10.0 (3). The dashed curve correspondstok =0
[10]. Theinset shows the dependence of the slope of H, on

K for WiT = 5.

In the vicinity of T, the upper critica field H., can
be expressed in terms of the Landau—Ginzburg coeffi-
cients:

__ % _ %A
ome’(T)  21C’
where @, = crve is the magnetic flux quantum. In this

case, the slope of the curve describing the upper critical
field in the vicinity of T, isgiven by

(49)

c2

2411, T &\
_ T,
T 7¢3)vi Kc

(50)

‘dch
dT

Figure 11 shows graphically the derivative [dH,/dT|

normalized to the derivative at temperature T, as a
function of the effective width W of the pseudogap and
the correlation parameter K in the case of d-pairing. It
can be seen that for large correlation lengths, the deriv-
ative of the field decreases rapidly with increasing
pseudogap width. However, for small correlation
lengths, this parameter can dightly increase for small
values of the pseudogap width. For a fixed pseudogap
width, the function dH.,/dT increases noticeably for a
decreasing correlation length of fluctuations.

Finally, let us consider the heat capacity jump at the
transition point:

C-Ci_ T A f
Q  BO-TI" 1)

where C, and C,, are the heat capacities of the supercon-
ducting and normal states and Q is the sample volume.
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Fig. 12. Dependence of the heat capacity on the pseudogap
width and jump on the correlation length (parameter kK =

V&™) for AFM fluctuations: k/W = 0.1 (1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to k = 0 [10]. The

inset shows the dependence of the heat capacity jump on kK
for WiTo=5.

At temperature T, (in the absence of apseudogap, W=0),
we have

= N(0)

£:-Cu 8T
Ta 52

B 7¢(3)°

The relative jJump in the heat capacity in the model
under investigation can be written as

(Cs_cn)Tc _ Tc ﬁ

—_—t o — 53
(C.—Cr.,  TeoKs 3
The corresponding dependences on the effective
pseudogap width W and the correlation length parame-
ter K in the case of d-pairing are presented in Fig. 12. It
can be seen that the heat capacity jJump decreases rap-
idly with increasing pseudogap width and, on the con-
trary, increases upon a decrease in the correlation
length of AFM fluctuations.

For superconductors with s-pairing, the depen-
dences of the physical quantities considered above are
basically quite similar. The only difference is a larger
scale of W for which the corresponding changes take
place. This correspondsto ahigher stability of isotropic
superconductorsto a partial dielectrization of the elec-
tron spectrum due to the formation of a pseudogap in
hot regions on the Fermi surface [10, 11].

From the physical parameters of a superconductor,
detailed experimental data have been obtained for heat
capacity jump [8]. In complete qualitative agreement
with our conclusions, the heat capacity jump for the
Bi-2212 system decreases rapidly upon a transition to
the range of underdoped compositions for which the
pseudogap width increases. According to the results
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obtained by Tallon and Loram [8], the pseudogap width
(parameter 2W in our case) varies from a value of the
order of 700 K for the hole concentration p = 0.05 to a
value of the order of T, ~ 100 K in the vicinity of the
optimal concentration p = 0.16, vanishing for p = 0.19.
In this case, a clearly manifested correlation between
the decrease in the heat capacity jump and the increase
in the effective pseudogap width is observed. Unfortu-
nately, we are not aware of detailed results on the con-
centration dependence of correlation length of fluctua
tions and, accordingly, of the corresponding depen-
dences of physical parameters of a superconductor.
Qualitatively, the correlation length increases as we go
over to the range of underdoped compoasitions, so that
the effect of a decrease in the heat capacity jump is
quite justified from this point of view.

8. CONCLUSION

In this work, we continue our study of the peculiar-
ities of the superconducting state on the basis of arather
rough model of the pseudogap state of a two-dimen-
sional electronic system [10, 11], which neverthelessis
in qualitative agreement with anumber of observed sin-
gularities in the electronic structure of underdoped
HTSC cuprates. In our earlier publications[10, 11], we
considered anonrealistic limit of aninfinitely large cor-
relation length of fluctuations with the short-range anti-
ferromagnetic order, which, however, alowed us to
find the exact analytic solution of the problem. Here,
we have carried out ageneralization to therealistic case
of finite correlation lengths, which takes into account
all the diagrams of perturbation theory in the interac-
tion of electrons with short-range fluctuations in the
same way as in [10, 11]. The analysis was carried out
using the standard (mean-field in terms of [11])
approach based on the assumption of the self-averaging
of the superconducting order parameter in the fluctua-
tions of the random field induced by AFM fluctuations.
It was proved in [11] that this assumption is not sub-
stantiated in the limit &€ — . At the same time, it is
undoubtedly valid for § < &, (where &, isthe coherence
length of the superconductor at T = 0, i.e., the size of
Cooper pairs). Thus, it remains for us to solve the
extremely complicated problem of taking into account
the non-self-averaging effects for & > §,. It was men-
tioned abovethat inreal HTSC systems, & isin all prob-
ability of the order of &, so that non-self-averaging
effects for the superconducting gap of the type of those
considered in [11] can be quite significant. These
effects are manifested of the form of “tails” on the tem-
perature dependence of the averaged gap at T > T, (the
pattern of superconducting “drops’ [11]).

