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Abstract—A 2D model of the pseudogap state is considered on the basis of the scenario of strong electron scat-
tering by short-range-order fluctuations of the “dielectric” (antiferromagnetic or charge density wave) type. A
system of recurrence relations is constructed for a one-particle Green’s function and the vertex part, describing
the interaction of electrons with an external field. This system takes into account all Feynman diagrams for elec-
tron scattering at short-range-order fluctuations. The results of detailed calculations of optical conductivity are
given for various geometries (topologies) of the Fermi surface, demonstrating both the effects of pseudogap for-
mation in the electron spectrum and the localization effects. The obtained results are in qualitative agreement
with experimental data for underdoped HTSC cuprates. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the central problems in the physics of high-
temperature copper-oxide superconductors (HTSC) is
the description of the nature of the so-called pseudogap
state [1, 2] existing in a wide region of the phase dia-
gram. In our opinion [2], the preferable scenario for the
pseudogap formation in HTSC oxides is based on the
existence of strong scattering of charge carriers in this
region at short-range-order fluctuations of the “dielec-
tric” type (antiferromagnetic (AFM) fluctuations or
charge-density wave (CDW) type fluctuations). This
scattering is strong in the vicinity of the characteristic
vector Q = (π/a, π/a) (a is the 2D lattice constant), cor-
responding to doubling of the period (antiferromag-
netism vector) and is a precursor of the spectral rear-
rangement due to the establishment of the long-range
AFM order. Accordingly, an essentially non-Fermi-liq-
uid rearrangement of the electron spectrum occurs in
this pretransition region of the phase diagram in certain
regions of the momentum space in the vicinity of so-
called hot spots on the Fermi surface [2], where its
effective destruction takes place. A direct experimental
verification of such a pattern of formation of a
pseudogap was obtained in recent ARPES experiments
on the system Nd1.85Ce0.15CuO4 [3], in which the above-
mentioned spectral rearrangement could be studied in
the vicinity of hot spots.

In the framework of the above scenario of the
pseudogap state formation, it is possible to construct a
simplified “almost exactly” solvable model describing
the main features of this state [2] and taking into
account the contribution of all Feynman diagrams in the
perturbation theory on the scattering by short-range-
order (Gaussian) fluctuations with characteristic scat-
1063-7761/02/9503- $22.00 © 20526
tering momentum from the vicinity of Q, determined
by the corresponding correlation length ζ [4, 5]. This
model is based on a generalization of the model of for-
mation of a pseudogap in a 1D system due to developed
short-range-order fluctuations of the CDW type (which
was proposed earlier by one of the authors [6, 7]) to the
2D case. A simplified version of this 2D model (the
model of hot patches) was used in [8–11] for describing
the main properties of superconducting state formed
against the background of a dielectric pseudogap.

In [4, 5], one-particle properties of the model under
investigation (such as spectral density and the density
of states) were mainly analyzed. A remarkable feature
of this model is the possibility of summation of the
entire series of Feynman diagrams also in the two-par-
ticle problem of calculation of the vertex part describ-
ing the response of the system to external perturbation
(e.g., electromagnetic field) [6, 12, 13]. In the simpli-
fied version of the model of “hot patches” on the Fermi
surface, the required calculations of optical conductiv-
ity in the 2D case were made in [14]. Here, we aim both
at a detailed analysis of theoretical aspects of the calcu-
lation of two-particle properties in the framework of the
general model [4, 5] and at the calculation of optical
conductivity for various geometries (topologies) of the
Fermi surface, emerging when a realistic form of the
free electron spectrum is used.

2. MODEL OF HOT SPOTS

2.1. Description of the Model and “Almost Exact” 
Solution for One-Particle Green’s Function

In the model of a “nearly antiferromagnetic” Fermi
liquid, which is actively used for explaining the micro-
002 MAIK “Nauka/Interperiodica”
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scopic mechanism of HTSC [15, 16], the effective
interaction of electrons with short-range-order AFM
spin fluctuations is introduced. This interaction is
described by the dynamic spin susceptibility χq(ω) whose
shape is determined from fitting to NMR data [16]:

(1)

where g is the coupling constant, ξ is the correlation
length of spin fluctuations, Q = (π/a, π/a) is the antifer-
romagnetic ordering vector in the dielectric phase, and
ωsf is the characteristic frequency of spin fluctuations.
The dynamic susceptibility and, hence, the effective
interaction (1) have peaks in the region q ~ Q; accord-
ingly, two types of quasiparticles emerge in the system,
i.e., hot particles, whose momenta lie in the vicinity of
hot spots on the Fermi surface (Fig. 1), and cold parti-
cles, whose momenta lie in the vicinity of the regions
on the Fermi surface surrounding the diagonals of the
Brillouin zone [4]. As a matter of fact, quasiparticles
from the regions of hot spots are strongly scattered with
the momentum transfer of the order of Q due to their
interaction with the spin fluctuations (1), while the
same interaction for particles with momenta away from
hot spots is quite weak.

Considering the region of rather high temperatures
πT @ ωsf, we can neglect the spin dynamics [4], confin-
ing our analysis of relation (1) to the static approxima-
tion. A considerable simplification of calculations,
which makes it possible to analyze higher-order contri-
bution of perturbation theory, can be obtained if we go
over in relation (1) to a model interaction of the form
[5]

(2)

where ∆ is an effective parameter having the dimen-
sions of energy. Following [4, 5], in the subsequent
analysis we will treat ∆ and ξ as phenomenological
parameters (that can be determined experimentally).
Expression (2) is qualitatively similar to the static
limit (1) and differs from it quantitatively only slightly
in the most interesting region |q – Q | < ξ–1 determining
scattering in the vicinity of hot spots.

We will take the spectrum of the “bare” (free) qua-
siparticles in the form [4]

(3)

where t is the integral of transfer between the nearest
neighbors, t' is the same for next-to-nearest neighbors
in the square lattice, and µ is the chemical potential.
This expression provides a satisfactory approximation
to the results of band calculations for real HTSC sys-
tems. For example, for YBa2Cu3O6 + δ, we have t =
0.25 eV and t ' = –0.45t [4]. The chemical potential µ is

V eff q ω,( ) g2χq ω( )
g2ξ2

1 ξ2 q Q–( )2 iω/ωsf–+
---------------------------------------------------------,≈=

V eff q( ) ∆2 2ξ 1–

ξ 2– qx Qx–( )2+
------------------------------------- 2ξ 1–

ξ 2– qy Qy–( )2+
-------------------------------------,=

ξp 2t pxacos pyacos+( )–=

– 4t' pxacos pya µ,–cos
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fixed by charge carrier concentrations. In this work, we
consider various characteristic relations between
parameters t and t' leading to different geometries
(topologies) of the Fermi surface, aiming at an analysis
of the general pattern, which is not necessarily associ-
ated with known specific systems.

In [5], a detailed analysis of contributions of all dia-
grams was carried out for the self-energy part Σ(εnp) of
an electron. It turns out that, in the case when the signs

of the velocity components  and  (as well as of

 and ) coincide in hot spots on the Fermi sur-
face, the Feynman integrals in a diagram of any order
are determined only by the contributions from the poles
of the Lorentzians in relation (2) and can easily be eval-
uated.1 In this case, the contribution of an arbitrary dia-
gram for the self-energy component of the Nth order in
the interaction with fluctuations (2) has the form (εn =
(2n + 1)πT)

(4)

where ξj(p) = ξp + Q and v j =  +  for odd

j, ξj(p) = ξp and v j =  +  for even j, and κ = ξ–1.
Here, nj is the number of interaction lines embracing
the jth Green’s function in the given diagram; for the
sake of definiteness, we assume that εn > 0.

The conditions under which the above constraints
are imposed on the velocities at the points on the Fermi
surface connected by vector Q (hot spots) are analyzed
in detail in [5], where examples of corresponding
geometries of the Fermi surfaces realized for certain
relations between parameters t and t' in Eq. (3) are con-
sidered. In these cases, expression (4) is virtually exact.
In all remaining cases (for other relations between t and
t'), expression (4) is used as a successful ansatz for an
arbitrary-order contribution obtained by simple contin-
uation of the spectrum in parameters t and t' to the
region of interest. Even in the most unfavorable 1D case
[7] corresponding to a square Fermi surface emerging
from Eq. (3) for t' = 0 and µ = 0, the use of this ansatz
leads to results (e.g., for the density of states) very close
quantitatively [17] to the results of the exact numerical

1 A similar situation also emerges in the case when the velocities in
the hot spots connected by vector Q are exactly perpendicular [4].

v p
x v p Q+

x

v p
y v p Q+

y

Σ N( ) εnp( ) ∆2N 1
iεn ξ j p( ) in jv jκ+–
-----------------------------------------------,

j 1=

2N 1–

∏=

v p Q+
x v p Q+

y

v p
x v p

y

= +
Gk G0k G0k GkGk + 1

∆2v (k + 1)

Fig. 1. Diagrammatic representation of recurrence relation
for the Green’s function. 
SICS      Vol. 95      No. 3      2002
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simulation of this problem [18]. In this sense, we are
using the term “almost exact” solution.

When ansatz (4) is used, it is found that the contri-
bution of any diagram with crossing interaction lines is
equal to the contribution of a diagram of the same order
without intersection of these lines [7]. For this reason,
we can, in fact, take into account the contributions from
diagrams without intersection of the interaction lines,
taking into account the contribution from diagrams
with intersection, with the help of additional combina-
torial factors compared to the “initial” interaction verti-
ces (or lines) [7]. As a result, we obtain the following
recurrence relation (representation in the form of a con-
tinued fraction [7]) for a one-electron Green’s function,
which gives an effective logarithm for subsequent
numerical calculations [5]:

(5)

(6)

Figure 2 is a graphical representation of this recurrence
relation. The physical Green’s function we are inter-
ested in is G(εnξp) = Gk = 0(εnξp). In relation (5), we have
also introduced the following auxiliary notation:

(7)

In the case of commensurate fluctuations with Q = (π/a,
π/a) [7] under investigation, the combinatorial factor is
given by

(8)

if we disregard their spin structure (CDW-type fluctua-
tions). If the spin structure of interactions is taken into
account in the model of a nearly antiferromagnetic

Gk εnξp( )
1

iεn ξk p( )– ikv kκ Σk 1+ εnξp( )–+
-----------------------------------------------------------------------------=

≡ G0k
1– εnξp( ) Σk 1+ εnξp( )–{ } 1–

,

Σk εnξp( ) ∆2 v k( )
iεn ξk p( )– ikv kκ Σk 1+ εnξp( )–+
-----------------------------------------------------------------------------.=

G0k εnξp( )
1

iεn ξk p( )– ikv kκ+
----------------------------------------------.=

v k( ) k=

Q = (π, π)

(π, π)

Γ

Fig. 2. Fermi surface with hot spots connected through the
scattering vector of the order of Q = (π/a, π/a).
JOURNAL OF EXPERIMENTAL 
Fermi liquid (spin–fermion model [4]), the combinato-
rics of the diagrams becomes more complicated. In par-
ticular, the scattering with spin conservation gives a
formally commensurate combinatorics, while scatter-
ing with spin flip is described by the diagrams for the
incommensurate case (“charged” random field in the
terminology used in [4]). As a result, the recurrence
relation for the Green’s function, as before, has the form
(6), but the combinatorial factor v(k) has the form [4]

(9)

In the subsequent analysis, we confine ourselves to
cases (8) and (9); the details corresponding to incom-
mensurate fluctuations of the CDW type can be found
in [5–7].

The obtained solution for a one-particle Green’s
function is exact in the limit ξ  ∞, when a solution
can be found in analytic form [4, 6]. This solution is
exact in the trivial limit ξ  0, when interaction (2)
just vanishes for a fixed value of ∆. For all intermediate
values of ξ, it gives a very good interpolation (see
above) since it is virtually exact for certain geometries
of the Fermi surface emerging for specific ranges of
variation of the parameters of spectrum (3) [5].

Using relation (5), we can easily carry out numerical
calculations of the one-electron spectral density and
density of states:

(10)

In these relations, GR(Ep) is the retarded Green’s func-
tion obtained by the conventional analytical continua-
tion of Eq. (5) from the Matsubara frequencies to the
real axis E. The details of corresponding calculations
and the discussion of the obtained results for the 2D
model under investigation can be found in the publica-
tions [4, 5] mentioned above.

2.2. Recurrence Equations for the Vertex Part 
and Conductivity

In order to calculate the optical conductivity, we
must calculate the vertex part describing the electro-
magnetic response of the system. This apex can be
determined by the method proposed for an analogous
one-dimensional model in [12, 13]. Any diagram for an
irreducible vertex component can be obtained by insert-
ing the external field lines into the corresponding dia-
gram for the self-energy component [6]. Since our
model can take into account only the diagrams for the
self-energy component without intersection of the

v k( )

k 2+
3

------------ for odd k

k
3
--- for even k.






=

A Ep( ) 1
π
---ImGR Ep( ),–=

N E( ) A Ep( ).
p

∑=
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interaction lines with additional combinatorial factors
v (k) at initial vertices, it is sufficient to consider only
diagrams of the type shown in Fig. 3 for calculating
vertex corrections. This immediately gives a system of
recurrence equations for the vertex parts, presented
graphically in Fig. 4. In order to obtain the correspond-
ing analytic expressions, we consider the simplest ver-
tex correction shown in Fig. 5a. Carrying out calcula-
tions for T = 0 in the RA channel, we can easily obtain
the corresponding contribution in the form

(11)

where we have evaluated the integrals using the follow-
ing identity valid for free-electron Green’s functions:

(12)

(1
1( )RA εp; ε ω, p q+ +( )

=  V eff k( )G00
A εξp K–( )G00

R ε ωξp K q+–+( )
K

∑

=  ∆2 G00
A ε ξ1 p( ) iv 1κ+,( ){

– G00
R ε ω+ ξ1 p q+( ) iv 1κ–,( ) }

× 1
ω ξ1 p( ) ξ1 p q+( )–+
--------------------------------------------------

=  ∆2G00
A ε ξ1 p( ) iv 1κ+,( )G00

R ε ω+ ξ1 p q+( ) iv 1κ–,( )

× 1
2iv 1κ

ω ξ1 p( ) ξ1 p q+( )–+
--------------------------------------------------+

 
 
 

≡ ∆2G01
A ε ξp,( )G01

R ε ω+ ξp q+,( )

× 1
2iv 1κ

ω ξ1 p( ) ξ1 p q+( )–+
--------------------------------------------------+

 
 
 

,

G00
A εξ p( )G00

R ε ωξp q++( )

=  G00
A εξp( ) G00

R ε ωξp q++( )–{ } 1
ω ξp q+ ξp+–
---------------------------------.

v (1)v (2) v (k)

qω

Fig. 3. General form of the higher order correction for the
vertex part.
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“Dressing” internal electron lines, we pass to the dia-
gram in Fig. 5b. Using the identity

(13)

which is valid for exact Green functions, we can write
the contribution of this diagram in the form

GA εξp( )GR ε ωξp q++( ) GA εξp( ) GR ε ωξp q++( )–{ }=

× 1

ω ξp q+ ξp Σ1
R ε ωξp q++( )– Σ1

A εξp( )+ +–
----------------------------------------------------------------------------------------------------,

+=

+=

v (1)

v (k)

J1J

G

G

Gk Ð 1

Gk Ð 1

Gk

Gk

JkJk Ð 1

Fig. 4. Recurrence equations for the vertex part.

(a)

(b)

(c)

J1

Jk

ε + ω, p + q

εp

v (1)

v (k)

q, ω

Fig. 5. Simplest corrections to vertex parts.

G1

G1
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(14)

(1
RA εp; ε ω, p q+ +( )

=  ∆2
v 1( )G1

A ε ξp,( )G1
R ε ω+ ξp q+,( ) 1 ---

2iv 1κ
ω ξ1 p q+( )– ξ1 p( ) Σ2

R ε ωξp q++( )– Σ2
A εξp( )+ +

---------------------------------------------------------------------------------------------------------------------




+




× J1
RA εp; ε ω, p q+ +( ).
Here, we have assumed that the line of interaction on
the diagram for the vertex correction in Fig. 5b “trans-

forms” the self-energy component  of internal

electron lines into  in accordance with the approx-

Σ1
R A,

Σ2
R A,
JOURNAL OF EXPERIMENTAL
imation used above for the self-energy component (see

Fig. 2).2

We can now easily write a similar expression for a
general diagram shown in Fig. 5c:
(15)

Accordingly, the fundamental recurrence relation for the vertex part in Fig. 4 can be written in the form

(16)

(k
RA εp; ε ω, p q+ +( ) ∆2

v k( )Gk
A ε ξp,( )Gk

R ε ω+ ξp q+,( )=

× 1
2iv kκk

ω ξk p q+( )– ξk p( ) Σk 1+
R ε ωξp q++( )– Σk 1+

A εξp( )+ +
--------------------------------------------------------------------------------------------------------------------------------+

 
 
 

Jk
RA εp; ε ω, p q+ +( ).

Jk 1–
RA εp; ε ω, p q+ +( ) 1 ∆2

v k( )Gk
A ε ξp,( )Gk

R ε ω+ ξp q+,( )+=

× 1
2iv kκk

ω ξk p q+( )– ξk p( ) Σk 1+
R ε ωξp q++( )– Σk 1+

A εξp( )+ +
--------------------------------------------------------------------------------------------------------------------------------+

 
 
 

Jk
RA εp; ε ω p, q+ +( ).
The physical apex JRA(εp; ε + ω, p + q) is defined as

(εp; ε + ω, p + q). The recurrence procedure (16)
takes into account all diagrams in perturbation theory
for the vertex component. As κ  0 (ξ  ∞), Eq.
(16) is reduced to the series studied in [6] (see also [4]),
which can be summed exactly in analytic form. In our
scheme of analysis, the standard ladder approximation
corresponds to the case when all combinatorial factors
v (k) in Eq. (16) are assumed to be equal to unity [13].

The conductivity of the system can be expressed
[19] in terms of the retarded density–density response
function χR(q, ω):

(17)

where e is the electron charge and

(18)

while the two-particle Green’s function ΦRA(ε, q, ω) is
determined by the loop graph shown in Fig. 6.

Jk 0=
RA

σ ω( ) e2 iω
q2
------– 

 
q 0→
lim χR q ω,( ),=

χR q ω,( ) ω ΦRA 0 q ω, ,( ) ΦRA 0 0 ω, ,( )–{ } ,=
 

Direct numerical calculations confirm that the recur-
rence procedure (16) satisfies the exact relation follow-
ing (for ω  0) from the Ward identity [19]:

(19)

where N(EF) is the density of states at the Fermi level
EF = µ. This is the main argument in favor of the ansatz
used in the derivation of Eqs. (14)–(16).

Ultimately, we can write conductivity in the symme-
trized form convenient for numerical calculations:

(20)

ΦRA 0 0 ω, ,( ) N EF( )/ω,–=

σ ω( )
e2ω2

π
----------- 1

q2
-----

q 0→
lim GR ω

2
---- p q

2
---+, 

 




p

∑=

× JRA ω
2
---- p

q
2
---; ω

2
----– p q

2
---–,+, 

  GA ω
2
----– p q

2
---–, 

 

– GR ω
2
---- p, 

  JRA ω
2
---- p; 

ω
2
---- p,–, 

  GA ω
2
---- p,– 
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,

2A motivation for this notation is that it ensures the fulfillment of
the Ward identity which will be discussed below.
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where we have also taken into account the additional
factor 2 associated with the summation over spin.

Numerical calculations were carried out directly by
using formulas (20), (16), and (5), the recurrence pro-
cedure being terminated at a high “level” k, where all Σk

and Jk were set equal to zero. Integration of Eq. (20)
was carried out over the entire 2D Brillouin zone. The
“bare” electron spectrum was taken in the form (3).
Integration momenta are naturally reduced to dimen-
sionless form with the help of lattice constant a, and all
energies will be henceforth given in units of the transfer
integral t. In this case, conductivity is measured in units
of universal conductivity σ0 = e2/" = 2.5 × 10–4 Ω–1 of a
2D system, and the density of states is measured in
units of 1/ta2.

3. RESULTS AND DISCUSSION

Optical conductivity and other parameters of the
model under investigation were calculated for various
values of parameters determining the spectrum (3) of
free quasiparticles and for ∆ = t. Let us first consider the
case when the Fermi surfaces are in the vicinity of half-
filled band with µ = 0 and t' = 0, which are presented in
Fig. 7a for the first quadrant of the Brillouin zone. It is
well known that, for µ = 0 and t' = 0, the Fermi surface
has the form of a square (complete nesting), so that the
situation is equivalent to a certain extent to the 1D case
considered in [6, 12, 13]. The results of calculations for
the real part of optical conductivity in the 2D problem
under investigation for the case of spin–fermion combi-
natorics of the diagrams and for various values of cor-
relation length of the short-range AFM order (parame-
ter κ = ξ–1, where ξ is measured in units of the lattice
constant a) are presented in Fig. 8. The form of conduc-
tivity is qualitatively quite similar to that obtained in
[12, 13] in the 1D model (for the case of incommensu-
rate CDW-type fluctuations). It is characterized by the
presence of a well-defined peak due to pseudogap
absorption (the corresponding curves for the density of
states, demonstrating the presence of a pseudogap near
the Fermi level, are shown in the inset to Fig. 8) for ω ~
2∆ and the presence of a maximum in the low-fre-
quency region, which is associated with the localization
of charge carriers in the static random field of AFM
fluctuations. The localization nature of this maximum
is confirmed by its conversion into the characteristic
Drude peak (with a maximum at ω = 0) for calculations
in the ladder approximation, when the combinatorial
factors v(k) = 1, which corresponds to the exclusion of
the contribution from diagrams with crossed interaction
lines which directly lead to 2D Anderson localization
[19, 20]. The qualitative form of conductivity in this
case is also quite similar to that obtained in [13]. The
narrowing of the localization peak upon a decrease in
the correlation length of fluctuations can be explained,
according to [13], by a decrease in the effective interac-
tion (2) upon a decrease in ξ (for a fixed value of ∆),
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leading to a general decrease in scattering rate (includ-
ing that at the cold part of the Fermi surface). It should
be noted that the behavior of the density of states and
optical conductivity determined here is in complete
qualitative agreement with the results obtained for an
analogous 2D model of the Peierls transition with the
help of the quantum Monte Carlo method in a recent
publication [21].

If we now include the transfer integral t' between the
next-to-nearest neighbors in Eq. (3), assuming, as
before, that µ = 0, we arrive at shapes of the Fermi sur-
face differing from a square and depicted in Fig. 7a.
The inset to this figure shows the energy dependence of
the spectral density (10) at several characteristic points
on these Fermi surfaces. It can be seen that it displays a
characteristic non-Fermi-liquid behavior of the type of
that studied in [4, 5] practically at all points on the
Fermi surface as long as the shape of this surface differs
from a square not very strongly, in spite of the fact that
a hot spot in the case under investigation lies strictly at
the intersection of the Fermi surface with the diagonal
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Fig. 8. Real part of optical conductivity in the spin–fermion
model for a square Fermi surface (µ = 0, t' = 0) for different
values of the inverse short-range-order correlation length:
κa = 0.1 (1), 0.2 (2), and 0.5 (3). The inset shows the corre-
sponding densities of states.

4

JOURNAL OF EXPERIMENTAL 
of the Brillouin zone. The corresponding curves for the
real part of optical conductivity are shown in Fig. 9; the
inset to this figure depicts the shape of the correspond-
ing densities of states. It can be seen that, as the situa-
tion differs more and more strongly from complete
nesting, the pseudogap absorption peak decreases,
while the localization peak increases in conformity
with the general summation rule for conductivity. It
should be noted, however, that the pseudogap absorption
peak remains quite noticeable even when the pseudogap
in the density of states is virtually imperceptible (curves 4
in Fig. 9).

Let us return to the case when t' = 0, but the value of
µ is varied, so that we pass to the Fermi surfaces whose
shape is quite close to the square shown in Fig. 7b.
Strictly speaking, hot spots on the Fermi surface are
absent altogether, but the spectral density shown in the
inset to Fig. 7b preserves a typical pseudogap form. The
corresponding dependences for the real part of optical
conductivity are presented in Fig. 10.
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Fig. 9. Real part of optical conductivity in the spin–fermion
model for µ = 0 and κa = 0.1 for various shapes of the Fermi
surface obtained from the square surface taking into
account the transfer integral: t'/t = 0 (1), –0.2 (2), –0.4 (3),
and –0.6 (4). The inset shows the corresponding densities of
states.
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Let us now consider various geometries of the Fermi
surface with hot spots shown in Fig. 11. Figures 12 and
13 depict the real part of optical conductivity, calcu-
lated (for different combinatorics of the diagrams) for
two characteristic values t ' = –0.4t and t ' = –0.6t for the
chemical potential µ = 0, when hot spots are on the
diagonal of the Brillouin zone (curve 5 in Fig. 11a and
curve 4 in Fig. 11b). It can be seen that the pseudogap
behavior of the conductivity persists even in the case
when there is practically no pseudogap in the density of
states (shown in the insets to Figs. 12, 13). The dashed
curve in Fig. 12 shows the results of the ladder approx-
imation, demonstrating the typical disappearance of 2D
localization. Figure 13 illustrates the smearing of the
pseudogap maximum of conductivity upon a decrease
in the short-range-order correlation length.

For most high-temperature copper-oxides supercon-
ductors, the characteristic geometry of the Fermi sur-
face is described by the case t ' = –0.4t and µ = –1.3t [4]
(curve 3 in Fig. 11a). The results of calculation of opti-
cal conductivity for this case for different values of the
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Fig. 10. Real part of optical conductivity in the spin–fer-
mion model for different values of parameter t' and κa = 0.1
for various shapes of the Fermi surface obtained from the
square surface as a result of departure from half-filled band.
The chemical potential corresponds to values of µ/t = 0 (1),
–0.3 (2), –0.5 (3), and −0.6 (4).
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inverse correlation length κ are presented in Fig. 14 (for
the case of the spin–fermion combinatorics of dia-
grams). We have introduced additional weak scattering
due to inelastic processes through the standard substi-
tution ω  ω + iγ [22], which leads to the emergence
of a narrow Drude peak in the frequency range ω < γ
(violation of 2D localization due to dephasing). It can
easily be verified that, as the rate γ of inelastic scatter-
ing increases, the localization peak is smeared and is
transformed into a conventional Drude peak in the low-
frequency region. The pseudogap absorption peak
becomes more pronounced upon an increase in correla-
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Fig. 11. Fermi surfaces for different values of parameter t'
and chemical potential µ: (a) t'/t = –0.4 (which is typical
of HTSC cuprates) and µ/t = –1.6 (1), –1.4 (2), –1.3 (3),
–1.1 (4), and 0 (5); hot spots exist for –1.6 < µ/t < 0;
(b) t'/t = –0.6 and µ/t = –1.8 (1), –1.666 (2), –1.63 (3), and
0 (4). Hot spots exist for µ < 0. Dashed lines mark the
boundary of the magnetic Brillouin zone.
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tion length ξ (a decrease in parameter κ). Figure 15
shows the frequency dependences of the effective scat-
tering rate 1/τ(ω) and effective mass m*(ω), deter-
mined from the results of our calculations with the help
of the generalized Drude formula, which is often used
for experimental data fitting [1]: 

(21)

(22)

Here, ωp is the plasma frequency, and m is the free elec-
tron mass. It can be seen from Fig. 15 that the quantity

1/τ(ω) (which is expressed in units of "/4πe2 in this
figure) demonstrates a typical pseudogap behavior in
the frequency range ω < 2∆. It should be noted that the
density of states in this case exhibits only a weakly pro-
nounced pseudogap [5] (see the inset to Fig. 12). Figure
16 presents similar results for the same case (typical of
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Fig. 12. Real part of optical conductivity for t'/t = −0.4,
µ = 0, and κa = 0.1 for different combinatorics of diagrams:
spin–fermion model (1) and commensurate case (2). The
dotted curve corresponds to the ladder combinatorics. The
inset shows the corresponding densities of states.
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HTSC oxides) obtained for a model with diagram
combinatorics corresponding to commensurate fluctu-
ations of the CDW type. It can be seen that the
pseudogap absorption peak is virtually unnoticeable
in this case.

It can be seen from Fig. 11b that, as the chemical
potential changes from µ = 0 to µ = –1.666t, the
Fermi surface acquires flat regions of increasing size
and is transformed into a virtually cross-shaped sur-
face for µ ≈ 1.666t. Such a Fermi surface was
observed in ARPES experiments on the system
La1.28Nd0.6Sr0.12CuO4 [23, 24]. In this case, the compo-
nents of velocities at hot spots connected by the vector
Q = (π/a, π/a) become orthogonal. For µ/t = −1.666…,
the topology of the Fermi surface changes (Fig. 11b),
and these components have the same sign in the entire
region µ/t < –1.666…, which ensures exact fulfillment
of our fundamental ansatz (4) for the contributions of
higher order diagrams [5]. It is interesting to consider
the results of calculations of optical conductivity in this
region of variation of µ also. The corresponding results
in the case of a commensurate (CDW) combinatorics
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Fig. 13. Real part of optical conductivity in the spin–fer-
mion model for t'/t = –0.6 and µ = 0 for the values of inverse
correlation length κa = 0.1 (1), 0.2 (2), 0.5 (3) and 1.0 (4).
The inset shows the densities of states corresponding to
curves 1 and 4.
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are presented in Fig. 17, where the variation of the
localization conductivity peak during the transition of
chemical potential through the topological transition
region can be traced. A low-intensity pseudogap
absorption peak virtually remains unchanged. The inset
to Fig. 17 shows the evolution of the localization peak
taking into account inelastic scattering (parameter γ)
for µ = –1.8t. It can clearly be seen how a transition
from the localization to the Drude behavior occurs due
to dephasing processes. The obtained results show that
the change in the Fermi surface topology itself does not
lead to strong qualitative changes in optical conductiv-
ity in the framework of the model under investigation.

4. CONCLUSIONS

The above analysis demonstrates the variety of the
results that can be obtained in the model under investi-
gation for different geometries and topologies of the
Fermi surface, emerging upon a change in the parame-
ters of the “bare” quasiparticle spectrum (3). It is inter-
esting to compare these results with those obtained ear-
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inverse correlation length κa = 0.05 (1), 0.1 (2), and 0.2 (3).
The dephasing rate γ/t = 0.005.
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lier in the simplified model of hot patches on the Fermi
surface [14]. Since the pseudogap anomalies in the hot-
patches model are mainly determined by strong scatter-
ing precisely in these (flat) regions on the Fermi surface
and by their relative size, the localization conductivity
peak was virtually unnoticeable in this model, and the
dominating role was played by the Drude peak associ-
ated with scattering from cold regions, which is deter-
mined by an auxiliary scattering rate γ (whose meaning
is similar to the inelastic scattering rate introduced
above). The above analysis of a more realistic model
shows that the contribution of the localization peak may
be quite noticeable and that it is this peak that can be
transformed into a narrow Drude peak when dephasing
processes are taken into account.

The main drawback of the model considered above
is probably the disregard of the dynamics of short-
range-order fluctuations. This approximation is justi-
fied, according to [4, 5], only at high temperatures, but
the processes of inelastic scattering responsible for the
dephasing and violation of localization become more
significant just at such temperatures. Another draw-
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Fig. 15. Generalized scattering rate and effective mass for
the case t'/t = –0.4 and µ/t = –1.3 typical of high-tempera-
ture superconductors. The parameters of the generalized
Drude model are obtained in the spin–fermion model for the
values of inverse correlation length κa = 0.05 (1), 0.1 (2),
and 0.2 (3). The dephasing rate γ/t = 0.005.
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back, as was noted repeatedly in [5, 7], is the confine-
ment to the Gaussian approximation for fluctuation sta-
tistics, which can also be justified only for the region of
high temperatures.

While considering a possible relation between the
results obtained above and real experiments on HTSC
cuprates, it should be borne in mind that no localization
peak was observed in most of such experiments [1, 2],
which can apparently be attributed to a noticeable role
of inelastic processes (dephasing) at the high tempera-
tures used in these experiments. Optical conductivity
peaks in the low-frequency region, attributed to local-
ization, were observed in disordered samples of the
YBaCuO system in [25, 26]. Recent experiments on the
NdCeCuO system [27, 28], in which such a peak was
observed especially clearly, are worth mentioning. In
particular, the qualitative behavior of optical conductiv-
ity observed in [28] for a series of NdCeCuO samples
of various compositions (from underdoped to optimally
doped) is in complete agreement with the behavior
depicted in Fig. 14, which may be typical of HTSC
cuprates (see above). Thus, in our opinion, the model of
hot spots may claim at a realistic description of anom-
alies in the optical conductivity of high-temperature
superconductors.
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1. INTRODUCTION

The pseudogap state observed in a wide region on
the phase diagram of HTSC cuprates leads to numerous
anomalies in the properties of these compounds both in
the normal and in the superconducting state [1, 2]. In
our opinion, the most feasible scenario for the forma-
tion of the pseudogap state in HTSC oxides is that [2]
based on the existence of strong scattering of charge
carriers under short-range order fluctuation of the
“dielectric” type (antiferromagnetic AFM (SDW) or of
the type of charge density waves (CDW)) in this region
of the phase diagram. In the momentum space, this
scattering occurs in the vicinity of the characteristic
vector Q = (π/a

 

, 

 

π

 

/

 

a

 

) (

 

a

 

 is the parameter of the 2D lat-
tice), corresponding to period doubling (the antiferro-
magnetism vector) and is a predecessor of the spectrum
rearrangement occurring during the establishment of
the long-range AFM (SDW) order. Accordingly, an
essentially non-Fermi-liquid rearrangement of the elec-
tron spectrum takes place in definite regions of the
momentum space in the vicinity of the so-called hot
spots at the Fermi surface [2]. In a number of recent
experiments [3–5], precisely this scenario of pseudogap
formation was convincingly confirmed. In the frame-
work of the picture described above, it is possible to
construct a simplified model of the pseudogap state,
which describes the main features of this state [2] and
takes into account the contribution from all Feynman
diagrams in perturbation theory relative to scattering
from (Gaussian) short-range order fluctuations with a
characteristic scattering momentum from a neighbor-

hood of vector 

 

Q

 

, which is determined by the corre-
sponding correlation length 

 

ξ

 

 [6, 7].
Most of the previous theoretical publications were

devoted to analysis of the models of the pseudogap
state in the normal phase at 

 

T

 

 > 

 

Tc . In our earlier publi-
cations [8–11], we considered superconductivity using
a simplified model of the pseudogap state, which is
based on the assumption of the existence of hot (plane)
regions at the Fermi surface. In the framework of this
model, we constructed the Ginzburg–Landau expan-
sion for various types of Cooper pairing [8, 10] and
studied peculiarities of the superconducting state in the
region of T < Tc on the basis of analysis of the solutions
to the Gor’kov equations [9–11]. It should be noted
above all that we considered an extremely simplified
model of Gaussian short-range order fluctuations with
an infinitely large correlation length, for which an exact
solution can be obtained for the pseudogap state [8, 9].
A more realistic case of finite correlation lengths was
analyzed both for model [10] (under the assumption of
self-averaging of the superconducting order parameter in
short-range order fluctuations) and for an extremely sim-
plified, exactly solvable model [11], in which the role of
non-self-averaging effects could be analyzed [9, 11].

The present study aims at analyzing the basic prop-
erties of the superconducting state (for various types of
pairing) arising against the background of a “dielectric”
pseudogap in a more realistic model of hot spots at the
Fermi surface. We will confine our analysis to a very
close neighborhood of the superconducting transition
temperature Tc based on the microscopic derivation of
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the Ginzburg–Landau expansion, assuming that the
superconducting order parameter is self-averaging,
thus generalizing the approach proposed for the model
of a hot region developed in [10].

2. HOT-SPOT MODEL 
AND PAIRING INTERACTION 

In the model of an “almost antiferromagnetic”
Fermi liquid, which is actively used for explaining the
microscopic mechanism of HTSC [12, 13], the effec-
tive interaction of electrons with spin fluctuations is
introduced. This interaction is described by the
dynamic susceptibility characterized by the correlation
length ξ of spin fluctuations (which must be determined
from experiment), the vector Q = (π/a, π/a) of antifer-
romagnetic ordering in the dielectric phase, and the
characteristic frequency ωsf of spin fluctuations. This
dynamic susceptibility and, hence, the effective interac-
tion have peaks in the region of q ~ Q. Accordingly, two
types of quasiparticles appear in the system: hot quasi-
particles whose momenta lie in the vicinity of hot spots
at the Fermi surface (Fig. 1) and cold quasiparticles
whose momenta are in the vicinity of regions at the
Fermi surface, surrounding the diagonals of the Bril-
louin zone [6]. As a matter of fact, quasiparticles from
the neighborhoods of hot spots are strongly scattered
over a vector on the order of Q due to their interaction
with spin fluctuations, while this interaction for parti-
cles with momenta far away from hot spots is quite
weak.

Considering the range of high temperatures 2π

 

T

 

 �
ωsf , we can disregard the spin dynamics [6], confining
our analysis to the static approximation. Computations
can be considerably simplified and the contributions
from higher orders of perturbation theory can be ana-
lyzed if we pass to the model interaction of electrons
with spin (or charge) fluctuations of the form [7]

(1)

where W is an effective parameter having the dimension
of energy. Here, as in [6, 7], W and ξ are treated as phe-
nomenological parameters (which are determined from
experiment). Expression (1) is qualitatively similar to
the static limit of the interaction considered in [12, 13]
and quantitatively differs insignificantly from this limit
in the most interesting region |q – Q| < ξ–1, which deter-
mines scattering in the vicinity of hot spots, if the
parameters appearing in this expression are appropri-
ately defined. In fact, we are talking about the replace-
ment of the actual interaction with dynamic short-range
order fluctuations by the electron scattering from the
static random (Gaussian) field of such fluctuations. The

V eff q( )

=  W2 2ξ
1–

ξ
2– qx Qx–( )

2+
------------------------------------- 2ξ

1–

ξ
2– qy Qy–( )

2+
-------------------------------------,

least justified assumption from the standpoint of phys-
ics is the one that concerns the static (and Gaussian)
nature of fluctuations, which can be used only for quite
high temperatures [6, 7]. At low temperatures (includ-
ing those corresponding to the superconducting phase),
the spin dynamics and the non-Gaussian nature of fluc-
tuations may also become significant for the micros-
copy of Cooper pairing in the model of a nearly antifer-
romagnetic Fermi liquid [12, 13]. However, in our
opinion, the static Gaussian approximation considered
here might be sufficient for analyzing the qualitative
effect of the pseudogap formation on superconductivity
(in particular, in the vicinity of the superconducting
transition temperature), which will be henceforth
described by using the simple approach of the BCS the-
ory and the Ginzburg–Landau phenomenology.

The spectrum of the initial (free) quasiparticles will
be taken in the form [6]

(2)

where t is the integral of transfer between the nearest
neighbors, t' is the same for the next to nearest neigh-
bors in a square lattice, a is the lattice parameter, and μ
is the chemical potential. This expression provides a
good approximation to the results of band calculations
for real HTSC systems. For example, for
YBa2Cu3O6 + δ , we have t = 0.25 eV and t ' = –0.45t [6].
Chemical potential μ is determined by the carrier con-
centration.

In the limit of an infinitely large correlation length
(ξ  ∞), the model of scattering from short-range
order fluctuations of the type considered here has an
exact solution [14]. For finite values of ξ, we can con-
struct an approximate solution [7] generalizing the 1D
approach proposed in [15]. In this case, it is possible to
sum (approximately) the entire diagrammatic series for
the one-particle electron Green function. As a result,
the following recurrent procedure arises for the one-

ξp 2t pxa pyacos+cos( )–=
– 4t' pxa pya μ,–coscos

(π, π)

Q = (π, π)

É

Fig. 1. Fermi surface with hot spots connected by a scatter-
ing momentum on the order of Q = (π/a, π/a).
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where the generalized Cooper susceptibility is defined
in Fig. 2 and is given by

(10)

here, Φp, p'(εn, – εn, q) is a two-particle Green function
in the Cooper channel, which takes into account the
scattering from short-range order fluctuations.

We will first consider the case of charge fluctuations
(CDW), where the interaction is independent of spin
variables. For the s and dxy pairing, the superconducting
gap remains unchanged upon a transfer over Q (i.e.,
e(p + Q) = e(p)) and e(p') ≈ e(p). In the case of aniso-
tropic s and  pairing, the superconducting gap
reverses its sign upon a transfer over Q (e(p + Q) =
−e(p)); consequently, e(p') ≈ e(p) for p' ≈ p and e(p') ≈
−e(p) for p' ≈ p + Q. Thus, for diagrams containing an
even number of interaction lines connecting the upper
(εn) and lower (–εn) electron lines, we have p' ≈ p; Thus,
we arrive at the same expression for the contribution to
susceptibility as in the case of the s and dxy pairing. On
the other hand, for diagrams with an odd number of
such interaction lines, we obtain an expression with the
opposite sign for the contribution to susceptibility. This
sign reversal can be attributed simply to the sign rever-
sal for the interaction connecting the upper and lower
electron lines of the loop in Fig. 2. In this case, we
obtain for the generalized susceptibility the expression

(11)

where Γ±(εn, –εn, q) is the triangular vertex part taking
into account the interaction with short-range order fluc-
tuations, the superscript “±” allowing for the above-
mentioned difference in the signs of interactions con-
necting the upper and lower electron lines.

Let us now consider the scattering from spin fluctu-
ations (AFM (SDW)). In this case, the line of interac-
tion with the longitudinal spin component Sz, which
embraces the vertex and changes the direction of the
spin, should be supplemented with an additional factor
of (–1) [6]. From this point of view, in the case of inter-
action with spin fluctuations, the types of pairing con-
sidered above “change places”2 and the generalized
Cooper susceptibility is determined by triangular ver-
tex Γ– for s and dxy pairing and by triangular vertex Γ+

for anisotropic s and  pairing.

2 This is due to the fact that the sign of the spin projection is
reversed at the vertex of the interaction with the superconducting
gap (we consider only the singlet pairing).

χ q; T( )

=  T e p( )e p'( )Φp p', εn εn– q, ,( );
p p',

∑
εn

∑–

dx2 y2–

χ q; T( ) T G εnp q+( )G εn– p–,( )e2 p( )

p
∑

εn

∑–=

×Γ
±

εn εn– q, ,( ),

dx2 y2–

Thus, we must calculate the triangular vertices tak-
ing into account all diagrams (including cross dia-
grams) describing the interaction with dielectric fluctu-
ations. The corresponding recurrence procedure for a
1D analog of our problem (and for real-valued frequen-
cies, T = 0) was formulated for the first time in [18]. For
the 2D model of the pseudogap with hot spots at the
Fermi surface considered here, a generalization of this
recurrence procedure is given in [19] in connection
with optical conductivity calculations. The details of
the corresponding derivation can also be found in [19].
A generalization to the case of Matsubara frequencies
required for our problem can be carried out directly. For
definiteness, we will henceforth assume, as before, that
εn > 0. Ultimately, for a triangular vertex, we obtain the
recurrence relation represented by the graphs in Fig. 3
(where the wavy line indicates the interaction with
pseudogap fluctuations) and having the following ana-
lytic form:

(12)

here, Gk = Gk(εnp + q) and  = Gk(–εn, –p) are calcu-
lated in accordance with expression (3), vk is defined by
formula (5), and vk have the form

(13)

A “physical” vertex is defined as Γ±(εn, –εn, q) ≡

(εn, –εn, q).

Γk 1–
±

εn εn– q, ,( ) 1 W2s k( )GkGk±=

× 1
2ikv kκ

2iεn vk q W2s k 1+( ) Gk 1+ Gk 1+–( )–⋅–
-------------------------------------------------------------------------------------------------+

 
 
 

×Γk
±

εn εn– q, ,( );

Gk

vk
v p Q+( ) for odd k,
v p( ) for even k.




=

Γ0
±

= +
G

G

= +

Gk

Gk

G1

G1

s(k)

s(1)

Γ1

Γk

Gk – 1

Gk – 1Γk – 1

Γ

Fig. 3. Recurrence equations for the vertex part.
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To determine Tc , we must consider the vertex for
q = 0. In this case,  =  and vertices  and 
become real-valued, which considerably simplifies pro-
cedures (12) For ImGk and ReGk , we have the system
of recurrence equations

(14)

where Dk = (ξk(p) + W2s(k + 1)ReGk + 1)2 + (εn + kvkκ –
W2s(k + 1)ImGk + 1)2 and the vertex part for q = 0 can be
determined from the equation

(15)

Passing to numerical calculations, it is convenient to
set the characteristic scale of energies (temperatures),

Gk Gk* Γk
+

Γk
–

ImGk
εn kv kκ W2s k 1+( )ImGk 1+–+

Dk
----------------------------------------------------------------------------,–=

ReGk
ξk p( ) W2s k 1+( )ReGk 1++

Dk
------------------------------------------------------------------,–=

Γk 1–
± 1 W2s k( )

ImGk

εn W2s k 1+( )ImGk 1+–
---------------------------------------------------------Γk

±.+−=

which characterizes the superconducting state in our
model in the absence of pseudogap fluctuations (W = 0).
In this case, the equation for the corresponding super-
conducting transition temperature Tc0 has the standard
form for the BCS theory (in the general case of aniso-
tropic pairing) and can be written as

(16)

where  = [ωc/2πTc0] is the dimensionless cutoff
parameter for the sum over Matsubara frequencies. All
calculations were made for a typical quasiparticle spec-
trum (2) in HTSC with μ = –1.3t and t'/t = –0.4. Choos-
ing (quite arbitrarily) ωc = 0.4t and Tc0 = 0.01t, we can
easily select the value of pairing parameter V in rela-
tion (16), which gives the same value of Tc0 for various
types of pairing enumerated in (8). In particular, we
obtain V/ta2 = 1 for the conventional isotropic s-type
pairing and V/ta2 = 0.55 for the -type pairing. For
the remaining types of pairing from relation (8), the val-
ues of the pairing constant for such a choice of param-
eters are found to be unrealistically high and we do not
give the results of the corresponding calculations.3 

Figures 4 and 5 show typical results of numerical
calculations of the superconducting transition tempera-
ture Tc for a system with a pseudogap, which were
obtained directly from relation (9) using the recurrence
equations described above. It can be seen that
pseudogap (dielectric) fluctuations considerably reduce
the superconducting transition temperature in all cases.
The  pairing is suppressed much more rapidly
than the isotropic s pairing. At the same time, a
decrease in correlation length ξ (an increase in param-
eter κ) of pseudogap fluctuations facilitates an increase
in Tc . These results are quite analogous to those
obtained earlier in the model of hot regions [8, 10].
However, considerable differences also arise. It can be
seen from Fig. 4 that the curve describing the depen-
dence of Tc on pseudogap width W has a characteristic
plateau in the region of W < 10Tc0 for s pairing and scat-
tering from charge (CDW) fluctuations as well as for

 pairing and scattering from spin (AFM (SDW))
fluctuations4 (i.e., in the cases when the upper sign in
formulas (12) and (15) “operates”, leading to sign-con-
stant recurrence procedure for a vertex), while a consid-

3 Of course, such a description on the basis of equations in the BCS
theory with weak binding does not claim to be realistic in the
cases of s and  pairing considered here as well. We must
just preset the characteristic scale of Tc0 to express all tempera-
tures in subsequent calculations in units of this temperature,
assuming that a certain universality relative to this scale exists in
the problem considered here.

4 The latter case is realized, in all probability, in actual HTSC
materials based on copper oxides.
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Fig. 4. Dependence of the superconducting transition tem-
perature Tc/Tc0 on effective pseudogap width W/Tc0 for the
s-type pairing and scattering from charge (CDW) fluctua-
tions (curves s1 and s2) and for the -type pairing and

scattering from spin (AFM (SDW)) fluctuations (curves d1
and d2). The data are given for the following values of
reciprocal correlation length: κa = 0.2 (s1 and d1) and κa =
0.5 (s2 and d2).
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erable suppression of Tc takes place on a scale of W ~
50Tc0. Qualitative differences appear in the case of s
pairing and scattering from spin (AFM (SDW)) fluctu-
ations and in the case of  pairing and scattering
from charge fluctuations. Figure 5 shows that, in the lat-
ter case (when the lower sign in formulas (12) and (15)
operates; i.e., an alternating procedure arises for a ver-
tex), the rate of suppression of Tc is an order of magni-
tude higher. In the case of  pairing, in the range
of W/Tc0 values corresponding to almost complete sup-
pression of superconductivity, the accuracy of our cal-
culations becomes considerably worse in view of the
alternating nature of the recurrence procedure for the
vertex part. In particular, a typical ambiguity of Tc may
appear, which corresponds to possible existence of a
narrow region of “recurrent” superconductivity on the
phase diagram.5 Such a behavior of Tc slightly resem-
bles similar peculiarities emerging in superconductors
with Kondo impurities [20]. Our calculations show,
however, that the most probable scenario is the emer-
gence of the critical value of parameter W/Tc0, for
which superconductivity is completely suppressed. In
this case, a region may appear, in which the transition
to the superconducting state becomes a first-order
phase transition analogously to the known situation in
superconductors with a strong paramagnetic effect in
an external magnetic field [21]. In any case, the effects
arising in this case deserve a separate analysis. All
results considered below correspond to the region of
unambiguous behavior of Tc .

4. GINZBURG–LANDAU EXPANSION
In our earlier publication [8], the Ginzburg–Landau

expansion was constructed in the exactly solvable
model of a pseudogap with an infinitely large correla-
tion length for short-range order fluctuations. Subse-
quently [10], these results were extended to the case of
finite correlation lengths. In these publications, we con-
sidered, in fact, only charge fluctuations and used a
simple model of the pseudogap state, which was based
on the concept of hot (plane) regions existing at the
Fermi surface. In this model, the sign of the supercon-
ducting gap remained unchanged upon a transfer over
vector Q both for s and d pairing [10]. Here, we carry
out the generalization to a more realistic case of the
model of hot spots at the Fermi surface.

The Ginzburg–Landau expansion for the difference
in the free energies of the superconducting and normal
states can be written in the standard form

(17)

where � q is the amplitude of the Fourier component of

5 Such a peculiar behavior of Tc is manifested more strongly in the
case of scattering from incommensurate pseudogap fluctuations.

dx2 y2–

dx2 y2–

Fs Fn– A � q
2 q2C � q

2 B
2
--- � q

4,+ +=

the order parameter, which can be written for various
types of pairing in the form � (p, q) = � qe(p). Expan-
sion (17) is determined by the graphs of the loop expan-
sion for free energy in the field of order parameter fluc-
tuations (shown by dashed lines) with a small wave
vector q [8], which are represented in Fig. 6.

It is convenient to write the Ginzburg–Landau coef-
ficients in the form

(18)
where A0, C0, and B0 stand for the expressions for these
coefficients in the absence of pseudogap fluctuations
(W = 0), which are derived in the Appendix for an arbi-
trary spectrum ξp and various types of pairing,

(19)

A A0KA, C C0KC, B B0KB,= = =
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Fig. 5. Dependence of the superconducting transition tem-
perature Tc/Tc0 on effective pseudogap width W/Tc0 for the
s-type pairing and scattering from spin (AFM (SDW)) fluc-
tuations (curves s1 and s2) and for the -type pairing

and scattering from charge (CDW) fluctuations (curves d1
and d2). The data are given for the following values of
reciprocal correlation length: κa = 0.2 (s1 and d1) and κa =
1.0 (s2 and d2).
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angle brackets denote conventional averaging over the
Fermi surface,

and N0(0) is the density of states for free electrons at the
Fermi surface.

All peculiarities of the model in question, which are
associated with the emergence of a pseudogap, are con-
tained in dimensionless coefficients KA , KC , and KB . In
the absence of pseudogap fluctuations, all these coeffi-
cients are equal to unity.

It can be seen from Fig. 6a that coefficients KA and
KC are completely determined by the generalized Coo-
per susceptibility [8, 10] χ(q; T) depicted in Fig. 2:

(20)

(21)

It was shown above that the generalized susceptibility
can be found from relation (11), where the triangular
vertices are determined by recurrence procedures (12);
this allows us to directly calculate coefficients KA and
KC numerically.

…〈 〉
1

N0 0( )
-------------- δ ξp( )… ,

p
∑=

KA
χ 0; T( ) χ 0; Tc( )–

A0
---------------------------------------------,=

KC
χ q; Tc( ) χ 0; Tc( )–

q2C0

------------------------------------------------.
q 0→
lim=

The situation with coefficient B is more complicated
in the general case. Calculations can be significantly
simplified if we confine our analysis, as usual, to the
case of q = 0 in the order of |� q|

4 and define coefficient
B by the diagram show in Fig. 6b.Then we obtain the
following expression for coefficient KB:

(22)

It should be noted from the very outset that this expres-
sion leads to a positive definite coefficient B. This fol-
lows from the fact that G(–εn, –p) = G*(εnp) so that
G(εnp)G(–εn, –p) is real-valued; accordingly, vertex
part Γ±(εn, –εn, 0) defined by recurrence procedure (15)
is also real.

5. PHYSICAL CHARACTERISTICS
OF SUPERCONDUCTORS WITH A PSEUDOGAP

It is well known that the Ginzburg–Landau equa-
tions define two characteristic lengths of superconduc-
tor, viz., the coherence length and the magnetic field
penetration depth.

For a given temperature, coherence length ξ(T)
gives the characteristic scale of inhomogeneities of
order parameter � :

(23)

In the absence of a pseudogap, we can write

(24)

In our model, we have

(25)

For the magnetic field penetration depth, we have

(26)

Analogously to relation (25), in the given model, we
can write

(27)

In the vicinity of Tc , the upper critical field Hc2 is
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Fig. 6. Graphical form of the Ginzburg–Landau expansion.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 98      No. 4      2004

SUPERCONDUCTIVITY IN THE PSEUDOGAP STATE IN THE HOT-SPOT MODEL 755

defined in terms of the Ginzburg–Landau coefficients as

(28)

where φ0 = cπ/|e| is the magnetic flux quantum. Then
the slope of the curve describing the upper critical field
near Tc is given by

(29)

The specific heat discontinuity at the transition point
has the form

(30)

where Cs and Cn are the specific heats of the supercon-
ducting and normal states, respectively. At temperature
Tc0 (in the absence of a pseudogap, W = 0), we have

(31)

Then the relative specific heat discontinuity in the given
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model can be written as

(32)

Coefficients KA , KB , and KC were calculated numeri-
cally for the same typical parameters of the model as in
the calculations of Tc described above. The numerical
values of these coefficients as such are not very interest-
ing and are not given here.6 Figures 7–12 show the
W/Tc0 dependences of the corresponding physical quan-
tities, defined by relations (23)–(32). In accordance
with the situation with Tc described above, two qualita-
tively different modes of the behavior are also observed
in this case depending on whether the behavior of the
vertex part in the recurrence equations is sign-constant
or alternating (the upper and lower signs in relation (12)
and spin or charge fluctuations). The results of calcula-
tions of physical quantities for the first case (the s-type
pairing and scattering from charge (CDW) fluctuations
as well as the -type pairing and scattering from
spin (AFM (SDW)) fluctuations) are shown in Figs. 7–

6 The typical dependences of these coefficients on parameter W/Tc0
are functions rapidly decreasing from unity in the superconduc-
tivity range.
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10. It can be seen that, with increasing pseudogap width
W, coherence length ξ(T) decreases, while penetration
depth λ(T) increases as compared to the corresponding
values in the BCS theory. Both these characteristic
lengths exhibit a very weak dependence on parameter
κ; for this reason, the results in Figs. 7 and 8 are given
only for κa = 0.2. The slope (derivative) of the upper
critical field at T = Tc first increases and then begins to
decrease. The most typical is the decrease in the spe-
cific heat discontinuity as compared to the BCS value
(see Fig. 10), which is in direct qualitative agreement
with experimental data [22]. It should be noted that the
specific heat discontinuity in our model also has a char-
acteristic plateau in the region of W/Tc0 < 10, which is
similar to that noted above in the corresponding depen-
dence of Tc .

The behavior of physical quantities in the case of the
s-type pairing and scattering from spin (AFM (SDW))
fluctuations and the -type pairing and scattering
from charge (CDW) fluctuations is illustrated in
Figs. 11 and 12. Data on the characteristic lengths are
not shown since both coherence length ξ(T) and pene-
tration depth λ(T) are virtually the same as the corre-
sponding values in the BCS theory everywhere in the
superconductivity range (except a small neighborhood
of the region of ambiguity and vanishing of Tc , in which
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and d2). The data are given for the values of reciprocal cor-
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these lengths sharply increase). As regards the deriva-
tive of the upper critical field and the specific heat dis-
continuity at the superconducting transition point, the
values of these quantities decrease quite rapidly with
increasing parameter W/Tc0 apparently up to its critical
value at which Tc is completely suppressed (or to the
value at which a narrow region of the first-order transi-
tion is formed).

6. CONCLUSIONS
We have considered the peculiarities of the super-

conducting state emerging in the pseudogap state due to
scattering of electrons from dielectric short-range order
fluctuations in the model of hot spots at the Fermi sur-
face. Our analysis was based on the microscopic deri-
vation of the Ginzburg–Landau expansion taking into
account all orders of perturbation theory in scattering
from pseudogap fluctuations. The condensed phase of
such a superconductor can be described on the basis of
the corresponding analysis of the Gor’kov equations for
a superconductor with a pseudogap (see [10]) and is the
subject of special analysis.

The main result of this study is the demonstration of
superconductivity suppression by pseudogap fluctua-

tions of the CDW or AFM (SDW) type and the separa-
tion of two classes of qualitatively different models of
such suppression depending on the sign-constant or
alternating behavior of the vertex part in the recurrence
equations (the upper or lower signs in expression (12)
and spin or charge fluctuations). The version with scat-
tering from spin fluctuations and pairing with the

-type symmetry is observed in high-Tc supercon-
ductors based on copper oxides; however, we are not
aware of systems in which the peculiar behavior
obtained above for the s-type pairing and scattering
from spin (AFM (SDW)) fluctuations as well as for

-type pairing and scattering from charge (CDW)
fluctuations is realized. The search for such systems is
of considerable interest.

The most important question in the description of
the pseudogap state of actual HTSC systems is the
behavior of physical parameters upon a change in the
carrier concentration. In our model, the concentration
dependence must be expressed in terms of the corre-
sponding dependence of effective width W of the
pseudogap and correlation length ξ. Unfortunately, such
dependences can be determined from experiment only
indirectly and have been studied insufficiently [1, 2].7 In
a very rough approximation, we can state that correla-
tion length ξ in a wide concentration range does not
vary very strongly, while pseudogap width W linearly
decreases with increasing charge carrier concentration
from values on the order of 103 K in the vicinity of the
dielectric phase region to values on the order of the
superconducting transition temperature as we approach
the optimal doping level, vanishing at slightly higher
carrier concentrations (see Fig. 6 in review [2], which is
based on Fig. 4 in [3], where the corresponding set of
data is given for the YBCO system). Using this regular-
ity, one can easily recalculate the above dependences
on W to the corresponding dependences on the charge
carrier concentration. In the extremely simplified version
of our model with an infinitely large correlation length
and the Fermi surface with complete nesting, such an
analysis was carried out in a recent publication [23]
under the assumption that the value of Tc0 is also a lin-
ear function of the concentration. The typical form of
the phase diagram for HTSC cuprates was completely
reproduced qualitatively. At the same time, the obvious
roughness of the model and the absence of reliable
experimental data on the concentration dependences of
W, ξ, and Tc0 do not make it possible to treat the
attempts at “improving” these qualitative conclusions
very seriously.

In addition to the repeatedly mentioned disregard of
the dynamics of short-range order fluctuations and the
confinement to Gaussian fluctuations alone, it should
be noted once again that the disadvantages of the model

7 In addition, an analogous dependence of the value of Tc0, which
is completely unknown, may turn out to be significant.
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considered here also include the simplified analysis of
the spin structure of interactions, which presumes that
these interactions are of the Ising type. It would be
interesting to also carry out a similar analysis for the
general case of an interaction of the Heisenberg type.
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APPENDIX

Ginzburg–Landau Coefficients for Anisotropic Pairing 
in the Absence of a Pseudogap 

In the absence of fluctuations (W = 0), the general-
ized Cooper susceptibility, which is defined by the dia-
gram in Fig. 2, assumes the form

(A.1)

For the susceptibility at q = 0, which determines coef-
ficient A0, we obtain the expression

(A.2)

where the angle brackets denote averaging over the
Fermi surface and the standard susceptibility χBCS(0; T)
in the BCS model for isotropic s pairing is introduced.
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As a result, coefficient A0 assumes the form

(A.3)

where

(A.4)

is the standard expression for coefficient A in the case
of isotropic s pairing.

Coefficient C0 of the Ginzburg–Landau expansion is
defined by generalized susceptibility (A.1) for small
values of q:

(A.5)

Expanding expression (A.1) for χ0(q; Tc) into a series in
small q, we obtain

(A.6)

so that we have for coefficient C0 the expression

(A.7)

where φ is the angle between vectors v(p) and q and

For a square lattice, the Fermi surface and, hence,
|v(p)| also possess a symmetry relative to rotation
through angle π/2; the same symmetry is also inherent
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in e2(p) for the types of pairing considered here. Conse-
quently, we can easily find that

(A.8)

since quantity cos2φ reverses its sign when vector p
rotates through angle π/2. Indeed, the direction of
velocity v(p) upon this rotation changes to the perpen-
dicular direction; accordingly, cos2φ  –cos2φ. As
a result, we obtain the isotropic expression for coeffi-
cient C0 ,

(A.9)

in the case of isotropic s pairing and a spherical Fermi
surface, this expression acquires the standard form

(A.10)

In the absence of pseudogap fluctuations (W = 0)
and for q = 0, coefficient B defined by the diagram in
Fig. 6b has the form

(A.11)

where

(A.12)

is the standard expression for coefficient B in the case
of isotropic s pairing.
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Abstract—We analyze the peculiarities of the superconducting state (s- and d-wave paring) in the model of the
pseudogap state induced by Heisenberg antiferromagnetic short-range order spin fluctuations. The model is
based on the pattern of strong scattering near hot spots at the Fermi surface. The analysis is based on the micro-
scopic derivation of the Ginzburg–Landau expansion with the inclusion of all Feynman diagrams of perturba-
tion theory for the interaction of an electron with short-range order fluctuations and in the ladder approximation
for the scattering by normal (nonmagnetic) impurities. We determine the dependence of the critical supercon-
ducting transition temperature and other superconductor characteristics on the pseudogap parameters and the
degree of impurity scattering. We show that the characteristic shape of the phase diagram for high-temperature
superconductors can be explained in terms of the model under consideration. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

One of the most important problems in the physics
of high-temperature superconductors (HTSCs) based
on copper oxides is the theoretical description of the
characteristic shape of their phase diagram [1]. Eluci-
dating the nature of the pseudogap state that is observed
over wide ranges of temperatures and carrier concentra-
tions [2] and that undoubtedly plays the central role in
shaping the properties of the normal and superconduct-
ing states of these systems arouses particular interest.
Despite ongoing discussions, the pseudogap formation
scenario based on the pattern of strong scattering of
current carriers by antiferromagnetic1 (AFM, SDW)
short-range order spin fluctuations seems to be pre-
ferred [2, 3]. In the momentum space, this scattering
takes place with the transfer of the wavevectors of order
Q = (π/a, π/a) (a is the two-dimensional lattice con-
stant) and leads to precursors of the rearrangement of
the electron spectrum that arises when a long-range
AFM order is established (the period doubles). This
results in a non-Fermi liquid behavior (dielectrization)
of the spectral characteristics near the so-called hot
spots at the Fermi surface that emerge at the points of
intersection of this surface with the boundaries of the
“future” antiferromagnetic Brillouin zone [2].

A simplified model of the pseudogap behavior [4, 5]
in which the scattering by real (dynamical) spin fluctu-
ations was replaced (which is valid at fairly high tem-

1 The role of similar charge (CDW) fluctuations cannot be ruled
out either.
1063-7761/04/9906- $26.00 © 21264
peratures) with a static Gaussian random field of
pseudogap fluctuations with a characteristic wavevec-
tor from the vicinity of Q whose width is determined by
the inverse correlation length of the short-range order
κ = ξ–1 has been intensively studied in terms of this
approach. An overview of the works, as applied to the
properties of the normal state and for simple models of
the influence of pseudogap fluctuations on supercon-
ductivity, can be found in [2].

In our recent paper [6], based on the microscopic
derivation of the Ginzburg–Landau expansion,2 we
have studied the influence of pseudogap fluctuations in
the hot spot model on the basic characteristics of the
superconducting state (s- and d-type pairing) that forms
against the background of these fluctuations. We con-
sidered a slightly simplified version of the model where
the Heisenberg spin fluctuations were replaced with
Ising or spin-independent charge CDW fluctuations.
These pseudogap fluctuations of a “dielectric” nature
were shown to generally suppress conductivity, causing
a decrease in superconducting transition temperature, a
reduction in the jump in specific heat, and several other
anomalies of the superconductor characteristics. We
found two possible types of interaction between the
superconducting order parameter and pseudogap fluc-
tuations that lead to distinctly different scales of their
influence on superconductivity.

The goal of this work is to generalize the approach
proposed in [6] to the “realistic” case of Heisenberg

2 A similar analysis was performed in [7] on the basis of Gorkov’s
equations.
004 MAIK “Nauka/Interperiodica”
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spin fluctuations and to calculate the influence of (non-
magnetic) impurities (disorder) on superconductivity in
the pseudogap state. We show that the typical phase dia-
gram for a HTSC can be semiquantitatively modeled in
terms of the model under consideration.

2. THE HOT SPOT MODEL
AND THE RECURRENCE PROCEDURE 

FOR CALCULATING THE GREEN FUNCTIONS
AND THE VERTEX PARTS

The basic ideas of the hot spot model under consid-
eration and the method for calculating the single-elec-
tron Green function were presented in detail in [4, 5];
the methods for determining the vertex parts of interest
were described previously [6, 8]. Therefore, in this sec-
tion, we provide only the basic equations and introduce
the necessary notation by briefly describing the
changes required to allow for the spin structure of the
interaction in the Heisenberg model of antiferromag-
netic fluctuations.

An effective interaction between electrons and spin
fluctuations is introduced in the model of an “almost
antiferromagnetic” Fermi liquid [4]. This interaction is
described by the dynamical susceptibility characterized
by the correlation length ξ of the spin fluctuations and
their characteristic frequency ωsf to be determined
experimentally, which can depend significantly on the
carrier concentration (and, for ξ, on the temperature).
This dynamical susceptibility together with the effec-
tive interaction have (in momentum representation) a
maximum in the vicinity of Q = (π/a, π/a), which gives
rise to two types of quasi-particles: hot quasi-particles
whose momenta lie near the points of the Fermi surface
coupled by the scattering vector of order Q and cold
quasi-particles whose momenta lie near the regions of
the Fermi surface surrounding the diagonals of the Bril-
louin zone [2, 4, 5].

At high temperatures, 2πT @ ωsf , the spin dynamics
may be disregarded [4]. The interaction with spin
(pseudogap) fluctuations then reduces to the scattering
of electrons by the corresponding static Gaussian ran-
dom field. In this model, we can suggest a simplified
form of the effective interaction (the correlator of the
random fluctuation field) [4, 5] that allows full summa-
tion of the Feynman series of perturbation theory,
which gives rise to the following recurrence procedure
for determining the single-electron Green function:

(1)

(2)

This is shown in the form of a symbolic Dyson equation
in Fig. 1a, where the following function is introduced:

(3)

Gk εn p,( ) 1
iεn ξk p( )– ikv kκ Σk εn p,( )–+
---------------------------------------------------------------------------,=

Σk εn p,( ) W2s k 1+( )Gk 1+ εn p,( ).=

G0k εn p,( ) 1
iεn ξk p( )– ikv kκ+
-----------------------------------------------.=
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Here, κ = ξ–1 is the inverse correlation length of the
pseudogap fluctuations; εn = 2πT(n + 1/2) (to be spe-
cific, we assume that εn > 0);

(4)

(5)

v(p) = ∂ξp/∂p is the velocity of a free quasi-particle
with the spectrum ξp that is taken in standard form [4]:

(6)

t and t' are the transfer integrals between the closest
neighbors and between the second closest neighbors on
the square lattice, respectively; a is the lattice constant;
and µ is the chemical potential.

The parameter W has the dimensions of energy. It
defines the effective pseudogap width and can be writ-
ten in the model of Heisenberg spin fluctuations as [4]

(7)

where g is the coupling constant between electrons and

spin fluctuations, 〈 〉  is the mean square of the spin at
the lattice site, and ni↑ and ni↓ are the particle number
operators at the site with the corresponding spin projec-
tions. Clearly, like the correlation length ξ, the parame-
ter W in the semiphenomenological approach [4, 5] is
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Fig. 1. Recurrence equations for (a) the Green function and
(b) the triangular vertex.
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also a function of the carrier concentration (and temper-
ature) to be determined experimentally.

The factor s(k) is determined by the Feynman dia-
gram combinatorics and is

(8)

in the simplest case of commensurable short-range order
charge (CDW) fluctuations, while for the most interest-
ing case of Heisenberg spin (SDW) fluctuations [4],3 

(9)

The validity conditions for the approximation under
consideration were discussed in detail in [4, 5].

A remarkable feature of the model under consider-
ation is the possibility of full summation of the entire
series of Feynman diagrams4 for the vertex functions
that describe the response of the system to an arbitrary
external perturbation. This was considered in detail
in [8]. Here, we immediately give the recurrence equa-
tions for the “triangular” vertices in the Cooper channel
that arise in the corresponding analysis. These equa-
tions are similar to those derived in [6] and describe the
response to an arbitrary fluctuation of the supercon-
ducting order (gap) parameter,

(10)

where the symmetry factor that determines the type
(symmetry) of pairing is taken in the form

(11)

and it is implied that the pairing is singlet in spin. It is

3 The Feynman diagram combinatorics for the model of Heisen-
berg fluctuations is analyzed in detail in the Appendix.

4 Including all of the diagrams with crossing interaction lines.
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The choice of the sign in the recurrence procedure for the
vertex part
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convenient to write the vertex of interest as

(12)

Γp(εn, –εn, q) is then defined by the recurrence proce-
dure

(13)

which is shown as graphs in Fig. 1b. The “physical”
vertex corresponds to Γp
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 = 0
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). The additional
combinatorial factor is 
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(
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) = 

 

s

 

(

 

k

 

) for the simples case
of charge (or Ising spin) pseudogap fluctuations consid-
ered in [6]. For the most interesting case of Heisenberg
spin (SDW) fluctuations considered below, this factor
is [4] (see also the Appendix)

(14)

The choice of the sign of 

 

W

 

2

 

 on the right-hand side of
Eq. (13) depends on the symmetry of the superconduct-
ing order parameter and the type of pseudogap fluctua-
tions [6] (for details, see the Appendix). The corre-
sponding cases are listed in the table. In particular, we
see from this table that in the most interesting case of

 

d

 

-type pairing and Heisenberg pseudogap fluctuations,
we should take the minus, so the recurrence procedure
for the vertex part becomes an alternating one. At the
same time, for the case of 

 

s

 

-wave paring and fluctua-
tions of the same type, we should take the plus, and the
recurrence procedure becomes a constant-sign one. It
was shown in [6] (using other examples from the table)
that this difference in the types of recurrence procedure
leads to two qualitatively different behaviors of all
basic superconductor characteristics.

3. THE INFLUENCE OF IMPURITIES

The influence of the scattering by normal (nonmag-
netic) impurities can be easily taken into account in the
self-consistent Born approximation by writing the
Dyson equation shown graphically in Fig. 2a for the
single-electron Green function. Compared to Fig. 1a,
the standard contribution from the impurity scattering
to the intrinsic-energy part [9] was added to this figure.

Γ εn εn p p q+–, ,–,( ) Γp εn εn q,–,( )e p( ).≡
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× 1
2ikκv k
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--------------------------------------------------------------------------------------------+

× Γpk εn εn q,–,( ),

r k( )
k for  even   k , 
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2+
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=
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(a)

(b)
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= + +
G0k G Gk G0k Gk + 1 Gk
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Γk – 1 Γ Γk
∆qe(p) = ∆qe(p) + ∆qe(p) + r(k) ∆qe(p).
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G

G Gk 

Gk 

ρU2
W2 s(k + 1)

Fig. 2. Recurrence equations for (a) the Green function and (b) the triangular vertex including the impurity scattering
As a result, the recurrence equation for the Green func-
tion can be written as

(15)

where ρ is the impurity concentration with a point
potential U and the “impurity” intrinsic-energy part
includes the full Green function G(εn, q) = Gk = 0(εn, p),
which must generally be determined in a self-consistent
way by using the written procedure. The contribution
from the real part of the Green function to this intrinsic-
energy part typically reduces [9] to an insignificant
renormalization of the chemical potential, so Eq. (15)
takes the form

(16)

Therefore, compared to the impurity-free case, the fol-
lowing substitution (renormalization) actually takes
place:

(17)

(18)

If no full self-consistent calculation is performed for
the intrinsic-energy part of the impurity scattering, then

Gk εn p,( ) G0k
1– εn p,( ) ∑=

– ρU2 G εn p,( ) W2s k 1+( )Gk 1+ εn p,( )–
p

∑
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,
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 

=

∑ – ξk p( ) W2s k 1+( )Gk 1+ εn p,( )–

1–

.

εn εn ρU2 ImG εn p,( ) εnηe,≡
p

∑–

ηe 1
ρU2

εn

---------- ImG εn p,( ).
p

∑–=
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we have in the simplest approximation

(19)

(20)

where γ0 = πρU2N0(0) is the standard Born impurity
scattering frequency [9] (N0(0) is the density of state of
the free electrons at the Fermi level).

For the triangular vertices of interest, the recurrence
equation that includes the impurity scattering is shown
as a graph in Fig. 2b. For the vertex that describes the
interaction with the fluctuation of the superconducting
order parameter (10) with d-wave symmetry (11), this
equation simplifies significantly, because the contribu-
tion of the second diagram in the right-hand part of
Fig. 2b is virtually equal to zero in view of the condi-
tion  = 0 (cf. the discussion of a similar situa-
tion in [10]). The recurrence equation for the vertex
then has the form (13), where the expressions derived
from (15) and (16), i.e., the “dressed” (by the impurity
scattering) Green functions defined by Fig. 2a, should
be used as Gk(±εn , p). For the vertex that describes the
interaction with the fluctuation of the order parameter
with s-wave symmetry, we have the equation

(21)

εn εn ρU2 ImG00 εn p,( )
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× 1
2ikκv k

Gk
1– εn p q+,( ) Gk

1– εn– p,( )– 2ikκv k–
--------------------------------------------------------------------------------------------+

 
 
 

× Γpk εn εn– q, ,( ),
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where expressions (15) and (16) should again be used
as Gk(±εnp) and the sign of W 2 is determined by the
above rules. The difference between this vertex and the
vertex of the interaction with d-wave symmetry fluctu-
ations lies in the appearance of the second term on the
right-hand side of Eq. (21), i.e., in the substitution

(22)

Therefore, the self-consistent calculation procedure
now looks as follows. Starting from the zero approxi-
mation G = G00 and Γp = 1, we then have in Eqs. (16)
and (21)

We run the corresponding recurrence procedures (start-
ing from a certain value of k) and determine the new
values of G = Gk = 0 and Γp = Γk = 0 . We again calculate
ηε and ηΓ using (18) and (22), use these values in (16)
and (21), and so on until convergence is achieved.

When considering the vertex of the d-wave symme-
try, we should set ηΓ = 1 at all steps of our calculations.
In this case, there is actually no particular need to per-
form full self-consistent impurity scattering calcula-
tion, because it leads to relatively small corrections to
the results of non-self-consistent calculation using the
simplest substitution (19) [7].

4. CALCULATING THE SUPERCONDUCTING 
TRANSITION TEMPERATURE 

AND THE GINZBURG–LANDAU COEFFICIENTS

The critical superconducting transition temperature
is defined by the normal-phase Cooper instability equa-
tion

(23)

where the generalized Cooper susceptibility is indi-

1 ηΓ 1 ρU2 G εn p q+,( )
p

∑+=

× G εn– p,( )Γp ε εn– q, ,( ).

ηε ηΓ 1
ρU2

εn ImG00 εn p,( )
p

∑
--------------------------------------------.–= =

1 Vχ 0; T( )– 0,=

Fig. 3. Diagram for the generalized susceptibility χ(q) in
the Cooper channel.

