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Preface

This book is essentially based on the lecture course on “Statistical Physics”, that was
taught by the author at the physical faculty of the Ural State University in Ekaterinburg
since 1992. This course was intended for all physics students, not especially for those
specializing in theoretical physics. In this sense the material presented here contains
the necessary minimum of knowledge of statistical physics (also often called statisti-
cal mechanics), which is in the author’s opinion necessary for every person wishing to
obtain a general education in the field of physics. This posed the rather difficult prob-
lem of the choice of material and appropriately compact presentation. At the same
time, it necessarily should contain all the basic principles of statistical physics, as
well as its main applications to various physical problems, mainly from the field of
the theory of condensed matter. Extended version of these lectures were published in
Russian in 2003. For the present English edition, some of the material was rewritten,
and several new sections and paragraphs were added, bringing the contents more up
to date and adding more discussion on some more difficult cases. Of course, the au-
thor was much influenced by several classical books on statistical physics [19, 20, 37],
and this influence is obvious in many parts of the text. However, the choice of material
and the form of presentation is essentially his own. Still, most attention is devoted to
rather traditional problems and models of statistical physics. One of the few excep-
tions is an attempt to present an elementary and short introduction to the modern
quantum theoretical methods of statistical physics at the end of the book. Also, a lit-
tle bit more attention than usual is given to the problems of nonequilibrium statistical
mechanics. Some of the more special paragraphs, of more interest to future theorists,
are denoted by asterisks or moved to the appendices. Of course, this book is too short to
give a complete presentation of modern statistical physics. Those interested in further
developments should address more fundamental monographs and modern physical
literature.

The second edition of this book has been expanded with boxes presenting brief
summaries of the lives and achievements of the major founders and contributors to
the field of “Statistical Physics”. The biographical details complement the scientific
content of the book and contextualize the discoveries within the framework of global
research in Theoretical Physics. In my personal opinion, this information can be useful
for readers and lecturers alike.

Ekaterinburg, 2018 M. V. Sadovskii

https://doi.org/10.1515/9783110648485-201
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1 Basic principles of statistics

We may imagine a great number of systems of the same nature, but differing in the configurations
and velocities which they have at a given instant, and differing not merely infinitesimally, but it
may be so as to embrace every conceivable combination of configuration and velocities. And here
we may set the problem not to follow a particular system through its succession of configurations,
but to determine how the whole number of systems will be distributed among the various
conceivable configurations and velocities at any required time, when the distribution has been
given at some specific time. The fundamental equation for this inquiry is that which gives the rate
of change of the number of systems which fall within any infinitesimal limits of configuration and
velocity. Such inquiries have been called by Maxwell statistical. They belong to a branch of
mechanics which owes its origin to the desire to explain the laws of thermodynamics on
mechanical principles, and of which Clausius, Maxwell and Boltzmann are to be regarded as
principal founders.

J. Willard Gibbs, 1902 [11]

1.1 Introduction

Traditionally, statistical physics (statistical mechanics) deals with systems consisting
of large numbers of particles, moving according to the laws of classical or quantum
mechanics. Historically it evolved, by the end of 19th century, from attempts to pro-
vide mechanistic derivation of the laws of thermodynamics in the works by J. Maxwell
and L. Boltzmann. The formalism of statistical mechanics was practically finalized in
the fundamental treatise by J. W. Gibbs [11], which appeared at the beginning of the
20th century. The remarkable advantage of Gibbs method, which was created long
before the appearance of modern quantum theory, is its full applicability to the stud-
ies of quantum (many-particle) systems. Nowadays, statistical physics has outgrown
the initial task of justification of thermodynamics, its methods and ideology actually
penetrating all the basic parts of modern theoretical physics. Still being understood
mainly as the theory of many (interacting) particle systems, it has deep connections
with modern quantum field theory, which is at present the most fundamental theory
of matter. At the same time, it is now also clear that even the description of mechanical
motion of relatively few particles moving according to the laws of classical mechan-
ics often requires the use of statistical methods, as this motion, in general (nontrivial)
cases, is usually extremely complicated (unstable). The ideas and methods of statis-
tical mechanics form the basis of our understanding of physical processes in solids,
gases, liquids and plasma, while the modern theory of elementary particles (based on
the quantum field theory) is, from the very beginning, actually the theory of systems
with an infinite number of degrees of freedom, where statistical methods are at the
heart of the problem. Unfortunately, due to the lack of space we will not be able to dis-
cuss in detail all of these deep interconnections and just limit ourselves to the studies
of more or less traditional models of statistical mechanics [19, 20, 37], which provide
the foundation for understanding of much more complicated problems.

https://doi.org/10.1515/9783110648485-001



2 =— 1 Basic principles of statistics

1.2 Distribution functions

Consider a system of N (for simplicity) identical interacting particles, moving in a fi-
nite but macroscopically large volume V. For simplicity, we also assume that these
particles do not possess internal degrees of freedom. If we describe the motion of
particles by classical mechanics, the state of the motion of the k-th particle is com-
pletely characterized by the values of its coordinates q; and momentum p;, and the
state of the system as a whole is determined by the values of all particles’ coordinates
d;,9y,--->qy and momenta p;, P,,...,Py. Thus, the state of the system may be de-
scribed by the point in 6N-dimensional phase space: (d;,dy, - - -, 9y, P> P2 - Py) —
the so-called phase point. Dynamical evolution (motion) of the system is determined
by Hamilton’s equations of motion:!

qu _ oH dpk _ oH

> 1.1

where

H:H(‘lp‘lz’--~>qN)P1»P2)-~~>PN)EH(p,Q) (12)

is the full Hamiltonian of the system.

Consider the simplest case of particles interacting with each other via the two-
particle spherically symmetric potential U(|q; — q;|), so that the Hamiltonian takes
the form:

N pi 1
H:§—+-§U S ). 1.3
Lol (I9; — g ) (1.3)

The equations of motion are written as:

. oU(lq; -
P pe=-Y (9 — i) _

Q= —
m itk ody

F;, (1.4)
where F, is the force enacted upon the k-th particle by the rest. It is clear that for any
significantly large value of N the complete solution of the system of equations (1.4) is
not feasible even numerically. Also, such a solution (in the improbable case we find
it) would be of no real use. The real trajectory of each particle will most probably be
quite complicated (chaotic). More so, we have to solve equations (1.4), with appropri-
ate initial conditions, and this solution is, as a rule, quite sensitive to the choice of
initial velocities and coordinates, which are actually not known precisely in any re-
alistic situation. As the motion of particles is in most cases unstable, the trajectories

1 It is interesting to note that Gibbs’ approach is completely based on the use of Hamilton form of
mechanics and not on that of Lagrange.
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1.2 Distribution functions =—— 3

corresponding even to quite close initial values become quite different in a rather short
time (and this difference grows exponentially with time), so that they do not have any-
thing in common anymore. Thus, from such solutions we have almost nothing to learn
about macroscopic properties of the system with large number N of particles, which
are of main interest to us. In fact, due to the instability of mechanical motion, these
problems usually appear even for systems consisting of rather few particles. This in-
evitably leads us to use statistical analysis.

Thus, the equations of motion (1.4) determine the trajectory of the phase point in
the phase space, defining the mechanical state of the system. This trajectory in phase
space is called the phase trajectory. For conservative systems with fixed energy we can
write:

H(q,p) =E. (1.5)

This means that the phase trajectory belongs to the surface of constant energy in the
phase space, defined by equation (1.5) — the so-called ergodic surface.?

When a macroscopic system is in (thermodynamic) equilibrium, its macroscopic
characteristics (temperature, volume, pressure etc.) remain constant in time, though
its microscopic state continuously changes and we do not know it at all (i. e. where
precisely is its phase point on the ergodic surface at the given moment in time). The
statistical approach attempts to determine only the probability of the realization of
some set of microstates, corresponding to the given macrostate of our system. In fact,
following Gibbs, we shall consider not the fixed system, but an ensemble i. e. the set
of the large number (in the limit of N — oo the infinite!) of its copies, all remaining
in macroscopically equivalent conditions (states). This is usually called the Gibbs en-
semble, describing the macroscopic state of the system. Macroscopic equivalence of
external conditions (states) means that all the systems within the ensemble are char-
acterized by the same values of the appropriate macroscopic parameters (neglecting
small fluctuations) and the same types of contacts with surrounding bodies (energy or
particle reservoirs, pistons, walls etc.). This leads to certain limitations on coordinates
and momenta of particles, which otherwise remain rather arbitrary.

A statistical ensemble is defined by a distribution function p(p, g, t), which has the
meaning of the probability density of systems in the phase space, so that:

dw = p(p,q, t)dpdq (1.6)

2 We must stress here the important role of the Cauchy theorem on the uniqueness of the solution
of the system of usual differential equations. Under the rather weak requirements for the r.h.s. of
equations (1.4), there exists a unique (at any moment in time) solution, which automatically excludes
the possibility of the crossing of two different phase trajectories in any regular point of the phase space
(except some fixed points, corresponding to the zeroes of the r. h. s. of (1.4)).
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4 — 1 Basic principles of statistics

gives the probability to find a system (from the Gibbs ensemble!) in the element of
phase space dpdq around the point (p,q) = (py,--->Py>dss--->qy) at time t. The dis-
tribution function must satisfy the obvious normalization condition:

J dpdqp(p,q.t) = 1, (1.7)

as the sum of the probabilities of all possible states must be unity. Such a normaliza-
tion condition is used e. g. in the famous book by Landau and Lifshitz [19]. However,
this is not the only possible form of the normalization condition. In fact, we under-
stand from the very beginning, that classical statistics is the limiting case of quantum
statistics (below, we shall see that transition from the quantum case to the classical
one takes place at high enough temperatures, when quantum effects become negligi-
ble) From quantum mechanics we know [18] that a notions of coordinate and momenta
of the particles can be introduced only within the limits of a quasi-classical approxi-
mation. The minimal size of the phase space cell for the one-dimensional motion of
the i-th particle in quasi-classical approximation is given by h = 27h:>

Ag; Apf > h. (1.8)

Thus the minimal size of the cell in the phase space of one particle (for three-dimen-
sional motion) is equal to i* = (27)?, and (27772)>" in the phase space of N particles.
The value of (274)*" is the natural volume unit in the phase space. Accordingly, it
is often convenient to introduce the distribution function normalized to unity after
integration over the dimensionless phase space (z‘jf;g,v .

For the system consisting of N identical particles, we have to take into account
the fact that taking different permutations of identical particles does not change the
quantum state of the system. The number of permutations of N identical particles is
equal to N! and the volume of the phase space cell should be divided by N! if we wish
to take into account only physically distinguishable states.

Thus it is convenient to define the distribution function by the relation:

dpdq
dw = ,q,t) ————, 1.9
W=p.0. 00y (19)
and write the normalization condition as:
[ aro.q.0 =1 (110)

3 Quasi-classical quantization condition for Bohr and Sommerfeld in the one-dimensional case takes

the form: n_f) pdg = (n+ %)h. The integral here represents an area of the closed orbit in phase space.

Dividing this area into cells of area 2t we obtain n cells. But here, n is the number of the quantum

state, with energy below the given value, corresponding to this orbit. Thus, for any quantum state

there is a corresponding cell in thi phase space with an area 277h. Introducing the wave vector of a
ApAq AkAgq

particle as k = p/h we get 5 =t = =5, which corresponds to the well known relation for the number

of (eigen)modes of the wave field [16].

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:48 AM



1.2 Distribution functions =—— 5

where:

L (11)
N!(2rh)3N
is the dimensionless phase space element. Integration in (1.10) corresponds to the sum-
mation over all distinguishable quantum states of the system.”

Knowing the distribution function p(p, g, t) we can, in principle, calculate the av-
erage values of arbitrary physical characteristics, which depend on the coordinates
and momenta of particles forming our system. The average value of any such function
of dynamic variables f(p, q) is defined as:

) = j dTp(p, g, Of (0, q) (L12)

and is sometimes called the phase average (ensemble average). Averaging with the
distribution function (over the phase space) comes here instead of another possible
procedure, when we follow the precise time evolution of f(p, g) and calculate its aver-
age behavior in time. This last approach reduces to performing measurements at dif-
ferent moments in time, producing explicit time dependence f = f(t), and calculating
its average value as:

f=lim =

1
fm o dtf (t) (1.13)

O—

i. e. as time average.