Another significant simplification in our model is
the assumption concerning the static (Gaussian) type of
short-range fluctuations. This assumption is justified
only in the limit of high temperatures T > wy (Where
Wy is the characteristic frequency of spin fluctuations)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

, SADOVKI

[6, 7]. For this reason, its application to the supercon-
ducting phase for T < T, is quite dubious. We believe,
however, that the simplified analysis carried out above
can be used for describing the most significant effects
of variation of the electron spectrum (formation of a
pseudogap in hot regions on the Fermi surface) on the
superconductivity in such a system. If we took into
account the dynamics of spin fluctuations, we would
inevitably leave the limits of the ssmple phenomenol-
ogy of the BCS model and would have to analyze in
detail the microscopic aspects of the pairing interac-
tion. Such a program can hardly be realized at present.
Moreover, the problem of inclusion of all orders of per-
turbation theory in AFM fluctuations appears as com-
pletely futile on account of the dynamics of the spin
subsystem.
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APPENDIX

Coordinate Representation:
Normal and Anomalous Green's Functions

Let us consider some technical aspects of the deri-
vation of the recurrence relation for Gor’kov's equa-
tions (12)—(15). We will confine our analysis to two
regions on the Fermi surface, which are orthogonal to
the p, axis and coupled though the scattering vector
Q= (£2pg, 0). In this case, the problem becomes
purely one-dimensional since the velocity component
vy = 0 and the electron spectrum in the linearized form

&p 3p. = TVEP, iscompletely independent of the y-com-

ponent of the momentum. For the sake of brevity, we
will henceforth assume that vg = 1.

It is convenient to carry out the calculations in the
coordinate representation [21], analyzing the motion of
an electron in the field of Gaussian AFM fluctuations
W(X) # W*(x) (incommensurate case) with the correla
tor

W X)W(x)O= Woe™ =, (A.1)
In this case, the propagators corresponding to the nor-
mal and anomal ous Green'’s functions (10) of the super-
conductor assume the form

” d X _iPyX
Guo(X) = J’Eep Goo(Py)
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id € O
=g 4 oasgnx%ﬁxp(w/sﬁ +]4]%x),

202+ |n?

ood X i X =+
Foo(X) = J'Eep Foo(P2)

AU
= 2—29Xp(—«/€ﬁ +]4/%x),
NER T4

where g3 = 1 for particles moving to the right and
0, =— 1 for particles moving to the left. Scattering at
fluctuations transforms “right” particles to “left” ones,
and vice versa. It can be seen from expressions (A.2)
that a particle traversing adistance of length | givesthe

factor exp(—./> +|A|%1).

For calculating specific diagrams, is it convenient
[21] to go over from the integration with respect to
coordinates x, of interaction vertices to the integration
over paths |, traversed by a particle between individual
scattering acts by fixing the total displacement x — X'.
The interaction curve connecting vertices m and n on
the electron line in this case corresponds to the factor

WzlAlzeXp(_lem_ an)

n-1

Y D)

k=m

(A.2)

(A.3)

o 2in2 O O
= WA|“expFK O
| U

The integration over all values of I, is carried out from
0 to co.

Thus, considering the finiteness of the correlation
length of fluctuations leads to the emergence of a cer-
tain “damping” of the corresponding transition ampli-
tude in each diagram with increasing distance traversed
by an electron. It is very difficult to take into account
this effect exactly. In [7], however, we used the obvious
inequality

> D)
k=m

and replaced the exponentia in (A.3) by the exponen-
tial from theright-hand side of (A.4). Thisisequivaent
to the replacement of the correlator (A.1) of random
fields by an analogous expression in which the distance
[x —X'| in the exponent is replaced by the total distance
traversed by a particle between the scattering acts at
pointsx and X'. Therefore, in accordancewith Eg. (A.4),
we slightly overestimate the role of the damping factor
K in each diagram of the series in perturbation theory.
As aresult of such a substitution, the diagrams of all
orders can be calculated easily and reproduce exactly
ansatz (3) for the normal phase [21]. It was mentioned
above that the results obtained in thisway, for example,

n-1

0 [l 0 0
exp-K 0> expFK z 1O (A.4)
0 0o 040
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for the density of states arein good agreement with the
results of exact numerical simulation of the problem
under investigation [23, 24]. Thisis an additional argu-
ment in favor of the approximation used, extending the
qualitative estimates obtained in [7].

We will use the same approximation for analyzing
the diagrams in perturbation theory in the supercon-
ducting phase, which are constructed on propagators
(A.2). In this case, the role of interaction with fluctua-

tionsis reduced only to the addition of the factor g
to each normal or anomalous Green's function (A.2),
which is embraced by the given interaction curve or,

which is the same, to the addition of K to /g, + |A]” in
the exponent of each such Green’s function. Returning
to the momentum representation, we can easily verify
that the contribution of any higher-order diagram is
determined by the product of the corresponding num-
ber of normal and anomalous Green’s functions of the
form
e + (-1)'E,

e + |01

2 2
8k-'-Ep

Gok(p) =

. (A.5)
AD—=k

e + |01

Fo(p) =
ok 8i+2’2)

whereg, = /g, + |A]* + kk, k being the number of inter-
action curves embracing a given Green’s function. The
factor (—1) appears due to the fact that the scattering
transforms “right” particles into “left” ones, and vice
versa. Introducing the renormalized frequency and gap
width in accordance with relations (15), we see that
relations (A.5) can be reduced to the standard form
(14), which completes the justification of the recur-
rence procedure (12) and (15).
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Abstract—The features of the superconducting state are studied in the simple exactly solvable model of the
pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface
with “hot” spots. The analysisis carried out for arbitrary short-range correlation lengths &.,,. It is shown that
the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above
the temperature T, of the uniform superconducting transition in the entire sample, which is a consequence of
non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature
range T > T, superconductivity apparently exists in individual regions (drops). These effects become weaker
with decreasing correlation length &,,; in particular, the range of existence for drops becomes narrower and
vanishesas&,,, —= 0, but for finite values of &, complete self-averaging does not take place. © 2002 MAIK

“ Nauka/lInterperiodica” .