εn, p + q

–εn, –p

χ(q) = e(p) e(p')Γ
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cated by the graph in Fig. 3 and is

(24)

The pairing interaction constant V, which is nonzero in
a layer 2ωc in width around the Fermi level, determines
the seed transition temperature Tc0 in the absence
of  pseudogap fluctuations by means of the standard
BCS equation:5 

(25)

where  = [ωc/2πTc0] is the dimensionless cutoff
parameter of the Matsubara frequency sum. As in [6],
all of our calculations were performed for the typical
spectrum (6) of quasi-particles in HTSCs for various
relations between t, t', and µ. By arbitrarily choosing
ωc = 0.4t and Tc0 = 0.01t, we can easily find a value of
the pairing parameter V in (25) that yields this value of
Tc0 for different types of pairing. In particular, we
obtain V/ta2 = 1 and V/ta2 = 0.55 for s-type and -

type pairing, respectively.

The fact that the Cooper susceptibility at q = 0 is
required to calculate Tc significantly simplifies the cal-
culations [6]. In general, for example, knowledge of
χ(q; T) at arbitrary (small) q is required to calculate the
Ginzburg–Landau expansion coefficients.

The Ginzburg–Landau expansion for the difference
between the free energy densities of the superconduct-
ing and normal states can be written in standard form:

; (26)

it is defined by the loop expansion for the free energy in
the fluctuation field of the order parameter (10).

It is convenient to normalize the Ginzburg–Landau
coefficients A, B, and C to their values in the absence of
pseudogap fluctuations by writing them as [6]

(27)

5 We do not discuss the microscopic nature of this interaction; it
can be associated with the exchange by the same antiferromag-
netic spin fluctuations, phonons, or a combination of the elec-
tron–phonon and spin–fluctuation interactions.
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where

(28)

the angular brackets denote an ordinary averaging over
the Fermi surface:

and N0(0) is the state density at the Fermi surface for
free electrons.

We then obtain the following general expressions [6]:

(29)

(30)

(31)

which were used for our direct numerical calculations.

In the presence of impurities, all of the Green func-
tions and the vertices appearing in these expressions
should be calculated using Eqs. (16) and (21) written
above.

Knowledge of the Ginzburg–Landau expansion
coefficients allows all of the basic superconductor char-
acteristics near the transition temperature Tc to be deter-
mined. The coherence length is defined as

(32)

where ξBCS(T) is the value of this length in the absence
of a pseudogap. For the magnetic-field penetration
depth, we have

(33)

where this quantity was also normalized to its value of
λBCS(T) in the absence of pseudogap fluctuations.
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The normalized slope of the upper critical field
near Tc ,

(34)

and the relative jump in specific heat at the transition
point,

, (35)

are determined in a similar way.

5. RESULTS OF CALCULATIONS

The results of calculations for the charge (CDW)
and spin (SDW) Ising fluctuations of the short-range
order were presented in [6]. Here, we focus on the anal-
ysis of the most important and interesting case of
Heisenberg spin (SDW) fluctuations and on the discus-
sion of the role of impurity scattering (disorder). Since
the case of d-type pairing is of particular importance in
the physics of HTSCs based on copper oxides, we pay
slightly more attention to this case.

We performed all of the calculations in this section
for the typical parameters of the initial electron spec-
trum t'/t = –0.4 and µ/t = –1.3 and took κa = 0.2 for the
inverse correlation length. To save space, we do not
present the results of our calculations for the dimen-
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pairing for three impurity scattering frequencies: γ0/Tc0 =
0 (1), 0.18 (2), and 0.64 (3). The inverse correlation length
is κa = 0.2.
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sionless Ginzburg–Landau expansion coefficients KA ,
KB , and KC , but immediately show the typical depen-
dences for the basic physical parameters.

When considering the dependences on the
pseudogap width and the impurity scattering frequency
γ0, we give all of the characteristics normalized to their
values, respectively, at T = Tc0 and T = Tc0(W), i.e., at the
seed transition temperature at a given W, but in the
absence of impurity scattering (γ0 = 0).

5.1. The d-Type Paring 

In Fig. 4, the superconducting transition tempera-
ture Tc is plotted against the effective pseudogap width
W for several impurity scattering frequencies. We see
that pseudogap fluctuations lead to noticeable suppres-
sion of superconductivity; in the presence of finite dis-
order, a critical value of W at which Tc becomes zero
arises. This suppression of Tc is naturally related to the
partial dielectrization of the electron spectrum near hot
spots [4, 5].

Similar dependences are shown in Fig. 5 for the
coherence length and the magnetic-field penetration
depth and in Fig. 6 for the slope of the temperature
dependence of the upper critical field and the jump in
specific heat at the transition point. The latter supercon-
ductor characteristics are rapidly suppressed by
pseudogap fluctuations.
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Fig. 5. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus effective pseudogap width
W for d-type pairing for three impurity scattering frequen-
cies: γ0/Tc0 = 0 (1), 0.18 (2), and 0.64 (3)
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The dependence on the correlation length of the
short-range order fluctuations is slower: in all cases, the
increase in ξ (the decrease in parameter κ) enhances the
pseudogap fluctuation effect.
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Fig. 6. Slope of the upper critical field and jump in specific
heat at the transition point versus effective pseudogap width
for d-type pairing for three impurity scattering frequencies:
γ0/Tc0 = 0 (1), 0.18 (2), and 0.64 (3).

Fig. 7. Tc versus impurity scattering (disorder) frequency
for d-type pairing for three effective pseudogap widths:
W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).
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In Fig. 7, the superconducting transition tempera-
ture is plotted against the impurity scattering frequency
γ0 for several effective pseudogap widths. We see that,
in the presence of pseudogap fluctuations, the suppres-
sion of Tc with growing disorder is appreciably faster
that in their absence (W = 0) when the dependence
Tc(γ0) for d-type paring is described by the standard
Abrikosov–Gorkov curve [10, 11]. Similar depen-
dences are shown in Fig. 8 for the coherence length and
the penetration depth and in Fig. 9 for the slope of the
Hc2(T) curve and the jump in specific heat. We again see
that impurity scattering (disorder) causes the last two
parameters to rapidly decrease; i.e., it enhances the
pseudogap fluctuation effect.

The derived dependences on the pseudogap param-
eters are qualitatively similar to those obtained in [6]
for the case of charge (CDW) pseudogap fluctuations
where, as in the case considered here, an alternating
recurrence procedure arises for the vertex part. At the
same time, certain quantitative differences associated
with different diagram combinatorics also arise. The
dependences on the impurity scattering (disorder) fre-
quency have not been studied previously in this model.6 

The dependences found are in qualitative agreement
with most of the data from the experiments aimed at
studying the superconductivity in the domain of exist-
ence of the pseudogap (the underdoped region in the

6 The corresponding dependences of Tc were considered in [7] for
the constant-sign recurrence procedure that arises in the case of
Ising SDW fluctuations where the suppression of superconductiv-
ity is much slower.
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Fig. 8. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus impurity scattering fre-
quency γ0 for d-type pairing for three effective pseudogap
widths: W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).
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cuprate phase diagram). Below, we show that the
results obtained can be used to directly model the typi-
cal phase diagram for HTSC cuprates.
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Fig. 9. Slope of the upper critical field and jump in specific
heat at the transition point versus impurity scattering fre-
quency γ0 for d-type pairing for three effective pseudogap
widths: W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).

Fig. 10. Tc versus effective pseudogap width W for s-type
pairing for two impurity scattering frequencies: γ0/Tc0 =
0 (1) and 20 (2). The inverse correlation length is κa = 0.2.
The insert shows the characteristic behavior of the jump in
specific heat for similar parameters.
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5.2. The s-Type Pairing 

The s-type pairing is mainly of interest in revealing
the characteristic differences from the d-type pairing.
There are virtually no experimental data on the s-type
conductivity in systems with a pseudogap, although it
may well be that the corresponding systems will be dis-
covered in the future.

Our calculations indicate that pseudogap fluctua-
tions suppress appreciably the superconducting transi-
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Fig. 11. Superconducting transition temperature Tc versus
impurity scattering (disorder) frequency γ0 for s-type pair-
ing for three pseudogap widths: W/Tc0 = 0 (1), 8 (2), and
15 (3).
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Fig. 12. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus impurity scattering (disor-
der) frequency γ0 for s-type pairing for two effective
pseudogap widths: W/Tc0 = 0 (1) and 15 (2).
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tion temperature in this case as well (Fig. 10), although
the scale length of these fluctuations required for signif-
icant suppression of superconductivity is much larger
than that for the d-type pairing. This result has already
been obtained in [6]. Note, however, that in the case of
Heisenberg SDW fluctuations under consideration,
there is no characteristic “shelf” on the Tc(W) curve that
is present in the case of scattering by CDW pseudogap
fluctuations [6]. The jump in specific heat at the super-
conducting transition point is also significantly sup-
pressed on the same scale of W, as shown in the insert
to Fig. 10. The corresponding dependences for the
coherence length and the penetration depth are similar
to those obtained previously in [6] and are not given
here. Figure 11 shows the calculated dependence of Tc

on the impurity scattering (disorder) frequency. Apart
from the relatively weak suppression of Tc by disorder
related [7] to the state density smearing at the Fermi
level, a weak effect of increase in Tc with γ0 that is prob-
ably related to the smearing of the pseudogap in the
state density by impurity scattering can also be
observed.

Figure 12 shows how impurity scattering (disorder)
affects the coherence length and the magnetic-field
penetration depth in the case of s-type pairing.

Finally, Fig. 13 shows how impurity scattering
(disorder) affects the slope of the upper critical field
and the jump in specific heat. The jump in specific
heat is significantly suppressed by disorder, and the
behavior of the slope of Hc2(T) qualitatively differs
from that in the case of d-type pairing: the growth of
disorder causes this parameter to increase appreciably,
as in the standard theory of “dirty” superconductors
[20], while pseudogap fluctuations increase the slope
of Hc2(T). In the absence of pseudogap fluctuations,
similar differences in the behavior of the slope of
the Hc2(T) curve for disorder have been pointed out [10].

6. MODELING THE PHASE DIAGRAM

The described model of the influence of pseudogap
fluctuations on superconductivity allows the typical
phase diagram for HTSC cuprates to be modeled.7

Modeling of this kind, based on an extremely simplified
version of our model, was originally attempted in [13].
The main idea is to identify the parameter W with the
experimentally observed effective pseudogap width
(the temperature of the crossover to the pseudogap
region of the phase diagram), Eg ≈ T*, determined from
many experiments [1–3]. This parameter is known to
decrease almost linearly with increasing dopant (cur-
rent carriers) concentration from values of ~103 K,
becoming zero at a certain critical concentration xc ≈

7 We ignore the existence of a narrow region of antiferromagnetic
ordering in the state of a Mott insulator that exists in the range of
low dopant concentrations by restricting our analysis to the wide
domain of existence of a “bad” metal.
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0.19–0.22 that slightly exceeds the “optimal value”
xopt ≈ 0.15–0.17 [1, 14]. Accordingly, we may take8

 a
similar concentration dependence of our pseudogap
width parameter W(x). In this sense, the dependence
W(x) may be considered to be determined directly from
experiments. The only parameter to be determined is
then the concentration dependence of the seed supercon-
ducting transition temperature Tc0(x) that would exist in
the absence of pseudogap fluctuations. Its knowledge
will allow the concentration behavior of the actual tran-
sition temperature Tc(x) to be determined by solving the
equations of our model. Unfortunately, as was pointed
out in [6], the dependence Tc0(x) is generally unknown
and cannot be determined from experiments, remaining
a fitting parameter of the theory.

Assuming, as was done in [13], that Tc0(x) can be
described by a linear function of x that becomes zero at
x = 0.3 and choosing Tc0(x = 0) to obtain the desired
Tc(x = xopt), we can calculate the form of the “observed”
dependence Tc(x). As an example, the results of such
calculations for d-type pairing and the scattering by
charge (CDW) pseudogap fluctuations [6] using a typi-
cal dependence W(x) are shown in Fig. 14. We see that,
even under such arbitrary assumptions, the hot spot
model yields a dependence Tc(x) close to the experi-
mentally observed one. Similar calculations for the
Ising model of the interaction with spin fluctuations (a
constant-sign procedure for the vertex part [6]) indicate
that reasonable values of Tc(x) can be obtained only at
nonrealistic values of W(x) that are about an order of
magnitude larger than the observed values.

In the BCS model for the seed temperature Tc0 under
consideration, the assumption of a noticeable concen-
tration dependence of this parameter seems rather unre-
alistic.9 Therefore, we assume that Tc0 does not depend
on the carrier concentration x at all, but take into
account the fact that doping inevitably gives rise to
impurity scattering (internal disorder), which can be
described by the corresponding linear function γ(x). Let
us assume that this growth of disorder leads to total sup-
pression of the d-type pairing at x = 0.3 in accordance
with the standard Abrikosov–Gorkov dependence [11].
The phase diagram for a La2 – xSrxCuO4 system calcu-
lated in our model for Heisenberg pseudogap fluc-
tuations by taking into account the described role of
impurity scattering is shown in Fig. 15. The parameters
of the problem for this system used in our calculations
are given in Fig. 15. The “experimental” values of
Tc(x) indicated in this figure (as well as in Fig. 14) by

8 Naturally, this identification can be made to the unknown propor-
tionality factor of the order of unity.

9 In this approach, the dependence Tc0(x) may be attributable only
to the corresponding relatively weak dependence of the state den-
sity at the Fermi level.
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Fig. 13. Slope of the upper critical field and jump in specific
heat at the transition point versus impurity scattering (disor-
der) frequency γ0 for s-type pairing for two effective
pseudogap widths: W/Tc0 = 0 (1) and 15 (2).
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Tc0(x = 0) = 90 K; κa = 0.2; Tc(x = 0.17) = 36 K.
ICS      Vol. 99      No. 6      2004



1274 KULEEVA et al.
diamonds were obtained by using the empirical for-
mula [14, 15]

(36)

This formula satisfactorily describes the concentration
behavior of Tc for a number of HTSC cuprates. We see
that our model gives an almost ideal description of the
“experimental” data at reasonable values of W(x) in the
entire underdoped region. The description becomes
poorer at the end of the overdoped region. It should be
borne in mind, however, that formula (36) does not
yield satisfactory results either; in addition, our super-
conductivity suppression model in the overdoped
region is clearly very crude, and no special parameter
fitting that would improve the agreement with the data
in this region has been performed.

It is interesting to consider the behavior of the super-
conducting transition temperature Tc for additional dis-
ordering of the system for various compositions (carrier
concentrations). There are many experimental works in
which such disordering was achieved by doping [16, 17]
or by fast neutron [18] and electron [19, 20] irradiation.

Tc x( )
Tc x xopt=( )
---------------------------- 1 82.6 x xopt–( )2.–=

0 0.1 0.2 0.3

x

50

100

150

200

T, K

1 2

W

Tc

Tc0

γ

Fig. 15. Model phase diagram for the scattering by Heisen-
berg (SDW) pseudogap fluctuations (d-type pairing) and the
seed superconducting transition temperature Tc0 that does
not depend on the carrier concentration with the inclusion of
internal disorder γ(x) that is linear in dopant concentration.
The diamonds represent the “experimental” data; γ0 =
0.15Tc0 (curve 1), γ0 = 0.25Tc0 (curve 2); Wm(x = 0) =
580 K; Tc0 = 70 K; t'/t = –0.25; µ/t = –0.8; κa = 0.2;
Tmax(x = 0.16) = 39 K.
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The role of the additional disorder was discussed in the
context of the existence of a pseudogap state only
in [17].

In our model, this disordering can be simulated by
introducing the additional impurity scattering parame-
ter γ0 that is added to the internal disorder parameter
γ(x). The calculated superconducting transition temper-
ature for two values of this parameter is also shown in
Fig. 15. We see that, in close agreement with the exper-
iment [17], doping (disorder) causes the domain of
existence of superconductivity to narrow rapidly. Also
in close agreement with the conclusion drawn above
from Fig. 7 and with the experimental data [17, 18], the
suppression of superconductivity by disorder in the
underdoped region (the pseudogap region) is much
faster than that for the optimal composition. It might be
expected that “normal” disorder, which clearly causes
the pseudogap in the state density to slightly decrease,
could lead to a certain “delay” of the decrease in Tc , but
this effect is absent for d-type pairing.

However, the problem is that, in all cases, the
decrease in Tc is faster than that implied by the standard
Abrikosov–Gorkov curve for d-type pairing [11]. At the
same time, attempts to properly process most of the
experimental data on disordering in HTSC cuprates
[16, 19, 20] lead to the conclusion that this decrease is
actually much slower than that predicted by the Abriko-
sov–Gorkov dependence. This as yet unsolved problem
is among the main problems in the theory of high-tem-
perature superconductors [12]. One way to solve this
problem may be associated with a consistent descrip-
tion of the role of disorder in superconductors located
in the transition region from “loose” pairs of the BCS
theory to “compact” pairs that emerge in the limit of
strong coupling [21]. Another interesting possibility of
explaining this delay of the decrease in Tc is related to
the anisotropy of elastic impurity scattering considered
in detail in [10, 22]. This effect can be included
relatively easily in our calculations. It seems particu-
larly interesting in connection with the established
strong anisotropy of elastic scattering (with d-type
symmetry) observed in ARPES experiments on a
Bi2Sr2CaCuO8 + δ system [23, 24]. The corresponding
scattering frequency varies over the range 20–60 meV
[24], which is almost an order of magnitude higher than
the maximum value of γ(x) used in our calculations and
points once again to the unusual stability of the d-type
pairing in cuprates against static disorder. It should be
noted that our model for the intrinsic-energy part of the
electron actually describes a similar anisotropy of elas-
tic scattering that corresponds to its increase near hot
spots. However, no delay of the decrease in Tc was
observed in our calculations.

The results show that, despite the obvious crudeness
of our assumptions, the hot spot model gives a reason-
able (occasionally even semiquantitative) description
of the domain of existence of superconductivity on the
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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phase diagram for HTSC cuprates.10
 The significant

uncertainty in the formation scenario for the concentra-
tion dependence of the seed superconducting transition
temperature remains a major shortcoming in the
approach.

7. CONCLUSIONS

Our analysis shows that the pseudogap state model
based on the concept of hot spots can provide a fairly
consistent description of the basic properties of the
superconducting phase for HTSC cuprates and their
phase diagram with a relatively small number of fitting
parameters most of which can be determined from
independent experiments.

It should be emphasized that our analysis was per-
formed entirely under the standard assumption [12]
about the self-averaging of the superconducting order
(gap) parameter in the field of random impurities and
pseudogap fluctuations. This assumption is generally
justified for superconductors whose coherence length
(the Cooper pair size) is much larger than other micro-
scopic lengths in the system, such as the mean free path
or the correlation length ξ of the pseudogap fluctuations.
In the class of pseudogap state models under consider-
ation, this is not necessarily the case, and significant non-
self-averaging effects [25, 26] that lead to the qualitative
picture of an inhomogeneous superconducting state with
superconducting-phase drops existing at temperatures
T > Tc can arise. In principle, there are direct experimen-
tal data that confirm this picture of inhomogeneous
superconductivity in HTSC cuprates [27–29]. Of course,
we are far from asserting that these real experiments con-
firm the picture that has been theoretically developed by
using simplified models in [25, 26]. Nevertheless, these
results emphasize the importance of a consistent analy-
sis of the non-self-averaging effects in relatively realis-
tic pseudogap state models, such as the hot spot model
considered above.11 
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APPENDIX

DIAGRAM COMBINATORICS IN THE MODEL 
OF HEISENBERG PSEUDOGAP FLUCTUATIONS

To analyze the diagram combinatorics, let us con-
sider the limit of an infinite correlation length of spin
fluctuations. In this case, the spin density by which an
electron is scattered can be expressed as

(A.1)

and averaging over Gaussian spin fluctuations reduces
to ordinary integration [4]:

. (A.2)

Consequently, in this limit, we can first solve the prob-
lem of an electron in the coherent field of the spin den-
sity (A.1) and then perform averaging (A.2) over its
fluctuations. For the subsequent analysis, it is conve-

nient to introduce the fluctuating field d = (g/ )S,
the potential by which an electron is scattered. Averag-
ing (A.2) over the spin fluctuations then reduces to
averaging over the fluctuations of this field:

(A.3)

Thus, there are two fluctuating fields by which free car-
riers are scattered: the real longitudinal field δl =

(g/ )Sz and the complex transverse field dt with
amplitude |dt| and phase ϕ that is associated with the
two transverse components of the vector S.

This averaging gives rise to a diagram technique
with two types of effective interactions [4]: one is rep-
resented by the dashed line,

(A.4)

where the minus refers to the case of a change in spin
projection under this line (e.g., when the dashed line
encloses an odd number of spin flip operators S+ and
S−); the other is represented by the wavy line,

(A.5)

The means 〈S+S+〉  and 〈S–S–〉  are equal to zero due to the
phase averaging in (A.3).
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Let us now solve the problem of an electron in the
coherent field of the spin density (A.1). In this case, the
matrix single-particle Green function has four indepen-
dent components12 that can be determined from the
system of equations

(A.6)

where we use the short designations (εn, p)  1,
(εn, p + Q)  2 and

It thus follows that

(A.7)

where |d| =  is the amplitude of the field d.

In this case, the fluctuation-averaged single-particle
Green function is

(A.8)

12The components that differ from these by the change of sign of
all spin projections can be obtained by the substitution δl 
−δl and δt  .     δt

*

G1↑ ; 1↑ G1 G1δlG2↑ ; 1↑ G1δtG2↓ ; 1↑ ,+ +=

G2↑ ; 1↑ G2δlG1↑ ; 1↑ G2δtG1↓ ; 1↑ ,+=

G2↓ ; 1↑ G– 2δlG1↓ ; 1↑ G2δt*G1↑ ; 1↑ ,+=

G1↓ ; 1↑ G– 1δlG2↓ ; 1↑ G1δt*G2↑ ; 1↑ ,+=

G1
1

iεn ξp–
------------------, G2

1
iεn ξp Q+–
-------------------------.= =
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G2
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G1
1– G2

1– d 2–
-------------------------------,=

G2↑ ; 1↑
δl

G1
1– G2

1– d 2–
-------------------------------,=

G1↓ ; 1↑ 0, G2↓ ; 1↑
δt*

G1
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1– d 2–
-------------------------------,= =

δl
2 dt
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π
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Fig. 16. Two-particles vertices with different diagram com-
binatorics.
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This integral representation can be easily written [4] as
the continued fraction (1), (2) with κ = 0 and the com-
binatorial coefficients s(k) defined by Eq. (9).

The combinatorial coefficients r(k) for the two-par-
ticle vertices are slightly more difficult to determine.
Four types of vertices (see Fig. 16) may be considered.
For all four types of vertices, the recurrence procedure
has the form (13), but the signs in the procedure and the
combinatorial coefficients r(k) can be different. Let us
consider all vertices in the coherent field δ.

(1) The charge vertex (the spin projection is con-
served at the vertex) in the diffusion channel (particle–
hole), Fig. 16a:

(A.9)

where i and σ take on values of 1, 2 and ↑ , ↓ , and the
designations ( , p')  1'), ( , p' + Q)  2'), and
dδ = [(G1G2)–1 – |d|2][(G1'G2')–1 – |d|2] are used.

(2) The charge vertex in the Cooper channel (parti-
cle–particle),13 Fig. 16b:

(A.10)

(3) The spin vertex (the spin projection changes sign
at the vertex) in the diffusion channel (particle–hole),
Fig. 16c:

(A.11)

(4) The spin vertex in the Cooper channel (particle–
particle), Fig. 16d:

(A.12)

The physical vertices can be obtained from these verti-
ces with the coherent field δ by averaging (A.3) over the
fluctuations of the corresponding field.

Thus, we see that the vertex  is defined by
Eq. (A.9), while all of the other vertices have the
form14 

(A.13)

13 It emerges when the triplet pairing is described.
14This form is equivalent to (A.10)–(A.12) when averaged.
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where the plus corresponds to the vertices  and ,

and the minus corresponds to the vertex .

Obviously, r(k) = s(k) for the vertex . Indeed, the

expansion for the physical vertex 〈 〉  can be obtained
by inserting the corresponding free vertex in all the
electron lines of an arbitrary diagram for the single-par-
ticle Green function. Inserting this vertex changes nei-
ther the direction of the electron line nor the spin pro-
jection; accordingly, the diagram combinatorics does
not change either.

In the limit of an infinite correlation length, any
skeleton diagram for the vertex differs from the ladder
diagram of the same order with the interaction
(W2/3)δ(q – Q) only by the sign and the factor 2p,
where p is the number of wavy lines. Thus, the sum of
all skeleton diagrams of a given order may be replaced
with the corresponding ladder diagram with the interac-
tion (W2/3)δ(q – Q) multiplied by the combinatorial
factor, which we call the number of skeleton diagrams
of a given order.

The first term in Eqs. (A.9)–(A.12) is the same for
all vertices and generates the numbers of skeleton dia-
grams of even (in W2) order when averaged (since this
term corresponds to the terms with i = 1 in these equa-
tions). Thus, the numbers of skeleton diagrams of even
order are the same for all four vertices. The second term
in these equations generates the numbers of diagrams
of odd order (it corresponds to the terms with i = 2).
Consequently, the numbers of skeleton diagrams of odd
order for all three vertices defined by (A.13) are ±1/3 of

the corresponding numbers of for the vertex . The

minus corresponding to the vertex  can be offset by
changing the sign in the recurrence procedure for this
vertex. Consequently, the sign of the second term
in (A.13) determines the sign in the recurrence proce-
dure (13) for these vertices, and the combinatorial coef-
ficients r(k) are the same for these three vertices.

The number of skeleton diagrams of order L is15 

(A.14)

Thus, we obtain

(A.15)

15The factor 3L emerges, because the recurrence procedure (13)
and the combinatorial coefficients r(k) correspond to the expan-
sion in a power series of W2, while the number of skeleton dia-
grams was determined for the expansion in a power series of
W2/3.

Γ c
ch Γ c

sp

Γd
sp

Γd
ch

Γd
ch

Γd
ch

Γd
sp

3L r k( ).
1 k L≤ ≤
∏

r k( )
1 k 2n≤ ≤
∏ s k( )

1 k 2n≤ ≤
∏=
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for even L = 2n + 1 and

(A.16)

for odd L = 2n + 1; whence, given (9), follows (14).
In this paper, we were mainly interested in the ver-

tex . The above analysis shows that a constant-sign
procedure emerges for this vertex for the case of s-type
paring where the symmetry factor e(p), which must
appear in the vertex, is equal to unity. In contrast, in the
case of d-type paring where the superconducting gap
when switching over to Q changes sign (i.e., e(p) =
−e(p + Q)), the sign of the recurrence procedure must
be reversed [6], and the procedure becomes an alternat-
ing one. For the Ising spin fluctuations considered
in [6], the situation with the sign of the recurrence pro-
cedure for the vertex is reverse. This somewhat surpris-
ing result can be easily understood from Eq. (A.12) for

the vertex . The two transverse components (i.e., the
field δt) vanish in the Ising model, causing the sign of
the second term in (A.12) and, hence, in the recurrence
procedure to change.
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The pseudogap formation in the electronic spectrum
of underdoped copper oxides [1, 2] is an especially
striking anomaly of the normal state of high tempera-
ture superconductors. Despite continuing discussions
on the nature of the pseudogap, we believe that the pref-
erable scenario for its formation is most likely based on
the model of strong scattering of the charge carriers by
short-ranged antiferromagnetic (AFM, SDW) spin fluc-
tuations [2, 3]. In momentum representation, this scat-
tering transfers momenta of the order of Q = (π/a, π/a)
(a—lattice constant of a two dimensional lattice). This
leads to the formation of structures in the one-particle
spectrum that are precursors of the changes in the spec-
tra due to long-range AFM order (period doubling). As
a result, we obtain non-Fermi liquidlike behavior
(dielectrization) of the spectral density in the vicinity of
the so-called hot spots on the Fermi surface appearing
at intersections of the Fermi surface with the antiferro-
magnetic Brillouin zone boundary [2].

Within this spin-fluctuation scenario, a simplified
model of the pseudogap state was studied [2, 4, 5]
under the assumption that the scattering by dynamic
spin fluctuations can be reduced for high enough tem-
peratures to a static Gaussian random field (quenched
disorder) of pseudogap fluctuations. These fluctuations
are characterized by a scattering vector from the vicin-
ity of 

 

Q

 

 with a width determined by the inverse corre-
lation length of short-range order κ

 

 = ξ–1 and by the

¶ The text was submitted by the authors in English.

appropriate energy scale ∆ (typically of the order of the
crossover temperature T* to the pseudogap state [2]).

Undoped cuprates are antiferromagnetic Mott insu-
lators with U � W (U—value of the local Coulomb
interaction, W—bandwidth of the noninteracting band),
so that correlation effects are actually very important. It
is thus clear that the electronic properties of under-
doped (and, probably, also of optimally doped)
cuprates are governed by strong electronic correlations
too, so that these systems are typical strongly correlated
metals. Two types of correlated metals can be distin-
guished: (i) the doped Mott insulator and (ii) the band-
width controlled correlated metal W ≈ U.

A state of the art tool to describe such correlated
systems is the dynamical mean-field theory (DMFT)
[6–10]. The characteristic features of correlated sys-
tems within the DMFT are the formation of incoherent
structures (the so-called Hubbard bands) split by the
Coulomb interaction U, and a quasiparticle (conduc-
tion) band near the Fermi level dynamically generated
by the local correlations [6–10].

Unfortunately, the DMFT is not useful for the study
of the antiferromagnetic scenario of pseudogap forma-
tion in strongly correlated metals. This is due to the
basic approximation of the DMFT, which amounts to
the complete neglect of nonlocal dynamical correlation
effects [6–10]. As a result, within the standard DMFT
approach, the Fermi surface of a quasiparticle band is
not renormalized by interactions and just coincides
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with that of the bare quasiparticles [7]. Recently, we
have formulated a semiphenomenological DMFT + Σk
approach [11] allowing the introduction of a length
scale (nonlocal correlations) into DMFT. Below, we
present the basic points of this approach with applica-
tion to the Fermi surface renormalization due to
pseudogap fluctuations. 

To include nonlocal effects while remaining within
the usual impurity analogy of DMFT, we propose the
following procedure. To be definite, let us consider a
standard one-band Hubbard model. The major assump-
tion of our approach is that the lattice and Matsubara
time Fourier transform of the single-particle Green’s
function can be written as

, (1)

where Σ(ω) is the local contribution to self-energy sur-
viving in the DMFT (ω = 

 

π

 

T

 

(2

 

n

 

 + 1)), while 

 

Σk(ω) is
some momentum dependent part. We suppose that this
last contribution is due to either electron interactions
with some additional collective modes, order parameter
fluctuations, or may be due to similar nonlocal contri-
butions within the Hubbard model itself. To avoid pos-
sible confusion, we must stress that Σk(iω) can also
contain a local (momentum independent) contribution
that obviously vanishes in the limit of infinite dimen-
sionality d  ∞ and is not taken into account within
the standard DMFT. Due to this fact, there is no double
counting problem within our approach for the Hubbard
model. It is important to stress that the assumed addi-
tive form of self-energy Σ(ω) + Σk(ω) implicitly corre-
sponds to the neglect of possible interference from
these local (DMFT) and nonlocal contributions.

The self-consistency equations of our generalized
DMFT + Σk approach are formulated as follows [11]:

(1) Start with some initial guess of the local self-
energy Σ(ω); e.g., Σ(ω) = 0.

(2) Construct Σk(ω) within some (approximate)
scheme taking into account the interactions with collec-
tive modes or order parameter fluctuations that in gen-
eral can depend on Σ(ω) and µ.

(3) Calculate the local Green’s function

(2)

(4) Define the Weiss field

(3)

(5) Using some impurity solver to calculate the sin-
gle-particle Green’s function for the effective Anderson
impurity problem defined by Grassmann integral

(4)

Gk ω( ) 1
iω µ ε k( )– Σ ω( ) Σk ω( )––+
------------------------------------------------------------------------=

Gii ω( ) 1
N
---- 1

iω µ ε k( ) Σ ω( )– Σk ω( )––+
------------------------------------------------------------------------.

k

∑=

�0
1– ω( ) Σ ω( ) Gii

1– ω( ).+=

Gd τ τ'–( ) = 
1

Zeff
-------- Dciσ

+ Dciσciσ τ( )ciσ
+ τ'( ) Seff–( ),exp∫

with effective action for a fixed (impurity) i

(5)

Zeff = Dciσexp(–Seff), and β = T–1. This step pro-

duces a new set of values (ω).

(6) Define a new local self-energy

(6)

(7) Using this self-energy as the initial one in step 1,
continue the procedure until (and if) convergency is
reached to obtain

(7)

Eventually, we get the desired Green’s function in
the form of (1), where Σ(ω) and Σk(ω) are those appear-
ing at the end of our iteration procedure.

For the momentum dependent part of the single-par-
ticle self-energy, we concentrate on the effects of scat-
tering of electrons from collective short-range SDW-
like antiferromagnetic spin (or CDW-like charge) fluc-
tuations. To calculate Σk(ω) for an electron moving in
the quenched random field of (static) Gaussian spin (or
charge) fluctuations with dominant scattering momen-
tum transfers from the vicinity of some characteristic
vector Q (the hot spots model [2]), we use the following
recursion procedure proposed in [12, 4, 5], which takes
into account all the Feynman diagrams describing the
scattering of electrons by this random field:

(8)

with

(9)

The quantity ∆ characterizes the energy scale, and κ =
ξ–1 is the inverse correlation length of short range SDW

(CDW) fluctuations; εn(k) = ε(k + Q) and vn = | | +

| | for odd n, while εn(k) = ε(k) and vn = | | +

| | for even n. The velocity projections  and 
are determined by the usual momentum derivatives of
the bare electronic energy dispersion ε(k). Finally, s(n)
represents a combinatorial factor with

(10)

Seff τ1 τ2ciσ τ1( )�0
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∫d

0

β
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for the case of commensurate charge (CDW type) fluc-
tuations with Q = (π/a, π/a) [12]. For incommensurate
CDW fluctuations [12], one finds

(11)

If we take into account the (Heisenberg) spin structure
of the interaction with spin fluctuations in nearly anti-
ferromagnetic Fermi liquid (the spin-fermion (SF)
model [4]), the combinatorics of the diagrams becomes
more complicated and the factor s(n) acquires the fol-
lowing form [4]:

(12)

Obviously, with this procedure, we introduce an impor-
tant length scale ξ not present in standard DMFT. Phys-
ically, this scale mimics the effect of the short-range
(SDW or CDW) correlations within the fermionic bath
surrounding the effective Anderson impurity. Both the
parameters ∆ and ξ can, in principle, be calculated from
the microscopic model at hand [11].

In the following, we will consider both ∆ and espe-
cially ξ as some phenomenological parameters to be
determined from experiments. This makes our
approach somehow similar in spirit to the Landau
approach to Fermi liquids.

In the following, we discuss a standard one-band
Hubbard model on a square lattice. With the nearest (t)
and next nearest (t') neighbor hopping integrals, the
bare dispersion then reads

(13)

where a is the lattice constant. The correlations are
introduced by a repulsive, local two-particle interaction
U. We choose as the energy scale the nearest neighbor
hopping integral t and as the length scale the lattice
constant a. All the energies below are given in units of t.

For a square lattice, the bare bandwidth is W = 8t. To
study a strongly correlated metallic state obtained as a
doped Mott insulator, we use U = 40t as the value for
the Coulomb interaction and a filling n = 0.8 (hole dop-
ing). The correlated metal in the case of W � U is con-
sidered for the case of U = 4t and the filling factor n =
0.8 (hole doping). For ∆, we choose rather typical val-
ues between ∆ = 0.1t and ∆ = 2t (actually, the approxi-
mate limiting values obtained in [11]), and, for the cor-
relation length, we took ξ = 10a (being motivated
mainly by the experimental data for cuprates [2, 4]).

The DMFT maps the lattice problem onto an effec-
tive, self-consistent impurity defined by Eqs. (4), (5). In
our work, we employed as an impurity solver the reli-

s n( )

n 1+
2

------------ for odd n

n
2
---       for even n.






=

s n( )

n 2+
3

------------ for odd n

n
3
---       for even n.






=

ε k( ) = 2t kxacos kyacos+( ) 4t' kxa kya,coscos––

able method of a numerical renormalization group
(NRG) [13, 14].

As already discussed in the Introduction, the charac-
teristic feature of the strongly correlated metallic state
is the coexistence of lower and upper Hubbard bands
split by the value of U with a quasiparticle peak at the
Fermi level.

Once we get a self-consistent solution of the
DMFT + Σk equations with nonlocal fluctuations, we
can compute the spectral functions A(ω, k) for real ω:

(14)

where the self-energy Σ(ω) and chemical potential µ
are calculated self-consistently. The densities of states
can be calculated by integrating (14) over the Brillouin
zone.

Extensive calculations of the densities of states,
spectral densities, and ARPES spectra for this model
were performed in [11]. In the general case, a
pseudogap appears in the density of states within the
quasiparticle peak (correlated conduction band). The
qualitative behavior of the pseudogap anomalies is sim-
ilar to those for the case of U = 0 [2, 5]; e.g., a decrease
of ξ makes the pseudogap less pronounced, while
reducing ∆ narrows the pseudogap and also makes it
more shallow. For the doped Mott insulator, we find
that the pseudogap is remarkably more pronounced for
the SDW-like fluctuations than for the CDW-like fluc-
tuations. Thus, below, we present mainly the results
obtained using combinatorics (12) of the spin-fermion
model.

As was noted above, within the standard DMFT
approach, the Fermi surface is not renormalized by
interactions and just coincides with that of the bare qua-
siparticles [7]. However, in the case of the nontrivial
momentum dependence of the electron self-energy,
important renormalization of the Fermi surface appears
due to pseudogap formation [4]. There are a number of
ways to define a Fermi surface in a strongly correlated
system with pseudogap fluctuations. In the following,
we use intensity plots (within the Brillouin zone) of the
spectral density (14) taken at ω = 0. These are readily
measured by ARPES, and the appropriate peak posi-
tions define the Fermi surface in the usual Fermi liquid
with ease.

In Figs. 1a–1c, we show such plots for the case of
uncorrelated metal (U = 0) with pseudogap fluctuations
obtained directly from the Green’s function defined by
the recursion procedure (8), (9). For comparison, in
Fig. 1d, we show renormalized Fermi surfaces obtained
for this model using a rather natural definition of the
Fermi surface as defined by the solution of the equation

(15)

for ω = 0, which was used, e.g., in [4]. It is seen that this
last definition produces Fermi surfaces close to those
defined by the intensity plots of the spectral density

A ω k,( ) 1
π
---Im

1
ω µ ε k( )– Σ ω( ) Σk ω( )––+
----------------------------------------------------------------------,–=

ω ε k( )– µ ReΣ ω( ) ReΣk ω( )––+ 0=
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Fig. 1. Fermi surfaces obtained for the uncorrelated case of U = 0 and the filling factor n = 0.8. Shown are intensity plots of the
spectral density (14) for ω = 0. ∆ = (a) 0.1t; (b) 0.3t; (c) t; (d) Fermi surfaces obtained solving Eq. (15). The dashed line denotes a
bare Fermi surface.

only for small values of ∆, while, for larger values, we
can see a rather unexpected topological transition. At
the same time, the spectral density intensity plots
clearly demonstrate destruction of the Fermi surface in
the vicinity of the hot spots with Fermi arcs forming
with the growth of ∆ similar to those seen in the pio-
neering ARPES experiments of Norman et al. [15] and
confirmed later in numerous works.

In Fig. 2, we show our results for the case of corre-
lated metal with U = 4t, and, in Fig. 3, for the doped
Mott insulator with U = 40t. Again, we see the qualita-
tive behavior clearly demonstrating the destruction of
the well defined Fermi surface in the strongly corre-
lated metal with the growth of the pseudogap amplitude
∆. The role of finite U reduces to a lower intensity of
spectral density in comparison with the case of U = 0
and leads to additional blurring, thus, making the hot
spots less visible. Again, the destruction of the Fermi
surface starts in the vicinity of the hot spots for small
values of ∆, but, almost immediately, it disappears in
the whole antinodal region of the Brillouin zone, while
only Fermi arcs remain in the nodal region very close to
the bare Fermi surface. These results give a natural
explanation for the observed behavior and also for the
fact that the existence of regions of hot spots was
observed only in some rare cases [16].

For the case of the doped Mott insulator (U = 40t)
shown in Fig. 3, we see that the Fermi surface is rather

poorly defined for all the values of ∆, as the spectral
density profiles are much more blurred than in the case
of smaller values of U, thus, reflecting the important
role of correlations.

It is interesting to note that, from Figs. 2 and 3, it is
clearly seen that the natural definition of the Fermi sur-
face from Eq. (15) is quite inadequate for correlated
systems with finite U and nonlocal interactions
(pseudogap fluctuations), thus, signifying the increased
role of strong correlations.

To summarize, we propose a generalized DMFT +
Σk approach that is meant to take into account the
important effects due to nonlocal correlations in a sys-
tematic but, to some extent, phenomenological fashion.
The main idea of this extension is to stay within the
usual effective Anderson impurity analogy and intro-
duce length scale dependence due to nonlocal correla-
tion via the effective medium (bath) appearing in the
standard DMFT. This becomes possible by incorporat-
ing scattering processes of fermions in the bath from
nonlocal collective SDW-like antiferromagnetic spin
(or CDW-like charge) fluctuations. Such a generaliza-
tion of the DMFT allows one to overcome the well-
known shortcoming of the k independence of the self-
energy of the standard DMFT. It, in turn, opens the pos-
sibility to access the physics of low-dimensional
strongly correlated systems where different types of
spatial fluctuations (e.g., of some order parameter)
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Fig. 2. Destruction of the Fermi surface as obtained from the DMFT + Σk calculations for U = 4t and n = 0.8. The notations are the
same as used in Fig. 1. ∆ = (a) 0.2t; (b) 0.4t; (c) t; (d) 2t. Black lines show the solution of Eq. (15).
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Fig. 3. Fermi surfaces obtained from the DMFT + Σk calculations for U = 40t and n = 0.8. The other parameters and notations are
the same as in Fig. 2.
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become important in a nonperturbative way (at least
with respect to the important local dynamical correla-
tions). However, we must stress that our procedure in
no way introduces any kind of systematic 1/d expan-
sion, being only a qualitative method to include a length
scale into DMFT.

In our present study, we addressed the problem of
the Fermi surface renormalization (destruction) by
pseudogap fluctuations in the strongly correlated metal-
lic state. Our generalization of DMFT leads to nontriv-
ial and, in our opinion, physically sensible k depen-
dence of spectral functions, thus, leading to Fermi sur-
face renormalization quite similar to that observed in
ARPES experiments.

Similar results were obtained in recent years using
the cluster mean-field theories [17]. The major advan-
tage of our approach over these cluster mean-field the-
ories is that we stay in an effective single-impurity rep-
resentation. This means that our approach is computa-
tionally much less costly and therefore easily
generalizable for the description of additional interac-
tions.
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We generalize the dynamical-mean field �DMFT� approximation by including into the DMFT equations
some length scale � via a momentum dependent external self-energy �k. This external self-energy describes
nonlocal dynamical correlations induced by the short-ranged collective spin density wave–like antiferromag-
netic spin �or the charge density wave–like charge� fluctuations. At high enough temperatures these fluctuations
can be viewed as a quenched Gaussian random field with a finite correlation length. This generalized
DMFT+�k approach is used for the numerical solution of the weakly doped one-band Hubbard model with
repulsive Coulomb interaction on a square lattice with the nearest and the next nearest neighbor hopping. The
effective single impurity problem in this generalized DMFT+�k is solved by the numerical renormalization
group. Both types of the strongly correlated metals, namely: �i� The doped Mott insulator and �ii� the case of
the bandwidth W�U �U—value of the local Coulomb interaction� are considered. The densities of states, the
spectral functions, and the angle resolved photoemission spectra calculated within the DMFT+�k show a
pseudogap formation near the Fermi level of the quasiparticle band.
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I. INTRODUCTION

Among the numerous anomalies of the normal phase of
high-temperature superconductors the observation of a
pseudogap in the electronic spectrum of underdoped copper
oxides1,2 is especially interesting. Despite continuing discus-
sions on the nature of the pseudogap, the preferable scenario
for its formation is most likely based on the model of strong
scattering of the charge carriers by a short-ranged antiferro-
magnetic �AFM� or spin density wave �SDW� spin
fluctuations.2,3 In a momentum representation, this scattering
transfers momenta of the order of Q= �� /a ,� /a� �a—lattice
constant of a two-dimensional lattice�. This leads to the for-
mation of structures in the one-particle spectrum, which are
precursors of the changes in the spectra due to the long-range
AFM order �period doubling�. As a result, we obtain non-
Fermi-liquidlike behavior �dielectrization� of the spectral
density in the vicinity of the so called hot spots on the Fermi
surface, appearing at intersections of the Fermi surface with
an antiferromagnetic Brillouin zone boundary �Umklapp
surface�.2

Within this spin-fluctuation scenario, a simplified model
of the pseudogap state was studied2,4,5 under the assumption
that the scattering by dynamic spin fluctuations can be re-
duced for high enough temperatures to a static Gaussian ran-
dom field �quenched disorder� of pseudogap fluctuations.
These fluctuations are defined by a characteristic scattering
vector from the vicinity of Q, with a width determined by the
inverse correlation length of a short-range order �=�−1, and
by an appropriate energy scale � �typically of the order of
the crossover temperature T* to the pseudogap state2�.

Undoped cuprates are antiferromagnetic Mott insulators
with U�W �U—value of the local Coulomb interaction,
W—bandwidth of noninteracting band�, so that correlation
effects are very important. It is thus clear that the electronic
properties of underdoped �and probably also optimally

doped� cuprates are governed by strong electronic correla-
tions also, so that these systems are typical strongly corre-
lated metals. Two types of correlated metals can be distin-
guished: �i� the doped Mott insulator and �ii� the bandwidth
controlled correlated metal W�U. Both types will be con-
sidered in this paper.

A state of the art tool to describe such correlated systems
is the dynamical mean-field theory �DMFT�.6–10 The charac-
teristic features of correlated systems within the DMFT are
the formation of incoherent structures, the so-called Hubbard
bands, split by the Coulomb interaction U, and a quasiparti-
cle �conduction� band near the Fermi level dynamically gen-
erated by the local correlations.6–10

Unfortunately, the DMFT is not useful to the study of the
antiferromagnetic scenario of the pseudogap formation in
strongly correlated metals. This is due to the basic approxi-
mation of the DMFT, which amounts to the complete neglect
of nonlocal dynamical correlation effects.

Besides the extended DMFT,11 which locally includes a
coupling to nonlocal dynamical fluctuations, a straightfor-
ward way to extend the DMFT are the so-called cluster
mean-field theories.12 Two variants of this approach are the
dynamical cluster approximation �DCA� �Ref. 12� and the
cellular DMFT �CDMFT�.13 In particular, the DCA has been
applied to study the low-energy properties of the Hubbard
model, systematically including short- to medium-ranged
nonlocal correlations. Both improve on the cluster perturba-
tion theory �CPT�,14,15 an attempt to use finite-size calcula-
tions to obtain approximate results for the thermodynamic
limit.

However, these approaches have certain drawbacks from
both the technical and the interpretation points of view. First,
the effective quantum single impurity problem becomes
rather complex. Thus, most computational methods available
for the DMFT can be applied for the smallest clusters
only,12,16,17 i.e., include nearest-neighbor fluctuations only.
For medium- to long-ranged correlations one is currently re-
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stricted to the Quantum Monte-Carlo.18,19 Since for cluster
problems again a sign problem arises, one is restricted to
relatively small values of the local Coulomb interaction and
high temperatures. Second, the interpretation of electronic
structures found has to be based on a reliable input from
other, typically approximate, complementary techniques.

The aim of the present paper is to propose such an ap-
proach, which on the one hand retains the single-impurity
description of the DMFT, viz a proper account for local cor-
relations and the possibility of using very efficient impurity
solvers like NRG;20,21 on the other hand, we include nonlocal
correlations on a nonperturbative model basis, which allows
one to control characteristic scales and also types of nonlocal
fluctuations. This latter point allows for a systematical study
of the influence of a nonlocal fluctuation on the electronic
properties and in particular provide valuable hints on the
physical origin and the possible interpretation of results
found in, e.g., more refined theoretical approaches.

The paper is organized as follows: In Sec. II we present a
derivation of the self-consistent generalization we call
DMFT+�k which includes short-ranged dynamical correla-
tions to some extent. Section III describes the construction of
the k-dependent self-energy, and some computational details
are presented in Sec. IV A. Results and discussion are given
in the Sec. IV. Then the paper is ended with a summary �Sec.
V� together with an overview of related recent approaches
and results on a pseudogap issue.

II. INTRODUCING LENGTH SCALE INTO DMFT:
DMFT+�k APPROACH

The basic shortcoming of the traditional DMFT
approach6–10 is the neglect of the momentum dependence of
the electron self-energy. This approximation, in principle, al-
lows for an exact solution of the correlated electron systems
fully preserving the local part of the dynamics introduced by
electronic correlations. To include nonlocal effects, while re-
maining within the usual single impurity analogy, we pro-
pose the following procedure. To be definite, let us consider
a standard one-band Hubbard model from now on. The ex-
tension to multi-orbital or multi-band models is straightfor-
ward. The major assumption of our approach is that the lat-
tice and Matsubara time Fourier transformed of the single-
particle Green function can be written as:

Gk�i�� =
1

i� + � − ��k� − ��i�� − �k�i��
, � = �T�2n + 1� ,

�1�

where ��i�� is the local contribution to the self-energy, sur-
viving in the DMFT, while �k�i�� is a momentum dependent
part. We suppose that this last contribution is due to either
electron interactions with some additional collective modes
or order parameter fluctuations, or may be due to a similar
nonlocal contribution within the Hubbard model itself.

To avoid possible confusion, we must stress that �k�i��
can, in principle, also contain local �momentum independent�
contributions, which obviously vanish in the limit of an in-
finite dimensionality d→� and are not taken into account

within the DMFT. Due to this fact there is no double count-
ing of diagrams within our approach to the Hubbard model.
This question does not arise at all if we consider �k�i��
appearing due to some additional interaction. More impor-
tant is that the assumed additive form of the self-energy
��i��+�k�i�� implicitly corresponds to the neglect of pos-
sible interference of these local �DMFT� and nonlocal con-
tributions. Furthermore, both contributions to the total self-
energy ��i��+�k�i�� individually obey causality by
construction. Thus, the sum and finally the propagator �1�
constructed from it are causal, too.

The self-consistency equations of our generalized
DMFT+�k approach are formulated as follows.

�1� Start with some initial guess of local self-energy
��i��, e.g., ��i��=0.

�2� Construct �k�i�� within some �approximate� scheme,
taking into account interactions with collective modes or or-
der parameter fluctuations which in general can depend on
��i�� and �.

�3� Calculate the local Green function

Gii�i�� =
1

N
�
k

1

i� + � − ��k� − ��i�� − �k�i��
. �2�

�4� Define the “Weiss field”

G0
−1�i�� = ��i�� + Gii

−1�i�� . �3�

�5� Use some “impurity solver” to calculate the single-
particle Green function for the effective single Anderson im-
purity problem, defined by the Grassmanian integral

Gd�� − ��� =
1

Zeff
� Dci�

† Dci�
† ci����ci�

† ����exp�− Seff� �4�

with the effective action for a fixed site �“single impurity”� i

Seff = − �
0

�

d�1�
0

�

d�2 ci���1�G0
−1��1 − �2�ci�

† ��2�

+ �
0

�

d� Uni↑���ni↓��� , �5�

Zeff=�Dci�
† Dci� exp�−Seff�, and �=T−1. This step produces

a new set of values Gd
−1�i��.

�6� Define a new local self-energy

��i�� = G0
−1�i�� − Gd

−1�i�� . �6�

�7� Using this self-energy as an initial one in step �1�,
continue the procedure until �and if� convergency is reached
to obtain

Gii�i�� = Gd�i�� . �7�

Eventually, we get the desired Green function in the form of
�1�, where ��i�� and �k�i�� are those appearing at the end
of our iteration procedure. A more detailed derivation of
this scheme within a diagrammatic approach is given in
Appendix A.
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III. CONSTRUCTION OF k-DEPENDENT SELF-ENERGY

For the momentum dependent part of the single-particle
self-energy we concentrate on the effects of the scattering of
electrons from the collective short-range SDW–like antifer-
romagnetic spin �or charge density wave �CDW�–like
charge� fluctuations. To calculate �k�i�� for an electron
moving in the quenched random field of �static� Gaussian
spin �or charge� fluctuations with dominant scattering mo-
mentum transfers from the vicinity of some characteristic
vector Q �hot spots model2�, we use a slightly generalized
version of the recursion procedure proposed in Refs. 4, 5,
and 22 which takes into account all the Feynman diagrams
describing the scattering of the electrons by this random
field. This becomes possible due to a remarkable property of
our simplified version of hot spots model that under certain
conditions the contribution of an arbitrary diagram with in-
tersecting interaction lines is actually equal to the contribu-
tion of some diagram of the same order without intersections
of these lines.5,22 Thus, in fact, we can limit ourselves to
consideration of only diagrams without intersecting interac-
tion lines, taking the contribution of diagrams with intersec-
tions into account with the help of additional combinatorial
factors, which are attributed to “initial” vertices or just inter-
action lines.22 As a result, we obtain the following recursion
relation �continuous fraction representation22�:

�n�i�,k� = �2 s�n�
i� + � − ��i�� − �n�k� + invn� − �n+1�i�,k�

.

�8�

The term �n�i� ,k� of recurring sequence contains all contri-
butions of diagrams with the number of interaction lines �n.
Then

�k�i�� = �n=1�i�,k� �9�

is actually the sum of all diagrammatic contributions. Since
the convergence of this recursion procedure for �n�i� ,k� is
rather fast, one can set contributions for large enough n equal
to zero and doing recursion backwards to n=1 to get the
desired physical self-energy.5

The quantity � characterizes the energy scale and �=�−1

is the inverse correlation length of the short-range SDW
�CDW� fluctuations, �n�k�=��k+Q� and vn= �vk+Q

x �+ �vk+Q
y �

for odd n while �n�k�=��k� and vn= �vk
x �+ �vk

y � for even n.
The velocity projections vk

x and vk
y are determined by usual

momentum derivatives of the “bare” electronic energy dis-
persion ��k�. Finally, s�n� represents a combinatorial factor
with

s�n� = n �10�

for the case of commensurate charge �CDW-type� fluctua-
tions with Q= �� /a ,� /a�.22 For the incommensurate CDW
fluctuations22 �when Q is not locked to the period of the
reciprocal lattice� one finds

s�n� = �
n + 1

2
for odd n

n

2
for even n .� �11�

If we want to take into account the �Heisenberg� spin struc-
ture of interaction with spin fluctuations in nearly antiferro-
magnetic Fermi-liquid �spin-fermion �SF� model of Ref. 4,
SDW-type fluctuations�, the combinatorics of the diagrams
becomes more complicated. Spin-conserving scattering pro-
cesses obey commensurate combinatorics, while spin-flip
scattering is described by the diagrams of incommensurate
type �charged random field in terms of Ref. 4�. In this model,
the recursion relation for the single-particle Green function is
again given by �8�, but the combinatorial factor s�n� now
acquires the following form:4

s�n� = �
n + 2

3
for odd n

n

3
for even n .� �12�

Obviously, with this procedure we introduce an important
length scale � not present in standard DMFT. Physically this
scale mimics the effect of short-range �SDW or CDW� cor-
relations within fermionic bath surrounding the effective
single Anderson impurity of the DMFT. We expect that such
a length scale will lead to a competition between local and
nonlocal physics.

An important aspect of the theory is that both parameters
� and � can, in principle, be calculated from the microscopic
model at hand. For example, using the two-particle self-
consistent approach of Ref. 23 with the approximations in-
troduced in Refs. 4 and 5, one can derive within the standard
Hubbard model the following microscopic expression for �:

�2 =
1

4
U2 �ni↑ni↓�

�ni↑��ni↓�
��ni↑� + �ni↓� − 2�ni↑ni↓��

= U2 �ni↑ni↓�
n2 ��ni↑ − ni↓�2� = U2 �ni↑ni↓�

n2

1

3
�S� i

2� , �13�

where we consider only scattering from antiferromagnetic
spin fluctuations. The different local quantities—spin fluc-

tuation �S� i
2�, density n and double occupancy �ni↑ni↓�—can

easily be calculated within the standard DMFT.9 A detailed
derivation of �13� and the computational results for � ob-
tained by the DMFT using the quantum Monte-Carlo �QMC�
to solve the effective single impurity problem are presented
in Appendix B. A corresponding microscopic expression for
the correlation length � can also be derived within the two-
particle self-consistent approach.23 However, we expect
those results for � to be less reliable, because this approach is
valid only for relatively small �or medium� values of U / t.
Thus, in the following, we will consider both � and espe-
cially � as some phenomenological parameters to be deter-
mined from the experiments.
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IV. RESULTS AND DISCUSSION

A. Computation details

In the following, we want to discuss the results for a
standard one-band Hubbard model on a square lattice. With
the nearest �t� and next nearest �t�� neighbor hopping inte-
grals the dispersion then reads

��k� = − 2t�cos kxa + cos kya� − 4t� cos kxa cos kya ,

�14�

where a is the lattice constant. The correlations are intro-
duced by a repulsive local two-particle interaction U. We
choose as an energy scale, the nearest neighbor hopping in-
tegral t and as a length scale, the lattice constant a.

For a square lattice the bare bandwidth is W=8t. To study
a strongly correlated metallic state obtained as a doped Mott
insulator we use U=40t as a value for the Coulomb interac-
tion and a filling n=0.8 �hole doping�. The particular choice
of the latter value for U is motivated by two aspects. First,
this value of U leads to an insulating DMFT+�k, solution at
half-filling. Second, the estimations of U for the stoichio-
metric La2CuO4 �high-TC prototype compound� based on the
constrained LDA �Ref. 24� calculations typically give U of
the order of 10 eV,25 which corresponds to 40t with our
choice of parameters. The correlated metal in the case of
W�U is realized via U=4t—a value used in various theo-
retical papers discussing the pseudogap state—and two fill-
ings: half-filling �n=1.0� and n=0.8 �hole doping�. As typi-
cal values for � we choose �= t and �=2t �actually as
approximate limiting values—see Appendix B� and for the
correlation length �=2a and �=10a �motivated mainly by
the experimental data for cuprates2,4�.

The DMFT maps the lattice problem onto an effective,
self-consistent single impurity defined by Eqs. �4� and �5�. In
our work, we employ as “impurity solvers” two reliable nu-
merically exact methods—quantum Monte-Carlo �QMC�
�Ref. 18� and the numerical renormalization group
�NRG�.20,21 The calculations were done for the case t�=0 and
t� / t=−0.4 �more or less typical for cuprates� at two different
temperatures T=0.088t and T=0.356t �for NRG
computations�.40 QMC computations of double occupancies
as functions of filling were done at temperatures T=0.1t and
T=0.4t.41

Below we present results only for most typical depen-
dences and parameters, more data and figures can be found
in Ref. 26.

B. Generalized DMFT+�k approach: densities of states

Let us start the discussion of our results obtained within
our generalized DMFT+�k approach with the densities of
states �DOS� for the case of the small �relative to bandwidth�
Coulomb interaction U=4t with and without pseudogap fluc-
tuations. As already discussed in Sec. I, the characteristic
feature of the strongly correlated metallic state is the coex-
istence of the lower and upper Hubbard bands split by the
value of U with a quasiparticle peak at the Fermi level. Since
at half-filling the bare DOS of the square lattice has a Van–
Hove singularity at the Fermi level �t�=0� or close to it �in

case of t� / t=−0.4� one cannot treat a peak on the Fermi level
simply as a quasiparticle peak. In fact, there are two contri-
butions to this peak; �i� the quasiparticle peak appearing in a
strongly correlated metals due to many-body effects and �ii�
the smoothed Van–Hove singularity from the bare DOS.42 In
Figs. 1 and 2 we show the corresponding DMFT �NRG�
DOS without pseudogap fluctuations as black lines for both
the bare dispersions t� / t=−0.4 �left panels� and for the
t�=0 �right panels� for two different temperatures T=0.356t
�lower panels� and T=0.088t �upper panels� with fillings
n=1.0 and n=0.8, respectively. The remaining curves in
Figs. 1 and 2 represent results for the DOS with nonlocal
fluctuations switched on with the fluctuation amplitude
�=2t. For all sets of parameters, one can see that the intro-
duction of nonlocal fluctuations into the calculation leads to
the formation of pseudogap in the quasiparticle peak.

FIG. 1. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for different combinatorical factors
�SF–spin-fermion model, commensurate�, inverse correlation
lengths ��−1� in units of the lattice constant, temperatures �T�, and
the value of pseudogap potential �=2t. The left column corre-
sponds to t� / t=−0.4, the right column to t�=0. In all graphs the
Coulomb interaction is U=4t and n=1. The Fermi level corre-
sponds to zero.

FIG. 2. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for a filling n=0.8, other parameters
as in Fig. 1.
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The behavior of the pseudogaps in the DOS has some
common features. For example, for t�=0 at half-filling �Fig.
1, right column� we find that the pseudogap is most pro-
nounced. For n=0.8 �Fig. 2, right column� the picture is
almost the same but slightly asymmetric. The width of the
pseudogap �the distance between the peaks closest to the
Fermi level� appears to be of the order of �2� here. De-
creasing the value of � from 2t to t leads to a pseudogap that
is correspondingly twice smaller and in addition more shal-
low �see Ref. 26�. When one uses the combinatorial factors
corresponding to the spin-fermion model �Eq. �12��, we find
that the pseudogap becomes more pronounced than in the
case of commensurate charge fluctuations �combinatorial
factors of Eq. �11��. The influence of the correlation length �
can be seen as expected. Changing from �−1=0.1 to �−1

=0.5, i.e., decreasing the range of the nonlocal fluctuations,
slightly washes out the pseudogap. Also, increasing the tem-
perature from T=0.088t to T=0.356t leads to a general
broadening of the structures in the DOS. These observations
remain at least qualitatively valid for t� / t=−0.4 �Figs. 1 and
2, left columns� with an additional asymmetry due to the
next-nearest neighbor hopping. Noteworthy is, however, the
fact that for t� / t=−0.4 and �−1=0.5 the pseudogap has al-
most disappeared for the temperatures studied here. Also a
very remarkable point is the similarity of the results obtained
with the generalized DMFT+�k approach with U=4t
�smaller than the bandwidth W� to those obtained earlier
without the Hubbard-like Coulomb interactions.4,5

Let us now consider the case of a doped Mott insulator.
The model parameters are t� / t=−0.4 with filling n=0.8, but
the Coulomb interaction strength is now set to U=40t. The
characteristic features of the DOS for such a strongly corre-
lated metal are a strong separation of the lower and upper
Hubbard bands and a Fermi level crossing by the lower Hub-
bard band �for the non-half-filled case�. Without nonlocal
fluctuations the quasiparticle peak is again formed at the
Fermi level; but now the upper Hubbard band is far to the
right and does not touch the quasiparticle peak �as it was for
the case of small Coulomb interactions�. DOS without non-
local fluctuations are again presented as black lines in Fig. 3.
The results for the case t�=0 are presented elsewhere.26

With rather strong nonlocal fluctuations �=2t, a
pseudogap appears in the middle of the quasiparticle peak. In

addition, we observe that the lower Hubbard band is slightly
broadened by fluctuation effects. Qualitative behavior of the
pseudogap anomalies is again similar to those described
above for the case of U=4t, e.g., a decrease of � makes the
pseudogap less pronounced, reducing � from �=2t to �= t
narrows of the pseudogap and also makes it more shallow,
etc. �see Ref. 26�. Note that for the doped Mott-insulator we
find that the pseudogap is remarkably more pronounced for
the SDW-like fluctuations than for CDW-like fluctuations.

There are, however, obvious differences of the case with
U=4t. For example, the width of the pseudogap appears to
be much smaller than 2�, being of the order of � /2 instead
�see Fig. 3�. This effect we attribute to the fact that the qua-
siparticle peak itself is actually strongly narrowed now by
the local correlations.

C. Generalized DMFT+�k approach:
spectral functions A„� ,k…

In the previous subsections we discussed the densities of
states obtained self-consistently by the DMFT+�k approach.
Once we get a self-consistent solution of the DMFT+�k
equations with nonlocal fluctuations we can, of course, also
compute the spectral functions A�� ,k�

A��,k� = −
1

�
Im

1

� + � − ��k� − ���� − �k���
, �15�

where the self-energy ���� and the chemical potential � are
calculated self-consistently as described in Sec. II. To plot
A�� ,k� we choose k points along the bare Fermi surfaces for
different types of lattice spectra and filling n=0.8. In Fig. 4
one can see corresponding shapes of these bare Fermi sur-
faces �presented are only 1

8 th of the Fermi surfaces within
the first quadrant of the first Brillouin zone�.

A natural quantity to inspect is the self-energy ��k ,�
+ i��, shown in Fig. 5 for t� / t=−0.4, n=0.8, and U=4t �left
column� and U=40t �right column�. As a representative k
points we chose the center of the first Brillouin zone ���, the
hot-spot and cold-spot �point B in Fig. 4�. The results were
obtained with NRG at a temperature T=0.088t. The struc-
tures for U=4t are rather broad, but reveal after a closer
inspection features similar to the case U=40t. For the latter,
the behavior at � and B is very different from the structures
at the hot-spot. Namely, while for the former two k points
Im ��k ,�+ i�� shows a nice parabolic maximum at the
Fermi energy, the latter develops a minimum instead. Such a

FIG. 3. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for t� / t=−0.4, T=0.088t, U=40t,
�=2t, and filling n=0.8.

FIG. 4. One-eighth of the bare Fermi surfaces for the occupancy
n=0.8 and different combinations �t , t�� used for the calculation of
spectral functions A�k ,��. The diagonal line corresponds to the
Umklapp surface. The full circle marks the so-called hot spot.
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structure in the self-energy will result in a rather evident
�pseudo� gap in the spectral function at this k point and at
weaker pseudogap behavior in the DOS. Its appearance is
obviously due to the presence of the spin-fluctuations at the
hot-spot. Note that similar features have been observed in
numerically expensive cluster mean-field calculations,27 too,
with an interpretation as a spin fluctuation induced based on
physical expectations. Our calculations, obtained at a mini-
mum numerical expense, indeed show, that including short-
ranged fluctuations will precisely produce these non-Fermi-
liquid structures in the one-particle self-energy. This
behavior is quite typical for the problem and was observed
by other groups using different methods.16,28–30 In several
works the midgap peak in the pseudogap was obtained with
an explanation of its origin by a particular shape of the self-
energy close to the Fermi level.28,29,31

In the following we concentrate mainly on the case U
=4t and filling n=0.8 �Fermi surface of Fig. 4�a��. The cor-
responding spectral functions A�� ,k� are depicted in Fig. 6.
When t� / t=−0.4 �upper row�, the spectral function close to
the diagonal of the Brillouin zone �point B� has the typical
Fermi-liquid behavior, consisting of a rather sharp peak close
to the Fermi level. In the case of the SDW-like fluctuations
this peak is shifted down in energy by about −0.5t �left upper
corner�. In the vicinity of the hot-spot the shape of A�� ,k� is
completely modified. Now A�� ,k� becomes double-peaked
and non-Fermi-liquidlike. Directly at the hot-spot, A�� ,k�
for SDW-like fluctuations has two equally intensive peaks
situated symmetrically around the Fermi level and split from
each other by �1.5� Refs. 4 and 5. For the commensurate
CDW-like fluctuations the spectral function in the hot-spot

region has one broad peak centered at the Fermi level with
the width ��. Such a merging of the two peaks at the hot
spot for commensurate fluctuations was previously observed
in Ref. 5. However, close to point A this type of fluctuations
also produces a double-peak structure in the spectral func-
tion.

Spectral functions for the case of U=4t at half-filling
�n=1� and for t� / t=−0.4 are similar to those just discussed
for n=0.8. However, the pseudogap is more pronounced in
this case and remains open everywhere close to the Umklapp
surface for SDW fluctuations.26

In the lower panel of Fig. 6 we show spectral functions
for 20% hole doping �n=0.8� and the case of t�=0 �Fermi
surface from Fig. 4�b��. Since the Fermi surface now is close
to the Umklapp surface, the pseudogap anomalies are rather
strong and almost nondispersive along the Fermi surface. At
half filling for t�=0 the Fermi surface actually coincides with
the Umklapp surface �in case of perfect nesting the whole
Fermi surface is the hot region�. The spectral functions are
now symmetric around the Fermi level. For SDW-like fluc-
tuations there are two peaks split by �1.5�. Again, CDW-
like fluctuations give just one peak centered at the Fermi
level with width ��.

For the case of a doped Mott insulator �U=40t, n=0.8�,
the spectral functions obtained by the DMFT+�k approach
are presented in Fig. 7. Qualitatively, the shapes of these
spectral functions are similar to those shown in Fig. 6. As
was pointed out above, the strong Coulomb correlations lead
to a narrowing of the quasiparticle peak and a corresponding
decrease of the pseudogap width. As is evident from Fig. 7
the structures connected to the pseudogap are now spread in
an energy interval �t, while for U=4t they are restricted to
an interval �4t instead. One should also note that in contrast
to U=4t the spectral functions are now about four times less
intensive, because part of the spectral weight is transferred to

FIG. 5. �Color online� Real �dashed line� and imaginary �full
line� parts of the self-energy ��k ,�� for t / t�=−0.4, U=4t �left
column�, and U=40t �right column� for characteristic k points: �,
hot-spot �see Fig. 4� and cold-spot �point B in Fig. 4�. For all graphs
the filling is n=0.8, temperature T=0.088t, inverse correlation
length �−1=0.1, value of pseudogap potential �=2t, and SF
combinatorics.

FIG. 6. Spectral functions A�k ,�� obtained from the
DMFT�NRG�+�k calculations along the directions shown in Fig.
4. Model parameters were chosen as U=4t, n=0.8, �=2t,
�−1=0.1, and temperature T=0.088t. The hot-spot k point is marked
as a fat dashed line. The Fermi level corresponds to zero.
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the upper Hubbard band located at about 40t and is well
separated from the quasiparticle peak now.

Using another quite common choice of k points we can
compute A�� ,k� along high-symmetry directions in the first
Brillouin zone: ��0,0�−X�� ,0�− M�� ,��−��0,0�. The
spectral functions for these k points are collected in Fig. 8
for the case of SDW-like fluctuations. Characteristic curves
for the doped Mott insulator are presented in Ref. 26. For all
sets of parameters, one can see a characteristic double-peak
pseudogap structure close to the X point. In the middle of the
M –� direction �so called “nodal” point� one can see the
reminiscence of the AFM gap which has its biggest value

here in the case of perfect antiferromagnetic ordering. Also
in the nodal point “kinklike” behavior is observed caused by
interactions between correlated electrons with short-range
pseudogap fluctuations. A change of the filling leads mainly
to a rigid shift of spectral functions with respect to the Fermi
level.

With the spectral functions we are now, of course, in a
position to calculate the angle resolved photoemission spec-
tra �ARPES�, which is the most direct experimental way to
observe pseudogap in real compounds. For that purpose, we
only need to multiply our results for the spectral functions
with the Fermi function at temperature T=0.088t. A typical
example of the resulting DMFT+�k ARPES spectra are pre-
sented in Fig. 9. More figures of ARPES-like results obtained
within the DMFT+�k approach for a variety of parameters
can be found in Ref. 26. One should note that for t� / t
=−0.4 �upper panel of Fig. 9� as k goes from point A to point
B the peak situated slightly below the Fermi level changes its
position and moves down in energy. Simultaneously it be-
comes more broad and less intensive. The dotted line guides
the motion of the peak maximum. Also at the hot spot and
further to point B one can see some signs of the double-peak
structure. Such behavior of the peak in the ARPES is rather
reminiscent of those observed experimentally in underdoped
cuprates.2,4,32

V. CONCLUSION

In summary, we propose a generalized DMFT+�k ap-
proach, which is meant to take into account the important
effects of nonlocal correlations �in principle of any type� in
addition to the �essentially exact� treatment of local dynami-
cal correaltions by the DMFT. In the standard DMFT the
“bath” surrounding the effective single Anderson impurity is

FIG. 7. Spectral functions A�k ,�� obtained from the
DMFT�NRG�+�k calculations for U=40t; other parameters as in
Fig. 6.

FIG. 8. Spectral functions A�k ,�� obtained from the
DMFT�NRG�+�k calculations along high-symmetry directions of
the first Brillouin zone ��0,0�−X�� ,0�−M�� ,��−��0,0�, SF
combinatorics �left row� and commensurate combinatorics �right
column�. Other parameters are U=4t, n=0.8, �=2t, �−1=0.1, and
temperature T=0.088t. The Fermi level corresponds to zero.

FIG. 9. ARPES spectra simulated by the multiplication of the
spectral functions obtained from DMFT�NRG�+�k calculations for
U=4t and n=0.8 in Fig. 6 with the Fermi function at T=0.088t
plotted along the lines in the first BZ as depicted by Fig. 4. All other
parameters are the same as in Fig. 6.
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spatially uniform since the DMFT self-energy is only energy
dependent. The main idea of our extension is to introduce
nonlocal correlations through the bath, i.e. to make it spa-
tially nonuniform, while keeping standard DMFT self-
consistency equations. Such a generalization of the DMFT
allows us to supplement it with a k-dependent self-energy
��k ,��. It in turn opens the possibility of accessing the
physics of low-dimensional strongly correlated systems,
where different types of spatial fluctuations �e.g., of some
order parameter� become important, in a nonperturbative
way at least with respect to the important local dynamical
correlations. However, we must stress that our procedure in
no way introduces any kind of systematic 1 /d expansion,
being only a qualitative method to include a length scale into
the DMFT. Nevertheless, we believe that such a technique
can give valuable insight into the physical processes leading
to the correlation induced k-dependent structures in single-
particle properties.

In this work we model such effects for the two-
dimensional Hubbard model by incorporating into the bath
scattering of fermions from nonlocal collective SDW-like an-
tiferromagnetic spin �or CDW-like charge� short-range fluc-
tuations. The corresponding k-dependent self-energy ��k ,��
is obtained from a nonperturbative iterative scheme.4,5 Such
a choice of the ��k ,�� allows us to address the problem of
pseudogap formation in the strongly correlated metallic state.
We showed evidence that the pseudogap appears at the Fermi
level within the quasiparticle peak, introducing a new small
energy scale of the order of pseudogap potential value � in
the DOS and more pronounced in spectral functions A�� ,k�.
Let us stress that our generalization of the DMFT leads to
nontrivial and in our opinion physically sensible k depen-
dence of spectral functions. It is significant that this particu-
lar choice of ��k ,�� �Refs. 4 and 5� does not cause difficul-
ties to “double counting” problems within our combined
DMFT+�k approach. Also, the combination of diagrammati-
cally correct techniques such as DMFT �Refs. 6–10� and the
nonlocal self-energy ansatz of Refs. 4 and 5 preserves the
correct analytical properties of the combined self-energy
��i��+�k�i��, as well as of the corresponding one-electron
propagator �1�.