In the general case, the proof of the equivalence of phase and time averaging is the
very difficult (and still not completely solved) problem of the so-called ergodic theory,
which is a developing branch of modern mathematics [14, 34]. In recent decades sig-
nificant progress was achieved, but this material is definitely outside the scope of this
book. Below we shall only give a brief and elementary discussion of this problem. The
physical meaning of the Gibbs approach may be qualitatively illustrated as follows: let
us consider a small, but still macroscopic, subsystem within our closed (isolated) sys-
tem. This subsystem is also described by the laws of classical mechanics, but it is not
isolated and influenced by all possible interactions with the other parts of the (big)
system. Under these conditions, the state of our subsystem will change in time in a
very complicated and chaotic way. Due to this chaotic motion, during a long enough
time interval T the subsystem will “visit” all its possible states many times. Or in more

4 Remarkably, the necessity to divide the phase space volume by N! for the system of identical par-
ticles was stressed by Gibbs long before the discovery of quantum mechanics as a recipe to avoid the
so-called Gibbs paradox — the growth of entropy during the mixing of identical gases at the fixed tem-
perature, volume and pressure [10].
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6 —— 1 Basic principles of statistics

rigorous terms, let us define ApAg to be some small volume in the phase space of the
subsystem. It can be assumed that during a large enough time interval T the compli-
cated (chaotic) phase trajectory of the subsystem will pass this volume many times. Let
At be that part of time T during which the subsystem is somewhere within this phase
space volume ApAq. As T grows to infinity, the value of At/T will tend to some limit:

Aw = lim % (1.14)

T—o0

which can be considered as the probability of finding our subsystem within this
volume of the phase space at a given moment in time. Now going to the limit of
an infinitesimally small phase space volume we introduce the distribution function
p(p, g, t) and by definition of (1.14) statistical (phase) averaging (1.12) seems to be phys-
ically equivalent to time averaging (1.13). This simple justification is usually sufficient
for physicists. In particular Landau claimed [19] that the importance of ergodic theory
is overestimated by mathematicians. Though discussions of this problem are still con-
tinuing, from a pragmatic point of view the Gibbs approach is in no doubts correct,
as all conclusions obtained within statistical mechanics are getting full experimental
confirmation.

Finally, we shall mention one more qualitative point, which is very important for
understanding the foundations of statistical mechanics. The distribution function of a
given subsystem is, in general, independent of the initial state of any other part of the
same system, as the influence of this initial state during a long enough time interval
is completely smeared by the influence of many other parts of the system. It is also
independent of the initial state of the subsystem under consideration, as it passes
through all possible states during its long time evolution and actually each of these
states can be considered as initial (“memory” loss).

Josiah Willard Gibbs (1839-1903) was an Ameri-
can scientist who made major theoretical contribu-
tions to theoretical physics and mathematics. His
work on thermodynamics completed its transfor-
mation into a rigorous science and a resolution of
the so-called “Gibbs paradox”, about the entropy
of the mixing of gases, is often considered to be an
anticipation of the indistinguishability of particles
required by quantum mechanics. Following the ini-
tialideas of James Clerk Maxwell and Ludwig Boltz-
mann, he created the modern formulation of statis-
tical mechanics (a term that he coined), explaining
the laws of thermodynamics as consequences of the statistical properties of ensem-
bles of the possible states of a physical system composed of many particles, called
now Gibbs ensembles. This formulation later was demonstrated to be valid also in
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1.3 Statistical independence =—— 7

quantum mechanics. It was first published in his highly influential, but very difficult to
read, book “Elementary Principles in Statistical Mechanics, which appeared in 1902,
only a year before his death. Gibbs spent almost all his career at Yale University,
where he was professor of mathematical physics from 1871 till the end of his life. He
never married, living all his life in his childhood home. His most famous aphorism is:
“Mathematics is a language”, apparently this was his remark during some discussion
in Yale on the importance of teaching languages.

1.3 Statistical independence

Let us consider some simple facts from mathematical statistics, which will be useful
in the following. In many cases, the closed macroscopic system can be “divided” into
a number of subsystems, which interact rather weakly with each other, and during
long enough time intervals behave (approximately) as closed (isolated) systems. We
shall call such subsystems quasi-closed (or quasi-isolated). Statistical independence
of such subsystems means that the state of a given subsystem does not influence the
probability distributions of other subsystems.

Consider two such subsystems with infinitesimal volume elements of phase
spaces dpPdq™ and dp®dq®. If we consider the composite system consisting of
both subsystems then, from a mathematical point of view, the statistical indepen-
dence of subsystems means that the probability for the composite system to be found
in the element of its phase space volume dp®?dgq"? = dpVdq®dp®dq® factorizes
into the product of probabilities:

pudp(lz)dq(lz) _ pldp(l)dq(l)pzdp(z) dq(z), (1.15)
so that

P12 = P1P2> (1.16)

where p;, is the distribution function of the composite system, while p; and p, are
distribution functions of subsystems.

The inverse statement is also valid — the factorization of the distribution function
means that the system can be decomposed into statistically independent subsystems.
If f; of f, are two physical characteristics of two subsystems, from equations (1.15) and
(1.12) it follows immediately that the average value of the product fif, is equal to the
product of the averages:

(fify) = () H). (1.17)

Consider some physical quantity f characterizing the macroscopic body or a part of it.
As time evolves, it changes (fluctuates) around its average value (f). As a measure of
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8 =— 1 Basic principles of statistics

these fluctuations we can not take just the difference Af = f — (f), as due to the pos-
sibility of fluctuations in both signs it averages to zero: (Af) = 0. Thus, as a measure
of fluctuation it is convenient to take its mean square: ((Af)?). We then always obtain
((Af)*) = 0, and the average here tends to zero only as f — (f), i. e. when the deviation
of f from (f) appears with small probability. The value of

V(@A) = V((F - () (118)

is called mean square fluctuation in f. It is easily seen that:

(OFYY = (2 = 2ff) + ()

(1.19)
= (F2Y =20 + ()2 = (F) - (O,

so that the mean square fluctuation is determined by the difference between the av-
erage square and the square of the average of the physical characteristic under study.
Theratio \{(Af)?)/{f) is called the relative fluctuation in f. It can be shown that the rel-
ative fluctuations in the typical physical characteristics of macroscopic systems drop
fast with the growth of the size (the number of particles) of the body. In fact, most of
the physical quantities are additive (due to the quasi-isolated nature of different parts
of the system): the value of such a quantity for the whole body (system) is the sum of
its values for different parts (subsystems). Let us divide our system into a large number
N of more or less similar (or equal) subsystems (often this may be just the number of
particles in the system). Then for the additive characteristic we can write:

N
f=Xf (1.20)
i=1

where f; characterizes the i-th part (subsystem or particle). Obviously, for the average
value we get:

) = Z(ﬁ-). 1.21)

With the growth of N the value of (f) grows approximately proportionally N: {(f) ~ N.
Let us calculate the mean square fluctuation in f:

(%) = <<;Afi>2>~ (1.22)

Due to the statistical independence of different parts (subsystems) we have:
(Bfidfi) = (Bfi)Bfi) =0 (i # k) 1.23)
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1.4 Liouville theorem =— 9

as each (Af;) = 0. Then:
N
(AF) = YD) (1.24)
i=1

Then it is clear that with the growth of N we also get ((Af Y2} ~ N. Then the relative

fluctuation is estimated as:
VAN VN1

" N VN
Now we see that the relative fluctuation in any additive characteristic is inversely pro-
portional to the square root of the number of independent parts of the macroscopic
body (e. g. number of particles), so that for a large enough value of N (e. g. for N ~ 10
for a typical number of particles per cubic centimeter) the value of f may be consid-
ered practically constant and equal to its average value. If N is not big enough, e. g.
N ~ 10°, the relative fluctuations are not small and quite observable. Such systems
sometimes are called mesoscopic.

(1.25)

1.4 Liouville theorem

Introduction of the distribution function for mechanical systems as probability den-
sity in the phase space is based on the Liouville theorem — a purely mechanical state-
ment, which does not contain any statistical assumptions. According to this theorem,
for systems with motion described by Hamilton equations:
dg, _ oH dp, _ OH

— 1.26

the phase volume (of an ensemble) remains constant in time. If at the initial moment
in time the phase points (p°, ¢°) of systems forming the Gibbs ensemble continuously
fill some region G, in the phase space, while at the moment ¢ they fill the region G;,
then the volumes of these regions in the phase space are the same:

J dp®dq® = J dpdq (1.27)
Go Gt

or, for infinitesimal elements of the phase space:
dp°dq® = dpdq. (1.28)

In other words, the motion of phase points representing systems of the ensemble is like
that of a noncompressible liquid, as is shown in Figure 1.1 — the “drop”, formed by
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10 — 1 Basic principles of statistics

X5 A

X

Figure 1.1: The change of initial volume G in the phase space due to the motion of phase points
representing an ensemble according to the Liouville theorem.

phase points, representing an ensemble, can deform in a rather complicated way in
the process of motion, but its volume is conserved.

To prove the Liouville theorem we transform the integral on the 1. h. s. of equa-
tion (1.27) by changing integration variables from p, g to p°, ¢°. Then, according to
the well known rules for multiple integrals we get:

a >
j dpdq = J %dpodqo, (1.29)
: : op”,q°)

t 0

where a?gg’gg) is the appropriate Jacobian. We remind that the Jacobian is a determi-
nant of the following form (for simplicity we write the explicit expression below for
the two-dimensional case, generalization for multiple dimensions is direct):

du Ju
ow,v) |3 3
= . (1.30)
My |5 5
The following general properties of the Jacobian are:
o(u,v) a(v,u)
- , (1.31)
oxy)  9xy)
ou,y) ou
= —, 1.32
ax,y) ox (1.32)
Also it is easy to see that:
ow,v) o(u,v) o(t,s)
= , (1.33)
ax,y) d(t,s) o(x,y)
(% vy o, L
d 8(u, V) _ ( dt ) ( dt) (134)

dtamy) . y) | aty)
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1.4 Liouville theorem = 11

Let us now show that the Jacobian in equation (1.29) is unity if systems move according
to Hamilton’s equations:

owq _
o(p° q°)

To prove this we show that the total time derivative of the Jacobian is equal to zero:

(1.35)

d v _, (1.36)

dtop°,q°)
Then it follows that the Jacobian is a constant, more precisely just unity, because it
was equal to unity at the initial moment in time.
For simplicity let us write down the proof for the case of a two-dimensional phase
space, when there is only one coordinate g and one momentum p. According to equa-
tion (1.34) we can write:

d opg _ 0pq) . op.9) (1.37)

dt 0(po.40)  9Po-do)  9Po-do0)’

Then, according to equations (1.32) and (1.33) we have:

op.q) _3p.d) Ap.9) _ 24 3p.9) (138)
0Py 90) 0(,q) 0o q0) 99 0Py, qo)’
op.q) _0p.q) op.q) _dp op.q)

— = , 1.39

300 do) ~ 3p.9) WWordo) 9 9o, do) (139)
d ap.9) =<a_p a_q> . 9) o
dt 0(pg, q¢) 8p+aq a(po’%)' (1.40)

It is seen that the sum in the r. h. s. is equal to zero, due to the equations of motion:

oH oH
j=—; Dp=-—— 1.41
1=5,° P="% (1.41)
so that
9g 0o*H  op
Aa_ - __ZF 1.42
dq 0qop  Op (142
and accordingly
ap g )
9P, 143
<ap "o (149

which proves everything.

The Liouville theorem is a purely mechanical statement and up to now, we used
the distribution function nowhere. However, with the help of the distribution function
we may give another formulation of the Liouville theorem. As the “drop” representing
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12 — 1 Basic principles of statistics

the Gibbs ensemble moves through the phase space (Figure 1.1), the number of phase
points in it (the number of systems in the ensemble) obviously does not change and all
phase points belonging at time ¢ to volume element dpdq at time t' move to element
dp'dq’. Then we can write:’

p(p,q,t)dpdq = p(p’,q',t')dp'dq’, (1.44)

and from the Liouville theorem we have dpdq = dp’dq’, so that:

p®.q.t) =p(p'.q',t"). (1.45)

Now we see that the distribution function p is constant along phase trajectories — this
is an alternative formulation of the Liouville theorem, using the notion of the distribu-
tion function. But still it is simply a mechanical statement, not using any probability
(statistical) considerations.

Using these results, we can now derive the Liouville equation, which is actually
the equation of motion for the distribution function. Assuming the moment ¢ to be
infinitesimally close to ¢’ = t + dt we get from equation (1.45):

p(p,q,t) = p(p + pdt, q + qdt, t + dt) (1.46)

so that (if p is differentiable) we obtain a differential equation:

1.47
d ; 8 " Z( — Dk * 5. Qk> (1.47)
and taking into account the Hamilton equations:

0 < OH op 0oH op ) a
Loy =2 D) 48)
2 04y 0Py 0Py Ody

The sumin ther. h. s. of equation (1.48) is the so-called Poisson bracket [17] for H and p:

OH op 0oH op >
Hpj=Y (2L P P L
t.p) ; < 0qy 0Py 0Pk Oqx (149)

so that the Liouville equation can be written as:
0
p ={H,p}. (1.50)

This equation is the basic equation of motion for the distribution function, which re-
mains valid for both equilibrium and nonequilibrium problems. In principle, it allows

5 Distribution function p can obviously be treated just as the density of phase points in the ensemble!
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1.5 Role of energy, microcanonical distribution = 13

one to calculate p at any moment in time ¢ if it is known in an initial moment ¢ = ¢,. It
can also be used, as we shall show later, to find the response of statistical systems to
an external perturbation.