1. INTRODUCTION

Among a large number of anomalies in the elec-
tronic properties observed in high-temperature super-
conductors (HTSC) based on copper oxides, the so-
called pseudogap state [1, 2] existing in abroad region
of their phase diagram has become an object of intense
studies in recent years. There are two main trends in
constructing the models of the pseudogap state of high-
T, superconductors. One of these trends is based on the
popular model of formation of Cooper pairs above the
superconducting transition temperature [3]. In the other
trend, it is assumed that the pseudogap state is associ-
ated with fluctuations of the antiferromagnetic short-
range order or with other similar fluctuations of the
“dielectric” origin (e.g., fluctuations of charge density
waves [2]).

In our opinion [2], the preferable scenario of thefor-
mation of the pseudogap state in HTSC is the pattern
based on the existence (in the corresponding region of
the phase diagram) of strong scattering of charge carri-
ers from developed short-range fluctuations of the
dielectric type (antiferromagnetic or charge density
waves). This scattering leads to a considerable non-
Fermi liquid rearrangement of the electron spectrumin
certain regions of the momentum space in the vicinity
of the Fermi surface around the so-called hot spots or
near hot (flat) regions on this surface [2]. The prefer-
ence of the dielectric and not superconducting scenario
of the formation of a pseudogap [3] is confirmed by a
series of experimentswhich are discussed, for example,
in the review [2]. In the present work, we naturally

adhere to the same point of view. It should be empha
sized, however, that the origin of the pseudogap statein
HTSC remains unclear and can be determined only asa
result of further experimental investigations.

Most of the available theoretical publications are
devoted to an analysis of the effect of the pseudogap on
the properties of a system in the normal state, and only
an insignificant number of such publications deal with
the features of superconductivity in this state [4—6]. For
example, superconductivity in a simple exactly solv-
able model of the pseudogap state, which is based on
the modé of the Fermi surface of a2D system with hot
spots [4], was considered by usin [5]. In thiswork, we
used the exact solution for the pseudogap, which was
obtained earlier [ 7] for the one-dimensional case, inthe
limit of very large correlation lengths of dielectric
short-range fluctuations. It was proved that the super-
conducting gap averaged over short-range fluctuations
generally differs from zero in the temperature range
exceeding the mean-field superconducting transition
temperature T, corresponding, according to [5], to the
emergence of a homogeneous superconducting state in
the entire sample. It was hence concluded in [5] that, in
the temperature range T > T, superconducting drops
are formed in the system and exist down to the super-
conducting transition temperature T, in the absence of
adielectric pseudogap. This effect was attributed in [5]
to the absence of self-averaging in the superconducting
order parameter (gap) under the conditions when the
correlation length of short-range fluctuations exceeds
the coherence length (the size of Cooper pairs) in the
theory of superconductivity.
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The effects of finiteness of the correlation length of
short-range fluctuations was taken into account in [6]
under the assumption of self-averaging of the supercon-
ducting gap over such fluctuations. In this publication,
the effect of the pseudogap on T. was analyzed, the
behavior of the gap in theregion T < T, was considered,
and the microscopic derivation of the Ginzburg-Lan-
dau expansion was carried out for T ~ T.. We used the
approach based on the almost exact solution of the gen-
eral model of the pseudogap state with Gaussian short-
range fluctuations, which was proposed in [8, 9] for the
1D case and generalized for the 2D problemin [10, 11].
Inthisapproach, it is difficult to go beyond the scope of
the assumption concerning the self-averaging of the
superconducting gap. It should be noted that the pres-
ence or absence of such a self-averaging has been stud-
ied insufficiently. In most cases, self-averaging is just
assumed from physical considerations with areference
to essentially different scales of lengths over which the
superconducting order parameter (coherence length &)
and the basic parameters of the electron subsystem
(atomic spacing or the reciprocal Fermi momentum in
the impurity problem [12—14] or the short-range corre-
lation length &, in the pseudogap model under inves-
tigation[2, 5, 6]) change naticeably. In particular, in our
model of pseudogap, we should expect complete self-
averaging of the superconducting gap for &, < &g
[2, 6]. We are not aware of publications in which the
problem of self-averaging of the gap is investigated in
an exactly solvable model of disorder.

The present work mainly aims precisely at such an
investigation in the framework of a very simple
(although, perhaps, not very redlistic) 1D model of the
pseudogap state induced by dielectric short-range fluc-
tuations with afinite correlation length, which was pro-
posed in arecent publication by Bartosch and Kopietz
[15]. The exact solution proposed in thiswork and close
essentially to the models considered earlier [7-9]
makesit possibleto carry out a sufficiently comprehen-
sive analysis of the self-averaging problem under inves-
tigation in the 2D model of hot spots[4, 6, 11]. In addi-
tion, we will analyze the temperature dependences of
the superconducting gap in a superconductor with a
dielectric pseudogap.

2. SSIMPLIFIED MODEL
OF THE PSEUDOGAP STATE

Let us consider the exactly solvable model of the
pseudogap state, proposed in [15], using a dlightly dif-
ferent approach. We assume that an el ectron performsa
one-dimensional motion in aperiodic field of the form

V(X) = 2Dcos(Qx + ). D

We choose Q = 2pr — k, where pg isthe Fermi momen-
tum and k < pg isacertain detuning from the preferred
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scattering vector 2p.. 1 We choose the el ectron spectrum
in the following conventional form linearized near the
Fermi level:

158, = Ve(lpl = pe),
Ep—ZpF = _Ep (neSting)! (2)
EZEEp—Q = _Ep_VFkE_Ep_nl

where we have introduced the variable n = vgk (vg is
the Fermi velocity), which will be widely used in the
subsequent analysis. Field (1) can be written in the
form

V(X) = Dexp(i2pex—ikx)

3
+ DUexp(=i2pex + ikx), ®)
where the complex amplitude has been introduced as a
result of the substitution D — De*.