Of course, our pseudogap observations are not entirely
new. Similar results about pseudogap formation in the 2d
Hubbard model were already obtained within cluster DMFT
extensions, i.e., the dynamical cluster approximation �DCA�
�Refs. 12 and 27� and the cellular DMFT �CDMFT�,16,17

CPT,14,15,33 and two interacting Hubbard sites self-
consistently embedded in a bath.28 However, these methods
have generic restrictions concerning the size of the cluster,
temperature, or filling accessible and, in the case of the
QMC, values of the local Coulomb energy. Recently, the
EDMFT was also applied to demonstrate the pseudogap for-
mation in the DOS due to dynamic Coulomb correlations.34

Note, however, that within the EDMFT there is no way to
obtain a k dependence in spectral functions beyond that
originating from the bare electronic energy dispersion. Im-
portant progress was also made with the weak coupling ap-
proaches for the Hubbard model35 and the functional renor-
malization group.29,30 In several papers, pseudogap

formation was described in the framework of the t-J model.36

A more general scheme for the inclusion of nonlocal correc-
tions was also formulated within the so called GW extension
to the DMFT.37,38

While at a first glance the introduction of additional phe-
nomenological parameters �correlation length � and
pseudogap strength �� through the definition of ��k ,��
seems to take a step back with respect to the methods out-
lined above, it actually opens up the possibility to systemati-
cally distinguish between different types of nonlocal fluctua-
tions and their effects and help to analyze experimental or
theoretical data obtained within more advanced schemes in
terms of intuitive physical pictures. Note, however, that in
principle even the parameters � and � can be calculated from
the original model.23

An essential advantage of the proposed combination of
two nonperturbative methods �DMFT and ��k ,�� from
Refs. 4 and 5� removes the restrictions on model parameters
in, e.g., cluster mean-field theories. Our scheme works for
any Coulomb interaction strength U, pseudogap strength �,
correlation length �, filling n, and bare electron dispersion
��k� on a 2d square lattice for any set of k points. Although
we presented only high-temperature data in this paper, the
possibility of using Wilson’s NRG to solve the effective im-
purity model also opens the possibiltiy of studying properties
at T=0, which is currently impossible within the DCA or
CDMFT for larger clusters. Moreover, the DMFT+�k ap-
proach can be easily generalized to orbital degrees of free-
dom, phonons, impurities, etc.

As a further application of our generalized DMFT+�k we
would like to bring the reader’s attention to Ref. 39, which
deals with the problem of the Fermi surface destruction in
high-Tc compounds because of pseudogap fluctuations.
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APPENDIX A: DERIVATION OF GENERALIZED
DMFT+�k APPROACH

In this Appendix we present a derivation of the general-
ized DMFT+�k scheme for the Hubbard model
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H = − �
ij,�

tijci�
† cj� + U�

i

ni↑ni↓, �A1�

using a diagrammatic approach. The single-particle Green
function in Matsubara representation is as usual given by

Gk�i�� =
1

i� + � − ��k� − ��i�,k�
. �A2�

To establish the standard DMFT one invokes the limit of
infinite dimensions d→�. In this limit only local contribu-
tions to the electron self-energy survive,7,9 i.e., �ij→�ij�ii
or, in reciprocal space, ��i� ,k�→��i��.

In Fig. 10 we show examples of skeleton diagrams for the
local self-energy, contributing in the limit of d→�. The
complete series of these and similar diagrams defines the
local self-energy as a functional of the local Green function

� = F�Gii� , �A3�

where

Gii�i�� =
1

N
�
k

1

i� + � − ��k� − ��i��
. �A4�

One then defines the Weiss field

G0
−1�i�� = ��i�� + Gii

−1�i�� �A5�

which is used to set up the effective single impurity problem
with an effective action given by �5�. In Dyson’s equation,
the Green function �4� for this effective single impurity prob-
lem can be written as

Gd�i�� =
1

G0
−1�i�� − �d�i��

, �A6�

and the skeleton diagrams for self-energy �d are just the
same as shown in Fig. 10, with the replacement Gii→Gd.
Thus we get

�d = F�Gd� , �A7�

where F is the same functional as in �A3�. The two equations
�A6� and �A7� define both Gd and �d for a given Weiss field
G0. On the other hand, for the local � and Gii of the initial
�Hubbard� problem we have precisely the same pair of equa-
tions, �A3� and �A5�, and G0 in both problems is just the
same, so that

� = �d; Gii = Gd. �A8�

Thus, the task of finding the local self-energy of the
�d→�� Hubbard model is eventually reduced to the calcula-
tion of the self-energy of an effective quantum single impu-

rity problem defined by the effective action of Eq. �5�.
Consider now the nonlocal contribution to the self-energy.

If we neglect interference between local and nonlocal contri-
butions �as given, e.g., by the diagram shown in Fig. 11�b��,
the full self-energy is approximately determined by the sum
of these two contributions. Skeleton diagrams for the nonlo-
cal part of the self-energy, �k�i��, are then those shown in
Fig. 11�a�, where the full line denotes the Green function Gk
of Eq. �1�, while dashed lines denote the interaction with
static Gaussian spin �charge� fluctuations. These diagrams
are just absent within the standard DMFT �as any contribu-
tion from Ornstein–Zernike type fluctuations vanish for
d→��, and no double counting problems arise at all.

The local contribution to the self-energy is again defined
by the functional �A3� via the local Green function Gii,
which is now given by Eq. �2�. Introducing again a Weiss
field via �A5� and repeating all previous arguments, we again
reduce the task of finding the local part of the self-energy to
the solution of a single impurity problem with an effective
action �5�.

To determine the nonlocal contribution �k�i�� we first
introduce

G0k�i�� =
1

Gk
−1�i�� + �k�i��

=
1

i� + � − ��k� − ��i��
�A9�

as the bare Green function for electron scattering by static
Gaussian spin �charge� fluctuations. The assumed static na-
ture of these fluctuations allows one to use the method of
Refs. 4, 5, and 22 and the calculation of the nonlocal part of
the self-energy �k�i�� reduces to the recursion procedure
defined by Eqs. �8� and �9�. The choice of the bare Green
function Eq. �A9� guarantees that the Green function dressed
by fluctuations Gk

−1�i��=G0k
−1�i��−�k�i��, which enters into

the skeleton diagrams for �k�i��, just coincides with the full
Green functions Gk�i��.

Thus we obtain a fully self-consistent scheme to calculate
both local �due to strong single-site correlations� and nonlo-
cal �due to short-range fluctuations� contributions to electron
self-energy.

APPENDIX B: � IN THE HUBBARD MODEL

In this Appendix we derive the explicit microscopic ex-
pression for pseudogap amplitude � given in Eq. �13�.

FIG. 10. Local skeleton diagrams for the DMFT self-energy �.
Wavy lines represent the local �Hubbard� Coulomb interaction U;
full lines denote the local Green function Gii.

FIG. 11. Typical skeleton diagrams for the self-energy in the
DMFT+�k approach. The first two terms are DMFT self-energy
diagrams; the middle two diagrams show contributions to the non-
local part of the self-energy from spin fluctuations �see Sec. III�
represented as dashed lines; the last diagram �b� is an example of
the neglected diagram leading to the interference between the local
and nonlocal parts.

PSEUDOGAPS IN STRONGLY CORRELATED METALS:… PHYSICAL REVIEW B 72, 155105 �2005�

155105-9



Within the two-particle self-consistent approach of Ref. 23,
valid for medium values of U, and neglecting charge fluctua-
tions, we can write down an expression for the electron self-
energy of the form used in Eq. �1�, with

���i�� = Un−� �B1�

as the lowest order local contribution due to the on-site Hub-
bard interaction, surviving in the limit of d→�, and exactly
accounted for in the DMFT �with all higher-order contribu-
tions�. Nonlocal contribution to the self-energy �vanishing
for d→� and not accounted within the DMFT� due to inter-
action with spin-fluctuations then leads to the expression

�k�i�� =
U

4

T

N
�
m

�
q

Usp�sp�q,�m�G0�k + q,i� + i�m� ,

�B2�

where

Usp = g↑↓�0�U, g↑↓�0� =
�ni↑ni↓�

�ni↑��ni↓�
�B3�

with �n�
2�= �n�� and �ni↑�= �ni↓�= 1

2n in the paramagnetic
phase. For the dynamic spin susceptibility �sp�q ,�m� we use
the standard Ornstein–Zernike form,23 similar to that used in
the spin-fermion model,4 which describes the enhanced scat-
tering with momenta transfer close to the antiferromagnetic
vector Q= �� /a ,� /a�. With these approximations, we can
write down the following expression for the nonlocal contri-
bution to the self-energy:4,5

�k�i�� =
1

4
UUsp

T

N�
m

�
q

�sp�q,�m�
1

i� + i�m + � − ��k + q�
�

1

4
UUsp

T

N�
m

�
q

�sp�q,�m��
q

S�q�
1

i� + � − ��k + q�

� �2�
q

S�q�
1

i� + � − ��k + q�
=

�2

i� + � − ��p + Q� + i��vp+Q
x � + �vp+Q

y ��� sign �
. �B4�

Here we have introduced the static form factor �Ref. 5�

S�q� =
2�−1

�qx − Qx�2 + �−2

2�−1

�qy − Qy�2 + �−2 �B5�

and the squared pseudogap amplitude

�2 =
1

4
UUsp

T

N�
m

�
q

�sp�q,�m�

=
1

4
UUsp��ni↑� + �ni↓� − 2�ni↑ni↓�� =

1

4
UUsp

1

3
�S� i

2� ,

�B6�

where we have used the exact sum rule for the
susceptibility.4,23 Taking into account Eq. �B3� we immedi-
ately obtain Eq. �13�.

Actually, the approximations made in Eqs. �B4� and �B5�
allow for an exact summation of the whole Feynman series
for the electron interaction with spin fluctuations, replaced
by the static Gaussian random field. Thus generalizing the
one-loop approximation �B4� eventually leads to the
basic recursion procedure given in Eqs. �9� and �8� and Refs.
4 and 5.

Using the DMFT�QMC� approach we computed occupan-
cies �ni↑�, �ni↓� and double occupancies �ni↑ni↓� required to
calculate the pseudogap amplitude � of Eq. �B6�. In Fig. 12
the corresponding values of � are presented. One can see
that � grows when the filling goes to n=1. While U ap-
proaches 8t �the value of the bandwidth for a square lattice�

� as a function of n grows monotonically. When U becomes
larger than W=8t �when a metal-insulator transition occurs�
one can see a local minimum for n=0.9, which becomes
more pronounced with further increase of U. For t� / t=−0.4
and both temperatures, the scatter of � values is smaller than
for the case of t�=0. Also � has a rather weak temperature
dependence. All values of � lie in the interval �0.75t÷2t.
Therefore, for our computations we took only two character-
istic values of �= t and �=2t.

FIG. 12. �Color online� Filling dependence of the pseudogap
potential � calculated with the DMFT�QMC� for the varying Cou-
lomb interaction �U� and the temperature �T� on a two-dimensional
square lattice with two sets of �t , t��.

SADOVSKII et al. PHYSICAL REVIEW B 72, 155105 �2005�

155105-10



1 T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 �1999�.
2 M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 �2001� �Phys. Usp. 44,

515 �2001��.
3 D. Pines, ArXiv: cond-mat/0404151 �unpublished�.
4 J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80,

3839 �1998�; Phys. Rev. B 60, 667 �1999�.
5 E. Z. Kuchinskii and M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 115,

1765 �1999� �JETP 88, 347 �1999�� �available as ArXiv: cond-
mat/9808321 �unpublished��.

6 W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 �1989�.
7 D. Vollhardt, in Correlated Electron Systems, edited by V. J. Em-

ery �World Scientific, Singapore, 1993�, p. 57.
8 Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187

�1995�.
9 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
10 G. Kotliar and D. Vollhardt, Phys. Today 57�3�, 53 �2004�.
11 Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 �1996�.
12 Th. Maier, M. Jarrell, Th. Pruschke, and M. Hettler, Rev. Mod.

Phys. �in print, ArXiv: cond-mat/0404055 �unpublished��.
13 G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.

Lett. 87, 186401 �2001�; for periodized version �PCDMFT�, see
M. Capone, M. Civelli, S. S. Kancharla, C. Castellani, and G.
Kotliar, Phys. Rev. B 69, 195105 �2004�.

14 C. Gros and R. Valenti, Ann. Phys. 3, 460 �1994�.
15 D. Senechal, D. Perez, and M. Pioro-Ladriee, Phys. Rev. Lett. 84,

522 �2000�; D. Senechal, D. Perez, and D. Plouffe, Phys. Rev. B
66, 075129 �2002�.

16 B. Kyung, S. S. Kancharla, D. Senechal, A.-M. S. Tremblay, M.
Civelli, and G. Kotliar, ArXiv: cond-mat/0502565 �unpub-
lished�.

17 M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.
Kotliar, Phys. Rev. Lett. 95, 106402 �2005�.

18 J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 �1986�; M.
Jarrell, Phys. Rev. Lett. 69, 168 �1992�; M. J. Rozenberg, X. Y.
Zhang, and G. Kotliar, ibid. 69, 1236 �1992�; A. Georges and
W. Krauth, ibid. 69, 1240 �1992�; M. Jarrell, in Numerical
Methods for Lattice Quantum Many-Body Problems, edited by
D. Scalapino �Addison Wesley, 1997�. For a review of QMC for
DMFT see Ref. 19.

19 K. Held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and D.
Vollhardt, Int. J. Mod. Phys. B 15, 2611 �2001�; K. Held, I. A.
Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R.
T. Scalettar, T. Pruschke, V. I. Anisimov, and D. Vollhardt,
ArXiv: cond-mat/0112079 published in Quantum Simulations of
Complex Many-Body Systems: From Theory to Algorithms, ed-
ited by J. Grotendorst, D. Marks, and A. Muramatsu, NIC Series
Volume 10 �NIC Directors, Forschunszentrum Jülich, 2002� pp.
175–209.

20 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�; H. R. Krishna-

murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003
�1980�; 21, 1044 �1980�; for a comprehensive introduction to
NRG, see e.g., A. C. Hewson, in The Kondo Problem to Heavy
Fermions �Cambridge University Press, Cambridge, 1993�.

21 R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys.: Condens.
Matter 10, 8365 �1998�; R. Bulla, Phys. Rev. Lett. 83, 136
�1999�.

22 M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 77, 2070 �1979� �Sov. Phys.
JETP 50, 989 �1979��.

23 Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I 7, 1309 �1997�.
24 O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys.

Rev. B 39, 1708 �1989�.
25 M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211

�1994�.
26 M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke,

and V. I. Anisimov, ArXiv: cond-mat/0502612 �unpublished�.
27 Th. A. Maier, Th. Pruschke, and M. Jarrell, Phys. Rev. B 66,

075102 �2002�.
28 T. D. Stanescu and P. Phillips, Phys. Rev. Lett. 91, 017002

�2003�.
29 A. A. Katanin and A. P. Kampf, Phys. Rev. Lett. 93, 106406

�2004�.
30 D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 �2005�.
31 D. K. Sunko and S. Barisic, Eur. Phys. J. B 46, 269 �2005�.
32 A. Kaminski, H. M. Fretwell, M. R. Norman, M. Randeria, S.

Rosenkranz, U. Chatterjee, J. C. Campuzano, J. Mesot, T. Sato,
T. Takahashi, T. Terashima, M. Takano, K. Kadowaki, Z. Z. Li,
and H. Raffy, Phys. Rev. B 71, 014517 �2005�.

33 D. Senechal and A.-M. S. Tremblay, Phys. Rev. Lett. 92, 126401
�2004�.

34 K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 89,
236402 �2002�; Phys. Rev. B 68, 155119 �2003�.

35 B. Kyung, V. Hankevych, A.-M. Dare, and A.-M. S. Tremblay,
Phys. Rev. Lett. 93, 147004 �2004�.

36 P. Prelovsek and A. Ramsak, Phys. Rev. B 63, 180506�R� �2001�;
P. Prelovsek and A. Ramsak, ibid. 72, 012510 �2005�.

37 S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.
90, 086402 �2003�.

38 P. Sun and G. Kotliar, Phys. Rev. Lett. 92, 196402 �2004�.
39 E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett.

82, 198 �2005��Pis’ma Zh. Eksp. Teor. Fiz. 82, 217 �2005��.
40 Discretization parameter �=2, the number of low energy states

after the truncation 1000, cut off near Fermi energy 10−6, broad-
ening parameter b=0.6.

41 Number warm-up sweeps 30000, the number of QMC sweeps
200 000, the number of imaginary time slices 40.

42 We have checked that with the increase of Coulomb repulsion, the
Van–Hove singularity gradually transforms into quasiparticle
peak for U= �6÷8�t.

PSEUDOGAPS IN STRONGLY CORRELATED METALS:… PHYSICAL REVIEW B 72, 155105 �2005�

155105-11



 

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2006, Vol. 103, No. 3, pp. 415–427. © Pleiades Publishing, Inc., 2006.

 

415

 

1. INTRODUCTION

Pseudogap formation in the electronic spectrum
of underdoped copper oxides is an especially striking
anomaly of the normal state of high-temperature
superconductors [1]. Discussions on the nature of the
pseudogap state continue within two main scenar-
ios—of superconducting fluctuations, leading to
Cooper pair formation above 

 

T

 

c

 

, or of other order-
parameter fluctuations, in fact competing with super-
conductivity.

We believe that the preferable scenario for
pseudogap formation is most likely based on the
model of strong scattering of the charge carriers by
short-range antiferromagnetic (AFM, SDW) spin fluc-
tuations [1]. In the momentum representation, this
scattering transfers momenta of the order of 

 

Q

 

 = (

 

π

 

/

 

a

 

,

 

π

 

/

 

a

 

) (where 

 

a

 

 is the lattice constant of a two-dimen-
sional lattice). This leads to the formation of struc-
tures in the one-particle spectrum that are precursors
of the changes in the spectra due to a long-range AFM
order (period doubling).

Within this spin-fluctuation scenario, a simplified
model of the pseudogap state was studied [1–3]
under the assumption that the scattering by dynamic
spin fluctuations can be reduced for high enough
temperatures to a static Gaussian random field
(quenched disorder) of pseudogap fluctuations.

These fluctuations are defined by a characteristic
scattering vector from the vicinity of 

 

Q

 

, with a width
determined by the inverse correlation length of the
short-range order, 

 

κ

 

 = 

 

ξ

 

–1

 

. Actually, a similar model
(formalism) can also be applied to the case of
pseudogaps of a superconducting nature [3].

These models originated from the earlier one-
dimensional model of pseudogap behavior [4, 5], the
so-called fluctuating gap model (FGM), which is
exactly solvable in the asymptotic limit of large cor-
relation lengths of pseudogap fluctuations, 

 

κ

 

 =

 

ξ

 

−

 

1

 

  0 [4], and nearly exactly solvable in the case
of finite 

 

κ

 

, where we can take all Feynman diagrams
of perturbation series into account, albeit using an
approximate ansatz for higher-order contributions [5].

Non-Fermi-liquid behavior of the FGM model
has already been discussed in one [4, 6–8] and two
dimensions [1–3]. However, some interesting
aspects of this model are still under discussion [9].
Below, we analyze different aspects of this anoma-
lous behavior in both one-and two-dimensional ver-
sions, mainly in the case of AFM (SDW) or CDW
pseudgap fluctuations, and also, more briefly, in the
case of superconducting fluctuations, demonstrating
a kind of marginal Fermi-liquid behavior and the
qualitative picture of Fermi surface destruction and
formation of Fermi arcs in two dimensions, similar
to those observed in ARPES experiments on copper
oxides.
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2. POSSIBLE TYPES OF GREEN FUNCTI
ON RENORMALIZATION

We start with a qualitative discussion of possible
manifestations of NFL behavior. The Green function of
the interacting system of electrons is expressed via the
Dyson equation (in the Matsubara representation, with

 

ε

 

n

 

 = (2

 

n

 

 + 1)

 

π

 

T

 

 and 

 

ξ

 

p

 

 = 

 

v

 

F

 

(

 

p

 

 – 

 

p

 

F

 

)) as

 

1

 

. (1)

In what follows, we use a rather unusual definition of
the renormalization (residue)

 

 Z-

 

factor, introducing it
as [9]:

(2)

or

(3)

We note that 

 

Z

 

(

 

ε

 

n

 

, 

 

ξ

 

p

 

) is in general complex and actually
determines the full renormalization of the free-electron
Green function 

 

G

 

0

 

(

 

ε

 

n

 

, 

 

ξ

 

p

 

) due to interactions. At the
same time, it is in some sense similar to the standard
residue renormalization factor used in the Fermi-liquid
theory.

We consider possible alternatives for the 

 

Z

 

(

 

ε

 

n

 

, 

 

ξ

 

p

 

)
behavior.

 

2.1. Fermi-Liquid Behavior

 

In a normal Fermi liquid, we can perform the usual
expansion (close to the Fermi level and in obvious nota-
tion) assuming the absence of any singularities in

 

Σ

 

(

 

ε

 

n

 

, 

 

ξ

 

p

 

)

(4)

In the absence of the static impurity scattering, 

 

Σ

 

(0, 0)
is real and just renormalizes the chemical potential. We

 

1

 

Despite our use of the Matsubara representation, we treat 

 

ε

 

n

 

 as a
continuous variable below.

G εn ξp,( ) 1
iεn ξp– Σ εn ξp,( )–
---------------------------------------------=

G εn ξp,( ) Z εn ξp,( )G0 εn ξp,( )
Z εn ξp,( )
iεn ξp–

---------------------= =

Z εn ξp,( )
iεn ξp–

iεn ξp– Σ εn ξp,( )–
---------------------------------------------=

=  iεn ξp–( )G εn ξp,( ).

Σ εn ξp,( ) Σ 0 0,( ) iεn
∂Σ εn ξp,( )

∂ iεn( )
-------------------------

0

+≈

+ ξp
∂Σ εn ξp,( )

∂ξp

-------------------------
0

… .+

can then rewrite (1) as

(5)

where we have introduced the usual renormalized resi-
due at the pole,

, (6)

and the spectrum of quasiparticles

(7)

The usual analytic continuation to real frequencies now
yields the standard expressions of the normal Fermi-

liquid theory [10, 11] with real 0 <  < 1, conserving
the quasiparticle pole of the Green function.

In the special case where ξp = 0, i.e., at the Fermi
surface, which is not renormalized by interactions in
accordance with the Landau hypothesis and Luttinger
theorem, we have

, (8)

i.e.,  coincides with the limit of Z(εn  0, ξp = 0)
defined by (2) and (3), and we have the usual pole as
εn  0. Similarly, for εn = 0, we have Z(εn = 0,

ξp  0) ~ .

In general, this behavior is preserved not only in the
case of Σ(εn, ξp) possessing a regular expansion at small

εn and ξp, but also for Σ(εn, ξp) ~ max( , ) with any
α ≥ 1.

2.2. Impure Fermi Liquid

In the case of low concentration of random static
impurities, we have Σ(εn  0, ξp  0)  const,
with ReΣ(0, 0) again giving a shift of the chemical
potential, while ImΣ(0, 0) ~ γ, where γ is the impurity
scattering rate. For the Green function, we have

(9)

G ε( ) 1

iεn 1 ∂Σ
∂ iεn( )
--------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

0

ξp 1 ∂Σ
∂ξp

--------+
⎩ ⎭
⎨ ⎬
⎧ ⎫

0

–

------------------------------------------------------------------------------=

≡ Z̃

iεn ξ̃p–
------------------,

Z̃
1

1 ∂Σ
∂ iεn( )
--------------

0

–
----------------------------, Z̃

1–
1 ∂Σ

∂ iεn( )
--------------

0

–= =

ξ̃p Z̃ 1 ∂Σ
∂ξp

--------+⎝ ⎠
⎛ ⎞

0

ξp.=

Z̃

G εn ξp,( ) Z̃
iεn

------=

Z̃

Z̃

εn
α ξp

α

G εn ξp,( ) Z̃

iεn ξ̃p– iγ
εn

εn

-------+
-------------------------------------=
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and hence the renormalization factor defined by (3) is
given by

(10)

For ξp = 0, we have

(11)

and for |εn | � |ξp |,

(12)

i.e., impurity scattering leads to a Z-factor vanishing at
the Fermi surface, just removing the usual Fermi-liquid
pole singularity and producing a finite discontinuity of
the Green function at εn = 0. This behavior is due to the
loss of translational invariance of the Fermi liquid the-
ory (momentum conservation) because of impurities. In
fact, Green function (9) is obtained after averaging over
the impurity position, which formally restores transla-
tional invariance, leading to a kind of (trivial) non-
Fermi-liquid (NFL) behavior. We note that this behav-
ior is observed for |εn |, |ξp | � γ, while in the opposite

limit we obviously have a finite Z(ε, ξp) ~ .

2.3. Superconductors and Peierls 
and Excitonic Insulators

We now consider the case of an s-wave supercon-
ductor. The normal Gorkov Green function is given by

, (13)

where ∆ is the superconducting gap. The normal Green
function also takes this form in an excitonic or Peierls
insulator, where ∆ denotes the appropriate insulating
gap in the spectrum [11]. Then

(14)

Z εn ξp,( ) Z̃
iεn ξp–

iεn ξ̃p– iγ
εn

εn

-------+
-------------------------------------.=

Z εn ξp, 0=( ) Z̃
iεn

iεn iγ
εn

εn

-------+
--------------------------=

∼
εn

γ
------- 0 as εn 0

Z εn 0 ξp,( ) Z̃
ξp

ξp iγ
εn

εn

-------–
------------------------=

∼
ξp

γ
----- εnsgn 0 as ξp 0,

Z̃

G εn ξp,( )
iεn ξp+

iεn( )2 ξp
2– ∆ 2–

---------------------------------------=

Z εn ξp,( )
iεn( )2 ξp( )2–

iεn( )2 ξp
2– ∆ 2–

---------------------------------------=

∼
max εn

2 ξp
2,( )

∆ 2
---------------------------- 0 for εn ξp 0;,

i.e., we have NFL behavior with the pole of the Green
function at the Fermi surface replaced by a zero, due to
the Fermi surface being closed by the superconducting
(or insulating) gap.

Again, Fermi-liquid-type behavior with a finite
Z-factor is restored for |εn |, |ξp | � |∆|.

But the complete description of the superconducting
(excitonic, Peierls) phase is achieved only after the
introduction of the anomalous Gorkov function. The
excitation spectrum on both sides of the phase transi-
tion is determined by different Green functions with
different topological properties [9].

2.4. Non-Fermi-Liquid Behavior Due to Interactions

Non-Fermi-liquid behavior of the Green function
due to interactions may also occur in the case of the sin-
gular behavior Σ(εn, ξp)  ∞ as εn  0 and
ξp  0, e.g., a power-like divergence2 of Σ(εn, ξp) ~

max( , ) with α > 0. Obviously, Z(εn  0,
ξp  0)  0 in this case and we again have a zero
of the Green function at the Fermi surface.

Another possibility is a singular behavior of deriva-
tives of self-energy in (4), e.g., in the case where

Σ(εn, ξp) ~ max( , ) with 0 < α < 1, leading to the
pole singularity of the Green function at the Fermi sur-
face being weaker than usual.

Both types of behavior are realized within the
Tomonaga–Luttinger model in one dimension [12],
where the asymptotic behavior of G(iεn, ξp) in the
region of small ξp ~ εn can be expressed as

(15)

with α' < 1/2. For α' > 1/2,

. (16)

For 3/2 > α' > 1,

(17)

etc., with the value of α' determined by the interaction
strength.

A special case is given by the so-called marginal
Fermi-liquid behavior assumed [13] for the interpreta-
tion of the electronic properties of CuO2 planes of cop-
per oxides. It is given by

(18)

2 An additional logarithmic divergence can also be present here!

εn
α– ξp

α–

εn
α ξp

α

G εn ξp∼( ) 1

εn
1 2α '–

--------------∼

G εn ξp∼( ) A Bεn
2α ' 1–+∼

G εn ξp∼( ) A Bεn Cεn
2α ' 1– ,+ +∼

Σ εn ξp,( ) λiεn

max εn ξp,( )
ωc

----------------------------,ln∼
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where λ is some dimensionless interaction constant and
ωc is a characteristic cutoff frequency. If we formally
use (6) at finite εn, we obtain

(19)

In this case, the residue at the pole of the Green func-
tion (Z-factor)3 tends to zero at the Fermi surface itself,
and, again, quasiparticles are simply not defined there
at all! However, everywhere outside a narrow (logarith-
mic) region close to the Fermi surface, we have a more
or less usual quasiparticle contribution: quasiparticles
(close to the Fermi surface) are just marginally defined.
At present, there are no generally accepted microscopic
models of the marginal Fermi-liquid behavior in two
dimensions.

3. FLUCTUATING GAP MODEL

The physical nature of the FGM was extensively
discussed in the literature [1–8, 11]. The model based
on the picture of an electron propagating in the (static!)
Gaussian random field of (pseudogap) fluctuations,
leading to scattering with the characteristic momentum
transfer from a close vicinity of some fixed scattering
vector Q. These fluctuations are described by two basic
parameters: the amplitude ∆ and the correlation length
(of short-range order) ξ–1, determining the effective
width κ = ξ–1 of the scattering vector distribution.

In one dimension, the typical choice of the scatter-
ing vector is Q = 2pF (the fluctuation region of the
Peierls transition) [4, 5], while in two dimensions, we
usually mean the so-called hot spot model with Q =
(π/a, π/a) [2, 3]. These models assume the dielectric
(CDW, SDW) nature of pseudogap fluctuations, but
essentially the same formalism can be used in the case
of superconducting fluctuations [3].

The case of superconducting (s-wave) pseudogap
fluctuations in higher dimensions is actually described by
the same one-dimensional version of the FGM [3, 4, 9].

An attractive property of the models under discus-
sion is the possibility of an exact solution achieved by
the complete summation of the whole Feynman dia-
gram series in the asymptotic limit of large correlation
lengths ξ  ∞ [4, 6]. In the case of finite correlation
lengths, we can also perform summation of all Feyn-
man diagrams for the single-electron Green function,

3 We note that (19), strictly speaking, cannot give a correct defini-
tion of the residue, because standard expression (6) is defined
only at the Fermi surface itself, where (19) simply does not exist.
In what follows, we therefore prefer the rather unusual definition
in (2).

Z̃ εn ξp,( ) 1

1 λ
max εn ξp,( )

ωc

----------------------------ln–
-----------------------------------------------.∼

using an approximate ansatz for higher-order contribu-
tions in both one [5] and two dimensions [2, 3]. Similar
methods of diagram summation can also be applied in
calculations of the two-particle Green functions (vertex
parts) [2–4, 7, 11, 14].

Our aim is to demonstrate that nearly all aspects of
the NFL behavior discussed above can be nicely
described within different variants of the FGM.

3.1. One Dimension

We limit ourselves here only to the case of incom-
mensurate pseudogap (CDW) fluctuations [4, 5]. The
commensurate case [6, 5] can be analyzed similarly. We
note that the same expressions also apply in the case of
superconducting (s-wave) fluctuations in all dimen-
sions.

In the limit of the infinite correlation length of
pseudogap fluctuations, we have the exact solution for
a single-electron Green function [4, 11] given by

(20)

where Ei(–x) denotes the integral exponential function
and we use the asymptotic behavior Ei(–x) ~ ln(γ'x) as
x  0 (lnγ' = 0.577 is the Euler constant). Then, using
(3), we immediately obtain

(21)

Precisely the same result is obtained if, for finite εn and
ξp, we define

(22)

similarly to (6). We note that because |εn | � ∆ and
|ξp | � ∆, we obviously have Z > 0, but the usual pole of
the Green function at the Fermi surface (point) of the
normal system is here transformed into a zero due to
pseudogap fluctuations. Because of the topological sta-
bility [9], the singularity of the Green function at the
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Fermi surface is not destroyed: the zero is also a singu-
larity (with the same topological charge) as the pole.
But the FGM actually gives an explicit example of a
kind of Luttinger or marginal Fermi liquid with a very
strong renormalization of the singularity at the Fermi
surface.

We consider the self-energy corresponding to Green
functions (20):

(23)

Σ εn ξp,( ) iεn ξp–=

– ζe ζ– iεn ξp+

iεn( )2 ξp
2– ζ∆2–

----------------------------------------d

0

∞

∫
1–

.

Taking ξp = 0 for simplicity and εn  0, we obtain

(24)

i.e., divergence of the type discussed above.
In the case of finite correlation lengths ξ = κ–1 of

pseudogap fluctuations, we use the continuous-fraction rep-
resentation of the single-electron Green function derived
in [5] to obtain the renormalization factor as (εn > 0)

Σ εn 0 ξp, 0=( ) 1
iεn

------ ζe ζ– 1

εn
2 ζ∆2+

--------------------d
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∞

∫
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=

≈ ∆2

iεn
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⎝ ⎠
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ln

--------------------- ∞,–

, (25)Z εn ξp,( )
iεn ξp–

iεn ξp– ∆2

iεn ξp iv Fκ ∆2

iεn ξp– 2iv Fκ 2∆2

iεn ξp 3iv Fκ …–+ +
----------------------------------------------------–+

--------------------------------------------------------------------------------------------------–+ +

----------------------------------------------------------------------------------------------------------------------------------------------–

----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

which can be studied numerically.

In Fig. 1, we show typical dependences of the renor-
malization factor Z(εn, ξp). In all cases, it tends to zero
at the (bare) Fermi surface and the pole of the Green
function disappears. Essentially, this strong renormal-
ization starts on the scale of the pseudogap width; i.e.,
for |εn | < ∆ and |ξp | < ∆, reflecting a non-Fermi-liquid
behavior due to pseudogap fluctuations.

However, the role of finite correlation lengths ξ
(finite κ) is qualitatively similar to static impurity scat-
tering,4 and a more detailed calculation shows that the
Z-factor behaves at small �n � vFκ and |ξp | � vFκ (with
εn > 0) as

(26)

with α(vFκ/∆)  0 as κ  0, as seen from Fig. 2.
In terms of the Green function, this behavior corre-
sponds to

(27)

4 This is due to our approximation of the static nature of pseudogap
fluctuations.

Z �n ξp,( ) α
v Fκ

∆
----------⎝ ⎠

⎛ ⎞ �n iξp+
∆

------------------⎝ ⎠
⎛ ⎞ 0≈

as εn 0, ξp 0,

G εn ξp,( ) 1
∆
---α

v Fκ
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----------⎝ ⎠
⎛ ⎞ εn iξp+

iεn ξp–
------------------≈

=  i
1
∆
---α

v Fκ
∆

----------⎝ ⎠
⎛ ⎞ .–

Therefore, for finite κ, the Green function has no zero
at �n = 0 and ξp = 0 and remains finite as in an impure
system.

The vanishing of the renormalization factor Z(εn, ξp)
at the bare Fermi surface is in correspondence with the
general topological stability arguments [9]: in the
absence of static impurity-like scattering, the pole sin-
gularity of the Green function is replaced by a zero. In
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Fig. 1. Typical dependences of the Z(εn, ξp) factor in the
one-dimensional FGM with finite correlation lengths:
dependences of Z(εn = 0, ξp) and Z(εn, ξp = 0) on εn and ξp
for vFκ/∆ = 0.1. Inset: Dependences of ReZ(εn = 0, ξp) on
ξp for different values of κ (in units of ∆/vF). Both εn and
ξp are given in units of ∆.
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the presence of this additional scattering, this zero is
replaced by a finite discontinuity, and the singularity
therefore persists.

3.2. Hot Spot Model in Two Dimensions

In two dimensions, we introduce the so-called hot
spot model. We consider a typical Fermi surface of
electrons moving in the CuO2 plane of copper oxides as
shown in Fig. 3. If we neglect fine details, the observed
(e.g., in ARPES experiments) Fermi surface (and also
the spectrum of elementary excitations) in the CuO2

plane is in the first approximation described by the
usual tight-binding model,

(28)

where t is the nearest-neighbor transfer integral, t' is the
transfer integral between second-nearest neighbors,
and a is the square lattice constant.

Phase transition to the antiferromagnetic state
induces lattice period doubling and leads to the appear-
ance of an antiferromagnetic Brillouin zone in inverse
space, as is also shown in Fig. 3. If the spectrum of car-
riers is given by (28) with t' = 0 and we consider the
half-filled case, the Fermi surface becomes just a square
coinciding with the borders of the antiferromagnetic
zone and we have a complete nesting: flat parts of the
Fermi surface match each other after the translation by
the vector of antiferromagnetic ordering Q = (±π/a,
±π/a). In this case and for T = 0, the electron spectrum
is unstable, the energy gap appears everywhere on the
Fermi surface, and the system becomes an insulator due
to the formation of an antiferromagnetic spin density
wave (SDW).5 In the case of the Fermi surface shown
in Fig. 3, the appearance of the antiferromagnetic long-
range order, in accordance with the general rules of
band theory, leads to the appearance of discontinuities
of isoenergetic surfaces (e.g., the Fermi surface) at
crossing points with boundaries of a new (magnetic)
Brillouin zone due to a gap opening at points connected
by the vector Q.

In the most part of the underdoped region of the
cuprate phase diagram, the antiferromagnetic long-
range order is absent, but a number of experiments sup-
port the existence of well-developed fluctuations of the
antiferromagnetic short-range order that scatter elec-
trons with the characteristic momentum transfer of the
order of Q. Similar effects may appear due to CDW
fluctuations. These pseudogap fluctuations are again
considered to be static and Gaussian, and characterized
by two parameters: the amplitude ∆ and correlation
length ξ = κ–1 [1]. In this case, we can obtain a rather
complete solution for the single-electron Green func-
tion via summation of all Feynman diagrams of the per-
turbation series describing scattering by these fluctua-
tions [1–3]. This solution is again exact in the limit as
ξ  ∞ [2] and apparently very close to the exact solu-
tion in case of finite ξ [15]. Generalizations of this
approach to two-particle properties (vertex parts) are
also quite feasible.

We start again with an exact solution for ξ  ∞ (or
κ = 0) [2]. We first introduce the (normal) Green func-

5 Analogous dielectrization is also realized in the case of the for-
mation of the similar charge density wave (CDW).
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Fig. 2. Dependence of α(vFκ/∆) on the inverse correlation
length.
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Γ

Fig. 3. Fermi surface in the Brillouin zone and the hot spot
model. The magnetic zone appears, e.g., in the presence of
antiferromagnetic long-range order. Hot spots correspond
to intersections of the magnetic zone borders with the Fermi
surface and are connected by a scattering vector on the order
of Q = (π/a, π/a).
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tion for the SDW (CDW) state with long-range order
(see, e.g., [11]):

(29)

where W denotes the amplitude of the SDW (CDW)
periodic potential and ξp = ε(p) – µ. Then we can write
the appropriate Z factor as

(30)

where we set ξp = ξ1 and ξp – Q = ξ2 for brevity. In what
follows, we are mainly interested in the limit as εn 
0 and ξ1  0, i.e., in the vicinity of the bare Fermi sur-
face. We note that ξ2 = 0 defines the so-called shadow
Fermi surface. We have ξ1 = ξ2 = 0 precisely at the hot
spots. It is convenient to introduce the complex variable

(31)

which becomes small as εn, ξ1, ξ2  0.

3.2.1. Incommensurate combinatorics. In the case
of incommensurate (CDW) pseudogap fluctuations, an
exact solution for the Green function of the FGM in the
limit as ξ  ∞ takes a form similar to (20) [1, 2], and
we obtain (averaging (30) with the Rayleigh distribu-
tion for W)

(32)

Then, as z  0 we obtain

(33)

At the bare Fermi surface, we have ξ1 = 0, and we limit
ourselves to εn > 0 in what follows. From (33), we can
then easily find the limit behavior of Z(z). Some of the
results are as follows.

(1) For εn � |ξ2|, we have

(34)

i.e., the impure-like linear behavior in εn.
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(2) For εn � |ξ2| (i.e., also at the hot spot, where
ξ2 = 0), we have

(35)

i.e., for ξ2 = 0, NFL behavior similar to the one-dimen-
sional case.

We note that we always have ImZ = 0 at ξ2 = 0, i.e.,
at the shadow Fermi surface and in particular at the hot
spot itself.

3.2.2. Spin-fermion combinatorics. We now con-
sider the spin-fermion (Heisenberg) model for
pseudogap (SDW) fluctuations [2]. In this case, we
again obtain the FGM, but with the gap distribution dif-
ferent from the Rayleigh distribution; instead of (32),
we have

(36)

Hence, as z  0, we obtain
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On the bare Fermi surface (ξp = 0), we then have

(38)

In particular, for ξ2 = 0, we have ImZ = 0 and

(39)

and we thus obtain the quadratic NFL behavior of the Z
factor. We again present some results on the limit
behavior.

(1) For εn � |ξ2|, we have

(40)

i.e., the NFL zero behavior.
(2) For εn � |ξ2| (i.e., also at the hot spot, where

ξ2 = 0) we have

(41)

which is again the NFL zero behavior.
In the general case of finite correlation lengths ξ =

κ–1, we have to perform numerical analysis using the
recursive relations proposed in [2, 3]. We again use the
basic definition of the Z factor in (3). To calculate the
self-energy Σ(εn, ξp) of an electron moving in the
quenched random field of (static) Gaussian spin fluctu-
ations with dominant scattering momentum transfers
from the vicinity of the characteristic vector Q, we use
the recursive procedure [2, 3], in which all Feynman
diagrams describing the scattering of electrons by this
random field are taken into account. The sought self-
energy is given by

(42)
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with ξp = �(p) – µ (cf. (28)) and

(43)

The quantity ∆ again characterizes the energy scale of
pseudogap fluctuations, and κ = ξ–1 is the inverse corre-
lation length of short-range SDW fluctuations, �k(p) =

�(p + Q) and vk =  +  for odd k, while

εk(p) = ε(p) and vk =  +  for even k. The veloc-

ity projections  and  are determined by the usual
momentum derivatives of the bare electron energy dis-
persion �(p) given by (28). Finally, s(k) is a combinato-
rial factor, with

s(k) = k (44)

for commensurate charge (CDW type) fluctuations with
Q = (π/a, π/a) [5]. For incommensurate CDW fluctua-
tions [5], we find

(45)

For the spin-fermion model in [2], the combinatorics of
diagrams becomes more complicated. Spin-conserving
scattering processes obey commensurate combinato-
rics, while spin-flip scattering is described by diagrams
of the incommensurate type (charged random field in
terms of [2]). In this model, the recursive relation for
the single-particle Green function is again given
by (43), but the combinatorial factor s(n) acquires the
form [2]

(46)

Below, we only present our results for the spin-fermion
combinatorics, because in other cases, we obtain more
or less similar behavior of the renormalization factors.

In Fig. 4, we show the results of numerical calcula-
tion of ReZ(εn, ξp = 0) at different points taken at the
bare Fermi surface, shown in the inset. For comparison,
we show the data obtained in the limit of the infinite
correlation length ξ  ∞ (or κ = 0, which is an
exactly solvable case) and for finite κa = 0.01 (i.e., ξ =
100a). It is clearly seen that in both cases, ReZ ~ 1 at
the nodal point D, except at very small values of εn,
while in the vicinity of the hot spot (points A and C) and

Σk εn ξp,( )

=  ∆2 s k( )
iεn µ �k p( )– inv kκ Σk 1+ εn ξp,( )–+ +
--------------------------------------------------------------------------------------------.

v p Q+
x

v p Q+
y

v p
x

v p
y

v p
x

v p
y

s k( )

k 1+
2

------------ for odd k

k
2
--- for even k.⎩

⎪
⎨
⎪
⎧

=

s k( )

k 2+
3

------------ for odd k

k
3
--- for even k.⎩

⎪
⎨
⎪
⎧

=



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 103      No. 3      2006

NON-FERMI-LIQUID BEHAVIOR IN THE FLUCTUATING GAP MODEL 423

also at the hot spot itself (point B), ReZ becomes small
in a rather wide interval of εn < ∆. This corresponds to
an approximately Fermi-liquid behavior in the nodal
region (the vicinity of the Brillouin zone diagonal),
with a kind of marginal Fermi-liquid or Luttinger-liq-
uid (NFL) behavior as we move to the vicinity of the
hot spot.

For completeness, in Fig. 5, we show a similar com-
parison of the dependences of ImZ on εn at the same
characteristic points on the Fermi surface and for the
same parameters as in Fig. 4. It is only important to
stress once again that we have ImZ = 0 only at the hot
spot itself (point B), and therefore Z becomes real and
shows a dependence on εn more or less equivalent to
that proposed for marginal Fermi liquids (or Luttinger
liquids).

In all cases, we observe the vanishing of the renor-
malization factor Z(εn, ξp) at the bare Fermi surface. In
the absence of static impurity-like scattering due to
finite values of the correlation length ξ = κ–1, the pole
singularity of the Green function is replaced by a zero,
reflecting the topological stability of the bare Fermi
surface (the Luttinger theorem) [9]. In the presence of
this scattering, the singularity of the Green function at
the topologically stable bare Fermi surface remains in
the form of a finite discontinuity.

3.3. Spectral Density and Fermi Surface Destruction
in the Hot Spot Model

We return to (29) and perform the usual analytic
continuation to real frequencies, iεn  ε + iδ. We
then obtain

(47)

and therefore the spectral density in the case of a long-
range (CDW, SDW) order is given by

(48)

Accordingly, for the FGM with the correlation length
ξ  ∞, we have

(49)
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where �W is the distribution function of gap fluctua-
tions, depending on the combinatorics of diagrams and
leading to the following separate cases, already consid-
ered (or mentioned) above.

3.3.1. Incommensurate combinatorics. In the case
of incommensurate CDW-like pseudogap fluctuations,
we have
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Fig. 5. Dependence of ImZ on εn (in units of the transfer
integral t) at different points of the Fermi surface (corre-
sponding to t ' = –0.4t and µ = –1.3t) in the hot spot model
with the finite correlation length ξ–1a = κa = 0.01 (the spin-
fermion combinatorics of diagrams). The pseudogap ampli-
tude is ∆ = 0.1t. Inset: the bare Fermi surface and the points
where the calculations were performed.
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which is the Rayleigh distribution [4, 11]. From (49),
we then obtain

(51)

For ε = 0, we have

(52)

For ξ1  ±0, we obtain

(53)

and therefore A(ε = 0, ξp) is nonzero within the Bril-
louin zone only in the space between the bare Fermi
surface and the shadow Fermi surface. This qualitative
result is confirmed below, for all other combinatorics,
in the case of the pure FGM with ξ–1 = κ = 0.

3.3.2. Commensurate combinatorics. In the case
of commensurate CDW-like pseudogap fluctuations,
we have [6]

(54)

which is the Gaussian distribution. From (49), we then
obtain

(55)

with the same qualitative conclusions as in the incom-
mensurate case.

3.3.3. Spin-fermion combinatorics. In the case of
SDW-like pseudogap fluctuations of the (Heisenberg)
spin-fermion model [2], we have the gap distribution

(56)
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From (49), we then obtain

(57)

again with the same qualitative conclusions as in the
incommensurate case.

In the general case of finite correlation lengths ξ =
κ–1, spectral densities can be directly computed using
analytic continuation of recursive relations (42) and
(43) to real frequencies [2, 3].

Actually, two-dimensional contour plots of A(ε = 0,
ξp) (which directly correspond to ARPES intensity
plots) can be used for a practical definition of the renor-
malized Fermi surface and provide a qualitative picture
of its evolution in the FGM with changed model param-
eters.6

In Fig. 6, we show typical intensity plots of the spec-
tral density A(ε = 0, ξp) in the Brillouin zone for the hot
spot model both in the case of the infinite correlation
length ξ–1 = κ = 0 and for a finite (large!) correlation
length ξ–1a = κa = 0.01 (for the spin-fermion combina-
torics of diagrams; in other cases, the behavior is quite
similar) and for different values of the pseudogap
amplitude ∆. We see that these spectral density plots
give a rather beautiful qualitative picture of the destruc-
tion of the Fermi surface in the vicinity of hot spots for
small values of A, with formation of typical Fermi arcs
as A increases, which qualitatively resembles typical
ARPES data for copper oxides [16, 17].

3.4. Superconducting d-Wave Fluctuations

As noted above, the case of superconducting s-wave
pseudogap fluctuations simply reduces to the one-
dimensional FGM. Much more interesting is the case of
superconducting d-wave fluctuations in two dimen-
sions.

To obtain exact results in the case of the infinite cor-
relation length ξ–1 = κ = 0, we have only to make simple
replacements in the above expressions for the hot spot
model with incommensurate combinatorics: ξ2  –ξ1 =

6 We note that for free electrons, A(ε = 0, ξp) = δ(ξp), and therefore
the appropriate intensity plot directly reproduces the bare Fermi
surface.
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–ξp and ∆  ∆p, where ∆p defines the amplitude of
fluctuations with the d-wave symmetry:

(58)

where ∆ now characterizes the energy scale of
pseudogap fluctuations.

Equation (31) then reduces to z = –(  + ) and we
immediately obtain an expression for the Z factor, sim-
ilar to (21):
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again replacing the pole singularity by a zero at the bare
Fermi surface, except for the nodal point at the diagonal
of the Brillouin zone, where ∆p = 0 (cf. (58)). Instead
of (51), we obtain the spectral density as

(60)

which is nonzero only for |ξp | < ε. As a result, at ε = 0,
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Fig. 6. Intensity plots of the spectral density A(ε = 0, ξp) in the Brillouin zone for the hot spots model (t ' = –0.4t and µ = –1.3t) in

the case of infinite correlation length ξ–1 = κ = 0 and for a finite correlation length of ξ–1a = κa = 0.01 (the spin-fermion combina-
torics of diagrams) with different values of the pseudogap amplitude. The bare Fermi surface is shown by the dashed line.
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diagonal with the bare Fermi surface, where ∆p given
by (58) is zero. At the Fermi surface itself, we have

(61)

with two maxima at ε = ±∆p/ .

Considering the general case of finite correlation
lengths ξ = κ–1, we again perform numerical analysis
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⎜ ⎟
⎛ ⎞

,exp=

2

based on the recursive relations introduced for this
problem in [3], using the basic definition of the Z factor
in (3). To calculate the self-energy Σ(εn, ξp) of an elec-
tron scattered by static fluctuations of the supercon-
ducting order parameter with the d-wave symmetry, we
use the following relation (similar to (43)) slightly gen-
eralizing relations derived in [3]:

(62)

where s(k) is defined in (45).
In Fig. 7, we show the results for ReZ(εn, ξp = 0),

again taken at different points of the bare Fermi surface,
shown in the inset. The correlation length is ξ = 100a
(κa = 0.01) and ∆ = 0.1t. It is clearly seen that ReZ = 1
precisely at the nodal point D (where ∆p = 0), but at
other points on the bare Fermi surface, ReZ is strongly
renormalized in a rather wide intervals of εn < |∆p |,
tending to zero as εn  0. Thus we again obtain a kind
of marginal Fermi liquid or Luttinger liquid (NFL), but
qualitatively different from the case of hot spot model.

In Fig. 8, we also show typical intensity plots of the
spectral density A(ε = 0, ξp) in the Brillouin zone in the
case of superconducting (d-wave) pseudogap fluctua-
tions with the correlation length ξ–1a = κa = 0.1 and two
different values of ∆. We see that these spectral density
plots give a totally different picture of the destruction of
the Fermi surface than the one given by the hot spot
model, which also, in our opinion, differs significantly
from most results of the ARPES measurements on cop-
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=  
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2s k( )
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Fig. 8. Intensity plots of the spectral density A(ε = 0, ξp) in the Brillouin zone (t ' = –0.4t and µ = –1.3t) in the case of superconducting

(d-wave) pseudogap fluctuations. The correlation length is ξ–1a = κa = 0.1 (with the spin-fermion combinatorics of diagrams) for
two different values of the pseudogap amplitude ∆ = 0.3t and ∆ = t. 
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per oxides. The Fermi surface is sharply defined only at
one point (at the diagonal of the Brillouin zone), where
∆p given by (58) is precisely zero, and there are no
sharply defined Fermi arcs formed close to this point.
We observe only some more or less wide “dragonfly
wings” formed around this point. We also note the
absence of any signs of the shadow Fermi surface.

4. CONCLUSIONS

We analyzed the rather unusual (NFL) behavior of
the fluctuating gap model of pseudogap behavior in
both one and two dimensions. We studied the quasipar-
ticle renormalization (Z factor) of the single-electron
Green function, demonstrating a kind of marginal
Fermi-liquid or Luttinger-liquid behavior (i.e., the
absence of well-defined quasiparticles close to the
Fermi surface) and also the topological stability of the
bare Fermi surface (the Luttinger theorem). This
reflects strong renormalization effects leading to the
replacement of the usual pole singularity of the Green
function in a Fermi liquid by a zero, thus effectively
replacing the Fermi surface of poles by the Luttinger
surface of zeroes [20]. In the presence of static impu-
rity-like scattering due to the effects of finite correlation
lengths of pseudogap fluctuations, this singularity is
replaced by a finite discontinuity.

In the two-dimensional case, we discussed the effec-
tive picture of destruction of the Fermi surface both in
the hot spot model of dielectric (AFM, CDW)
pseudogap fluctuations and in the qualitatively different
case of superconducting d-wave fluctuations, reflecting
the NFL spectral density behavior and similar to that
observed in ARPES experiments on copper oxides.

Intensity plots obtained in the case of AFM (CDW)
fluctuations, in our opinion, are more similar to the
ARPES intensity data obtained in experiments on cop-
per oxides. We note that this effective picture was also
directly generalized to the case of strongly correlated
metals or doped Mott insulators [18] using the so-called
DMFT + Σk approach in [19].
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Pseudogaps in strongly correlated metals: Optical conductivity within the generalized
dynamical mean-field theory approach
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The optical conductivity of the weakly doped two-dimensional repulsive Hubbard model on the square
lattice with the nearest and next-nearest hoppings is calculated within the generalized dynamical mean-field
�DMFT+�p� approach, which includes correlation length scale � into the standard DMFT equations via the
momentum dependent self-energy �p, with a full account of appropriate vertex corrections. This approach
takes into consideration the nonlocal dynamical correlations induced, e.g., by short-ranged collective spin-
density-wavelike antiferromagnetic spin fluctuations, which �at high enough temperatures� can be viewed as a
quenched Gaussian random field with finite correlation length �. The DMFT effective single-impurity problem
is solved by numerical renormalization group. We consider both the case of correlated metal with the band-
width W�U and that of doped Mott insulator with U�W �U—the value of local Hubbard interaction�. The
optical conductivity calculated within DMFT+�p demonstrates typical pseudogap behavior within the quasi-
particle band, in qualitative agreement with experiments in copper oxide superconductors. For large values of
U, pseudogap anomalies are effectively suppressed.

DOI: 10.1103/PhysRevB.75.115102 PACS number�s�: 71.10.Fd, 71.10.Hf, 71.27.�a, 71.30.�h

I. INTRODUCTION

Pseudogap state is a major anomaly of the electronic
properties of underdoped copper oxides1,2. We believe that
the preferable “scenario” for its formation is most likely
based on the model of strong scattering of electrons by short-
ranged antiferromagnetic �AFM�, spin-density-wave �SDW�
spin fluctuations.2 This scattering mainly transfers momenta
of the order of Q= � �

a , �
a

� �a—the lattice constant of a two-
dimensional lattice�, leading to the formation of structures in
the one-particle spectrum, which are precursors of the
changes in the spectra due to long-range AFM order �period
doubling� with non-Fermi-liquid-like behavior of the spectral
density in the vicinity of the so-called hot spots on the Fermi
surface, appearing at the intersections of the Fermi surface
with antiferromagnetic Brillouin-zone boundary �umklapp
surface�.2

In recent years, a simplified model of the pseudogap state
was studied2–4 under the assumption that the scattering by
dynamic spin fluctuations can be reduced for high enough
temperatures to a static Gaussian random field �quenched
disorder� of pseudogap fluctuations. These fluctuations are
defined by characteristic scattering vectors of the order of Q,
with distribution width determined by the inverse correlation
length of short-range order �=�−1 and by appropriate energy
scale � �typically of the order of the crossover temperature
T* to the pseudogap state2�.

It is also well known that undoped cuprates are antiferro-
magnetic Mott insulators with U�W �U—the value of the
local Hubbard interaction, W—the bandwidth of noninteract-
ing band�, so that correlation effects are very important and
underdoped �and probably also optimally doped� cuprates are
actually typical strongly correlated metals.

The cornerstone of the modern theory of strongly corre-
lated systems is the dynamical mean-field theory �DMFT�.5–9

At the same time, standard DMFT is not appropriate for the
“antiferromagnetic” scenario of pseudogap formation in

strongly correlated metals due to the basic approximation of
the DMFT, which completely neglects nonlocal dynamical
correlation effects.

Different extensions of DMFT were proposed in recent
years to cure this deficiency, such as extended DMFT
�EDMFT�,10,11 which locally includes coupling to nonlocal
dynamical fluctuations, and, most importantly, different ver-
sions of the so-called cluster mean-field theories, such as the
dynamical cluster approximation12 and cellular DMFT.13

However, these approaches have certain drawbacks. First of
all, the effective quantum single impurity problem becomes
rather complex. Thus, majority of computational tools avail-
able for the DMFT can be used only for small enough
clusters,12 which include mostly nearest-neighbor fluctua-
tions. It is especially difficult to apply these methods to the
calculations of two-particle properties, e.g., optical conduc-
tivity.

Recently, we have proposed a generalized DMFT+�p
approach.14–16 This approach, on the one hand, retains the
single-impurity description of the DMFT, which properly ac-
counts for local correlations, and the possibility to use impu-
rity solvers such as numerical renormalization group
�NRG�.25,26 On the other hand, this approach includes non-
local correlations on a nonperturbative model basis, which
allows us to control the characteristic scales and also the
types of nonlocal fluctuations. This latter point allows us to
systematically study the influence of nonlocal fluctuations on
the electronic properties and, in particular, provides valuable
hints on the physical origin and possible interpretation of the
results. Within this approach, we have studied single-particle
properties, such as pseudogap formation in the density of
states of the quasiparticle band for both correlated metal and
doped Mott insulator, evolution of the non-Fermi-liquid-like
spectral density and angle-resolved photoemission spectra,15

“destruction” of Fermi surfaces and formation of Fermi
“arcs,”14 as well as impurity scattering effects.16 This formal-
ism was also combined with modern local-density approxi-
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mation �LDA�+DMFT calculations of the electronic struc-
ture of “realistic” correlated systems to formulate the LDA
+DMFT+�p approach, which was applied for the descrip-
tion of pseudogap behavior in Bi2Ca2SrCu2O8.17

In this paper, we develop our DMFT+�p approach for the
calculations of two-particle properties, such as �dynamic� op-
tical conductivity, which is conveniently calculated within
the standard DMFT.7,8 We show that inclusion of nonlocal
correlations �pseudogap fluctuations� with characteristic
length scale � allows us to describe the pseudogap effects in
longitudinal conductivity of the two-dimensional Hubbard
plane.

The paper is organized as follows. In Sec. II we present a
short description of our DMFT+�p approach. In Sec. III we
derive the basic DMFT+�p expressions for dynamic �opti-
cal� conductivity, as well as formulate recurrence equations
to calculate the p-dependent self-energy and appropriate ver-
tex part, which take into account all the relevant Feynaman
digrams of perturnbation series over pseudogap fluctuations.
The computational details and basic results for optical con-
ductivity are given in Sec. IV. We also compare our results
with that of the standard DMFT. The paper ends with a sum-
mary, Sec. V, including a short overview of related experi-
mental results.

II. BASICS OF THE DMFT+�p APPROACH

As noted above, the basic shortcoming of the traditional
DMFT approach5–9 is the neglect of momentum dependence
of the electron self-energy. To include nonlocal effects while
remaining within the usual “single-impurity analogy,” we
have proposed14–16 the following �DMFT+�p� approach.
First of all, the Matsubara “time” Fourier-transformed single-
particle Green’s function of the Hubbard model is written in
obvious notations as

G�i�,p� =
1

i� + � − ��p� − ��i�� − �p�i��
,

� = �T�2n + 1� , �1�

where ��i�� is the local contribution to the self-energy of
DMFT type �surviving in the limit of spatial dimensionality
d→�� while �p�i�� is some momentum dependent part. This
last contribution can be due either to electron interactions
with some “additional” collective modes or to order param-
eter fluctuations or may be induced by similar nonlocal con-
tributions within the Hubbard model itself. No double-
counting problem arises in this approach, as discussed in
detail in Ref. 15. At the same time, our procedure does not
represent any systematic 1 /d expansion, as stressed in Refs.
14–16. The basic assumption here is the neglect of all inter-
ference processes of the local Hubbard interaction and non-
local contributions owing to these additional scatterings
�noncrossing approximation for appropriate diagrams�,15 as
illustrated by the diagrams in Fig. 1.

The self-consistency equations of the generalized DMFT
+�p approach are formulated as follows:14,15

�1� Start with some initial guess of local self-energy
��i��, e.g., ��i��=0.

�2� Construct �p�i�� within some �approximate� scheme,
taking into account the interactions with collective modes or
order parameter fluctuations, which, in general, can depend
on ��i�� and �.

�3� Calculate the local Green’s function,

Gii�i�� =
1

N
�
p

1

i� + � − ��p� − ��i�� − �p�i��
. �2�

�4� Define the “Weiss field”

G0
−1�i�� = ��i�� + Gii

−1�i�� . �3�

�5� Using some “impurity solver,” calculate the single-
particle Green’s function Gd�i�� for the effective Anderson
impurity problem, placed at lattice site i and defined by the
effective action which is written, in obvious notations, as

Seff = − �
0

�

d�1�
0

�

d�2 ci���1�G0
−1��1 − �2�ci�

+ ��2�

+ �
0

�

d� Uni↑���ni↓��� . �4�

�6� Define a new local self-energy,

��i�� = G0
−1�i�� − Gd

−1�i�� . �5�

�7� Using this self-energy as the “initial” one in step �1�,
continue the procedure until �and if� convergency is reached
to obtain

Gii�i�� = Gd�i�� . �6�

Eventually, we get the desired Green’s function in the form
of Eq. �1�, where ��i�� and �p�i�� are those appearing at the
end of our iteration procedure.

III. OPTICAL CONDUCTIVITY IN DMFT+�p

A. Basic expressions for optical conductivity

To calculate dynamic conductivity, we use the general ex-
pression relating it to the retarded density-density correlation
function �R�� ,q� as follows:18,19

FIG. 1. Typical “skeleton” diagrams for the self-energy in the
DMFT+�p approach. The first two terms are examples of the
DMFT self-energy diagrams, the middle two diagrams show some
contributions to the nonlocal part of the self-energy �e.g., from spin
fluctuations� represented as dashed lines, and the last diagram �b� is
an example of the neglected diagrams leading to interference be-
tween the local and nonlocal parts.
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���� = − lim
q→0

ie2�

q2 �R��,q� , �7�

where e is the electronic charge.
Consider the full polarization loop graph in the Matsubara

representation, as shown in Fig. 2�a�, which is conveniently
�with explicit frequency summation� written as

��i�,q� = �
���

�i�i���i�,q� � �
�

�i��i�,q� , �8�

and contains all possible interactions of our model, described
by the full vertex part of Fig. 2�b�. Note that we use a
slightly unusual definition of the vertex part to include the
loop contribution without vertex corrections, which shortens
further diagrammatic expressions. Retarded density-density
correlation function is determined by appropriate analytic
continuation of this loop and can be written as

�R��,q� = �
−�

� d�

2�i
��f��+� − f��−����

RA�q,��

+ f��−���
RR�q,�� − f��+���

AA�q,��� , �9�

where f��� is the Fermi distribution, �±=�± �
2 , and the two-

particle loops ��
RA�q ,��, ��

RR�q ,��, ��
AA�q ,�� are deter-

mined by appropriate analytic continuations �i�+ i�→�+�
+ i�, i�→�± i�, and �→ +0� in Eq. �8�. Then we can con-
veniently write the dynamic conductivity as

���� = lim
q→0

�−
e2�

2�q2��
−�

�

d���f��+� − f��−�����
RA�q,��

− ��
RA�0,��� + f��−����

RR�q,�� − ��
RR�0,��� − f��+�

����
AA�q,�� − ��

AA�0,���� , �10�

where the total contribution of the additional terms with zero
q can be shown �with the use of the general Ward
identities20� to be zero.

To calculate �i�i���i� ,q� entering the sum over the Mat-
subara frequencies in Eq. �8� in the DMFT+�p approxima-
tion, which neglects the interference between local Hubbard

interaction and nonlocal contributions due to additional scat-
terings, e.g., by SDW pseudogap fluctuations,15 we can write
down the Bethe-Salpeter equation, as shown diagrammati-
cally in Fig. 3, where we have introduced the irreducible
�local� vertex Ui�i���i�� of DMFT and “rectangular” vertex,
defined as in Fig. 2�b� and containing all interactions with
fluctuations. Analytically, this equation can be written as

�i�i���i�,q� = �i�
0 �i�,q�����

+ �i�
0 �i�,q��

��

Ui�i���i���i��i���i�,q� ,

�11�

where �i�
0 �i� ,q� is the desired function calculated neglect-

ing vertex corrections due to the Hubbard interaction �but
taking into account all nonlocal interactions with fluctuations
considered here to be static�. Note that all q dependence here
is determined by �i�

0 �i� ,q�, as the vertex Ui�i���i�� is local
and q independent.

As clearly seen from Eq. �10�, to calculate the conductiv-
ity, we need only to find the q2 contribution to ��i� ,q�
defined in Eq. �8�. This can be done in the following way.
First of all, note that all the loops in Eq. �11� contain the q
dependence starting from terms of the order of q2. Then, we
can take an arbitrary loop �cross section� in the expansion of
Eq. �11� �see Fig. 3�, calculating it up to terms of the order of
q2, and make a resummation of all the contributions to the
right and to the left of this cross section �using the obvious
left-right symmetry of diagram summation in the Bethe-
Salpeter equation�, putting q=0 in all these graphs. This is
equivalent to the simple q2 differentiation of the expanded
version of Eq. �11�. This procedure immediately leads to the
following relation for q2 contribution to Eq. �8�:

��i�� � lim
q→0

��i�,q� − ��i�,0�
q2 = �

�

�i�
2 �i�,q = 0��i�

0 �i�� ,

�12�

where

FIG. 2. Full polarization loop �a� with vertex part, which in-
cludes free-electron contribution in addition to the standard vertex,
containing all interactions �b�. Here, p±=p± q

2 and �±=�± �

2 .

FIG. 3. Bethe-Salpeter equation for the polarization loop in the
DMFT+�p approach. The circles represent irreducible vertex part
of DMFT, which contains only local interactions, surviving in the
limit of d→�. The unshaded rectangular vertex represents nonlocal
interactions, e.g., with SDW �pseudogap� fluctuations, which is
similarly defined to Fig. 2�b�.
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�i�
0 �i�� � lim

q→0

�i�
0 �i�,q� − �i�

0 �i�,0�
q2 , �13�

with �i�
0 �i� ,q� containing the vertex corrections only due to

nonlocal �pseudogap� fluctuations, while the one-particle
Green’s functions in it are taken with self-energies due to
both these fluctuations and local DMFT-like interaction, as in
Eq. �1�. The vertex �i��i� ,q=0� is determined diagrammati-
cally as shown in Fig. 4, or analytically,

�i��i�,q = 0� = 1 + �
����

Ui�i���i���i��i���i�,q = 0� .

�14�

Now, using the Bethe-Salpeter equation �11�, we can explic-
itly write

�i��i�,q = 0� = 1 + �
��

�i�i���i�,q = 0� − �i�
0 �i�,q = 0�

�i�
0 �i�,q = 0�

=

�
��

�i�i���i�,q = 0�

�i�
0 �i�,q = 0�

. �15�

For q=0, we have the following Ward identity, which can be
obtained by a direct generalization of the proof given in
Refs. 18 and 20 �see the Appendix�:

�− i���i��i�,q = 0� = �− i���
��

�i�i���i�,q = 0�

= �
p

G�i� + i�,p� − �
p

G�i�,p� .

�16�

The denominator of Eq. �15� contains vertex corrections only
from nonlocal correlations �e.g., pseudogap fluctuations�,
while Green’s functions here are “dressed” both by these
correlations and the local �DMFT� Hubbard interaction.
Thus, we may consider the loop entering the denominator as
dressed by �pseudogap� fluctuations only, but with “bare”
Green’s functions:

G̃0�i�,p� =
1

i� + � − ��p� − ��i��
, �17�

where ��i�� is the local contribution to the self-energy from
DMFT. For this problem, we have the following Ward iden-
tity, similar to Eq. �16� �see the Appendix�:

�
p

G�i� + i�,p� − �
p

G�i�,p�

= �i�
0 �i�,q = 0����i� + i�� − ��i�� − i��

� �i�
0 �i�,q = 0�����i�� − i�� , �18�

where we have introduced

���i�� = ��i� + i�� − ��i�� . �19�

Thus, using Eqs. �16� and �18� in Eq. �15�, we get the final
expression for �i��i� ,q=0� as follows:

�i��i�,q = 0� = 1 −
���i��

i�
. �20�

Then, Eq. �12� reduces to

��i�� = �
�

�i�
0 �i���1 −

���i��
i�

�2

. �21�

The analytic continuation to real frequencies is obvious, and
using Eqs. �12� and �21� in Eq. �10�, we can write the final
expression for the real part of dynamic conductivity as

Re ���� =
e2�

2�
�

−�

�

d��f��−� − f��+��Re

����
0RA����1 −

�R��+� − �A��−�
�

�2

− ��
0RR����1 −

�R��+� − �R��−�
�

�2� . �22�

Thus we have achieved a great simplification of our problem.
To calculate the optical conductivity in DMFT+�p, we only
have to solve the single-particle problem as described by the
DMFT+�p procedure above to determine the self-consistent
values of the local self-energies ���±�, while the nontrivial
contribution of nonlocal correlations is to be included via Eq.
�13�, which is to be calculated in some approximation, taking
into account only the interaction with nonlocal �e.g.,
pseudogap� fluctuations, but using the bare Green’s functions
of the form Eq. �17�, which include local self-energies al-
ready determined in the general DMFT+�p procedure. Ac-
tually, Eq. �22� also provides an effective algorithm to cal-
culate the dynamic conductivity in standard DMFT
�neglecting any nonlocal correlations�, as Eq. �13� is then
easily calculated from a simple loop diagram, determined by
two Green’s functions and free scalar vertices. As usual,
there is no need to calculate the vertex corrections within the
DMFT itself, as was proven first by considering the loop
with vector vertices.7,8

FIG. 4. Effective vertex �i��i� ,q=0� used in the calculations of
conductivity.
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B. Recurrence relations for self-energy and vertex parts

As we are mainly interested in the pseudogap state of
copper oxides, we shall further concentrate on the effects of
scattering of electrons from collective short-range SDW-like
antiferromagnetic spin fluctuations. In a kind of simplified
approach, valid only for high enough temperatures,3,4 we
shall calculate �p�i�� for an electron moving in the
quenched random field of �static� Gaussian spin fluctuations,
with dominant scattering momentum transfers from the
vicinity of some characteristic vector Q �hot-spot model2�,
using �as we have done in Refs. 14–16� a slightly general-
ized version of the recurrence procedure proposed in Refs. 3,
4, and 21 �see also Ref. 19�, which takes into account all
Feynman diagrams describing the scattering of electrons by
this random field. In general, the neglect of fluctuation dy-
namics overestimates pseudogap effects. Referring the reader
to earlier papers for details,3,4,14–16 here we just start with
the main recurrence relation determining the self-energy as
follows:

�k�i�,p� = �2 s�k�
i� + � − ��i�� − �k�p� + invk� − �k+1�i�,p�

.

�23�

Usually, one takes the value of �k+1 for large enough k equal
to zero, and doing the recurrence backwards to k=1, we get
the desired physical self-energy ��i� ,p�=�1�i� ,p�.4,19,21

In Eq. �23�, � characterizes the energy scale and �=�−1 is
the inverse correlation length of short-range SDW fluctua-
tions; �k�p�=��p+Q� and vk= �vp+Q

x �+ �vp+Q
y � for odd k while

�k�p�=��p� and vk= �vp
x �+ �vp

y � for even k. The velocity pro-
jections vp

x and vp
y are determined by the usual momentum

derivatives of the bare electronic energy dispersion ��p�. Fi-
nally, s�k� represents a combinatorial factor, which is always
assumed here to be that corresponding to the case of Heisen-
berg spin fluctuations in the “nearly antiferromagnetic Fermi
liquid” �spin-fermion model of Ref. 3, SDW-type fluctua-
tions�:

s�k� = �
k + 2

3
for odd k ,

k

3
for even k .� �24�

As was stressed in Refs. 15 and 16 this procedure introduces
an important length scale � not present in standard DMFT,
which mimics the effect of short-range �SDW� correlations
within fermionic “bath” surrounding the DMFT effective
single Anderson impurity.

An important aspect of the theory is that both parameters
� and � can, in principle, be calculated from the microscopic
model at hand,15 but here we consider these as phenomeno-
logical parameters of the theory �i.e., to be determined from
experiments�.

Now, to calculate the optical conductivity, we need the
knowledge of the basic block �i�

0 �i� ,q� entering Eq. �13�,
or, more precisely, appropriate functions analytically contin-

ued to real frequencies, ��
0RA�� ,q� and ��

0RR�� ,q�, which in
turn define ��

0RA��� and ��
0RR��� entering Eq. �22� and are

defined by obvious relations similar to Eq. �13�:

��
0RA��� = lim

q→0

��
0RA��,q� − ��

0RA��,0�
q2 , �25�

��
0RR��� = lim

q→0

��
0RR��,q� − ��

0RR��,0�
q2 . �26�

By definition, we have

��
0RA��,q� = �

p
GR��+,p+�GA��−,p−��RA��−,p−;�+,p+� ,

��
0RR��,q� = �

p
GR��+,p+�GR��−,p−��RR��−,p−;�+,p+� ,

�27�

which are shown diagrammatically in Fig. 5. Here, Green’s
functions GR��+ ,p+� and GA��− ,p−� are defined by an
analytic continuation �i�→�± i�� of the Matsubara
Green’s functions �1� determined by the recurrence proce-
dure �Eq. �23��, while vertices �RA��− ,p− ;�+ ,p+� and
�RR��− ,p− ;�+ ,p+� containing all vertex corrections due to
pseudogap fluctuations are given by the recurrence proce-
dure, derived first �for one-dimensional case� in Ref. 22 �see
also Ref. 19� and generalized for the two-dimensional prob-
lem in Ref. 23 �see also Ref. 3�. The basic idea used here is
that an arbitrary diagram for the vertex part can be obtained
by an insertion of an “external field” line into the appropriate
diagram for the self-energy.22–24 In our model, we can limit
ourselves only to diagrams with nonintersecting interaction
lines with additional combinatorial factors s�k� in initial in-
teraction vertices.3,4,21 Thus, all diagrams for the vertex part
are, in fact, generated by simple ladder diagrams with addi-

FIG. 5. Diagrammatic representation of ��
0RA�� ,q�.
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tional s�k� factors associated with interaction lines22,23 �see
also Ref. 19�. Then we obtain the system of recurrence rela-
tions for the vertex part �RA��− ,p− ;�+ ,p+�, as shown by the

diagrams of Fig. 6. Analytically, it has the following form,23

where we now also included the contributions due to local
�DMFT� self-energies, originating from the DMFT+�p loop:

�k−1
RA ��−,p−;�+,p+� = 1 + �2s�k�Gk

A��−,p−�Gk
R��+,p+�

� �1 +
2ivk�k

� − �k�p+� + �k�p−� − �R��+� + �A��−� − �k+1
R ��+,p+� + �k+1

A ��−,p−���k
RA��−,p−;�+,p+� ,

�28�

and

Gk
R,A��±,p±� =

1

�± − �k�p±� ± ikvk� − �R,A��±� − �k+1
R,A��±,p±�

.

�29�

The “physical” vertex �RA��− ,p− ;�+ ,p+� is determined as
�k=0

RA ��− ,p− ;�+ ,p+�. The recurrence procedure �Eq. �28��
takes into account all perturbation theory diagrams for the
vertex part. For �→0 ��→��, Eq. �28� reduces to the series
studied in Ref. 24 �cf. also Ref. 3�; which can be summed
exactly in an analytic form. The standard “ladder” approxi-
mation in our scheme corresponds to the case of combinato-
rial factors s�k� in Eq. �28� being equal to 1.22

The recurrence procedure for �RR��− ,p+ ;�+ ,p+� differs
from Eq. �28� only by obvious replacements A→R and the
whole expression in figure brackets in the right-hand side of
Eq. �28� just replaced by 1:

�k−1
RR ��−,p−;�+,p+�

= 1 + �2s�k�Gk
R��−,p−�Gk

R��+,p+��k
RR��−,p;�+,p+� .

�30�

Note that the DMFT �Hubbard� interaction enters these equa-
tions only via local self-energies �R,A��±� calculated self-
consistently according to our DMFT+�p procedure.

Equations �1�, �23�, �28�, and �30�, together with Eqs.
�22�, �25�, and �26�, provide us with the complete self-
consistent procedure to calculate the optical conductivity of
our model using the DMFT+�p approach.