It is easy to see that the Liouville equation can be written as a continuity equation
for the phase points moving in the phase space. Consider the motion of phase points
in 6N-dimensional phase space as the motion of a “phase liquid” with density p. The
velocity of this motion is represented by the vector (p;, Py, ..., Py @1, @, - - -» Q) in this
space. Accordingly, the appropriate continuity equation takes the form:

Z[ (ppic) + qu)] (1.51)

where an expression in parentheses is just the divergence of the appropriate current.
Performing differentiations we can write this term as:

op ap] [apk an]
(1.52)
Z[ Kape " Wage | TP Z apr 94y

Because of the Hamilton equations, the second term in this expression is identically
zero, so that equation (1.51) reduces to:

d d
p Z[Pk +q"a5] 0, (1.53)

which coincides with equation (1.47). From here it follows, in particular, that the mo-
tion of the “phase liquid” is incompressible. For the case of systems in statistical (ther-
modynamic) equilibrium both p and H do not depend explicitly on time,® so that equa-
tion (1.50) reduces to:

{H,p} =0 (1.54)

and the distribution function p becomes an integral of motion. As we shall see, this fact
alone (based upon an assumption of the existence of thermodynamic equilibrium!)
immediately leads to a radical simplification of the whole analysis of equilibrium sta-
tistical ensembles.

1.5 Role of energy, microcanonical distribution

Thus we convinced ourselves that for the system in thermodynamic equilibrium the
distribution function should be an integral of motion, i. e. it should be expressed via
such combinations of coordinates and momenta p and g that remain constant in time

6 In this case there also is no explicit time dependence of appropriate averages of any physical char-
acteristics, considered as functions of coordinates and momenta of particles of our system, which is
an obvious property of an equilibrium state.
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14 — 1 Basic principles of statistics

as the (closed) system performs its motion in phase space. The number of independent
integrals of motion for the closed (conserved) mechanical system with s degrees of
freedom is equal to 2s —1[17]. For the system consisting of N particles moving in three-
dimensional space we have 2s = 6N (i. e., the number of all components of particle
coordinates and momenta), so that the number of integrals of motion is immensely
large. However, we can drastically reduce the number of integrals of motion on which
the distribution function can actually depend. To do this we shall use statistical (not
mechanical!) arguments. We have seen above that the distribution function p,, of the
composite system consisting of two independent (noninteracting) subsystems is equal
to the product of distribution functions p; and p, of these subsystems: p;, = p;p,. Thus:

Inpy, =Inp; +1np, (1.55)

i. e. the logarithm of the distribution function is additive. Accordingly, the logarithm of
the distribution function of the system in equilibrium should be not just be an integral
of motion, but an additive integral of motion.

In mechanics it is shown [17], that from all of the integral of motion of a closed
(isolated) system only a few are in fact additive. These are the integrals of motion con-
nected with basic properties of space and time — homogeneity and isotropy: energy,
momentum and angular momentum.” Let us denote these integrals of motion for the
a-th subsystem as E,(p,q), P,(p,q) and M,(p, q). The only additive combination of
these integrals is the linear combination of the following form:

Inp, = a, +BE,(p.q) + YP,(p,q) + M, (p,q) (1.56)

with constant coefficients a,, B, y, §, and where B, y, § should be the same for all
subsystems — only in this case additivity (1.55) is satisfied. The coefficient a, is just a
normalization constant and can be determined from the requirement that I dlyp, =1
The coefficients 8, y and § can be similarly determined via the constant values of corre-
sponding additive integrals of motion (calculating the appropriate averages with the
distribution function (1.56)).

Thus we come to a most important conclusion: the values of additive integrals
of motion - energy, momentum and angular momentum — completely determine the
statistical properties of a closed (isolated) system and statistical distributions of its
(independent) subsystems, as well as the average values of its arbitrary physical char-
acteristics in the state of thermodynamic (statistical) equilibrium. These seven (taking

7 Additivity of energy follows from its general expression via the Lagrange function: E = }; q; aaTLk -L,
and from additivity of the Lagrange function itself, which follows from the fact that the equations of
motion of each of the noninteracting parts of the system can not contain any parameters from other
parts. Additivity of momentum of the many particle system is obvious: P = Y, m;v; and, unlike en-
ergy, momentum is simply the sum of the momenta of different particles, despite the possibility of
their interaction. An analogous property is valid also for the angular momentum: M = Y, [t;pi].
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1.5 Role of energy, microcanonical distribution = 15

into account the number of vector components) additive integrals of motion replace
the immense number of variables on which the distribution function can depend in
the general (nonequilibrium) case and which are necessary for a “complete” mechan-
ical description of the many particle system.

The number of relevant integrals of motion diminishes, if from the very beginning
we consider systems at rest. Then, both full momentum and angular momentum are
obviously zero and the distribution function of the equilibrium state depends only on
one variable — the total energy of the system:

p =p(E). (1.57)

Thus the introduction of the simplest statistical considerations for systems at equi-
librium immediately leads to a radical reduction in the number of relevant variables
on which the distribution function depends and opens the way for the formulation
of equilibrium statistical mechanics. Let us stress that these radical conclusions are
based on the introduction of statistics and are “nonderivable” from classical mechan-
ics. Of course, in the general case, the distribution function can depend on some “ex-
ternal” parameters, which define macroscopic conditions for an ensemble and which
are considered the same for all copies of the system within the ensemble (e. g. on vol-
ume, number of particles etc.).

Let us now explicitly construct the distribution function for a closed (adiabatically
isolated) system in equilibrium.® It was first proposed by Gibbs. Consider the statisti-
cal ensemble of closed energetically isolated systems with a constant volume V, i.e.
the ensemble of systems with a constant number of particles N, which are surrounded
by adiabatic (in the thermodynamic sense) boundaries and possessing the same en-
ergy E, fixed up to some small uncertainty AE « E. Following Gibbs we assume that
the distribution function p(p, q) for such an ensemble is just a constant within some
layer of the phase space between two iso-energetic surfaces, corresponding to ener-
gies E and E + AE and zero outside this layer:

(1.58)

DW(E,N, V)] forE < H(p,q) < E + AE
p(p) Q) =

outside this layer.

Such a distribution (ensemble) is called microcanonical. The distribution function
(1.58) expresses the principle of equal probability of all microscopic states of a closed
system. In fact it is the simplest possible assumption — we suppose that there is no
preferable microscopic state (all are equally probable) so that systems of an ensem-
ble, during the motion in phase space, just randomly “visit” all the microscopic states

8 Equation (1.56) in fact already represents an explicit form of the distribution function of an arbitrary
subsystem weakly interacting with an environment of a much larger closed system. We shall return to
this case later.
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16 —— 1 Basic principles of statistics

within the energy layer of the width AE, to which belong all the phase trajectories.
The distribution function (1.58) represents simply the statistics of a “gambling die”
with W sides. Naturally, this distribution cannot apparently be derived from purely
mechanical considerations, it can be justified only by comparing the results obtained
from experiments, with its help.

The macroscopic state of microcanonical ensemble is characterized by three ex-
tensive parameters E, N, V. The constant W(E, N, V) is called the statistical weight and
is determined by the normalization condition:

dpdq
J WP(I% q)=1

dpdq 1

=1
N!ah)3N W(E,N, V)
E<H(p,q)<E+AE

(1.59)

and is in fact the dimensionless phase volume of our energy layer AE, i. e. the number
of quantum states in it (which is just the number of sides of our “gambling die”):

1

W(E,N,V) = ——
( ) N!Q2mth)3N

dpdq. (1.60)
E<H(p,q)<E+AE

In case of classical statistics we can always take the limit of AE — 0 and write:
p(,q) = W (E,N,V)8(H(p,q) - E), (161)
where

W(E,N,V) = j dpdqb6(H(p,q) - E). (1.62)

1
N!Q2rth)3N
Now it is obvious that W can also be considered as the density of states on the sur-
face of constant energy in phase space. In the quantum case all this is limited by the
well known uncertainty relation for time and energy: AEAt ~ h. In the following we
always, even in the classical limit, use microcanonical distribution in the form (1.58),
assuming the quasi-classical limit of quantum mechanics.

The hypothesis that the microcanonical ensemble describes the macroscopic state
of a closed (adiabatically isolated) system, i. e. the averages calculated with the distri-
bution function (1.58) give experimentally observable values of all physical character-
istics of the system, is one of the major postulates of equilibrium statistical mechanics.
We already mentioned above that the observable values of arbitrary physical quantity
f(p, q) can also be calculated as an average over some observation time, and the prob-
lem of justification of our replacements of time averages by phase averages over the
ensemble is called the ergodic problem. From this point of view, the problem of justifi-
cation of microcanonical distribution reduces to the proof that for the closed (isolated)
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1.6 Partial distribution functions® = 17

systems in equilibrium we actually have:

T
.1 1
Jim = J dif (p(),q(t)) = N1y Jdpdqp(p, Of : 9), (1.63)

where p(p, q) is defined by the microcanonical distribution (1.58). This problem is very
difficult and, despite some important achievements by mathematicians, is still un-
solved. Physically it is usually justified by the so-called ergodic hypothesis that the
phase trajectory of a closed system during a rather long time period necessarily passes
infinitesimally close to any given point on the ergodic surface. In Appendix A we shall
present some elementary considerations related to this problem. Rigorous mathemat-
ical analysis can be found in [14], while the modern situation is discussed in [34]. Here
we only briefly note that in recent years the problem of the conceptual foundations of
statistical mechanics obtained new developments related to the discovery of stochas-
tic instability (chaotization) of mechanical motion in different, more or less simple
dynamical systems with a pretty small number of degrees of freedom [35]. Now it is
clear that a statistical description is actually necessary even for such systems, which
naively appear to be quite “solvable” within classical mechanics. This is also briefly
discussed on an elementary level in Appendix A. In this sense, from the modern point
of view, the requirement of a large number of degrees of freedom to justify the sta-
tistical approach is unnecessary and we cannot ignore them even in rather “simple”
systems, where typically we observe an extreme sensitivity of phase trajectories to ini-
tial conditions, which leads to chaotic instability of the motion in phase space. Thus,
the notorious Laplace determinism is rather illusory even in classical mechanics of
such systems.

1.6 Partial distribution functions”

Knowledge of the general distribution function (1.6), depending on dynamical vari-
ables (coordinates and momenta) of all N particles, allows us to determine different
macroscopic characteristics of the system. For example, the density of particles at
point r, by definition, is given by:

p(t.x) = Jf)(l')P(t’ ry,...,py)dr; - dpy, (L64)

where p(r) is a density operator (here it is convenient to introduce operators of physical
quantities even in the classical case):
N
pr) = Y md(x - r,), (1.65)

i=1

x For explanation see preface.
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18 —— 1 Basic principles of statistics

where m; is the mass of the i-the particle. Analogously, the current density at point r
is:

J(r) = ji(r)p(t, t,...,py)dr; - dpy, (1.66)

where J(r) is the current density operator:
A N
J@) =) pid(x-r,). (1.67)
i=1

The density of kinetic energy at point r is equal to:
E(t,x) = JE(r)p(t, Iy,...,py)dr, - dpy, (1.68)

where E(r) is the kinetic energy operator:

LN
Em=) 2_r;z.6(r -1). (1.69)

i=1 i

For charged particles we can introduce the electric current density as:
jit,r) = Ji(r)p(t, Yy,...,py)dr; - - dpy, (1.70)

where f(r) is the electric current density operator:
~ N e
i =) —Lpbr-n), 1.71)
i=1 Mi

where e; is the charge of the i-th particle.

The distribution function p(t,xy,...,py) is the function of a practically infinite
number of variables. However, expressing macrovariables via microscopic character-
istics using the general formula:

A(t,x) = Jil(r)p(t, Y,....,py)dr; - dpy (1.72)

we have to take into account that the majority of physical operators of interest to us
can be written as:

A(r) =) A(r;,p)b(x - 1), (1.73)

M=

I
—_

J

expressed as the sum of operators acting on dynamical variables of one particle (single
particle operators). Examples of such operators are p, J, E and j introduced above.
Much more rarely we are dealing with two particle operators of the form:

. 1w -
Ar,Y') = > Y A(x;,x;, p;, p)8(x - )8(r' - ;). (1.74)
i#j
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1.6 Partial distribution functions® =— 19

An example of such an operator is the operator of potential energy of the system of
particles interacting via some central potential:

u,r") = % YU -5)8(x' - r,)8(x" - x)). (1.75)
i#j

Operators consisting of linear combinations of operators acting on dynamical vari-
ables of three, four and larger numbers of particles almost never appear in any prac-
tical tasks of interest.