Such aproblem can be solved in an elementary way.
In the two-wave approximation of the conventional
band theory, the one-electron (normal) Green’s func-
tion corresponding to the (diagonal) transitionp — p
in the Matzubara representation has the form

: _ 1 1
gll(lsnpp) - ien_El+ isn_El

1 1
O
D isn_EZDisn_El
_ lg, ¢,
(ien—&1)(ig,—&2) —[D|*
_ iE+&+n
(ie-&)(ie+&+n)—|Df*
where we have introduced in the last equality the nota-
tion &, =& and €, = &, which will be widely used below
to simplify theform of the equations. We can a so intro-

duce the nondiagonal (anomalous) Green's function
corresponding to the Umklapp processp — p—Q:

(4)

. : 1 1
0p(ie,pp—Q) = isn_ElDDiSn—Ez-'-"'
_ pU
(ien—&1) (g, —&5) —|D|? ®)
DO

" (ie—g)(ie+£+n)—DF

L et us now suppose that field (1) israndom. Follow-
ing [15], we consider a rather specific model of disor-
der, in which the detuning vector kis regarded asaran-

1 Such a choice of the vector for the antiferromagnetic superstruc-
ture or for a structure of the of charge density wave type implies
incommensurate ordering and corresponding fluctuations.
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dom quantity and its distribution function is written in
the form of the Lorentzian®:

Py = 1K )

T3 + k2’

where K = E;&rr and &, is the short-range correlation
length. Phase @ in expression (1) is also regarded as a
random quantity distributed uniformly on the interval
from O to 21T

U1
% for 0<@<2m,
T

, for remaining values.

Py = (7)

Thefield correlation function V(x) at various points can
be calculated elementary and is given by

V(X V(X)D = 2D?cos[2pe(X — X)]
x exp[—k|x=X]],

€S)
where the angle brackets denote averaging over distri-
butions (6) and (7). Therandom field with precisely this
correlation function was considered in the well-known
publication [16] as well as in [7-9], where it was
assumed that thefield is of the Gaussian type.® Theran-
dom field V() considered here is not Gaussian in the
general case [15]. The Fourier transform (8) has the
form of atypical Lorentzian defining the effective inter-
action of an electron with short-range fluctuations [2]:

V() = 2D’

N O K + K O 9

Aa-2pe + < (@+2pe)’+ KD

Itisaninteraction of thistypethat was consideredin all
publications on the “dielectric” pseudogap cited above.

Green's functions averaged over an ensemble of
random fields of type (1) with distributions (6) and (7)
are calculated by elementary integration. The mean
value of the anomalous Green's function (5) is just
equal to zero (after averaging over distribution (7)),
which corresponds to the absence of a long-range
dielectric order. The averaged Green’s function (4) can
easily be obtained by term-by-term integration of series
(4) with respect to (6) and is given by

2|nfact, we are speaking here of a specific model of phase fluctua-
tions of field (2).

3 For a Gaussian field, all higher order correlators of field V(X) are
factorized, according to Wick, through paired correlators (8).
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, 1 1
G(ie = -
( np) Isn_Ep Isn_Ep
x DL 1 _1
i€, + &, +iveK g, =&,
1 1
O
isn—EpD isn+.§p+ivFKDi!»:n—Ep (10)
« DO 1 1

; . - + ...

i€+ &p+iveK ig,—¢&,

_ 1€, + &, +iVEK

- . . . 2"
(Ien_zp)(lsn"'Ep+|VFK)_|D|

This is the exact solution for the Green’s function that
was proposed in [15].

In the subsequent analysis, we can assume that not
only the phase of field (1) fluctuates, but also its ampli-
tude D, and the corresponding Green's function can be
obtained by simple averaging of expression (10) with
the corresponding distribution % (D). In particular, the
amplitude distribution can be chosen in the form of the
Rayleigh distribution [7, 8, 15]:

2D _ D’y

P5(D) = erxpD A (12)

Averaging of correlators (8) and (9) inthis case leadsto
the simple substitution D — W. The average electron
Green's function now assumes the form

00

G(ie,p) = IdD@’D(D)

1€, + &, +iVEK

(ien—&p)(ig, + &, +ivek) —|D|?

X

(12)

_ dee{ i€, + &, +iVEK
{ (ign—Ep)(ign+ &, +iveK) —QW

where W determines the energy width of the
pseudogap. In the limit of large correlation lengths of
fluctuations of field (1), i.e., for &, — o (K — 0),
solution (12) coincides with that obtained in [7] for a
Gaussian random field. For finite values of K, it coin-
cides with the solution proposed in [11] in the formal
analysis of the accuracy of approximations used in [8,
9], where the general problem of an electronin a Gaus-
sian random field with a paired correlator of type (8)
was considered. In[11, 15], it was proved that the den-
sity of states corresponding to Green's function (12)
possesses a characteristic blurred pseudogap in the
vicinity of the Fermi level, the values of the density of
states being quite close quantitatively [11, 15, 17] (vir-
tually for al energy valuesin theincommensurate case)
to the values obtained in [8] as well as to the results of
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exact numerical simulation of the problem with aGaus-
sian random field which was carried out in [18-20] .4

If field (1) is created by fluctuations of a certain
dielectric order parameter (e.g., antiferromagnetic
order parameter or that of charge density waves), distri-
bution (11) may correspond to its Gaussian fluctuations
in the range of fairly high temperatures[10, 11]. Asthe
temperature decreases below a certain characteristic
value, the amplitude fluctuations become “frozen out”
even before the emergence of the corresponding long-
range order in the system (cf. [3, 21]) and we can sSim-
ply set D = W, while the phase fluctuations are present
down to very low temperatures. For this reason, we will
use a solution of type (10), leading to a clearly mani-
fested pseudogap for large correlation lengths €., [16],
assuming the low-temperature mode of short-range
fluctuations. Since we do not consider the microscopic
aspects of dielectric fluctuations, all the parameters
characterizing such fluctuations (like the correlation
length &, = k* and amplitudes D and W, viz., the
energy width of the pseudogap) are treated here as phe-
nomenological parameters. The low- or high-tempera-
ture mode of short-range fluctuations can berealized in
a similar way at temperatures differing, for example,
from the superconducting transition temperature.