IV. RESULTS AND DISCUSSION

A. Generalities

In the following, we shall discuss our results for a stan-
dard one-band Hubbard model on a square lattice. The bare
electronic dispersion in tight-binding approximation, with
the account of the nearest- �t� and next-nearest- �t�� neighbor
hoppings, is given by

��p� = − 2t�cos pxa + cos pya� − 4t� cos pxa cos pya ,

�31�

where a is the lattice constant. To be concrete, below we
present the results for t=0.25 eV �more or less typical for
cuprates� and t� / t=−0.4 �which gives Fermi surface similar
to those observed in many cuprates�.

For the square lattice, the bare bandwidth is W=8t. To
study strongly correlated metallic state obtained as doped
Mott insulator, we have used the value for the Hubbard in-
teraction U=40t and filling factors n=1.0 �half-filling� and
n=0.8 �hole doping�. For correlated metal with W�U, we
have taken typical values such as U=4t, U=6t, and U=10t
for U�W. Calculations were performed for different fillings:
half-filling �n=1.0� and for hole doping �n=0.8,0.9�. For the
typical values for �, we have chosen �= t and �=2t and for
correlation length �=2a and �=10a �motivated mainly by
the experimental data for cuprates2,3�.

To solve an effective Anderson impurity problem of
DMFT, we applied a reliable numerically exact method of
numerical renormalization group �NRG�,25,26 which, actually,

FIG. 6. Recurrence relations for the vertex part. Dashed lines
denote �2.
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allowed us to work with real frequencies from the very be-
ginning, overcoming possible difficulties of performing ana-
lytical continuation numerically. Calculations were per-
formed for two different temperatures: T=0.088t and T
=0.356t.

All necessary integrations were done directly, e.g., over
the whole Brillouin zone �with the account of obvious sym-
metries� or wide enough frequency range. Integration mo-
menta are made dimensionless in a natural way with the help
of the lattice constant a. The conductivity is measured in
units of the universal conductivity in two dimensions: �0

= e2

� =2.5�10−4 �−1.

B. Optical conductivity in standard DMFT

The optical conductivity was calculated for different com-
binations of the parameters of the model. Below, we present
only a fraction of our results, which are, probably, most rel-
evant for copper oxides. We shall start with presenting some
typical results, obtained within our formalism in conven-
tional DMFT approximation, neglecting pseudogap fluctua-
tions, just to introduce the basic physical picture and demon-
strate the effectiveness of our approach.

The characteristic feature of the strongly correlated metal-
lic state is the coexistence of lower and upper Hubbard bands
splitt by the value of �U with a quasiparticle peak at the
Fermi level.7,8 For the case of a strongly correlated metal
with W�U, we observe almost no contribution from excita-
tions to the upper Hubbard model in the optical conductivity,
as can be seen in Fig. 7 �where we show the real part of
conductivity Re �����. This contribution is almost com-
pletely masked by a typical Drude-like frequency behavior,
with only slightly nonmonotonous behavior for ��U, which
completely disappears as we increase the temperature.

The situation is different in doped Mott insulator with U
�W. In Fig. 8, we clearly observe an additional maximum of
optical absorption for ��U; however, at smaller frequen-
cies, we again observe a typical Drude-like behavior, slightly
nonmonotonous for small frequencies due to quasiparticle
band formation �see the inset in Fig. 8�.

These and similar results are more or less well known
from the previous studies7,8 and are quoted here only to dem-
onstrate the consistency of our formalism and to prepare the
reader for other results, showing pseudogap behavior.

C. Optical conductivity in DMFT+�p

1. Correlated metal

Let us start the discussion of the results obtained within
our generalized DMFT+�p approach for the case of W�U.

In Fig. 9, we show our DMFT+�p results for the real part
of the optical conductivity for correlated metal �U=4t� for
two values of temperature, compared with similar data with-
out pseudogap fluctuations �pure DMFT�. We clearly observe
the formation of typical pseudogap �absorption� anomaly on
the “shoulder” of the Drude-like peak, which is partially
“filled” with the growth of temperature. This behavior is
quite similar to “midinfrared feature” that is observed in the

FIG. 7. Real part of the optical conductivity for correlated metal
�U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT approximation for
two values of filling factor: n=1 and n=0.8. Temperature T
=0.088t.

FIG. 8. Real part of the optical conductivity for doped Mott
insulator �U=40t, t�=−0.4t, and t=0.25 eV� in the DMFT approxi-
mation. Filling factors are n=0.8 and n=0.9, and temperature T
=0.088t. Small frequency behavior is shown in more detail in the
inset.

FIG. 9. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation for two different temperatures: T=0.088t and
T=0.356t. Pseudogap amplitude �= t, correlation length �=10a,
and filling factor n=0.8 electrons per atom.
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optical conductivity of cuprate superconductors.27,28 In Fig.
10, we show the behavior of Re ���� for different values of
the pseudogap amplitude �. We see that the pseudogap
anomaly naturally grows with the growth of �. Figure 11
illustrates the dependence of Re ���� on the correlation
length of pseudogap �AFM, SDW� fluctuations. Again, we
observe the natural behavior—pseudogap anomaly is filled
for shorter correlation lengths, i.e., as fluctuations become
more short ranged. At last, in Fig. 12, we demonstrate the
dependence of the pseudogap anomaly in the optical conduc-
tivity on the correlation strength, i.e., on the Hubbard inter-
action U. It is seen that the frequency range, where
pseudogap anomaly is observed, becomes narrower as the
correlation strength grows. This correlates with the general
narrowing of the pseudogap anomaly and spectral densities
with the growth of correlations, as observed in our previous
work.15,16 For large values of U, the pseudogap anomaly is
practically suppressed. This is the main qualitative difference

of the results of the present approach compared to our earlier
work23 on the optical conductivity in the pseudogap state.
Comparing the data of the present work for U=0 with simi-
lar data of Ref. 23, it should be noted that in this earlier
work, we have performed calculations of dynamic conduc-
tivity only for T=0 and used simplified expressions, neglect-
ing RR- and AA-loop contributions to conductivity, as well as
small frequency expansion,18 just to speed up the calcula-
tions. These simplifications lead to some quantitative differ-
ences with the results of the present work, where all calcu-
lations are done exactly using the general expression �22�,
though qualitatively the frequency behavior of conductivity
is the same.

2. Doped Mott insulator

Now, we shall discuss our results for the case of doped
Mott insulator with U�W. This case has no direct relevance
to copper oxides, but is interesting from the general point of
view and we present some of our results.

The real part of the optical conductivity for the case of
U=40t is shown in Figs. 13 and 14.

In Fig. 13, we show Re ���� several values of the
pseudogap amplitude � for the doped Mott insulator in the
DMFT+�p approach. Obviously enough, pseudogap fluctua-
tions lead to significant changes of the optical conductivity
only for relatively small frequencies of the order of �, while
for high frequencies �e.g., of the order of U, where the upper
Hubbard band contributes�, we do not observe pseudogap
effects �see the inset in Fig. 13�. For small frequencies, we
observe pseudogap suppression of the Drude-like peak, with
only a shallow anomaly for ���, which just disappears for
smaller values of � or shorter correlation lengths.

In Fig. 14, we show similar data for the special case of
t�=0 and n=1, i.e., at half-filling �Mott insulator� for differ-
ent values of the inverse correlation length �=�−1. The con-
ductivity at small frequencies is determined only by thermal
excitations, and pseudogap fluctuations suppress it signifi-
cantly. Shorter correlation lengths obviously lead to larger
values of conductivity at small frequencies. Transitions to the

FIG. 10. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation—� dependence. Parameters are the same as in
Fig. 9, but the data are for different values of �=0, �= t, and �
=2t, and temperature T=0.088t.

FIG. 11. �Color online� Real part of the optical conductivity for
correlated metal �U=4t, t�=−0.4t, and t=0.25 eV� in the DMFT
+�p approximation—dependence on the correlation length. Param-
eters are the same as in Fig. 9, but in the data are for different
values of the inverse correlation length �=�−1: �a=0.1 and �a
=0.5, and temperature T=0.088t.

FIG. 12. �Color online� Real part of the optical conductivity for
correlated metal in the DMFT+�p approximation—U dependence.
Parameters are the same as in Fig. 9, but the data are for different
values of U: U=0, U=4t, U=6t, U=10t, and U=40t. Temperature
T=0.088t.
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upper Hubbard band are not affected by these fluctuations at
all.

V. CONCLUSION

The present work is the direct continuation of our previ-
ous work,14–16 where we have proposed a generalized
DMFT+�p approach, which is meant to take into account
the important effects of nonlocal correlations �in principle, of
any type� in addition to the �essentially exact� treatment of
local dynamical correlations by DMFT. Here, we used a gen-
eralized DMFT+�p approach to calculate the dynamic �op-
tical� conductivity of the two-dimensional Hubbard model
with pseudogap fluctuations. Our results demonstrate that
pseudogap anomalies observed in optical conductivity of
copper oxides can, in principle, be explained by this model.
The main advantage in comparison to the previous work23 is
our ability now to study the role of strong electronic corre-

lations, which are decisive in the formation of electronic
structure of systems such as copper oxides. In fact, we have
demonstrated an important suppression of pseudogap
anomaly in optical conductivity with the growth of correla-
tion strength.

As we already noted in Ref. 15, qualitatively similar re-
sults on pseudogap formation in single-particle characteris-
tics for the two-dimensional Hubbard model were also ob-
tained within cluster extensions of DMFT.12,13 However,
these methods have generic restrictions concerning the size
of the cluster and up to now have not been not widely ap-
plied to calculations of two-particle properties, such as gen-
eral response functions, and, in particular, to calculations of
the dynamic �optical� conductivity.

Our approach is free of these limitations, though at the
price of introduction of additional �semi�phenomenological
parameters �correlation length � and pseudogap amplitude
��. It is much less time consuming; thus its advantage for the
calculations of two-particle response functions is obvious. It
also opens the possibility of systematic comparison of differ-
ent types of nonlocal fluctuations and their effects on elec-
tronic properties, providing a more intuitive way to analyze
experiments or theoretical data obtained within more ad-
vanced schemes. Again, note that, in principle, both � and �
can be calculated from the original model.15 Our scheme
works for any Coulomb interaction strength U, pseudogap
strength �, correlation length �, filling n, and bare electron
dispersion ��k�.

The present formalism can be easily generalized in the
framework of our recently proposed LDA+DMFT+�p ap-
proach, which will allow us to perform calculations of
pseudogap anomalies of the optical conductivity for realistic
models. It can also be easily generalized to orbital degrees of
freedom, phonons, impurities, etc.
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VI. APPENDIX: WARD IDENTITIES

In this appendix, we present the derivation of Ward iden-
tities used in the main text. Let us start with the general
expression for the variation of the electron self-energy due to
an arbitrary variation of the complete Green’s function,
which is valid for any interacting Fermi system:29

FIG. 13. �Color online� Real part of the optical conductivity for
doped Mott insulator �U=40t, t�=−0.4t, and t=0.25 eV� in the
DMFT+�p approximation for different values of �=0, �= t, and
�=2t, and temperature T=0.088t. Correlation length �=10a, and
filling factor n=0.8. Inset: conductivity in a wide frequency inter-
val, including transitions to the upper Hubbard band.

FIG. 14. �Color online� Real part of the optical conductivity for
doped Mott insulator �U=40t, t=0.25 eV, and t�=0� in the
DMFT+�p approximation for different values of the inverse corre-
lation length �=�−1: �a=0.1 and �a=0.5, temperature T=0.356t,
and filling n=1.
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��p = �
p�

Upp��q��Gp�, �A1�

where Upp��q� is an irreducible vertex in particle-hole chan-
nel, and we use four-dimensional notations p= �i� ,p�, q
= �i� ,q�, etc. In the following, we take

��p = �+ − �− � ��i�+,p+� − ��i�−,p−� , �A2�

and �in the same notations�

�Gp = G+ − G− = �G+G−�p���p − ��G0
−1�p� , �A3�

where ��G0
−1�p=G0+

−1−G0−
−1, and the last expression was ob-

tained using the standard Dyson equation.
Note the similarity of Eq. �A1� to the Ward identity for

noninteracting electrons in the impure system derived in Ref.
18.

Now, substituting the last expression in Eq. �A3�, we get

��p = �
p�

Upp��q��G+G−�p����p� − ��G0
−1�p�� . �A4�

Iterating this equation, we obtain

��p = �
p�

Upp��G+G−�p��− ��G0
−1�p��

+ �
p�p�

Upp��G+G−�p�Up�p��G+G−�p��− ��G0
−1�p�� + ¯ .

�A5�

Multiplying both sides of Eq. �A5� by �G+G−�p and adding

�
p�

�G+G−�p�pp��− ��G0
−1�p�� = �G+G−�p�− ��G0

−1�p� ,

we have

�G+G−�p���p − ��G0
−1�p�

= �
p�
��G+G−�p�pp� + �G+G−�pUpp��G+G−�p� + �G+G−�p

��
p�

Upp��G+G−�p�Up�p��G+G−�p� + ¯ ��− ��G0
−1��

= �
p

�pp��q��− ��G0
−1�p�� , �A6�

where �pp��q� is the complete two-particle Green’s function
determined by the following Bethe-Salpeter equation:29

�pp��q� = �G+G−�p�pp� + �G+G−�p�
p�

Upp��pp��q� .

�A7�

Finally, we obtain

�Gp = �
p�

�pp��q��− ��G0
−1�p�� , �A8�

which is the general form of our Ward identity.
Summing both sides of Eq. �A8� over p and taking q=0,

we obtain the identity �16� used above. Similarly, taking the
bare Green’s function �17�, we obtain Eq. �18�.

1 T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 �1999�.
2 M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 �2001� �Phys. Usp. 44,

515 �2001��.
3 J. Schmalian, D. Pines, and B. Stojkovič, Phys. Rev. Lett. 80,

3839 �1998�; Phys. Rev. B 60, 667 �1999�.
4 E. Z. Kuchinskii and M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 115,

1765 �1999� �JETP 88, 347 �1999��.
5 W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 �1989�.
6 D. Vollhardt, in Correlated Electron Systems, edited by V. J. Em-

ery �World Scientific, Singapore, 1993�, p. 57.
7 Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187

�1995�.
8 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
9 G. Kotliar and D. Vollhardt, Phys. Today 57�3�, 53 �2004�.

10 Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 �1996�.
11 EDMFT approach to pseudogap formation can be found in K.

Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 89,
236402 �2002�; Phys. Rev. B 68, 155119 �2003�.

12 Th. Maier, M. Jarrell, Th. Pruschke, and M. Hettler, Rev. Mod.
Phys. 77, 1027 �2005�.

13 G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 �2001�; M. Capone, M. Civelli, S. S. Kan-
charla, C. Castellani, and G. Kotliar, Phys. Rev. B 69, 195105

�2004�.
14 E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pis’ma Zh.

Eksp. Teor. Fiz. 82, 217 �2005� �JETP Lett. 82, 198 �2005��.
15 M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke,

and V. I. Anisimov, Phys. Rev. B 72, 155105 �2005�.
16 E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Fiz. Nizk.

Temp. 32, 528 �2006� �Low Temp. Phys. 32, 398 �2006��.
17 E. Z. Kuchinskii, I. A. Nekrasov, Z. V. Pchelkina, and M. V.

Sadovskii, cond-mat/0606651 �to be published�.
18 D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 �1980�.
19 M. V. Sadovskii, Diagrammatics �World Scientific, Singapore,

2006�.
20 V. Janiš, J. Kolorenč, and V. Špička, Eur. Phys. J. B 35, 77

�2003�.
21 M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 77, 2070 �1979� �Sov. Phys.

JETP 50, 989 �1979��.
22 M. V. Sadovskii and A. A. Timofeev, J. Mosc. Phys. Soc. 1, 391

�1991�.
23 M. V. Sadovskii and N. A. Strigina, Zh. Eksp. Teor. Fiz. 122, 610

�2002� �JETP 95, 526 �2002��.
24 M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 66, 1720 �1974� �Sov. Phys.

JETP 39, 845 �1974��.
25 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�; H. R. Krishna-

murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003

KUCHINSKII, NEKRASOV, AND SADOVSKII PHYSICAL REVIEW B 75, 115102 �2007�

115102-10



�1980�; 21, 1044 �1980�; A. C. Hewson, The Kondo Problem to
Heavy Fermions �Cambridge University Press, Cambridge,
1993�.

26 R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys.: Condens.
Matter 10, 8365 �1998�; R. Bulla, Phys. Rev. Lett. 83, 136
�1999�.

27 D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 �2005�.
28 J. Hwang, T. Timusk, and G. D. Gu, cond-mat/0607653 �to be

published�.
29 A. B. Migdal, Theory of Finite Fermi Systems and Applications to

Atomic Nuclei �Interscience Publishers, New York, 1967�.

PSEUDOGAPS IN STRONGLY CORRELATED METALS: … PHYSICAL REVIEW B 75, 115102 �2007�

115102-11



 

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2008, Vol. 106, No. 3, pp. 581–596. © Pleiades Publishing, Inc., 2008.

 

581

 

1

 

1. INTRODUCTION

The importance of the electronic interaction and
randomness for the properties of condensed matter is
well known [1]. Both Coulomb correlations and disor-
der are driving forces of metal–insulator transitions
(MITs) connected with the localization and derealiza-
tion of particles. In particular, the Mott–Hubbard MIT
is caused by electronic repulsion [2], while the Ander-
son MIT is due to random scattering of noninteracting
particles [3]. Actually, disorder and interaction effects
are known to compete in many subtle ways [1, 4]; this
problem becomes much more complicated in the case
of strong electron correlations and strong disorder,
determining the physical mechanisms of the Mott–
Anderson MIT [1].

The cornerstone of the modern theory of strongly
correlated systems is the dynamic mean-field theory
(DMFT) [5–8], constituting a nonperturbative theoreti-
cal framework for the investigation of correlated lattice
electrons with a local interaction. In this approach, the
effect of local disorder can be taken into account
through the standard average density of states (DOS)
[9] in the absence of interactions, leading to the well-
known coherent potential approximation [10], which
does not describe the physics of Anderson localization.
To overcome this deficiency, Dobrosavljevi  and Kot-
liar [11] formulated a variant of the DMFT where the
geometrically averaged local DOS was computed from
solutions of the self-consistent stochastic DMFT equa-
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tions. Subsequently, Dobrosavljevi  et al. [12] incorpo-
rated the geometrically averaged local DOS into the
self-consistency cycle and derived a mean-field theory
of Anderson localization that reproduced many of the
expected features of the disorder-driven MIT for nonin-
teracting electrons. This approach was extended in [13]
to include Hubbard correlations via DMFT, which led
to a highly nontrivial phase diagram of the Anderson–
Hubbard model with the correlated metal, Mott insula-
tor, and correlated Anderson insulator phases. The main
deficiency of these approaches, however, is the inability
to directly calculate measurable physical properties,
such as conductivity, which is of major importance and
defines the MIT itself.

At the same time, the well-developed approach of
the self-consistent theory of Anderson localization,
based on solving the equations for the generalized dif-
fusion coefficient, demonstrated its efficiency in the
noninteracting case a long time ago [14–19]; several
attempts to include interaction effects into this approach
were made with some promising results [17, 20]. How-
ever, until recently, there have been no attempts to
incorporate this approach into the modern theory of
strongly correlated electronic systems. Here, we under-
take such research, studying the Mott–Hubbard and
Anderson MITs via direct calculations of both the aver-
age DOS and the dynamic (optical) conductivity.

Our approach is based on the recently proposed gen-
eralized DMFT + 

 

Σ

 

 approximation [21–24], which, on
the one hand, retains the single-impurity description of
the DMFT, with a proper account for local Hubbard-
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like correlations and the possibility of using impurity
solvers like NRG [25–27], and on the other hand,
allows including additional (either local or nonlocal)
interactions (fluctuations) on a nonperturbative model
basis.

Within this approach, we have already studied both
single- and two-particle properties of the two-dimen-
sional Hubbard model, concentrating mainly on the
problem of pseudogap formation in the DOS of the qua-
siparticle band in both correlated metals and doped
Mott insulators, in application to superconducting
cuprates. We analyzed the evolution of non-Fermi-liq-
uid-like spectral density and ARPES spectra [22],
“destruction” of Fermi surfaces and formation of Fermi
“arcs” [21], as well as pseudogap anomalies of optical
conductivity [24]. Briefly, we also considered impurity
scattering effects [23].

In this paper, we apply our DMFT + 

 

Σ

 

 approach for
calculations of the DOS, dynamic conductivity, and
phase diagram of the strongly correlated and strongly
disordered three-dimensional paramagnetic Anderson–
Hubbard model. Strong correlations are again taken
into account by DMFT, while disorder is taken into
account via the appropriate generalization of the self-
consistent theory of localization.

This paper is organized as follows. In Section 2, we
briefly describe our generalized DMFT + 

 

Σ

 

 approxima-
tion with application to the disordered Hubbard model.
In Section 3, we present basic DMFT + 

 

Σ

 

 expressions
for dynamic (optical) conductivity and formulate the
appropriate self-consistent equations for the general-
ized diffusion coefficient. Computational details and
results for the DOS and dynamic conductivity are given
in Section 4, where we also analyze the phase diagram
of the strongly disordered Hubbard model within our
approach. The paper ends with a short summary Sec-
tion 5 including a discussion of some related problems.

2. BASICS OF THE DMFT + 

 

Σ

 

 APPROACH
Our aim is to consider the nonmagnetic disordered

Anderson–Hubbard model (mainly) at half-filling for
arbitrary interaction and disorder strengths. The Mott–

Hubbard and Anderson MITs are investigated on an
equal footing. The Hamiltonian of the model is written
as

(1)

where 

 

t

 

 > 0 is the amplitude for hopping between near-

est neighbors, 

 

U

 

 is the on-site repulsion, 

 

n

 

i

 

σ

 

 =  is

the local electron number operator, 

 

a

 

i

 

σ

 

 ( ) is the anni-
hilation (creation) operator of an electron with spin 

 

σ

 

,
and the local ionic energies 

 

�

 

i

 

 at different lattice sites
are considered independent random variables. To sim-
plify the diagrammatics in what follows, we assume the
Gaussian probability distribution for 

 

�

 

i

 

:

(2)

where the parameter 

 

∆

 

 is a measure of the disorder
strength, and a Gaussian (white noise) random field of
energy level 

 

�

 

i

 

 at lattice sites produces impurity scatter-
ing, leading to the standard diagram technique for cal-
culating the averaged Green functions [19].

The DMFT + 

 

Σ

 

 approach was initially proposed
[21–23] as a simple method to include nonlocal fluctu-
ations of essentially arbitrary nature into the standard
DMFT. In fact, it can be used to include any additional
interaction into DMFT as follows. Working at finite
temperatures 

 

T

 

, we write the Matsubara-“time,” Fou-
rier-transformed, single-particle Green function of the
Hubbard model as

(3)

where 

 

�

 

(

 

p

 

) is the single-particle spectrum correspond-
ing to the free part of (1); 

 

µ

 

 is the chemical potential
fixed by the electron concentration; 

 

Σ

 

(

 

i

 

ε

 

) is the local
contribution to self-energy due to the Hubbard interac-
tion, of DMFT type (surviving in the limit of spatial
dimensionality 

 

d

 

  

 

∞

 

); and 

 

Σ

 

p

 

(

 

i

 

ε

 

) is some additional
(in general, momentum-dependent) self-energy part.
This last contribution can be caused, e.g., by electron
interactions with certain “additional” collective modes
or order parameter fluctuations within the Hubbard
model itself. But it can actually be due to any other
interactions (fluctuations) outside the standard Hub-
bard model, e.g., due to phonons or random impurity
scattering, when it is in fact local (momentum indepen-
dent). The last interaction is the main subject of our
interest in the present paper. The basic assumption here
is the neglect of all interference processes of the local
Hubbard interaction and “external” contributions due
to these additional scatterings (noncrossing approxima-
tion for appropriate diagrams) [22], as illustrated by
diagrams in Fig. 1.

H t aiσ
† a jσ

ij〈 〉 σ
∑– �iniσ

iσ
∑ U ni↑ni↓,

i

∑+ +=

aiσ
† aiσ

aiσ
†

� �i( ) 1

2π∆
--------------

�i
2

2∆2
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

,exp=

G iε p,( ) 1
iε µ � p( )– Σ iε( )– Σp iε( )–+
------------------------------------------------------------------------,=

ε πT 2n 1+( ),=

 

+ + + ++ . . . . . .

 

(a) (b)

 

Σ

 

(

 

i

 

ω

 

)

 

Σ

 

p

 

(

 

i

 

ω

 

)

 

Fig. 1.

 

 Typical “skeleton” diagrams for the self-energy in the
DMFT + 

 

Σ

 

 approach. (a) The first two terms are examples of
DMFT self-energy diagrams; the middle two diagrams show
contributions due to random impurity scattering, represented
by dashed lines. The last diagram (b) is an example of a
neglected diagram leading to interference between the local
Hubbard interaction and impurity scattering.
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The self-consistency equations of the generalized
DMFT + 

 

Σ

 

 approach are formulated as follows [21, 22].
(1) Start with some initial guess for the local self-

energy 

 

Σ

 

(

 

i

 

ε

 

), e.g., 

 

Σ

 

(

 

i

 

ε

 

) = 0.
(2) Construct 

 

Σ

 

p

 

(

 

i

 

ε

 

) within some (approximate)
scheme, accounting for interactions with an external
interaction (impurity scattering in our case), which can
in general depend on 

 

Σ

 

(

 

i

 

ω

 

) and 

 

µ

 

.
(3) Calculate the local Green function

(4)

(4) Define the “Weiss field”

(5)

(5) Using some “impurity solver,” calculate the sin-
gle-particle Green function 

 

G

 

d

 

(

 

i

 

ε) for the effective
Anderson impurity problem, placed at a lattice site i
and defined by the effective action that in the obvious
notation is written as

(6)

In what follows, we use NRG [25–27] for the “impurity
solver,” which allows us to deal also with real frequen-
cies, thus avoiding the complicated problem of analytic
continuation from Matsubara frequencies.

(6) Define the new local self-energy

(7)

(7) Using this self-energy as the “initial” one in step 1,
continue the procedure until (and if) convergence is
reached, to obtain

(8)

Eventually, we obtain the desired Green function in
form (3), with Σ(iε) and Σp(iε) appearing at the end of
our iteration procedure.

For Σp(iε) in the random impurity problem, we use
the simplest possible one-loop contribution, given by
the third diagram in Fig. 1a neglecting “crossing” dia-
grams like the fourth one in Fig. 1a, i.e., just the self-
consistent Born approximation [19], which in the case
of Gaussian disorder (2) leads to the usual expression

(9)

which is actually p-independent (local).

Gii iε( ) 1
N
---- 1

iε µ � p( )– Σ iε( )– Σp iε( )–+
------------------------------------------------------------------------.

p

∑=

�0
1–

iε( ) Σ iε( ) Gii
1– iε( ).+=

Seff τ1 τ2ciσ τ1( )�0
1– τ1 τ2–( )ciσ

+ τ2( )d

0

β

∫d

0

β

∫–=

+ τUni↑ τ( )ni↓ τ( ).d

0

β

∫

Σ iω( ) �0
1–

iω( ) Gd
1– iω( ).–=

Gii iε( ) Gd iε( ).=

Σp iε( ) ∆2 G iε p,( )
p

∑ Σimp iε( )≡=

3. DYNAMIC CONDUCTIVITY
IN THE DMFT + Σ APPROACH

3.1. Basic Expressions for Optical Conductivity

Physically, it is clear that calculations of the
dynamic conductivity are the most direct way to study
MITs, because its frequency dependence along with the
static value at zero frequency of an external field makes
it possible to clearly distinguish between metallic and
insulating phases (at zero temperature T = 0).

To calculate the dynamic conductivity, we use the
general expression relating it to the retarded density-
density correlation function χR(ω, q) [14, 19]:

(10)

where e is the electron charge.

We next outline the derivation presented in detail in
[24] for the pseudogap problem, with necessary modi-
fications for the present case. We consider the full
polarization loop graph in the Matsubara representation
shown in Fig. 2, which is conveniently (with explicit
frequency summation) written as

(11)

and contains all possible interactions of our model,
described by the full shaded vertex part. Actually, we
implicitly assume here that the simple-loop contribu-
tion without vertex corrections is also included in
Fig. 2, which shortens further diagrammatic expres-
sions [24]. The retarded density–density correlation
function is determined by an appropriate analytic con-
tinuation of this loop and can be written as [14]

(12)

σ ω( ) ie2ω
q2

-----------χR ω q,( ),
q 0→
lim–=

Φ iω q,( ) Φiεiε ' iω q,( )
εε '

∑ Φiε iω q,( )
ε

∑≡=

χR ω q,( ) εd
2πi
-------- f ε+( ) f ε–( )–[ ]Φε

RA q ω,( ){
∞–

∞

∫=

+ f ε–( )Φε
RR q ω,( ) f ε+( )Φε

AA q ω,( ) },–

p+iε+ p'+iε'+

p–iε– p'–iε'–

Fig. 2. Full polarization loop with the vertex part describing
all interactions and impurity scatterings in the particle–hole
channel. The loop without vertex corrections is included
implicitly. Here, p± = p ± q/2 and ε± = ε ± ω/2.
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where f(ε) is the Fermi distribution, ε± = ε ± , and two-

particle loops (q, ω), (q, ω), and (q, ω) are
determined by the appropriate analytic continuations
(iε + iω  ε + ω + iδ, iε  ε ± iδ, and δ  +0) in
(11). Then we can write the dynamic (optical) conductiv-
ity as

(13)

where the total contribution of additional terms with
zero q can be shown (with the use of general Ward iden-
tities) to be zero.

In the DMFT + Σ approximation, which neglects
interference between the local Hubbard interaction and
impurity scattering, we calculate Φiεiε'(iω, q) entering
the sum over Matsubara frequencies in (11) by writing
the Bethe–Salpeter equation, shown diagrammatically
in Fig. 3, where we introduce the irreducible (local)

ω
2
----

Φε
RA Φε

RR Φε
AA

σ ω( ) e2ω
2πq2
------------–⎝ ⎠

⎛ ⎞ ε f ε+( ) f ε–( )–[ ]{d

∞–

∞

∫q 0→
lim=

× Φε
RA q ω,( ) Φε

RA 0 ω,( )–[ ]

+ f ε–( ) Φε
RR q ω,( ) Φε

RR 0 ω,( )–[ ]

– f ε+( ) Φε
AA q ω,( ) Φε

AA 0 ω,( )–[ ] },

DMFT vertex Uiεiε'(iω) and the “rectangular” vertex
containing all interactions with impurities. Analyti-
cally, this equation can be written as

(14)

where (iω, q) is the sought function calculated
neglecting vertex corrections due to the Hubbard inter-
action (but taking all interactions due to impurity scat-
tering into account). We note that all the q-dependence

is here determined by (iω, q) because the vertex
Uiεiε'(iω) is local and q-independent.

As we noted in [24], it is clear from (13) that calcu-
lation of the conductivity requires only the knowledge
of the q2-contribution to Φ(iω, q). This can be easily
found as follows. First, we note that all the loops in (14)
contain a q-dependence starting from terms of the order
q2. Then we can take an arbitrary loop (cros section) in
the expansion of (14) (see Fig. 3), calculate it up to
terms of the order q2, and re-sum all contributions to the
right and to the left of this cross section, setting q = 0 in
all these graphs. This is equivalent to simple q2-differ-
entiation of the expanded version of Eq. (14). This pro-

Φiεiε ' iω q,( ) Φiε
0 iω q,( )δεε '=

+ Φiε
0 iω q,( ) Uiεiε '' iω( )Φiε ''iε ' iω q,( ),

ε ''

∑

Φiε
0

Φiε
0

+=

+

+ =

+

+

= +

. . .

U

U U

U

Fig. 3. Bethe–Salpeter equation for the polarization loop in the DMFT + Σ approach. A circle represents the irreducible vertex part
in the particle–hole channel of the DMFT approach, which contains only local Hubbard interactions. An unshaded rectangular ver-
tex represents corrections from impurity scattering only, implicitly including the case of free particle–hole propagation.
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cedure immediately leads to the following relation for
the q2-contribution to (11):

(15)

with

(16)

where (iω, q) contains vertex corrections due only
to impurity scattering, while the one-particle Green
functions entering it are taken with self-energies due to
both impurity scattering and the local DMFT-like inter-
action, as in Eq. (3). The vertex γiε(iω, q = 0) is deter-
mined diagrammatically as shown in Fig. 4, or analyti-
cally as

(17)

Next, using Bethe–Salpeter Eq. (14), we can explicitly
write

(18)

At q = 0, we have the following Ward identity, which
can be obtained by direct generalization of the proof
given in [14, 28] (see the details in the Appendix of
[24]):

(19)

The denominator of (18) contains vertex corrections
only from impurity scattering, while the Green func-
tions here are dressed by both impurities and the local
(DMFT) Hubbard interaction. We can therefore regard
the loop entering the denominator as dressed by impu-
rities only, but with the “bare” Green functions:

(20)

φ iω( ) Φ iω q,( ) Φ iω 0,( )–

q2
-------------------------------------------------

q 0→
lim≡

=  γ iε
2 iω q = 0,( )φiε

0 iω( )
ε

∑

φiε
0 iω( )

Φiε
0 iω q,( ) Φiε

0 iω 0,( )–

q2
--------------------------------------------------------,

q 0→
lim≡

Φiε
0

γ iε iω q = 0,( )

=  1 Uiεiε '' iω( )Φiε ''iε ' iω q = 0,( ).
ε 'ε ''

∑+

γ iε iω q = 0,( )

=  1
Φiεiε ' iω q = 0,( ) Φiε

0 iω q = 0,( )–

Φiε
0 iω q = 0,( )

--------------------------------------------------------------------------------
ε '

∑+

=  

Φiεiε ' iω q = 0,( )
ε '

∑
Φiε

0 iω q = 0,( )
-----------------------------------------------.

iω–( )Φiε iω q = 0,( ) iω–( ) Φiεiε ' iω q = 0,( )
ε '

∑=

=  G iε iω+ p,( )
p

∑ G iε p,( ).
p

∑–

G̃0 iε p,( ) 1
iε µ � p( )– Σ iε( )–+
--------------------------------------------------,=

where Σ(iε) is the local contribution to self-energy from
the DMFT. For this problem, we have a Ward identity
similar to (19) (see the Appendix in [24]),

(21)

where we set

(22)

Thus, using (19) and (21) in (18), we obtain the final
expression for γiε(iω, q = 0) as

(23)

Then (15) reduces to

(24)

Analytic continuation to real frequencies is obvious;
using (15) and (24) in (13), we can write the final
expression for the real part of dynamic (optical) con-
ductivity as

(25)

Thus, we have greatly simplified our problem. To
calculate the dynamic conductivity in the DMFT + Σ
approximation, we only have to solve a single-particle

G iε iω+ p,( )
p

∑ G iε p,( )
p

∑–

=  Φiε
0 iω q = 0,( ) Σ iε iω+( ) Σ iε( )– iω–[ ]
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∑=
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Fig. 4. Effective vertex γi�(iω, q = 0) used in calculations of
conductivity.
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problem as described by the DMFT + Σ procedure
above to determine self-consistent values of local self-
energies Σ(ε±), while the nontrivial contribution of
impurity scattering are to be included via (16), which is
to be calculated in some approximation, taking only
interaction with impurities (random scattering) into
account, but using the bare Green functions of form
(20), which include local self-energies that have
already been determined via the general DMFT + Σ
procedure. Actually, (25) also provides an effective
algorithm to calculate dynamic conductivity in the stan-
dard DMFT (neglecting impurity scattering), because
(16) is then easily calculated from a simple loop dia-
gram, determined by two Green functions and free sca-
lar vertices. As usual, there is no need to calculate ver-
tex corrections within the DMFT itself, as was first
proved considering the loop with vector vertices [7, 8].
Obviously, Eq. (25) effectively interpolates between
the case of strong correlations without disorder and the
case of pure disorder, without Hubbard correlations,
which is of major interest to us. In what follows, we see
that calculations based on Eq. (25) give a reasonable
overall picture of MIT in the Anderson–Hubbard
model.

3.2. Self-Consistent Equations for the Generalized 
Diffusion Coefficient and Conductivity

To calculate the optical conductivity, we need to

know the basic block (iω, q) entering (16) or, more
precisely, the appropriate functions analytically contin-

ued to real frequencies: (ω, q) and (ω, q),

which in turn define (ω) and (ω) entering (25)
and are defined by obvious relations similar to (16):

Φiε
0

Φε
0RA Φε

0RR

φε
0RA φε

0RR

(26)

(27)

By definition, we have (with p± = p ± q/2)

(28)

shown diagrammatically in Fig. 5. Here, the Green
functions GR(ε+, p+) and GA(ε–, p–) are defined by ana-
lytic continuation (iε  ε ± iδ) of Matsubara Green
functions (3) determined via our DMFT + Σ algorithm
(4)–(9), while the vertices ΓRA(ε–, p–; ε+, p+) and
ΓRR(ε−, p–; ε+, p+) contain all vertex corrections due to
impurity scattering.

The most important block (ω, q) can be calcu-
lated using the basic approach of the self-consistent
theory of localization [14–19] with appropriate exten-
sions, taking the role of the local Hubbard interaction
into account using the DMFT + Σ approach. The only
important difference from the standard approach is that
the self-consistent theory equations are derived using

(29)

which contains DMFT contributions ΣR, A(ε) in addition
to the impurity scattering contained in

(30)

where γ(ε) = π∆2N(ε) and N(ε) is the DOS renormalized
by the Hubbard interaction, given in the DMFT + Σ
approach by the usual expression

(31)

Following all the usual steps of the standard deriva-
tion [14–19], we obtain the diffusion-like (at small ω
and q) contribution to (ω, q) as

, (32)
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where an important difference from the single-particle
case is contained in

(33)

which replaces the usual ω term in the denominator of

the standard expression for (ω, q). On general
grounds, it is clear that in the metallic phase as ω 
0, we have ∆ΣRA(ω = 0) = 2iImΣ(ε) ~ max{T2, ε2},
reflecting the Fermi-liquid behavior of DMFT (con-
served by elastic impurity scattering). At finite T, this
leads to the usual phase decoherence due to electron–
electron scattering [1, 4]. The generalized diffusion
coefficient D(ω) should be determined by solving the
basic self-consistency equation introduced below.

Using (32) in (26), we easily obtain

(34)

Then using (34) in (25) with ω  0 and T = 0, we
obtain just the usual Einstein relation for the static con-
ductivity:

(35)

All contributions form the Hubbard interaction are
reduced to renormalization of the DOS at the Fermi
level and of the diffusion coefficient D(0).

It follows that (25) reduces to

(36)

where the second term can actually be neglected at

small ω, or just calculated from (27) with (ω, q)
given by the usual “ladder” approximation (A.10).

We now formulate our basic self-consistent equa-
tion determining the generalized diffusion coefficient
D(ω). We again follow all the usual steps of the self-
consistent theory of localization (for details see Appen-
dix A), taking into account the form of our single-parti-
cle Green function (29) and not restricting analysis to
the small-ω limit. We can then write the generalized
diffusion coefficient as

, (37)

where d is the spatial dimensionality, the average veloc-
ity 〈v〉 is defined in (A.6) (to a good approximation, it
is just the Fermi velocity), and the relaxation kernel
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M(ω) satisfies the self-consistency equation, similar to
that derived in [14–19] using “maximally crossed” dia-
grams for the irreducible impurity scattering vertex
(built with Green functions (29)):

(38)

with

(39)

and (ω) = (ε+) – (ε–) is due to impurity
scattering. It is important to stress once again that there
are no contributions to this equation due to vertex cor-
rections determined by the local Hubbard interaction.
Using definition (37), we can rewrite Eq. (38) as a self-
consistent equation for the generalized diffusion coeffi-
cient itself:

(40)

which should be solved in conjunction with our
DMFT + Σ loop (3)–(9). Due to the limitations of dif-
fusion approximation, summation over q in (40) should
be restricted to

, (41)

where l = 〈v〉/2γ(0) is the elastic mean-free path and pF
is the Fermi momentum [17, 19].

Solving (40) for different sets of parameters of our
model and using it in (36) with regular contributions
from (A.10), we can calculate the dynamic (optical)
conductivity in different phases of the Anderson–Hub-
bard model.

4. RESULTS AND DISCUSSION

We performed extensive numerical calculations for
a simplified version of the three-dimensional Ander-
son–Hubbard model on a cubic lattice with the semiel-
liptic DOS of the bare band with a width of W = 2D:

(42)

The DOS is always given in units of the number of
states per energy interval, per lattice cell volume a3 (a is
lattice spacing), and per spin. Some related technical
details are given in Appendix B.
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We mostly concentrate on the half-filled case,
although some results for finite dopings are also pre-
sented. The Fermi level is always placed at zero energy.

As the impurity solver of DMFT, we used the reli-
able numerically exact method of a numerical renor-
malization group (NRG) [25–27]. Calculations were
performed for temperatures T ~ 0.001D, which effec-
tively makes temperature effects in the DOS and con-
ductivity negligible. The discretization parameter of the
NRG was always Λ = 2, the number of low energy
states after truncation was 1000, the cutoff was near the
Fermi energy [1–6], and the broadening parameter
b = 0.6.

We present only a fraction of the most typical results
in what follows.

4.1. Evolution of the DOS

Within the standard DMFT approach, the DOS of
the half-filled Hubbard model has a typical three-peak
structure: a narrow quasiparticle band (central peak)
develops at the Fermi level, with wider upper and lower
Hubbard bands forming at ε ~ ±U/2. The quasiparticle
band narrows further with an increase in U in the metal-
lic phase, vanishing at the critical value Uc2 ≈ 1.5W, sig-
nifying the Mott–Hubbard MIT with a gap opening at
the Fermi level [7, 8, 27].

In Fig. 6, we present our DMFT + Σ results for the
DOS, obtained for U = 2.5D = 1.25W, typical for a cor-
related metal without disorder, for different degrees of
disorder ∆, including rather large values, actually trans-
forming the correlated metal to a correlated Anderson
insulator (see Section 4.2.). As may be expected, we
observe typical widening and damping of the DOS by
disorder.

More unexpected are the results obtained for values
of U typical for a Mott insulator without disorder, as
shown in Fig. 7 for U = 4.5D = 2.25W. We see the res-

toration of the central peak (quasiparticle band) in the
DOS as disorder increases, transforming the Mott insu-
lator to either a correlated metal or a correlated Ander-
son insulator. Similar behavior of the DOS was recently
obtained in [13], but in our calculations the presence of
distinct Hubbard bands was already observed for rather
large values of disorder, with no signs of vanishing of
the Hubbard structure of the DOS, which was observed
in [13]. This is probably due to the very simple nature
of our approximation for the DOS under disordering,
although we must stress that this difference may also be
due to another model of disorder used in [13] (a flat dis-
tribution of �i in (1) instead of our Gaussian case (2)).
Although unimportant, in general, for the physics of the
Anderson transition, the type of disorder may be signif-
icant for the DOS behavior.

It is well known that the hysteresis behavior of the
DOS is obtained for the Mott–Hubbard transition if
DMFT calculations are performed with U decreasing
from the insulating phase [8, 27]. The Mott insulator
phase survives for values of U well inside the correlated
metal phase, obtained with an increase in U. The metal-
lic phase is restored at Uc1 ≈ 1.0W. The values of U in
the interval Uc1 < U < Uc2 are usually considered as
belonging to the coexistence region of the metallic and
(Mott) insulating phases, with the metallic phase being
thermodynamically more stable [8, 27, 29].

In Fig. 8, we present our typical data for the DOS
with different disorder for the same value of U = 2.5D =
1.25W as in Fig. 6, but for the hysteresis region,
obtained by decreasing U from the Mott insulator
phase. We again observe the restoration of the central
peak (quasiparticle band) in the DOS under disorder-
ing. We also note the peculiar form of the DOS around
the Fermi level during this transition: a narrow energy
gap is conserved until it is closed by disorder, and a
central peak is formed from two symmetrical maxima
in the DOS merging into the quasiparticle band. This
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resembles similar behavior observed in the periodic
Anderson model [8]. This effect was apparently unno-
ticed in previous calculations of the DOS in the coexist-
ence region [27] (in the absence of disorder); in our
case, it was obtained mainly due to our use of a very
fine mesh of values of the disorder parameter ∆.

The physical reason for the rather unexpected resto-
ration of the central (quasiparticle) peak in the DOS is
in fact clear. The controlling parameter for its appear-
ance or disappearance in DMFT is actually the ratio of
the Hubbard interaction U and the bare bandwidth W =
2D. Under disordering, we obtain the new effective
bandwidth Weff (in the absence of the Hubbard interac-
tion), which increases with disorder, while the semiel-
liptic form of the DOS, with well-defined band edges,
is preserved in self-consistent Born approximation (9).
This leads to a decrease in the ratio U/Weff , which
induces the reappearance of the quasiparticle band in
our model. This is illustrated in more detail in
Section 4.3, where our DOS calculations within the
DMFT + Σ approach for a wide range of parameters are
used to study the phase diagram of the Anderson–Hub-
bard model.

4.2. Dynamic Conductivity: Mott–Hubbard
and Anderson Transitions

The real part of dynamic (optical) conductivity was
calculated for different combinations of the parameters
of our model directly from Eqs. (36), (A.9), (A.10), and
(40) using the results of DMFT + Σ loop (3)–(9) as an
input. The conductivity values are given below in natu-
ral units of e2/�a (a is the lattice spacing).

In the absence of disorder, evidently, we reproduce
the results of the standard DMFT approach [7, 8] with
the dynamic conductivity characterized in general by
the usual (metallic) Drude-like peak at zero frequency
and a wide absorption maximum at ω ~ U, correspond-
ing to transitions to the upper Hubbard band. With an

increase in U, the Drude peak decreases and vanishes at
the Mott transition, when only transitions through the
Mott–Hubbard gap contribute. Introduction of disorder
leads to qualitative changes in the frequency depen-
dence of conductivity. In what follows, we mainly show
the results obtained for the same values of U and ∆ that
were used above to illustrate the DOS behavior.

In Fig. 9, we present the real part of dynamic (opti-
cal) conductivity for the half-filled Anderson–Hubbard
model for different degrees of disorder ∆, and U =
2.5D, typical for a correlated metal. Transitions to the
upper Hubbard band at ω ~ U are practically unobserv-
able in these data, but it can clearly be seen that the
metallic Drude peak at zero frequency is widened and
suppressed, gradually transformed into a peak at finite
frequencies due to effects of Anderson localization. The
Anderson transition occurs at ∆c ≈ 0.74D = 0.37W
(which corresponds to curve 3 in all our graphs, includ-
ing those for DOS). We note that this value is actually
dependent on the value of cutoff (41), which is defined
up to a constant on the order of unity [17, 19]. Naive
expectations might lead to the conclusion that a narrow
quasiparticle band at the Fermi level, which forms in
the general case of a highly correlated metal, may be
localized much more easily than the typical conduction
band. We see, however, that these expectations are
wrong and that this band is localized only at strong
enough disorder ∆c ~ D, just as for the whole conduc-
tion band of the width ~W.

This is in accordance with the previous analysis of
localization in a two-band model [30].

More important is the fact that in the DMFT + Σ
approximation, the value of ∆c is independent of U
because all interaction effects enter Eq. (40) only via
∆ΣRA(ω)  0 as ω  0 (at T = 0) and hence interac-
tion drops out at ω = 0. This is actually the main defi-
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ciency of our approximation, occurring because we
neglect interference effects between the interaction and
disorder scattering. An important role of these interfer-
ence effects has been known for a long time [1, 4].
However, despite the neglect of these effects, we are
able to produce a physically sound interpolation
between the two main limits of interest, the pure Ander-
son transition due to disorder and the Mott–Hubbard
transition due to strong correlations. We thus consider
it a reasonable first step to the future complete theory of
MIT in strongly correlated disordered systems.

In Fig. 10, we present the real part of dynamic (opti-
cal) conductivity for different degrees of disorder ∆,
and U = 4.5D typical for a Mott–Hubbard insulator. In
the inset, we show our data for small frequencies,
which allow clear distinction of different types of con-
ductivity behavior, especially close to the Anderson
transition or in the Mott insulator phase. In this figure,
we clearly see the contribution of transitions to the
upper Hubbard band at ω ~ U. More importantly, we
observe that an increase in disorder produces finite con-
ductivity within the frequency range of the Mott–Hub-
bard gap, which correlates to the appearance of the qua-
siparticle band (central peak) in the DOS within this
gap, as shown in Fig. 7. In the general case, this con-
ductivity is metallic (finite in the static limit ω = 0) for
∆ < ∆c; for ∆ > ∆c , at small frequencies, we obtain
Reσ(ω) ~ ω2, which is typical of an Anderson insulator
[14–19]. We note that due to a finite internal accuracy
of NRG numerics, small but finite spurious contribu-
tions to ImΣR, A(ε = 0) always appear [27] and formally
increase with U. These contributions are all but irrele-
vant in calculating the conductivity in the metallic state.
However, in an Anderson insulator, these spurious
terms contribute via  in Eq. (40) and lead to unphys-ω̃

ical finite dephasing effects at ω = 0 (or T = 0), which
can simulate a small finite static conductivity. To
exclude these spurious effects, we had to make appro-
priate subtractions in our data for ImΣR, A(ε) at ε = 0.

Rather unusual is the appearance of a low-frequency
peak in Reσ(ω) even in the metallic phase. It occurs
because of weak localization effects, as can be clearly
seen from Fig. 11, where we compare the real part of
dynamic conductivity for different degrees of disorder
∆ and U = 1.5D, obtained via our self-consistent
approach (taking localization effects into account via
“maximally crossed” diagrams) with that obtained

using the ladder approximation for (ω, q) (similar
to (A.10)), which neglects all localization effects. It is
clearly seen that in this simple approximation, we just
obtain the usual Drude-like peak at ω = 0, while
accounting for localization effects produces a peak in
Reσ(ω) at low (finite) frequencies. The metallic state is
defined [2] by the finite value of zero temperature con-
ductivity at ω = 0.

Up to now, we have presented only conductivity
data obtained with an increase in U from the metallic to
the (Mott) insulating phase. As U decreases from the
Mott insulator phase, a hysteresis of conductivity is
observed in the coexistence region, defined (in the
absence of disorder, ∆ = 0) by Uc1 < U < Uc2. Typical
data are shown in Fig. 12, where we present the real
part of dynamic conductivity for different degrees of
disorder ∆ and U = 2.5D, obtained from the Mott insu-
lator phase with decreasing U, which should be com-
pared with the data in Fig. 9. Transition to the metallic
state via the closure of a narrow gap, “inside” a much
wider Mott–Hubbard gap, is clearly seen, which corre-
lates with the DOS data in Fig. 8.
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4.3. Phase Diagram of the Half-Filled
Anderson–Hubbard Model

The phase diagram of a half-filled Anderson–Hub-
bard model was studied in [13] using the approach
based on direct DMFT calculations for a set of random
realizations of site energies �i in (1) with subsequent
averaging to obtain both the standard average DOS and
the geometrically averaged local DOS, which was used
to determine the transition to the Anderson insulator
phase. Here, we present our results for the zero-temper-
ature phase diagram of the half-filled paramagnetic
Anderson–Hubbard model, obtained from extensive
calculations of both the average DOS and dynamic
(optical) conductivity in the DMFT + Σ approximation.
We note that conductivity calculations are the most
direct way to distinguish between metallic and insulat-
ing phases [2].

Our phase diagram in the disorder–correlation
(∆, U)-plane is shown in Fig. 13. The Anderson transi-
tion line ∆c ≈ 0.37W = 0.74D was determined as the
value of disorder for which the static conductivity
becomes zero at T = 0. The Mott–Hubbard transition
can be determined either via the disappearance of the
central peak (quasiparticle band) in the DOS or from
the conductivity, e.g., from the closure of the gap in
dynamic conductivity in the insulating phase, or from
vanishing of the static conductivity in the metallic
region. All these methods were used, and the corre-
sponding results are shown for comparison in Fig. 13.

We have already stressed that the DMFT + Σ
approximation gives the universal (U-independent)
value of ∆c . This is due to neglect of the interference
between disorder scattering and Hubbard interaction,
and it leads to the main (over)simplification of our
phase diagram, compared with that obtained in [13].
We note that direct comparison of our critical disorder

value with those of [13] is complicated by different
types of random site–energy distributions used here
(Gaussian) and in [13] (rectangular). As a rule of thumb
(cf. the second reference in [16]), our Gaussian value of

∆c should be multiplied by  to obtain the critical
disorder value for the rectangular distribution. This
gives ∆c ≈ 1.28, in rather good agreement with the value
of ∆c(U = 0) ≈ 1.35W in [13], justifying our choice of
cutoff in (41).

The influence of disorder scattering on the Mott–
Hubbard transition is highly nontrivial and in some
respects is in qualitative agreement with the results in
[13]. The main difference is that our data indicate the
survival of Hubbard band structures in the DOS even in
the limit of rather large disorder, while it was claimed
in [13] that these disappear. Also we obtain the coexist-
ence region, which smoothly widens with an increase in
disorder and does not disappear at a critical point, as in
[13]. The borders of our coexistence region, which in
fact define the boundaries of the Mott insulator phase
obtained with increasing or decreasing U, are deter-
mined by the lines Uc1(∆) and Uc2(∆) shown in Fig. 13,
which are obtained from the simple equation

(43)
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12

Uc1 c2, ∆( )
Weff

-----------------------
Uc1 c2,

W
--------------=

Weff W 1 16
∆2

W2
-------+ ,=

ω/2D

Reσ

U/2D = 1.25
∆/2D = 0

1

0.2

20

0.4

0.6

0.8

0.11

0.16

0.18

12

3

4

Fig. 12. Real part of dynamic conductivity of the half-filled
Anderson–Hubbard model for different degrees of disorder
∆ and U = 2.5D, obtained from a Mott insulator with
decreasing U.

0.5

0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.00

0.2

0.3

0.4

0.5

0.6

0.7

U/2D

∆/2D

Correlated Anderson insulator

Correlated metal

Mott insulator

DOS

Conductivity

DOS

Conductivity

Uc1(∆)

Uc2(∆)

∆c

Fig. 13. Zero-temperature phase diagram of the paramag-
netic Anderson–Hubbard model. Boundaries of the Mott
insulator phase Uc1, c2(∆) are shown as obtained from
Eq. (45); different symbols show values calculated from
either the DOS or the conductivity behavior. The dotted line
defines the boundary of the coexistence region obtained
with decreasing U from the Mott insulator phase. The
Anderson transition line is given by the calculated value of
∆c = 0.37.



592

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 106      No. 3      2008

KUCHINSKII et al.

which is the effective bandwidth in the presence of dis-
order, calculated for U = 0 in self-consistent Born
approximation (9). Thus, the boundaries of the coexist-
ence region are given by

(45)

which are explicitly shown in Fig. 13 by dotted and
solid lines, defining the boundaries of the Mott insula-
tor phase. Numerical results for the disappearance of
the quasiparticle band (central peak) in the DOS, as
well as points following from a qualitative change in

Uc1 c2, ∆( ) Uc1 c2, 1 16
∆2

W2
-------+ ,=

the conductivity behavior, are shown in Fig. 13 by dif-
ferent symbols demonstrating very good agreement
with these lines, confirming the ratio in (43) as the con-
trolling parameter of the Mott transition in the presence
of disorder.

The most striking result of our analysis (also quali-
tatively demonstrated in [13]) is the possibility of the
metallic state being restored from the Mott–Hubbard
insulator with an increase in disorder. This is clear from
the phase diagram and is nicely demonstrated by our
data for (static) conductivity shown in Fig. 14 for sev-
eral values of U > Uc2 and disorder values ∆ < ∆c . In the
inset to Fig. 14, we also illustrate the static conductivity
hysteresis observed in the coexistence region of the
phase diagram, obtained with U decreasing from the
Mott insulator phase.

4.4. Doped Mott Insulator

All results presented above were obtained in the
half-filled case. Here, we briefly consider deviations
from half-filling. In the metallic phase, doping from
half-filling does not produce any qualitative changes in
the conductivity behavior, which only demonstrates the
Anderson transition with an increase in disorder. We
therefore concentrate on the case of a doped Mott insu-
lator. Strictly speaking, in the non-half-filled case, we
never obtain a Mott–Hubbard insulator in the DMFT
method at all. In Fig. 15, we show the DOS of the
Anderson–Hubbard model with an electron concentra-
tion of n = 0.8 for different degrees of disorder ∆ and
U = 6.0D, representing a typical case of the doped Mott
insulator. The quasiparticle band overlaps with the
lower Hubbard band and is smeared by disorder, which
is precisely the expected behavior in the metallic state.
Nothing spectacular happens to conductivity either,
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which is shown for the same set of parameters in
Fig. 16. It shows the typical behavior associated with
the disorder-induced Anderson MIT. Small signs of
transitions to the upper Hubbard band can be seen for
ω ~ U (see the inset to Fig. 16). Therefore, a doped
Mott insulator with disorder is qualitatively quite simi-
lar to the disordered correlated metal discussed above.

5. CONCLUSIONS

We used the generalized DMFT + Σ approach to cal-
culate the basic properties of the disordered Hubbard
model. The main advantage of our method is its ability
to provide a relatively simple interpolation scheme
between rather well understood cases of a strongly cor-
related system (DMFT and Mott–Hubbard MIT) and of
a strongly disordered metal without Hubbard correla-
tions, undergoing an Anderson MIT. Apparently, this
interpolation scheme captures the main qualitative fea-
tures of the Anderson–Hubbard model, such as the gen-
eral behavior of the DOS and dynamic (optical) con-
ductivity. The overall picture of the zero-temperature
phase diagram is also quite reasonable and is in satis-
factory agreement with the results of more elaborate
numerical work [13]. Actually, our DMFT + Σ
approach is much less time-consuming than more
direct numerical approaches, such as that in [13], and in
fact allows one to calculate all basic (measurable) phys-
ical characteristics of the Anderson–Hubbard model.

The main shortcoming of our approach is its neglect
of interference effects of disorder scattering and Hub-
bard interaction, which leads to the independence of the
Anderson MIT critical disorder ∆c from the interaction
U. The importance of interference effects has been
known for a long time [1, 4], but its consideration was
only partially successful in the case of weak correla-
tions. At the same time, the neglect of these interference
effects is the major approximation of the DMFT + Σ
method, allowing the derivation of a rather simple and
physical interpolation scheme and an analysis of the
strong-correlation limit. Attempts to include interfer-
ence effects in our scheme have been postponed for
future study.

Another simplification is, of course, our assumption
of a nonmagnetic (paramagnetic) ground state of the
Anderson–Hubbard model. The importance of mag-
netic (spin) effects in strongly correlated systems is
well known, as is the problem of competition of ground
states with different types of magnetic ordering [8]. The
importance of disorder in studying the interplay of
these possible ground states is also quite evident. These
may also be the subject of our future work.

Despite these shortcomings, our results seem very
promising, especially concerning the influence of
strong disorder on the Mott–Hubbard MIT and the
overall form of the phase diagram at zero temperature.
The changes in the phase diagram at finite temperatures
will be the subject of further studies. Nontrivial predic-

tions of our approach, such as the general behavior of
dynamic (optical) conductivity and, especially, the pre-
diction of a disorder-induced Mott-insulator-to-metal
transition can be the subject of direct experimental ver-
ification.
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APPENDIX A

Equation for Relaxation Kernel

We follow the standard approach of the self-consis-
tent theory of localization [14–19], taking the DMFT
contributions ΣR, A(ε) into account in single-particle
Green functions (29) and not restricting ourselves to the
usual limit of small ω.

We consider the Bethe–Salpeter equation relating

the full two-particle Green function (ω, q) to the

irreducible vertex (ω, q), accounting only for
impurity scattering in vertices, but built upon Green
functions given by (29). This equation can be written as
a generalized kinetic equation in the form [14–19]

(A.1)

where ∆Gp = GR(ε+, p+) – GA(ε–, p–). The main differ-
ence with a similar equation in [14–19] is the replace-
ment ω  .

We sum both sides of (A.1) and of the same equation
multiplied by  ·  (where  = p/|p | and  = q/|q | are
appropriate unit vectors) over p and p', with the exact
Ward identity [14]

(A.2)
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taken into account and with the approximate represen-
tation (cf. [14])

(A.3)

where (ω, q) = (ω, q) is our loop (28)

and (ω, q) = (ω, q). An impor-
tant difference from a similar representation in [14–19]
is that (A.3) is not limited to small ω.

Now (as q  0), we obtain the closed system of

equations for both (ω, q) and (ω, q)

(A.4)

where the relaxation kernel is given by

(A.5)

with the average speed 〈v〉 determined as

(A.6)

From (A.4), we immediately find that

(A.7)

which for small ω reduces to (32) with the generalized
diffusion coefficient given by (37).

Using an approximation of maximally crossed dia-

grams for the irreducible vertex (ω, q) and intro-
ducing the standard self-consistency procedure in [14–
19] (i.e., replacing the Drude diffusion coefficient in the
Cooperon contribution to the irreducible vertex with
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the generalized one determined by (37)), we obtain our
expression (38) for the relaxation kernel from (A.5).

Our Eq. (40) for the generalized diffusion coeffi-
cient (which is complex in general) reduces precisely to
the usual transcendental equation. It was solved by iter-
ations for each value of , taking into account that for
d = 3 and the cutoff given by (41), the sum entering (40)
reduces to

(A.8)

For finite frequencies ω, we use (q, ) given
by (A.7), and hence expression (25) for the dynamic
conductivity should be rewritten as

(A.9)

The second term was here taken in the ladder approxi-
mation:

(A.10)

This contribution (nonsingular at small ω) is irrelevant
for the conductivity as ω  0, but leads to finite cor-
rections with increasing ω. Equation (A.9) is our final
result, which was analyzed numerically in a wide range
of frequencies (for small ω), it reduces to (36)).
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APPENDIX B

Bare Electron Dispersion and Velocity

We consider the bare energy band with semielliptic
DOS (42). Assuming an isotropic electron spectrum
�(p) = �(|p |) ≡ �(p) and equating the number of states in
a spherical layer of momentum space to the number of
states in the energy interval [�, � + d�], we obtain a dif-
ferential equation determining the energy dispersion
�(p):

(B.1)

For a quadratic energy dispersion �(p) close to the
lower band edge, we obtain the initial condition for
Eq. (B.1) as p  0 and �  –D. Then we obtain

(B.2)

with ϕ = arccos(�/D) and the momentum in units of the
inverse lattice spacing. Equation (B.2) implicitly
defines a “bare” energy dispersion �(p) for the elec-
tronic part of the spectrum � ∈ [–D, 0].

For a half-filled band, we easily determine the Fermi
momentum as

(B.3)

We also need the electron speed |vp | = |∂�(p)/∂p | =
∂�(p)/∂p, which enters expression (A.6) for the average
speed. From (B.1), we obtain

(B.4)

where p is given by Eq. (B.2).
To obtain a quadratic dispersion for hole part of the

spectrum (� ∈ [0, D]) close to the upper band edge
(�  D), we introduce the hole momentum  =
2pF − p and write

(B.5)

similarly to (B.1). Letting   0 at the upper band
edge �  0, we obtain

(B.6)

We then obtain the speed at the hole part of the spec-
trum as

(B.7)

Equations (B.4) and (B.7) determine the energy depen-
dence of |vp |. It is easily seen that the speed is even in
energy and becomes zero at the band edges. These

4π p2dp
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N0 �( )
--------------.= = =

expressions allow passing from momentum summation
(e.g., in Eq. (A.6)) to energy integration.

Note added in proof. Further numerical work has
shown that the tendency of Uc2(∆) data points in Fig. 13
to deviate upwards from the “universal” curve given by
Eq. (45) increases for large values of U, with these data
points approaching the Uc1(∆) curve. However, up to
U/2D ~ 10, we do not observe the “critical point” dis-
covered in Ref. [13].

December 27, 2007
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1. INTRODUCTION

Many years ago, Kubo [1] proved the general sum
rule for the diagonal dynamic (frequency-dependent)
conductivity 

 

σ

 

(

 

ω

 

), which holds for any system of
charged particles irrespective of interactions, tempera-
ture, or statistics. This sum rule is usually written as

, (1)

where 

 

r

 

 specifies the type of charged particles and 

 

n

 

r

 

and 

 

e

 

r

 

 are the respective densities and charges.

For the system of electrons in a solid, Eq. (1) takes
the form

, (2)

where 
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 is the density of electrons and  = 4

 

π

 

ne

 

2

 

/

 

m

 

is the plasma frequency.

In any real experiment, however, we are not dealing
with an infinite range of frequencies. If we consider
electrons in a crystal and limit ourself to the electrons
in a particular (e.g., conduction) band, neglecting inter-
band transitions, the general sum rule (2) reduces to
Kubo’s single-band sum rule [1, 2]:

, (3)
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where 

 

ε

 

p

 

 is the bare dispersion defined by the effective
single-band Hamiltonian and 

 

n

 

p

 

 is the momentum dis-
tribution function (occupation number), which is in
general defined by the interacting retarded electron
Green’s function 

 

G

 

R

 

(

 

ε

 

, 

 

p

 

) [3, 4]:

, (4)

where 

 

n

 

(

 

ε

 

) is the usual Fermi distribution. In Eq. (3), 

 

ω

 

c

 

represents an ultraviolet cutoff, a frequency that is
assumed to be larger than the bandwidth of the low-
energy band but smaller than the gap to other bands.
The function 

 

f

 

(

 

ω

 

c

 

) accounts for the cutoff dependence,
which arises from the presence of the Drude spectral
weight beyond 

 

ω

 

c

 

 [5]; this function is equal to unity if
we formally set 

 

ω

 

c

 

 to infinity and ignore the interband
transitions.

Although the general sum rule is certainly pre-
served, the optical integral 

 

W

 

(

 

ω

 

c

 

, 

 

T

 

) is not a conserved
quantity because both 

 

f

 

(

 

ω

 

c

 

) [5] and 

 

n

 

p

 

 [4, 6] depend on
the temperature 

 

T 

 

and the details of interactions [3].
This dependence of 

 

W 

 

on 

 

T 

 

and other parameters of the
system under study has been termed sum rule violation.
It was actively studied experimentally, especially in
cuprates, where pronounced anomalies were observed
in both the 

 

c 

 

axis and in-plane conductivity, in normal
as well as superconducting states [8–13].

The finite cutoff effects were extensively studied in
several theoretical papers on the 

 

T 

 

dependence of the
optical integral [4, 5, 7]. In [5, 7], the effect of the cutoff
was considered in the context of electrons coupled to
phonons. In a simple Drude model,

np
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and the sum rule can only be violated due to the pres-
ence of 

 

f

 

(

 

ω

 

c

 

). Integrating over 

 

ω

 

 and expanding for

 

ω

 

c

 

τ

 

 

 

�

 

 1, we can see that

(5)

For the infinite cutoff, 

 

f

 

(

 

ω

 

c

 

) = 1 and 

 

W

 

 = , but for
a finite cutoff, 

 

f

 

(

 

ω

 

c

 

) contains a term proportional to
1/

 

ω

 

c

 

τ

 

. If 1/

 

τ

 

 changes with 

 

T

 

, then we obtain a sum rule
violation even if 

 

ω

 

pl

 

 is independent of 

 

T

 

 [5, 7]. Other
aspects of the cutoff dependence were recently dis-
cussed in detail in [2].

In this paper, we neglect the cutoff effects in the
optical integral from the outset. Our goal is to study the
dependence of 

 

W

 

 on 

 

T

 

 and a number of interaction
parameters that determine the electron properties of
strongly correlated systems, such as cuprates. In this
context, we discuss the problem of a possible violation
of the optical sum rule in the normal (nonsuperconduct-
ing) state of strongly correlated electronic systems,
using our recently proposed DMFT + 

 

Σ

 

 approach [14–
16] applied to dynamic conductivity in two typical
models of such systems: the hot spot model of the
pseudogap state [19] and the disordered Anderson–
Hubbard model [20]. Our goal is to check the consis-
tency of the DMFT + 

 

Σ approach applied to calcula-
tions of optical conductivity as well as to demonstrate
rather important dependences of the optical integral W
not only on T but also on such important characteristics
as the pseudogap width, disorder, and correlation
strength, which makes the (single-band) sum rule vio-
lation rather ubiquitous in strongly correlated systems,
even if the cutoff effects are neglected.

2. OPTICAL SUM RULE IN THE GENERALIZED 
DMFT + Σ APPROACH

A characteristic feature of the general sum rule
expressed by Eqs. (3) and (4) is that the integral W over
frequency in the left-hand side is calculated based on a
two-particle property (the dynamic conductivity, which
is determined by the two-particle Green’s function,
with appropriate vertex corrections in general), but the
right-hand side is determined by single-particle charac-
teristics, such as the bare dispersion and occupation
number (4) (determined by a single-particle Green’s
function). Thus, checking the validity of this sum rule,
we are in fact thoroughly checking the consistency of
any theoretical approach used in our model calcula-
tions.

Our generalized DMFT + Σ approach [14–16], sup-
plementing the standard DMFT [17, 18] with an addi-
tional “external” self-energy Σ (due to any kind of inter-
action outside the scope of the DMFT, which is exact
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ωpl
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ωcτ
---------–⎝ ⎠
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ωpl
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only in infinitely many dimensions), provides an effec-
tive method to calculate both single-particle and two-
particle properties [19, 20]. A consistency check for
this new approach is obviously of great interest in itself.
We also see in what follows that it gives a kind of a new
insight into the sum rule violation problem.

2.1. Pseudogap State: Hot Spot Model

Pseudogap phenomena in strongly correlated sys-
tems have a substantial spatial length scale depen-
dence [21]. To merge pseudogap physics and strong
electron correlations, we have generalized the DMFT
[17, 18] by including the dependence on the correla-
tion length of pseudogap fluctuations via an additional
(momentum-dependent) self-energy Σp(ε). This self-
energy Σp(ε) describes nonlocal dynamic correlations
induced either by short-ranged collective SDW-like
antiferromagnetic spin or CDW-like charge fluctua-
tions [22, 23].

To calculate Σp(ε) in the two-dimensional hot spot
model [21] for an electron moving in the random field
of pseudogap fluctuations (considered to be static and
Gaussian) with dominant scattering momentum trans-
fers on the order of the characteristic vector Q = (π/a,
π/a) (where a is the lattice spacing), we used [15, 16]
the recursion procedure proposed in [22, 23], which is
controlled by the two main physical characteristics of
the pseudogap state: the pseudogap amplitude ∆, which
characterizes the energy scale of the pseudogap, and the
inverse correlation length κ = ξ–1 of short-range SDW
(CDW) fluctuations. Both parameters ∆ and ξ, deter-
mining pseudogap behavior can, in principle, be calcu-
lated from the relevant microscopic model [15].

The weakly doped one-band Hubbard model with a
repulsive Coulomb interaction U on a square lattice
with nearest and next-to-nearest neighbor hopping was
numerically investigated within this generalized
DMFT + Σ self-consistent approach, as described in
detail in [14–16].

Briefly, the DMFT+ Σ self-consistent loop is as fol-
lows. First, we guess some initial local (DMFT) elec-
tron self-energy Σ(ε). Second, we compute the
p-dependent external self-energy Σp(ε), which is in
general a functional of Σ(ε). Then, neglecting interfer-
ence effects between the self-energies (which is in fact
the major assumption of our approach), we can set up
and solve the lattice problem of DMFT [17, 18].
Finally, we define an effective Anderson single-impu-
rity problem, which is to be solved by any “impurity
solver” (we mostly use the numerical renormalization
group, NRG) to close the DMFT + Σ equations.

The additive form of self-energy is in fact an advan-
tage to our approach [14–16]. It allows preserving the
set of self-consistent equations of the standard DMFT
[17, 18]. However, there are two distinctions from the
conventional DMFT. During each DMFT iteration, we
recalculate the corresponding p-dependent self-energy
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Σp(µ, ε, [Σ(ω)]) via an approximate scheme, taking
interactions with collective modes or order parameter
fluctuations into account, and the local Green’s func-
tion Gii(iω) is “dressed” by Σp(ε) at each step. When the
input and output Green’s functions (or self-energies)
converge to each other (with prescribed accuracy), we
consider the solution self-consistent. Physically, this
corresponds to accounting for some external (e.g.,
pseudogap) fluctuations, characterized by an important
length scale ξ, in the fermionic “bath” surrounding the
effective Anderson impurity of the usual DMFT. The
cases of strongly correlated metals and doped Mott
insulators were considered in [15, 16]. Energy disper-
sions, quasiparticle damping, spectral functions, and
ARPES spectra calculated within the DMFT + Σ
scheme all show a pseudogap effect close to the Fermi
level of the quasiparticle band.

In [19], this DMFT + Σ procedure was generalized
to calculate two-particle properties, such as the
dynamic conductivity, using the previously developed
recursion procedure for vertex corrections due to
pseudogap fluctuations [24], producing typical
pseudogap anomalies of the optical conductivity and a
dependence of these anomalies on the correlation
strength U. Below, we use the approach in [19] to inves-
tigate the sum rule in the hot spot model.

To calculate the optical integral W, we just used the
conductivity data in [19] (extended to a wider fre-
quency range needed to calculate W), while the right-
hand side of (3) was recalculated using recursion rela-
tions for Σp(ε) and the whole self-consistency DMFT +
Σ loop. All calculations were performed for a tight-
binding “bare” spectrum on the square lattice, with the
nearest-neighbor transfer integral t and the next-to-
nearest-neighbor transfer integral t '.

In Fig. 1, we present our typical data for the real part
of the conductivity (with t ' = –0.4t, t = 0.25 eV, a band
filling of n = 0.8, and a temperature of T = 0.089t) for
different values of Hubbard interaction U = 4t, 6t, 10t,
40t and a fixed pseudogap amplitude ∆ = t (at the corre-
lation length ξ = 10a). It is obvious from these data that
the optical integral W is different for all of these curves;
its value actually decreases with an increase in U (along
with damping of pseudogap anomalies [19]). However,
the single band optical sum rule in (3) is satisfied within
our numerical accuracy, as can be seen from Table 1.
The small “deficiency” in the values of W in Table 1 is
naturally due to a finite frequency integration interval
over the conductivity data in Fig. 1.

In Fig. 2, we show the real part of the optical con-
ductivity for a doped Mott insulator (at a fixed U = 40t,
t ' = –0.4t, t = 0.25 eV, and the band filling n = 0.8, T =
0.089t) for different values of the pseudogap amplitude
∆ = 0, ∆ = t, and ∆ = 2t. The correlation length is again
ξ = 10a and the band filling factor n = 0.8. The “viola-
tion” of the sum rule here is especially striking: the
optical integral obviously decreases with an increase in

∆. However, again, the single-band optical sum rule in
(3) is strictly valid, as can be seen from Table 2.

To study the details of the sum rule “violation,” i.e.,
the dependence of the optical integral W on the param-
eters of the model, we performed extensive calculations
of the appropriate dependences of the right-hand side of
Eq. (3) and the optical integral W on the temperature T,
doping, the pseudogap amplitude ∆, the correlation
length of pseudogap fluctuations ξ = κ–1, and the corre-
lation strength U. Some of the results are presented in
Figs. 3–5.

A typical dependence of the (normalized) optical
integral on the correlation strength U is shown in Fig. 3
for two values of ∆. We can see a rather significant
decrease in W with an increase in U. As regards the cor-
relation length dependence, which is shown in the inset
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2  6t
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Fig. 1. Real part of the optical conductivity for a strongly
correlated system in the pseudogap state (t ' = –0.4t, t =
0.25 eV, and T = 0.089t) in the DMFT + Σp approximation,
the U dependence. Band filling n = 0.8, pseudogap ampli-
tude ∆ = t, correlation length ξ = 10a. Conductivity is given
in units of σ0 = e2/�.

Table 1.  Single-band optical sum rule check in the hot spot
model, the U dependence. The optical integral is given in
units of e2t/�

U

4t 0.456 0.408

6t 0.419 0.387

10t 0.371 0.359

40t 0.323 0.306
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to Fig. 3, it was found to be very weak (practically neg-
ligible) in the whole region of realistic values of ∆, and
we therefore do not discuss it further. The dependence
of W on the pseudogap amplitude ∆ (for several values
of U) is shown in Fig. 4. A typical doping dependence,
which reflects just the dependence of the square of the

plasma frequency  on doping, is given in Fig. 5. In
all other cases, the change of the relevant parameters of
the model leads to a rather significant decrease in the
values of W. As regards the temperature dependence
(shown in the inset to Fig. 5), it is rather weak, qua-
dratic in T and quite similar to that found in Refs. [4].