Thus, for solving the majority of problems we actually do not need to know the
full N-particle distribution function:

Fy(txy,....,py) =p(t. 1y, ..., PN (1.76)

depending on the dynamic variables of the enormous number of particles, it is
sufficient to somehow determine only the one particle F,(¢,r;, p;) and two particle
F,(t,x;, 1;, p;, p;) distribution functions, which are defined as (V is the volume of the
system) [5, 12]:
Fi(t,r;, p;)
+V J Fy(t.xy,...,py)dEy - Aty ydEy,y - dEydp, - -dp; APy, - dpy,  (177)
Fy(t,x;, I, Pis p]-)
=V? JFN(t, Yy, py)dry - dryqdry g - - dYgdyy, - deydp,
<. dp;1dPyyy -+ dPj1dPjyy - APy (1.78)

or, in the general case, the s-particle distribution function (with s < N):

F (t,xy,....x, P15 Ps)
=V? J Fy(t1y,...,py)drs,; - dtydpg, -~ dpy. (1.79)

From an obvious normalization condition
1

v JFs(t, r,...,pg)dr;---dps =1 (1.80)

it follows that %Fs(t, I;,...,Ps) gives the probability for s particles in the system of
N particles to be present at the moment ¢ in the elementary phase space volume
dr; - - - dp, of 6s-dimensional phase space near the point (r;,...,p). There are the
following relations between these partial distribution functions, which are directly
derived from their definition:

1
Fs(t, 1‘1, cees pS) = V JFS+1(t, l‘l, ces ps+1)drs+ldps+1. (1.81)
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20 — 1 Basic principles of statistics

The use of these distribution functions allows us to calculate the average values of sin-
gle particle, two particle etc. operators of different physical quantities. For example,
for a macrovariable described by operator (1.73) we have:
1 & (.
AD = Y | AR pdp; (1.82)
j=1

If all A; are the same, i.e. 4; = a(j = 1,2,...,N), we have:

A(t,x) = % Ja(r, p)F;(¢t,x, p)dp. (1.83)
For macrovariables described by two particle operators of the type of (1.74) we get:

1 1 (-
Aty x") = 5 Y 7 JAij(r’,pi,r",pj)Fz(t, r'.r",p;, p;)dp;dp;. (1.84)
i#j

If all A; are the same, i.e. A;; = @, we have:

A(t, l‘l, l'”) _ ]% J 51(1", pl’ rll’ p”)Fz(l‘, l", 1‘", p/) pu)’ dp’dp", (1.85)
where obviously we can take (N - 1) = N.
Thus we obtain the following expressions for the main macroscopic characteris-

tics of systems consisting of identical particles:

p(tx) = m% JFl(t, r, p)dp, (1.86)
Jitr) = % ijl(t, 1, p)dp, (1.87)
E(t,1) = %g j p’Fy(t,x, p)dp, (1.88)
jt,p = %% J PFy(t, 1, p)dp. (1.89)

The problem now is to find an explicit form of the single particle distribution function.
The general approach to find partial distribution functions can be formulated as
follows. An arbitrary N-particle distribution function (1.76) satisfies the Liouville equa-
tion (1.47), (1.48), (1.50):
OFy
—~ ={H,Fy}. 1.90
5 {H, Fy} (1.90)
Integrating equation (1.90) over phase spaces of N —s particles and taking into account
equation (1.79) we get:

1 OF(t.1y,...,Ps)
= s ét s :J{H>FN}drs+l"'de' (1.91)
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1.7 Density matrix = 21

For the Hamiltonian of the system of interacting particles:

1 ¥, 01
H=—%p;+-) U(r-x)), 1.92
2mi:1p1+2i§¢j (It — ;) (1.92)

after some direct, but rather tedious calculations [12], we obtain from equation (1.91):

Fs 4y gy N ZJ QU(|1; — 1)) OF,
ot sy

- drs+1dps+1 (1'93)
i=1 i

or; ap

where H® denotes the Hamiltonian of the subsystem consisting of s particles.

The most important property of equation (1.93) is that the equation of motion for
the s-particle distribution function contains the term, describing the interaction of the
subsystem of s particles with the rest of the N-particle system, which depends on the
s + 1-particle distribution function F;_;. Thus, during the construction of the equa-
tions of motion for partial distribution functions, we necessarily obtain a practically
infinite system of integrodifferential equations, which is usually called Bogolyubov’s
chain. Strictly speaking, now we have to solve this whole chain of equations, which
is certainly not easier than solving the general Liouville equation for the N-particle
distribution function. However, in many cases, using some physical assumptions and
models, we can “decouple” this chain, reducing the problem to a finite number of
equations, e. g. expressing F,_ ; via Fy, F;_; etc. Then we remain with the closed sys-
tem of s equations for Fj, F,, ..., F;. Most interesting is, in particular, the possibility to
obtain the closed equation for a single particle distribution function:

oF,

o = L), (1.94)

where L is some operator. Constructing and solving this so-called kinetic equation is
the central problem of kinetic theory or physical kinetics [23]. We shall briefly discuss it
in Chapter 10. In most cases, kinetic equations can be derived and solved only by some
approximate methods. As a result, we can calculate the behavior of the average phys-
ical characteristics of our system, including their time dependence in the nonequilib-
rium case. The formalism of partial distribution functions can also serve as a ground
for constructing the equilibrium statistical mechanics [3, 15], but in the following we
shall use more traditional approaches.

1.7 Density matrix

Up to now we considered the classical statistical mechanics in which the state of a
system was described by the point (p, q) in 6N-dimensional phase space of coordi-
nates and momenta of all particles and the time evolution was determined by Hamil-
ton’s equations. In quantum mechanics such a description becomes impossible as,
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22 — 1 Basic principles of statistics

due to uncertainty relations, we can not simultaneously measure both the spatial co-
ordinates and momentum of a quantum particle. It is clear that we have to construct a
special formalism of quantum statistical mechanics. However, the remarkable fact is
that the main principles of the Gibbs approach remain valid also in quantum case.

1.7.1 Pure ensemble

In quantum mechanics, the state of a many particle system is described by the wave
function (x;, ..., Xy, t), which depends on time and on the coordinates of the par-
ticles xy,..., Xy (or on another set of simultaneously measurable variables, e. g. mo-
menta). Time evolution is determined by the Schroedinger equation:

oY
ih = Hi. (1.95)

For example, for the system of N identical particles with mass m, without internal de-
grees of freedom and interacting with a two particle potential U(|x|), the Schroedinger
equation can be written as:

L0 n & 1
lh—l/) = {——ZV]2+ EZU(|X]—Xk|)}lp (1.96)
j=1 jEk

The Schroedinger equation fully determines the wave function i at the moment ¢, if
it was known at some initial moment ¢ = 0. For example, for an isolated system with
time independent H we can write down its formal solution as:

Y(b) = erly(0). (1.97)

In quantum mechanics, the physical characteristics of a system are represented
by linear Hermitian (self-adjoint) operators acting in a Hilbert space of the wave func-
tions. Eigenvalues of such operators define the possible values of physical observ-
ables. The knowledge of the quantum state of the system i (a vector in Hilbert space),
in the general case, does not lead to the precise knowledge of physical characteristics.
It only allows us to calculate the average value of a dynamic variable represented by
an operator A in the state ) as:

(A) = (Y, Ap), (1.98)
where, as usual, we assume wave functions to be normalized:
W~ y¥) =1 (1.99)

where parenthesis denote the scalar product of vectors in Hilbert space:

(Y*¢) = J dxp” (x)p(x), (1.100)
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1.7 Density matrix =—— 23

where for brevity we denote by x the whole set of coordinates x;, . . ., Xy. Only in a spe-
cial case, when ) is an eigenfunction of operator A, equation (1.98) gives the precise
value of the physical quantity A in the state .

The state described by the wave function is usually called the pure state. The cor-
responding statistical ensemble, i. e. the large number of noninteracting “copies™ of
the system, belonging to the same quantum state, is called the pure ensemble. Pure
state (ensemble) gives the most complete description of the system within the quan-
tum mechanics.

Expressions for the averages of physical quantities in the pure ensemble can be
conveniently written, using the notion of the projection operator. Let us write down
the linear operator A as a matrix in x-representation, defining it by matrix elements:

Ap(x) = de'A(x,x')l,[)(x’). (1.101)
Substituting (1.101) into (1.98) we get:’
(A) = jdxdx'A(x, x"YP(x',x) = Sp(AP), (1.102)
where:

P6x") = hoop™ (x') (1.103)
is the projection operator on the state 1. It can be said that the pure ensemble is de-
scribed by the projection operator (1.103), while the averages over this ensemble are
calculated according to (1.102). Naturally this description is completely equivalent to
the standard formalism of quantum mechanics, using the wave function.

The name “projection operator” is connected with the nature of the action of 7 on
an arbitrary vector ¢ in Hilbert space — it projects it onto the “direction” of the vector i:

P = [ @ Pl () = (8" ). (1104)
The projection operator is Hermitian, as can be seen from its definition (1.103):
P*(xx") = P(x',x). (1.105)
It also has the following property:

pr=p (1.106)

9 In the following we use the notation of Sp for the sum of the diagonal elements of the matrix (trace),
which is traditional in European and Russian literature. In English literature it is usually denoted as Tr.
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24 — 1 Basic principles of statistics

which follows from (1.104) — after the first projection the following projections on the
same “direction” change nothing. We also have:

SpP=1 (1.107)

which follows from (1.102) after the replacement of A by the unity operator or from the
definition (1.103) taking into account the normalization (1.99).

1.7.2 Mixed ensemble

Quantum mechanics is an inherently statistical theory of pure ensembles, which pro-
vides the complete description of quantum reality. Quantum statistical mechanics
considers more general mixed ensembles, which are based on incomplete information
about the quantum system. Let us consider the bug number of identical noninteract-
ing copies of the given system, which can be in different quantum states. In the mixed
ensemble, we only know the probabilities w;, w,, ... to find a system in its exact quan-
tum states 1;, y,, . ... We do not know precisely in which state the system is in reality.
In this sense our knowledge is incomplete, since we only know these probabilities.
However, in the mixed ensemble we can certainly calculate the average value of an
arbitrary physical quantity, represented by an operator A as:

(A = Y w(Yr. Ay, (1.108)
k
where
Ywe=1 we<l (1.109)
k

These relations are, in fact, quite obvious, as (l/)]t,Al,bk) represents the quantum me-
chanical average of an operator A in the state ;. The pure ensemble is just the lim-
iting case of the mixed ensemble, when all probabilities w; are zero, except the only
one equal to unity. Then (1.108) reduces to (1.98).

To study mixed ensembles it is convenient to use the statistical operator first in-
troduced, independently, by Landau and von Neumann. Let us return to the linear
operator A in x-matrix representation (1.101). Substituting (1.101) into (1.108), we get:

(A) = dedx’A(x, x")p(x', x) (1.110)
or

(A) = Sp(pA), (1.111)
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1.7 Density matrix = 25

where
p(x') = Y Wiy 0O (x') (1.112)
k

is the statistical operator in the x-matrix representation or the so-called density matrix.
The density matrix depends on 2N variables Xx;,...,Xy,X';,..., X'y and satisfies
the normalization condition:

Spp=1, (1.113)

which is evident from its definition:

Spp = JdXP()GX) = ZWk(l/)Z»ll’k) =1 (1.114)
3

where the last equality follows from (1}, ;) = 1and Y wy = 1. Equation (1.113) is the
direct analogue of the normalization condition for the distribution function in classi-
cal statistical mechanics.

The general relation (1.111) is most convenient, as the trace of the matrix is in-
variant with respect to unitary transformations. Thus, equation (1.111) is independent
of the representation used for the operators A and p; it is valid for an arbitrary rep-
resentation, not only for x-representation used above. For example in some discrete
n-representation we have:

Ay =Y AP (1.115)

where A, are the matrix elements of operator A in n-representation, p,,, is the density
matrix in n-representation.
The density matrix (statistical operator) is Hermitian:

p (xx") = p(x',x) (1.116)

which follows directly from its definition (1.112). Using the projection operator (1.103)
we can write the statistical operator (1.112) as:

P=YWPys D We=1 w<l, (1.117)
k k

where Py, is the projection operator on the state ;.. In case of all w; zero except one,
which is unity, the statistical operator (1.117) simply coincides with the projection op-
erator (1.103).