A generalization to the case of a 2D electron system
typical of HTSC cuprates can be carried out on the
basis of the model of hot spots on the Fermi surface
which was considered in [4—6]. In this casg, it is
assumed that two independent systems of fluctuations
of type® (1), which are oriented along the orthogonal
axes x and y and which interact only with electrons
from flat regions of the 2D Fermi surface, are orthogo-
nal to these axes. We assume that the 2D potential in
which an electronismoving isfactorized in these direc-
tions. V(x, y) = V(X)V(y) [4-6]. The size of flat (hot)
regions is defined by parameter o, the angular size of a
flat region viewed from the center of the Brillouin zone
being equal to 2a [2, 4-6]. In particular, the value of
o = 174 corresponds to a square Fermi surface (com-
plete nesting), when the entire Fermi surface is hot. For
o < 174, the Fermi surface contains cold regions on
which the scattering from fluctuations of the dielectric
order parameter is assumed to be absent and the elec-
trons are treated as free. In this model, various charac-
teristics defined by the integrals over the Fermi surface
consist of additive contributions from hot and cold
regions. The pseudogap rearrangement of the electron
spectrum takes place only in the hot regions (and in

4 Using the method developed in [7], it is also possible to calculate
exactly the two-particle Green's function and the corresponding
frequency dependences of conductivity [15] in the model under
investigation. Unfortunately, the specific form of the disorder
being considered leads to a nonphysical behavior at zero fre-
guency, which corresponds to an ideal conductor.

51t should be noted that this pattern is roughly similar to the con-
cept of phase separation in HTSC cuprates (stripes) [22] if we
treat the correlation length &, as acharacteristic size (period) of
stripe regions [2].
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their vicinity), while the Fermi liquid behavior is pre-
served in the cold regions[2].

This pattern is in qualitative agreement with the
results of numerous ARPES experiments on under-
doped HTSC cuprates [1, 2], which indicate that
pseudogap anomaies appear in the vicinity of point (0, T)
inthe Brillouin zone and vanish aswe passtoitsdiagonal.
The presence of flat regions on the Fermi surface for
HTSC cuprates was also reliably observed in ARPES
experiments made by several independent groups [2].

3. GOR'KOV EQUATIONS AND THEIR
SOLUTION FOR THE PSEUDOGAP STATE

An analysis of superconductivity in asystem with a
pseudogap induced by short-range fluctuations of the
dielectric type will be carried out under the simplest
assumption concerning the existence of a pairing inter-
action of the BCS type, characterized by the attraction
constant V, which, as usud, is assumed to have a non-
zero valuein acertain layer of width 2w, in the vicinity
of the Fermi level (w isthe characteristic frequency of
guanta ensuring the attraction between electrons). The
same approach was used by usin [4-6]. In the present
work, we confine our analysisto the s-type pairing only.
There are no principal difficulties for analyzing the d
pairing typical of HTSC cuprates, but the presence of
the angular dependence (anisotropy) of the supercon-
ducting gap in this case necessitates [4, 5] additional
integration, which considerably increases the comput-
ing time. At the same time, it was proved in [4-6] that
the effect of the pseudogap on superconductivity isvir-
tually the same in the sand d cases, the only difference
being in fact in the scales of the parameters leading to
the corresponding changes in the main characteristics
of the superconducting state (d pairing is less stable to
the dielectrization of the electron spectrum than the s
pairing).

Superconductivity in cold regions of the Fermi sur-
face is described by the standard equations of the BCS
theory. For this reason, we concentrate our attention on
the derivation of the Gor’kov equations in the 1D
model, which is equivalent to an analysis of hot regions
in the 2D case [5, 6]. In fact, Green’s functions (4), (5)
for al1D systemin the periodic field (1) form the matrix

g — isn_Ez

Y (ign—&.)(ig,— &) ~IDI”

O = D

2 = . . 21
n— n— —-|D

(ie zl)(usD £,)- D 3

O = )

" (e (ig,—E,) - |DI?

g — isn_E.l

2 (ie,—E)(ig,—&,) = DI*
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Fig. 1. Gor’kov eguationsin a 1D periodic field.

In the presence of Cooper pairing, the Gor'kov equa-
tions constructed on Green's functions of type (13) can
be depicted by the graphs shown in Fig. 1. In analytic
form, this system of eguations can be written as

G = Gu—9ulF1 — GRS,
Fu = gnAlGy, + gnALG,,,
Gy = Un—GnlF11 — GnAF 5,
Fo = 05806y, + g5A0G,,,

(14)

where the superconducting gap is determined, as usual,
from the relation

A0= VT Fii(eqp)

n, p

(15

= AT [dEFuEd) AT Fi).

Here, A = Ny(0)V is the dimensionless constant of pair-
ing interaction, and Ny(0) isthe density of states of free
electrons at the Fermi level.

The solution of the system of equations (14) gives
1.
Gy = —ggllie+ &) (e +&+ D" +4)

—D’(8,+ &)1 = 5ol i+ H)[e*+ (E+n)’

+D?+A’] +D’n}, (16)
Fir = —so A + &5+ D7+ 4%

= —SE AL+ (€ +n)°+ D%+ 47,

where
Det = (¢°+&;+ D’ +A%)(e"+ &+ D" +4)
—(§,+&,)°D* = (2 + &+ D*+ %)
x (e + (£ +n)°+ D*+ A% —n’°D?,

(17)
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and D isthe real amplitude of the fluctuation field (1).
In accordance with relation (15), the Gor'kov Green's

function F3, determines the energy gap of the super-
conductor. Taking into account the random nature of
the field of dielectric fluctuations, Eg. (15) must be
averaged over the fluctuations of phase n = vk and
amplitude D using distributions (6) and (11) (for the
high-temperature fluctuation mode).