Basically, these results show that the value of the
optical integral depends on all the major parameters of
the model and, in this sense, its value is not universal
and hence the optical sum rule is significantly “vio-
lated” if we restrict ourself to a single-band contribu-
tion.

ωpl
2

2.2. Disordered Anderson–Hubbard Model

In [20], we used the DMFT + Σ approximation to
calculate the density of states, the optical conductivity,
and the phase diagram of a strongly correlated and
strongly disordered paramagnetic Anderson–Hubbard
model, with a Gaussian site disorder. Strong correla-
tions were taken into account by the DMFT, while dis-
order was taken into account via the appropriate gener-
alization of the self-consistent theory of localization
[25–28]. We considered the three-dimensional system
with a semi-elliptic density of states. The correlated
metal, Mott insulator, and correlated Anderson insula-
tor phases were identified via the evolution of the den-
sity of states and dynamic conductivity, demonstrating
both Mott–Hubbard and Anderson metal–insulator
transitions and allowing the construction of the com-
plete zero-temperature phase diagram of the Anderson–
Hubbard model.

For the “external” self-energy entering the DMFT +
Σ loop, we used the simplest possible approximation
(neglecting “crossing” diagrams for disorder scatter-
ing), i.e., just the self-consistent Born approximation,
which in the case of Gaussian site-energy disorder
takes the usual form

, (6)

where ∆ now denotes the amplitude of site disorder.

Calculations of the optical conductivity are consid-
erably simplified [20] because there are no contribu-

Σ ε( ) ∆2 G ε p,( )
p
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Fig. 2. Real part of the optical conductivity for a doped Mott
insulator (U = 40t, t ' = –0.4t, t = 0.25 eV, and T = 0.089t) in
the DMFT + Σp approximation for different values of the
pseudogap amplitude ∆ = 0, ∆ = t, and ∆ = 2t. Correlation
length ξ = 10a, band filling factor n = 0.8.

Table 2.  Single-band optical sum rule check in the hot spot
model, the ∆ dependence. The optical integral is given in
units of e2t/�

∆

0 0.366 0.36

t 0.314 0.304

2t 0.264 0.252
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Fig. 3. Dependence of the normalized optical integral on the
correlation strength U in the pseudogap state (T = 0.089t, t =
0.25 eV, t ' = –0.1 eV, n = 0.8). Inset: the correlation length
dependence of the optical integral in units of e2t/�.
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tions to conductivity due to vertex corrections deter-
mined by a local Hubbard interaction. The conductivity
is essentially determined by the generalized diffusion
coefficient, which is obtained from the appropriate gen-
eralization of the self-consistency equation in [25–28],
which is to be solved in conjunction with the DMFT +
Σ loop.

In Fig. 6, we show typical results for the real part of
the dynamic conductivity of a correlated metal
described by the half-filled Anderson–Hubbard model
(with the bandwidth 2D) for different degrees of disor-
der ∆ and U = 2.5D; the results demonstrate a continu-
ous transition to the correlated Anderson insulator as
disorder increases.
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Fig. 4. Dependence of the normalized optical integral on the
pseudogap amplitude ∆ (T = 0.011t, t = 0.25 eV, t ' = –0.1 eV,
n = 0.8, κa = 0.1).
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Fig. 5. Dependence of the normalized optical integral on
hole doping in the pseudogap state. Inset: temperature
dependence (T = 0.011t, U = 4t, ∆ = t, t = 0.25 eV, t ' =
−0.1 eV, κa = 0.1).

0

0.1

0.5 1.0 2.0

ω/2D

Reσ

1

2

3

4

1.5

1 ∆/2D = 0

2 0.25

3 0.37

4 0.43

0.2

5

5 0.50
U/2D = 1.25

Fig. 6. Real part of the dynamic conductivity for the half-
filled Anderson–Hubbard model for different degrees of
disorder ∆ and U = 2.5D typical for a correlated metal.
Lines 1 and 2 are for the metallic phase, line 3 corresponds
to the mobility edge (Anderson transition), and lines 4 and
5 correspond to the correlated Anderson insulator. The con-
ductivity is in units of e2/�a.
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Again, the direct check shows that the single-band
optical sum rule in (3) is satisfied within our numerical
accuracy, as can be seen from Table 3. At the same time,
the optical integral W itself obviously changes with dis-
order.

Again, to study the details of this sum rule violation,
i.e., the dependence of W on the parameters of the
Anderson–Hubbard model, we performed detailed cal-
culations of its dependences on the temperature T, the
disorder amplitude ∆, and the correlation strength U.
Some of the results are presented in Figs. 7–9.

In Fig. 7, we show the dependence of the normalized
optical integral on U for different degrees of disorder
(for both a strongly disordered metal and a correlated
Anderson insulator). It is seen that in all cases, an
increase in the correlation strength leads to a rather

sharp decrease in W in the metallic state; this decrease
is much slower in the Mott insulator.

In Fig. 8, we present similar dependences on the dis-
order strength ∆. In the metallic state, the optical inte-
gral generally decreases as disorder increases, but the
opposite behavior is observed if we start from the Mott
insulator (obtained either with an increase in U from the
metallic state or for a reduced U in the hysteresis region
of the phase diagram [20]). We note the absence of any
significant changes in the immediate vicinity of the crit-
ical disorder ∆c/2D = 0.37, corresponding to the Ander-
son metal–insulator transition. At the same time, we
note that the most significant increase in the optical
integral occurs as the system transforms into the disor-
der-induced metallic state obtained from the Mott insu-
lator, as observed in [20].

In Fig. 9, we show the temperature dependence of
the normalized optical integral for different degrees of
disorder. In the Anderson–Hubbard model, it appears to
be significantly stronger than in the hot spot model (see
above) and decreases as disorder increases. Moreover,
in a relatively weakly correlated state, the situation is
qualitatively the same: the optical integral decreases as
T increases, but in a disordered Mott insulator, the inte-
gral increases, as can be seen from line 3 in the inset to
Fig. 9.

Again, as in the case of the pseudogap hot spot
model, these results for the Anderson–Hubbard model
clearly demonstrate that the value of the optical integral
is not universal and depends on all the major parame-

Table 3.  Single-band optical sum rule check in the Ander-
son–Hubbard model, the ∆ dependence. The optical integral
is in units of 2e2D/�a

∆/2D

0 0.063 0.064

0.25 0.068 0.07

0.37 0.06 0.056

0.5 0.049 0.05
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Hubbard interaction U. Lines 1, 2, 3—correlated metal,
transforming into Anderson insulator. Line 4—Mott insula-
tor state obtained with the growth of U from correlated
metal. Line 5—Mott insulator obtained with diminishing U
in the hysteresis region of the phase diagram.
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ters of the model; therefore the single-band optical sum
rule is strongly violated.

3. CONCLUSIONS

Based on the DMFT + Σ approach, we have studied
the single-band optical sum rule for two typical
strongly correlated systems, which are outside the
scope of the standard DMFT scheme: (i) the hot spot
model of the pseudogap state, which takes into account
important nonlocal correlations due to AFM(CDW)
short-range order fluctuations and (ii) the Anderson–
Hubbard model, which includes strong disorder effects
leading to the disorder-induced metal–insulator
(Anderson) transition alongside with the Mott transi-
tion.

We have explicitly demonstrated that the single-
band optical sum rule in (3) is satisfied for both models,
confirming the self-consistency of the DMFT + Σ
approach for calculation of two-particle properties.

However, the optical integral

entering single-band sum rule (3) is nonuniversal and
depends on the parameters of the model under consid-
eration. Most of the previous studies addressed its (rel-
atively weak) temperature dependence. Here, we have
analyzed dependences on the essential parameters of
our models, showing that these may lead to rather
strong violations of the optical sum rule. Because most
of the parameters under discussion can be varied in dif-
ferent kinds of experiments, these dependences should
be taken into account in the analysis of optical experi-
ments on strongly correlated systems.
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The recent discovery of the new superconductor
LaO

 

1 – 

 

x

 

F

 

x

 

FeAs with the transition temperature 

 

T

 

c

 

 up to
26 K [1–4] and even higher values of 

 

T

 

c

 

 = 41–55 K
in    CeO

 

1 – 

 

x

 

F

 

x

 

FeAs [5], SmO

 

1 – 

 

x

 

F

 

x

 

FeAs [6],
NdO

 

1 

 

−

 

 

 

x

 

F

 

x

 

FeAs, and PrO

 

1 – 

 

x

 

F

 

x

 

FeAs [7, 8] was recently
followed by the discovery of high-temperature super-
conductivity with 

 

T

 

c

 

 up to 38 K in potassium-doped ter-
nary iron arsenides BaFe

 

2

 

As

 

2

 

 [9] and SrFe

 

2

 

As

 

2

 

 [10],
with the further synthesis of superconducting AFe

 

2

 

As

 

2

 

(A = K, Cs, K/Sr, Cs/Sr) [11]. Relatively large single
crystals of superconducting Ba

 

1 – 

 

x

 

K

 

x

 

Fe

 

2

 

As

 

2

 

 were also
grown [12], providing a major breakthrough in the
studies of anisotropic electronic properties of FeAs-
layered superconductors.

The LDA electronic structure of LaOFeAs were cal-
culated in a number of papers (see, e.g., [13, 14, 15])
producing results that are qualitatively similar to that
first obtained for LaOFeP [16]. We have performed
LDA calculations for the whole series of ReOFeAs
(R = La, Ce, Pr, Nd, Sm) [17], demonstrating a very
weak (or absent) dependence of the electronic spectrum
on the type of the rare-earth ion Re in a rather wide
energy interval (~2 eV) around the Fermi level.

First, the LDA results for the density of states (DOS)
of BaFe

 

2

 

As

 

2

 

 were recently presented in [18, 19]. Here,
we present the results of our ab initio calculations of an
electronic structure of the newly discovered prototype
high-temperature superconductors AFe

 

2

 

As

 

2

 

 (A = Ba,
Sr) with the aim of comparing it with the previously
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discussed ReOFeAs series. We present the LDA DOS,
energy dispersions, and Fermi surfaces of these com-
pounds and briefly discuss the possible conclusions
with respect to the minimal model of the electronic
spectrum and superconductivity. Since all of the results
are quite similar for both A = Ba and A = Sr, as well as
for the whole Re series, below we present the data
mainly for A = Ba and Re = La.
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We have performed ab initio LDA calculations of the electronic structure of newly discovered prototype high-
temperature superconductors AFe

 

2

 

As

 

2

 

 (A = Ba, Sr) and compared it with the previously calculated electronic
spectra of ReOFeAs (Re = La, Ce, Pr, Nd, Sm). In all cases, we obtain almost identical densities of states in a
rather wide energy interval (up to 1 eV) around the Fermi level. Energy dispersions are also very similar and
almost two dimensional in this energy interval, leading to the same basic (minimal) model of the electronic
spectra, determined mainly by Fe 

 

d 

 

orbitals of the FeAs layers. The other constituents, such as A ions or rare-
earth Re (or oxygen states) are more or less irrelevant for superconductivity. LDA Fermi surfaces for AFe

 

2

 

As

 

2

 

are also very similar to that of ReOFeAs. This makes the more simple AFe

 

2

 

As

 

2

 

 a generic system to study the
high-temperature superconductivity in FeAs-layered compounds.

PACS numbers: 71.20.-b, 74.25.Jb, 74.70.-b
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10.1134/S0021364008140166

Crystal structure data for BaFe

 

2

 

As

 

2

 

 and LaOFeAs compounds.
Atomic positions for BaFe

 

2

 

As

 

2

 

 are Ba (0, 0, 0), Fe (0.5, 0, 0.25),
As (0, 0, 

 

z

 

) and for LaOFeAs are La (0.25, 0.25, 

 

z

 

La

 

), Fe (0.75,
0.25, 0.5), As (0.25, 0.25, 

 

z

 

As

 

), O (0.75, 0.25, 0)

Parameter BaFe

 

2

 

As

 

2

 

LaOFeAs

Group

 

I

 

4/

 

mmm P

 

4/

 

nmm

a

 

, Å 3.9090(1) 4.03533(4)

 

c

 

, Å 13.2122(4) 8.74090(9)

 

z

 

La

 

– 0.14154(5)

 

z

 

As

 

0.3538(1) 0.6512(2)

Source [9] [1]
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Fe–Fe, Å 2.764(1) 

 

×

 

 4 2.853 

 

×

 

 4

As–Fe–As 109.9(1)

 

°

 

113.6

 

°

 

109.3(1)

 

°

 

107.5

 

°



 

JETP LETTERS

 

      

 

Vol. 88

 

      

 

No. 2

 

      

 

2008

 

ELECTRONIC STRUCTURE OF PROTOTYPE 145

 

Both BaFe

 

2

 

As

 

2

 

 and LaOFeAs crystallize in a tetrag-
onal structure with the space group 

 

I

 

4/

 

mmm 

 

and

 

P

 

4/

 

nmm

 

, respectively. Both compounds are formed

from (FeAs)

 

–

 

 layers alternating with  or (LaO)

 

+

 

.
Fe

 

2+

 

 ions are surrounded by four As ions forming a tet-
rahedron. The crystal structures of BaFe

 

2

 

As

 

2

 

 and
LaOFeAs are shown in Fig. 1. The quasi two-dimen-
sional character of both compounds makes them simi-
lar to the well-studied class of superconducting copper
oxides. At 140 K, BaFe

 

2

 

As

 

2

 

 undergoes a structural
phase transition from the tetragonal (

 

I

 

4/

 

mmm

 

) to
orthorhombic (

 

Fmmm

 

) space group [20]. The same
transition takes place for the LaOFeAs system at 150 K:

 

P

 

4

 

/nmm

 

 (tetragonal)  

 

Cmma

 

 (orthorhombic) [21].
The crystallographic data for the tetragonal phase of
two compounds are shown in the table. It can be seen
that for BaFe

 

2

 

As

 

2

 

 compound the Fe–As distance is
smaller than for LaOFeAs. Therefore, one would
expect a more considerable Fe-

 

d

 

-As-

 

p

 

 hybridization for
the BaFe

 

2

 

As

 

2

 

 system in comparison with LaOFeAs
and, as a result, a wider Fe-

 

d

 

 bandwidth. The distance
between the nearest Fe atoms within FeAs layers is also
significantly smaller in BaFe

 

2

 

As

 

2

 

 as compared with the

Ba0.5
2+

 

LaOFeAs system. After the phase transition of the
BaFe

 

2

 

As

 

2

 

 system to the orthorhombic structure, the
four equal Fe–Fe distances break into two bond pairs
with lengths of 2.808 and 2.877 Å.

Moreover, the two As–Fe–As angles are quite differ-
ent in the case of the LaOFeAs system (113.6

 

°

 

 and
107.5

 

°

 

) and have very close values (~109

 

°

 

) for
BaFe

 

2

 

As

 

2

 

. Such differences in the nearest surrounding
of Fe ions should evoke distinctions in the electronic
structure of these two compounds.

The electronic structure of BaFe

 

2

 

As

 

2

 

 and LaOFeAs
was calculated within the local density approximation
(LDA) by using the basis of the linearized muffin-tin
orbitals (LMTO) [22]. For BaFe2As2, we used the struc-
ture data for a K-doped system and temperature T =
20 K [9]. The LDA calculated total and partial densities
of states for the BaFe2As2 and LaOFeAs are shown in
Fig. 2. In the lower panel of Fig. 2, we show the magni-
fied behavior of the total DOS around the Fermi level
for three different systems under discussion. In all
cases, the DOS is almost flat. It is well known that the
DOS of two-dimensional (nearly free) electrons is a
constant defined just by the renormalized electron

Ba

As

(a) (b)

é

La

As

Fig. 1. Crystal structure of BaFe2As2 and LaOFeAs. FeAs tetrahedra form two-dimensional layers (violet) sandwiched by Ba ion
(cyan) or LaO (yellow and green) layers.



146

JETP LETTERS      Vol. 88      No. 2      2008

NEKRASOV et al.

mass. Thus, our results support the two-dimensional
nature of these compounds.

The orbital projected Fe-d DOS for two compounds
is shown in Fig. 3. The values of the density of states at
the Fermi level are very similar in both compounds.
The 0.3 eV wider Fe-d bandwidth in the case of
BaFe2As2 in comparison with LaOFeAs arises from the
shorter Fe–As bonds and, hence, a stronger Fe-d-As-p
hybridization for this system. The partial As-p DOS is
split into two parts in the case of the Ba system. One
can see that, for both systems, three Fe-d orbitals of the
t2g symmetry—xz, yz, x2 – y2—mainly contribute to the
bands crossing the Fermi level. We call here the x2 – y2

(a basically rotated xy orbital) as one of t2g orbitals fol-
lowing the established earlier terminology for
ReOFeAs systems.

Energy bands along the high-symmetry directions
of the Brillouin zone are shown in Fig. 4. The bands

around the Fermi level for both compounds are prima-
rily formed by Fe-d states. In the LaOFeAs system, the
As-p states are also hybridized with O-p states and the
corresponding bands are separated from the Fe-d ones.
On the contrary, in BaFe2As2, the Fe-d and As-p bands
are entangled. The lower two panels of Fig. 4 compare
the band dispersions for both systems close to the Fermi
level. Here, only the (kx, ky) dispersion is shown. Taking
into account the different notations of the high-symme-
try points for these two different crystal structures, one
can find that these dispersions are pretty similar to each
other. There are three hole-like bands around the Γ
point and two electron bands around the X point. Thus,
one can define a minimal model of “bare” electronic
bands to treat, e.g., superconductivity, similar to that
discussed in [23]. Let us mention that, along the X – M
direction in LaOFeAs, there are two degenerate bands.

In Fig. 5, the relative onsite energies of the hybrid-
ized Fe-3d and As-4p states are presented. A bird’s eye
view tells us that this picture for both BaFe2As2 (left)
and LaOFeAs (right) is rather similar. There are two
groups of states—antibonding (mostly Fe-3d) and
bonding (mostly As-4p) states. However, there are
some fine differences. First of all, for BaFe2As2, the
hybridization between the Fe-3d-z2 and As-4pzorbitals
is about 0.4 eV weaker. This leads to a swap of the
energy positions of the Fe-3d-z2 and x2 orbitals and,
similarly, for the corresponding As-4p orbitals. Sec-
ondly, the Fe-d-t2g orbitals are degenerate for BaFe2As2

in contrast to LaOFeAs.

Fig. 2. Total and partial LDA DOS for BaFe2As2 (black
lines) and LaOFeAs (light lines) compounds. The lower
panel presents the total DOS for different FeAs systems in
the vicinity of the Fermi level. The Fermi level corresponds
to zero.

Fig. 3. Orbital projected Fe-d DOS for BaFe2As2 (black
lines) and LaOFeAs (light lines) compounds. The Fermi
level corresponds to zero.
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Neglecting the small difference, the overall picture
of the energy spectrum in the vicinity of the Fermi level
is very similar for both compounds and is determined
mainly by the Fe-d states of the FeAs layers, making
the states of the A ions or rare-earth Re more or less
irrelevant for superconductivity. Thus, the supercon-
ductivity of FeAs-layered compounds may be studied
within the minimal model, taking into account only the
essential Fe-d bands close to the Fermi level. The vari-
ants of such a model proposed, e.g., in [23, 24], for the
LaOFeAs system may also be used for AFe2As2 with
only a slight modification of the model parameters,
such as the transfer integrals.

The role of the electronic correlations remains dis-
putable at the moment. In general, it can be expected to
be rather important due to the large values of Hubbard
and Hund interactions on Fe. However, the LDA +
DMFT calculations from [25, 26] have produced rather
contradictory claims. Obviously, this problem requires
further studies. Assuming that the correlations in these
compounds are most likely in the intermediate range,

Fig. 4. Energy bands for LaOFeAs (left) and BaFe2As2 (right) compounds. The lower two panels present the (kx, ky) dispersions for
BaFe2As2 and LaOFeAs systems in the vicinity of the Fermi level. The Fermi level corresponds to zero.

Fig. 5. Relative onsite energies of the hybridized Fe-3d and
As-4p states obtained from the LDA dispersions for
BaFe2As2 (left) and LaOFeAs (right). ∆ stands for the cor-
responding energy distances in eV.

M X
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we may hope that the standard LDA approach used here
is reliable enough.

The Fermi surfaces obtained from the LDA calcula-
tions for BaFe2As2 and LaOFeAs are shown in Figs. 6
and 7, respectively. There are five sheets of the Fermi
surface for both compounds. Qualitatively, the Fermi
surfaces are similar to that reported for LaOFeAs in
[13] (see also [15]). There are three hole cylinders in
the middle of the Brillouin zones and two electron
sheets at the corners of the Brillouin zone. The smallest
of the hole cylinders is usually neglected in the analysis
of the superconducting pairings [23, 27] and the analy-

sis is restricted to the smallest two [27] or four bands
[23] models, reproducing two-hole and two-electron
cylinders.

The tetragonal-to-orthorhombic phase transition
taking place in undoped compounds is usually attrib-
uted to the SDW formation due to the nesting properties
of the electron and hole Fermi surfaces [15, 24] or due
to the excitonic instability in the triplet channel [23].
The difficulties of calculating the magnetic state of
LaOFeAs related to the apparently itinerant nature of
magnetism were recently discussed in [28].

In conclusion, we have presented the results of the
LDA calculations of a new prototype high-temperature
superconductor AFe2As2 (A = Ba, Sr) and compared it
with the previously discussed ReOFeAs series, demon-
strating the essential similarity of the electronic states
close to the Fermi level and the most important for
superconductivity. These states are formed mainly by
the Fe orbitals in the two-dimensional FeAs layer,
which is the basic structural motif, where the supercon-
ducting state is formed. Thus, the rather simple
AFe2As2 system may be considered generic for the
studies of a high-temperature superconductivity in the
whole class of FeAs-layered compounds.
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 Recent discovery of the new class of iron�based high�
temperature superconductors [1] has ignited almost
unprecedented stream of experimental and theoretical
studies (for the review of an early work see [2, 3]).
Despite the immense progress in understanding of
these systems, the nature (mechanism) of supercon�
ducting pairing, as well as the reasons for high values of
superconducting temperature Tc, are still under
debate. Mizuguhci et al. [4] have recently established
an interesting anion height dependence of Tc for the
typical representatives of Fe�based superconductors,
demonstrating almost symmetric curve with a peak
around Δza ~ 1.37 Å. Below we present an explanation
of this dependence, attributing it to the effect of the
appropriate variation of the total density of states at
the Fermi level within standard BCS�like approach.

The main representatives of the class of iron�based
superconductors (pnictides, chalcogenides) known at
the moment are:

(i) Doped RE111 (RE = La, Ce, Pr, Nd, Sm, Tb,
Dy) with Tc about 25–55 K, with most typical repre�
sentatives such as LaO1 – xFxFeAs [1, 5–12] and
LaO1 – xFxFeP [13] with much lower Tc = 6.6 K.

(ii) Doped A122 (A = Ba, Sr), such as
Ba1 ⎯ xKxFe2As2 [14–17] and Tc about 38 K.

(iii) Li1 – xFeAs with Tc = 18 K [18, 19].

 ¶The article is published in the original.

(iv) (Sr, Ca, Eu)FFeAs [20–22] with Tc = 36 K
[23].

(v) Sr4(Sc,V)2O6Fe2(P,As)2 with Tc = 17 K [24].
(vi) FeSex, FeSe1 – xTex with Tc up to 14 K [25].
There is now a plenty of papers on LDA (local den�

sity approximation) calculation of the band structure
of La111 [30–32], LaOFeP [33], RE111 series [26],
BaFe2As2 [27, 34, 35], LiFeAs [28, 36], (Sr, Ca)FFeAs
[29, 37], Sr42622 [38] and Fe(S, Se, Te) [39]. Below
we present some of the results of our continued work
on LDA electronic structure, along the lines of [26–
29], covering all typical representatives of the whole
class of iron�based superconductors and taking into
account some new structural data.

Iron�based high�Tc superconductors in general
have tetragonal structure with the space group
P4/nmm (RE1111, LiFeAs, Sr42622, Fe(Te, Se),
SrFFeAs) and the space group I4/mmm (Ba122). For
the P4/nmm systems Fe ions occupy positions (2b)
(0.75, 0.25, 0.5), and anion ions A = P, As, Se, Te—
(2c) (0.25, 0.25, za) and for Ba122 Fe(4d) (0.5, 0,
0.25), As(4e) (0, 0, za). Corresponding experimental
lattice parameters and atomic coordinates (used in this
work) are collected in Table 1.

Physically important electronic bands (those
which cross the Fermi level) are formed by antibond�
ing Fe(3d)�A(p) states of FeA4 tetrahedron layer. Here
A denotes different types of anions: P, As, Se, Te. To
calculate electronic structure of compounds listed in
Table 1 linearized muffin�tin orbitals method
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(LMTO) [40] with default settings was employed
(except for Re111 systems, where Re�4f states were
taken as a pseudocore states). Obtained results are in
good agreement with other LDA calculations by other
authors.

Motivated by the results of [4] we present here our
LDA calculated total density of states N(EF) as a func�
tion of anion height Δza with respect to Fe layer. Cor�
responding dependence is plotted in the figure with
circles. We can see that N(EF) has an interesting
behavior with clear maximum at about Δza ~ 1.37 Å
(see also Table 2). Such nonmonotonic behavior can
be explained by hybridization effects. Namely, as a
governing structural parameter characterizing hybrid�
ization strength one can chose a�Fe�a angle—an
angle between anions (a) and Fe within the same tet�
rahedron. The value of the angle corresponding to the
strongest hybridization is 109.45°, i.e., for an ideal
anion tetrahedron with Fe in the very center of it.
Other crystal structure parameters which might be
marked as important here such as Fe–Fe, Fe–a or a–
a distances are not changed very much from system to
system and do not have any transparent dependence of
Δza. The values of these distances are about following
2.8, 2.4 and 3.85 Å with slight lowering for LaOFeP,
LiFeAs and Fe(Te,Se) compounds.

From Table 1 one can see that compounds with
highest N(EF) values have the a�Fe�a angle very close
to this value. Decrease or increase of this angle leads to
N(EF) drop from this maximum value. This comes
from partial DOS behavior. The strongest hybridiza�
tion corresponds to the strongest bonding�antibond�
ing splitting. Since antibonding band DOS grows
monotonically with binding energy [26–29] stronger
hybridization will lead to higher values of N(EF). With
lowering of hybridization bonding�antibonding split�
ting goes down together with N(EF).

The Δza dependence of N(EF) inevitably leads to
the corresponding dependence of superconducting
critical temperature Tc. To estimate this we, first of all,
use the elementary BCS expression: Tc = 1.14ωDe–1/λ,
where ωD is the characteristic frequency of collective
excitations involved in pairing interaction (phonons,
spin fluctuations, etc.), and λ = gN(EF)/2 is the
dimension�less pairing interaction constant (g is the
appropriate dimensional coupling constant). In the
following we take ωD = 350 K in rough accord with
neutron scattering experiments on phonon density of
states for La111 [41] and Ba122 [42] systems. We fix g
to fit the experimental value of Tc for Ba122 system
since this system possesses probably most stable value

Table 1. Experimental crystallographic data for iron�based superconductors

System Δza, Å a, Å c, Å zRe za ∠a–Fe–a

LaOFeP 1.140 3.9636 8.5122 0.1487 0.6339 104.4

Sr4Sc2O6Fe2P2 1.200 4.0160 15.5430 – 0.5772 105.2

LaOFeAs 1.320 4.0353 8.7409 0.1415 0.6512 107.5

CeOFeAs 1.354 3.9959 8.6522 0.1480 0.6565 108.4

SmOFeAs 1.357 3.9270 8.4413 0.1420 0.6608 108.8

NdOFeAs 1.367 3.9476 8.5446 0.1440 0.6600 110.5

TbOFeAs 1.373 3.8530 8.2990 0.1447 0.6654 109.7

SrFFeAs 1.369 4.0110 8.9650 0.1598 0.6527 108.6

BaFe2As2 1.371 3.9090 13.2122 – 0.3538 109.3

CaFFeAs 1.417 3.8780 8.5920 0.1505 0.6649 110.4

LiFeAs 1.505 3.7914 6.3642 0.8459 0.2635 112.7

Fe(Se, Te) 1.630 3.8215 6.2695 – 0.2599 111.5

(Circles, right scale) Total LDA density of states N(EF),
(left scale) superconducting transition temperatures Tc
obtained from the (stars) simple BCS and (squares) Allen–
Dynes (AD) expressions, and (triangles) experimental Tc
values versus the anion height Δza over the Fe layer for a
number of iron�based high temperature superconductors.
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of Tc (about 38 K) with respect to the way of sample
preparation and doping. Thus we obtain the value of
dimensionless coupling constant λ = 0.43. Then just
fixing the value of g as for Ba122 we obtain Tc values for
all other systems, taking into account the appropriate
change of the density of states. Rather surprisingly we
observe almost quantitative agreement with experi�
mental data on Tc (see triangles in figure and Table 2).
Note that we can even obtain the right order of Tc val�
ues for 1111 systems with different rare�earth elements
as due to rather small difference of corresponding den�
sities of states, which were not obtained in our previ�
ous work [26], where we just fixed Δza to the only
known at that time experimental value for LaOFeAs.
However, the calculated value of Tc for LaOFeAs sys�
tem is still rather higher than most typical experimen�
tal value of 26–28 K. At the same time, the samples of
this system obtained via high pressure synthesis [43]
demonstrated much higher values of Tc ~ 41 K, which
is pretty closer to our calculated values. Also the nota�
ble deviation of our calculated Tc for LiFeAs system
may be attributed both to the crudeness of our model
(e.g., our use of a single value of ωD for all com�
pounds), as well as to probable experimental uncer�
tainties of Tc in this system.

In principle, for the number of systems under con�
sideration we can obtain even better results if we use
the multiple band BCS�like approach, along the lines
of [44]. However, to reduce the number of free param�
eters, the multiple band model fit requires additional
information on the relations between energy gaps on
different Fermi surface sheets (cylinders), which at
present is only available for some of 122 systems.

It is well known that the elementary BCS�like
expression for Tc has a tendency to overestimate the
role of the density of states at the Fermi level. As an
alternative we try the same approach estimating super�

conducting critical temperature Tc using Allen–
Dynes interpolation formula (which is probably the
best semi�analytic expression for Tc in case of elec�
tron�phonon pairing mechanism, including the strong
coupling region) [45]:

(1)

where

and  = , ωln are square root average and
average logarithm of phonon frequency. Assuming for
simplicity ωln ≈  = 350 K, and taking the optimistic
value of Coulomb pseudopotential μ* = 0, we repeat
our previous analysis, fixing first λ = 0.97 for Ba122
and then changing only the density of states as
obtained in our calculations for all other systems. The
results for Tc obtained in this way from Allen–Dynes
expression (1) are shown in figure by squares (see also
Table 2).

We can see that Allen–Dynes expression produces
a kind of a lower bound Tc estimate, with obvious def�
icit in Tc values in the vicinity of maximum. This defi�
cit may signify the importance of non phonon pairing
mechanism to obtain maximal values of Tc in FeAs
superconductors. However, our main conclusion on
important correlation of Tc with the values of the den�
sity of states at the Fermi level remains intact.

Tc
f1 f2ωln

1.20
������������� 1.04 1 λ+( )

λ μ*– 0.62λμ*–
�����������������������������������–⎝ ⎠

⎛ ⎞ ,exp=

f1 1 λ/Λ1( )3/2+[ ]
1/3

, Λ1 2.46 1 3.8μ*+( ),= =

f2 1
ω2/ωln 1–( )λ2

λ2 Λ2
2+

�����������������������������,+=

Λ2 1.82 1 6.3μ*+( ) ω2/ωln( ),=

ω2 ω2〈 〉
1/2

ω2

Table 2. Total LDA density of states N(EF), calculated and experimental Tc for iron�based superconductors

System Δza, Å N(EF),
states/cell/eV , K , K , K

LaOFeP 1.140 2.06 3.2 12 6.6

Sr4Sc2O6Fe2P2 1.200 3.24 19 27 17

LaOFeAs 1.320 4.13 36 37 28

CeOFeAs 1.354 4.96 54 43 41

SmOFeAs 1.357 4.66 48 37 53

NdOFeAs 1.367 4.78 50 44 54

TbOFeAs 1.373 4.85 52 45 53

SrFFeAs 1.369 4.26 38 39 36

BaFe2As2 1.371 4.22 38 38 38

CaFFeAs 1.417 4.04 34 36 36

LiFeAs 1.505 3.86 31 34 18

Fe(Se, Te) 1.630 2.02 3 11 14

Tc
BCS

Tc
AD

Tc
Exp
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In fact we do not adhere at the moment to any spe�
cific pairing mechanism. Main objection to electron–
phonon pairing in iron�based superconductors comes
from microscopic calculations, e.g., those of [31]. At
the same time, there are experiments on isotope effect
[46, 47], which support the importance of this mech�
anism, though the other isotope experiments [48] pro�
duce quite opposite picture.

Our choice of characteristic phonon frequencies in
the pre�exponential factor of BCS and Allen–Dynes
expressions for Tc is used only as a kind of an estimate.
What is important to us, is the well known fact that the
dimensionless pairing constant is proportional to the
total density of states in almost any BCS�like model of
superconducting pairing, with some additional modi�
fications in the case of multiple band models [44].

In conclusion, our results show unambiguous cor�
relation of the values of superconducting Tc and those
of the total density of electronic states at the Fermi
level for the whole class of iron�based superconduc�
tors, thus supporting the usual BCS�like pairing
mechanism in these systems.
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1 1. INTRODUCTION

The problem of strong�coupling superconductivity
has been studied for a long time, starting with the pio�
neering papers by Eagles and Leggett [1, 2]. Signifi�
cant progress here was achieved by Nozieres and
Schmitt�Rink [3], who suggested an effective method
to study the transition temperature crossover from
weak�coupling BCS�like behavior to the Bose–Ein�
stein condensation (BEC) scenario in the strong�cou�
pling region. Recent progress in experimental studies
of quantum gases in magnetic and optical dipole traps,
as well as in optical lattices, with controllable parame�
ters, such as the density and interaction strength (see
reviews [4, 5]), has increased the interest in supercon�
ductivity (superfluidity of fermions) with strong pair�
ing interaction, including the region of the BCS–BEC
crossover. One of the simplest models allowing the
study of the BCS–BEC crossover is the Hubbard
model with an attractive on�site interaction. The most
successive approach to the solution of the Hubbard

1 The article is published in the original.

model, both in the case of repulsive interaction and for
the studies of BCS–BEC crossover in the case of
attraction, is the dynamical mean field theory
(DMFT) [6–8]. The attractive Hubbard model was
studied within the DMFT in a number of recent
papers [9–13]. However, up to now there have been
only a few studies of the disorder influence on the
properties of normal and superconducting phases in
this model, especially in the region of the BCS–BEC
crossover. Disorder effects in this region were analyzed
qualitatively in [14], where it was argued that the
Anderson theorem remains valid in the BCS–BEC
crossover region in the case of s�wave pairing. A dia�
grammatic approach to (weak) disorder effects on the
superconducting transition temperature and the prop�
erties of the normal phase in the crossover region was
developed recently in [15].

In recent years, we have developed a generalized
DMFT+Σ approach to the Hubbard model [16–19],
which is very convenient for the studies of different
external interactions with respect to those taken into
account in the DMFT, such as pseudogap fluctuations
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Abstract—Using the generalized DMFT+Σ approach, we study the influence of disorder on single�particle
properties of the normal phase and the superconducting transition temperature in the attractive Hubbard
model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the insta�
bility of the normal phase and superconductivity are well described by the BCS model, to the strong�coupling
region, where the superconducting transition is due to Bose–Einstein condensation (BEC) of compact Coo�
per pairs, formed at temperatures much higher than the superconducting transition temperature. We study
two typical models of the conduction band with semi�elliptic and flat densities of states, respectively appro�
priate for three�dimensional and two�dimensional systems. For the semi�elliptic density of states, the disor�
der influence on all single�particle properties (e.g., density of states) is universal for an arbitrary strength of
electronic correlations and disorder and is due to only the general disorder widening of the conduction band.
In the case of a flat density of states, universality is absent in the general case, but still the disorder influence
is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the
combination of DMFT+Σ and Nozieres–Schmitt�Rink approximations, we study the disorder influence on
the superconducting transition temperature Tc for a range of characteristic values of U and disorder, including
the BCS–BEC crossover region and the limit of strong�coupling. Disorder can either suppress Tc (in the
weak�coupling region) or significantly increase Tc (in the strong�coupling region). However, in all cases, the
generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essen�
tially due to only the general disorder widening of the conduction band.

DOI: 10.1134/S1063776115050143
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[16–19], disorder [20, 21], electron–phonon interac�
tion [22], etc. This approach is also well suited to the
analysis of two�particle properties, such as optical
(dynamic) conductivity [20, 23]. In [13], we used this
approximation to calculate single�particle properties
of the normal phase and optical conductivity in the
attractive Hubbard model. In a recent paper [24], the
DMFT+Σ approach was used by us to study the disor�
der influence on the superconducting transition tem�
perature, which was calculated in the Nozieres–
Schmitt�Rink approximation. In that paper, for the
semi�elliptic density of states of the “bare” conduc�
tion band, which is adequate for three�dimensional
systems, we numerically demonstrated the validity of
the generalized Anderson theorem according to which
all changes in the critical temperature are controlled
only by the general widening of the conduction band
by disorder.

In this paper, we present an analytic proof of such
universal influence of disorder (in the DMFT+Σ
approximation) on single�particle characteristics and
the superconducting transition temperature for the
semi�elliptic density of states and also investigate dis�
order effects in the case of the “bare” band with a flat
density of states, qualitatively appropriate for two�
dimensional systems. We show that for the flat band
model, the universal dependence of single�particle
properties and the superconducting transition temper�
ature is also realized for the case of sufficiently strong
disorder.

2. DISORDERED HUBBARD MODEL
WITHIN THE DMFT+Σ APPROACH

We consider the disordered nonmagnetic Hubbard
model with attractive interaction with the Hamilto�
nian

(1)

where t > 0 is the transfer integral between nearest
neighbors on the lattice, U represents Hubbard�like on

site attraction, aiσ( ) is the annihilation (creation)

operator of an electron with spin σ, niσ = aiσ is the
particle number operator on a lattice site i, while local
on�site energies are assumed to be random variables
(independent on the lattice sites). For the standard
“impurity” diagram technique to be valid, we take the
Gaussian distribution of energy levels �i:

(2)

The parameter Δ is a measure of the disorder strength,
while the Gaussian random field of random on�site
energy levels, which are independent on different sites
(“white noise” correlation) induces “impurity” scat�

H t aiσ
† ajσ

ij〈 〉 σ

∑– �iniσ

iσ

∑ U ni↑ni↓,

i

∑–+=

aiσ
†

aiσ
†

� �i( ) 1

2πΔ
������������

�i
2

2Δ2
�������–

⎝ ⎠
⎜ ⎟
⎛ ⎞

.exp=

tering, which is analyzed using the standard formalism
of averaged Green’s functions [25].

The generalized DMFT+Σ approach [16–19]
extends the standard dynamical mean field theory
(DMFT) [6–8] taking into account an additional
“external” self�energy part Σp(ε) (in the general case,
momentum dependent), which is due to some addi�
tional interaction outside the DMFT, and gives an
effective method to calculate both single�particle and
two�particle properties [20, 23]. The success of this
generalized approach is based on the choice of the sin�
gle�particle Green’s function in the form

(3)

where ε(p) is the “bare” electron dispersion, while the
complete self�energy is assumed to be an additive sum
of the local DMFT self�energy and some “external”
self�energy Σp(ε), due to the neglect of the interference
of Hubbard and “external” interactions. This allows
the conservation of the standard form of self�consis�
tent equations of the standard DMFT [6–8]. At the
same time, at each step of DMFT iterations, we con�
sistently recalculate the “external” self�energy Σp(ε)
using an appropriate approximate scheme, corre�
sponding to the form of the additional interaction,
while the local Green’s function is also “dressed” by
Σp(ε) at each step of the standard DMFT procedure.

For the “external” self�energy entering the
DMFT+Σ cycle for the problem of random scattering
by disorder, we use the simplest self�consistent Born
approximation, neglecting diagrams with crossing
“impurity” lines, which gives

(4)

where G(ε, p) is the single�electron Green’s func�
tion (3) and Δ is the amplitude of site disorder.

To solve the effective single�Anderson�impurity
problem of DMFT, we use the numerical renormaliza�
tion group approach (NRG) [26].

In what follows, we consider two models of the
“bare” conduction band. The first is the band with a
semi�elliptic density of states (per unit cell and single
spin projection)

(5)

where D is the band half�width. This model is appro�
priate for a three�dimensional system. The second
model is the one with the flat density of states, appro�
priate for the two�dimensional case:

(6)

G ε p,( ) 1
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In principle, for two�dimensional systems, we should
take the presence of the weak (logarithmic) Van Hove
singularity in the density of states into account. How�
ever, this singularity is already effectively suppressed
by rather small disorder, and hence the simple model
in Eq. (6) is quite sufficient for our aims.

All calculations in this paper are done for a quarter�
filled band (the number of electrons per lattice site is
n = 0.5).

The superconducting transition temperature in the
attractive model was analyzed in a number of papers
[9, 10, 12], both from the condition of instability of the
normal phase [9] (divergence of the Cooper suscepti�
bility) and from the condition of the superconducting
order parameter going to zero [10, 12]. In recent paper
[13], we determined the critical temperature from the
condition of instability of the normal phase, reflected
in the instability of the DMFT iteration procedure.
The results obtained in this way in fact coincide with
those in [9, 10, 12]. Also, to calculate Tc in [13], we
used the approach due to Nozieres and Schmitt�Rink
[3], which allows the correct (though approximate)
description of Tc in the BCS–BEC crossover region.
In a later paper [24], we used the combination of
Nozieres and Schmitt�Rink and DMFT+Σ approxi�
mations for detailed numerical studies of the disorder
dependence of Tc and the number of local pairs in the
model with the semi�elliptic density of states.

3. DISORDER INFLUENCE
ON SINGLE�PARTICLE PROPERTIES
FOR THE SEMI�ELLIPTIC DENSITY

OF STATES

In this section, we analytically demonstrate that in
the DMFT+Σ approximation, the disorder influence
on single�particle properties of the disordered Hub�
bard model (both attractive or repulsive) with a semi�
elliptic “bare” conduction band is completely
described by effects of general band widening by disor�
der scattering.

In the system of self�consistent DMFT+Σ equa�
tions [17, 19, 20], information on the “bare” band and
disorder scattering enter only at the stage of calcula�
tions of the local Green’s function

(7)

where the full Green’s function G(ε, p) is determined
by Eq. (3), while the self�energy due to disorder, in the
self�consistent Born approximation, is defined by

Gii G ε p,( ),
p

∑=

Eq. (4). Then the local Green’s function takes the
form

(8)

where we introduce the notation Et = ε + μ – Σ(ε) –
Δ2Gii. In the case of semi�elliptic density of states (5),
this integral is easily calculated in analytic form, and
hence the local Green’s function is written as

(9)

It can be easily seen that Eq. (9) represents one of the
roots of the quadratic equation

(10)

corresponding to the correct limit of Gii   for an
infinitely narrow band (D  0). Then

(11)

where we introduce Deff as the effective half�width of
the band (in the absence of electronic correlations,
i.e., for U = 0) widened by disorder scattering:

(12)

Equation (10) was obtained from (8), and hence com�
paring (11) and (10), we obtain:

(13)

where

(14)

represents the density of states in the absence of the
interaction U “dressed” by disorder. This density of
states remains semi�elliptic in the presence of disor�
der, and therefore all effects of disorder scattering on
single�particle properties of the disordered Hubbard
model in the DMFT+Σ approximation reduce to only
disorder widening of the conduction band, i.e., to the
replacement D  Deff.
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4. DISORDER INFLUENCE 
ON THE SUPERCONDUCTING TRANSITION 

TEMPERATURE

The superconducting transition temperature Tc is
not a single�particle characteristic of the system. The
Cooper instability determining Tc is related to the
divergence of a two�particle loop in the Cooper chan�
nel. In the weak�coupling limit, when superconduc�
tivity is due to the appearance of Cooper pairs at Tc,
disorder only slightly influences superconductivity
with the s�wave pairing [27, 28]. The so�called Ander�
son theorem is valid and changes of Tc are connected
only with the relatively small changes of the density of
states by disorder. The standard derivation of the
Anderson theorem [27, 28] uses the formalism of exact
eigenstates of an electron in the random field of impu�
rities. Here, we present another derivation of the
Anderson theorem, using the exact Ward identity,
which allows us to derive the equation for Tc, which is
then used to calculate Tc in the Nozieres–Schmitt�
Rink approximation in a disordered system.

In general, the Nozieres–Schmitt�Rink approach
[3] assumes that corrections due to strong pairing
attraction significantly change the chemical potential
of the system, while possible corrections due to this
interaction to the Cooper instability condition can be
neglected, and we can therefore always use the weak�
coupling (ladder) approximation. In that approxima�
tion, the Cooper instability condition in the disor�
dered Hubbard model takes the form

(15)

where

(16)

represents the two�particle loop (susceptibility) in the
Cooper channel “dressed” only by disorder scattering,
and Φpp'(εn) is the averaged two�particle Green’s func�
tion in the Cooper channel (ωm = 2πmT and εn =
πT(2n + 1) are the usual boson and fermion Matsub�
ara frequencies).

To obtain (εn), we use the exact Ward

identity, derived by us in [23]:

(17)

Here, G(εn, p) is the impurity�averaged single�particle
Green’s function (not containing Hubbard interaction
corrections!). Using the obvious symmetry ε(p) =
ε( ⎯ p) and G(εn, –p) = G(εn, p), we obtain from the
Ward identity (17) that

1 Uχ0 q 0= ωm, 0=( ),=

χ0 q 0= ωm, 0=( ) T Φpp' εn( )
pp'

∑
n

∑=

Φpp'pp'∑
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1– εn– p'–,( )–( ).

(18)

and hence for Cooper susceptibility (16) we have

(19)

Performing the standard summation over Matsubara
frequencies [25], we obtain

(20)

where (ε) is the density of states (U = 0) “dressed”
by disorder scattering. In Eq. (20), the energy ε is ref�
erenced to the chemical potential, and if we reference
it to the center of the conduction band, we have to
replace ε  ε – μ, such that Cooper instability con�
dition (15) leads to the following equation for Tc:

(21)

where (ε) is again the density of states (calculated
at U = 0) “dressed” by disorder scattering. At the same
time, the chemical potential of the system at different
values of U and Δ should be determined from
DMFT+Σ calculations, i.e., from the standard equa�
tion for the number of electrons (band filling) deter�
mined by the Green’s function in Eq. (3), which
allows us to find Tc for the wide range of model param�
eters, including the BCS–BEC crossover and strong�
coupling regions, as well as for different levels of disor�
der. This reflects the physical meaning of the
Nozieres–Schmitt�Rink approximation: in the weak�
coupling region, the transition temperature is con�
trolled by Cooper instability equation (21), while in
the limit of strong�coupling, it is determined as the
BEC temperature controlled by the chemical poten�
tial. Thus, the joint solution of Eq. (21) and the equa�
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tion for the chemical potential guarantees the correct
interpolation for Tc through the BCS–BEC crossover
region. This approach gives the results for the critical
temperature that are quantitatively close to the exact
results obtained by direct numerical DMFT calcula�
tions [13], but demands much less numerical effort.

We stress that we have used the exact Ward identity,
which also allows using Eq. (21) in the region of strong
disorder, when the effects of Anderson localization
may become relevant. Equation (21) demonstrates
that the critical temperature depends on disorder only
through the disorder dependence of the density of

states (ε), which is the main statement of the Ander�
son theorem. In the framework of the Nozieres–
Schmitt�Rink approach, Eq. (21) is also preserved in
the strong�coupling region, when the critical temper�
ature is determined by the BEC condition for compact
Cooper pairs. In this case, the chemical potential μ
entering Eq. (21) may significantly depend on disor�
der. However, in the DMFT+Σ approximation, this
dependence of the chemical potential (as well as of any
other single�particle characteristic) in the model with
a semi�elliptic density of states is only due to disorder
widening of the conduction band. Thus, in both the
BCS–BEC crossover and strong�coupling regions, the
generalized Anderson theorem actually remains valid.
Accordingly, in the model of a semi�elliptic band,
Eq. (21) leads to a universal dependence of Tc on dis�
order, due to the change D  Deff. Such universality
is fully confirmed by numerical calculations of Tc in
this model, performed in [24] (cf. also the results pre�
sented below).

5. MAIN RESULTS

We now discuss the main results of our numerical
calculations, explicitly demonstrating the universal
behavior of single�particle properties and the super�
conducting transition temperature with disorder. We
see below that all disorder effects are effectively con�
trolled, in fact, only by the growth of the half�width of
conduction band, which for a semi�elliptic density of
states is given by Eq. (12). In the case of the band with
a flat density of states, the growth of disorder changes
the shape of the density of states, making it semi�ellip�
tic in the limit of sufficiently strong disorder, while the
effective half�width of the band is given by (cf. Appen�
dix A)

(22)

As an example of the most important single�parti�
cle property, we take the density of states. In Fig. 1, we
show the evolution of the density of states with disor�
der in the model of a semi�elliptic band [13]. We can
see that the growth of disorder smears the density of
states and widens the band. This smearing somehow

Ñ
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masks the peculiarities of the density of states due to
correlation effects. In particular, both the quasiparti�
cle peak and the lower and upper Hubbard bands,
observed in Fig. 1 in the absence of disorder, are com�
pletely destroyed in the limit of strong enough disor�
der. However, we can easily convince ourselves that
this evolution is only due to the general widening of
the band due to disorder (cf. Eqs. (12) and (22)),
because all the data for the density of states belong to
the same universal curve replotted in appropriate new
variables, with all energies (and temperature) normal�
ized by the effective bandwidth by replacing D 
Deff, as shown in Fig. 2a, in complete agreement with
the general results obtained above. For the conduction
band with a flat density of states, there is no complete
universality, as can be seen from Fig. 2b for low enough
values of disorder. However, for large enough disorder,
the dashed curve shown in Fig. 2b practically coin�
cides with the universal curve for the density of states
shown in Fig. 2a. This reflects the simple fact that at
large disorder, the flat density of states effectively
transforms into a semi�elliptic one (cf. Appendix A).

Going now to the analysis of the superconducting
transition temperature, in Fig. 3 we present the depen�
dence of Tc (normalized by the critical temperature in
the absence of disorder, Tc0 = Tc(Δ = 0)) on disorder
for different values of the pairing interaction U for
both models of the initial “bare” density of states,
semi�elliptic (Fig. 3a) and flat (Fig. 3b). Qualitatively,
the evolution of Tc with disorder is the same for both
models. We can see that in the weak�coupling limit
(U/2D � 1), disorder slightly suppresses Tc (curves 1).
At intermediate couplings (U/2D ~ 1), weak disorder
increases Tc, while the further increase in disorder
suppresses the critical temperature (curves 3). In the
strong�coupling region (U/2D � 1), the growth of dis�
order leads to a significant increase in the critical tem�
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Fig. 1. Dependence of the density of states on disorder in
the model with a semi�elliptic band, |U |/2D = 0.8, I/2D =
0.05.
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perature (curves 5). However, we can easily see that
such a complicated dependence of Tc on disorder is
completely determined by the disorder widening of the
“bare” (U = 0) conduction band, demonstrating the
validity of the generalized Anderson theorem for all
values of U. In Fig. 4, the curve with octagons shows
the dependence of the critical temperature Tc/2D on
the coupling strength U/2D in the absence of disorder
(Δ = 0) for both models of “bare” conduction bands,

semi�elliptic (Fig. 4a) and flat (Fig. 4b). We can see
that in both models, in the weak�coupling region, the
superconducting transition temperature is well
described by the BCS model (in Fig. 4a), the dashed
curve represents the result of the BCS model, with Tc

defined by Eq. (21), with the chemical potential inde�
pendent of U and determined by the quarter�filling of
the “bare” band), while in the strong�coupling region,
the critical temperature is determined by the BEC
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Fig. 2. Universal dependence of the density of states on disorder: (a) the model of a semi�elliptic “bare” density of states; (b) the
model of a flat “bare” density of states.
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condition for Cooper pairs and decreases as t2/U as U
increases (inversely proportional to the effective mass
of the pair), passing through the maximum at
U/2Deff ~ 1. The other symbols in Fig. 4a show the
results for Tc obtained by a combination of the
DMFT+Σ and Nozieres–Schmitt�Rink approxima�
tions for a semi�elliptic “bare” band. We can see that
all data (expressed in normalized units of U/2Deff and
Tc/2Deff) ideally fit the universal curve obtained in the
absence of disorder. For a flat “bare” band, results of
our calculations are shown in Fig. 4b and we do not
observe the complete universality: data points, corre�
sponding to different degrees of disorder, somehow
deviate from the curve obtained in the absence of dis�
order. However, with the increase in disorder, the form
of the band becomes close to semi�elliptic and our
data points move towards the universal curve obtained
for the semi�elliptic case and shown by the dashed
curve in Fig. 4b, thus confirming the validity of the
generalized Anderson theorem.

6. CONCLUSION

In this paper, in the framework of the DMFT+Σ
generalization of dynamical mean field theory, we
have studied the disorder influence on single�particle
properties (e.g., the density of states) and the super�
conducting transition temperature in the attractive
Hubbard model. Calculations were done for a wide
range of attractive interactions U, from the weak�cou�
pling region U/2Deff � 1, where both instability of the
normal phase and superconductivity are well
described by the BCS model, to the strong�coupling
limit U/2Deff � 1, where the superconducting transi�
tion is determined by Bose–Einstein condensation of
compact Cooper pairs forming at temperatures much

higher than the superconducting transition tempera�
ture. We have shown analytically that for the conduc�
tion band with a semi�elliptic density of states, which
is a good approximation in the three�dimensional
case, disorder influences all single�particle properties
in a universal way: all changes of these properties are
only due to the disorder widening of the band. In the
model of the conduction band with a flat density of
states, which is appropriate for two�dimensional sys�
tems, there is no universality in the region of weak dis�
order. However, the main effects are again due to the
general widening of the band and complete universal�
ity is restored for high enough disorder, when the den�
sity of states effectively becomes semi�elliptic.

To study the superconducting transition tempera�
ture, we have used the combination of the DMFT+Σ
approach and the Nozieres–Schmitt�Rink approxi�
mation. For both models of the conduction band, dis�
ordering the density of states may either suppress the
critical temperature Tc (in the region of weak cou�
pling) or significantly increase it (in the strong�cou�
pling region). However, in all these cases, we have
actually proved the validity of the generalized Ander�
son theorem, and hence all changes of the transition
temperature are in fact controlled only by the effects of
general disorder widening of the conduction band. In
the case of the initial semi�elliptic band, the disorder
influence on Tc is completely universal, while in the
case of the initial flat band, such universality is absent
at weak disorder, but is completely restored for high
enough disorder levels.

Finally, we present some additional comments on
the methods and approximations used. Both the
DMFT+Σ and Nozieres–Schmitt�Rink approaches
represent certain approximate interpolation schemes,
strictly valid only in the corresponding limit cases
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Fig. 4. Universal dependence of the superconducting critical temperature on the Hubbard attraction U for different disorder lev�
els: (a) semi�elliptic band; the dotted curve represents the BCS dependence in the absence of disorder; (b) flat band; the dotted
line represents a similar dependence for the semi�elliptic band for Δ = 0.
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(e.g., small disorder or small (large) U). However, both
schemes demonstrate their effectiveness also in the
case of intermediate values of U and intermediate (or
even strong) disorder. Actually, the effectiveness of the
Nozieres–Schmitt�Rink approximation (neglecting U
corrections in the Cooper channel) was verified by
comparison with the direct DMFT calculations [13].
The use of DMFT+Σ to analyze the disorder effects in
the repulsive Hubbard model was shown to produce
reasonable results for the phase diagram, compared to
exact numerical simulations of disorder in DMFT,
including the region of large disorder (the Anderson
localized phase) [19–21]. However, the role of the
approximations made in DMFT+Σ, such as the
neglect of the interference of disorder scattering and
correlation effects, deserves further studies.
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APPENDIX A

For the band with a flat density of states (at U = 0
and Δ = 0), disorder leads both to widening of the band
and to a change of the form of the density of states.
Taking the density of states in the form given by
Eqs. (6), we calculate the local Green’s function as

(A1)

where the energy ε is referenced to the middle of the
“bare” band. We introduce the auxiliary notation Gii =
R – iI. At the band edges, I  0, and therefore
expanding the r.h.s. of Eq. (A.1) up to linear terms in
I, we obtain

(A2)

Equating the real parts in (A.2), we obtain

Similarly, equating the imaginary parts at the band

edges, we obtain ε – Δ2R = ± , and substitut�
ing this expression into the logarithm in the preceding
expression, we find R and the band edge positions at

Gii
1

2D
������ dε' 1

ε ε'– Δ2Gii–
�������������������������

D–

D

∫=

=  1
2D
������

ε Δ2Gii– D+

ε Δ2Gii– D–
�������������������������
⎝ ⎠
⎜ ⎟
⎛ ⎞

,ln

R iI– 1
2D
������ ε Δ2R– D+

ε Δ2R– D–
�����������������������⎝ ⎠
⎛ ⎞ln≈

– iI Δ2

ε Δ2R–( )
2

D2–
�������������������������������.

R 1
2D
������ ε Δ2R– D+

ε Δ2R– D–
�����������������������⎝ ⎠
⎛ ⎞ .ln=

D2 Δ2+

(A3)

Thus, the half�width of the band Deff widened by dis�
order in this model is determined by Eq. (22) used
above.

We note that although the Born approximation for
disorder scattering that we use is formally valid only for
small disorder Δ � D, the effects of Anderson localiza�
tion at large disorder Δ ~ D do not qualitatively change
the density of states [27], and hence the Born approx�
imation gives qualitatively correct results also in the
region of large disorder. Actually, this approximation
neglects only the appearance of exponentially small
“tails” in the density of states, outside the “mean
field” band edges [27] and gives more or less correct
results inside such a band.

At large enough disorder, almost any “bare” band
width 2D and an arbitrary density of states N0(ε)
acquires a semi�elliptic density of states. In the limit of
very large disorder Δ � D, almost in the whole band,
widened by disorder, we have |ε – Δ2R| � D and in the
expression for the local Green’s function we can
neglect the ε'�dependence in the denominator of the
integrand:

(A4)

Then we immediately obtain

(A5)

whence the density of states “dressed” by disorder

(A6)

becomes semi�elliptic, Eq. (5), with the half�width
Deff = 2Δ. Thus, at strong enough disorder, any “bare”
band becomes semi�elliptic, restoring the universal
dependence of single�particle properties on disorder
discussed above. In this sense, the model of the “bare”
band with a semi�elliptic density of states is most
appropriate for the studies of the effects of strong dis�
order. 
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Abstract—We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within
the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homoge-
neous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attrac-
tive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity
is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semi-
elliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and
B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at
the superconducting transition, is of a universal nature at any strength of the attractive interaction and is
related only to the general widening of the conduction band by disorder. In general, disorder growth increases
the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the
weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior
actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the
superconducting transition temperature Tc, is also controlled only by disorder widening of the conduction
band (density of states).

DOI: 10.1134/S1063776116020072

1. INTRODUCTION
The problem of superconductivity in the BCS–

BEC crossover region (and up to the strong coupling
limit) has a long history, starting with early works by
Leggett and Nozieres and Schmitt-Rink [1, 2]. Prob-
ably the simplest model to study this crossover is the
Hubbard model with attractive interaction. The most
successive approach to the studies of the Hubbard
model (both repulsive and attractive) is the dynamical
mean field theory (DMFT) [3–5]. The attractive
Hubbard model was already studied within DMFT in
a number of papers [6–10]. However, up to now there
are only a few works where disorder effects were taken
into account, either in normal or in superconducting
phase of this model. Qualitative analysis of disorder
effects on the critical temperature Tc in the BCS–BEC
crossover region was presented in [11], which claimed
the validity of the Anderson theorem in this region in
the case of s-wave pairing. A diagram analysis of disor-
der effects on Tc and the properties of the normal state
in the crossover region were recently presented in [12].

We have developed the generalized DMFT+Σ
approach to the Hubbard model [13–16], which is
quite convenient for including various “external”

interactions, such as disorder scattering [17, 18]. This
approach is also well suited to the studies of two-par-
ticle properties, such as dynamic (optical) conductiv-
ity [17, 19]. In recent paper [10], we used this
approach to analyze the single-particle properties of
the normal phase and optical conductivity in the
attractive Hubbard model. Subsequently, the
DMFT+Σ approximation was combined with the
Nozieres–Schmitt-Rink approach to study the inf lu-
ence of disorder on the superconducting critical tem-
perature Tc in the BCS-BEC crossover and strong-
coupling regions [20, 21], demonstrating the validity
of the generalized Anderson theorem. Disorder
effects on Tc are essentially due to only the general
widening of the conduction band by random scatter-
ing. This was demonstrated exactly (for the whole
range of attractive interactions) in the case of a semi-
elliptic density of states of the conduction band
(three-dimensional case) at any disorder level and is
also valid in the case of a f lat band (two-dimensional
case) in the limit of strong enough disorder.

The Ginzburg–Landau (GL) expansion in the
BCS–BEC crossover region was derived in a number
of papers [22–24], but no effects of disorder scattering
on the GL expansion coefficients were considered.
Here, we derive the microscopic coefficients of a1The article is published in the original.

ELECTRONIC PROPERTIES 
OF SOLID
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(homogeneous) GL expansion for the attractive Hub-
bard model and study disorder effects on these coeffi-
cients including the BCS–BEC and strong-coupling
regions, as well as on the specific heat discontinuity at
the superconducting transition, demonstrating a cer-
tain universality of disorder behavior of these charac-
teristics.

2. DISORDERED HUBBARD MODEL
IN THE DMFT+Σ APPROACH

We consider the disordered attractive Hubbard
model with the Hamiltonian

 (1)

where t > 0 is a transfer integral between the nearest
neighbors and U is the onsite Hubbard attraction,
niσ = aiσ is electron number operator at site i, and aiσ

( ) is the annihilation (creation) operator of an elec-
tron with spin σ. Local energy levels ei are assumed to
be independent random variables on different lattice
sites. We assume the Gaussian distribution of ei at each
site for the validity of the standard “impurity” scatter-
ing diagram technique [25]:

 (2)

Here, Δ is the measure of disorder scattering.
The generalized DMFT+Σ approach [13–16] sup-

plies the standard DMFT [3–5] with an additional
“external” self-energy (in general, momentum depen-
dent) due to any interaction outside the DMFT, which
provides an effective method to calculate both single-
and two-particle properties [17, 19]. The additive form
of the total self-energy preserves the structure of the
self-consistent DMFT equations [3–5]. The “exter-
nal” self-energy is recalculated at each step of the stan-
dard DMFT iteration scheme, using some approxima-
tions corresponding to the form of the additional
interaction, while the local Green’s function (central
for DMFT) is also “dressed” by the additional interac-
tion.

For the disordered Hubbard model, we take the
“external” self-energy entering the DMFT+Σ loop in
the simplest form of a self-consistent Born approxi-
mation, neglecting the “crossing” diagrams due to
disorder scattering:

 (3)

where G(ε, p) is the complete single-particle Green’s
function.

To solve the effective Anderson impurity model of
DMFT, we here use the effective algorithm of the
numerical renormalization group (NRG) [26].

† ,i j i i i i
ij i i

H t a a n U n nσ σ σ ↑ ↓
〈 〉σ σ

= − + −∑ ∑ ∑e

†
ia σ

†
ia σ

2

2
1( ) exp .

2 2
i

i
⎛ ⎞

= −⎜ ⎟πΔ Δ⎝ ⎠
3

e

e

2( ) ( , ),GΣ ε = Δ ε∑
p

p�

In what follows, we consider the model of a “bare”
conduction band with the semi-elliptic density of
states (per unit cell and spin projection)

 (4)

where D determines the half-width of the conduction
band. This is a good approximation in the three-
dimensional case.

In [21], we have shown analytically that in the
DMFT+Σ approach, within these approximations, all
the disorder influence on the single-particle proper-
ties reduces to the simple effect of band widening by
disorder scattering, D → Deff, where Deff is the effective
band half-width in the presence of disorder (in the
absence of correlations, i.e., for U = 0):

 (5)

and the conduction band density of states (in the
absence of U) “dressed” by disorder is given by

 (6)

preserving its semi-elliptic form.
For other models of the “bare” conduction band

density of states, besides band widening, disorder scat-
tering changes the form of the density of states, and
hence the complete universality of disorder influence
of single-particle properties, strictly speaking, is
absent. But in the limit of strong enough disorder, the
“bare” band density effectively becomes elliptic for
any reasonable model, and the universality is thus
restored [21].

All calculation below were performed for the quar-
ter-filled band (n = 0.5 per lattice site).

3. GINZBURG–LANDAU EXPANSION
The critical temperature of the superconducting

transition Tc in the attractive Hubbard model was ana-
lyzed using direct DMFT calculations in a number of
papers [6, 7, 9]. In [10], we determined Tc from the
instability condition of the normal phase (instability of
the DMFT iteration procedure). The results obtained
in this way were in good agreement with the results in
[6, 7, 9]. Additionally, in [10], we calculated Tc using
the approximate Nozieres–Schmitt-Rink approach in
combination with DMFT (used to calculate the chem-
ical potential of the system), demonstrating that being
much less time consuming, it provides a semi-quanti-
tative description of the Tc behavior in the BCS–BEC
crossover region, in good agreement with direct
DMFT calculations. In [20, 21], the combined
Nozieres–Schmitt-Rink approach was used to study
the detailed dependence of Tc on disorder. Below, we
use this combined approach to derive the GL expan-

2 2
0 2

2( ) ,N D
D
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D
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sion including the disorder dependence of the GL
expansion coefficients.

We write the GL expansion for the difference of
free energies of superconducting and normal phases in
the standard form

 (7)

where Δq is the spatial Fourier component of the
amplitude of the superconducting order parameter.
Microscopically, this expansion is determined by dia-
grams of the loop expansion for the free energy of an
electron in the “external field” of (static) supercon-
ducting order parameter f luctuations with a small
wave vector q, shown in Fig. 1 (where f luctuations are
represented by dashed lines) [25]. Below, we limit our-
selves to the case of a homogeneous expansion with
q = 0 and calculations of its coefficients A and B, leav-
ing the (much more complicated) analysis of the gen-
eral inhomogeneous case of finite q and calculations of
the coefficient C in (7) for the future work.

Within the Nozieres–Schmitt-Rink approach [2],
we use the weak-coupling approximation to calculate
loop diagrams with two and four Cooper vertices
shown in Fig. 1, dropping all corrections due to the
Hubbard U, while including “dressing” by disorder
scattering.2 However, the chemical potential, which
essentially depends on the coupling strength U and
determines the BEC condition in the strong-coupling
region, is calculated via the full DMFT+Σ procedure.

The coefficient A before the square of the order
parameter in the GL expansion is given by the dia-
grams in Fig. 1a with q = 0 [25]:

 (8)
where

2In the absence of disorder, this approach just coincides with that 
used in [22–24], involving the Hubbard–Stratonovich transfor-
mation in the functional integral over f luctuations of the super-
conducting order parameter.

2 2 2 4| | | | | | ,
2s n
BF F A q C− = Δ + Δ + Δq q q

0 0( ) ( 0, ) ( 0, ),cA T q T q T= χ = − χ =

 (9)

is the two-particle loop in the Cooper channel
“dressed” only by disorder scattering, while Φpp' (εn) is
the disorder-averaged two-particle Green’s function
in the Cooper channel (εn = πT(2n + 1) is the corre-
sponding Matsubara frequency). Subtraction of the
second diagram in Fig. 1a, i.e., that of χ0(q = 0, Tc)
in (8), guarantees the validity of A(T = Tc) = 0, which
necessarily holds in any kind of Landau expansion [25].

To obtain (εn), we use the exact Ward
identity derived in [19]:

 (10)

Here, G(εn, p) is the disorder-averaged single-par-
ticle Green’s function (not “dressed” by Hubbard
interaction!). With the symmetry ε(p) = ε(–p) and
G(εn, –p) = G(εn, p), we use Ward identity (10) to
obtain

 (11)

whence we obtain Cooper susceptibility (9)

 (12)

Performing the standard summation over Matsub-
ara frequencies [25], we now obtain

 (13)

where (ε) is the “bare” (U = 0) density of states
“dressed” by disorder scattering, which in the case of
a semi-elliptic band takes the form (6). In Eq. (13), the
origin of ε is at the chemical potential. Replacing ε →
ε – μ to shift the origin of energy to the center of con-
duction band, we finally write

0 '

'

( 0, ) ( )n

n

q T Tχ = = − Φ ε∑∑ pp

pp

''
Φ∑ pppp

'

'
1 1

0 0

( , ) ( , ) ( )

( ( , ') ( , ')).

n n n

n n

G G

G G− −

ε − −ε − = − Φ ε

× ε − −ε −

∑ pp

p

p p

p p

ε − −ε

Φ ε = −
ε

∑ ∑
∑ '

'

( , ) ( , )

( ) ,
2

n n

n
n

G G

i
p p

pp

pp

p p

0

( , ) ( , )

( 0, )
2

( , )

.

n n

nn

n

nn

G G

q T T
i

G

T
i

ε − −ε

χ = =
ε

ε

=
ε

∑ ∑
∑

∑
∑

p p

p

p p

p

0( 0, )

( , ) ( , )
1 tanh

4 2

( ) tanh ,
2 2

R A

q T

G G

d
i T

Nd
T

∞

−∞
∞

−∞

χ =

ε − ε
ε= ε

π ε

ε ε= − ε
ε

∑ ∑
∫

∫

p p

p p

�

N�

Fig. 1. Diagram representation of the Ginzburg–Landau
expansion.
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 (14)

The Cooper instability of the normal phase, deter-
mining the superconducting transition temperature
Tc, is written as

 (15)
We then obtain the following equation for the crit-

ical temperature:

 (16)

Using (15) to determine χ0(q = 0, Tc) and (14) for
χ0(q = 0, T), we obtain the coefficient A in (8):

 (17)

The chemical potential for different values of U and
Δ is to be determined here from direct DMFT+Σ cal-
culations, i.e., from the standard equation for the total
number of electrons (band filling), defined by the
Green’s function obtained in the DMFT+Σ approxi-
mation. This allows us to find both Tc and GL expan-
sion coefficients in a wide range of parameters of the
model, including the BCS–BEC crossover region and
the limit of strong coupling, for different disorder lev-
els. Actually, this is the essence of the Nozieres–
Schmitt-Rink approximation in the weak-coupling
region, transition temperature is controlled by the
equation for Cooper instability, while in the strong-
coupling limit, it is defined as the temperature of Bose
condensation, which is controlled by the equation for
the chemical potential. The joint solution of Eqs. (16)
and (17) with the DMFT+Σ equation for the chemical
potential provides the correct interpolation for Tc and
GL coefficient A from the weak-coupling region via
the BCS–BEC crossover towards the strong coupling.

For T → Tc, the coefficient A(T) is written as

 (18)
where in the case of a temperature independent chem-
ical potential,

 (19)

In the BCS approximation with the conduction
band of an infinite width with a constant density of
states (0), we obtain the standard result a =

(0)/Tc from (19) [25]. However, in the BCS–BEC
crossover region, the temperature dependence of μ is
essential and we have to use the general expression (17)
in conjunction with the equation for μ to calculate a.
At the same time, it is clear from Eq. (17) that disorder
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scattering influences a only through the changes of the
density of states (ε) and the chemical potential μ,
which is a typical single-particle property. Thus, in the
case of a semi-elliptic “bare” conduction band, the
dependence of a on disorder is due to only the band
widening by disorder, with the replacement D → Deff.
Therefore, in the presence of disorder, we expect the
universal dependence of a(2Deff)2 on U/2Deff (all ener-
gies are to be normalized by the effective bandwidth
2Deff), which is confirmed by the results of direct
numerical computations in the next section (cf.
Fig. 4a).

The coefficient B is determined by a “square” dia-
gram with four Cooper vertices with q = 0, “dressed”
in an arbitrary way by disorder scattering, which is
shown in Fig. 1b [25]:

 (20)

where 〈…〉 denotes averaging over disorder, and G(iεn;
p1, p2) (and other similar expressions) represent exact
single-particle Green’s functions for a fixed configu-
ration of the random potential. Performing standard
summation over Matsubara frequencies, we obtain

 (21)

Due to the zero momentum q = 0 in Cooper verti-
ces and the static nature of disorder scattering, we can
now use a certain generalization of Ward identity (10)
to obtain (at T = Tc)

 (22)

A detailed derivation is presented in Appendix A.
In the BCS approximation, using the conduction
band of an infinite width with a constant density of
states (0), we immediately obtain the standard

result from Eq. (22): B = (7ζ(3)/8π2 ) (0) [25].

Again, replacing here ε → ε – μ to shift the origin
of energy to the middle of the conduction band, we
can write
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 (23)

It follows that the disorder dependence of the coef-
ficient B (similarly to A) is also determined only by the
disorder-widened density of states (ε) and the
chemical potential, and hence in the case of a semi-
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elliptic “bare” conduction band, it reduces to the sim-
ple replacement D → Deff, leading to a universal
dependence of B(2Deff)3 on U/2Deff, which is con-
firmed by the results of direct numerical computations
presented in the next section and shown in Fig. 4b.

We stress that Eqs. (17) and (23) for the GL coeffi-
cients A and B were obtained with the use of exact
Ward identities, and are therefore valid also in the limit
of strong disorder (beyond Anderson localization).

The universal dependence on disorder, related to
the conduction band widening by disorder scattering,
is also valid for the specific-heat discontinuity at Tc,
because it is completely determined by the coefficients
a and B:

 (24)

Appropriate numerical results are also given in the
next Section (cf. Fig. 5b).

The coefficient C before the gradient term of the
GL expansion is determined essentially by two-parti-
cle characteristics (in particular, due to a nontrivial q-
dependence of the vertex, which is obviously changed
by disorder scattering). In particular, the behavior of C
is significantly changed at the Anderson transition
[27], and therefore no universality of the disorder
dependence is expected in this case.

4. MAIN RESULTS
We now discuss the main results of our numerical

calculations, directly demonstrating the universal
dependences of the GL coefficients A and B and the
specific heat discontinuity at Tc on disorder.

In Fig. 2, we show the universal dependence of the
critical temperature Tc on the Hubbard attraction U for

2
( ) ( ) .s c n c c

aC T C T T
B

− =

Fig. 2. Universal dependence of the superconducting crit-
ical temperature on disorder for different values of the
Hubbard attraction.
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different levels of disorder, which was obtained and
discussed in detail in [20, 21]. A typical maximum of
Tc at U/2Deff ~ 1 is characteristic of the BCS–BEC
crossover region.

In Fig. 3, we present disorder dependences of the
GL coefficients a (Fig. 3a) and B (Fig. 3b) for different
values of the Hubbard attraction. We can see that a in
general increases with an increase in disorder. Only in
the limit of a strong enough coupling U/2D > 1.4
(curves 4 and 5) in the region of weak disorder do we
observe weak suppression of a by disorder scattering.
The coefficient B grows sufficiently fast with disorder
in the region of weak coupling (curve 1 in Fig. 3b),

while in the region of strong coupling, this growth
becomes more moderate (curves 4, 5 in Fig. 3b), such
that the dependence of B on disorder in this region
becomes almost independent of the value of U
(curves 4 and 5 practically coincide).

However, this rather complicated dependence of
the coefficients a and B on disorder is determined
solely by the growth of the effective conduction band-
width with disorder, given by Eq. (5). In Fig. 4, we
show the universal dependences of the GL coefficients
a and B, normalized by appropriate powers of the
effective bandwidth, on the strength of Hubbard
attraction. In the absence of disorder (the dashed line

Fig. 4. Universal dependence of the GL coefficients (a) a and (b) B on the Hubbard attraction for different values of disorder.
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with squares), the coefficients a and B decrease fast as
U increases. Other symbols in Fig. 4 show the results of
our calculations for different levels of disorder. It is
clearly seen that all the data ideally fit the universal
curve obtained in the absence of disorder.