To conclude this discussion, we show that statistical operator is positive defi-
nite, i. e. its eigenvalues are nonnegative. As p is Hermitian, positive definiteness of
its eigenvalues is equivalent to:

(A%) = Sp(pA?) = 0, (1.118)
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26 —— 1 Basic principles of statistics

where A is an arbitrary Hermitian operator. It becomes obvious, if we diagonalize p
(which is possible due to its Hermiticity) and write equation (1.118) as:

ZprmAnkAkn = zpnn|Ank|2 20, (1.119)
nk nk

which leads to conclusion that p,, > 0. For the density matrix (1.112) the property
(1.118) is satisfied as:

(A%) = Y Wi (A = Y WihimAmk = Y WilAgnl* 2 0 (1.120)
k km km

so that the statistical operator is positively definite. It can also be shown that all matrix
elements of the density matrix are limited by [37]:

Spp° =Y ol < 1. (1.121)
mn

John von Neumann (1903-1957) was a Hungarian and American mathematician,
theoretical physicist and computer scientist. He made major contributions into math-
ematics (foundations of mathematics, functional analysis, ergodic theory, represen-
tation theory, operator algebras, geometry, topology, and numerical analysis), the-
oretical physics (quantum mechanics, hydrodynamics, quantum statistical mechan-
ics), economics (game theory), computing (Von Neumann computer architecture, lin-
ear programming, self-replicating machines). Sometimes he is considered as one of
the greatest mathematicians of all times. During World War II, von Neumann worked
on atomic bomb in Manhattan Project. After the war, he proposed some key solutions
in the creation of the hydrogen bomb. In quantum statistical mechanics he introduced
the formalism of density matrices in 1927 (independently, but less systematically, it
was also introduced at that time by Lev Landau) and derived his version of quantum
ergodic and H-theorems. Von Neumann was the first to establish a rigorous mathe-
matical foundation for quantum mechanics in his 1932 book “Mathematical Founda-
tions of Quantum Mechanics”, where he also deeply analyzed the so-called measure-
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1.8 Quantum Liouville equation = 27

ment problem. Von Neumann was a founding figure in modern computer science and
inventor of the present day computer architecture. He died from cancer at the age of
53 in Washington, D. C., under military security guard to guarantee that he do not re-
veal the military secrets while being heavily medicated. Hans Bethe once said “I have
sometimes wondered whether a brain like von Neumann’s does not indicate a species
superior to that of man”.

1.8 Quantum Liouville equation

Let us consider the time evolution of the density matrix (statistical operator) of an
ensemble of systems described by the Hamiltonian H, which has no explicit time de-
pendence. At the moment t the density matrix (1.112) has the form:

p(6x") = Y Wi (%, iy (X', 1), (1.122)
K

where all the time dependence is contained in wave functions, while probabilities w;,
do not depend on t, as they correspond to the distribution of systems in the ensemble
att = 0. Wave functions y; (x, t) are the solutions of the time dependent Schroedinger
equation with initial conditions:

Vi (6 O)li=o = Pr (), (1123)
where 1, (x) is some system of wave functions defining the density matrix at t = 0:

p(6x") =Y Wi P (x'). (1.124)
K

If at the initial moment the relative number w;, of dynamical systems were in the state
Y (x, 0), then at the moment ¢ the same number of systems will be in the state i, (x, t).
Time dependence of ¥, (x, t) is determined by the Schroedinger equation:

ih% = Hp(x, t) (1.125)
or in x-matrix representation:
ih% = jdx'H(x, XN (X, 8). (1.126)

Accordingly, the density matrix satisfies the equation:

L0 [ a3 o x Wi (6 O . 0) - wiahe o, 00 (6 OB (1)
k

= J a"[HOo xXp(x",x", t) - p(e,x", ) H(x", x")], (1127)
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where we have used the Hermiticity of the Hamiltonian H* (x,x") = H(x', x). Thus we
obtain the equation of motion for the density matrix — the so-called quantum Liouville
equation. In operator form it is written as:

. 0p
lhg = [H,p], (1.128)
where
LIH,p] = ~(Hp - pH) = {H, p} (1.129)
ih ’p - ih p p - ’p .

are the quantum Poisson brackets.
For systems in statistical (thermodynamic) equilibrium p does not explicitly de-
pend on time and the quantum Liouville equation takes the form:

[H,p] =0 (1.130)

so that p commutes with the Hamiltonian and is an integral of motion, similar to the
case of classical statistical mechanics. Commutativity of operators p and H and their
Hermiticity allows them to have a common system of eigenfunctions. Thus, the statis-
tical operator of the equilibrium system can be written as:

p(6x") = Y wEPY Oy (x), (1.131)
k

where the wave functions are eigenfunctions of the Hamiltonian (stationary
Schroedinger equation):

Hy, = Eqy. (1.132)

1.9 Microcanonical distribution in quantum statistics

The main ideas of the Gibbs approach based on the concept of statistical ensembles
can be directly generalized from the classical to the quantum case. In equilibrium,
the state density matrix can depend only on additive integrals of motion, for the same
reasons as in the classical case (factorization of the density matrix for statistically in-
dependent systems and additivity of its logarithm). In quantum mechanics these inte-
grals of motion are the same as in the classical case: total energy of the system (Hamil-
tonian H), total momentum P and total angular momentum M (the corresponding op-
erators acting in the space of wave functions). Accordingly, the equilibrium density
matrix can be a function of H, P, M only:

p =p(H,P,M). (1.133)
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1.9 Microcanonical distribution in quantum statistics =—— 29

If the number of particles in systems of an ensemble N is not fixed, it has to be taken
into account as an additional integral of motion:

[N,H] =0, (1.134)

where N is the particle number operator with positive integer eigenvalues 0,1,2,....
Then:

p =p(H,P,M,N). (1.135)
For the system at rest we have P = M = 0 and:
p=pH) or p=p(H,N). (1.136)

Besides that, the statistical operator can depend on external parameters fixed for all
systems in an ensemble, e. g. on volume V.

The microcanonical distribution in quantum statistics can be introduced in the
same way as in classical statistics. Consider an ensemble of closed, energetically (adi-
abatically) isolated systems with constant volume V and total number of particles N,
which possess the same energy E up to some small uncertainty AE <« E. Let us sup-
pose that all quantum states in an energy layer E, E + AE are equally probable, i. e. we
can find a system from an ensemble in either of these states with equal probability.
Then:

[W(E,N, V)] forE <E,<E+AE

1.1
0 outside this layer (L137)

wiEp) - {
and this is what we call the microcanonical distribution of quantum statistics. Here ev-
erything is similar to the classical case, though the statistical weight W(E, N, V) is not
equal to the phase volume, but from the very beginning is just the number of quantum
states in the energy layer E, E + AE, for the system of N particles and volume V. This
follows directly from the normalization condition };, w(E;) = 1. The microcanonical
distribution corresponds to the density matrix of the form:

p(6xX") =WHEN,V) Y Phopp(x), (1.138)
1<k<W

which can also be written in operator form as:
p=WE,N,V)AH - E), (1.139)

where A(x) is the function, which is unity on the interval 0 < x < AE, and zero other-
wise.

Let us stress once again that the assumption of equal probability of quantum
states with the same energy for the closed (isolated) system is the simplest one, but
not obvious. The justification of this hypothesis is the task of quantum ergodic theory.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:48 AM
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1.10 Partial density matrices”

Similar to the classical case, in practice we do not need knowledge of the full den-
sity matrix of the N-particle system. In fact, the most important information about the
system can be obtained from the study of statistical operators for (rather small) com-
plexes of particles or so-called partial density matrices [6]. Consider again an arbitrary
system of N identical particles. Let us denote as x;, X,, . . . , Xy the variables of these par-
ticles (these may be coordinates, momenta etc.). Wave functions of the whole system
are functions of these variables:

'I)n(x> t) = !I)n(xl>~-~)XN>t)’ (1.140)

where n denotes the “number” (the set of quantum numbers) of the given state of the
system. Operators of physical quantities are represented by generalized matrices of
the following form:

A=A, X3 X - XY)- (1.141)
Consider the statistical operator for an N-particle system:

Pt X X5 X3 ) = Y Wl (g, Xy, P (X, X, ). (1.142)
n

For a system of Bosons:
Py, (x1,.... x5, t) = Pp(Xps .., Xy 0), (1.143)

where P is permutation operator of variables x; (i = 1,2,...,N). For a system of
Fermions:

PP, (xp, . xys ) = ()PP (0, X £, (1.144)

where (-1)? = 1 for even permutations and (-1)f = -1 for odd permutations. Thus, in
both cases we have:

Pp=pP or PpP'=p. (1.145)

While calculating the average values of physical characteristics we usually deal

with operators depending on variables of one, two, ..., s-particles:
A=) A®), (1.146)
1<r<N
Ay= Y A, (1.147)
1<r,<r,<N
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1.10 Partial density matrices® = 31

Ag = D Aty 1y, .., 1), (1.148)

1<K <r,<--<r;<N

where r; denotes the dependence on the coordinates of the i-th particle. The aver-
age values of such operators can be calculated with the help of density matrices, ob-
tained from the general p, taking the Sp over (most of the) the independent variables.
Taking into account the symmetry of p with respect to particles permutations (1.145),
we get:

(A;) = N Sp,[A)p; (D). (1.149)
(Ay) = w Sp1o (AL 2)py(L 2}, (1150)

N(N-1)...(N-s+1)

<A5> = !
S.

Sp1o. s{AL 2., 8)ps(1,2,...,9)}, (1.151)

where we have introduced the notations:

pi(1) = Spy_yp(1,2,...,N), (1.152)

p>(1,2) = Sp;_yp1,2,...,N), (1.153)

ps(1,2,...,8) = Sps,1 nP1,2,...,5,5+1,...,N) (1.154)

and for brevity we used the notations p,(1,2) = p,(x3,Xp5X],X)t), Sp,p>(1,2) =

SPy, P2(X1, X33 X, X35 ), etc. The density matrices pg are called statistical operators of
complexes of s-particles or s-particle density matrices.
For operators p,, due to (1.145), we have the following relations:

Py P = ps, (1.155)

where P; is permutation operator of s particles, and
ps(1,2,...,8) = SPs1 Psr1(1, ..., 8,5+ 1) (1.156)
which gives the expression for the s-particle density matrix via the s+1-particle density

matrix.
Instead of p,, let us use the operators F, defined as:

Fy(1,...,s) =N(N=1)---(N = s+ )ps(1,...,5). (1.157)
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From (1.156) we obtain similar relations:

1
F,(1,...,s) = N_s SPsi1 Fsi1(,...,8,8+1). (1.158)

In the limit of N — oo and for fixed s, we can neglect s in the denominator, so that:
1
F.(1,...,s) = N Spsi1 For1(L,....8,5 +1). (1.159)

Analogously to the classical case we shall call F the s-particle distribution functions.
Under permutations we obviously have: P;F P, 1o F,. The averages of the physical
quantities (1.151) are now written as:

(Ag) = % Spy,.s{AQ...,8)F(1,...,9)}. (1.160)

Let us write an operator .4, in the standard second quantized form:

Z Afy o fofss- - f)ag - agap---ap, (1.161)
{ff'

where a}“, as are operators of creation and annihilation of particles in some single
particle states, characterized by quantum numbers f, and A(fy,....fi;fi,....f]) is the
appropriate matrix element of an operator of the dynamical variable A. Then, calcu-
lating the ensemble averages we have:

(Ag) = Z Alfy s fsfsse o F)ay, - agagp ---ap). (1162)
{ff’

Comparing this expression with equation (1.160) we obtain the following general ex-
pression for the s-particle distribution function in second quantized form:

F,(1,...,s) = (a;1 ~--a;safsf “-ap), (1.163)

which is very convenient in practical calculations of quantum statistical mechanics
and is widely used in the modern theory of many-particle systems.'° In fact, calcula-
tion of these averages in different physical situations is the main task of this theory.
One of the methods to perform such calculations is to construct the system of coupled
equations for such distribution functions (Bogolyubov’s chain), similar to the clas-
sical case and its approximate solution by some method. This approach is used e. g.
during the derivation of quantum kinetic equations (see Chapter 10).