The cumbersome but direct calculations of the inte-
gra in Eqg. (15) by the residue method give

A

2

U g2 2 r]ZD2 22, =2 2 r]ZD
B2 p2+ 00 _ +&°+D" -1
X [ % D 40 n‘D°+e +D 4%

Fu(e) =

-1/2

2 (18)

~2 2., N
+ + 4
e +D 7

2.2
2 2, N0 2
J% +D +ZD_nD

=nA % (g, A, n, D),

X +

o e o [
o [ o

where

£ = Je¥+ A%

Using now Eg. (15), weimmediately obtain the follow-
ing equation for the superconducting gap in the 2D
model of hot regions [4-6]:

(19)

R "
1 = 2mAT Z o F(e, A,n,D)+1—_~—G—D, (20)
n=0 [ & O

where a = (4/m)a isthe relative fraction of hot regions
on the Fermi surface. The second termin Eq. (20) gives
the standard BCS contribution from cold regions con-

gtituting the fraction (1 — o) on the Fermi surface.
Summation over n in EqQ. (20) is carried out up to the
maximum value determined by the integral part of the
ratio wy/2rT.

Using Eg. (20) and numerical calculations, we can
find the gap width A(n, D) for fixed values of n and D
(i.e., for the given value of the random field of fluctua-
tions (1)) for any temperature. Then, by averaging over
distributions (6) and (11), we can find the temperature
dependences of the averaged gap. In particular, for the
low-temperature mode of dielectric fluctuations, it is
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sufficient to carry out averaging over phasen only; the
superconducting gap in this case is given by

nId

In the high-temperature approximation, averaging over
amplitude D with distribution (11) must also be carried
out:

y: S T000). (@)

_ gm D_Dl
A = WZJ’dDD Dwﬂn

(22)
A(n D).

Jon

As aresult, we obtain the temperature dependences of
the averaged superconducting gap [ADwithout resorting
to any statistical assumptions like that concerning the
self-averaging of the order parameter. Similarly, we can

VK

82+(E+n)2+D2+A2
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also calculate the temperature dependences of variance
(A2}~ [A3, from which we can judge the extent of ran-
domness of A, i.e., on the presence or absence of self-
averaging. The results of corresponding calculations
will be discussed in the next section.

It was noted in the Introduction that, in most publi-
cations on superconductivity in disordered systems, an
analysis is carried out under the assumption of self-
averaging of the superconducting gap A. In thiscase, A
is in fact regarded as a nonrandom quantity indepen-
dent of the random characteristics of the field in which
the electrons forming Cooper pairs propagate. In our
case, these are the amplitude D and the phase n of field
(1); accordingly, the self-averaging over these parame-
ters can be analyzed separately.

Let A be a parameter self-averaging over fluctua-
tionsof . Inthis case, we can assumethat A in Eq. (16)
is independent of n. Accordingly, the anomalous
Gor'kov function averaged over fluctuations of n has
the form

.o AD
Fyul = FIdn

This integral can be evaluated directly; after cumber-
some calculations, we obtain

[F,0=A0
5 £2(1+ v eK/E)’ + DX(1 + VeK/E) + &2 (24)
[(1+v.k/E)E+E%+ DY+ vik%E?
Accordingly, we can aso evauate the integral of
expression (24) appearing in the equation for the
pseudogap:

o]

[F 0= J-fﬁ (Fy0=

TIN1 + v oK/28)
D2+ E2(1 + v ok/2E)?

Thus, in spite of the cumbersome form of the anoma-
lous Green's function (24), the inclusion of interaction
with fluctuations in hot (flat) regions on the Fermi sur-
face in the equation for the gap can be reduced to the
standard renormalization,

. (25)

O vek U

EHE%L+KE~EB=8D].+——E——D,
28 O 2./ + a1

(26)
p— 83+ 20 = am+ L7 3
& 0 2%+ a1

similar to that emerging in the problem taking into
account the effect of impurities on superconductivity
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N+ vek® (€ + 8+ D+ A%)(e°+ (£ +n)°+ D’ + 4%) —n°D”

(23)

[23] and aready encountered in the context of the prob-
lem under investigation in [6]. The analogy with the
impurity problem is amost complete since the quantity

VeK = VFE;;, is the characteristic reciproca time of
electron flight through a short-range region with a
length on the order of &.,,. Naturaly, the effect of the
pseudogap is also associated with the emergence of the
square of the dielectric gap D?in Egs. (24) and (25).

Ultimately, the equation for the superconducting
gap in the model of hot spots under the assumption of
self-averaging over phase fluctuations assumes the
form

1= 21AT
(=]
y Zg Ea 1+ VeK/2¢ .\ 1?‘% (27)
n=o U A/D2+§2(1+ vek/2e)? € O

This equation can obviously be solved more easily than
Eqg. (20) with subsequent averaging (21). In the absence
of fluctuations of the dielectric field amplitude D,
which is the case in the low-temperature region of
short-range fluctuations, it is precisely Eq. (27) that
determines the mean-field (in terms of [5]) behavior of
A(T) relative to fluctuations of the random field (1).