The coefficients a and B determine the specific
heat discontinuity at the critical temperature,
Eq. (24). Because these coefficients and Tc [20, 21]
depend on disorder in a universal way due only to the
growth of the effective bandwidth (5), the same type of
universal dependence is also valid for the specific heat
discontinuity. In Fig. 5a, we show the dependence of
the specific heat discontinuity dC ≡ Cs – Cn on disor-
der for different values of the Hubbard attraction U. It
is seen that in the region of weak coupling (curve 1),
the specific heat discontinuity is suppressed by disor-
der; for intermediate couplings (curves 2 and 3), weak
disorder leads to an increase in the specific heat dis-
continuity, while further increasing the disorder sup-
presses this discontinuity. In the region of strong cou-
pling (curves 4 and 5), the increase in disorder leads to
a significant increase in the specific heat discontinu-
ity, which is mainly related to the similar increase in Tc
(cf. [20, 21]). However, this complicated dependence
of the specific heat discontinuity on disorder is again
completely determined by the growth of effective
bandwidth (5). In Fig. 5b, we show the universal
dependence of the specific heat discontinuity on U,
normalized by the bandwidth 2Deff. Black squares rep-
resent data in the absence of disorder. Other symbols
in Fig. 5b show the data for different disorder levels.
We see again that all the data precisely fit the universal
dependence of the specific heat discontinuity
obtained in the absence of disorder. The specific heat
discontinuity increases with an increases in U in the
region of weak coupling U/2Deff ≪ 1 and decreases
with an increase in U in the limit of strong coupling
U/2Deff ≫ 1. The maximum of the specific heat dis-
continuity is observed at U/2Deff ≈ 0.55. Actually, this
dependence of the specific heat discontinuity qualita-

tively resembles a similar dependence of the critical
temperature, although its maximum is attained at
smaller values of the Hubbard attraction.

5. CONCLUSION

Using a combination of the Nozieres–Schmitt-
Rink approximation with the generalized DMFT+Σ
approach, we have studied disorder influence on the
coefficients A and B determining the homogeneous
Ginzburg–Landau expansion and specific heat dis-
continuity at the superconducting transition in the
attractive Hubbard model.

We have demonstrated analytically that in the case
of a “bare” conduction band with a semi-elliptic den-
sity of states, disorder influence on the GL coeffi-
cients A and B and the specific heat discontinuity is
universal and is controlled only by the general con-
duction band (density of states) widening by disorder
scattering; we illustrated this conclusion with explicit
numerical calculations performed for a wide range of
attractive potentials U, from the weak-coupling
region, where U/2Deff ≪ 1 and the superconducting
instability is described by the usual BCS approach, to
the strong-coupling region, where U/2Deff ≫ 1 and the
superconducting transition is determined by Bose–
Einstein condensation of preformed Cooper pairs.

These results essentially prove the validity of the
generalized Anderson theorem in the BCS–BEC
crossover region and in the limit of strong coupling not
only for Tc [20, 21] but also for the homogeneous
Ginzburg–Landau expansion, determining appropri-
ate thermodynamic effects like the specific heat dis-
continuity at the transition point.
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APPENDIX

The Coefficient B in the Presence of Disorder

The coefficient B is determined by the “square”
diagram with four Cooper vertices with q = 0,
“dressed” by disorder scattering, shown in Fig. 1b.
The corresponding analytic expression is given in
Eq. (20). After the standard summation over Matsub-
ara frequencies, B is written as in (21), i.e., is deter-
mined by the following combination of four Green’s
functions with real frequencies:

 (A.1)
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Fig. 6. Diagrams for the coefficient B and the derivation of
a generalized Ward identity.

G1 G1G2 G2G3 G3G4 G4G4G5 G5G6 G6G7 G7G8 G8G9 G9

(a)

Δ*

Δ* Δ*Δ

Δ* Δ

Δ 

(b)

~ ~ ~ ~ ~ ~



382

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 122  No. 2  2016

KUCHINSKII et al.

where 〈…〉 denotes averaging over disorder and GR(A)(ε;
p1, p2) are the exact retarded (advanced) single-parti-
cle Green’s functions for a fixed configuration of dis-
order.

A typical diagram of the fourth order of disorder
scattering (dashed lines) is shown in Fig. 6a. Arbitrary
diagrams for such a four-particle Green’s function can
be obtained from diagrams for the single-particle
Green’s function of the same order of disorder scatter-
ing by arbitrarily inserting three Cooper vertices into
the “bare” electron Green’s functions, as shown in
Fig. 6a. Taking the static nature of disorder scattering
and the zero transferred momentum q = 0 in Cooper
vertices into account, we can evaluate (A.1) using a
certain generalization of exact Ward identity (10),
derived in [19].

We take the diagram for the single-particle Green’
function, shown in the left part of Fig. 6b, and con-
sider a certain configuration of momenta transferred
by dashed lines. Here, we have nine “bare” electron
Green’s functions with momenta p1, …, p9. In what
follows, we use the short notation

 (A.2)

where (ε; p) = 1/(ε – ε(p) ± iδ) is the “bare”
Green’s function. Inserting a Cooper vertex leads to
the sign change of momenta and frequencies (i.e., to
the replacement Gi ↔ ) in all Green’s functions
standing to the right of the vertex. We assume that the
central of the three Cooper vertices was inserted into
the fourth Green’s function, as shown in the right part
of Fig. 6b. An arbitrary insertion of the first Cooper
vertex into one of the first four of the Green’s func-
tions leads to the result

 (A.3)

whence, using the identify  –  = 2ε, we obtain
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Then  → G4G5G6G7G8G9 and after all
insertions of the last (third) Cooper vertex into one of
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We thus obtain

 (A.5)

where we can evaluate the two-particle Green’s func-
tions with q = 0 again using an analogue of Ward iden-
tity (10) for real frequencies. Using (A.5) in (21) and
replacing ε → –ε in terms with 〈GA(–ε)〉 in the integral
over ε, we obtain

 (A.6)

This expression was used in the main part of the
paper.
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Abstract—We have studied disordering effects on the coefficients of Ginzburg–Landau expansion in powers
of superconducting order parameter in the attractive Anderson–Hubbard model within the generalized
DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling
region, where superconductivity is described by BCS model, to the strong coupling region, where the super-
conducting transition is related with Bose–Einstein condensation (ВЕС) of compact Cooper pairs formed at
temperatures essentially larger than the temperature of superconducting transition, and a wide range of dis-
order—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semiel-
liptic bare density of states, disorder’s influence upon the coefficients A and В of the square and the fourth
power of the order parameter is universal for any value of electron correlation and is related only to the general
disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gra-
dient term expansion coefficient C. In the usual theory of “dirty” superconductors, the С coefficient drops
with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient С is very sensitive to
the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of
the Anderson insulator. In the region of BCS–ВЕС crossover and in ВЕС limit, the coefficient С and all
related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disor-
der dependence of both penetration depth and coherence lengths, as well as of related slope of the upper crit-
ical magnetic field at superconducting transition, in the region of very strong coupling.

DOI: 10.1134/S1063776117060139

1. INTRODUCTION
The studies of disorder influence on superconduc-

tivity have a rather long history. The pioneer works by
Abrikosov and Gor’kov [1–4] considered the limit of
weak disorder (pFl @ 1, where pF is the Fermi momen-
tum and l is the mean free path) and weak coupling
superconductivity well described by BCS theory. The
notorious “Anderson theorem” on superconducting
critical temperature Tc of superconductors with “nor-
mal” (nonmagnetic) disorder [5, 6] is usually also
referred to these limits.

The generalization of the theory of “dirty” super-
conductors to the case of strong enough disorder
(pFl ~ 1) (and further up to the region of Anderson
transition) was made in [7–9], where superconductiv-
ity was also considered in the weak coupling limit.

The problem of BCS theory generalization to the
strong coupling region has also been studied for a long

time. Significant progress in this direction was
achieved by Nozieres and Schmitt-Rink [10], who
proposed an effective method to study the crossover
from BCS-type behavior in the weak coupling region
to Bose–Einstein condensation (ВЕС) in the strong
coupling region. At the same time, the problem of
superconductivity of disordered systems in the limit of
strong coupling and in the BCS–ВЕС crossover
region remains relatively undeveloped.

One of the simplest models to study the BCS–ВЕС
crossover is the attractive Hubbard model. The most
successful approach to the studies of Hubbard model,
both to describe strongly correlated systems in case of
repulsive interactions and to study BCS–ВЕС cross-
over in case of attraction, is the dynamical mean-field
theory (DMFT) [11–13].

In recent years, we have developed the generalized
DMFT+Σ approach to the Hubbard model [14–19],
which is very convenient to the description of different
additional “external” (as compared to DMFT) inter-1 The article is published in the original.

ORDER, DISORDER, AND
PHASE TRANSITION IN CONDENSED SYSTEM
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actions. In particular, this approach is well suited to
describe also the two-particle properties, such as opti-
cal (dynamic) conductivity [18, 20].

In [21], we have used this approach to analyze sin-
gle-particle properties of the normal phase and optical
conductivity in the attractive Hubbard model. Further
on, we used the DMFT+Σ method in [22] to study
disorder effects on superconducting critical tempera-
ture, which was calculated within the Nozieres–
Schmitt-Rink approach. In particular, for the case of
the semielliptic model of the bare density of states,
which is adequate to describe three-dimensional sys-
tems, we have demonstrated numerically that disorder
influence upon the critical temperature (for the whole
range of interaction parameters) is related only to the
general widening of the bare band (density of states) by
disorder. In [23], we have presented an analytic deri-
vation of such disorder influence (in DMFT+Σ
approximation) on all single-particle properties and
the temperature of superconducting transition for the
case of the semielliptic band.

Starting with the classic paper by Gor’kov [3] it is
well known that Ginzburg–Landau expansion plays
the fundamental role in the theory of “dirty” super-
conductors, allowing the effective treatment of disor-
der dependence of different physical properties close
to superconducting critical temperature [6]. The gen-
eralization of this theory to the region of strong disor-
der (up to Anderson metal–insulator transition) was
also based upon microscopic derivation of the coeffi-
cients of this expansion [7–9]. However, as noted
above, all these derivations were performed in the
weak coupling limit of BCS theory.

In [24], we have combined the Nozieres–Schmitt-
Rink and DMFT+Σ approximations within the
attractive Hubbard model to derive coefficients of
homogeneous Ginzburg–Landau expansion A and В
before the square and the fourth power of supercon-
ducting order parameter, demonstrating the universal
disorder influence on coefficients A and В and the
related discontinuity of specific heat at the transition
temperature. After that, in [25], we have studied the
behavior of coefficient С before the gradient term of
Ginzburg–Landau expansion, where such universal-
ity is absent. In this work, we have only considered this
coefficient in the region of weak disorder (pFl @ 1) in
the “ladder” approximation for impurity scattering, as
it is usually done in the standard theory of “dirty”
superconductors [3], though for the whole range of
pairing interactions including the BCS–ВЕС cross-
over region and the limit of very strong coupling.
In fact, here we have neglected the effects of Anderson
localization, which can significantly change the
behavior of the coefficient С in the limit of strong dis-
order (pFl ~ 1) [7–9].

In this work, we shall concentrate mainly on the
study of the coefficient С in the region of strong disor-

der, when Anderson localization effects become rele-
vant.

2. HUBBARD MODEL WITHIN DMFT+Σ 
APPROACH AND THE NOZIERES–SCHMITT-

RINK APPROXIMATION
We consider the disordered nonmagnetic attractive

Anderson–Hubbard model, described by the Hamil-
tonian:

(1)

where t > 0 is transfer amplitude between nearest
neighbors, U is the Hubbard-like onsite attraction,
niσ = aiσ is electron number operator at a given site,

aiσ ( ) is annihilation (creation) operator of an elec-
tron with spin σ, and local energies  are assumed to
be independent random variables at different lattice
sites. For the validity of the standard “impurity” dia-
gram technique [26, 27] we assume the Gaussian dis-
tribution for energy levels :

(2)

Distribution width W is the measure of disorder, while
the Gaussian field of energy levels (independent on
different sites—“white” noise correlation) induces the
“impurity” scattering, which is described by the stan-
dard approach, based upon the calculation of the aver-
aged Green’s functions [27].

The generalized DMFT+Σ approach [14–17]
extends the standard dynamical mean-field theory
(DMFT) [11–13] introducing the additional “external”
self-energy part (SEP) Σp(ε) (in general momentum
dependent), which originates from any interaction out-
side the DMFT, and provides an effective procedure to
calculate both single-particle and two-particle proper-
ties [18, 20]. The success of such a generalized approach
is connected with the choice of single-particle Green’s
function in the following form:

(3)

where ε(p) is the “bare” electronic dispersion, while
the total SEP is an additive sum of Hubbard-like local
SEP Σ(ε) and “external” Σp(ε), neglecting the interfer-
ence between Hubbard-like and “external” interac-
tions. This allows us to conserve the system of self-
consistent equations of the standard DMFT [11–13].
At the each step of DMFT iterations the “external”
SEP Σp(ε) is recalculated with the use of some approx-
imate scheme, corresponding to the form of additional
interaction, while the local Green’s function is also
“dressed” by Σp(ε) at each step of the standard DMFT
procedure.
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The “external” SEP, entering DMFT+Σ cycle, in
the problem of disorder scattering under consideration
here [18, 19], is taken in the simplest (self-consistent
Born) approximation, neglecting the “crossing” dia-
grams of impurity scattering, which gives:

(4)

To solve the effective single Anderson impurity
problem of DMFT we use here, as in our previous
papers, the quite efficient impurity solver using the
numerical renormalization group (NRG) [28].

In the following, we are using the “bare” band with
semielliptic density of states (per unit cell with lattice
parameter a and single spin projection), which is a
rather good approximation in the three-dimensional
case:

(5)

where D defines the half–width of the conduction
band.

In [23], we have shown that in the DMFT+Σ
approach for the model with semi-elliptic density of
states all effects of disorder upon single-particle proper-
ties reduce only to the band widening due to disorder,
i.e., to the replacement D → Deff, where Deff is the effec-
tive half-width of the “bare” band in the absence of
electronic correlations (U = 0), widened by disorder:

(6)

The “bare” density of states (in the absence of U)
“dressed” by disorder:

Σ ε → Σ ε = ε∑
2

imp( ) ( ) ( , ).W Gp

p

p

ε = − ε
π

2 2
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D
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2
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(7)

remains semielliptic also in the presence of disorder.
It should be noted, that in other models of the “bare”
band disorder effect is not reduced only to the widen-
ing of the band, changing also the form of the density
of states, so that there is no complete universality of
disorder influence on single-particle properties,
reducing to a simple substitution D → Deff. However,
in the limit of strong enough disorder of interest to us,
the “bare” band becomes practically semielliptic,
restoring such universality [23].

All calculations below, as in our previous works,
were performed for the rather typical case of the quar-
ter–filled band (the number of electrons per lattice
site is n = 0.5).

To consider superconductivity for the wide range of
pairing interaction U, following [21, 23], we use the
Nozieres–Schmitt-Rink approximation [10], which
allows qualitatively correct (though approximate)
description of the BCS–ВЕС crossover region. In this
approach, we determine the critical temperature Tc
using the usual BCS-type equation [23]:

(8)

with chemical potential μ determined via DMFT+Σ
calculations for different values of U and W, i.e., from
the standard equation for the number of electrons
(band filling), determined by the Green’s function
given by Eq. (3), allowing us to find Tc for the wide
range of the model parameters including the regions of
BCS–ВЕС crossover and strong coupling, as well as
for different levels of disorder. This reflects the physi-
cal meaning of the Nozieres–Schmitt-Rink approxi-
mation—in the weak coupling region, transition tem-
perature is controlled by the equation for Cooper
instability (8), while, in the strong coupling region, it
is determined as ВЕС temperature controlled by
chemical potential.

In [23], it was shown that disorder’s influence on
the critical temperature Tc and single-particle charac-
teristics (e.g., density of states) in the model with
semielliptic “bare” density of states is universal and
reduces only to the change of the effective bandwidth.
In Fig. 1, just for illustrative purposes, we show the
universal dependence of the critical temperature Tc on
Hubbard attraction for different levels of disorder [23].
In the weak coupling region, the temperature of super-
conducting transition is described well by the BCS
model (for comparison, in Fig. 1, the dashed line rep-
resents the dependence obtained for Tc from Eq. (8)
with chemical potential independent of U and deter-
mined by quarter filling of the “bare” band), while for
the strong coupling region the critical temperature is
mainly determined by the condition of Bose conden-
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Fig. 1.  (Color online) Universal dependence of the tem-
perature of superconducting transition on the strength of
Hubbard attraction for different levels of disorder.
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sation of Cooper pairs and drops with the growth of U
as t2/U, going through the maximum at U/2Deff ~ 1.

The review of these and other results obtained for
disordered Hubbard model in DMFT+Σ approxima-
tion can be found in [19].

3. GINZBURG–LANDAU EXPANSION

Ginzburg–Landau expansion for the difference of
free-energy densities of superconducting and normal
states is written in the standard form [27]:

(9)

where Δq is the Fourier component of the order
parameter Δ.

This expansion (9) is determined by the loop–
expansion diagrams for free-energy of an electron in
the field of f luctuations of the order parameter
(denoted by dashed lines) with small wavevector q
[27], shown in Fig. 2 [27].

In the framework of the Nozieres–Schmitt-Rink
approach [10], we use the weak coupling approxima-
tion to analyze Ginzburg–Landau coefficients, so that
the “loops” with two and four Cooper vertices, shown
in Fig. 2, do not contain contributions from Hubbard
attraction and are “dressed” only by impurity scatter-
ing. However, like in the case of Tc calculation, the
chemical potential, which is essentially dependent on
the coupling strength and in the strong coupling limit
actually controls the condition of Bose condensation
of Cooper pairs, should be determined within full
DMFT+Σ procedure.

In [24] it was shown that in this approach the coef-
ficients A and В are determined by the following
expressions:
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For T → Tc the coefficient A(T) takes the usual
form:

(12)
In BCS limit, where T = Tc → 0, we obtain for

coefficients α and В the standard result [27]:

(13)

In the general case, the coefficients A and В are
determined only by the disorder widened density of
states (ε) and chemical potential. Thus, in the case
of semielliptic density of states the dependence of
these coefficients on disorder is due only to the simple
replacement D → Deff, leading to universal (indepen-
dent of the level of disorder) curves for properly nor-
malized dimensionless coefficients (α(2Deff)2 and
B(2Deff)3) on U/2Deff) [24]. In fact, the coefficients α
and В are rapidly suppressed with the growth of
dimensionless coupling U/2Deff.

It should be noted that Eqs. (10) and (11) for coef-
ficients A and В were obtained in [24] using the exact
Ward identities and remain valid also in the limit of
arbitrarily large disorder (including the region of
Anderson localization).

Universal dependence on disorder, related to wid-
ening of the band D → Deff, is observed, in particular,
for specific heat discontinuity at the transition point,
which is determined by coefficients α and В [24]:

(14)

From diagrammatic representation of Ginzburg–
Landau expansion, shown in Fig. 2, it is clear that the
coefficient С is determined by the coefficient before q2

in a Cooper two-particle loop (first term in Fig. 2).
Then we obtain the following expression:

(15)

where Ψp, p'(εn, q) is a two-particle Green’s function in
a Cooper channel (see Fig. 3), “dressed” in the
Nozieres–Schmitt-Rink approximation only by
impurity scattering. In case of time-reversal invari-
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ance (in the absence of magnetic field and magnetic
impurities) and because of the static nature of impu-
rity scattering “dressing” two-particle Green’s func-
tion Ψp, p'(εn, q), we can reverse here the direction of all
lower electron lines with simultaneous change of the
sign of all momenta (see Fig. 3). As a result, we obtain:

(16)

where εn are Fermionic Matsubara frequencies, p± = p ±

, Φp, p'(ωm = 2εn, q) is the two-particle Green’s func-

tion in the diffusion channel, dressed by impurities.
Then we obtain Cooper susceptibility as:

(17)

Performing the standard summation over Fermi-
onic Matsubara frequencies [26, 27], we obtain:

(18)

where ΦRA(ω, q) = (ω, q). To find the loop
ΦRA(ω, q) in strongly disordered case (e.g., in the
region of Anderson localization) we can use the
approximate self-consistent theory of localization [27,
29–33]. Then this loop contains the diffusion pole of
the following form [19]:

(19)

where ΔGp(ε) = GR(ε, p) – GA(–ε, p), GR and GA are
the retarded and advanced Green’s functions, and
D(ω) is frequency dependent generalized diffusion
coefficient. Then we obtain the coefficient С as:
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The generalized diffusion coefficient of the self-
consistent theory of localization [27, 29–33] for our
model can be found as the solution of the following
self–consistency equation [18]:

(21)

where ω  = 2ε, Δ (ω) = (ε) – (–ε), d is
space dimension, and velocity 〈v〉 is defined by the fol-
lowing expression:

(22)

Due to the limits of diffusion approximation sum-
mation over q in Eq. (21) should be limited by the fol-
lowing cut-off [27, 32]:

(23)

where l is the mean free path due to elastic disorder
scattering and pF is Fermi momentum.

In the limit of weak disorder, when localization
corrections are small, the Cooper susceptibility χ(q)
and coefficient С related to it are determined by the
“ladder” approximation. In this approximation coef-
ficient С was studied by us in [25], where we obtained
it in general analytic form. Let us now transform self-
consistency Eq. (21) to make the obvious connection
with exact “ladder” expression in the limit of weak dis-
order. In the “ladder” approximation, we just neglect
the “maximally intersecting” diagrams entering the
irreducible vertex. The second term in the r.h.s. of self-
consistency Eq. (21) vanishes. Let us introduce the
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frequency dependent generalized diffusion coefficient
in “ladder” approximation as:

(24)

Then  entering the self-consistency Eq. (21) can

be rewritten via this diffusion coefficient D0 in “lad-
der” approximation, so that Eq. (21) takes the follow-
ing form:

(25)

Using the approach of [25], the diffusion coefficient
D0(ω = 2ε) in the “ladder” approximation can be
derived analytically. In fact, in the “ladder” approxi-
mation the two-particle Green’s function (19) takes
the following form:

(26)

Then we obtain:

(27)

Then the diffusion coefficient D0 can be written as:

(28)

In [25] using the exact Ward identity we have shown,
that in the “ladder” approximation ϕ(ε, q = 0) can be
represented as:

(29)

where vx = .

Finally, using Eqs. (28), (29) we find the diffusion
coefficient D0 in the “ladder” approximation. Using
self-consistency Eq. (25) we determine the general-
ized diffusion coefficient, and then using Eq. (20) we
find the coefficient C. In the limit of weak disorder,
when the “ladder” approximation works well and gen-

eralized diffusion coefficient just coincides with the
diffusion coefficient in the “ladder” approximation,
we obtain for coefficient С the result obtained in [25]:

(30)

Now we can use the iteration scheme to find the coef-
ficient C, which in the limit of weak disorder repro-
duces the results of the “ladder” approximation, while
in the limit of strong disorder takes into account the
effects of Anderson localization (in the framework of
the self-consistent theory of localization).

In numerical calculations using Eqs. (28) and (29)
we first find the “ladder” diffusion coefficient D0 for
the given value of ω = 2ε. Then, solving by iterations
the transcendental self-consistency Eq. (25), we deter-
mine the generalized diffusion coefficient at this fre-
quency. After that, using Eq. (20) we calculate the
Ginzburg–Landau coefficient C.

In [18] it was shown, that in DMFT+Σ approxima-
tion for the Anderson–Hubbard model the critical
disorder for Anderson metal–insulator transition
W/2D = 0.37 and is independent of the value of the
Hubbard interaction U. The approach developed here
allows determination of the С coefficient also in the region
of Anderson insulator at disorder levels W/2D > 0.37.
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4. MAIN RESULTS
The coherence length at given temperature ξ(T)

gives a characteristic scale of inhomogeneities of the
order parameter Δ:

(31)

Coefficient A changes its sign and becomes zero at a
critical temperature: A = α(T – Tc), so that

(32)

where we have introduced the coherence length of a
superconductor:

(33)

which reduces to a standard expression in the weak
coupling region and in the absence of disorder [27]:
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Penetration depth of magnetic field into supercon-
ductor is defined by:
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which in the absence of disorder has the form:

(38)

As λBCS is independent of Tc, i.e., of coupling strength,
it is convenient to use for normalization of penetration
depth λ (37) at arbitrary U and W.

Close to Tc the upper critical magnetic field Hc2 is
determined by the Ginzburg–Landau coefficients as:

(39)

where Φ0 = cπ/e is a magnetic f lux quantum. Then the
slope of the upper critical filed close to Tc is given by:

(40)

In Fig. 4 we show the dependence of coefficient С
on the strength of Hubbard attraction for different dis-
order levels. In this figure and in the following we use
filled symbols and continuous lines corresponding to
the results of calculations taking into account localiza-
tion corrections, while unfilled symbols and dashed
lines correspond to calculations in the “ladder”
approximation. Coefficient С is essentially a two-par-
ticle characteristic and it does not follow universal
behavior on disorder, as in case of coefficients A and B,
and disorder dependence here is not reduced only to
widening of effective bandwidth by disorder. Corre-
spondingly, in the dependence of С on coupling
strength, where all energies are normalized by effective
bandwidth 2Deff, we do not observe a universal curve
for different levels of disorder [25], in contrast to sim-
ilar dependencies for coefficients α and B. In fact,
coefficient С is rapidly suppressed with the growth of
coupling strength. Especially strong suppression is
observed in the weak coupling region (cf. insert in Fig. 4).
Localization corrections become relevant in the limit
of strong enough disorder (W/2D > 0.25). Under such
strong disordering localization corrections signifi-
cantly suppress coefficient С in weak coupling region
(cf. dashed lines (“ladder” approximation) and con-
tinuous curves (with localization corrections) for
W/2D = 0.37 and 0.5). In strong coupling region for
U/2D > 1 localization corrections, in fact, do not
change the value of coefficient C, as compared to the
results of “ladder” approximation, even in the limit of
strong disorder for W/2D > 0.37, where the system
becomes an Anderson insulator.

In Fig. 5, we show the dependencies of coefficient С
on disorder level for different values of coupling strength
U/2D. In the limit of weak coupling (U/2D = 0.1), we
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observe rather rapid suppression of coefficient С with
the growth of disorder in case of weak enough impurity
scattering. In the region of strong enough disorder in
the “ladder” approximation, we can observe some
growth of coefficient С with the increase of disorder,
which is related mainly with significant widening of
the band by such strong disorder and corresponding
drop of the effective coupling U/2Deff. However, local-
ization corrections, which are significant at large dis-
order W/2D > 0.25, actually lead to suppression of
coefficient С with the growth of disorder in the limit of
strong impurity scattering. In the intermediate cou-
pling region (U/2D = 0.4–0.6) coefficient С in the
“ladder” approximation is only growing slightly with
increasing disorder. In the ВЕС limit (U/2D > 1) coef-
ficient С is practically independent of impurity scat-
tering both in the “ladder” approximation and with
the account of localization corrections. In the ВЕС
limit the account of localization corrections in fact do
not change the value of С in comparison with the “lad-
der” approximation.

As the Ginzburg–Landau expansion coefficient α
and В demonstrate the universal dependence on disor-
der, Anderson localization in fact does not influence
them at all, while coefficient С in the weak coupling
region is strongly affected by localization corrections,
being almost independent of them in the ВЕС limit,
the physical properties depending on С will be also sig-
nificantly changed by localization corrections in the
weak coupling region, becoming practically indepen-
dent of localization in the ВЕС limit.

Let us now discuss the behavior of physical proper-
ties. Dependence of coherence length on Hubbard
attraction strength is shown in Fig. 6. We can see that
in the weak coupling region (cf. insert at Fig. 6) coher-

ence length rapidly drops with the growth of U for any
disorder, reaching the value of the order of lattice
parameter a in the intermediate coupling region of
U/2D ≈ 0.4–0.6. Further growth of coupling strength
changes the coherence length only slightly. The account
of localization corrections for coherence length is sig-
nificant only at large disorder (W/2D > 0.25). We see
that localization corrections lead to significant sup-
pression of coherence length in the BCS limit of weak
coupling and practically do not change the coherence
length in the ВЕС limit.

In Fig. 7, we show the dependence of penetration
depth, normalized by its BCS value in the absence of
disorder (38), on the strength of Hubbard attraction U
for different levels of disorder. In the absence of impu-
rity scattering, penetration depth grows with the
increase of the coupling strength. In BCS weak cou-
pling limit disorder leads to a fast growth of penetra-
tion depth (for “dirty” BCS superconductors λ ~ l–1/2,
where l is the mean free path). In ВЕС strong coupling
limit disorder only slightly diminish the penetration
depth (cf. Fig. 10a). This leads to suppression of penetra-
tion depth with disorder with the growth of Hubbard
attraction strength in the region of weak enough cou-
pling and to the growth of λ with U in ВЕС strong cou-
pling region. The account of localization corrections is
significant only in the limit of strong disorder (W/2D >
0.25) and leads to noticeable growth of penetration
depth as compared to the “ladder” approximation in the
weak coupling region. In the ВЕС limit the influence of
localization on penetration depth is just insignificant.

Dependence of the slope of the upper critical mag-
netic field on the strength of Hubbard attraction for
different disorder levels is shown in Fig. 8. In the limit
of weak enough impurity scattering, until Anderson

Fig. 5. (Color online) Dependence of coefficient С nor-
malized by its value in the absence of disorder for different
values of Hubbard attraction U. Dashed lines—“ladder”
approximation, continuous curves—calculations with the
account of localization corrections.
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localization corrections remain unimportant, the
slope of the upper critical field grows with the growth
of the coupling strength. The fast growth of the slope
is observed with the growth of U in the region of weak
enough coupling, while in the limit of strong coupling
the slope is rather weakly dependent on U/2D. In the
region of strong enough disorder (W/2D > 0.25) the
account of localization corrections becomes quite
important—it qualitatively changes the behavior of the
upper critical held. While the “ladder” approximation
(dashed curves) conserves the behavior of the slope of
the upper critical held typical for the region of weak dis-
order, where the slope grows with the growth of the cou-
pling strength, the account of Anderson localization
(W/2D ≥ 0.37) leads to a strong increase of the slope of
the upper critical held in the weak coupling limit. As a
result, in Anderson insulator the slope of the upper criti-
cal hied rapidly drops with the growth of U in the weak
coupling limit and just insignificantly grows with the
growth of U in ВЕС limit. Note that the account of local-
ization corrections is also unimportant for for the slope
of the upper critical held in the strong coupling limit.

Let us consider now dependencies of physical
properties on disorder. In Fig. 9 we show dependence
of coherence length ξ on disorder for different values
of coupling. In the BCS limit for weak coupling and
for weak enough impurity scattering we observe the
standard “dirty” superconductor dependence ξ ∝ l1/2,
i.e., the coherence length rapidly drops with the
growth of disorder (cf. insert in Fig. 9a). However, at
strong enough disorder in “ladder” approximation
(dashed lines) coherence length starts to grow with
disorder (cf. Fig. 9b and insert in Fig. 9a), which is
mainly related to the widening of the band by disorder
and corresponding suppression of U/2Deff. Taking into
account localization corrections leads to noticeable
suppression of coherence length in comparison with

the “ladder” approximation in the limit of strong dis-
order, which leads to restoration of general suppres-
sion of ξ with the growth of disorder in this limit.
In the standard BCS model with a bare band of
infinite width coherence length drops with the growth
of disorder ξ ∝ l1/2 and close to Anderson transition
this suppression of ξ even accelerates, so that ξ ∝ l2/3

[7–9], which differs from the present model here,
where close to Anderson coherence length is rather
weakly dependent on disorder, which is related to sig-
nificant widening of the band by disorder. With growth
of coupling, for U/2D > 0.4–0.6 coherence length ξ
becomes of the order of lattice parameter and is almost
disorder independent, while in ВЕС limit of very
strong coupling U/2D = 1.4, 1.6 the growth of disorder
up to very strong values (W/2D = 0.5) leads to sup-
pression of coherence length approximately by the fac-
tor of two (cf. Fig. 9b). Again we see, that in the limit
of strong coupling the account of localization correc-
tions is rather insignificant.

Dependence of penetration depth on disorder for dif-
ferent values of Hubbard attraction is shown in Fig. 10a.
In weak coupling limit disorder in accordance with the
theory of “dirty” superconductors leads to the growth
of penetration depth (λ ∝ l–1/2). With increase of the
coupling strength the growth of penetration depth
slow down and in the limit of very strong coupling, for
U/2D = 1.4, 1.6, penetration depth is even slightly sup-
pressed by disorder. The account of localization cor-
rections leads to some quantitative growth of penetra-
tion depth in comparison with the results of the “lad-
der” approximation in the weak coupling region.
Qualitatively the dependence of penetration depth on
disorder does not change. In ВЕС limit of strong cou-
pling the account of localization corrections is rather
irrelevant. In Fig. 10b we show the disorder depen-
dence of dimensionless Ginzburg–Landau κ = λ/ξ.

Fig. 8. (Color online) Dependence of the slope of the
upper critical field on the strength of Hubbard attraction U
for different level of disorder.
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We can see, that in the weak coupling limit Ginzburg–
Landau parameter is rapidly growing with disorder (cf.
insert in Fig. 10b) in accordance with the theory of
“dirty” superconductors, where κ ∝ l–1. With the
increase of coupling strength the growth of the Ginz-
burg–Landau parameter with disorder slows down
and in the limit of strong coupling U/2D > 1 parameter
κ is practically disorder independent. The account of
localization corrections quantitatively increases Ginz-
burg–Landau parameter in Anderson insulator phase
(W/2D ≥ 0.37) in the strong coupling region. In the
strong coupling region localization corrections are
again irrelevant.

In Fig. 11 we show the disorder dependence of the
slope of the upper critical field. In the weak coupling
limit we again observe the behavior typical for “dirty”
superconductors—the slope of the upper critical field
grows with the growth of disorder (cf. Fig. 11a and the

insert in Fig. 11b). The account of localization correc-
tions in weak coupling limit sharply increases the slope
of the upper critical field in comparison with the result
of the “ladder” approximation in the region of Ander-
son insulator (W/2D ≥ 0.37). As a result, in an Ander-
son insulator the slope of the upper critical field grows
with the increase of impurity scattering much faster
than in the “ladder” approximation. In intermediate
coupling region (U/2D = 0.4–0.8) the slope of the
upper critical field is practically independent of impu-
rity scattering in the region of weak disorder. In the
“ladder” approximation such behavior is conserved
also in the region of strong disorder. However, the
account of localization corrections leads to significant
growth of the slope with disorder in Anderson insula-
tor phase. In the limit of very strong coupling and
weak disorder the slope of the upper critical field can
even slightly diminish with disorder, but in the limit of

Fig. 10. (Color online) Dependence of penetration depth (a) and Ginzburg–Landau parameter (b) on disorder level for different
values of Hubbard attraction. Inset shows the growth of the Ginzburg–Landau parameter with disorder in weak coupling limit.
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strong disorder the slope grows with the growth of
impurity scattering. In the ВЕС limit the account of
localization corrections is irrelevant and only slightly
changes the slope of the upper critical field as com-
pared with the results of the “ladder” approximation.

5. CONCLUSIONS
In this paper in the framework of the Nozieres–

Schmitt-Rink approximation and DMFT+Σ general-
ization of dynamical mean field theory we have stud-
ied the effects of disorder (including the strong disor-
der region of Anderson localization) on the Ginz-
burg–Landau coefficients and related physical
properties close to Tc in disordered Anderson–Hub-
bard model with attraction. Calculations were done
for the wide range of attractive potentials U, from weak
coupling region U/2Deff ≪ 1, where instability of nor-
mal phase and superconductivity is well described by
the BCS model, up to the strong coupling limit
U/2Deff ≫ 1, where the transition into the supercon-
ducting state is due to Bose condensation of compact
Cooper pairs, forming at a temperature much higher
than the temperature of superconducting transition.

The growth of the coupling strength U leads to
rapid suppression of all Ginzburg–Landau coeffi-
cients. The coherence length ξ rapidly drops with the
growth of coupling and for U/2D ≈ 0.4 becomes on the
order of lattice spacing and only slightly changes with
further increase of coupling. Penetration depth in
“clean” superconductors grows with U, while in “dirty”
superconductors it drops in the weak coupling and
grows in ВЕС limit, passing through the minimum in
the intermediate coupling region U/2D ≈ 0.4–0.8.
In the region of weak enough disorder (W/2D < 0.37),
when Anderson localization effect are not very
important, the slope of the upper critical field grows
with the growth of U. However, in the limit of weak
coupling in Anderson insulator phase localization

effects sharply increase the slope of the upper critical
field, while in ВЕС limit of strong coupling localiza-
tion effects become unimportant. As a result, the slope
of the upper critical field drops with the growth of U in
BCS limit, passing through the minimum at U/2D ≈
0.4–0.8. The specific heat discontinuity grows with
Hubbard attraction U in the weak coupling region and
drops in the strong coupling limit, passing through the
maximum at U/2Deff ≈ 0.55 [24].

Disorder influence (including the strong disorder
in the region of Anderson localization) upon the criti-
cal temperature Tc and Ginzburg–Landau coefficients
A and В and the related discontinuity of specific heat
is universal and is completely determined only by dis-
order widening of the bare band, i.e., by the replace-
ment D → Deff. Thus, even in the strong coupling
region, the critical temperature and Ginzburg–Lan-
dau coefficients A and В satisfy the generalized Ander-
son theorem—all influence of disorder is related only
to the change of the density of states. Disorder influ-
ence on coefficient С is not universal and is related not
only to the bare band widening.

Coefficient С is sensitive to the effects of Anderson
localization. We have studied this effect for a wide
range of disorder, including the region of Anderson
insulator. To compare and extract explicitly effects of
Anderson localization we also studied coefficient С in
the “ladder” approximation for disorder scattering.
In the weak coupling limit U/2Deff ≪ 1 and weak dis-
order W/2D < 0.37 the behavior of coefficient С and
related physical properties is well described by the the-
ory of “dirty” superconductors—coefficient С and
coherence length rapidly drop with the growth of dis-
order, while penetration depth and the slope of the
upper critical field grow. In the region of strong disor-
der (in an Anderson insulator) in BCS limit the behav-
ior of coefficient С is strongly affected by localization
effects. In the “ladder” approximation the band wid-
ening effect leads to the growth of coefficient С with

Fig. 11. (Color online) Dependence of the slope of the upper critical field (a) and this slope, normalized by its value in the absence
of disorder (b), on disorder for different values of Hubbard attraction strength. In the inset we show the growth of the slope with
disorder in weak coupling region.
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the growth of W [25], however localization effects
restore suppression of coefficient С by disorder and in
Anderson insulator phase. Correspondingly, localiza-
tion effects significantly change physical properties,
related to coefficient C, so that for these properties
qualitatively follow the dependencies characteristic for
“dirty” superconductors—the coherence length is sup-
pressed by disorder, while the penetration depth and the
slope of the upper critical field grow with the growth of
disorder. In the BCS–ВЕС crossover region and in the
ВЕС limit coefficient С and all related physical proper-
ties are rather weakly dependent on disorder. In partic-
ular, in ВЕС limit both coherence length and penetra-
tion depth are slightly suppressed by disorder, so that
their ratio (Ginzburg–Landau parameter) is practically
disorder independent. In the ВЕС limit the effects of
Anderson localization rather weakly affect the coeffi-
cient С and the related physical characteristics.

It should be noted that all results were derived here
under implicit assumption of the self-averaging nature
of superconducting order parameter entering the
Ginzburg–Landau expansion, which is connected
with our use of the standard “impurity” diagram tech-
nique [26, 27]. It is well known [9], that this assump-
tion becomes, in the general case, inapplicable close to
Anderson metal–insulator transition, due to strong
fluctuations of the local density of states developing
here [34] and inhomogeneous picture of supercon-
ducting transition [35]. This problem is very interest-
ing in the context of the superconductivity in the
BCS–ВЕС crossover region and in the region of
strong coupling and deserves further studies.
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Abstract—We study disorder effects upon the temperature behavior of the upper critical magnetic field in an
attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attrac-
tion potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to
the strong coupling limit, where superconducting transition is related to Bose–Einstein condensation (BEC)
of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition tem-
perature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of
Anderson transition. The growth of coupling strength leads to the rapid growth of Hc2(T), especially at low
temperatures. In BEC limit and in the region of BCS–BEC crossover Hc2(T), dependence becomes practi-
cally linear. Disordering also leads to the general growth of Hc2(T). In BCS limit of weak coupling increasing
disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point
and to the increase of Hc2(T) in the low temperature region. In the limit of strong disorder in the vicinity of
the Anderson transition localization corrections lead to the additional growth of Hc2(T) at low temperatures,
so that the Hc2(T) dependence becomes concave. In BCS–BEC crossover region and in BEC limit disorder
only slightly influences the slope of the upper critical field close to Tc. However, in the low temperature region
Hc2(T) may significantly grow with disorder in the vicinity of the Anderson transition, where localization cor-
rections notably increase Hc2 (T = 0) also making Hc2(T) dependence concave.

DOI: 10.1134/S1063776117120159

INTRODUCTION

The studies of disorder influence on superconduc-
tivity have a rather long history. In pioneer papers by
Abrikosov and Gor’kov [1–4] they analyzed the limit
of weak disorder (pFl ≫ 1, where pF is the Fermi
momentum and l is the mean free path) and weak cou-
pling superconductivity, which is well described by
BCS theory. The well-known “Anderson theorem” on
the critical temperature Tc of superconductors with
“normal” (nonmagnetic) disorder [5, 6] is usually also
attributed to this limit.

The generalization of the theory of “dirty” super-
conductors for the case of strong enough disorder
(pFl ~ 1) (and up to the region of Anderson transition)
was done in [7–10], where superconductivity was also
analyzed in the weak coupling limit.

Most dramatically, the effects of disordering are
reflected in the behavior of the upper critical magnetic
field. In the theory of “dirty” superconductors the
growth of disorder leads to the increase both of the

slope of the temperature dependence of the upper crit-
ical field at Tc [6] and of Hc2(T) in the whole tempera-
ture region [11]. The effects of Anderson localization
in the limit of strong enough disorder are also mostly
reflected in the temperature dependence of the upper
critical field. At the point of the Anderson metal–
insulator transition itself, localization effects lead to a
rather sharp increase of Hc2 at low temperatures and
temperature dependence of Hc2(T) is qualitatively dif-
ferent from the dependence derived by Werthamer,
Helfand and Hohenberg (WHH) [11], which is char-
acteristic for the theory of “dirty” superconductors,
and the Hc2(T) dependence becomes concave, i.e.,
demonstrates positive curvature [7–9].

The problem of the generalization of BCS theory
into the strong coupling region has been known for a
pretty long time. Significant progress in this direction
was achieved in a paper by Nozieres and Schmitt–
Rink [12], who proposed an effective method to study
the crossover from BCS–like behavior in the weak
coupling region towards Bose–Einstein condensation
(BEC) in the strong coupling region. At the same
time, the problem of superconductivity of disordered1 The article was translated by the authors.

ORDER, DISORDER, AND PHASE TRANSITION 
IN CONDENSED SYSTEM
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systems in the limit of strong coupling and in BCS–
BEC crossover region is still rather poorly developed.

One of the simplest models to study BCS–BEC
crossover is the Hubbard model with attractive inter-
action. The most successful approach to the Hubbard
model, both to describe strongly correlated systems in
the case of repulsive interaction, as well as to study the
BCS–BEC crossover for the case of attraction, is the
dynamical mean field theory (DMFT) [13–15].

In recent years, we have developed the generalized
DMFT+Σ approach to the Hubbard model [16–21],
which is very convenient for the studies of different
external (with respect to those accounted by DMFT)
interactions. In particular, this approach is well suited
for the analysis of two-particle properties, such as
optical (dynamic) conductivity [20, 22].

In [23] we have used this approach to analyze sin-
gle-particle properties of the normal phase and optical
conductivity in attractive Hubbard model. This was
followed by our use of DMFT+Σ in [24] to study dis-
order influence on the temperature of superconduct-
ing transition, which was calculated within Nozieres–
Schmitt-Rink approach. In particular, in this work for
the case of semi-elliptic “bare” density of states (ade-
quate for three-dimensional case) we have numeri-
cally demonstrated the validity of the generalized
Anderson theorem, so that all effects of disordering on
the critical temperature (for all values of interaction
parameter) are related only to general widening of the
“bare” band (density of states) by disorder.

An analytic proof of this universality of disorder
influence on all single-particle properties in
DMFT+Σ approximation and on superconducting
critical temperature for the case of a semi-elliptic band
was given in [25].

Starting with the classic work by Gor’kov [3], it is
well known that the Ginzburg–Landau expansion is
of fundamental importance for the theory of “dirty”
superconductors, allowing the effective studies of the
behavior of various physical parameters close to super-
conducting critical temperature for different disorder
levels [6]. The generalization of this theory (for weak
coupling superconductors) to the region of strong dis-
order (up to the Anderson metal–insulator transition)
was done in [7–9].

In [26–28] combining Nozieres–Schmitt-Rink
approximation with DMFT+Σ for attractive Hubbard
models we provided microscopic derivation of the
coefficients of Ginzburg–Landau expansion taking
into account disordering, which allowed the general-
ization of Ginzburg–Landau theory to BCS–BEC
crossover region and BEC limit of very strong cou-
pling for different levels of disorder. In particular, in
[28] using the generalization of self-consistent theory
of localization this approach was extended to the case
of strong disorder, where Anderson localization effects
become important. It was shown, that in the weak
coupling limit the slope of the Hc2(T) dependence at

T = Tc increases with disordering in the region of weak
disorder in accordance with the theory of “dirty”
superconductors, while in the limit of strong disorder
localization effects lead to the additional increase of
the slope of the upper critical field. However, in the
region of BCS–BEC crossover and in BEC limit the
slope of Hc2(T) close to Tc only slightly increases with
the growth of disorder and the account of localization
effects is more or less irrelevant.

In the present paper, using the combination of
Nozieres–Schmitt-Rink and DMFT+Σ approxima-
tions for the attractive Hubbard model we shall ana-
lyze disorder effects on the complete temperature
dependence of Hc2(T) for the wide range of U interac-
tion values, including the region of BCS–BEC cross-
over, and the wide range of disorder levels up to the
vicinity of the Anderson transition.

HUBBARD MODEL WITHIN DMFT+Σ 
APPROACH IN NOZIERES–SCHMITT-RINK 

APPROXIMATION
We consider the disordered nonmagnetic Ander-

son–Hubbard model with attraction described by the
Hamiltonian:

(1)

where t > 0 is a transfer integral between nearest neigh-
bors, U is the Hubbard attraction on the lattice site,
niσ = aiσ—number of electrons operator on the site,

aiσ ( )—annihilation (creation) operator for an elec-
tron with spin σ, and local energies  are assumed to
be independent random variables on different lattice
sites. For the validity of the standard “impurity” dia-
gram technique [29, 30] we assume the Gaussian dis-
tribution for energy levels :

(2)

Distribution width Δ serves as a measure of disorder
and the Gaussian random field of energy levels (inde-
pendent on different lattice sites—“white noise” cor-
relations) induces the “impurity” scattering, which is
considered within the standard approach, based on
calculations of the averaged Green’s functions [30].

The generalized DMFT+Σ approach [16–19]
extends the standard dynamical mean field theory
(DMFT) [13–15] by addition of an “external” self-
energy (SE) Σp(ε) (in general case momentum depen-
dent), which is related to any interaction outside the
limits of DMFT, and provides an effective method of
calculations for both single-particle and two-particle
properties [20, 22]. It completely conserves the stan-
dard self-consistent equations of DMFT [13–15],
while at each step of DMFT iteration procedure the
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external SE Σp(ε) is recalculated again using some
approximate scheme, corresponding to the form of an
external interaction and the local Green’s function of
DMFT is also “dressed” by Σp(ε) at each stage of the
standard DMFT procedure.

In our problem of scattering by disorder [20, 21] for
the “external” SE, entering the DMFT+Σ cycle, we
use the simplest (self-consistent Born) approximation
neglecting “crossing” diagrams for impurity scatter-
ing. This “external” SE remains momentum indepen-
dent (local).

To solve the effective single-impurity Anderson
model of DMFT in this paper, as in our previous
works, we use the very efficient method of numerical
renormalization group (NRG) [31].

In the following we assume the “bare” band with
semi-elliptic density of states (per unit cell with lattice
parameter a and for single spin projection), which is
reasonable approximation for three-dimensional case:

(3)

where D defines conduction band half-width.
In [25] we have shown that in DMFT+Σ approach

for the model with semi-elliptic density of states all the
influence of disorder on single-particle properties
reduces simply to disorder induced band widening,
i.e., to the replacement D → Deff, where Deff is the
effective band half-width of conduction band in the
absence of correlations (U = 0), widened by disorder:

(4)

The “bare” (in the absence of U) density of states,
“dressed” by disorder,

(5)

remains semi-elliptic also in the presence of disorder.
It should be noted that in other models of “bare”

band disorder induces not only widening of the band,
but also changes the form of the density of states.
Thus, in the general case there will be no complete
universality of disorder influence on single-particle
properties, which are reduced to the simple replace-
ment D → Deff. However, in the limit of strong disor-
der, which is of primary interest to us, the “bare” band
always becomes, in practice, semi-elliptic and the uni-
versality is restored [25].

All calculations in this work, as in the previous,
were done for rather typical case of a quarter-filled
band (number of electrons per lattice site n = 0.5).

To analyze superconductivity for a wide range of
pairing interaction U, following [23, 25], we use
Nozieres–Schmitt-Rink approximation [12], which
allows qualitatively correct (though approximate)
description of BCS–BEC crossover region. In this
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approach, to determine the critical temperature Tc we
use [25] the usual BCS-like equation:

(6)

where the chemical potential μ for different values of
U and Δ is determined from DMFT+Σ-calculations,
i.e., from the standard equation for the number of
electrons (band filling), which allows us to find Tc for
the wide interval of model parameters, including the
BCS–BEC crossover region and the limit of strong
coupling, as well as for different levels of disorder. This
reflects the physical meaning of Nozieres–Schmitt-
Rink approximation: in the weak coupling region
transition temperature is controlled by the equation
for Cooper instability (6), while in the limit of strong
coupling it is determined as BEC temperature con-
trolled by chemical potential.

It was shown in [25], that disorder influence on the
critical temperature Tc and single-particle characteris-
tics (e.g. density of states) in the model with semi-
elliptic density of states is universal and reduces only to
the change of the effective bandwidth. In the weak
coupling region the temperature of superconducting
transition is well described by the BCS model, while in
the strong coupling region the critical temperature is
mainly determined by the condition of Bose–Einstein
condensation of Cooper pairs and decreases with the
growth of U as t2/U, passing through a maximum at
U/2Deff ~ 1.

The review of this and similar results obtained for
disordered Hubbard model in DMFT+Σ approxima-
tion can be found in [21].

BASIC RELATIONS FOR THE UPPER 
CRITICAL FIELD

In Nozieres–Schmitt-Rink approach the critical
temperature of superconducting transition is deter-
mined by combined solution of the weak coupling
equation for Cooper instability in particle–particle
(Cooper) channel and the equation for chemical
potential for all values of Hubbard interaction within
DMFT+Σ procedure. The usual condition for Cooper
instability is written as:

(7)
where χ(q) is Cooper susceptibility, determined by the
loop diagram in Cooper channel, shown in Fig. 1. In
the presence of an external magnetic field total
momentum in Cooper channel q acquires contribu-
tion from the vector potential A

(8)

As we assume isotropic electron spectrum, Cooper
susceptibility χ(q) depends on q only via q2. The min-
imal eigenvalue of (q – 2e/c)A)2, determining
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(orbital)2 upper critical magnetic field H = Hc2 is given
by [30]

(9)

where Φ0 = ch/2e = π /e is magnetic f lux quantum.
Then the equation for Tc(H) or Hc2(T) remains the
same:

(10)
In the following, we shall neglect relatively weak mag-
netic field influence on diffusion processes (broken
time reversal invariance), which is ref lected in non
equality of loop diagrams in Cooper and diffusion
channels. This influence was analyzed in [9, 10, 31,
32], where it was shown that the account of this broken
symmetry only slightly decreases the value of Hc2(T) at
low temperatures, even close to the Anderson transi-
tion. In the case of time reversal invariance and due
the static nature of impurity scattering “dressing” two-
particle Green’s function Ψp, p'(εn, q) we can change
directions of all lower electronic lines in the loop with
simultaneous sign change of all momenta on these
lines (cf. Fig. 1). Then we obtain:

(11)
where εn are Fermionic Matsubara frequencies, p± =
p ± q/2, and Φp, p'(ωm = 2εn, q) is the two-particle
Green’s function in diffusion channel, dressed by
impurities. The we obtain the Cooper susceptibility as:

(12)

Performing the standard summation over Fermi-
onic Matsubara frequencies [29, 30] we obtain for
Cooper susceptibility entering Eq. (10):

(13)

where ΦRA(ω, q) = (ω, q). To find the loop
ΦRA(ω, q) in the case of strong disorder (including the

2 In this paper we do not consider paramagnetic effect due to
electronic spin.
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region of Anderson localization) we use the approxi-
mate self-consistent theory of localization [30, 35–
40]. Then this loop contains the diffusion pole contri-
bution, which is written as [20]:

(14)

where ΔGp(ε) = GR(ε, p) – GA(–ε, p), GR and GA are
retarded and advanced Green’s functions, while D(ω)
is frequency dependent generalized diffusion coeffi-
cient. As a result, Eq. (10) for Hc2(T) takes the form:

(15)

The generalized diffusion coefficient in self-con-
sistent theory of localization [30, 35–40] for the
model under consideration is determined by the fol-
lowing self-consistence equation [20]:

(16)

where ω = 2ω, (ω) = (ε) – (–ε), d is
space dimensionality, while the average velocity 〈 〉 is
defined here as:

(17)

Taking into account the limits of diffusion approxima-
tion summation over q in Eq. (16) should be limited by
[30, 39]

(18)

where l is the mean-free path due to elastic scattering
by disorder and pF is the Fermi momentum.

In the limit of weak disorder, when localization
corrections are small, Cooper susceptibility χ(q) is
determined by ladder approximation. In this approxi-
mation Cooper susceptibility was studied by us in [27].
Let us now rewrite self-consistency Eq. (16) so that in
the limit of weak disorder it explicitly reproduces the
results of ladder approximation. In this approximation
we neglect all contributions to irreducible vertex from
“maximally crossed” diagrams and the last term in the
r.h.s. of Eq. (16) just vanishes. Now we introduce the
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Fig. 1. Equivalence of loops in the Cooper and diffusion
channels in the case of time inversion invariance.
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frequency dependent generalized diffusion coefficient
in ladder approximation as:

(19)

The value of /d, entering the self-consistency
Eq. (16), can now be expressed via this diffusion coef-
ficient D0 in ladder approximation. Then the self-con-
sistency Eq. (16) takes the form:

(20)

In the framework of the approach of [27] the diffusion
coefficient D0 (ω = 2ε) in ladder approximation can be
obtained in analytic form. In fact, in the ladder
approximation, the two-particle Green’s function (14)
can be written as:

(21)

Let us introduce

(22)

Then the diffusion coefficient D0 can be written as:

(23)

In [27], using the exact Ward identity, written in ladder
approximation, it was shown that ϕ(ε, q = 0) can be
expressed as
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where  = ∂ε(p)/∂px.

The procedure for the numerical now looks as fol-
lows. First, using Eqs. (24), (23) we find the diffusion
coefficient D0 in the ladder approximation. Then using
self-consistency Eq. (20) we find the generalized dif-
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fusion coefficient and solve Eq. (15) to determine
Hc2(T).

MAIN RESULTS
The chemical potential enters Eq. (15) defining

Hc2(T) as a parameter, which is to be determined from
the condition of band (quarter) filling using the
DMFT+Σ procedure. Chemical potential depends
not only on the coupling strength, but also on the tem-
perature, and this dependence is quite important in
determining the value of Hc2(T) in the limit of strong
enough coupling. We use the NRG algorithm as an
impurity solver of DMFT neglects electronic levels
quantization in magnetic field, i.e., magnetic field
influence on electron orbital motion and correspond-
ingly on the chemical potential. In [23] we have shown
that in an attractive Hubbard model our DMFT pro-
cedure becomes unstable for T < Tc, which is reflected
in finite difference of even and odd iterations of
DMFT. This instability is apparently related to instabil-
ity of the normal state for T < Tc. In particular, it is most
sharp in BEC strong coupling limit (for U/2D ≥ 1),
which makes it impossible to determine the chemical
potential at T < Tc. In the weak coupling limit the dif-
ference between the results of even and odd DMFT
iterations is very small, which allows us to find the val-
ues of μ(T) with high accuracy even for T < Tc. In
Fig. 2, we show the temperature dependence of the
chemical potential for different values of coupling
strength. In the weak coupling limit (U/2D = 0.4, 0.6)
in Fig. 2 we show data obtained from DMFT+Σ cal-
culations, including the region of T < Tc. In the limit
of strong coupling we can determine the chemical
potential directly form DMFT+Σ procedure only at
T > Tc and appropriate data points are also shown in
Fig. 2. From Fig. 2, we can see that in the presence of
interactions the chemical potential acquires the linear
temperature dependence, which is quite important for
us. In the weak coupling limit the chemical potential
does not have any singularities for T < Tc and we can
assume, that in the strong coupling region μ follows
the same type of temperature dependence, which can
be found from linear extrapolation (dashed lines for
U/2D = 1.0, 1.4 in Fig. 2) from the region of T > Tc.
This procedure was used in our calculations for the
strong coupling region.

In the limit of weak disorder (Δ/2D = 0.05 in
Fig. 3a) and weak coupling (U/2D = 0.2) we observe
the temperature dependence of the upper critical field
similar to the standard WHH dependence [11] with
negative curvature. The growth of the coupling
strength in general leads to significant increase of the
upper critical field up to extremely high values over
Φ0/2πa2 (a—lattice spacing) in the low temperature
region. At intermediate couplings (U/2D = 0.4, 0.6)
the temperature dependence of Hc2(T) acquires weak
maximum at T/Tc ~ (0.2–0.4). Further increase of the
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coupling strength leads to the growth of the upper crit-
ical field and for U/2D = 1 the temperature depen-
dence Hc2(T) becomes almost linear and for higher
couplings the temperature dependence the value of the
upper critical field remains practically the same for all
temperatures. With the growth of disorder (U/2D =
0.11 in Fig. 3b), the situation remains qualitatively
similar. The increase of the coupling strength leads at
first to the growth of Hc2 for all temperatures. The
small maximum of Hc2(T), observed at intermediate
couplings (U/2D = 0.4, 0.6) and weak disorder
(Δ/2D = 0.05) vanishes. In the strong coupling region
(U/2D ≥ 1) Hc2(T) is in fact linear and only weakly
changes with coupling strength. At strong enough dis-
order (Δ/2D = 0.25) with the growth of coupling
strength the upper critical field also grows in the whole
temperature region.

This growth continues up to BEC region of very
strong coupling (U/2D = 1.4), after that Hc2(T) depen-
dence becomes linear and only weakly dependent on
the coupling strength. For comparison on the left
panel of Fig. 3c for U/2D = 0.6 we show both data
obtained using a self-consistent theory of localization
(filled triangles and continuous curve) and those cal-
culated from ladder approximation for impurity scat-
tering (unfilled triangles and dashed curve). Weak dif-
ference between these dependencies demonstrates
that corrections from Anderson localization at this
disorder level (Δ/2D = 0.25) are rather weak.

In the model under consideration in DMFT+Σ
approximation the Anderson metal–insulator transi-
tion occurs at Δ/2D = 0.37 and this value of critical
disorder is independent of the coupling strength (cf.
[20]). Temperature behavior of the upper critical field
precisely at the point of Anderson transition and in
Anderson insulator phase for different values of cou-

pling strength is shown in Fig. 4. In this figure filled
symbols and continuous curves show results of calcu-
lations using the self-consistent theory of localization,
while unfilled symbols and dashed curves correspond
to the results of calculations using the ladder approxi-
mation for impurity scattering. At the point of Ander-
son transition (Δ/2D = 0.37 in Fig. 4a) and in the limit
of weak coupling localization effects strongly change
the temperature dependence of Hc2(T). In particular,
these effects enhance Hc2(T) in the whole temperature
region. However, the greatest increase is observed at
low temperatures, so that Hc2(T) dependence acquires
positive curvature, as was first shown in [7, 8]. The
increase of the coupling strength leads to the growth of
the upper critical field in the whole temperature inter-
val. The curves of Hc2(T) in the intermediate coupling
region (U/2D = 0.6, 1) still have positive curvature.
Further increase of the coupling up to U/2D = 1.4 also
enhance Hc2 at all temperatures. However, the
account of localization corrections at such a strong
coupling is relevant only at low temperatures (T/Tc <
0.1). In this region, the Hc2(T) dependence has posi-
tive curvature, while at other temperatures Hc2(T) is,
in fact, linear. With further increase of coupling
strength (U/2D = 1.6) Hc2(T) becomes practically lin-
ear and localization correction become irrelevant at all
temperatures. Thus, in the BEC limit of very strong
coupling, the influence of Anderson localization on
the behavior of the upper critical field is rather weak.
In Anderson insulator phase (Fig. 4b) and in BCS
weak coupling limit (U/2D = 0.2) the account of local-
ization effects leads to significant growth of Hc2(T) (cf.
insert in Fig. 4b). The increase of coupling strength
leads to the growth of the upper critical field in the
whole temperature region. At intermediate couplings
(U/2D = 0.6, 1.0) the account of localization effects
notably increases Hc2 for all temperatures. However,
the most significant increase is observed in the region
of low temperatures, leading to the positive curvature
of Hc2(T) dependence and very sharp growth of
Hc2(T = 0). In BEC limit of very strong coupling
(U/2D = 1.4, 1.6) the upper critical field almost does
not grow with coupling strength. Contribution from
localization effects for T ~ Tc is irrelevant and Hc2(T)
dependence is practically linear. However, at low tem-
peratures (T ≪ Tc) contribution from Anderson local-
ization still significantly enhances the upper critical
field and Hc2(T) curve has positive curvature. Thus,
both in Anderson insulator phase and in BEC limit of
very strong coupling the influence of Anderson local-
ization on the behavior of the upper critical field is
noticeably suppressed, though at low temperatures it
still remains quite significant changing the value of
Hc2(T = 0).

In Fig. 5 we show temperature dependencies of the
upper critical field for different levels of disorder in
three characteristic regions of coupling strength: in

Fig. 2. (Color online) Temperature dependences of the
chemical potential for Δ/2D = 0.05 and different values of
the interaction.
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Fig. 3. (Color online) Temperature dependences of the upper critical field for different values of the coupling strength for different
disorder levels. The upper critical field on the left panels is normalized to Φ0/(2πa2); on the right panels, the upper critical field
is normalized to its value at T = 0.
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BCS weak coupling limit (U/2D = 0.2), in BCS–BEC
crossover region (intermediate coupling U/2D = 1.0)
and in BEC limit of strong coupling (U/2D = 1.6). In
weak coupling limit (Fig. 5a) the growth of disorder
leads to the increase of the upper critical field in the
whole temperature region in the limit of weak disorder
(Δ/2D < 0.19), while the temperature dependence has
the negative curvature and is close to the standard
WHH dependence [11]. With further increase of dis-
order with no account for localization corrections, the
upper critical field decreases for all temperatures.
However, taking into account localization corrections
in the weak coupling limit for the case of strong disor-
der (Δ/2D ≥ 0.37) significantly increases the upper
critical field and qualitatively changes its temperature
dependence, so that the curves of Hc2(T) acquire pos-

itive curvature. The upper critical field rapidly grows
with disorder at all temperatures. For intermediate
coupling (Fig. 5b) in the limit of weak disorder the
temperature dependence of the upper critical field
becomes practically linear. The upper critical field
grows with disorder at all temperatures. In the limit of
strong disorder (Δ/2D ≥ 0.37) localization corrections,
as in the weak coupling limit, increase the upper criti-
cal field at all temperatures and the curves of Hc2(T)
acquire positive curvature. However, in the intermedi-
ate coupling region the influence of localization cor-
rections is much weaker, than in the weak coupling
limit and is relevant only at low temperatures. In BEC
limit of the strong coupling (Fig. 5c) and in the limit
of weak disorder the curves of Hc2(T) are in fact linear.
The upper critical field grows with disorder at all tem-

Fig. 4. (Color online) Temperature dependences of the upper critical field (a) on the Anderson metal–insulator transition and
(b) in the Anderson insulator phase for different values of the coupling strength. On the left panels, Hc2 is normalized to
Φ0/(2πa2); the upper critical field on the right panels is normalized to its value at T = 0.
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peratures. In the limit of strong disorder at the point of
Anderson transition (Δ/2D = 0.37) the Hc2(T) depen-
dence remains linear and the account of localization
corrections in fact does not change the temperature
dependence of the upper critical field. Further
increase of disorder leads to the increase of Hc2(T).
Deeply in the Anderson insulator phase (Δ/2D = 0.5)
the Hc2(T) dependence acquires the positive curvature
and the account of localization effects enhances
Hc2(T) in the low temperature region, while close to Tc
localization corrections are irrelevant even at such a
strong disorder. Thus, the strong coupling signifi-
cantly decreases the influence of localization effects of
the temperature dependence of the upper critical field.

CONCLUSIONS
In this paper, within the combined Nozieres–

Schmitt-Rink and DMFT+Σ generalization of the
dynamical mean field theory we have investigated the
influence of disordering, in particular the strong one
(including the region of Anderson localization), and
the growth of the strength of pairing interaction upon
the temperature dependence of the upper critical field.
Calculations were performed for the wide range of
attractive potentials U, from the weak coupling limit of
U/2D ≪ 1, where instability of the normal phase and
superconductivity is well described by BCS model, up
to the strong coupling limit of U/2D ≫ 1, where the
superconducting transition is due to Bose–Einstein
condensation of compact Cooper pairs, which are
formed at temperatures much higher than the tem-
perature of superconducting transition.

The growth of the coupling strength U leads to the
fast increase of Hc2(T), especially at low temperatures.
In BEC limit and in the region of BCS–BEC cross-
over Hc2(T) dependence becomes practically linear.
Disordering also leads to the increase of Hc2(T) at any
coupling. In the weak coupling BCS limit the growth
of disorder increases both the slope of the upper criti-
cal field close to T = Tc and Hc2(T) in low temperature
region. In the limit of strong disorder in the vicinity of
Anderson transition localization corrections lead to
additional sharp increase of the upper critical field at
low temperatures and Hc2(T) dependence becomes
concave, i.e., acquires positive curvature. In BCS–
BEC crossover region and in BEC limit weak disorder
is insignificant for the slope of the upper critical field
at Tc, though the strong disorder in the vicinity of
Anderson transition leads to noticeable increase of the
slope of the upper critical field with the growth of dis-
order. In the low temperature region Hc2(T) signifi-
cantly grows with the growth of disorder, especially in
the vicinity of Anderson transition, where localization
corrections noticeably increase Hc2(T = 0) and Hc2(T)
curve instead of linear temperature dependence, typi-
cal in the strong coupling limit at weak disorder,
becomes concave.

Fig. 5. (Color online) Temperature dependences of the
upper critical field for different disorder levels: (a) BCS
weak coupling limit, (b) BCS–BEC crossover region at
intermediate coupling, (c) BEC strong coupling limit.
Dark symbols and solid curves correspond to calculations
taking localization corrections into account. Light symbols
and dashed curves correspond to the ladder approximation
for impurity scattering.
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In our model, the upper critical field at low tem-
peratures may reach extremely large values signifi-
cantly exceeding Φ0/2πa2. This makes important the
further analysis of the model, taking into account
paramagnetic effect and inevitable role of electron
spectrum quantization in magnetic field. Actually, we
can hope that effects of quantization of the spectrum
are irrelevant in the limit of the strong disorder, while
paramagnetic effect is much weakened in the region of
strong and very strong coupling. These questions will
be the task of further studies.

ACKNOWLEDGMENTS
This work was performed within the State Contract

(FASO) no. 0389-2014-0001 with partial support by
RFBR grant no. 17-02-00015 and the Program of
Fundamental Research of the RAS Presidium “Fun-
damental problems of high-temperature supercon-
ductivity.”

REFERENCES
1. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9,

220 (1959).
2. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9,

1090 (1959).
3. L. P. Gor’kov, Sov. Phys. JETP 36, 1364 (1959).
4. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12,

1243 (1961).
5. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
6. P. G. de Gennes, Superconductivity of Metals and Alloys

(W. A. Benjamin, New York, 1966).
7. L. N. Bulaevskii and M. V. Sadovskii, JETP Lett. 39,

640 (1984).
8. L. N. Bulaevskii and M. V. Sadovskii, J. Low. Temp.

Phys. 59, 89 (1985).
9. M. V. Sadovskii, Phys. Rep. 282, 226 (1997).

10. M. V. Sadovskii, Superconductivity and Localization
(World Scientific, Singapore, 2000).

11. N. R. Werthamer and E. Helfand, Phys. Rev. 147, 288
(1966); N. R Werthamer, E. Helfand, and P. C. Hohen-
berg, Phys. Rev. 147, 295 (1966).

12. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys.
59, 195 (1985).

13. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv.
Phys. 44, 187 (1995).

14. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-
berg, Rev. Mod. Phys. 68, 13 (1996).

15. D. Vollhardt, in Lectures on the Physics of Strongly Cor-
related Systems XIV, Ed. by A. Avella and F. Mancini,
AIP Conf. Proc. 1297, 339 (2010).

16. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
JETP Lett. 82, 198 (2005).

17. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th.
Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105
(2005).

18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Low Temp. Phys. 32, 398 (2006); arXiv: cond-
mat/0510376.

19. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Phys. Usp. 53, 325 (2012); arXiv:1109.2305.

20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
J. Exp. Theor. Phys. 106, 581 (2008); arXiv: 0706. 2618.

21. E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor.
Phys. 122, 509 (2016).

22. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Phys. Rev. B 75, 115102 (2007).

23. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii,
J. Exp. Theor. Phys. 119, 264 (2014).

24. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii,
JETP Lett. 100, 192 (2014).

25. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii,
J. Exp. Theor. Phys. 120, 1055 (2015).

26. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii,
J. Exp. Theor. Phys. 122, 375 (2016).

27. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii,
Low Temp. Phys. 42, 17 (2017).

28. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii,
J. Exp. Theor. Phys. 125, 111 (2017).

29. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys.
60, 395 (2008).

30. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical
Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Mos-
cow, 1978; Pergamon, New York, 1980), Chap. 5.

31. E. Z. Kuchinskii and M. V. Sadovskii, Sverkhpro-
vodim.: Fiz., Khim., Tekh. 4, 2278 (1991).

32. E. Z. Kuchinskii and M. V. Sadovskii, Physica C 185–
189, 1477 (1991)

33. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,
Quantum Field Theoretical Methods in Statistical Physics
(Fizmatgiz, Moscow, 1963; Pergamon, Oxford, 1965).

34. M. V. Sadovskii, Diagrammatics (Regulyar. Khaotich.
Dinamika, Moscow, Izhevsk, 2010; World Scientific,
Singapore, 2006).

35. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666
(1980); Phys. Rev. Lett. 48, 699 (1982).

36. P. Wölf le and D. Vollhardt, in Anderson Localization,
Ed. by Y. Nagaoka and H. Fukuyama, Vol. 39 of
Springer Series in Solid State Sciences (Springer, Berlin,
1982), p. 26.

37. A. V. Myasnikov and M. V. Sadovskii, Sov. Phys. Solid
State 24, 2033 (1982).

38. E. A. Kotov and M. V. Sadovskii, Z. Phys. B 51, 17
(1983).

39. M. V. Sadovskii, in Soviet Scientific Reviews – Physics
Reviews, Ed. by I. M. Khalatnikov (Harwood Aca-
demic, New York, 1986), Vol. 7, p. 1.

40. D. Vollhardt and P. Wölfle, in Electronic Phase Transi-
tions, Ed. by W. Hanke and Yu. V. Kopaev (North–
Holland, Amsterdam, 1992), vol. 32, p. 1.



753

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2018, Vol. 127, No. 4, pp. 753–760. © Pleiades Publishing, Inc., 2018.
Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 4, pp. 881–889.

Temperature Dependence of Paramagnetic Critical Magnetic Field
in Disordered Attractive Hubbard Model1

E. Z. Kuchinskiia,*, N. A. Kuleevaa, and M. V. Sadovskiia,b,**
a Institute for Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016 Russia

b Mikheev Institute for Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108 Russia
*e-mail: kuchinsk@iep.uran.ru
**e-mail: sadovski@iep.uran.ru

Received June 25, 2018

Abstract—Within the generalized DMFT+Σ approach, we study disorder effects in the temperature depen-
dence of paramagnetic critical magnetic field Hcp(T) for Hubbard model with attractive interaction. We con-
sider the wide range of attraction potentials U—from the weak coupling limit, when superconductivity is
described by BCS model, up to the limit of very strong coupling, when superconducting transition is related
to Bose–Einstein condensation (BEC) of compact Cooper pairs. The growth of the coupling strength leads
to the rapid growth of Hcp(T) at all temperatures. However, at low temperatures, paramagnetic critical mag-
netic field Hcp grows with U much more slowly, than the orbital critical field, and in BCS limit, the main con-
tribution to the upper critical magnetic filed is of paramagnetic origin. The growth of the coupling strength
also leads to the disappearance of the low temperature region of instability towards type I phase transition and
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, characteristic of BCS weak coupling limit. Disordering
leads to the rapid drop of Hcp(T) in BCS weak coupling limit, while in BCS–BEC crossover region and BEC
limit Hcp(T → 0) dependence on disorder is rather weak. Within DMFT+Σ approach, disorder influence on
Hcp(T) is of universal nature at any coupling strength and is related only to disorder widening of the conduc-
tion band. In particular, this leads to the drop of the effective coupling strength with disorder, so that disor-
dering restores the region of type I transition in the intermediate coupling region.

DOI: 10.1134/S1063776118100047

1. INTRODUCTION
In the weak coupling region and for the weak dis-

order, the upper critical magnetic field of a supercon-
ductor is determined by orbital effects and usually is
much lower than the paramagnetic limit. However,
the growth of the coupling strength and disordering
lead to the rapid growth of the orbital Hc2 possibly
overcoming the paramagnetic limit.

In this paper, we study the behavior of paramag-
netic critical field in the region of very strong coupling
of electrons of the Cooper pair and in the crossover
region from BCS-like behavior for the weak coupling
to Bose–Einstein condensation (BEC) in the strong
coupling region [1], taking disorder into account
(including the strong enough).

The simplest model to study the BCS–BEC cross-
over is Hubbard model with attractive interaction.
Most successful approach to the studies of Hubbard
model, both to describe the strongly correlated sys-
tems in the case of repulsive interactions and to study
the BCS–BEC crossover for the case of attraction, is
the dynamical mean - field theory (DMFT) [2–4].

In recent years, we have developed the generalized
DMFT+Σ approach to Hubbard model [5–11], which
is quite effective for the studies of the influence of dif-
ferent external (outside those taken into account by
DMFT) interactions. This DMFT+Σ method was
used by us in [12–14] to study the disorder influence
on the temperature of superconducting transition. In
particular, for the case of semi-elliptic initial density of
states, adequate to describe three-dimensional sys-
tems, it was demonstrated that disorder influence on
the critical temperature (in the whole region of inter-
action strengths) is related only to the general widen-
ing of the initial conduction band (density of states) by
disorder (the generalized Anderson theorem). In [15],
using the combination of the Nozieres–Schmitt-Rink
approximation and DMFT+Σ in attractive Hubbard
model we have analyzed the influence of disordering
on the temperature dependence of the orbital upper
critical field Hc2(T) both for the wide region of cou-
pling strengths U, including the BCS–BEC crossover
region, and in the wide region of disorder up to the
vicinity of Anderson transition. Both the growth of the
coupling strength and disorder lead to the rapid
growth of Hc2, leading in the BEC-limit to unrealisti-1 The article is published in the original.
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cally high values of Hc2(T → 0), significantly overcom-
ing the paramagnetic limit.

In this work we perform the detailed analysis of dis-
order influence on the temperature dependence of
paramagnetic critical magnetic field of a supercon-
ductor for the wide range of coupling strengths U,
including the BCS–BEC crossover region and the
limit of very strong coupling.