10 Let us stress that the angular brackets here denote averaging (taking the trace) with the full
N-particle density matrix!
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For a number of problems, as well as to discuss the correspondence with the clas-
sical case, it is often convenient to introduce the so-called Wigner’s distribution func-
tion in the “mixed” coordinate-momentum representation. Consider the single parti-
cle density matrix p,(1) = p(x,x’), where x are coordinates of the particle, and define
Wigner’s distribution function as:

1 : £ &
Xp) = —— | dEei?® <x+—,x——> 1.164

Foop) = 5o [ agerp(x+3x- 3 (1164)

i. e. via Fourier transform over the difference of coordinates £ = x — x'. Integrating this
function by x and p we obtain the diagonal elements of the density matrix in x and p

representations:

px.X) = jdpf(x, p) p(Dp.p) = jdxf(x, D) (1.165)

which is easily obtained from the definition of Wigner’s function, after proper change
of variables. Of course, this distribution function f(x, p) cannot be understood as a
distribution function over coordinates and momenta (because of the uncertainty prin-
ciple!), but its integrals separately define distribution functions over coordinates and
momenta. By itself, Wigner’s function can even be negative and does not have the
meaning of the usual (classical) distribution function.

1.11 Entropy

1.11.1 Gibbs entropy. Entropy and probability

Let us return to the case of classical statistical mechanics and consider the logarithm
of the distribution function (with inverse sign):

n=-Ilnp(p,q.t). (1.166)

This function plays a special role, e. g. above we have already seen that it is additive
for factorizing distribution functions of independent subsystems, which is analogous
to the additivity of entropy in thermodynamics. The average value of this function is
called Gibbs entropy:

dpdq

mp(p, q,t)Inp(p,q,t). (1.167)

s=m--|

Let us calculate this entropy for the microcanonical distribution (1.58) describing a
closed system in equilibrium. Substituting into equation (1.167) the distribution func-
tion given by (1.58):

(1.168)

[W(E,N, V)" forE < H(p,q) < E + AE
p(p)Q) =

outside this layer,
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where
1
W(E,N,V) = —— dpd 1.169
( )= AR pdq (1.169)
E<H(p,q)<E+AE
we obtain:
dpdq 1 -1
S(E,N,V) =- In|[W(E,N,V
( ) (2mh)3NN! W(E,N, V) [ J
E<H(p,q)<E+AE
=InW(E,N, V). (1.170)

Thus, for the microcanonical distribution Gibbs entropy is equal to the logarithm of
the statistical weight, i. e. to the logarithm of the number of quantum states in the
energy layer of width AE, corresponding to a given macroscopic state of our system.'!

In quantum statistics we may similarly introduce the operator of entropy via the
logarithm of the density matrix:

n=-Inp. (L.171)

We have seen above that the statistical operator p is Hermitian and positive definite.
Accordingly, its logarithm is also Hermitian and the entropy operator is positive: if
Wy, W,,... are the eigenvalues of operator p, the eigenvalues of operator n are corre-
spondingly —lnw;,—Inw,,... as the eigenvalues of the function of an operator are
equal to the same function of eigenvalues. From 0 < w;, < 1it follows that —lnw; > 0.

The entropy operator is additive: if the operator p is a direct product of operators

p1and py:
P =Py X Py (1.172)
we get
n=-Inp;,—lnp, =n; +n,. (1.173)

Now we can again introduce the Gibbs entropy as the average logarithm of the density
matrix (with a minus sign):

S=(n) =-({np) =-Spplnp. (1.174)

11 Statistical weight W(E, N, V) = exp S(E, N, V), by definition, is the number of energy levels in the
energy interval AE, which characterize the energy distribution width. Dividing AE by W(E, N, V) we
obviously get the average distance between the energy levels in the spectrum, in the vicinity of E.
Denoting this distance by D(E) we obtain: D(E) = AE exp(-S(E)). In this sense, the value of entropy
S(E) determines the density of states in this energy interval. Due to the additivity of entropy we can
claim that the average distance between energy levels of a macroscopic system is dropping off expo-
nentially with the growth of the number of particles, so that the spectrum of a macroscopic body is, in
fact, continuous [19].
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Entropy is positive definite and in some diagonal representation it can be written as:

S=-) wlnw >0. (1.175)
k
Only for the special case where the density matrix corresponds to a pure state, we
have S = 0 (one of w; = 1, all others are zero). If p describes statistically independent
ensembles (1.172), we get S = S; + S,, where S; = —Spp; Inp, and S, = - Spp, Inp,, so
that the Gibbs entropy is additive (as entropy in thermodynamics).

Let us discuss the statistical meaning of entropy. Consider a macroscopic state
of the system characterized by E, N, V and some additional macroscopic parameters
(X1, %5, ..., X,), Or just x for brevity. Let the statistical weight of the macroscopic state
with the fixed values of these parameters be W(E, N, V, x). Then, the probability that
this state (E, N, V, x) is realized, due to the equal probability of all states in the micro-
canonical ensemble is simply given by (sum of probabilities!):

W(E,N, V,x)
=——2" 77 - E,N,V,x)), 1.1
w(x) S WEN, V) C exp(S( X)) (1.176)
where
S(E,N,V,x) =InW(E,N,V,x) (1.177)

is the entropy of the state (E, N, V, x).

In many cases the most probable value of x, which we denote by x*, and the aver-
age value (x) just coincide, as the probability w(x) possesses a sharp peak at x = x* (for
a large enough system). The most probable value x* is determined by the maximum
of w(x):

S(E,N,V,x) =Max forx=x" (1.178)
or
aS(E’N"g;;T""’X;) 0 j=12...,n (1.179)
It is easy to conclude that
w(Ax) = C' exp{S(E,N,V,x" + Ax) - S(E,N, V,x")} (1.180)

determines the probability of the deviations (fluctuations) Ax of parameters x from
their most probable (average or equilibrium!) values.!? This property of entropy gives
the foundation of its statistical applications (Boltzmann’s principle), it is also the
foundation for the theory of fluctuations (Einstein, see Chapter 7).

12 We can write: w(x* + Ax) = Cexp{S(x* + Ax)} = C’ exp{S(x* + Ax) - S(x™)}, where C' = C exp{S(x*)}
is just the new normalization constant.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:48 AM



36 —— 1 Basic principles of statistics

1.11.2 The law of entropy growth

In thermodynamics, it is shown that, in the state of thermodynamic equilibrium, the
entropy of an isolated system can only increase or remain constant. For the equilib-
rium state we shall show below that Gibbs’ definition of entropy is actually equivalent
to thermodynamic entropy. However, for nonequilibrium cases, when the distribution
function p(p, g, t) depends on time, the situation is much more complicated. In fact,
we can easily show that for an isolated system the Gibbs entropy does not depend
on time at all, thus it just cannot increase. To see this, let the distribution function at
t = 0 be p(p°,¢°,0), while at the moment ¢ it is equal to some p(p, g, t), where (p, q)
belongs to a phase trajectory passing through (p°, ¢°) and moving according to Hamil-
ton’s equations. According to Liouville theorem we have (1.45):

p(po, a, 0) =p(p,q,t). (1.181)

Then at time ¢ the Gibbs entropy is equal to:

dpd
S=- J‘ %p(ﬂ q,t) lnp(p, g,t)
dp®dq®
B _J (Zifh)3gNlp(p0’qo’O) Inp(p°,¢°,0) (1.182)

as, due to the Liouville theorem on the conservation of the phase volume, we have
dpdq = dp°dq®. Then it is obvious that the Gibbs entropy cannot serve as the general
definition of entropy for the arbitrary nonequilibrium state. This is the major paradox
directly connected with the principal difficulty of justifying the irreversible thermo-
dynamic behavior by time-reversible equations of motion of classical (and also quan-
tum) mechanics, which lead to active discussions already at the initial stages of de-
velopment of statistical mechanics (Boltzmann, Zermelo, Poincare, Gibbs).

Using some early ideas of Gibbs, further developed by Paul and Tatiana Ehrenfest,
the following heuristic picture can illustrate the statistical sense of entropy growth
with time evolution of a mechanical system. Starting with the idea of the inevitable
limitations of measurements of coordinates and momenta in the phase space® let us
introduce the “coarse grained” distribution function related to “microscopic” distri-
bution p(p, g, t) by the following relation:

P, q.t) =p; = wi J dpdgp(p,q,t), (1183)

i @
where the integration (averaging) is performed over some small fixed “cells” in the
phase space w;, with size determined by the limitations of the measurements men-

13 This may be related to finite resolution of the experimental apparatus, sensitivity to initial condi-
tions etc.
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tioned above. Such averaging (“coarse graining”) of the distribution function just
means that we introduce some “natural” and finite resolution in the phase space —
smaller scales are outside the limits of the measurement procedures available to us.
For example, we have already noted that there exists an absolute lower boundary
for any “cell” w; in the phase space, which can not be smaller than rh)*N due to
the uncertainty principle.”* The “coarse grained” distribution function (1.183) is ob-
viously constant inside the appropriate “cell” w;, surrounding the point (p, q). Then,
any integral over the whole phase space with our distribution function can be written
as:

jdpdqp(p, Q=Y Py =) J dpdap(p.q)--- = Jdpdqﬁ(p, Q). (1184)

w;

Now we shall see that the Gibbs entropy, constructed with help of the “coarse grained”
distribution is, in the general case, time dependent and can increase with time. Let us
compare the values of the Gibbs entropy calculated with the “coarse grained” distri-
bution function at the moments t and ¢t = 0, assuming that at the initial moment the
microscopic distribution function just coincides with “coarse grained”:

p(r°.4°,0) = p(p°,¢°,0). (1.185)
We have:
St—=So=- J drpp,q,t) Inpp,q,t) + J dTop(p°, 4% 0)Inp(p°, ¢°,0)
=- J dTip(p,q.t)Inp(p,q.t) - p(p,q.t) Inp(p, g, )}, (1.186)

where we have used Liouville theorem to write dI'y = dI and also (1.181) and removed
the tilde over distribution function, which is not under the logarithm, which according
to (1.184) is always correct under integration.”

For two arbitrary normalized distribution functions p and p’, defined in the same
phase space, we can prove the following Gibbs inequality:'°

j drp 1n<§> >0, (1.187)

14 In general, the situation with entropy time dependence in quantum statistical mechanics is quite
similar to that in classical statistical mechanics and we shall limit ourselves here to classical case only,
referring to the discussions of the quantum case in the literature [37].

15 We have: | dpdgp(p, q) Inp(p, q) = X piw; Inp; = 3,1, dpdap(p, @) Inp;] = [ dpdgp(p, ) Inp(p.q),
which was used in equation (1.186).

16 This inequality follows from ln(f%) >1- % (p > 0,p’ > 0), where equality is valid only forp = p'.

It is clear from inequality Inx > 1 - %, valid for x > 0 (equality for x = 1), where we put x = t%' After

multiplication by p and integration over the phase space we get: f P ln(f%)dl" > J' p(1 - %’)dl" =0,
where we have used normalization, thus proving equation (1.187).
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where equality is achieved only in the case of p = p’. Then, from equation (1.186)
(taking p = p') we immediately obtain:

St = So. (1.188)
Let p(po, q°,0) be some nonequilibrium distribution. Then at the moment ¢:

P, q.t) # p(p, g, t) (1.189)

as though p(p, g, t) does not change along phase trajectory, but the “cell”, w, surround-
ing an arbitrary point (p, ) will be “visited” by phase points from other “cells” (chaot-
ically coming and going), and these processes, in the general case, will not compen-
sate each other. This is called “mixing” of phase points. Taking into account equa-
tion (1.189) from equation (1.188) it follows that:

S > S, (1.190)

i. e. entropy, defined with a “coarse grained” distribution function, grows with time.
This conclusion is valid if the motion of phase points is “mixing” in the above-
mentioned sense. The “mixing” nature of motion in phase space is intimately related
to the local instability of phase trajectories, which appears (as a rule!) for nontrivial
physical systems, even with a pretty small number of particles [35]. This instability
leads to exponential growth (in time) of the distance between phase points on differ-
ent trajectories initially quite close to each other. We shall discuss this situation in
more detail, though still on a rather elementary level, in Appendix A.