In the high-temperature region of short-range fluctu-
ations with distribution (11) for D, under the assump-
tion of self-averaging over the fluctuations of D also,
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Fig. 2. Superconducting transition temperature in the low-
temperature region of dielectric fluctuations as afunction of
the pseudogap width Wfor various values of the correlation
length vek/ Ty of dielectric fluctuations.

we obtain the following equation for the averaged
superconducting gap:

mC
[ZTITJ ~®

2
1=2mAT z 52—"; J’dDDexpE__Q_E
n=OD\N
0 (28)
N 1+ veK/2¢ +1qu
JD2+ 8 (1+veki2E)? & O

This equation describes a situation similar to that con-
sidered indetail in our earlier publication [6], wherewe
included the effect produced on superconductivity by
Gaussian dielectric short-range fluctuations using the
approach proposed in [8, 9]. In this case, fluctuations of
field (1) aretaken into account exactly, but it isassumed
that A is self-averaging. It will be demonstrated below
that all the results following from Eq. (28) are quite
closetothose obtained in [6]. ASK — 0 (§coy — ),
Eq. (28) istransformed into a similar mean-field equa
tion derived in[5]. The superconducting transition tem-
perature obtained from Eq. (27) or (28) can apparently
be identified with the temperature at which an infinitely
narrow gap (superconductivity) emerges uniformly in
the entire sample [5].

In the next section, we will consider the results of
numerical solution of Egs. (27) and (28) in comparison
with the results of exact analysis based on Egs. (20)—
(22).
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Fig. 3. Superconducting transition temperature in the low-
temperature region of dielectric fluctuations as afunction of
the correlation length of these fluctuations for various val-
ues of the pseudogap width W/T.

4. BASIC RESULTS AND DISCUSSION

Let us now consider the results of a numerical anal-
ysis of the equations given in the previous section.®

Figures 2 and 3 show the superconducting transition
temperature T, in the low-temperature range of dielec-
tric fluctuations (the temperature at which the mean-
field gap defined by Eq. (27) vanishes) as a function of
the pseudogap width W (which coincides in the present
case with the dielectric gap amplitude D) and of the
correlation length, respectively. Theresultsarein qual-
itative agreement with the corresponding results for the
high-temperature range of dielectric fluctuations
(where T, is defined by Eq. (28)) as well as with the
results obtained by us earlier [6] in a somewhat differ-
ent model of short-range dielectric fluctuations with a
finite correlation length. Upon an increase in the
pseudogap width W, the mean-field temperature T, is
suppressed. A decrease in the correlation length blurs
the pseudogap [2, 8, 15] and, accordingly, diminishes
the suppression of T..

Solid curves in Fig. 4 present the temperature
dependences of the superconducting gap [Alaveraged
over both amplitude D and phase n (the high-tempera-
ture region of short-range fluctuations, where [Ais
described by formula (22)) for various values of vek.
The dashed curves describe the corresponding mean-
field temperature dependences of the superconducting
gap, which were obtained under the assumption of self-
averaging of the superconducting order parameter over

611 the numerical analysis, it was assumed that the fraction of flat
regions on the Fermi surfaceisa = 2/3.
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Fig. 4. Temperature dependence of the superconducting gap
in the high-temperature region of dielectric fluctuations.
Solid curves correspond to the superconducting gap [AO
averaged over amplitude D and phase n and described by
expression (22). Dashed curves correspond to the mean-
field superconducting gap defined by Eq. (28). The inset
shows the temperature dependence of the relative root-
mean-square fluctuation of the superconducting gap. The
curves are plotted for W/To = 3 and for various values of

VFK/TCO‘

both the amplitude fluctuations and the phase fluctua-
tions described by Eqg. (28).

The superconducting gap averaged over fluctuations
also differsfrom zero in atemperature range above the
superconducting transition temperature T, which cor-
responds to vanishing of the mean-field superconduct-
ing gap (i.e., the gap which is homogeneous in the
entire sample). Moreover, it can be seen that the super-
conducting gap averaged over fluctuations differs from
zero in a narrow temperature region above the super-
conducting transition temperature T, in the absence of
short-range fluctuations also. Thisis due to the fact that
there exist fluctuations of phase n, for which the Fermi
level fallsto the region of the peaks of density of states,
which are associated with the formation of the dielec-
tric gap. Indeed, the density of statesfor a specific real-
ization of phasen and of the dielectric gap amplitude D
has the form

N(E) _
No(0)

1 R
HNO(O)Im% 91(Epp)

O |E+n/2 (29)

B for [E+n/2 >D,
= OJ(E+n/2)*-D”

for remaining values,
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Fig. 5. Regions of the phase diagram with a nonzero super-
conducting gap for various temperatures above Ty. The

dashed line correspondsto D = n/2.

where g5, (Epp) isthe retarded Green's function which

can be obtained from Eq. (4) by the standard analytic
continuation ig,, — E +i0 and N,(0) is the density of
states at the Fermi level in the absence of short-range
fluctuations. Consequently, for n/2 = D, the Fermi level
corresponds to the peaks of the density of states, which
leadsto anincreasein the superconducting gap A(n, D).
Moreover, an increasein the dielectric gap amplitude D
broadens the peaks in the density of states (29); conse-
quently, if the condition n/2 = D remainsin force, the
superconducting gap A(n, D) increases with D. As a
result, at any temperature above T, and for large ampli-
tudes of the dielectric gap D > D*(T), the phase dia-
gram plotted in then vs. D coordinates always contains
anarrow region in the vicinity of the straight linen/2 =
D, in which the superconducting gap A(n, D) differs
from zero (see Fig. 5). This leads to the emergence of
an exponentially small tail on the temperature depen-
dence of the superconducting gap [AOaveraged over
fluctuations in the temperature range above T,

The inset to Fig. 4 shows the temperature depen-
dence of the relative root-mean-square fluctuation

SNA =  [INT- [ALF/ADof the superconducting gap
for the high-temperature mode of dielectric fluctua-
tions. In the case of large short-range correlation
lengths (§ /€ .or << 1), the superconducting order param-
eter fluctuations are very strong in the entire tempera-
ture range, indicating the obvious non-sel f-averaging of

7 In the model under investigation, this effect is obviously a conse-
guence of the one-dimensional nature of the random field of fluc-
tuations, leading to corresponding singularities in the density of
states (29). For this reason, it may turn out to be not universal and
inherent only in the given simplified model.
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Fig. 6. Temperature dependence of the superconducting gap
in the low-temperature region of dielectric fluctuations.
Solid curves correspond to the superconducting gap A
averaged over phase n for a fixed amplitude D = W,
described by expression (21). Dashed curves correspond to
the mean-field superconducting gap defined by Eq. (27).
Inset (8) shows the temperature dependence of the relative
root-mean-square fluctuation of the superconducting gap.
The curves are plotted for W/Tg = 3 and for various values

of VeK/Teg. Inset (b) shows the dependence of the critical
temperature T on the pseudogap widith.

the superconducting order parameter. Surprisingly, the
superconducting gap fluctuations are quite strong in the
region of small correlation lengths also (at least in the
temperature range T > T.). In particular, the tail on the
temperature dependence of [Alfor T > T is noticeable
even for vek/T, = 100, when /€, = 30= 1.