It is well known, that in BCS weak coupling limit
paramagnetic effects (spin splitting) lead to the exis-
tence of a low temperature region at the phase diagram
of a superconductor in magnetic field, where para-
magnetic critical field Hcp decreases with further low-
ering of the temperature. This behavior signifies the
instability leading to the region of type I phase transi-
tion, where also the so called Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) phase may appear [16–18] with
Cooper pairs with finite momentum q and spatially
periodic superconducting order parameter. In the fol-
lowing we limit ourselves to the analysis of type II
transition and homogeneous superconducting order
parameter, allowing us to determine the border of
instability towards type I transition in BCS–BEC
crossover and strong coupling regions at different dis-
order levels. The problem of stability of FFLO phase
under these conditions is not analyzed here.

2. HUBBARD MODEL WITHIN DMFT+Σ 
APPROACH IN NOZIERES–SCHMITT-RINK 

APPROXIMATION
We are considering the disordered Hubbard model

with attractive interaction, taking into account spin-
splitting by external magnetic field H, and described
by the Hamiltonian:

(1)

where t > 0 is transfer amplitude between nearest
neighbors, U is the onsite Hubbard attraction, niσ =

aiσ is electron number operator on a given site, aiσ

( ) is electron annihilation (creation) operator, σ =

±1, μB =  is the Bohr magneton, and local energies

 are assumed to be independent and random on dif-
ferent lattice sites. We assume Gaussian distribution
for energy levels  at a given site:

(2)

Distribution width Δ represents the measure of disor-
der, and Gaussian random field of energy levels (inde-
pendent on different lattice sites) produces “impurity”
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scattering, which is analyzed within the standard
approach, based on calculations of the averaged
Green’s functions.

The generalized DMFT+Σ approach [5–9]
extends the standard dynamical mean field theory
(DMFT [2–4] by addition of an “external” self-
energy Σp(ε) (in general case momentum dependent)
due to any kind of interaction outside the DMFT,
which gives an effective calculation method both for
single-particle and two-particle properties [8, 10].
This approach conserves the standard system of self-
consistent DMFT equations [2–4], with “external”
self-energy Σp(ε) being recalculated at each iteration
step using some approximate scheme, corresponding
to the type of additional interaction, while the local
Green’s function of DMFT is “dressed” by Σp(ε) at
each step of the standard DMFT procedure.

In the problem of disorder scattering under discus-
sion here [10, 11] for “external” self-energy we are
using the simplest (self - consistent Born) approxima-
tion, neglecting diagrams with “crossing” interaction
lines due to impurity scattering. Such an “external”
self-energy remains momentum independent (local).

To solve the single-impurity Anderson problem of
DMFT in this paper, as in our previous works, we use
quite efficient method of numerical renormalization
group (NRG) [19].

In the following we assume the “bare” conduction
band with semi-elliptic density of states (per unit cell
with lattice parameter a and single spin projection),
which gives a good approximation for three-dimen-
sional case:

(3)

where D defines the half-width of the conduction
band.

In [14] we have shown, that in DMFT+Σ approach
in the model with semi-elliptic density of states all the
effects of disorder on single-particle properties reduce
only to widening of conduction band by disorder, i.e.
to the replacement D → Deff, where Deff is the effective
“bare” band half-width in the absence of correlations
(U = 0), widened by disorder:

(4)

The “bare” (in the absence of U) density of states,
“dressed” by disorder

(5)

remains semi-elliptic also in the presence of disorder.
It is necessary to note, that in other models of the

“bare” band disorder not only widens the band, but
also changes the form of the density of states. In gen-
eral, there is no complete universality of disorder
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influence on single-particle properties, which reduces
to the replacement D → Deff. However, in the limit of
strong enough disorder the “bare” band becomes
almost semi-elliptic and this universality is restored
[14].

All calculations in the present paper, as in our pre-
vious works, were performed for rather typical case of
quarter-filled band (electron number per lattice site
n = 0.5).

To analyze superconductivity for the wide range of
pairing interactions U, following [14], we use
Nozieres–Schmitt-Rink approximation [1], which
allows qualitatively correct (though approximate)
description of BCS–BEC crossover. In this approach,
to determine the critical temperature Tc (in the
absence of H) we use [14] the conventional BCS weak
coupling equation, but the chemical potential of the
system μ for different values of U and Δ is determined
from DMFT+Σ calculations, i.e. from the standard
equation for the number of electrons in conduction
band, which allows us to find Tc for the wide range of
model parameters, including the BCS–BEC cross-
over region, as well as for different levels of disorder.
This reflects the physical meaning of Nozieres–
Schmitt-Rink approximation: in the weak coupling
region transition temperature is controlled by the
equation for Cooper instability, while in the strong
coupling limit it is determined as BEC temperature,
which is controlled by chemical potential. It was
demonstrated, that such an approach guarantees the
correct interpolation between the limits of weak and
strong couplings, including also the effects of disorder
[1, 12, 14]. In particular, in [12, 14] it was shown, that
disorder influence on critical temperature Tc and sin-
gle-particle characteristics (e.g. density of states) in
the model with semi-elliptic “bare” density of states is
universal and is reduced only to the changes of the
effective bandwidth.

3. MAIN RESULTS
In the framework of Nozieres–Schmitt-Rink

approach the critical temperature in the presence of
spin-splitting of electron level in external magnetic
field (and neglecting the orbital effects) or paramag-
netic critical magnetic field Hcp at temperatures T < Tc
is determined by the following BCS-like equation:

(6)

where the chemical potential μ for different values of
U and Δ is determined from DMFT+Σ calculations,
i.e. from the standard equation for the number of elec-
trons in conduction band. The general derivation of
Eq. (6) in the presence of disorder is given in the

∞

−∞

ε − μ − με ⎛= ε
⎜ε − μ ⎝

ε − μ + μ ⎞+
⎟

⎠

∫

� B0

B

( )1 tanh
4 2

tanh ,
2

cp

cp

HNU d
T

H
T

Appendix. Note that Eq. (6) is derived from the exact
Ward identity and remains valid even in the case of
strong disorder, including the vicinity of Anderson
transition. Equation (6) explicitly demonstrates, that
all disorder effects on Hcp are reduced to the renormal-
ization of the initial density of states by disorder, so
that for the case of initial band with semi-elliptic den-
sity of states disorder influence on Hcp is universal and
is only due to the band widening by disorder, i.e. to the
replacement D → Deff.

In Fig. 1 we show the temperature dependence of
paramagnetic critical magnetic field for different val-
ues of coupling strength. Chemical potential entering
Eq. (6) is, in general, dependent not only on the cou-
pling strength, but also on the values of magnetic filed
and temperature. In Figs. 1a–1e, for the sake of com-
parison, dashed lines show the results of calculations
with chemical potential taken at H = 0 and T = Tc for
the given value of U/2D, while continuous curves with
symbols represent the results of full calculations with
μ = μ(H, T).

In the weak coupling limit (U/2D = 0.2) we obtain
the standard behavior of temperature dependence of
paramagnetic critical field of BCS theory [18]. At low
temperatures we observe the region of decreasing Hcp
as temperature diminishes, with maximum Hcp at
finite temperature. It is well known, that in this region
the system is unstable with respect to type I phase
transition [18], where is also a possibility of transition
to FFLO phase [16, 17] with Cooper pairs with finite
momentum (q ≠ 0) and inhomogeneous supercon-
ducting order parameter. Critical field in BCS limit is
relatively weakly dependent on the value of chemical
potential, so that we can neglect weak field and depen-
dence of μ on the magnetic field and temperature
(dotted curve in Fig. 1a in fact coincides with the
result of an exact calculation). With the growth of the
coupling strength the region of instability towards type
I transition shrinks (cf. Figs. 1a, 1b, 1c) and it com-
pletely disappears with further increase of coupling
(Figs. 1d, 1e). With the increase of coupling strength the
critical magnetic field becomes more and more depen-
dent on the value of the chemical potential, so that the
account of its temperature and magnetic field depen-
dence μ(H, T) becomes very important (cf. Figs. 1c–1e).

At intermediate coupling (U/2D = 0.6) the account
of temperature and magnetic field dependence of μ
leads to small changes of the critical field, however we
observe significant qualitative changes for T ~ Tc. The
small growth of chemical potential with increase of H
at weak fields leads to noticeable growth of Tc, which
overcomes the decrease of Tc with the growth of mag-
netic field due to explicit H-dependence in Eq. (6),
leading to some increase of Tc(H) at small H.

In Fig. 1f we show temperature dependencies of the
critical magnetic field for different values of U. It is
known that the critical temperature Tc0 grows with
coupling strength in BCS limit and decreases in BEC
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Fig. 1. (Color online) Dependence of paramagnetic critical magnetic field on temperature for different values of coupling
strength. Dotted curves were obtained neglecting the dependence of chemical potential on temperature and magnetic field at
given U.
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strong coupling limit, passing through a maximum at
U/2D = 1 [12–14]. The critical magnetic field at low
temperatures grows with coupling strength both in BCS
and BEC limits, though in BCS–BEC crossover region
(U/2D = 0.6–1) we observe rather weak dependence of
the critical magnetic field on coupling strength.

The physical reason of the growth of paramagnetic
critical field with coupling strength is pretty obvious—
it is more difficult for magnetic field to break the pairs
of strongly coupled electrons.

In Fig. 2 we present our results on disorder influ-
ence on temperature dependence of paramagnetic
critical magnetic field. In BCS weak coupling limit
(Fig. 2) the increase of disorder leads both to decrease
of the critical temperature in the absence of magnetic
field Tc0 (cf. [13, 14]) and to decrease of the critical
magnetic field at all temperatures. The region of insta-
bility to type I transition is conserved also in the pres-
ence of disorder. In fact, as was noted above, disorder
influence on Hcp(T) is actually universal and related
only to the replacement D → Deff. As a result, disorder
growth leads to decrease of the effective coupling,
which is defined by dimensionless parameter U/2Deff.
This leads to the increase of the relative width T/Tc(H)
of the temperature region of type I transition.

At intermediate coupling (U/2D = 0.8) in BCS–
BEC transition region (Fig. 2b) disorder growth rela-
tively weakly changes the critical temperature Tc0 (cf. [13,
14]), leading to some increase of Hcp(T). As all the effects
of disordering are due to the replacement D → Deff, the
increase of disorder again leads to the decrease of the
effective coupling strength U/2Deff and restoration of the
region of instability towards type I transition.

In BEC-limit of strong coupling the growth of dis-
order leads to significant increase of the critical tem-
perature Tc0 (cf. [13, 14]). At the same time, the critical
magnetic field at low temperatures only weakly
increases with increasing disorder. In BEC-limit
instability to type I transition does not appear even in
the presence of very strong disorder (Δ/2D = 0.5). In
fact, in BEC-limit disorder influence is again univer-
sal and related only to the replacement D → Deff. As a
result, if we make the spin splitting and temperature
dimensionless dividing both by the effective band-
width 2Deff and keep the effective coupling strength
U/2Deff fixed, we obtain the universal temperature
dependence of paramagnetic critical magnetic field.
In Fig. 3 we show examples of such universal behavior
for typical cases of weak and strong coupling an the
absence and in the presence of disorder.

In the absence of disorder in BEC strong coupling
limit with U/2D = 1.6 for T → 0 we have (cf. Fig. 1)
2μBHcp/2D ≈ 0.125, so that for characteristic value of the
bandwidth 2D ~ 1 eV we get Hcp ~ 107 G. For orbital
critical magnetic field (cf. [15]) in the same model and
for the same coupling strength, for T → 0 and typical
value of lattice parameter a = 3.3 × 10–8 cm, we obtain

Hcp ≈ 1.6 × 108 G. Thus, the orbital critical magnetic
field at low temperatures grows with increase of the
coupling strength much faster, than paramagnetic
critical field, and in BEC strong coupling limit the
main contribution to the upper critical field at low

Fig. 2. (Color online) Temperature dependences of para-
magnetic critical magnetic field for different levels of dis-
order: (a) BCS weak coupling limit (U/2D = 0.2);
(b) BCS–BEC crossover region (intermediate coupling:
U/2D = 0.8); (c) BEC strong coupling region (U/2D = 1.6).
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temperatures is actually due to the paramagnetic
effect. The growth of disorder leads to significant
growth of the orbital critical magnetic field [15], while
Hcp (T → 0) in the region of BCS–BEC crossover and
in BEC limit is relatively weakly dependent on disor-
der. Thus, also in the presence of disorder in BEC
limit the main contribution to the upper critical field
at low temperatures comes from paramagnetic effect.

4. CONCLUSIONS
In this paper, within the combination of Nozieres–

Schmitt-Rink and DMFT+Σ approximations, we
have studied disorder influence on temperature
behavior of paramagnetic critical magnetic field. Cal-
culations were done for a wide range of the values of
attractive potential U, from the weak coupling region
U/2D ≪ 1, where superconductivity is well described
by BCS model, up to the limit of strong coupling
U/2D ≫ 1, where superconducting transition is due to

Bose condensation of compact Cooper pairs, which
are formed at temperatures much exceeding the tem-
perature of superconducting transition.

The growth of coupling strength U leads to a fast
increase of Hcp(T) and disappearance, both in the
region of BCS–BEC crossover and in BEC limit, of
the region of instability, leading to type I transition,
which appears at low temperatures in BCS weak cou-
pling region. Physically this is due to the fact, that it
becomes more and more difficult for magnetic field to
break pairs of strongly coupled electrons.

The growth of disorder in BCS weal coupling limit
leads both to decrease of critical temperature and
decrease of Hcp(T). The region of instability to type I
transition at low temperatures remains also in the
presence of disorder. In the intermediate coupling
region (U/2D = 0.8) disorder only weakly affects both
the critical temperature and Hcp(T). However, the
growth of disorder leads to restoration of the low tem-
perature region of instability to type I transition, which
is not observed in the absence of disorder. This, rather
unexpected, conclusion is related to specifics of the
attractive Hubbard model, which in disordered case is
controlled by dimensionless coupling parameter
U/2Deff. As was shown in our previous works, in BEC
strong coupling limit the growth of disorder leads to
noticeable growth of the critical temperature in the
absence of magnetic field. However, the value of Hcp
(T → 0) in this model is relatively weakly dependent
on disorder. In BEC limit at low temperatures and for
reasonable values of model parameters paramagnetic
critical magnetic field is much smaller, than the orbital
critical field, so that the upper critical field in this
region is mainly determined by paramagnetic critical
filed. In the presence of disorder this conclusion is
even more valid, as the orbital critical field rapidly
grows with increasing disorder, while paramagnetic
critical field is weakly disorder dependent in this limit.

This work was performed under the State Contract
no. 0389-2014-0001 with partial support of RFBR
Grant no. 17-02-00015 and the Program of Funda-
mental Research of the RAS Presidium no. 12 “Fun-
damental problems of high-temperature supercon-
ductivity.”

APPENDIX
EQUATION FOR PARAMAGNETIC CRITICAL 

MAGNETIC FIELD
In general case the Noziers–Schmitt-Rink

approach [1] assumes, that corrections from strong
pairing interaction significantly change the chemical
potential of the system, but possible vertex corrections
from this interaction in Cooper channel are irrelevant,
so that to analyze Cooper instability we can use the
weak coupling approximation (ladder approximation).
In this approximation the condition of Cooper instabil-
ity in disordered attractive Hubbard model is written as:

Fig. 3. (Color online) Universality of temperature depen-
dence of paramagnetic critical magnetic field on disorder.
(a) weak coupling U/2Deff = 0.2, Δ = 0, Δ = 0.11, (b) strong
coupling U/2Deff = 1.6, Δ = 0, Δ = 0.11.
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(7)

where

(8)

is two-particle loop in Cooper channel “dressed” only
by impurity scattering, while Φpp'(εn) is the averaged
over impurities two-particle Green’s function in Coo-
per channel at Matsubara frequencies εn = πT(2n + 1).

To obtain  (εn) we use an exact Ward
identity, derived by us in [8]:

(9)

Here G0↑,↓(εn, p) = (iεn + μ – ε(p) ± μBH)–1 is the
“bare” Green’s function and G↑,↓(εn, p) is averaged over
impurities (but not “dressed” by Hubbard interaction!)
single-particle Green’s function. Using the symmetry
ε(p) = ε(–p) we obtain from Ward identity (9):

(10)

so that for Cooper susceptibility (8) we get:
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Performing the standard summation over Fermion
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where (ε) is the “bare” (U = 0) density of states
for different spin projections, “dressed” by impurity
scattering. Spin splitting can be considered as an addi-
tion to chemical potential, so that introducing the
“bare” density of states “dressed” by disorder in the
absence of external magnetic field (ε), we obtain
the final result for Cooper susceptibility:

(13)

In Eq. (13) energy ε is counted from the chemical
potential level. If we count it from the middle of the
conduction band we have to replace ε → ε – μ and the
condition of Cooper instability (7) leads to the equa-
tion defining critical temperature depending on the
external magnetic field, which gives the equation for
paramagnetic critical magnetic filed (6). The chemical
potential for different values of U and Δ should be
determined from DMFT+Σ calculations, i.e. from the
standard equation for electron number (band filling),
which allows us to find Hcp for the wide range of model
parameters, including the region of BCS–BEC cross-
over and the limit of strong coupling at different levels
of disorder. This reflects the physical meaning of
Nozieres–Scmitt-Rink approximation—in the weak
coupling region the temperature of superconducting
transition is controlled by the equation for Cooper
instability (6), while in the strong coupling limit it is
defined as the temperature of BEC, which is con-
trolled by chemical potential. The joint solution of
Eq. (6) and the equation for the chemical potential
guarantees the correct interpolation for Hcp in the
region of BCS–BEC crossover.
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Abstract—Eliashberg–McMillan theory of superconductivity is essentially based on the adiabatic approxi-

mation. Small parameter of perturbation theory is given by λ  ≪ 1, where λ is the dimensionless electron–

phonon coupling constant, Ω0 is characteristic phonon frequency, while EF is Fermi energy of electrons. Here
we present an attempt to describe the electron–phonon interaction within Eliashberg–McMillan approach
in situation, when characteristic phonon frequency Ω0 becomes large enough (comparable to, or exceeding,
the Fermi energy EF). We consider the general definition of electron–phonon pairing coupling constant λ,
taking into account the finite value of phonon frequency. Also, we obtain the simple expression for general-
ized coupling constant  that determines the mass renormalization, with the account of finite width of con-
duction band, which describes the smooth transition from the adiabatic regime to the region of strong nona-

diabaticity. In the case of strong nonadiabaticity, when Ω0 ≫ EF, the new small parameter appears, λ  ~

λ ≪ 1 (D is conduction band half-width), and corrections to electronic spectrum become irrelevant. At

the same time, the temperature of superconducting transition Tc in antiadiabatic limit is still determined by
Eliashberg–McMillan coupling constant λ, while the preexponential factor in the expression for Tc, conserv-
ing the form typical of weak-coupling theory, is determined by the bandwidth (Fermi energy). For the case
of interaction with a single optical phonon, we derive the single expression for Tc, valid both in adiabatic and
antiadiabatic regimes and describing the continuous transition between these two limiting cases. The results
obtained are discussed in the context of superconductivity in FeSe/STO.

DOI: 10.1134/S1063776119020122

1. INTRODUCTION
Eliashberg–McMillan superconductivity theory is

the most successful approach to microscopic descrip-
tion of the properties of conventional superconductors
with electron–phonon mechanism of Cooper pairing
[1–3]. It basic principles can be directly generalized
also for the description of non-phonon pairing mech-
anism in new high-temperature superconductors.
Recently this theory was successfully applied to the
description of record breaking superconductivity in
hydrides at high pressures [4].

It is widely known that Eliashberg–McMillan the-
ory is essentially based on the applicability of adiabatic
approximation and Migdal’s theorem [5], which
allows the neglect of vertex corrections in calculations
of electron–phonon coupling in typical metals. In this

case the correct small parameter of perturbation the-

ory is λ  ≪ 1, where λ is the dimensionless Eliash-

berg–McMillan electron–phonon coupling constant,
Ω0 is characteristic phonon frequency and EF is Fermi
energy of electrons. In particular, this leads to the
common opinion, that vertex corrections in this the-
ory can be neglected even for λ > 1, due to the validity

of inequality  ≪ 1, characteristic for typical metals.

This is certainly correct in continuous approximation,
when we neglect the effects of lattice discreteness on
electron spectrum.

The discreteness of the lattice leads to the breaking
of Migdal’s theorem for λ ~ 1 due to polaronic effects
[6, 7]. At the same time, for the region of λ < 1 we can
safely neglect these effects [7]. In the following we
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shall consider only the continuous case, limiting our
discussion to not so large values of electron–phonon
coupling λ.

Recently a number of superconductors was discov-
ered, where the adiabatic approximation can not be
considered valid, and characteristic frequencies of
phonons are of the order or even greater than Fermi
energy. We bear in mind mainly superconductors
based on FeSe monolayers, mostly the systems like
single-atomic layer of FeSe on the SrTiO3 substrate
(FeSe/STO) [8]. For these systems this was first noted
by Gor’kov [9, 10], while discussing the idea of possi-
ble Tc enhancement in FeSe/STO due to interaction
with high-energy optical phonons in SrTiO3 [8].

2. SELF-ENERGY AND ELECTRON–PHONON 
COUPLING CONSTANT

Consider the second-order (in electron–phonon
coupling) diagram shown in Fig. 1. At first it is suffi-
cient to consider a metal in normal (non supercon-
ducting) state.

We can perform our analysis either in Matsubara
technique (T ≠ 0) or in T = 0 technique. In particular,
making all calculations in finite temperature tech-
nique, after the analytic continuation from Matsubara
to real frequencies iωn → ε ± iδ and in the limit of T =
0, the contribution of diagram Fig. 1 can be written in
the standard form [1, 11]:

(1)

where in notations of Fig. 1 we have p' = p + q. Here,
 is Fröhlich electron–phonon coupling constant,

εp is electronic spectrum with energy zero taken at the

Fermi level,  is phonon spectrum, and fp is the
(step-like) Fermi distribution.

In particular, for the imaginary part of self-energy
at positive frequencies we have:

α
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In these expressions index α enumerates the branches
of phonon spectrum. In the following we just drop it
for brevity.

Equation (1) can be identically written as:

(3)

In Eliashberg–McMillan approach we usually get rid
of explicit momentum dependence here by averaging
the matrix element of electron–phonon interaction
over surfaces of constant energies, corresponding to
initial and final momenta p and p', which usually
reduces to the averaging over corresponding Fermi
surfaces, as phonon scattering takes place only within
the narrow energy interval close to the Fermi level,
with effective width of the order of double Debye fre-
quency 2ΩD, and in typical metals we always have
ΩD ≪ EF. This is achieved by the following replace-
ment:

(4)

where in the last expression we have introduced the
definition of Eliashberg function α2(ω) and F(ω) =

(ω – Ωq) is the phonon density of states.

In the case, when phonon energy becomes compa-
rable with or even exceeds the Fermi energy, electron
scattering is effective not in the narrow energy layer
around the Fermi surface, but in a wider energy interval
of the order of Ω0 ~ EF, where Ω0 is a characteristic pho-
non frequency (e.g. of an optical phonon). Then, for the
case of initial |p| ~ pF the averaging over p' in expression
like (4) should be done over the surface of constant
energy, corresponding to EF + Ωp – p', as is shown in
Fig. 2. Then the Eq. (4) is directly generalized as:

(5)

which in the last δ-function simply corresponds to
transition from chemical potential μ to μ + Ωp – p'. We
remind that, as usual, the energy zero is taken at μ = 0.
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Fig. 1. Second-order diagram for self-energy. Dashed
line—phonon Green’s function D(0), continuous line—
electron Green’s function G in Matsubara representation.

Σ(p, iωn)  =
G(p + q, iωn)

D(0)(q, iωn − iωm)
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After the replacement like (4) or (5) the explicit
momentum dependence of the self-energy disappears
and in fact in the following we are dealing with Fermi

surface average Σ(ε) ≡ (εp)Σ(ε, p), which is

now written as:

(6)

This expression forms the basis of Eliashberg–
McMillan theory and determines the structure of
Eliashberg equations for the description of supercon-
ductivity.

3. MASS RENORMALIZATION AND 
ELECTRON–PHONON COUPLING 

CONSTANT
For the case of self-energy dependent only on fre-

quency (and not on momentum) we have the follow-
ing simple expressions, relating mass renormalization
of an electron to the residue a the pole of the Green’s
function [12]:

(7)

(8)

Then from Eq. (6) by direct calculations (all integrals
here are in infinite limits) we obtain:

(9)

so that introducing the dimensionless Eliashberg–
McMillan electron–phonon coupling constant as:

(10)

we immediately obtain the standard expression for
electron mass renormalization due to electron–pho-
non interaction:

(11)
The function α2(ω)F(ω) in the expression for

Eliashberg–McMillan electron–phonon coupling
constant (10) should be calculated according to (4) or
(5) depending on the relation between Fermi energy
EF and characteristic phonon frequency Ω (roughly
estimated by ΩD). As long as Ω ≪ EF we can use the
standard expression (4), while in case of Ω ~ EF we
should use (5). In principle all these facts are known
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for a long time—implicitly these results were men-
tioned e.g. in Allen’s paper [13], but misunderstand-
ings still appear [14]. Using Eq. (5) we can rewrite (10)
in the following form:

(12)

which gives the most general expression to calculate
the electron–phonon constant λ, determining Cooper
pairing in Eliashberg–McMillan theory.

4. ELECTRON INTERACTION WITH OPTICAL 
PHONONS WITH “FORWARD” SCATTERING

The discovery of high-temperature superconduc-
tivity in single—atomic layers of FeSe on SrTiO3
(FeSe/STO) and similar substrates, with record—
breaking, for iron—based superconductors, critical
temperature Tc, nearly an order of magnitude higher
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Fig. 2. (Color online) (a) Elementary act of electron–pho-
non scattering in the vicinity of the Fermi surface. (b) Sur-
faces of constant energy for initial and final states of an
electron scattered by an optical phonon with energy com-
parable to Fermi energy. Averaging of the matrix element
of interaction in (12) or (14) goes over the intersection
region of these surfaces.
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than in the bulk FeSe (see review in [8]), has sharp-
ened the problem of search of microscopic mechanism
of Tc enhancement. It was followed by the discovery in
ARPES experiments on FeSe/STO of the so called
“replicas” of conduction band [15], which lead to the
idea of Tc enhancement due to interaction of conduc-
tion electrons with optical phonons of SrTiO3, with
rather high energies (frequencies) ~100 meV and
“nearly forward” scattering (i.e. with small transferred
momentum of the phonon) due to the peculiarities of
interaction with optically active Ti–O dipoles at the
interface with STO. The model of such scattering
introduced in [15] has revived the interest to earlier
model of Tc enhancement, proposed by Dolgov and
Kulic, due to “forward” scattering [16, 17], which was
further developed and applied to FeSe/STO in [18,
19]. In fact, this model explains the formation of the
“replicas” of conduction band and the possibility to
achieve high values of Tc, though its basic conclusions
were criticized (from different points of view) in [20–
22] and are still under discussion.

One of the major circumstances, which was not
payed much attention in [15, 18, 19], was the nonadi-
abatic character, as noted by Gor’kov [9, 10], of FeSe
electrons interaction with optical phonons of STO.
The Fermi energy in conduction band of FeSe/STO is
small, of the order of 50–60 meV [8, 15], which by
itself is a serious problem for theoretical explanation
[20, 21]. Correspondingly, the energy of optical pho-
nons (~100 meV) exceeds is nearly twice, leading to
strong enough breaking of adiabaticity. Let us see, first
of all, the consequences of this fact for calculations of
electron–phonon coupling constant in Eliashberg–
McMillan approach.

Consider a particular example of electrons inter-
acting with a single optical (Einstein-like) phonon
mode with high-enough frequency Ω0, which scatters
essentially “forward”. The general qualitative picture
of such scattering is shown in Fig. 2. In this case in
Eq. (12) the density of phonon states is simply F(ω) =
δ(ω – Ω0), and for the momentum dependence of
interaction with optical phonon at FeSe/STO inter-
face we can assume the characteristic dependence,
obtained in [15]:

(13)

where the typical value of q0 ~ 0.1  ≪ pF (where a is

the lattice constant and pF is the Fermi momentum),
leading to nearly “forward” scattering of electrons by
optical phonons.

Then the dimensionless pairing constant of elec-
tron–phonon interaction in Eliashberg theory is writ-
ten as:
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As in FeSe/STO we have in fact Ω0 > EF the finite
value in the second δ-function here should be taken
into account.

For simple estimates let us assume the linearized
form of electronic spectrum (  is Fermi velocity): εp ≈

(|p| – pF), which allows to perform all calculations
analytically. Then, substituting (13) into (14) and con-
sidering two-dimensional case, after calculating all
integrals here we obtain [21]:

(15)

where K1(x) is Bessel function of imaginary argument
(McDonald function). Using the well-known asymp-
totic form of K1(x) and dropping a number of irrele-
vant constants, we have:

(16)

for  ≪ 1, and

(17)

for  ≫ 1.

Here we introduced the standard dimensionless
electron–phonon coupling constant:

(18)

where N(0) is the density of electronic states at the
Fermi level per single spin projection.

The result (16) is known [18, 19] and by itself is
rather unfavorable for significant Tc enhancement in
model under discussion. Even worse is the situation if
we take into account the large values of Ω0, as pairing

constant becomes exponentially suppressed for  >

1, which is typical for FeSe/STO interface, where Ω0 >
EF ≫ q0 [8]. This makes the enhancement of Tc due
to interaction of FeSe electrons with optical phonons
of STO rather improbable. In fact, similar conclusions
were made from first—principles calculations in [23],
where the dependence of Eliashberg coupling con-
stant on frequency of the optical phonon in STO was
also taken into account. However, the effect of sup-
pression of this constant was much smaller, which was
probably due to unrealistically large values of the
Fermi energy, obtained form LDA calculations of
electronic spectrum of FeSe/STO, which does not
account for the role of correlations [23]. Correspond-
ingly, in [23] they always had Ω0 ≪ EF. The account of
correlations within LDA+DMFT calculations, per-
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formed in [20, 21], allowed to obtain the values of
Fermi energy in conduction band of FeSe/STO in
accordance with ARPES data, which show that in this
system we meet with antiadiabatic situation with
Ω0 > EF.

Certainly, the results obtained above in the asymp-
totic of high frequencies Ω0 depend on the form of
momentum dependence in Eq. (13). For example, if
we choose the Gaussian form of interaction fall with
transferred momentum, we shall obtain more fast
Gaussian suppression with frequency in the limit of
Eq. (17). In general case, for fast enough fall of inter-
action in (13) on the scale of q0 we shall always obtain
rather fast suppression of coupling constant for Ω0 ≫

q0.
For a more realistic case, when the optical phonon

scatters electrons not only in “forward” direction, but
in a wide interval of transferred momenta (as it follows
e.g. from first - principles calculations of [23]), in the
above expression we have simply to use large enough
value of the parameter q0. Choosing e.g. q0 ~ 4πpF and
using the low frequency limit (16) we immediately
obtain λ ≈ λ0, i.e. the standard result. Similarly,
parameter q0 can be taken equal to an inverse lattice
vector 2π/a. Then for q0 ~ 2π/a from (16) we obtain:

(19)

for typical pF ~ 1/2a. In general case there always
remain the dependence on the value of Fermi momen-
tum and cutoff parameter (cf. similar analysis in [12]).

In the limit of (17), assuming q0 ~ pF we immedi-
ately obtain:

(20)

which simply signifies the effective interaction cutoff
for Ω0 > EF in antiadiabatic limit. This fact was
stressed by Gor’kov in [9, 10].

5. EFFECTS OF FINITE BANDWIDTH
AND ANTIADIABATIC LIMIT

As was already noted above, the usual Migdal–
Eliashberg approach is totally justified in adiabatic
approximation, related for usual electron–phonon
systems (metals) with the presence of a small parame-
ter ΩD/EF ≪ 1 (or Ω0/EF ≪ 1 for the case of a single
optical phonon with frequency Ω0). The true parame-
ter of perturbation theory in this case is given by
λ(Ω0/EF), which is small even for λ ~ 1. The presence
of this small parameter allows us to limit ourselves to
calculations of a simple diagram of the second order
over electron–phonon interaction considered above,
and neglect all vertex corrections (Migdal’s theorem)
[5]. These conditions are broken in FeSe/STO system,
where Ω0 ~ 2EF.
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Our discussion up to now implicitly assumed the
conduction band of an infinite width. It is clear that in
case of large enough characteristic phonon frequency
it may be comparable not only with Fermi energy, but
also with conduction band width. Below we shall show
that in the limit of strong nonadiabaticity, when Ω0 ≫
EF ~ D (where D is the conduction band half-width),
in fact, we are dealing with the situation, when a new
small parameter of perturbation theory λD/Ω0 ~
λEF/Ω0 appears in the theory.

Let us consider the case of conduction band of the
finite width 2D with constant density of states (which
formally corresponds formally to two-dimensional
case). The Fermi level as above is considered as an ori-
gin of energy scale and we assume the typical case of
half-filled band. Then (6) reduces to:

(21)

For the model of a single optical phonon F(ω) =
δ(ω ‒ Ω0) and we immediately obtain:
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Correspondingly, form (21) we get:
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Equation (24) describes the smooth transition
between the limits of wide and narrow conduction
bands. Mass renormalization in general case is deter-
mined by :

(26)
In strong antiadiabatic limit of D ≪ Ω0, after elemen-
tary calculations we obtain from (21):

(27)

and from (22)

(28)

For the model of a single optical phonon with fre-
quency Ω0 we have:

(29)

where Eliashberg–McMillan constant is:
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and λD reduces to:

(31)

where in the last expression we have introduced the
new small parameter D/Ω0 ≪ 1, appearing in strong
antiadiabatic limit. Correspondingly, in this limit we
always have:
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so that for reasonable values of λ (even up to a strong
coupling region of λ ~ 1) “antiadiabatic” coupling
constant remains small. Obviously, all vertex correc-
tions are also small in this limit, as was shown by direct
calculations in [24], which went rather unnoticed.
Thus we come to an unexpected conclusion—in the
limit of strong nonadiabaticity the electron–phonon
coupling becomes weak!

For imaginary part of self-energy in strong antiadi-
abatic limit we easily obtain:
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From these expressions it is clear that this imaginary
part is not particularly important in this limit (being
non zero only for ε = Ω0), and equation for the real
part of electronic dispersion:

(35)
is now:

(36)

Correspondingly, for ε ~ εp we can write:

(37)

which for εp → 0 gives a small correction to the spec-
trum:

(38)

obviously reducing to a small (λD ≪ 1) renormaliza-
tion of the effective mass (26).

Physically, the weakness of electron–phonon cou-
pling in strong nonadiabatic limit is pretty clear—
when ions move much faster than electrons, these
have no time to “fit” the rapidly changing configura-
tion of ions and, in these sense, only weakly react on
their movement.

6. ELIASHBERG EQUATIONS
AND THE TEMPERATURE

OF SUPERCONDUCTING TRANSITION
All analysis above was performed for the normal

state of a metal. The problem arises, to which extent
the results obtained can be generalized for the case of
a metal in superconducting state? In particular, what
coupling constant (λ, , or λD) determines the tem-
perature of superconducting transition Tc an antiadia-
batic limit? Let us analyze the situation within appro-
priate generalization of Eliashberg equations.

Taking into account that in antiadiabatic approxi-
mation vertex corrections are irrelevant and neglecting
the direct Coulomb interaction, Eliashberg equations
can be derived by calculating the diagram of Fig. 1,
where electronic Green’s function in superconducting
state is taken in Nambu’s matrix representation. For
real frequencies this is written in the following stan-
dard form [2]:

(39)

which corresponds to the matrix of self-energy:
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tions, which in representation of real frequencies are
written as [2]:

(41)

(42)

where integral equation kernel has the following form:

(43)

The only difference here from the similar equations of
[2] is the appearance of the finite integration limits,
determined by the bandwidth, as well as the absence of
the contribution of direct Coulomb repulsion, which
will not be discussed here. In fact, Eqs. (41) and (42)
are the direct analog of Eqs. (6) and (21) for normal
metal and replace them after the transition into super-
conducting phase.

To determine the temperature of superconducting
transition it is sufficient, as usual, to analyze the lin-
earized Eliashberg equations, which are written as:

(44)

(45)

For us it is sufficient to consider in these equations the
limit of ε → 0 and look for the solutions Z(0) = Z and
Δ(0) = Δ. Then from (44) we obtain:
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or
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where the constant  was defined above in Eq. (24).
Thus, precisely this effective constant determines
mass renormalization both in normal and supercon-
ducting phases. As was shown above, in the limit of
strong antiadiabaticity this renormalization is very
small and determined by the limiting value of λD (31).

Situation is different in Eq. (45). In the limit of ε →
0, using (47) we immediately obtain from (45) the fol-
lowing equation for Tc

(48)

In antiadiabatic limit, when characteristic frequencies
of phonons exceed the width of the conduction band,
we can neglect ε' as compared to ω in the denominator
of the integrand in (48), so that the equation for Tc is
rewritten as:

(49)

where λ is Eliashberg–McMillan coupling constant as
defined above in Eq. (10). From here we immediately
obtain the BCS-type result:

(50)

We have seen above, that in antiadiabatic limit we
always have  → λD ≪ λ, so that in the exponent in
(50) we can neglect it, so that the expression for Tc is
reduced simply to BCS weak coupling formula, with
preexponential factor determined by the half-width of
the band (Fermi energy), while the pairing coupling
constant in the exponential is determined the general
Eliashberg–McMillan expression (taking account the
discussion above).

In the model with single optical phonon of fre-
quency Ω0 Eq. (49) has the form:

(51)

Equation (51) is easily solved (the integral here can be
taken, as usual, by partial integration) and we obtain:
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where for λ is naturally defined by Eq. (30). We see,

that in antiadiabatic regime, for  ≪ 1 this expres-

sion reduces to (50), while in adiabatic limit  ≫ 1

we obtain the usual expression for Tc of Eliashberg the-
ory for the case of intermediate coupling:

(53)

Thus, Eq. (51) gives the unified expression for Tc,
which is valid both in adiabatic and antiadiabatic lim-
its, smoothly interpolating between these two limits.

Finally, we come to rather unexpected conclu-
sions—in the limit of strong nonadiabaticity Tc is
determined by an expression like BCS weak coupling
theory, with preexponential determined not by a char-
acteristic phonon frequency, but by Fermi energy (the
same conclusion was reached in a recent paper by
Gor’kov [10]), while the pairing coupling constant
conserves the standard form of Eliashberg–McMillan
theory. The effective coupling constant , tending in
antiadiabatic limit to λD, determines the mass renor-
malization, but not the temperature of superconduct-
ing transition.

7. CONCLUSIONS

In this work we have considered the electron–pho-
non coupling in Eliashberg–McMillan theory outside
the limits of the standard adiabatic approximation. We
have obtained some simple expressions for interaction
parameters of electrons and phonons in the situation,
when the characteristic frequency of phonons Ω0
becomes large enough (comparable or even exceeding
the Fermi energy EF). In particular, we have analyzed
the general definition of the pairing constant λ, taking
into account the finite value of phonon frequency. It
was shown, that in a popular model with dominating
“forward” scattering it leads to exponential suppres-
sion of the coupling constant for the frequencies Ω0 ≫

q0, where q0 defines the characteristic size of the
region of transferred momenta, where electrons inter-
act with phonons. Similar situation appears also in the
usual case, when q0 is of the order of inverse lattice
vector, and phonon frequency exceeds the Fermi
energy EF.

We have obtained a simple expression for elec-
tron–phonon coupling constant, , determining the
mass renormalization in Eliashberg–McMillan the-
ory, taking into account the finite width of conduction
band, which describes the smooth transition from adi-
abatic regime to the region of strong nonadiabaticity.
It was shown, that under the conditions of strong non-
adiabaticity, when Ω0 ≫ EF, a new small parameter

Ω0

D

Ω0

D

( )+ λΩ −
λ0

1~ exp .cT

λ�

Fv

λ�

λ  ~ λ  ≪ 1 (D is the half-width of conduction

band) appears in the theory, and corrections to elec-
tron spectrum become, in fact, irrelevant, as well as all
vertex corrections. In fact, this allows us to apply the
general Eliashberg equations outside the limits of adi-
abatic approximation in strong antiadiabatic limit.
Our results show, that outside the limits of adiabatic
approximation, in the limit of strong nonadiabaticity,
for superconductivity we have a weak coupling regime.
Mass renormalization is small and determined by
effective coupling constant λD, while the strength of
the pairing interaction is determined by the standard
Eliashberg–McMillan coupling constant λ ≫ λD,
appropriately generalized with the account of finite-
ness of phonon frequency (comparable or exceeding
the Fermi energy). The cutoff of pairing interaction in
Cooper channel in antiadiabatic limit, as we have seen
above (cf. also Gor’kov’s paper [10]), takes place at the
energies ~EF, in weak approximation (supported by
our estimates) possible vertex corrections are irrele-
vant and for Tc we can use the usual expression of BCS
theory (50), which was also stressed in [10]. The small
value of EF in FeSe/STO system leads to the conclu-
sion, that the only interaction with antiadiabatic pho-
nons of STO is insufficient to explain the experimen-
tally observed values of Tc, as far as we limit ourselves
to weak coupling approximation ant the value of λ dies
not exceed 0.25. In this case it is necessary to take into
account two pairing mechanisms, those responsible
for the formation of initial Tc0 in the bulk FeSe (pho-
nons or spin f luctuations in FeSe) and those enhanc-
ing the pairing due interaction with optical phonons of
STO. Appropriate estimates of Tc, performed in [8, 10]
are in reasonable agreement with experiments on
FeSe/STO, with no use of the ideas on pairing mech-
anisms with “forward” scattering. At the same time,
our analysis show, that the expression for Tc like
Eq. (50), which formally has the form of weak cou-
pling approximation of BCS theory, in reality “works”
(in the limit of strong nonadiabaticity) also for large
enough values of λ, at least up to λ ~ 1, when polaronic
effects become relevant. Correspondingly, to explain
the experimentally observed values of Tc in FeSe/STO
it may be sufficient to deal only with electron interac-
tions with optical phonons of STO, as far as the values
of λ ~ 0.5 can be realized in this system. However, the
realization of such large values of coupling constant
here seems rather doubtful in the light of our discus-
sion above (cf. also the results of first—principles cal-
culations of λ in [23]).

The separate question, which remained outside our
discussion, is the account of direst Coulomb repul-
sion. In standard Eliashberg–McMillan theory, in
adiabatic approximation, when the frequency of pho-
nons is orders of magnitude smaller, than Fermi
energy, this repulsion enters via Coulomb pseudopo-

Ω0

FE
Ω0

D
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tential  which is significantly suppressed by Tol-
machev logarithm [2]. In antiadiabatic situation this
mechanism of suppression does not operate, which
creates additional difficulties for realization of super-
conductivity. In general, the problem of the possible
role of Coulomb repulsion in antiadiabatic regime of
electron–phonon coupling deserves serious further
studies.

This work was partially supported by RFBR grant
no. 17-02-00015 and the Program of Fundamental
Research of the Presidium of the Russian Academy of
Sciences no. 12 “Fundamental problems of high-tem-
perature superconductivity.”
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The influence of antiadiabatic phonons on the superconducting transition temperature is considered within
Eliashberg–McMillan approach in the model of discrete set of (optical) phonon frequencies. A general
expression for superconducting transition temperature  is proposed, which is valid in situation, when one
(or several) of such phonons becomes antiadiabatic. We study the contribution of such phonons into the Cou-
lomb pseudopotential μ*. It is shown that antiadiabatic phonons do not contribute to Tolmachev’s logarithm
and its value is determined by partial contributions from adiabatic phonons only. The results obtained are dis-
cussed in the context of the problem of an unusually high superconducting transition temperature of the FeSe
monolayer on STO.
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1. INTRODUCTION
The most developed approach to description of

superconductivity in the system of electrons and pho-
nons is Eliashberg–McMillan theory [1–4]. It is well
known that this theory is completely based on the
applicability of adiabatic approximation and Migdal
theorem [5], which allows neglecting vertex correc-
tions in calculations of the effects of electron–phonon
interaction in typical metals. The real small parameter

of perturbation theory is , where λ is the

dimensionless electron–phonon coupling constant,
 is the characteristic phonon frequency, and  is

the Fermi energy of the electrons. In particular, this
leads to a conclusion that vertex corrections in this
theory can be neglected even for , because of the

validity of inequality  characteristic of typical

metals.
In a recent paper [6] we have shown that under the

conditions of strong nonadiabaticity, when ,
a new small parameter appears in the theory

 (  is the half-width of electron

band), so that corrections to electronic spectrum
become irrelevant and vertex correction can be simi-
larly neglected [7]. In general case, the renormaliza-
tion of electronic spectrum (effective mass of an
electron) is determined by the new dimensionless

constant , which reduces to the usual λ in adiabatic
limit, while in the strong antiadiabatic limit it tends to

. At the same time, the superconducting transition
temperature  in antiadiabatic limit is determined by
Eliashberg–McMillan pairing coupling constant λ,
while the pre-exponential factor in the expression for

, which is of the typical weak-coupling form, is
determined by band half-width (Fermi energy). For
the case of the interaction with a single optical phonon
in [6] we obtained the unified expression for , valid
both in adiabatic and antiadiabatic regimes, and pro-
ducing a smooth interpolation in the intermediate
region.

In [6] we also noted that the presence of high pho-
non frequencies of the order of or even exceeding the
Fermi energy, leads to the obvious suppression of Tol-
machev’s logarithm in the expression for Coulomb
pseudopotential μ*, which creates additional difficul-
ties for the realization of superconducting state in the
system with antiadiabatic phonons.

The interest to this problem is stimulated by the
discovery of a number superconductors, where adia-
batic approximation is not valid, while characteristic
phonon frequencies are of the order of or even higher
than Fermi energy of electrons. Most typical in this
sense are intercalated systems with monolayers of
FeSe, as well as monolayers of FeSe on Sr(Ba)TiO3
(and similar) substrates (FeSe/STO) [8]. For the first
time, the nonadiabatic character of superconductivity
in FeSe/STO was noted by Gor’kov [9, 10], while dis-
cussing the idea of possible mechanism of the

cT

1 The article is published in the original.
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enhancement of superconducting transition tempera-
ture  in FeSe/STO system due to interaction with
high-energy optical phonons of SrTiO3 [8].

In this work, we consider the generalized model
with discrete set of the frequencies of (optical) pho-
nons, part of which may be andiabatic. We obtain the
general expressions for , valid both in adiabatic and
antiadiabatic limits. We also present the general anal-
ysis of the problem of the Coulomb pseudopotential in
such model. The results obtained are used for simple
estimates of  in situation typical for FeSe/STO.

2. SUPERCONDUCTING TRANSITION 
TEMPERATURE

Linearized Eliashberg equations, determining
superconducting transition temperature , written in
real frequencies representation, have the following
form [2]:

(1)

(2)

Here,  is the gap function of a superconductor,
 is the electron mass renormalization function,

and  is the Fermi distribution function. In differ-
ence with the standard approach [2], we have intro-
duced the finite integration limits, determined by the
(half)bandwidth D. In the following we assume the
half–filled band of degenerate electrons in two
dimensions, so that , with constant den-
sity of states. For simplicity, we first neglect the con-
tribution of direct Coulomb repulsion. In these (inte-
gral) equations  represents Eliashberg–McMil-
lan function, determining the strength electron–
phonon interaction, and  is the phonon density of
states. The Eliashberg–McMillan coupling constant
is defined as:

(3)

The details concerning its calculation for systems with
nonadiabatic phonons were discussed in details in [6].
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Situation is considerably simplified [6], if we con-
sider these equations in the limit of  and look for
the solutions  and . Then, from
Eq. (1) we obtain:

(4)

or

(5)

where

(6)

which for  reduces to the usual Eliasberg–
McMillan constant (3), while for D significantly
smaller than characteristic phonon frequencies it gives
the “antiadiabatic” coupling constant:

(7)

Equation (6) describes smooth transition between the
limits of wide and narrow conduction bands. Mass
renormalization is, in general case, determined exclu-
sively by constant :

(8)

In the limit of strong nonadiabaticity, this renormal-
ization is quite small and determined by the limiting
expression  [6].

From Eq. (2) in the limit of  and using (5),
we immediately obtain the following expression for :

(9)

Consider now the situation with discrete set of phonon
modes (dispersionless, Einstein phonons). In this
case, the phonon density of states is written as:
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where  are discrete frequencies modeling the optical
branches of the phonon spectrum. Then, from
Eqs. (3) and (6) we have:
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Correspondingly, in this case:

(13)

The standard Eliashberg equation (in adiabatic limit)
for such model were consistently solved in [11]. For
our purposes, it is sufficient to analyze only Eq. (9),
which takes now the following form:

(14)

Solving Eq. (14), we obtain:

(15)

For the case of two optical phonons with frequencies
 and  we have:

(16)

where  and . For the case of
 (adiabatic phonon), and  (antiadia-

batic phonon) Eq. (16) is immediately reduced to:

(17)

Here, we can see that the frequency of antiadiabatic
phonon in the pre-exponential factor is replaced by
band half-width (Fermi energy), which plays a role of
cutoff for logarithmic divergence in Cooper channel in
antiadiabatic limit [6, 9, 10].

The general result (15) gives the unified expression
for  for the discrete set of optical phonons, valid in
both adiabatic and antiadiabatic regimes and interpo-
lating between these limit in intermediate region.

3. COULOMB PSEUDOPOTENTIAL
Above, we had neglected the direct Coulomb

repulsion of electrons, which in the standard approach
[1–3] is described by the Coulomb pseudopotential
μ*, which is effectively suppressed by large Tol-
machev’s logarithm. As noted in [6] antiadiabatic
phonons suppress Tolmachev’s logarithm, which
apparently leads to a sufficient suppression of the
superconducting transition temperature. To clarify
this situation let us consider the simplified version of
integral equation for the gap (2), writing it as:
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where the integral kernel we write as a combination of
two-step functions:

(19)

where μ is the dimensionless (repulsive) Coulomb
potential, while the parameter , determining the
energy width of attraction region due to phonons is
determined by pre-exponential factor of Eq. (15):

(20)

Note that we always have . Equation (18) is now
rewritten as:

(21)

Writing the mass renormalization due to phonons as:

(22)

we look for the solution of Eq. (18) for , as usual,
also in the two-step form [1–3]:

(23)

Then, Eq. (21) transforms to the system of two homo-
geneous linear equations for constants  and :

(24)

with the condition for nontrivial solution taking the
form:

(25)

Correspondingly, for the transition temperature we get:

(26)

where the Coulomb pseudopotential is determined by
the expression
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Thus, the phonon frequencies enter Tolmachev’s log-
arithm as the product of partial contributions, with
values determined also by corresponding coupling
constants. Similar structure of Tolmachev’s logarithm
was first obtained (in somehow different model) in
[12], where the case of frequencies going outside the
limits of adiabatic approximation was not considered.
In this sense, Eq. (27) has a wider region of applicabil-
ity. In particular, for the model of two optical phonons
with frequencies  (adiabatic phonon) and

, from Eq. (27) we get:

(28)

We can see that the contribution of antiadiabatic pho-
non drops out of Tolmachev’s logarithm, while the
logarithm itself remains, with its value determined by
the ratio of the band half-width (Fermi energy) to the
frequency of adiabatic (low frequency) phonon. The
general effect of suppression of Coulomb repulsion
also remains, though it becomes weaker proportion-
ally to the partial interaction of electrons with corre-
sponding phonon. This situation is conserved also in
the general case, where Tolmachev’s logarithm and
corresponding Coulomb pseudopotential are deter-
mined by contributions of adiabatic phonons, while
antiadiabatic phonons drops out. Thus, in general
case, situation becomes more favorable for supercon-
ductivity, as compared to the case of a single antiadia-
batic phonon, considered in [6].

4. CONCLUSIONS

To summarize, we have considered the electron–
phonon coupling in Eliashberg–McMillan theory in
situation, when antiadiabatic phonons with high
enough frequency (comparable or exceeding the
Fermi energy ) are present in the system. The value
of mass renormalization, in general case, is deter-
mined by the coupling constant , while the value of
the pairing interaction is always determined by the
standard coupling constant λ of Eliashberg–McMil-
lan theory, appropriately generalized by taking into
account the finite value of phonon frequency [6].
Mass renormalization due to antiadiabatic phonons is
small and determined by the coupling constant

. In this sense, in the limit of strong antiadia-
baticity, the coupling of such phonons with electrons
becomes weak and corresponding vertex correction
are irrelevant [7], similarly to the case of adiabatic
phonons [5]. Precisely this this fact allows us to use
Eliashberg–McMillan approach in the limit of strong
antiadiabaticity. In the intermediate region all expres-
sions proposed above are of interpolating nature and
for more deep understanding of this region we have to
use other approaches (see, e.g., [13, 14]).
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The cutoff of pairing interaction in Cooper channel
in antiadiabatic limit takes place at energies , as
was previously noted in [6, 9, 10]), so that correspond-
ing phonons do not contribute to Tolmachev’s loga-
rithm in Coulomb pseudopotential, though large
enough values of this logarithm (and corresponding
smallness of ) can be guaranteed due to contribu-
tions from adiabatic phonons.

Note that above we have used rather simplified
analysis of Eliashberg equations. However, in our
opinion, more elaborate approach, e.g., along the
lines of [11], will not lead to qualitative change of our
results.

In conclusion, let us discuss the current results in
the context of possible explanation of high-tempera-
ture superconductivity in a monolayer of FeSe on
Sr(Ba)TiO3 (FeSe/STO) [8]. The presence in
Sr(Ba)TiO3 of high-energy optical phonons indicates
the possibility of significant enhancement of  in this
system due to interactions of FeSe electrons with these
phonons on FeSe/STO interface [8, 15]. ARPES
experiments [15] and LDA + DMFT calculations [16,
17] have shown that Fermi energy  in this system is
significantly (practically two times) lower than the
energy of the optical phonon, which unambiguously
indicates the realization, in this case, of antiadiabatic
situation [9, 10]. Let us look if we can explain the
observed high values of  in this system using the
expressions derived in this work. Assuming for FeSe
on STO the characteristic value of phonon frequency

 K, Fermi energy  K, and the
energy of the optical phonon in SrTiO3  K
[8, 15], we calculate  using Eqs. (16), (26) (the case
two phonon frequencies), considering μ* as a free

∼ FE

μ*

cT

FE

cT

ω =1 350 = =F 650E D
ω =2 1000

cT

Fig. 1. (Color online) Superconducting transition tem-
perature versus the coupling constant with a high-energy
phonon for the typical parameters of the FeSe/STO sys-
tem.



170

JETP LETTERS  Vol. 109  No. 3  2019

SADOVSKII

model parameter. Let us choose the value of  to
obtain, in the absence of interactions with high-energy
phonon of STO, the value of  K, typical for the
bulk FeSe, which gives . Results of our calcu-
lations are shown in Fig. 1. We can see that the exper-
imentally observed [8] high values of  K
can be obtained only for large enough values of the
coupling constant of FeSe electrons with high-energy
optical phonon of STO  0.5, so that the total pair-
ing coupling constant . Strictly
speaking, such values of the coupling constants cannot
be considered something unusual. However, the
appearance of these large values in FeSe/STO system
seems rather improbable in the light of qualitative esti-
mates of  for nonadiabatic case in [6], as well as the
results of ab initio calculations of  for this system [18].
Note also that the values of the parameters used here
for FeSe/STO belong to the intermediate region
between adiabatic or nonadiabatic regions, where our
expressions, as was stressed above, are of interpolating
nature. Variation of the values of these parameters in
relatively wide range does not lead to the qualitative
change of our results. Traditionally low values of μ*
used here, cannot be obtained for the assumed values
of ,  and coupling constants from expres-
sions like (28) with usual values of , due to rather
small values of corresponding Tolmachev’s logarithm.
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We consider the simplest model for temperature-linear growth of the resistivity in metals. It is shown that the
so-called “Planckian” limit for the temperature dependent relaxation rate of electrons follows from a certain
procedure for representation of experimental data on the resistivity and, in this sense, is a kind of delusion.
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Linear with temperature growth of electrical resis-
tivity in cuprates and some other correlated systems in
a wide region from very low to pretty high tempera-
tures for many years remains one of the major puzzles
of the physics of high-temperature superconductors.
In recent years, a number of interesting papers
appeared [1, 2], where by the analysis of experiments
on rather wide range of compounds, it was shown that
in the T-linear region of resistivity growth, the scatter-
ing rate of electrons (inverse relaxation time) with

rather high accuracy is described as  = ,

where  and is weakly depending on the choice of
the material. In particular, for systems being close to a
quantum critical point (on the phase diagram of
cuprates and some other similar systems) α belongs to
the interval 0.7–1.1. More so, a similar dependence
describes rather well the data for a number of usual
metals (Cu, Au, Al, Ag, Pb, Nb, etc.) in the region of
T-linear growth of the resistivity (which is usually real-
ized at temperatures , where  is the
Debye temperature). In this case, α covers a signifi-
cantly wider interval from 0.7 to 2.7 [1, 2]. In connec-
tion with these (and some similar) results the notion of
the universal (independent of interaction strength)
“Planckian” upper limit of scattering rate was intro-

duced  [3]. To explain this temperature

behavior of the resistivity for such different systems,
also starting from very low temperatures, up to now a
number of relatively complicated theoretical models
were proposed [4–7], including some rather exotic,
based on the analogies taken from black hole physics,
cosmology and superstring theory (e.g., see [8–11]).
In usual metals, the temperature dependence of the
resistivity (conductivity) is almost completely related
to inelastic scattering of electrons by phonons. In
usual metals at high enough temperatures ,

it dominates and leads to T-linear growth of the resis-
tivity

(1)

where  is the residual resistivity at  due to the
scattering by random impurities.

In terms of the conductivity, we may write the sim-
ple Drude expression

(2)

where  is the residual conductivity at  and

(3)

Here and below, m is understood to be the band effec-

tive mass, while  =  is the temperature depen-

dent relaxation (scattering) rate due to inelastic scat-
tering of electrons by phonons, which grows linearly
with temperature for . Correspondingly, we
obtain the resistivity as

(4)

The concept of the Planckian relaxation rate can be
introduced via elementary estimates [9]. At , the
processes of inelastic scattering appear due to different
interactions (electron–phonon, spin f luctuations,
quantum fluctuation of arbitrary origin). In particular,
these processes are responsible for thermodynamic
equilibrium of electronic subsystem leading to Fermi
distribution. The conductivity of a metal (degenerate
case) is determined by electrons distributed in a layer
of the width  around the Fermi level (chemical
potential).
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Let us perform elementary estimates using the
energy–time uncertainty relation

(5)
where τ is the lifetime of a quantum state and  is its
energy uncertainty. Naturally, in our case ,
while , which immediately leads to an esti-
mate

(6)

where . We conclude that, according to such an
elementary estimate, the Planckian relaxation rate
determines precisely the upper limit for the resistivity
due to inelastic scatterings:

(7)

However, it is obvious that this estimate is of rather
speculative nature for the system of many interacting
particles.

Consider the following Hamiltonian for interaction
of metallic electrons with arbitrary quantum Bose-
type f luctuations:1

(8)

Here we use the standard notations for creation and
annihilation operators of electrons,  is the quantum
fluctuation operator of “any kind” (e.g., the ion den-
sity in a lattice),  is the appropriate coupling con-
stant (matrix element of interaction potential) [12, 13].
Let us introduce the appropriate (Matsubara) Green’s
function as

(9)

For this function, we can write the standard (Bose)
spectral representation [14]

(10)

where  and the spectral density is defined
as

(11)

where ,  = .
The dynamic structure factor of f luctuations is

defined as [12, 13]

(12)
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Comparing Eqs. (11) and (12), we obtain

(13)

Electronic Green’s function in the Matsubara repre-
sentation is written as

(14)

where  and  is the electronic spec-
trum measured from the chemical potential. Assum-
ing the validity of Migdal’s theorem [15] we can take
the electron self-energy in the simplest approxima-
tion, shown in Fig. 1:

(15)

Consider now the case where the average frequency of
fluctuations  is significantly lower than the tem-
perature T. Then in Eq. (15) we can limit ourselves
only by term with  and thus to the picture of qua-
sielastic scattering by f luctuations:

(16)

where we have introduced the structure factor of f luc-
tuations as [13]

(17)

In fact, this is a direct analog the well-known Ziman–
Edwards approximation in the theory of liquid metals.
The case of  corresponds to chaotic dis-
tribution of static scattering centers [15].
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Fig. 1. Diagram of the second order for the electron self-
energy, where the dashed line is the Green’s function of
quantum fluctuations F and the solid line is the electron
Green’s function G.
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Fluctuation operator  for the case of some collec-
tive mode can be expressed via (boson) annihilation
and creation operators for corresponding quanta (e.g.,
phonons) [13]:

(18)

Then, we have

(19)

where  is the spectrum of corresponding excitations.
Introducing the usual Bose distribution

(20)

we get [13]

(21)

In case of , we have

(22)

and, correspondingly,

(23)

i.e., we obtain the structure factor linear in T and its
momentum dependence is determined simply by exci-
tation spectrum of the appropriate collective mode
(fluctuation). Then,

(24)

To simplify the model further let us assume the spec-
trum of f luctuations to be dispersionless (like Einstein
phonon or optical phonon with weak dispersion)

. Then performing all calculations similarly to
the problem of an electron in the field of random
impurities [15], we get

(25)

where  is the density of states at the Fermi level.
Correspondingly, the scattering rate (damping) is
written as
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where we introduced in a standard way the dimension-
less coupling constant

(27)

Now, the electronic Green’s function takes the usual
form [15]

(28)

where are no renormalization factors of any kind (the
residue at the pole of the Green’s function ),
which is natural for temperatures much exceeding the
frequencies of quantum fluctuations.

After the standard calculations [15], we obtain the
resistivity as

(29)

which in essence just coincide with high-temperature
limit of Eliashberg–McMillan theory [16]. The con-
stant α used in writing down the Planckian relaxation
as (6) is expressed via the parameters of the theory as

(30)

Naturally, it is not universal and is just proportional to
the coupling constant.

All this is known actually for a long time and trivi-
ally explains the T-linear growth of the resistivity in
accordance with many experiments. To make such
resistivity growth starting from low temperatures it is
sufficient to demand that . Near the quantum
critical point (of any nature), we can expect the typical
“softening” of f luctuation modes like [17]

(31)

where x, for example, may denote the carrier concen-
tration close to the critical , while ν and z are the
standard critical exponents of the theory of quantum
phase transitions, determining the critical behavior of
characteristic lengths:
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where τ is the imaginary (Matsubara) time, so that
above we may just assume . This may be
responsible for T-linear behavior in systems like
cuprates.
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(34)

Substituting this expression into Eq. (16), we get the
following expression for the self-energy:

(35)

where everything is determined by the spectral density
of f luctuations , which is not necessarily of a
quasiparticle form. Obviously, for the simplest model
with  =  (Einstein model of f luctua-
tions) from Eq. (35) we immediately obtain the previ-
ous results of Eqs. (25)–(27).

Further, let us assume that f luctuations scatter
electrons in some pretty narrow layer around the
Fermi surface with width determined by their charac-
teristic frequencies ( ). Then, in the spirit of
the Eliashberg–McMillan theory, we can introduce
the self-energy averaged over momenta at the Fermi
surface:

(36)

and an effective interaction averaged over the initial
and final momenta at the Fermi surface:

(37)

where

(38)

is the density of states of f luctuations. Then, for (36)
from (35) we get

(39)

where we introduced the dimensionless coupling
costant similar to that in the Eliashberg–McMillan
theory:

(40)

,ω ≈ ,ω .
ω

( ) ( )TS Aq q

∞

−∞

− ,ωωΣ ε , =
ω ε − ξ 

2
'

' '

( ' )
( ) ,n

n

AT dg
N ipp

p p

p p
p

,ω( )A q

,ω( )A q δ ω − Ω0( )

Ω T!

Σ ε = δ ξ Σ ε ,
1( ) ( ) ( ),
(0)n nN p

p

p

− ,ω

 − ,ω δ ξ δ ξ

≡ α ω ω

 

2
'

2
' '

'

2

( ' )
1 1 ( ' ) ( ) ( )
(0) (0)

1 ( ) ( ),
(0)

g A

g A
N N

F
N

pp

pp p p
p p

p p

p p

ω = ,ω( ) ( )F A
q

q

Σ ε =( )
(0)n

T
N

∞ ∞

−∞ −∞
∞

−∞

ω× α ω ω ξ
ω ε − ξ

ω= − π ε α ω ω
ω

 



2

2

1( ) ( ) (0)

sgn ( ) ( )

n

n

d F N d
i

di T F

Γ= − π ε λ ≡ − ε ,( )sgn sgn
2n n
Ti T i

∞
ωλ = α ω ω ,
ω

2

0

2 ( ) ( )d F

which is in fact determined by (averaged according to
(37)) the spectral density of f luctuations .

Then, we obtain

(41)

which is formally of the same form as (26) and imme-
diately leads to (29).

In [1, 2] experimental data on resistivity were fitted
to standard Drude expression (4), where the effective
mass was determined from low temperature measure-
ments (electronic specific heat and oscillation effects
in high magnetic fields) which is actually related to
band structure effective mass by a simple replacement

 = , which explicitly takes into account
renormalization due to phonons. The deficiency of
such approach was already noted in [18]. Let us show
that precisely this kind of representation of data cre-
ates a delusion of universal Planckian relaxation. In
fact, Eq. (29) for the high-temperature limit of the
resistivity can be rewritten as

(42)

where

(43)

which reduces at  to

(44)

and simply imitates the universal Planckian behavior
of relaxation rate (6) with , which is indepen-
dent of coupling constant of electrons with f luctua-
tions (phonons). The replacement  = 
in Eq. (42) is correct despite the fact, that here we are
dealing with the high-temperature limit as fitting the
experimental data in [1, 2] was performed using the
effective mass , obtained from low temperature mea-
surements, which contains renormalization effects.
For quantitative estimates, it is also quite important to
take into account mass renormalization due to inte-
relectron interactions. Correspondingly, Eq. (43)
should be rewritten as

(45)

where  is a dimensionless parameter, determining
mass renormalization due to electron–electron inter-
actions. In Landau–Silin theory of Fermi liquids

, where  is the appropriate coefficient in

Landau function expansion [13]. Direct DMFT cal-
culations for the Hubbard model produce the values of
renormalization factor  in metallic
phase monotonously changing with Hubbard interac-
tion U in the interval between 1 and 0 [19]. Thus, for
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rough estimates for typical metal we can safely take
. Then,

(46)

Then the interval of  [1, 2] for 
corresponds to , which seems quite rea-
sonable. For example for Al we have the calculated
value  [16], which immediately gives 
in nice correspondence with “experimental” value

 from [1]. For Pb, taking  [16] we get
 in reasonable agreement with  [1].

Similarly, for Nb we have  [16] and ,
also in good agreement with  of [1]. In general,
taking into account the roughness of our estimate of

 this agreement seems rather convincing.2

Thus, the “experimentally” observed universal
Planckian relaxation rate in metals, independent of
interaction strength, is nothing more than delusion,
connected with the procedure used in [1, 2] to repre-
sent the experimental data. At low temperatures
( ) Green’s function takes the form

(47)

where the renormalization factor  is assumed for
simplicity a constant. The term  in the
denominator describes quasiparticle damping for
which it may seem we have the “universal” high-tem-
perature limit of Eq. (44). However, it is wrong: at high
temperatures ( ) the renormalization factor

, as can be seen from our results above. Also for
the low temperatures, when , the term  in the
denominator of (47) describes the renormalized spec-
trum of electrons with mass , so that elec-
tron velocity at the Fermi surface  =

. Renormalization of damping cor-
responds to renormalization of mean free time

. Now we see that the mean free path
is not renormalized:  and renormal-
ization due to many particle effects, important at low
temperatures, actually do not affect conductivity
(resistivity) at all [20]. In fact, this follows from the
general Ward identity [21].

2 We neglect rather insignificant [16] difference between λ
and .
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It is shown that the famous Allen–Dynes asymptotic limit for the superconducting transition temperature in

the very strong coupling region  (where  is the Eliashberg–McMillan electron–phonon

coupling constant and  is the characteristic frequency of phonons) in the antiadiabatic limit of Eliashberg
equations  (  is the half-width of the conduction band and EF is the Fermi energy) is

replaced by , with the upper limit .

DOI: 10.1134/S0021364021090034

1. INTRODUCTION
The discovery of superconductivity [1] with critical

temperature up to Tc = 203 K in pressure interval of
100–250 GPa (in diamond anvils) in H3S system initi-
ated numerous experimental studies of high-tempera-
ture superconductivity of hydrides in megabar region
(see reviews [2, 3]). Theoretical analysis immediately
confirmed that these record-breaking Tc values are
ensured by traditional electron–phonon interaction in
the limit of strong enough electron–phonon coupling
[4, 5]. More so, the detailed calculations performed
for quite a number of hydrides of transition metals
under pressure [4] lead to prediction of pretty large
number of such systems with record Tc values. In some
cases, these predictions were almost immediately con-
firmed by experiment, in particular the record values
Tc = 160–260 K were achieved in LaH10 [6, 7], ThH10
[8], YH6 [9], (La,Y)H6,10 [10]. At last, some time ago
the psychological barrier was overpassed, when in [11]
superconductivity was obtained with 
1.2) K (i.e., near +15°C) in the C–H–S system at a
pressure of (267 ± 10) GPa.

The principal achievement of these works was,
before everything else, the demonstration of absence
of any significant limitations for Tc, within the tradi-
tional picture of electron–phonon mechanism of
Cooper pairing, contrary to a common opinion that Tc
due to it cannot exceed 30–40 K. Correspondingly,
even more demanding now is the problem of the upper
limit of Tc values, which can be achieved with this
mechanism of pairing.

Since BCS theory appeared, it became obvious
that Tc can be increased either by an increase in the
frequency of phonons responsible for Cooper pairing
or by the enhancement of the effective interaction of
these phonons with electrons. These problems were
thoroughly studied by different authors. The most
developed approach to description of superconductiv-
ity in electron–phonon system is Eliashberg–McMil-
lan theory [5, 12, 13]. It is well known that this theory
is entirely based on the applicability of adiabatic
approximation and Migdal theorem [14], which allows
to neglect vertex corrections while calculating the
effects of electron–phonon interactions in typical
metals. The actual small parameter of perturbation

theory in these calculations is , where λ is the

dimensionless electron–phonon coupling constant,
 is characteristic frequency of phonons and EF is the

Fermi energy of electrons. In particular, this means
that vertex corrections in this theory can be neglected
even in the case of , as we always have an inequal-

ity  valid for typical metals.

In [15–17], we have recently shown that in the case
of strong nonadiabaticity, when , a new small

parameter appears in the theory 

 (D is the half-width of the electron band), so

that corrections to the electronic spectrum become
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irrelevant. Vertex corrections can also be neglected, as
it was shown in [18]. In general case the renormaliza-
tion of the electronic spectrum (effective mass of the
electron) is determined by a new dimensionless con-
stant , which reduces to the usual λ in the adiabatic
limit, while in strong antiadiabatic limit it tends to .
At the same time, the superconducting transition tem-
perature Tc in the antiadiabatic limit is determined by
Eliashberg–McMillan pairing constant λ, generalized
by taking into account finite phonon frequencies.

For the case of interaction with a single optical
(Einstein) phonon in [15] we have obtained the single
expression for Tc, which is valid both in adiabatic and
antiadiabatic regimes and smoothly interpolating in
between:

(1)

where  is smoothly changing from λ for

 to  in the limit .
Besides the questions related to possible limits of Tc

in hydrides, where possibly some small pockets of the
Fermi surface with small Fermi energies exist [5], the
interest to the problem of superconductivity in
strongly antiadiabatic limit is stimulated by the discov-
ery of a number of other superconductors, where adi-
abatic approximation cannot be considered valid and
characteristic phonon frequencies is of the order or
even exceed the Fermi energy of electrons. Typical in
this respect are intercalated systems with monolayers
of FeSe, and monolayers of FeSe on substrates like
Sr(Ba)TiO3 (FeSe/STO) [19]. With respect to
FeSe/STO this was first noted by Gor’kov [20, 21],
while discussing the idea of the possible mechanism of
increasing the superconducting transition temperature
Tc in FeSe/STO due to interactions with high-energy
optical phonons of SrTiO3 [19]. Similar situation
appears also in an old problem of superconductivity in
doped SrTiO3 [22].

2. LIMITS FOR THE SUPERCONDUCTING 
TRANSITION TEMPERATURE IN THE CASE 

OF VERY STRONG ELECTRON–PHONON 
COUPLING

The general equations of the Eliashberg–McMil-
lan theory determining the superconducting gap 
in the Matsubara representation 
can be written as [5, 12, 13]

(2)
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where

(4)

Here,  is McMillan’s function,  is the
phonon density of states, and for simplicity we assume
here the model of half-filled band of electrons with
finite width  ( ) with constant density of
states (two-dimensional case).

We also neglect here the effects of Coulomb repul-
sion leading to the appearance of Coulomb pseudopo-
tential μ*, which is usually small and more or less irrel-
evant in the region of very strong electron–phonon
attraction [5, 12, 13].

Then, taking into account

(5)

the linearized Eliashberg equations acquire the general
form

(6)
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Consider the equation for  determining
, which follows directly from

Eqs. (6), (7):
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Leaving only the contribution from , we imme-
diately obtain the inequality

(9)

which generalizes the similar inequality first obtained
in [23] and determining the lower bound for Tc. For the
Einstein model of the phonon spectrum, we have

, so that Eq. (9) is reduced to:

(10)

where  is the dimensionless pairing
coupling constant. For , we immediately
obtain the Allen–Dynes result [23]:

(11)

which in fact determines the asymptotic behavior of Tc
in the region of very strong coupling . The exact
numerical solution of the Eliashberg equation [23]
produces for Tc the result like (11) with the replace-
ment of a numerical coefficient of 0.16 by 0.18. This
asymptotic behavior rather satisfactory describes the
Tc values already for .

In the case of general phonon spectrum, it is suffi-
cient to replace here , where

(12)

is the average (over the spectrum) square frequency of
phonons, and the general expression for the coupling
constant is [5, 12, 13]:

(13)

For  from Eq. (10), we obtain
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From the obvious requirement of , we obtain
the condition:

(17)

which limits Tc from above.
Thus, we require the inequality

(18)

which is reduced to:

(19)

so that for our analysis to be self-consistent it is
required to have:

(20)

where the last inequality corresponds to strong antia-
diabatic limit. Correspondingly, all the previous esti-
mates are not valid for  and can only describe the
limit of very strong coupling.

In Figs. 1 and 2, we show the results of numerical
comparison of the bounds for Tc, following from
Eq. (10) with the values of transition temperature in
the region of weak and intermediate coupling follow-
ing from Eq. (1), for different values of adiabaticity
parameter . It is clear that in the vicinity of inter-
sections of dotted and continuous lines on these
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Fig. 1. (Color online) Superconducting transition tem-
perature in the Einstein model of phonon spectrum in
units of  versus the pairing constant λ for different
values of the inverse adiabaticity parameter . Dotted
lines show the dependences for  in the region of
weak and intermediate couplings (1) [15]. The black
dashed line is the Allen–Dynes estimate valid in the adia-
batic limit [23].
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graphs we actually have the smooth crossover from Tc
behavior in the region of weak and intermediate cou-
pling to its asymptotic behavior in the region of very
strong coupling . It is also seen that the increase
in phonon frequencies and crossover to antiadiabatic
limit does not lead, in general, to the increase in Tc as
compared to adiabatic case.

3. CONCLUSIONS

In this work, we have considered the case of very
strong electron–phonon coupling in Eliashberg–
McMillan theory, including the antiadiabatic situa-
tion with phonons of very high frequency (exceeding
the Fermi energy EF). The value of mass renormaliza-
tion is in general determined by the coupling constant

 [15], which is small in antiadiabatic limit. At the
same time, the pairing interaction is always deter-
mined by the standard coupling constant λ of Eliash-
berg–McMillan theory, appropriately generalized by
taking into account the finite values of phonon fre-
quencies [15]. However, the simplest estimates [15, 17]
show, that in antiadiabatic situation this constant in
general rather rapidly drops with the growth of phonon
frequency  for . In this sense, the asymp-
totic behavior of Tc for very strong coupling discussed
above can be possibly achieved only in some excep-
tional cases. Even in this case, as clear from our results,
the transition into antiadiabatic region cannot
increase Tc as compared to the standard adiabatic sit-
uation.