However, the introduction of the “coarse grained” distribution function can not
quite be considered as a satisfactory solution of the problem. The smaller the scale
of “coarse graining” (the size of the “cells” w) the smaller is the entropy growth, and
in the limit of w — O it just goes to zero. At the same time, the growth of physical
entropy should not depend on the scale of “coarse graining”. For example, we could
have taken w ~ #*", in agreement with the requirements of quantum mechanics, but
in this case the growth of the entropy would be controlled by the size of Planck’s con-
stant /. However, this is obviously not so; there is no such relation at all. There are
different points of view with respect to this problem. Some researchers believe [37]
that “coarse graining” should be performed within two limiting procedures: first we
must go to the usual thermodynamic limit of statistical mechanics with the number
of particles in the system N — oo, system volume V — oo, while the particle density
remains finite N/V = const, and only afterwards we perform the limit w — 0. The
modern point of view [35] is that the thermodynamic limit here is irrelevant and the
“mixing” of phase points (positive Kolmogorov entropy, see Appendix A) is sufficient
to guarantee “correct” physical behavior, even for systems with a rather small number
of degrees of freedom N > 2. An isolated system, irrespective of the initial conditions,
evolves to the equilibrium state, where it can (with equal probability) be discovered
in any of its possible microscopic states (ergodic behavior).
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Another, probably more physical approach to defining nonequilibrium entropy
[19] is based on the unquestionable definition of the entropy of the equilibrium state
(1.170). Assume that the system is initially in some not completely equilibrium state
and start to analyze its evolution during time intervals At. Let us separate the system
in some smaller (more or less independent) parts, so small that their relaxation times
are also small compared with At (relaxation times are usually smaller for smaller sys-
tems — an empirical fact!). During the time interval such subsystems At can be consid-
ered to be in their partial equilibrium states, which are described by their own micro-
canonical ensembles, when we can use the usual definitions of statistical weight and
calculate appropriate (equilibrium) entropies. Then the statistical weight of the com-
plete system is defined as the product W = []; W of statistical weights of the separate
subsystems, and the entropy S = Y; S;. In such an approach, the entropy characterizes
only some average properties of the body during some finite time interval At. Then it is
clear that for too small time intervals At the notion of entropy just looses its meaning
and, in particular, we can not speak about its instant value.

More formally, in this approach, we can analyze the entropy growth in the follow-
ing way. Consider the closed macroscopic system at time t. If we break this system
into relatively small parts (subsystems), each will have its own distribution function
p;. The entropy S of the whole system at that moment is equal to:

S= —Z(lnpi) = —<lan,~>. (1.191)

Considering our subsystems as quasi-independent, we can introduce the distribution
function of the whole system as:

p=T1e: (1192)

To obtain the distribution function at some later time ¢’ we have to apply to p the me-
chanical equations of motion for the closed system. Then p will evolve at the moment
t' to some p’. To obtain the distribution function of only i-th part of the system at the
moment t' we must integrate p’ over phase volumes of all subsystems, except the i-th.
If we denote this distribution function as p}, then at the moment t' we get:

pi = H j J -o.dlydly - dl;_dlyy ---p'. (1.193)

12 i-1i+1

Note that in the general case p’ already cannot be written as a product of all p. The
entropy at the moment ¢, according to our definition is:

S'=- Z(ln pi), (1.194)
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where the averaging (---) is already performed with distribution function p'. Let us

now use the inequality In x < x — 1, valid for x > 0. Here, set x = Hp;,p'( to obtain:
!
~Inp’ + Zlnp{ < % -1 (1.195)
1

Averaging both sides of this inequality with distribution function p’, we get zero in
ther.h.s., as [ dIydl, - [[;pj = []; [ dlip; = 1 due to normalization, while the L. h.s.
reduces to (—Inp') + Y;(Inp}). Finally we get:

-(lnp'y-S' <o. (1.196)

According to Liouville theorem, the distribution function p does not change under me-
chanical motion, so the value of —(Inp') remains equal to —(In p), which is the initial
entropy S. Thus we obtain:

S'>S, (1.197)

proving the entropy law: if the closed system is defined by its macroscopic state at some
moment in time, the most probable behavior at some later time is the growth of entropy.

Mechanical equations of motion are symmetric with respect to the replacement
of t by —t. If mechanical laws allow some process, e. g. characterized by the growth
of entropy, they also must allow just the opposite process, when the system passes
through precisely the same configurations in inverse order, so that its entropy dimin-
ishes. It may seem that we arrived at a contradiction. However, the formulation of the
law of entropy growth used above, does not contradict the time invariance, if we speak
only about the most probable evolution of some macroscopically defined state. In fact,
the above arguments never explicitly used the fact that ¢’ > ¢! A similar discussion will
show that S’ > S also for t < t'. In other words, the law of entropy growth means only
that given the macroscopic state, of all microscopic states forming this macroscopic
state, an immensely vast majority will, at a later time, evolve to the state with larger
entropy (or the same entropy in case of equilibrium). Thus the entropy law is primarily
a statistical statement!

To understand this situation better, we may use a heuristic model discussed first
by Paul and Tatiana Ehrenfest. Consider 2R balls, numbered from 1 to 2R, and dis-
tributed among two boxes A and B. At some discrete moment in time s, a random num-
ber generator produces some integer from the interval between 1 and 2R. Then, the
ball with this number is just transferred from one box to another and this procedure
continues for many times. Actually, this procedure is simple to realize on any modern
PC. Intuitively, it is quite clear what happens. Consider, for simplicity, the initial state
when all balls are in the box A. Then, on the first step we necessarily transfer one ball
from A to B. On the second step we may return to the initial state, but the probability
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of this event is (2R) ! and small if 2R is big enough. Actually, with much larger prob-
ability 1 - (ZR)‘I, another ball is transferred to box B. It is clear that until the number
of balls n, in box A is significantly larger than the number of balls ng in box B, we
“almost always” will only observe transitions from A to B. Or, in more detail, let there
be n,(s) balls in box A at time s, while in box B there are 2R — n,(s) balls. At the next
moment s + 1 the probability of obtaining the ball with the number belonging to box

Ais ;'—g, while for the ball from box B, the probability, naturally, ZRZ;Q"A . However, until
ny > 2R — ny, the “relative chance” ZR"an of a ball from A to appear, compared to the

similar chance of emergence of the ball from B, is obviously larger than 1. Thus, the
transition A — B is more probable and the difference between the number of balls in
our boxes diminishes with “time”. This tendency persists until we achieve the equality
ny - (2R-ny,) = 0, and it becomes weaker as this difference approaches zero. Thus, as
the number of balls in both boxes tends to be equal, the probabilities of balls emerging
from either A or B become closer to each other, and the result (for further moments in
time) becomes less and less clear. The next transfer may lead to further “equalization”
of the number of balls in both boxes, but it may also lead to the inverse process. Fig-
ure 1.2 shows a typical realization of such an experiment with 40 balls. It is seen that
initially the process seems to be irreversible, but close to the “equilibrium state”, the
difference between the number of balls in our boxes starts to fluctuate, which shows
that in fact we are dealing with a reversible process.!” We cannot say that this differ-
ence always diminishes with “time”, but we can be absolutely sure that for large values
of the number of balls 2R it diminishes “almost always”, while we are far enough from
the “equilibrium”. The behavior of entropy in a nonequilibrium many-particle system
is precisely the same (with negative sign)!

Ehrenfest’s model allows a simple answer to all objections against the statistical
mechanical justification of irreversible behavior. According to the principle of micro-
scopic reversibility of mechanical motion, the process, after “time reversal”, when the

in s H H o
P ¥ H H
EHEHT aa: T H H 5

0 10 20 30 40 50 60 70 80 90

Figure 1.2: Typical realization of Ehrenfest’s “H-curve”. Ordinate shows the value of |n4(s) — ng(s)| =
2|n,(s) — R|.

17 On Figure 1.2 these fluctuations are always positive because the ordinate shows the absolute value
of the difference between the number of balls in boxes A and B.
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movement of the balls will go in precisely reverse order along the same “H-curve”, is
completely possible. But for large enough values of R such a process is absolutely im-
probable. The probability of all balls to return “sometime” to a single box is not zero,
but it is extremely small (say for R ~ 10%2!). Precisely the same is the meaning of ther-
modynamic irreversibility and the law of entropy growth.!®

Thus, the common viewpoint is that an evolving isolated system essentially passes
through states corresponding to more and more probable distributions. This behavior
is overwhelming, due to the factor exp(S), where in the exponent we have an additive
entropy. Thus, the processes in a closed nonequilibrium system develop in such a way,
that the system continuously goes from states with lower entropy to states with larger
entropy, until the entropy reaches its maximum in the state of statistical equilibrium.
Speaking about “most probable” behavior we must take into account that in reality
the probability of a transition to a state with larger entropy is immensely larger than
the probability of any significant entropy drop, so that such transitions are practically
unobservable (up to small fluctuations). This purely statistical interpretation of the
entropy growth was first formulated by Boltzmann. “It is doubtful whether the law
of increase of entropy thus formulated could be derived on the basis of classical me-
chanics” [19].”° In the framework of modern statistical mechanics of nonequilibrium
systems [37, 3] and physical kinetics [5, 12, 23] it is possible to explicitly demonstrate
the entropy growth in a number of concrete statistical models. However, we always
need some physical (statistical) assumption to obtain this behavior. We shall return to
a brief discussion of these problems later.

18 “What, never? No, never! What, never? Well, hardly ever!” to quote Captain Corcoran of H. M. S.
Pinafore by W. Gilbert and A. Sullivan (1878). This quotation was used in the context of entropy behav-
ior in Ch. 4 of “Statistical Mechanics” by J. Mayer and M. Goeppert-Mayer, Wiley, NY 1940.

19 Landau made the interesting observation that in quantum mechanics the situation probably
changes. Though the Schroedinger equation, by itself, is invariant with respect to time reversal (with
simultaneous replacement of i by ™), quantum mechanics contains some inequivalence of both di-
rections of time. This inequivalence appears due to the importance of the process of interaction of
the quantum object with a classical system (e. g. related to the measurement process). If the quantum
object undergoes two successive processes of such an interaction, say A and B, the claim that the prob-
ability of some outcome of the process B is determined by the result of the process A is justified only
if the process A preceded B. Thus it seems that in quantum mechanics there is some physical inequiv-
alence of both directions of time, so that the law of entropy growth may follow from it. However, in
this case there should be some inequality containing £, justifying the validity of this law. There is no
evidence at all that this is true. Similarly, we may mention the possibility to explain irreversible ther-
modynamic behavior by the experimentally known fact of very weak CP-symmetry violation in the
modern physics of elementary particles, which inevitably leads to a weak violation of T-invariance in
the processes of elementary particle interactions. Up to now there is no accepted interpretation of this
kind.
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Paul and Tatiana Afanasyeva -
Ehrenfest. Paul Ehrenfest (1880-
1933) was an Austrian and Dutch theo-
retical physicist, who made major con-
tributions to the field of statistical me-
chanics and quantum mechanics, in-
cluding the theory of phase transition.
His wife Tatiana Afanasyeva (1876—
1964) was a Russian mathematician
who made contributions to the fields
of statistical mechanics and statistical
thermodynamics. Paul took courses at
the University of Vienna, in particular from Ludwig Boltzmann on his kinetic theory
of thermodynamics. These lectures had a profound influence: they were instrumental
in developing Ehrenfest’s interest in theoretical physics. Continuing his education
in Gottingen, Germany, he met his future wife Tatiana Afanasyeva, a young mathe-
matician born in Kiev, Russian Empire, and educated in St Petersburg. They married
in 1904 and collaborated in their scientific research, most famously on their classic
review of the statistical mechanics of Boltzmann “The Conceptual Foundations of the
Statistical Approach in Mechanics”, originally published in 1911 as an article for the
German Encyclopedia of Mathematical Sciences. Ehrenfest’s most important contri-
bution to physics were the theory of adiabatic invariants and classification of phase
transitions. He also made major contributions to quantum mechanics (Ehrenfest the-
orem). The evening colloquium in physics at Leiden University, initiated by him in 1912
was attended by many prominent physicists at a time. He was a close friend of Albert
Einstein. On his invitation Einstein accepted in 1920 an appointment as professor at
the University of Leiden. This arrangement allowed Einstein to visit Leiden for a few
weeks every year. At these occasions Einstein would stay at Ehrenfest’s home. At the
end of his life Ehrenfest suffered from severe depression and on 25 September 1933
he fatally shot his younger son, who had Down syndrome, and then killed himself.
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2 Gibbs distribution

2.1 Canonical distribution

Let us consider from a practical point of view the most important task of finding the
distribution function of an arbitrary macroscopic body that is a small part (subsystem)
of a much larger closed (adiabatically isolated) system. Suppose that we can consider
this large system as consisting of two parts: the body (subsystem) of interest to us
and the rest of the system (surrounding the body), which we shall call a thermostat or
bath (cf. Figure 2.1). It is assumed that the thermostat is a system with many degrees
of freedom that can exchange energy with our subsystem and is so large that its own
state is unchanged during such interaction.!

Let us start with quantum statistics. Both parts, our subsystem and the bath, can
be considered as a single, energetically isolated (closed) system with Hamiltonian:

H = Hl + Hz, (2.1)

where H, is the Hamiltonian of the (sub)system under study and H, is the Hamiltonian
of the bath (thermostat), which is assumed to be much larger than the system of inter-

Figure 2.1: System (1) in a thermostat (bath) (2).