Solid curves in Fig. 6 are the temperature depen-
dences of the superconducting gap [Alaveraged over
phase n (see Eqg. (21)) in the low-temperature mode of
dielectric fluctuations, when the amplitude fluctuations
of the dielectric gap are frozen out and D = W. The
dashed curves are the corresponding temperature
dependences of the mean-field superconducting gap
obtained under the assumption of self-averaging of the
superconducting order parameter over the fluctuations
of phase n, which are defined by Eq. (27). For large
short-range correlation lengths, the averaged gap for
T < T, isvery close to the mean-field gap and has arel-
atively small tail intherange T > T.. Such abehavior in
the low-temperature mode of dielectric fluctuations is
associated with the fact that, for &, — oo, the ran-
domness of such amodel disappears altogether (n =0,
D = W). Accordingly, the root-mean-square fluctuation
of the gap, which is shown in the inset to Fig. 6 for a
large correlation length, is quite small for T < T, but
increases sharply for T > T.. As the correlation length

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 94

KUCHINSKI , SADOVSKI

decreases, the superconducting gap fluctuations oA for
T < T_first increase just due to the increase in random-
ness (parameter vk determines the width of the distri-
bution of phase n) and then decrease in the region
&o/€or = 1. Inthetail region of the averaged supercon-
ducting gap (T > T,), the superconducting gap fluctua-
tions are very strong. Although they decrease with the
short-range correlation length €, they still remain
significant even for small correlation lengths, i.e., inthe
region &o/€cor > 1.

As in the high-temperature mode of dielectric fluc-
tuations, the tail on the temperature dependence of the
average gap is observed for T > Ty, also. This can be
explained by the above-mentioned factors. However,
the dielectric gap amplitude in the low-temperature
modeis not random any longer, but isstrictly fixed (D =

W). For this reason, for T, < T < T¥, where TZ is

determined by the condition D*(T} ) = W, there exists

a narrow region of phases near n = 2W in which the
superconducting gap A(n, W) differs from zero, but no

suchregionispresent for T> T (seeFig.5); TZ isthe
temperature to which the tail of the averaged gap
extends, i.e., the critical temperature for the averaged

gap (AL It follows from the definition of Ty that it is

obviously independent of the correlation length and
depends only on W. Since the width of the peaks of the
density of states (29) (and, hence, of A(n, D) also)
increaseswith D aslong asthe conditionn/2=D issat-

isfied, the value of T} increases with W. The depen-

dence of T} on W isshown on the corresponding inset
to Fig. 6.

5. CONCLUSIONS

In the present work, we have studied the features of
the superconducting state in the framework of the
extremely simplified model of the pseudogap in a 2D
electron system, which has an exact solution. Themain
result is the obvious absence of complete self-averag-
ing of the superconducting order parameter (energy
gap) over the random field of dielectric fluctuations
leading to the formation of the pseudogap state. This
fact is quite astonishing from the viewpoint of the stan-
dard model of superconductivity in disordered systems
[12-14]. The absence of self-averaging, which is man-
ifested in the emergence of strong fluctuations of the
gap, can be seen most clearly in the range of tempera-
tures exceeding the mean-field superconducting transi-
tion temperature T, that can be obtained from the stan-
dard equations written under the assumption of self-
averaging of the order parameter. This temperature is
identified by us with the temperature of the emergence
of a homogeneous superconducting state in the entire
sample, while the superconducting state in areal disor-
dered system is inhomogeneous. The superconducting
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statecan exist intherange T > T in theform of individ-
ual regions (drops) formed as aresult of random fluctu-
ations of thelocal density of electron states. In contrast
to our previous publication [5], in which this pattern
was considered in the limit of very large short-range
correlation lengths &, — o, the application of the
model [15] has made it possible to obtain the complete
solution for arbitrary values of &,,. This solution has
demonstrated the absence of complete self-averaging
of the superconducting gap even for &, < &o, which
contradicts the naive expectations following from the
standard approach [2]. It was noted above that we are
not aware of publicationsin which the self-averaging of
A would be considered in the framework of exactly
solvable models of disorder. In the present paper, such
an analysis has been carried out. It is unclear, however,
to what extent the obtained results will be preserved in
more realistic models.

For further investigations associated with the given
model, it would be interesting to analyze the behavior
of the spectral density of the electron and tunnel densi-
ties of states as was done in our earlier work [5] in the
limit &, —= 0. In particular, it would be interesting
to investigate the problem of self-averaging of the den-
Sity of states, which is assumed in the theory of disor-
dered system almost in all cases.

As regards the comparison with the experimental
data on high-temperature superconductors, it should be
noted that the existence of microscopic superconduct-
ing regions coexisting with predominant regions of the
semiconductor type with a typical pseudogap in the
electron spectrum of Bi,Sr,CaCu,Og, 5 films was
clearly demonstrated in [24, 25] using the method of
scanning electron microscopy for measuring the local
density of states. These observations are in qualitative
agreement with the main conclusions drawn on the
basis of the model under investigation.
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