λ 1@

λ�

Ω0 Ω0 FE@

While the usual expression for Tc in terms of the
pairing constant λ and characteristic phonon fre-
quency  are quite convenient and clear, it
is to be taken into account that these parameters are in
fact not independent. As seen from expressions like
(12) and (13), these parameters are determined by the
same Eliashberg–McMillan function .
Correspondingly, there are limitations for free changes
of these parameters in estimates of optimal (maxi-
mum) values of Tc.

ACKNOWLEDGMENTS

I am grateful to E.Z. Kuchinskii for discussions and help
with numerical computations.

FUNDING

This work is supported in part by the Russian Founda-
tion for Basic Research, project no. 20-02-00011.

REFERENCES

1. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Kseno-
fontov, and S. I. Shylin, Nature (London, U. K.) 525,
73 (2015).

2. M. I. Eremets and A. P. Drozdov, Phys. Usp. 59, 1154
(2016).

3. C. J. Pickard, I. Errea, and M. I. Eremets, Ann. Rev.
Condens. Matter Phys. 11, 57 (2020).

4. H. Liu, I. I. Naumov, R. Hoffman, N. W. Ashcroft, and
R. J. Hemley, Proc. Natl. Acad. Sci. U. S. A. 114, 6990
(2018).

5. L. P. Gor’kov and V. Z. Kresin, Rev. Mod. Phys. 90,
01001 (2018).

6. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin,
M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Bal-
akirev, D. E. Graf, V. B. Prakapenka, E. Greenberg,
D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature
(London, U. K.) 569, 528 (2019).

7. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geb-
alle, M. Baldini, Y. Meng, V. V. Struzhkin, and
R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

8. D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svit-
lyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy,
V. M. Pudalov, I. A. Troyan, and A. R. Oganov, Mater.
Today 33, 36 (2020).

9. I. A. Troyan, D. V. Semenok, A. G. Kvashnin, et al.,
Adv. Mater. (2021, in press); arXiv: 1908.01534. 
https://doi.org/10.1002/adma.202006832

10. D. V. Semenok, I. A. Troyan, A. G. Kvashnin, et al.,
Mater. Today (2021, in press); arXiv: 2012.04787.

/Ω Ω ∼

2 1 2
0

α ω ω2( ) ( )F

Fig. 2. (Color online) superconducting transition tempera-
ture in the Einstein model of the phonon spectrum in units
of  versus the pairing constant λ from different val-

ues of adiabaticity parameter . Dotted lines show the

dependences for  in the region of weak and inter-
mediate couplings (1) [15].

c

π c2 /T D
Ω0
D

π c2 /T D



JETP LETTERS  Vol. 113  No. 9  2021

SUPERCONDUCTING TRANSITION TEMPERATURE 585

11. E. Snider, N. Dasenbrock-Gammon, R. McBride,
M. Debessai, H. Vindana, K. Vencatasamy, K. V. Law-
ler, A. Salamat, and R. P. Dias, Nature (London,
U. K.) 586, 373 (2020).

12. D. J. Scalapino, in Superconductivity, Ed. by R. D. Parks
(Marcel Dekker, New York, 1969), p. 449.

13. P. B. Allen and B. Mitrović, Solid State Physics, Ed. by
F. Seitz, D. Turnbull, and H. Ehrenreich (Academic,
New York, 1982), Vol. 37, p. 1.

14. A. B. Migdal, Sov. Phys. JETP 7, 996 (1958).
15. M. V. Sadovskii, J. Exp. Theor. Phys. 128, 455 (2019).

16. M. V. Sadovskii, JETP Lett. 109, 166 (2019).
17. M. V. Sadovskii, J. Supercond. Novel Magn. 33, 19

(2020).
18. M. A. Ikeda, A. Ogasawara, and M. Sugihara, Phys.

Lett. A 170, 319 (1992).
19. M. V. Sadovskii, Phys. Usp. 59, 947 (2016).
20. L. P. Gor’kov, Phys. Rev. B 93, 054517 (2016).
21. L. P. Gor’kov, Phys. Rev. B 93, 060507 (2016).
22. L. P. Gor’kov, Proc. Natl. Acad. Sci. U. S. A. 113, 4646

(2016).
23. P. B. Allen and R. C. Dynes, Phys. Rev. 12, 905 (1975).



ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2023, Vol. 136, No. 3, pp. 368–377. © Pleiades Publishing, Inc., 2023.
Russian Text © The Author(s), 2023, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 163, No. 3, pp. 417–427.

ELECTRONIC PROPERTIES 
OF SOLID
Hall Effect in Doped Mott–Hubbard Insulator
E. Z. Kuchinskiia,*, N. A. Kuleevaa,**, M. V. Sadovskiia,***, and D. I. Khomskiib,****

a Institute for Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016 Russia
b II Physikalisches Institut, Universität zu Koeln, Koeln, 50937 Germany

*e-mail: kuchinsk@iep.uran.ru
**e-mail: strigina@iep.uran.ru

***e-mail: sadovski@iep.uran.ru
****e-mail: khomskii@ph2.uni-koeln.de

Received October 4, 2022; revised October 4, 2022; accepted October 20, 2022

Abstract—We present theoretical analysis of Hall effect in doped Mott–Hubbard insulator, considered as a
prototype of cuprate superconductor. We consider the standard Hubbard model within DMFT approxima-
tion. As a typical case we consider the partially filled (hole doping) lower Hubbard band. We calculate the
doping dependence of both the Hall coefficient and Hall number and determine the value of carrier concen-
tration, where Hall effect changes its sign. We obtain a significant dependence of Hall effect parameters on
temperature. Disorder effects are taken into account in a qualitative way. We also perform a comparison of
our theoretical results with some known experiments on doping dependence of Hall number in the normal
state of YBCO and Nd-LSCO, demonstrating rather satisfactory agreement of theory and experiment. Thus
the doping dependence of Hall effect parameters obtained within Hubbard model can be considered as an
alternative to a popular model of the quantum critical point.

DOI: 10.1134/S1063776123030020

1. INTRODUCTION

The studies of Hall effect in high - temperature
superconductors continues for a long time. The early
experiments demonstrated the significant dependence
of Hall effect parameters on temperature and doping,
which are qualitatively different from the case of ordi-
nary metals [1]. The complete understanding of Hall
effects in cuprates at present is absent.

In recent years much interest was attracted to
experimental studies of Hall effect at low temperatures
in the normal state of high-temperature superconduc-
tors (cuprates), which is realized in very strong exter-
nal magnetic fields [2–4]. The observed anomalies of
Hall effect in these experiments are usually attributed
to reconstruction of Fermi surface due to (antiferro-
magnetic) pseudogap formation and closeness to the
corresponding quantum critical point [5].

Since the early days of theoretical studies of cupra-
tes the leading point of view is, that these systems are
strongly correlated and metallic (and superconduct-
ing) state is realized via doping of the initial Mott insu-
lator phase, which in a simplest case can be described
within Hubbard model. However, up to now there are
only few papers where systematic studies of Hall effect
dependence on doping and temperature were per-
formed within this model [6].

Even the answer to a classical question on the dop-
ing level at which the Hall effect changes its sign is not
perfectly clear. At small hole doping of an initial insu-
lator, such as La2CuO4 or YBCO Hall effect is obvi-
ously determined by hole concentration δ. Then at
what doping level Hall effect changes its sign and when
the transition from hole – like Fermi surface to elec-
tron—like takes place? The answer to this question
seems to be important also for the general theory of
transport phenomena in strongly correlated systems.
This paper is mainly devoted to the solution of this
problem.

2. HALL CONDUCTIVITY AND HALL 
COEFFICIENT

One of the most general approaches to the studies
of Hubbard model is the dynamical mean field theory
(DMFT) [6–8], which gives an exact description of
the system in the limit of infinite spatial dimensions
(lattice with infinite number of nearest neighbors).
General approaches allowing to overcome this rigid
limitation are actively developed [9, 10], but as a rule
these complicate the analysis very much. In this paper
we limit ourselves to the analysis of Hall effect within
the standard DMFT approximation. The aim of this
work is systematic study of concentration and tem-
perature dependence of Hall effect at different doping
368
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levels of the lower Hubbard band and comparison of
theoretical results with experiments on YBCO and
Nd-LSCO [3, 4]. Preliminary results were published
in [11].

In the standard DMFT [6–8] self-energy of a sin-
gle-electron Green’s function G(pε) is local, i.e. inde-
pendent of momentum. Due to this locality both the
usual and Hall conductivities are completely deter-
mined by the spectral density of this Green’s function

(1)

In particular, the usual (diagonal) static conductiv-
ity is given by [6]:

(2)

while Hall (non-diagonal) conductivity is defined as:

(3)

Here a is the lattice parameter, ε(p) is electron dis-
persion, f(ε) is Fermi distribution, and H is magnetic
field along z axis. Then the Hall coefficient:

(4)

is also completely determined by the spectral density
A(pε), which in the following will be calculated within
the DMFT [6–8]. Effective Anderson single-impurity
model of DMFT in this paper was solved with numer-
ical renormalization group (NRG) [12].

In the following we consider two basic models of
the bare electron band. The model with semi-elliptic
density of states (DOS) (per elementary cell and single
spin projection) is a reasonable approximation for
three-dimensional case:

(5)

where D is conduction band half-width. We assume
that the bare electronic spectrum is isotropic. To find
the momentum derivatives of the spectrum in this
model, entering Eqs. (2) and (3), we follow the proce-
dure proposed before in [13]. Appropriate technical
details are presented in Appendix.

For two-dimensional systems, in anticipation of
comparison with experimental data for cuprates, we
limit ourselves to the usual tight-binding model of
electronic spectrum:

(6)
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Within this two-dimensional model we consider a
number of cases:

(1) spectrum with only nearest hoppings (t' = 0)
and full electron-hole symmetry;

(2) spectrum with t'/t = –0.25, which qualitatively
corresponds to electronic dispersion in systems like
LSCO;

(3) spectrum with t'/t = –0.4, which qualitatively
corresponds to situation observed in YBCO.

Below we present the results of detailed calcula-
tions of Hall coefficient for all these models.

3. HALL COEFFICIENT IN TWO-
DIMENSIONAL MODEL OF TIGHT-BINDING 

SPECTRUM OF ELECTRONS

Let us start with simplest qualitative analysis. It is
easy to understand that deep in Mott insulator state
with well defined upper and lower Hubbard bands the
Hall coefficient under hole doping is in fact deter-
mined by filling the lower Hubbard band (the upper
band is significantly higher in energy and is practically
unfilled). In this situation in the model with electron–
hole symmetry (in two dimensions this corresponds to
spectrum with t' = 0), an estimate of band filling cor-
responding to the sign change of the Hall coefficient
can be obtained using very simple arguments. Let us
consider the paramagnetic phase with n ↑ = n↓ = n, so
that in the following n denotes electron density per
one spin projection, so the complete density of elec-
trons is given by 2n. Qualitatively the situation is illus-
trated in Fig. 1. In lower Hubbard band (in the vicinity
of the Fermi level E = 0) 2n electrons occupy states
below the Fermi energy EF. An additional electron can
go to the upper Hubbard band in the vicinity of E ~ U,
where we also have 2n states. It also can go to the lower
Hubbard band, where there still remain 2(1 – 2n)
empty states in the region of E > EF. Summing we
obtain 2n + 2(1 – 2n) + 2n = 2 as it should be. The sign
of the Hall coefficient will change at the half filling of
the lower band, when 2n = 2(1 – 2n). Now it is clear
that the value of the critical concentration is nc = 1/3.

The same result is easily obtained in Hubbard I
approximation, where the Green’s function spin-up
electron takes the form [14]:

(7)

where ε±(p) is quasiparticle spectrum in upper and
lower Hubbard bands. We see that in this approxima-
tion the number of states with upper spin projection in
the lower Hubbard band (first term in Eq. (7)) is in
fact 1 – n↓. During hole doping of Mott insulator

1
( ) ,

( ) ( )
R n n

G
i i

p
p p

↓ ↓
↑

− +

−ε = +
ε − ε + δ ε − ε + δ
YSICS  Vol. 136  No. 3  2023



370 KUCHINSKII et al.

Fig. 1. Schematic picture of doping in Hubbard bands for the case of complete electron-hole symmetry.

0

2n2n 2(1 � 2n)

EF U E

Fig. 2. Density of states (DOS) in doped Mott insulator at
different temperatures. Parameters of the Hubbard model
are shown in figure, 8t is the initial band-width. At the
insert—the density of states in a wide energy interval
including the upper Hubbard band. 
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practically all filling takes place in the lower Hubbard
band, so that:

(8)

Then at half-filling of the lower Hubbard band we
have n0 = 1/2 and the Hall coefficient (effective mass
of the quasiparticles) changes its sign at n = nc = 1/3,
corresponding to our previous estimate.

In general case situation is obviously more compli-
cated. In strongly correlated systems Hall coefficient
(and other electronic properties) become significantly
dependent on temperature. At low temperature in
these systems DMFT approximation leads, besides
the formation of lower and upper Hubbard bands, to
the appearance of a narrow quasiparticle band, or qua-
siparticle peak in the density of states [6–8]. In hole
doped Mott insulator (in the following we consider
only hole doping) such a peak appears close to the
upper edge of the lower Hubbard band (cf. Fig. 2).
Thus at low temperatures the Hall coefficient is
mainly determined by filling of this quasiparticle
band. At high enough temperature (of the order or
higher than quasiparticle peak width) quasiparticle
peak is damped and the Hall coefficient is mainly
determined by filling of the lower Hubbard band.
Thus, in general case it is necessary to consider two
different temperature regimes for Hall coefficient.

In low temperature regime both the width and the
amplitude of quasiparticle peak depend on filling and
temperature. Increasing temperature leads to widen-
ing of quasiparticle peak and some shift of the Fermi
level below the maximum of this peak (cf. Fig. 2). This
may lead to a significant drop of the Hall coefficient,
though further increase of the temperature leading to
the damping of the quasiparticle peak leads to the
growth of this coefficient. Thus the relevant depen-
dence of the quasiparticle peak on band filling in the
low temperature regime leads to the regions of non-
monotonous filling dependence of the Hall coefficient
(cf. Fig. 3a).

From Fig. 3a it is easy to see that high-temperature
behavior of the Hall coefficient in doped Mott insula-
tor (U/2D = 4; 10) in a model with full electron-hole
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symmetry (t' = 0), completely confirms the qualitative
estimate given above. However, this estimate becomes
invalid in the case of noticeable breaking of electron-
hole symmetry (cf. Fig. 3b).

It should be noted that damping and disappearance
of quasiparticle peak can be not only due increasing
temperature, but also due to disordering [9, 13]
(cf. Fig. 4) or due to pseudogap fluctuations, which
are entirely neglected within local DMFT [9, 15].
Thus, in reality the region of applicability of simplest
estimates given above may be much wider.

In general case taking into account disorder scat-
tering (more so pseudogap fluctuations) in calcula-
tions of the Hall effect is rather complicated problem.
As a simple estimate we present below results of calcu-
lations using Eqs. (2)–(4), where we have used the val-
ues of the spectral density A(pε) for disordered Hub-
bard model obtained within DMFT+Σ approach [9,
15]. Disorder parameter Δ denotes the effective scat-
tering rate of electrons by random field (in self-consis-
tent Born approximation). It is clear that this approach
based only on the account of disorder in spectral den-
sity is oversimplified, but it seems reasonable for qual-
itative analysis.
D THEORETICAL PHYSICS  Vol. 136  No. 3  2023
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Fig. 3. Dependence of Hall coefficient on correlation strength U on band filling for t' = 0 (a) and t'/t = –0.4 (b) in low temperature
regime (empty symbols) and in high temperature regime (filled symbols).
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Fig. 4. Dependence of Hall coefficient on band filling in presence of impurity scattering (Δ/8t = 0.25, filled symbols) and in its
absence (Δ = 0, empty symbols) for two models of two-dimensional electronic spectrum: (a) full electron-hole symmetry (t' =
0); (b) t'/t = –0.4. 

t'/t = �
U/8t = 4

t'/t = ���
U/8t = 4

T/8t = 0.0012, 	 = 0
T/8t = 0.0012, 	/8t = 0.25
T/8t = 0.0586, 	 = 0
T/8t = 0.0586, 	/8t = 0.25

T/8t = 0.0012, 	 = 0
T/8t = 0.0012, 	/8t = 0.25
T/8t = 0.0586, 	 = 0
T/8t = 0.0586, 	/8t = 0.25

RH

0

10

20

30

�30

�20

�10

0.1 0.2 0.3 0.4 0.5

(a) (b)

0
n

RH

0

10

20

30

�30

�20

�10

0.1 0.2 0.3 0.4 0.50
n

In Fig. 4 we compare the dependencies of Hall
coefficient on band filling in the absence of disorder
and for the case of impurity scattering with Δ/8t = 0.25
for Mott insulator with U/8t = 4. It is seen that for dif-
ferent values of t ' in high temperature limit disorder
only slightly affects the Hall coefficient by rather
insignificant shift of the value of filling, where RH
changes its sign. In low temperature regime impurity
scattering, damping the quasiparticle peak, lead to dis-
appearance of the anomalies of RH, connected with its
existence (cf. Fig. 4a) and weakening differences
between low temperature and high temperature
regimes.

In Fig. 5 we show dependencies of Hall coefficient
on band filling and temperature for the case of Mott
insulator with U/8t = 4 for different models of elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
tronic spectrum, both for the case of full electron-hole
symmetry with t ' = 0 and for t '/t = –0.25 and t '/t =
‒0.4, characteristic for cuprate systems LSCO and
YBCO respectively. On the dependence of RH on band
filling with the growth of temperature we observe
smooth evolution from low to high temperature
regime with smooth weakening of the anomalies of
Hall coefficient related to quasiparticle peak, which
are most clearly seen in Figs. 3a and 5a. For all cases of
electronic spectrum under consideration (t '/t = 0;
‒0.25; –0.4) increasing temperature leads to a shift of
the value of filling corresponding to RH = 0 into the
region of larger hole dopings.

Also in the r.h.s. part of Figs. 5b, 5d, 5f we show the
temperature dependencies of Hall coefficient for dif-
ferent band fillings. In all case we observe the signifi-
YSICS  Vol. 136  No. 3  2023
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Fig. 5. Dependence of Hall coefficient on band filling for different values of temperature—left column (a, c, e) and temperature
dependence of RH for different band fillings—right column (b, d, f).
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cant dependence of RH on temperature and for small
hole dopings (n = 0.45–0.3) RH grows with increasing
temperature and we obtain the sign change of RH at
larger hole dopings (n = 0.3–0.2). For small enough
values of t' (t'/t = 0; –0.25) we can observe non
monotonous dependence of Hall coefficient on tem-
perature, when RH decreases with increasing tempera-
ture, while it grows at high T.
JOURNAL OF EXPERIMENTAL AN
The sign change of Hall coefficient is usually con-
nected to a change of the type of charge carriers. Hall
coefficient approaching zero corresponds to diver-
gence of Hall number nH ~ 1/RH. At Fig. 6 we show
temperature dependence of the band filling corre-
sponding to the sign change of the Hall coefficient for
all three values of t'/t considered here. We see that in
all models the band filling at which RH changes its sign
D THEORETICAL PHYSICS  Vol. 136  No. 3  2023
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Fig. 6. Temperature dependence of band filling corre-
sponding to a sign change of Hall coefficient in doped
Mott insulator for three different values of t'/t.
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Fig. 7. Density of states (DOS) in doped Mott insulator
with semi-elliptic band (three-dimensional case) for dif-
ferent temperatures.
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decreases with temperature. In case of the full elec-
tron-hole symmetry t' = 0 we see, that in high tem-
perature regime hole doping δ = 1 – 2n corresponding
to the sign change of RH really tends to 1/3. However,
with increasing |t'/t| we observe the significant
decrease of the value of hole doping where RH changes
its sign.

4. HALL COEFFICIENT IN THE MODEL WITH 
SEMI-ELLIPTIC DENSITY OF STATES

Let us briefly discuss results obtained in the model
of electronic band with semi-elliptic density of states,
which has the full electron-hole symmetry. The main
results are qualitatively similar to the case two-dimen-
sional tight-binding electronic spectrum with t ' = 0
also having the complete electron-hole symmetry.
Similarly to two-dimensional case the Hall coefficient
in three-dimensional strongly correlated system is sig-
nificantly dependent on temperature and it is neces-
sary to consider separately the low and high tempera-
ture regimes for RH, as in the low temperature regime
the Hall coefficient is mainly determined on filling the
quasiparticle band (quasiparticle peak).

Increasing temperature leads to damping of quasi-
particle peak (cf. Fig. 7) and in high temperature
regime Hall coefficient is mainly determined by filling
of the lower (for the case of hole doping considered
here) Hubbard band.

In Fig. 8a we show the Hall coefficient dependence
on electronic band filling if low temperature (unfilled
symbols) and in high temperature (filled symbols)
regimes, both for the case of strongly correlated metal
(U/2D = 1) and for doped Mott insulator (U/2D = 4;
10). We can see that in the low temperature regime, as
in two dimensional model with t ' = 0 (RH is negative
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
practically at all band fillings) at small hole dopings
there is a significant non monotonous dependence of
RH on doping.

In high temperature regime the Hall coefficient at
small hole dopings is positive (hole-like), decreasing
with increasing hole doping, while at larger dopings
RH becomes negative, changing its sign (in Mott insu-
lator) at hole doping δ = 1 – 2n ≈ 1/3, which again
confirms qualitative estimates given above. A smooth
evolution of Hall coefficient dependence of filling as
temperature increases from low temperature to high
temperature regime in Mott insulator (U/2D = 4) is
shown in Fig. 8b.

In Fig. 9 we demonstrate disorder influence on
Hall coefficient in Mott insulator. In high temperature
limit impurity scattering practically does not influence
RH at all, while in low temperature limit damping the
quasiparticle peak by disorder removes the anomalous
non monotonous behavior of RH dependence on n.

5. COMPARISON WITH EXPERIMENTS
As we mentioned before in recent years the unique

experimental studies were performed measuring Hall
effect at low temperatures in the normal state of high-
temperature superconductors (cuprates), which was
achieved in very strong external magnetic fields [2–4].
These experiments revealed the dependence of Hall

number nH =  on doping with a smooth transition

from linear dependence on hole concentration ~δ at
small dopings to the values ~(1 + δ) for high enough
concentrations of the order of critical hole concentra-
tion of vanishing (closing) pseudogap. These data are
usually interpreted within the picture of Fermi surface
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Fig. 8. Dependence of Hall coefficient on band filling for
semi-elliptic density of states: (a) for different values of U
in low temperature (empty symbols) and high temperature
(filled symbols) regimes; (b) for different temperatures at
fixed U/2D = 4.
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Fig. 9. Dependence of Hall coefficient on band filling in
low temperature regime (black curves) and high tempera-
ture regime (red curves) in the absence of disorder Δ = 0
(empty symbols) and for Δ/2D = 0.25 (filled symbols).
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 = 1 � 2n
reconstruction in the vicinity of the expected quantum
critical point in the framework of rather specific
model of cuprates with inhomogeneous localization of
carriers [5, 16]. It should be noted, that in none of
papers known to us were in fact presented experimen-
tal points reliably demonstrating the dependence
~(1 + δ), and clearly established experimental fact is
only the observed growth of the Hall number.

Below we propose an alternative interpretation of
the growth of Hall number in these experiments as
reflecting the approach of the system to critical con-
centration of carriers at which Hall effect just changes
its sign (Hall coefficient RH becomes zero) [11].

In Fig. 10 we show the comparison of the results of
our calculations for Hall number (Hall concentration)

nH =  for typical parameters of the model with

experimental data for YBCO and Nd-LSCO from [3,
4]. We can see that even for this, rather arbitrary,

2

| |H

a
eR
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choice of parameters we can obtain almost quantita-
tive agreement with experiment, with no assumptions
about the connection of Hall effect with reconstruc-
tion of Fermi surface by pseudogap and closeness to
corresponding quantum critical point, which were
used in [3–5, 16]. Thus it seems reasonable to interpret
Hall effect in cuprates within picture of lower Hub-
bard model doping in Mott insulator, as an alternative
to the scenario based upon closeness to a quantum
critical point.

In this respect it seems to be quite important to try
to perform more detailed studies of the Hall effect in
the vicinity of a critical concentration corresponding
to sign change of the Hall effect (divergence of the
D THEORETICAL PHYSICS  Vol. 136  No. 3  2023
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Hall number). It requires the studies of systems
(cuprates) where such sign change can be achieved
under doping.

6. CONCLUSIONS

We have studied Hall effect in metallic state
appearing while doping Mott insulator. Main atten-
tion was to the case of hole doping, characteristic for a
major part of cuprates. We considered a number of
two-dimensional tight-binding models of electronic
spectrum appropriate for description of electronic
structure of cuprates, as well as three-dimensional
model with semi-elliptic bare density of states. In all
models the Hall coefficient RH in doped Mott insula-
tor is significantly dependent on temperature. In low
temperature limit RH is mainly determined by the fill-
ing of quasiparticle peak, which may lead to non
monotonous dependence of Hall coefficient on dop-
ing. In high temperature limit, when quasiparticle
peak is essentially damped, RH is mainly determined
by filling of the lower (for hole doping) Hubbard band.
In this limit the sign change of the Hall coefficient and
corresponding divergence of the Hall number takes
place, in the simplest (symmetric) case close to the
band filling n = 1/3 per single spin projection or 2/3
for total density of electrons, which corresponds to
hole doping δ = 1 – 2n = 1/3, though in general case
this filling may strongly depend on the choice of
parameters of the model. This concentration follows
from simple qualitative estimates and not related with
more complicated factors like changing the topology
of Fermi surface or the presence of quantum critical
points.

Rather satisfactory agreement of obtained concen-
tration dependencies of Hall number with experiments
on YBCO and Nd-LS CO [3, 4] shows, that our model
may serve as a reasonable alternative to a picture of
Hall effect in the vicinity of quantum critical point
related to closing the pseudogap [5, 16].

The work of EZK, NAK, and MVS was supported
in part by RFBR grant no. 20-02-00011. DIK work
was partly supported by DFG project. no. 277146847-
CRC 1238.

APPENDIX

“BARE” ELECTRONIC DISPERSION
AND ITS DERIVATIVES FOR BAND

WITH SEMIELLIPTIC DENSITY OF STATES

Let us assume that electronic spectrum corre-
sponding to density of states (5) is isotropic ε(p) =
ε(|p|) ≡ ε(p). To calculate derivatives in (2) and (3) it is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
necessary to perform “angle” averaging of these deriv-
atives by momentum components

(9)

where …Ω = … is solid angle averaging in three-

dimensional system (d = 3) and ε'(p) =  is deriv-

ative over the absolute value of momentum.

(10)

where ε''(p) = . Thus we have a problem of find-

ing the angle average . Let us introduce nota-

tions:  ≡ a and  ≡ b. First of all we have:

(11)

Similarly:

(12)
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where θ is an angle between vector p and z-axis, Then
from Eqs. (11), (12) we immediately obtain a =

= 1/5 and b =  = 1/15, so that we have:

(14)

To find derivatives ε'(p), ε''(p) for the spectrum deter-
mined by semi-elliptic density of states (5) we can use
the approach developed in [13]. Equating the number
of states in a phase volume element d3p and the num-
ber of states in an energy interval [ε, ε + dε], we obtain
differential equation determining ε(p):

(15)

Assuming the quadratic dispersion of ε(p) close to
lower band edge we obtain the initial condition for
(15): p → 0 for ε → –D. As a result:

(16)

where ϕ = arccos  and momentum is given in units

of inverse lattice parameter. This expression implicitly
defines the dispersion law ε(p) on electronic branch of
the spectrum ε ∈ [–D, 0].

We can determine characteristic momentum p0
corresponding to ε = 0:

(17)

We are interested in calculating two derivatives of this
spectrum over the momentum. From (15) we get:

(18)

where p is defined by (16).

(19)

where  = – , ε'(p) is determined

from (18), while p is defined by (16).
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On the hole branch of the spectrum (ε ∈ [0, D]), to
obtain quadratic dispersion law close to the upper edge
of the band (ε → D) we introduce a hole momentum

= 2p0 – p and equate the number of states in a phase
volume element d3  and in energy interval [ε, ε + dε]:

(20)

Demanding  → 0 at the upper band edge ε → 0,
we obtain:

(21)

For the velocity on the hole branch of the spectrum
we get:

(22)

Equations (18), (22) determine the dependence of
velocity ε'(p) on energy. One is easily convinced that
velocity is even in energy and goes to zero at band
edges. The second derivative over momentum in this
approach is explicitly defined on electronic branch of
the spectrum (ε ∈ [–D, 0]), but on the hole branch it
is more difficult to do. However, we can require full
electron-hole symmetry of the model, which reduces
to demanding the square of velocity, entering Eq. (2),
being even in ε(p), while Eq. (14) entering Eq. (3) for
Hall conductivity being odd (sign change under
change of the type of charge carriers).With the
account of such symmetry the results obtained in this
Appendix allow to replace summation over momenta
in Eqs. (2), (3) by integration over energy.
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ЖЭТФ

GENERALIZED DYNAMICAL KELDYSH MODEL

E.Z. Kuchinskii , M.V. Sadovskii

Institute for Electrophysics, Russian Academy of Scieneces, Ural Branch, Amundsen str. 106, Ekaterinburg 620016, Russia

We consider a certain class of exactly solvable models, describing spectral properties an electron moving in

random in time external field with different statistical characteristics. This electron can be band – like or

belong to a quantum well. The known dynamical Keldysh model is generalized for the case of fields with finite

correlation time of fluctuations and for finite transfer frequencies of these fluctuations. In all cases we are able

to perform the complete summation of all Feynman diagrams of corresponding perturbation series for the

Green’s function. This can be done either by the reduction of this series to some continuous fraction or by the

use of the generalized Ward identity from which we can derive recurrence relations for the Green’s function. In

the case of a random field with finite transferred frequency there appear the interesting effects of modulation

of spectral density and density of states.

Dedicated to 130-th anniversary of Pyotr Leonidovich Kapitza

1. INTRODUCTION

While being an outstanding experimentalist,

P.L. Kapitza sometimes addressed also some purely

theoretical problems. Well known is his elegant solution

of a problem of the motion of a classical particle in

fast oscillating field [1], where he essentially described

this motion as a particle in a random field with

appropriate time averaging. Such fields and processes

appear in many problems of statistical radiophysics

and radiotechnics, where a vast literature exists [2, 3].

In quantum theory there is also multitude problems of

this kind.

In this work we shall consider a certain class of

exactly solvable quantum mechanical problems, related

in general to the theory of electrons in disordered

systems and quantum structures, which is a dynamical

generalization of the so called Keldysh model.

The initial model was introduced by L.V. Keldysh

in his unpublished thesis in 1965 [4]. Some of his results

were used by A.L Efros in Ref. [5], devoted to doped

semiconductors. The detailed presentation of different

aspects of this model in the general context of electron

theory of disordered systems was given in [6], where the

notion of “Keldysh model” was introduced for the first

time.

In the following, the number of similar models were

proposed, e.g. for the description of the pseudogap

appearing due to electron scattering by fluctuations of

short – range order in one – dimensional systems [6–12],

which were later generalized for two – dimensional

case to describe pseudogap in high – temperature

superconductors [13–17].

dynamical generalization of the initial Keldysh

model for the case of electron scattering by random

in time fluctuations of external field was proposed

by Kikoin and Kiselev [18], who considered electrons

in quantum dots. Detailed presentation of different

results obtained for this and similar models was

given in Ref. [19]. The present paper is devoted

to further development and generalization of this

type of models both for the case of electrons in

quantum dots and band – like electrons in conductors

of different dimensionalities under the influence of

dynamic random fields.

2. DYNAMICAL KELDYSH MODEL

The model under consideration was proposed by

Keldysh in 1965 [4] as some limiting case of problem

of electron scattering by the random field of static

impurities in a disordered system [6, 20]. Keldysh has

shown that the single – particle Green’s function in

Рис. 1. Diagrammatic expansion for the Green’s function.

Double line corresponds to “dressed” Green’s function,

wavy line corresponds to correlator of Gaussian random

field.

1



E.Z. Kuchinskii, M.V. Sadovskii ЖЭТФ

Gaussian random field V (r) with “forward” scattering

(i.e. with zero transferred momentum, corresponding to

the limit of infinite spatial range of fluctuations of the

random potential) described by correlator (d is spatial

dimensionality):

D(r−r
′) = 〈V (r)V (r′)〉 = ∆2 → D(q) = (2π)d∆2δ(q),

(1)

can be found by complete summation of all Feynman

diagrams of perturbation series. In fact, according to

the usual diagram rules for the problem of scattering

by static random disorder [6, 20], diagram of N -

th order contains N interaction line with Gaussian

random field (denoted by by wavy lines), 2N + 1

solid lines, corresponding to Green’s functions and 2N

vertices. The total number of diagrams in the given

order of perturbation theory AN corresponds to the

total number of ways to connect 2N vertices by N

interaction lines, which is equal to [6, 21]:

AN = (2N − 1)!! =
(2N − 1)!

2N−1(N − 1)!
. (2)

Diagrammatic contributions of the lowest orders in the

series for single – electron Green’s function are shown

in Fig. 1. In this model all Feynman diagrams of the

given order N give the same contributions to Green’s

function, so that the full series for it is of the following

form:

G(E) = G0(E)

{
1 +

∞∑

N=1

(2N − 1)!!G2N
0 (E)∆2N

}
.

(3)

Further, to shorten notations we define E = ǫ − ǫp,

where ǫp is free the electron spectrum, so that the

“bare” Green’s function is written as G0(E) = 1/E.

Using integral representation of Γ – function, we can

use:

(2N − 1)!! =
1√
2π

∫ ∞

−∞

dtt2N−2e−t2/2 (4)

so that the retarded Green’s function (after the

summation of geometric series) can be written as:

GR(E) =
1√

2π∆2

∫ ∞

−∞

dV
e−V 2/2∆2

E − V + iδ
(5)

This equation has an obvious meaning [6] — electron

propagates in spatially homogeneous Gaussian random

field. There is also another way to obtain this elegant

result, which was also proposed by Keldysh [4] and later

by Efros [5], and is based on the use of an exact Ward

identity, which allows the derivation of differential

equation for the Green’s function. This equation has

the following form:

∆2 dG(E)

dE
+ E ·G(E) = 1. (6)

Solving this equation with boundary condition

G(E → ∞) = 1/E immediately leads to Eq. (5) [6].

Direct consequence of the obtained solution is the

appearance of the Gaussian “tail” in the density of

states of an electron in energy region ǫ < 0 [6].

In Refs. [18, 19] Keldysh model was reformulated

for the case of electron scattered by very slow temporal

fluctuations of the random potential. Appropriate

dynamical Keldysh model can also be generalized for

the case of scattering by multiple component Gaussian

non – Markovian random fields [19].

As an example, following Refs. [18, 19] we may

consider an electron in a single quantum well (dot),

which is formed by appropriate confining potential, as

shown in Fig. 2. The gate creates external noise slowly

changing confining potential of the well.

Single – particle Hamiltonian for this problem has

the following form:

H = [ǫ0 + V (t)]n. (7)

where n = c†c, and c†, c are creation and annihilation

operators of an electron at the level within well.

For simplicity we consider spinless (spinpolarized)

electrons. Classical potential random (Gaussian) in

time V (t) is determined by its average value and pair

correlation function:

〈V (t)〉 = 0, 〈V (t)V (t′)〉 = D(t− t′). (8)

For this function we assume the following form:

D(t− t′) = ∆2e−γ|t−t′|, (9)

where γ = 1/τ , with τ determining characteristic

correlation time of potential fluctuations, while ∆ is the

Рис. 2. (a) single quantum dot, with noise applied by

external electrodes (gate), (b) corresponding quantum

well with fluctuating level.
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amplitude of the noise. We may consider two limiting

cases:

γ → ∞ : D(t− t′) → ∆2δ(t− t′), (10)

γ → 0 : D(ω) → 2π∆2δ(ω). (11)

Here D(ω) is the Fourier – transform of D(t − t′).

The first case corresponds to “fastest” possible noise

(“white” noise) and Markovian random process. The

second case corresponds to slow noise, with Keldysh

model giving its slowest possible realization with

(infinitely) large relaxation time of fluctuations (infinite

memory, of non – Markovian process).

Single – electron (retarded) Green’s function of

electron in a well for the given realization of the

potential is:

GR(ǫ) =
1

ǫ− ǫ0 − V + iδ
(12)

where ǫ0 is energy level in a well, while time –

averaging is again reduced to Gaussian integration

of this expression with distribution function

P (V ) = 1/
√
2π∆2 exp(−V 2/(2∆2):

GR(ǫ) =
1√

2π∆2

∫ ∞

−∞

dV
e−V 2/2∆2

ǫ− ǫ0 − V + iδ
(13)

Similarly we can consider an electron not within the

well, but within energy band of a system (placed

between capacitor plates, on which a random noise is

generated) of any dimensionality. In this case it is just

sufficient to make a replacement ǫ0 → ǫp, where ǫp is

band spectrum of an electron with quasimomentum p.

The single – well model is easily generalized

also for the case of several wells [18, 19], which

leads to Keldysh model with multicomponent noise.

Particularly interesting is the model of two quantum

wells, which (in its band – like variant) is deeply related

to an exactly solvable model of the pseudogap state

[7–12]. However, below we shall only consider the single

– well model, leaving the two – well case (pseudogap

fluctuations) for the separate work.

3. KELDYSH MODEL AND FLUCTUATIONS

WITH FINITE CORRELATION TIME

Below we show that an exact solution for the

single – particle Green’s function can also be obtained

for Keldysh model with finite correlation time of

fluctuations τ = γ−1. This solution is easily found using

the method proposed by one of the authors in Ref. [11],

devoted to the model of pseudogap in one – dimensional

systems.

Рис. 3. Typical diagrams of the third order.

Fourier – transform of Eq. (9), which is associated

with interaction lines in diagrams, can be written as:

D(ω) = 2π∆2 1

π

γ

ω2 + γ2
= 2π∆2 1

π

γ

(ω + iγ)(ω − iγ)
(14)

For γ → 0 this is naturally reduced to the second

expression in (11). Let us clarify the calculations of

a diagram of an an arbitrary order. In fact this can

be done exactly. As an example let us consider some

typical diagrams of third order shown in Fig. 3. We

can easily calculate the contribution of an arbitrary

diagram as we can actually guarantee that nonzero

contribution to integrals (over transferred frequencies)

appear only from the poles of Lorentzians1) D(ω).

1) In the problem analyzed in Ref. [11] this statement is only
approximate [21]. Here all calculations (frequency integrations)
are performed exactly.

3
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For example, elementary calculations show, that

contribution of diagram in Fig. 3 (d) to the retarded

Green’s function has the following form:

∆6 1

ǫ− ǫ0

1

ǫ− ǫ0 + iγ

1

ǫ− ǫ0 + 2iγ

1

ǫ− ǫ0 + 3iγ
×

× 1

ǫ− ǫ0 + 2iγ

1

ǫ− ǫ0 + iγ

1

ǫ− ǫ0
(15)

Contributions of arbitrary diagrams are quite similar:

integers k, written above electronic lines Fig. 3, show

have many times the term iγ enters corresponding

denominator. Note that contribution of diagram with

crossing interaction lines in Fig. 3 (d) are just equal

to the contribution of diagram with no intersections

of interaction lines shown in Fig. 3 (e). This is a

manifestation of the general property – contribution

of any diagram with crossing interaction lines is

equal to the contribution of some diagram with no

intersections [11]. Precisely because of this property

we can introduce an exact algorithm of complete

summation of Feynman series.

Details of combinatorics and rules to reduce

diagrams with crossing interaction lines to those

without intersections were considered in Ref. [11]

(see also Ref. [6])2). One can easily convince himself

that the number of irreducible diagrams for self –

energy which are equal to the given diagram with no

intersections of interaction lines is equal to the product

of certain combinatorial factors v(k) (k is the number

of iγ contributions in the denominator of the Green’s

function in diagram without intersections, standing

below k interaction lines) which are associated

with consequent interaction lines of this diagram.

Correspondingly in the following we can use just

the diagrams with no intersections of interaction

lines associating extra combinatorial factors v(k) to

interaction lines of such diagrams. In our case v(k) = k

[11].

Then we can easily obtain the recursion relation

determining the irreducible self – energy, which

includes all diagrams of corresponding Feynman series

[6, 11]:

Σk(ǫ, ǫ0) =
∆2v(k)

ǫ− ǫ0 + ikγ − Σk+1(ǫ, ǫ0)
; v(k) = k (16)

2) In the problem under consideration here combinatorics of
diagrams is reduced to commensurate case of Ref. [11].

Рис. 4. “Dyson equation” representation of recurrence

equation for the Green’s function. Here we introduced

G0k = [ǫ− ǫ0 + ikγ]−1.

Then we immediately get the recursion relation for

Green’ function itself:

Gk(ǫ, ǫ0) = {ǫ− ǫ0 + ikγ −∆2v(k + 1)Gk+1(ǫ, ǫ0)}−1,

(17)

and the physical Green’s function is defined as

G(ǫ, ǫ0) ≡ Gk=0(ǫ, ǫ0), which is equivalent the

complete sum of Feynman series for our model. In fact

these relations give the following continuous – fraction

representation of single – electron Green’s function:

G ) =

=
1

ǫ− ǫ0 −
∆2

ǫ− ǫ0 + iγ − 2∆2

iǫ− ǫ0 + 2iγ − 3∆2

ǫ− ǫ0 + 3iγ − ...

(18)

Symbolically our recursion relation can be represented

as a kind of “Dyson equation”, shown in Fig. 4.

For γ = 0 we can use the following continuous

– fraction representation of incomplete (upper) Γ –

function:

Γ(α, x) =

∫ ∞

x

dte−ttα−1 =
xα

x+ 1−α
1+ 1

x+ 2−α
1+...

(19)

to convince ourselves that Eq. (18) reproduces an exact

result of (13) obtained by direct summation of all

diagrams.

4. FLUCTUATIONS WITH FINITE

TRANSFERRED FREQUENCY AND FINITE

CORRELATION TIME

Let us consider now more general case of

fluctuations with finite characteristic frequency

ω0. We shall again consider classical potential random

in time V (t) (8) with pair correlation function:

4

ǫ0ǫ0ǫ0

ǫ, ǫ
0

(
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Рис. 5. Typical diagrams of second order.

D(t− t′) = ∆2e−γ|t−t′| cos[ω0(t− t′)] =

=
∆2

2
e−γ|t−t′|

[
eiω0(t−t′) + e−iω0(t−t′)

]
. (20)

For ω0 = 0 we obtain again correlator (9) and the model

with zero transferred frequency considered above.

Fourier – transform of correlator (20) has the form:

D(ω) = 2π
∆2

2

[
1

π

γ

(ω − ω0)2 + γ2
+

1

π

γ

(ω + ω0)2 + γ2

]
.

(21)

Thus in corresponding diagram technique we have

two sorts of interaction lines – wavy and dashed,

transferring frequencies +ω0 and −ω0 correspondingly.

Both interaction lines lead to addition of iγ term

to energy ǫ in each electron Green’s function, which

is below corresponding interaction line. In Fig. 5 we

show typical second order diagrams. It is easy to see

that in current model the contribution of diagrams

with intersecting interaction lines does not necessarily

coincide with some diagram without such intersections.

However, we still can obtain an exact solution for the

single – electron Green’s function using the generalized

Ward identity.

4.1. Generalized Ward identity and recurrence

equations for the Green’s function

Single – electron Green’s function G can be easily

determined via the full two – particle function Φ:

G(ǫ) = G0(ǫ)+G0(ǫ)
∆2

2

{
∑

ǫ′

Φǫǫ′(ω0) +
∑

ǫ′

Φǫǫ′(−ω0)

}
.

(22)

Here Φ is the full two – particle Green’s function,

including four external electronic lines and contribution

corresponding to the product of two “dressed” single –

particle Green’s functions G. To shorten expressions in

our analysis we make a replacement ǫ − ǫ0 → ǫ, i.e.

count energies from energy level in the well ǫ0, then

Рис. 6. Diagrammatic representation of equation for the

Green’s function

G0(ǫ) = 1/ǫ. Diagrammatic representation of Eq. (22)

for the Green’s function is shown in Fig. 6. To find

two – particle Green’s functions Φ entering Eq. (22) we

shall use the generalized Ward identity [22], which in

this purely dynamical model takes the following form:

G(ǫ+ω)−G(ǫ) = −
∑

ǫ′

Φǫǫ′(ω)
{
G−1

0 (ǫ′ + ω)−G−1
0 (ǫ′)

}
.

(23)

Here the expression in figure brackets in the r.h.s.

G−1
0 (ǫ′ +ω)−G−1

0 (ǫ′) = ǫ′ +ω− ǫ′ = ω is independent

of ǫ′, so that we immediately obtain:

∑

ǫ′

Φǫǫ′(ω) = −G(ǫ+ ω)−G(ǫ)

ω
. (24)

In the current problem any interaction line again

adds iγ term to energy of electronic lines below it,

i.e. effectively our interaction lines transfer a complex

frequency ±ω0 + iγ. Then Ward identity (23) for the

vertex with +ω0 takes the form:

G(ǫ+ ω0 + iγ)−G(ǫ) =

= −
∑

ǫ′

Φǫǫ′(ω0)(ǫ
′ + ω0 + (k + 1)iγ − (ǫ′ + kiγ)) =

= −(ω0 + iγ)
∑

ǫ′

Φǫǫ′(ω0).(25)

As a result for the two – particle Green’s function with

+ω0 vertex we obtain:

∑

ǫ′

Φǫǫ′(ω0) = −G(ǫ+ ω0 + iγ)−G(ǫ)

ω0 + iγ
. (26)

Similarly for Φ with −ω0 vertex we get:

∑

ǫ′

Φǫǫ′(−ω0) = −G(ǫ− ω0 + iγ)−G(ǫ)

−ω0 + iγ
. (27)

Substituting these two – particle functions (26) and

(27) into Eq. (22), we obtain the functional equation

for the Green’s function:

5



E.Z. Kuchinskii, M.V. Sadovskii ЖЭТФ

G(ǫ) = G0(ǫ)−G0(ǫ)
∆2

2
×

×
{
G(ǫ+ ω0 + iγ)−G(ǫ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)−G(ǫ)

−ω0 + iγ

}
(28)

so that:

G(ǫ) =
1− ∆2

2

[
G(ǫ+ω0+iγ)

ω0+iγ + G(ǫ−ω0+iγ)
−ω0+iγ

]

G−1
0 (ǫ) + ∆2 iγ

ω2
0+γ2

. (29)

It should be noted that the use of the generalized Ward

identity (23) allows also an exact solution (reducing

to the integral equation) of the problem of finding the

single – particle Green’s function G(ǫ) of an electron in

random Gaussian potential with arbitrary correlator

D(ω). Equation for the Green’s function in this case

has the following form:

G(ǫ) = G0(ǫ) +G0(ǫ)

∫ +∞

−∞

dω

2π
D(ω)

∑

ǫ′

Φǫǫ′(ω). (30)

Using Ward identity (23) we immediately obtain (24)

and the integral equation for the Green’s function:

G(ǫ) = G0(ǫ)−G0(ǫ)

∫ +∞

−∞

dω

2π
D(ω)

G(ǫ+ ω)−G(ǫ)

ω
.

(31)

If we use D(ω) in the form given by Eq. (21) the

frequency integral here is easily calculated. The second

factor in the integrand does not contain pole at ω = 0

and is analytic in the upper half – plane of complex

ω, so that closing the integration contour above, we

obtain the contribution to integral only from the poles

at ω = ±ω0+iγ of two Lorentzians in (21) immediately

getting (28), and functional equation (29).

Solving Eq. (29) by iterations, starting from initial

the approximation

G̃0(ǫ) =
1

G−1
0 (ǫ) + ∆2 iγ

ω2
0+γ2

, (32)

one can easily see that each iteration adds to energy

(besides ±ω0) additional iγ term. Thus we can

introduce the following notations:

Gn(ǫ) ≡ G(ǫ+niγ) G0n(ǫ) ≡ G0(ǫ+niγ) =
1

ǫ+ niγ
,

(33)

where n = 0, 1, 2 . . . and apply Eq. (29) for energy

ǫ + niγ, making replacement ǫ → ǫ + niγ. Then in

notations of (33) equation (29) takes the form3):

Gn(ǫ) =
1− ∆2

2

[
Gn+1(ǫ+ω0)

ω0+iγ + Gn+1(ǫ−ω0)
−ω0+iγ

]

G−1
0n (ǫ) + ∆2 iγ

ω2
0+γ2

. (34)

3) Naturally, Eq. (34) can be also obtained directly using the
generalized Ward identity applying it for energy ǫ+ niγ.

As a result we obtain the recursion procedure where

at each “storey” n Gn depends only on real energy.

Numerical realization of such procedure is rather

simple. At some high “storey” n = N ≫ 1 we define

a set of GN (ǫ), e.g. GN (ǫ) = 0. Then, withe the help

of (34) and interpolation we find the set GN−1(ǫ) etc.,

until we reach the physical G(ǫ) = Gn=0(ǫ).

For ω0 = 0 we return to the model with zero

transferred frequency and finite correlation time

described above. In this limit the recursion equation

(34) takes the form:

Gn(ǫ) =
1 + i∆

2

γ Gn+1(ǫ)

G−1
0n (ǫ) + i∆

2

γ

. (35)

Visually the recursion procedure (35) has nothing in

common with procedure (17), leading to continuous

– fraction representation of G given by Eq. (18).

However, direct numerical calculations show that

both produce absolutely same results for the physical

Green’s function Gn=0(ǫ) (in the limit of initial

“storey” N → ∞).

For γ = 0 in the limit of ω0 → 0 Eq. (28)

immediately reduces to differential equation (6) for

the Green’s function in the usual Keldysh model,

as lim
ω0→0

G(ǫ+ω0)−G(ǫ)
ω0

= lim
ω0→0

G(ǫ−ω0)−G(ǫ)
−ω0

= dG(ǫ)
dǫ .

Green’s function G(ǫ) is analytic in the upper half –

plane of complex energy ǫ and the derivative dG(ǫ)
dǫ gives

the same result along different directions of dǫ in this

half – plane. Thus for other order of limits ω0 = 0,

γ → 0 from Eq. (28) we again obtain the differential

equation (6). Analyticity of the Green’s function allows

to write it (in the upper half – plane of ǫ) as:

G(ǫ) =

∫ ∞

−∞

dǫ′
ρ(ǫ′)

ǫ− ǫ′
, (36)

where ρ(ǫ) = − 1
π ImG(ǫ) is the spectral density

(density of states for the quantum dot). Then in this

limit in Eq. (28) we get:

lim
γ→0

G(ǫ+ iγ)−G(ǫ)

iγ
=

= lim
γ→0

1

iγ

∫ ∞

−∞

dǫ′ρ(ǫ′)

[
1

ǫ+ iγ − ǫ′
− 1

ǫ− ǫ′

]
=

= −
∫ ∞

−∞

dǫ′
ρ(ǫ′)

(ǫ− ǫ′)2
=

dG(ǫ)

dǫ
(37)

Analytic properties of Green’s function (36) allow to

reduce the functional equation (29) to integral equation

for spectral density ρ(ǫ). Let us rewrite functional

equation (29) as:

6
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G(ǫ) = G̃0(ǫ)− G̃0(ǫ)
∆2

2
×

×
[
G(ǫ+ ω0 + iγ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)

−ω0 + iγ

]
, (38)

where G̃0(ǫ), defined in (32), can be written as:

G̃0(ǫ) =
1

ǫ+ iΓ
. (39)

Here

Γ =
∆2γ

ω2
0 + γ2

(40)

is an effective non – perturbative damping due to

the random field. Then for the spectral density we

immediately obtain:

ρ(ǫ) = ρ̃0(ǫ) +
∆2

2π
×

×Im

{
G̃0(ǫ)

[
G(ǫ+ ω0 + iγ)

ω0 + iγ
+

G(ǫ− ω0 + iγ)

−ω0 + iγ

]}
(41)

where ρ̃0(ǫ) = − 1
π ImG̃0(ǫ) = 1

π
Γ

ǫ2+Γ2 is an effective

“bare” spectral density (density of states). Eq. (41) is

easily solved numerically by iterations, starting from

initial approximation ρ(ǫ) = ρ̃0(ǫ).

4.2. Exact solution for the Green’s function in

the form of infinite series

Eq. (38) can be solved by iterations starting

from G̃0(ǫ). If we represent the result of each

iteration as simple fractions (so that there are no ǫ

in the coefficients), one can easily convince himself,

that the Green’s function G becomes the sum of

G̃0(ǫ + (n − m)ω0 + (n + m)iγ), where n and m are

integers, with coefficients independent of ǫ. Thus we

look for the solution for the Green’s function in the

following form:

G(ǫ) =

∞∑

n,m=0

Anm
1

ǫ+ (n−m)ω0 + (n+m)iγ + iΓ
,

(42)
where coefficients Anm are independent of ǫ and can be
found substituting (42) into (38). Then we have:

G̃0(ǫ)G(ǫ+ ω0 + iγ) =

=
∞∑

n,m=0

Anm

1

ǫ+ iΓ

1

ǫ+ iΓ + (n+ 1−m)ω0 + (n+ 1 +m)iγ
=

=

∞∑

n,m=0

Anm

1

(n+ 1)(ω0 + iγ) +m(−ω0 + iγ)
×

×

[
1

ǫ+ iΓ
−

1

ǫ+ iΓ + (n+ 1)(ω0 + iγ) +m(−ω0 + iγ)

]
(43)

G̃0(ǫ)G(ǫ− ω0 + iγ) =

=
∞∑

n,m=0

Anm

1

n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)
×

×

[
1

ǫ+ iΓ
−

1

ǫ+ iΓ + n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)

]
(44)

Substituting (43), (44) into (38) we find the coefficient
A00 before 1

ǫ+iΓ as:

A00 = 1−
∆2

2
×

×

[
1

ω0 + iγ

∞∑

n,m=0

Anm

1

(n+ 1)(ω0 + iγ) +m(−ω0 + iγ)
+

+
1

−ω0 + iγ

∞∑

n,m=0

Anm

1

n(ω0 + iγ) + (m+ 1)(−ω0 + iγ)

]
.(45)

For other coefficients:

Anm =
∆2

2

1

n(ω0 + iγ) +m(−ω0 + iγ)
×

×
[
An−1m

ω0 + iγ
+

Anm−1

−ω0 + iγ

]
. (46)

Naturally we have A−1m = An−1 = 0.

Eq. (46) allows to obtain the whole set of coefficients

at nf = n +m “storey” from the values of coefficients

at nf − 1 “storey”, and finally to express all coefficients

via A00. Coefficients obtained for several lower “storeys”

allow us to guess, that the general form of the

coefficients can be written as:

Anm =
A00

n!m!

(
∆2

2

)n+m
1

(ω0 + iγ)2n(−ω0 + iγ)2m
.

(47)

Substitution of Anm from (47) into Eq. (46) confirms

this guess.
Now using Eq. (45) we can find A00:

A00 = 1−
∆2

2
×

×

[
1

ω0 + iγ

∞∑

n=1,m=0

An−1m

1

n(ω0 + iγ) +m(−ω0 + iγ)
+

+
1

−ω0 + iγ

∞∑

n=0,m=1

Anm−1

1

n(ω0 + iγ) +m(−ω0 + iγ)

]
.

(48)

Using (46) in (47) we get:

A00 = 1−
∑

n,m
n+m 6=0

Anm =

= 1−
∑

n,m
n+m 6=0

A00

n!m!

(
∆2

2

)n+m
1

(ω0 + iγ)2n(−ω0 + iγ)2m
.

(49)

7
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Finally A00 takes the form:

A00 =
1

∞∑
n=0

1
n!

(
∆2

2

)n 1
(ω0+iγ)2n

∞∑
m=0

1
m!

(
∆2

2

)m 1
(−ω0+iγ)2m

=

= e
− ∆2

2(ω0+iγ)2 e
− ∆2

2(ω0+iγ)2 = e
−

∆2(ω2
0−γ2)

(ω2
0+γ2)2 (50)

As a result we obtain the following expression for the

Green’s function (42):

G(ǫ) = e
−

∆2(ω2
0−γ2)

(ω2
0+γ2)2

∞∑

n,m=0

1

n!

1

m!

1

(ω0 + iγ)2n(−ω0 + iγ)2m

(
∆2

2

)n+m
1

ǫ+ (n−m)ω0 + (n+m)iγ + iΓ
(51)

Let us briefly analyze the limiting behavior of the

Green’s function and corresponding spectral density

ρ(ǫ) = − 1
π ImG(ǫ) following from (51).

In the limit of γ → 0 we get:

G(ǫ) = e
−∆2

ω2
0

∞∑

n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m
1

ǫ+ (n−m)ω0 + iδ
,

(52)

and spectral density has the form:

ρ(ǫ) = e
−∆2

ω2
0

∞∑

n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m

δ(ǫ+ (n−m)ω0)

(53)

which is the set of δ peaks at ǫ = ±kω0. The weights

of these peaks (coefficients before corresponding δ –

functions) are:

S(+k) = S(−k) = e
−∆2

ω2
0

∞∑

n=0

1

n!(n+ k)!

(
∆2

2ω2
0

)2n+k

=

= e
−∆2

ω2
0 Ik

(
∆2

ω2
0

)
, (54)

where Ik – is the modified Bessel function of imaginary

argument. The total area of all these peaks is:

S =

∞∑

k=−∞

S(k) = e
−∆2

ω2
0

∞∑

n,m=0

1

n!

1

m!

(
∆2

2ω2
0

)n+m

=

= e
−∆2

ω2
0

∞∑

n=0

1

n!

(
∆2

2ω2
0

)n ∞∑

m=0

1

m!

(
∆2

2ω2
0

)m

= 1, (55)

as it should be.

In the limit of ω0 → 0 we return to the model of

fluctuations with finite correlation time and from Eq.

(51) we obtain:

G(ǫ) = e
∆2

γ2

∞∑

n,m=0

1

n!

1

m!

(
−∆2

2γ2

)n+m
1

ǫ+ (n+m)iγ + i∆
2

γ

=

= e
∆2

γ2

∞∑

k=0

[
k∑

n=0

1

n!(k − n)!

](
−∆2

2γ2

)k
1

ǫ+ kiγ + i∆
2

γ

. (56)

As
k∑

n=0

k!
n!(k−n)! = 2k we get for the Green’s function:

G(ǫ) = e
∆2

γ2

∞∑

k=0

1

k!

(
−∆2

γ2

)k
1

ǫ+ kiγ + i∆
2

γ

= (57)

= e
∆2

γ2
1

iγ

(
∆2

γ2

)−
(

ǫ
iγ

+∆2

γ2

)

γ

(
ǫ

iγ
+

∆2

γ2
,
∆2

γ2

)
, (58)

where

γ(α, x) =

∫ x

0

dte−ttα−1 (59)

is incomplete (lower) Γ – function. Eqs. (57) and (58)

can be considered as series and integral representations

for continuous fraction of (18).

The problem of an electron in Gaussian field of

dynamic fluctuations with finite correlation time has

much in common with the problem of Holstein polaron

in semiconductors with low mobility, i.e. with the

problem of finding the single electron Green’s function

in Holstein model [23] of an electron interacting with

optical phonon mode with frequency Ω in the limit

of transfer integral between nearest neighbors t → 0

(t ≪ Ω). Usually such problem is analyzed by

making Lang – Firsov canonical transformation [24]

in Holstein Hamiltonian [23] However, the diagram

technique for electron – phonon interaction in this

model is completely equivalent to diagram technique

in our model of dynamical fluctuations with finite

correlation time after the replacement:

∆ → g iγ → −Ω (60)

where g is electron – phonon coupling constant.

We only have to take into account that in this

diagram technique in the denominators of electron

Green’s functions we have continuous addition −Ω

terms instead of iγ, because of two terms in phonon

propagator:

D(ω) =
1

ω − Ω+ iδ
− 1

ω +Ω− iδ
(61)

only the first term contribute to frequency integrals due

to the fact that all electronic Green’s functions in this

problem are retarded.

Thus the Green’s function of Holstein polaron (for

t → 0) is determined by continuous fraction (18) with

8
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replacement (60). For the first time Holstein polaron

Green’s function of this form was derived in Ref. [25].

Our series expression for the Green’s function (57)

in the model of dynamical fluctuations with finite

correlation time immediately allows us to get (after the

replacement (60)) the well known exact result for the

Green’s function of Holstein polaron as [24,25]:

G(ǫ) = e−
g2

Ω2

∞∑

k=0

1

k!

(
g2

Ω2

)k
1

ǫ− kΩ+ g2

Ω + iδ
= (62)

Note that our use of the Ward identity is in some sense

equivalent to Lang – Firsov transformation in Holstein

polaron problem. An effective “bare” Green’s function

(39)with non – perturbative damping (40), appearing

due to the use of the Ward identity, in the model with

ω0 = 0 is:

G̃0(ǫ) =
1

ǫ+ i∆
2

γ

. (63)

which in the Holstein polaron problem, after the

replacement (60), takes the form:

G̃0(ǫ) =
1

ǫ+ g2

Ω + iδ
, (64)

appearing after Lang – Firsov transformation of an

effective “bare” Green’s function of polaron with non –

perturbative shift of the ground state ǫ0 = − g2

Ω [24,25].

5. NUMERICAL RESULTS

Now for the most general model of fluctuations with

finite frequency and correlation time we actually have

three exact numerical procedures to find the Green’s

function:

1. recursive procedure (34),

2. integral equation for spectral density (41),

3. series representation (51).

For the wide range of parameters (∆, γ, ω0) of the

model our numerical calculations showed that all three

procedures lead to absolutely same results for spectral

density (density of states). Of these, the recursion

procedure (34) is most fast for numerics, though

for small values of γ ≪ ∆, ω0 and ω0 < 0.3∆ it

requires significant increase of the number of energies

in corresponding array and the number of an initial

“storey” to start, while series representation (51) in

this range of parameters is well convergent. However,

the series representation is inappropriate for direct

-3 -2 -1 0 1 2 3
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Рис. 7. Spectral density (density of states in quantum

dot) in the model with finite correlation time (ω0 = 0)

for different values of γ.

numerical analysis in the region of ∆ ≫ γ > ω0, which

is connected both with large values of the exponent

before the series and with the large number of terms in

the series to be taken into account to compensate this

exponent.

Now let us discuss our numerical results. In Fig.7

we demonstrate evolution of the spectral density with

increasing γ (i.e. with decreasing correlation time of

fluctuations) for the model with ω0 = 0. For γ = 0 (in

the usual Keldysh model) spectral density is Gaussian

with the width ∆ (dispersion – ∆2). The growth of γ

leads to decrease of characteristic width of the spectral

density with appropriate growth of ρ(0).

In Fig. 8 we show spectral densities (densities

of states in quantum dot) in the model with finite

transferred frequency for ∆ = 1 and different values

of ω0 and γ. We can see that in all cases for small γ

significant modulations of the spectral density appear

with frequency ω0 with peaks of spectral density

appearing at energies ǫ = ±nω0, where n is integer. The

height of these peaks decreases with increasing n and

for ǫ > 3∆ peaks are practically invisible. Increasing γ

leads to decreasing peak heights and starting from some

values of γ modulations with frequency ω0 become

unobservable. Further increase of γ only somehow

narrows Gaussian – like spectral density, as it was

observed in Fig.7 for the model with ω0 = 0. At large

enough values of γ, when no modulations of spectral

density with frequency ω0 are observed, the growth of

ω0 only weakly changes the spectral density (see Fig.8f)

and we can use more simple model with ω0 = 0. Note

that the values of γ, for which modulations of spectral

9
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density are observable depends on ω0. In particular,

for ω0 = 0.1 (Fig.8a) modulations are observed only

for γ = 0.0001, while for ω0 = 0.5 (Fig.8c) modulations

are observable already for γ = 0.05.

As was already noted above it is not difficult to

generalize our model to consider not a single quantum

well in dynamical random fields, but electron in crystal

lattice of d dimensions (in the following we take lattice

parameter a ≡ 1) with transfer integral between

nearest neighbors t, which is placed in a capacitor,

with noise created at its plates, the same for all lattice

sites. This field is thus constant in space and the

electron momentum is not changed during scattering,

so that the account of electron hops between lattice

sites is taken into account by a simple replacement

ǫ → ǫ−ǫp, where ǫp is band – like spectrum of electrons

with quasimomentum p. In such a model the Green’s

function is given by:

G(ǫ,p) =

∫ ∞

−∞

dǫ′
ρ(ǫ′)

ǫ− ǫp − ǫ′ + iδ
, (65)

where ρ(ǫ) is the spectral density (density od states)

obtained above for the problem of a single quantum

dot. Then for the density of states of our lattice model

in d dimensions in dynamical random field we obtain:

Nd(ǫ) = − 1

π
Im

∑

p

G(ǫ,p) =

∫ ∞

−∞

dξN0d(ξ)ρ(ǫ− ξ),

(66)

where N0d(ξ) =
∑

p
δ(ξ − ǫp) is the “bare” density of

states of d dimensional system in the absence of random

field.

For one – dimensional chain:

ǫp = −2t cos(p) (67)

“Bare” density of states in this case is:

N0d1(ǫ) =
1

π

1√
4t2 − ǫ2

(68)

and diverges at the band edges. Full densities of states

for this model for initial band of the width W = 4t = 1

and different values of random field parameters are

shown in Fig. 9.

For two – dimensional lattice:

ǫp = −2t(cos(px) + cos(py)). (69)

“Bare” density of states in this case has step – like

behavior at the band edges and logarithmic Van-Hove

singularity at the band center. Full densities of states

obtained in this model for the band with initial width

W = 8t = 1 and different values of random field

parameters are shown in Fig.10.

To analyze three – dimensional case we use as the

“bare” the model semi – elliptic density of states:

N0d3(ǫ) =
2

πD2

√
D2 − ǫ2, (70)

where D is the band half – width. This model

guarantees the valid ∼ ǫ1/2 “bare” density of states

behavior near the band edges for d = 3. Full densities of

states in this model for initial bandwidth W = 2D = 1

and different values of random field parameters are

shown in Fig.11.

Thus in all these models for small values of

γ we can observe modulations of the density of

states with frequency ω0. Increasing γ leads to sharp

weakening of these modulations. The growth of random

field amplitude ∆ (Figs.9,10,11a,b,c) leads to some

increase of modulations amplitude and weakening

of singularities (Van - Hove, at band edges etc..),

related to the “bare” density of states. For ∆ = W

(Figs.9,10,11c) density of states practically “forgets”

the bare one. Increase of spatial dimensionality d leads

to weakening of the modulations.

In one – dimensional chain (Fig.9) for ω0 = 0.5

peaks at ǫ = ±ω0 coincide with band – edges, where

the bare density of states (68) diverges, while the peak

at ǫ = 0 appears at the minimum of the bare density

of states. Thus the peaks at ǫ = ±ω0 are effectively

increased and can can become larger than the weakened

peak at ǫ = 0 (Fig.9a,b,e). This mutual influence of

divergence in the bare density of states at the bad edges

in one dimension and modulations with frequency ω0

leads to significant changes if the amplitude and shape

of central peak (at ǫ = 0) with small changes of ω0 close

to ω0 = 0.5 (Fig.9d,e,f).

For two – dimensional lattice Van - Hove divergence

is at the band center, and central peak of modulations

is always significantly larger than peaks at ǫ = ±ω0 and

its shape is only weakly changes with small variations

of ω0 close to ω0 = 0.5 (Fig.10d,e,f).

For three – dimensional model modulations in the

density of states with frequency ω0 are weak enough

and for ω0 = 0.5 even a small dip is observed in the

density of states in the middle of the band (at ǫ = 0)

(Fig.11a,b,c,e). Small variations of ω0 close to ω0 = 0.5

significantly change the shape of this weak feature at

the band center (Fig.11d,e,f).
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Рис. 8. Spectral density (density of states) of the quantum dot in the model with finite transfer frequency and relaxation

time for ∆ = 1 and different values of ω0 and γ.
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Рис. 9. Density of states for one – dimensional chain with initial bandwidth W = 4t = 1 for different ∆, ω0 and

γ.
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Рис. 10. Density of states in two – dimensional lattice with initial bandwidth W = 8t = 1 for different ∆, ω0 and

γ.
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Рис. 11. Density of states of three – dimensional system with initial semi – elliptic density of states with bandwidth

W = 2D = 1 for different ∆, ω0 and γ.
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6. CONCLUSIONS

Our analysis shows a plenty of new and interesting

results, which can be derived even for this simple

enough version of the generalized dynamical Keldysh

model for the case of random fields with finite

transferred frequency. It seems obvious that this model

can have a direct relation to situations realized in real

systems with quantum dots, which are used in different

microelectronic devices, while the frequency ω0 can

be related to the clock frequency of these devices. Of

course, the current simplest model is oversimplified,

but one can hope that the results obtained can be

useful also for the analysis of processes in realistic

devices.

The question of experimental realization of our

model remains open. In principle, the studies of

quantum dots in the specially created (e.g. by

electrotechnical means) random field seems quite

feasible, though parameters of interaction with

this are to be specially chosen to make the results

discussed above observable. All this is also directly

related to electronic systems (lattices) of different

dimensionalities placed in a random field created on

“capacitor” plates.

In real physical systems dynamical random fields

can be created e.g. by phonons in the classical

limit, when the temperature is much larger than

the characteristic frequency of these phonons ω0. For

example, we can consider electron smattering at the

interface of metallic film and dielectric substrate. It

is well known that scattering with small transferred

momenta (almost “forward” scattering) can appear

at the interface of metallic monolayer of FeSe on

the substrate made of ionic SrTiO3 insulator [26],

which leads to interesting models of superconductivity

enhancement in this system [27]. Unfortunately we can

not apply the analysis given above to this system,

because the frequency of optical phonon in SrTiO3 is

pretty high and it can not be considered as classical

(external random field). However, we can not exclude

the existence of similar systems (structures) with “soft”

enough optical phonons.

As was already noted above, the model with a single

quantum well is directly generalized to the case of

several wells [18, 19], leading to Keldysh model with

multicomponent noise. In particular, the model with

two wells is closely related (in the variant with band

electrons) to the exactly solvable model of pseudogap

state [7–12]. Different models of this kind were actively

used to describe the pseudogap, appearing due to

electron scattering by fluctuations of short – range

order in one – dimensional models [6–12], which were

also generalized for two – dimensional case to describe

pseudogap in high – temperature superconductors [13–

17]. In most of these papers only scattering by quasi

static fluctuations was considered. It is of great interest

to generalize these models for the case of dynamical

fluctuations with finite transferred frequency, created

by appropriate “soft” modes. However, it is clear

that the analysis of such models requires significant

development of the methods used in this paper. We

hope to perform such studies in some future.
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We present simple qualitative estimates for the maximal superconducting transition temperature, which may
be achieved due to electron–phonon coupling in Eliashberg–McMillan theory. It is shown that in the limit
of very strong coupling the upper limit for transition temperature is determined in fact by a combination of
atomic constants and density of conduction electrons.
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Experimental discovery of high-temperature
superconductivity in hydrides under high (megabar)
pressures [1, 2] stimulated the search for the ways to
achieve superconductivity at room temperature [3]. At
the moment the common view [4, 5] is that the high-
temperature superconductivity in hydrides can be
described in the framework of the standard Eliash-
berg–McMillan theory [6–8]. Within this theory
many attempts were undertaken to estimate the maxi-
mal achievable superconducting transition tempera-
ture and the discussion of some of these attempts can
be found in the reviews [4, 5, 9]. In the recent paper
[10] a new upper limit for  was proposed, expressed
as some combination of fundamental constants. Below
we shall show that with minor modifications such 
limit follows directly from Eliashberg–McMillan the-
ory.

Traditionally, after the appearance of BCS theory,
in most papers devoted to possible ways of increasing

, discussion develops in terms of dimensionless con-
stant of electron–phonon coupling  and characteris-
tic (average) frequency  of phonons, responsible
for Cooper pairing. In their fundamental paper [11]
Allen and Dynes obtained in the limit of very strong
coupling  the following expression for :1

(1)

Then it seems that limitations for the value of  are
just absent, so that quite high values of  can be
obtained with electron–phonon pairing mechanism.
In reality the situation is more complicated. Actually

parameters  and  in Eliashberg–McMillan the-
ory are not independent, which is well known for quite
a time [4, 5, 9, 12].

The relation of  and  is clearly expressed by
McMillan’s formula for , first derived in [8]:

(2)

where  is an ion mass,  is electronic density of
states at the Fermi level and we introduced the matrix
element of the gradient of electron–ion potential,
averaged over the Fermi surface:

(3)

Here,  is the spectrum of free electrons, with energy
zero chosen at the Fermi surface. Equation (2) gives
very useful representation for the coupling constant ,
which is routinely used in the literature and in practi-
cal (ab initio) calculations [5].

Using Eq. (2) in Eq. (1) we immediately obtain:

(4)

so that both  and  just drop out from the expres-
sion for , which is now expressed via Fermi surface
averaged matrix element of electron–ion potential,
ion mass and electron density of states at the Fermi
level. The only deficiency of this expression is the loss
of intuitive understanding due to the absence of
parameters in terms of which  is usually treated.

1 In fact this asymptotic behavior works rather satisfactorily
already for .
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As was already noted, all parameters entering this
expression can be rather simply obtained during the ab
initio calculations of  for specific materials (com-
pounds) [5]. Let us also stress that the value of 
defined in Eq. (4), calculated for any specific material
does not have any direct relation to real value of , but
just defines precisely the upper limit of , which
“would be achieved” in the limit of strong enough
electron–phonon coupling. Below we shall present
some elementary qualitative estimates of its value.

In the following we shall assume to be dealing with
three-dimensional metal with cubic symmetry with an
elementary cell with lattice constant  and just one
conduction electron per atom. Then we have:

(5)

where  is the Fermi momentum,  is the
mass of free (band) electron. Electron–ion potential
(single-charged ion,  is electron charge) can be esti-
mated as:

(6)

so that its gradient is:

(7)

Then we easily obtain the estimate of (3):

(8)

Here, we have dropped different numerical factors
of the order of unity. Collecting them back in the
model of free electrons we get an estimate for  from
Eq. (4) as:

(9)

where  is the Fermi energy,  is
the electron velocity at the Fermi surface. The value of

, as is well known, represents the dimensionless

coupling for Couloumb interaction and for typical
metals it is of the order of or greater than unity. The

factor of  determines isotopic effect.

Let us measure length in units of the Bohr radius 
introducing the standard dimensionless parameter 

by relation . Then we have:

(10)
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where we have introduced the fine structure constant

. Correspondingly the Fermi momentum is

given by:

(11)

Then  (4) can be rewritten as:

(12)

where  13.6 eV is the Rydberg con-
stant. Here we have obtained the same combination of
fundamental (atomic) constants, which was suggested
in [10], by some quite different reasoning, as deter-
mining the upper limit of superconducting critical
temperature. However, our expression contains an
extra factor of , which necessarily reflects the spe-
cifics of a material under consideration (density of
conduction electrons), so that the value of  is in no
sense universal.

As was already noted above the value of  strictly
speaking has no relation at all to the real supercon-
ducting transition temperature . However, expres-
sions (9) and (12) may be useful to estimate “potential
perspectives” of some material in the sense of achiev-
ing high values of transition temperatures under the
conditions of strong electron–phonon coupling. For
example in metallic hydrogen  is equal to proton

mass and we have , so that for  we

get an estimate of  K. This is in nice agree-
ment with the result of  K, obtained in [12]
solving Eliashberg equations for FCC lattice of metal-
lic hydrogen with , taking into account the cal-
culated softening of the phonon spectrum, leading to
realizations of very strong coupling ( ). At the
same time in the recent paper [13] an elegant numeri-
cal study of superconductivity of metallic hydrogen
within jellium model has shown, that the maximal
value of  can be achieved at , not exceeding
30 K. This is obviously related to the fact that in the
“jellium” model the weak coupling is realized and
there is no softening of the phonon spectrum. Finally
we hope that Eqs. (9) and (12) can be relevant for pre-
liminary estimates of  in some of the metallic
hydrides, which are currently under intensive study in
the search for room-temperature superconductivity.
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