1 The following presentation mainly follows from [37]. Some points are explained following [19].

https://doi.org/10.1515/9783110648485-002

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:51 AM



46 —— 2 Gibbs distribution

est to us. Interaction between our system and the bath is assumed to be very weak but,
strictly speaking, finite, as it must be to guarantee the equilibrium state of both parts
of the large system (in Hamiltonian (2.1), this interaction is just dropped).? In this case,
the wave function corresponding to the Hamiltonian (2.1) is factorized into a product
of the wave functions of the bath (system 2) and the body under study (system 1):

Vi, y) = Y COY;(y), (2.2)

where ;. (x) is an eigenfunction of H; and ;(y) is an eigenfunction of H,, while x and
y are sets of coordinates of the system and the bath correspondingly.

Energy levels of the whole (composite) system (neglecting small-surface interac-
tion effects) are just the sums of the energy levels of systems (1) and (2):

Eik = Ei + Ek’ (2.3)

where E; denote the energy levels of the system (1), and E; denote the energy levels of
the bath (2).
The statistical operator (density matrix) of the whole (closed!) system is:

p(xysx'y') = w06 Yy (¢, y"), 4)
i

where wy, is defined, according to our basic assumption, by the microcanonical dis-
tribution (1.58):

w(Ey) =

{[W(E)]‘l for E < Ey <E +AE 25)

outside this energy layer.
The density matrix of the system under study (1) can be obtained by taking the trace

of the statistical operator of the whole (composite) system over the coordinates (vari-
ables) of the bath (subsystem (2)):>

p(x") = Spyp(xysx'y') = Y wy J Ay 06 VP, y). (2.6)

ik

From here, using (2.2) and the orthonormality of the wave functions, we immediately
obtain:

pxx') = Y widh (Wi (x'), @7)
k

2 For example, the thermal contact of our body with a bath is only through its boundary and can be
considered as a small surface effect.

3 This operation is similar to the one we used while obtaining, e. g., the single-particle density matrix
for two particles.
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where
Wy = Zwik. (28)
i

Now it is clear that, to get the probability distribution of quantum states for system
(1), we have to simply sum the probability distribution for the whole system over the
states of the bath (thermostat):

WED = Y W+ Elssics = g 2 Uss 29)

where for brevity we denoted Ej;;, = E. It is clear that (2.9) reduces to:

W)(E - Ey)

w(Ey) = W)

, (2.10)
where W,(E — E;) is the number of quantum states of the bath with energy E - E,
while W(E) is the number of states of the whole (composite) system, corresponding to
energy E.

Introducing the entropy of the bath S,(E) and the entropy of the whole system S(E)
via (1.170), we rewrite (2.10) as:

W(Ey) = exp{S,(E - E;) - S(E)}. (2.11)

Taking into account that our system (1) is small in comparison with the bath, so that
E, < E, we can write an expansion:

oS
Sy(E - Ey) = S,(E) - a_EZEk' (2.12)
Substituting (2.12) into (2.11), we get:
Ey
w(E;) = Aexp -7 ) (2.13)

where we have introduced the temperature T (of the bath!) as:

1 0S,(E) _olnW,(E)
T O0E 0E (2.14)

This definition of the (inverse) temperature coincides with that used in thermody-
namics if we identify our entropy with that of thermodynamics. In equation (2.13)
A = exp{S,(E) — S(E)} = const, it is a constant independent of E;, i. e., independent of
the state of our system under study (1), and this constant can be determined by just
a normalization condition. Equation (2.13) is one of the most important expressions
of statistical mechanics; it defines the statistical distribution for an arbitrary macro-
scopic body, which is a relatively small part of some large closed system (essentially,
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this is probably the most general case of a problem to be solved in reality—there is
always some surrounding media for any system of interest!). Equation (2.13) is the so-
called canonical Gibbs distribution.

The normalization constant A is determined from ), w; = 1, and using (2.13) we
immediately get:

Ex

1 B
Z=z-= T 21
" %e (2.15)

Here we introduced Z, which is usually called the statistical sum or partition function.
Using this notation, we can rewrite the canonical distribution (2.13) in the following
standard form:*

w(Ey) = 7! exp<—E—]f‘>. (2.16)

The average value of an arbitrary physical variable, described by quantum operator f,
can be calculated using the Gibbs distribution as:
_E
) =Y wifiac = Z"fLe (2.17)
k ke T
where f}; is the diagonal matrix element f calculated with eigenfunctions correspond-
ing to the exact energy levels of the system E;.

In classical statistics, we may proceed in a similar way. Let us consider a small part
of an isolated classical system (subsystem), so that we can write a volume element drI',,
of the phase space of the whole (isolated) system as dTl', = dI"’dl, where dT is related
to our subsystem, while dI” relates to the bath (surrounding media). We are interested
in the distribution function for the subsystem, and where the bath is in phase space
is of no interest to us, so that we just integrate over its variables (coordinates and mo-
menta). Using the equality of the probabilities of all states of microcanonical ensemble
(describing the whole closed system, consisting of our subsystem and the bath), we
get:

dw ~ W'dr, (2.18)

where W' is the phase space (statistical weight) of the bath. Rewriting this statistical
weight via entropy, we obtain:

W' ~ exp{S'(E, - E(p,9))}, (2.19)

where E| is the energy of the whole closed system, while E(p, g) is the energy of the
subsystem. The last relation takes into account that the energy of the thermostat (bath)
is given by: E' = E, - E(p, q), because E, = E' + E(p, q), if we can neglect interactions

4 If we measure the temperature in absolute degrees (K), and not in energy units, as is done in the
whole text, we have to replace T — kgT, where kg is Boltzmann’s constant, kg = 1.38 10716 erg/K or
kg = 1.381072 J/K. In this case we also have to add kj to our definition of entropy: S = kg In W.
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between the subsystem and the bath. Now everything is quite easy:

dw = p(p, q)dT ~ exp{S'(E, - E(p, 9))}dT (2:20)

so that

. q) ~ exp{S'(Ey ~ E(p. 9)}- (2.21)
As previously, we can expand:

ds'(E)

S'(Ey - E@,q)) = S'(Ey) - E(p,q) iE
0

=S'(Eq) - , (2.22)

E.q)
T

where once again we have introduced the temperature of the bath T. Finally we obtain
the canonical distribution:

p(p.q) = Ae T 223)

where E(p, q) is the energy of the body under study (the subsystem in the bath), as a
function of the coordinates and momenta of its particles. The normalization constant
A is determined by the condition:

_Ewg
jdl‘p(p,q) :AJdl"e T =1
Z=Al- J dre %", (2.24)

where Z is called statistical integral or partition function.
Let us return to the quantum case. The density matrix corresponding to the canon-
ical Gibbs distribution can be written as:

pox)=2"Y et YrOPr (x), (2.25)
K

where x is the coordinate set (and probably also spins) of particles (if we work in co-
ordinate representation), and i, (x) are eigenfunctions of Hamiltonian H.

Let us introduce the operator exp(—%). Then we can write down the compact op-
erator expression for the canonical distribution:

p= 7! exp(—%) (2.26)

and the partition function:

Z=Sp exp<—g>. (2.27)

This expression for the partition function is very convenient because of the invariance
of the trace (Sp) with respect to matrix representations; it is independent of the choice
of wave functions 1, (x), which may not necessarily be eigenfunctions of H.
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Up to now, we have spoken about the canonical Gibbs distribution as a statisti-
cal distribution for a subsystem inside some large closed system. Note that, in equa-
tion (1.56), we in fact already obtained it almost from “nothing”, while discussing the
role of energy and other additive integrals of motion. This derivation was absolutely
correct, but it was relatively obscure and formal from the physical point of view.

It is necessary to stress that the canonical distribution may be successfully ap-
plied also to closed systems. In reality, the values of thermodynamic characteristics
of the body are independent of whether we consider it as a closed system or a system
in some (probably imaginary) thermostat (bath). The difference between an isolated
(closed) and an open body is only important, when we analyze the relatively unimpor-
tant question of fluctuations in the total energy of this body. The canonical distribution
produces some finite value of its average fluctuation, which is a real thing for the body
in some surrounding media, while it is fictitious for an isolated body, because its en-
ergy is constant by definition and is not fluctuating. At the same time, the canonical
distribution is much more convenient in most calculations than the microcanonical
distribution. In fact, it is mostly used in practical tasks, forming the basis of the math-
ematical apparatus of statistical mechanics.

2.2 Maxwell distribution

As a very simple example of an important application of the canonical distribution,
we consider the derivation of Maxwell’s distribution function. In the classical case,
the energy E(p, q) can always be represented as a sum of kinetic and potential energy.
Kinetic energy is usually a quadratic form of the momenta of the atoms of the body,
while potential energy is given by some function of their coordinates, depending on
the interaction law and external fields, if the are present:

E(p,q) = K(p) + U(q) (2.28)
so that the probability dw = p(p, g)dpdq is written as:

K@) Uq)
dw=Ae Te T dpdq (2.29)
i.e., is factorized into the product of the function of momenta and of coordinates. This
means that probability distributions for momenta (velocities) and coordinates are in-
dependent of each other. Then we can write:

_K(p)

dw, =ae T dp, (2.30)
_U@

dw, =be T dq. (2.31)

Each of these distribution functions can be normalized to unity, which will define the
normalization constants a and b.

Let us consider the probability distribution for momenta (velocities) which, within
the classical approach, is independent of interactions between particles or on external
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fields and is in this sense universal. For an atom with mass m, we have:’

1
dw, = a exp(—z—(p,z( +p)2, +p§)>dpxdpydpz (2.32)

mT

from which we see that the distributions of momentum components are also indepen-
dent. Using the famous Poisson—Gauss integral,®

o0
2
I= j dxe ™ = \E (2.33)
—00
we find:
o0 (o) o0 1
a J dp, J dp, J dpzexp[—m(piwiwﬁ)]
-0 =00 00
[} 3
_ a( J dpe_pz/zmT> - a@amT)*"
so that:

a = (2mmT)>"2, (2.34)

Finally, the probability distribution for momenta has the following form:
- o <_p§ 0D
? = Qamry P\ omT

Transforming from momenta to velocities, we can write the similar distribution func-

tion for velocities so:
m m(v)zc + v}z, + vﬁ)
dwy, = <271_T> exp(—T
This is the well-known Maxwell’s distribution, which is one of the first results of clas-
sical statistics. In fact, it is factorized into the product of three independent factors:

[m _mi
dw, = ﬁe T dy, - (2.37)

each determining the probability distribution of a separate component of velocity.

Note that the Maxwell distribution is valid also for molecules (e. g., in a molecular
gas), independent of the nature of the intramolecular motion of atoms (i in this case
is just the molecular mass). It is also valid for the Brownian motion of particles in
suspensions.

>dpxdpydpz. (2.35)

3/2
)dvxdvydvz. (2.36)

5 The kinetic energy of the body is the sum of the kinetic energies of the constituent atoms, so that
this probability distribution is also factorized into the product of distributions, each of which depends
only on the momenta of one atom.

i 2 2 [ 4xe® (™ dve® = [® dx [© dve- ) — 27 (® dope=® =
6 Itoo is easy to see that I* = [ dxe™™ [7" dye™ = [ dx [ dye =271 [ dppe™®” =
b .[0 dze™™ = m/a, thus proving the Poisson—Gauss expression.
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52 —— 2 Gibbsdistribution

Transforming from Cartesian to spherical coordinates, we obtain:

m \3?
dw, = (-
Wy <27'[T>

where v is the absolute value of the velocity, while 6 nd ¢ are polar and azimuthal
angles, determining the direction of the velocity vector v. Integrating over the angles,
we find the probability distribution for the absolute values of the velocity:

m 3/2
dw, = —
w, 4n< 271T)

e T v2sin 0dOdpdv, (2.38)

sz
e 7 vidv. (2.39)

As a simple example of the application of the Maxwell distribution, let us calculate the
average value of the kinetic energy of an atom. For any of the Cartesian components
of the velocity, we have:’

(0]
_mz T
2y = % J dvie T = —. (2.40)
—00

Thus, the average value of the kinetic energy of an atom is equal to 3T/2, i. e., 3kgT/2,
if we measure the temperature in absolute degrees. Then the average kinetic energy of
all particles of the body in classical statistics is always equal to 3NT/2, where N is the
number of atoms.

James Clerk Maxwell (1831-1879) was a
Scottish scientist in the field of mathematical
physics. His most notable achievement was
to formulate the classical electrodynamics
(Maxwell equations), bringing together elec-
tricity, magnetism and light as different man-
ifestations of the same phenomenon. Basi-
cally, his theory forms the foundation of all
modern applications of electricity and mag-
netism and electrotechnics in general. With
the publication of “A Dynamical Theory of
the Electromagnetic Field” in 1865, Maxwell
demonstrated that electric and magnetic fields travel through space as waves moving
at the speed of light. The unification of light and electrical phenomena led to the pre-
diction of the existence of radio waves, leading to modern communications. Actually,
his contribution to physics is considered to be on the scale of Newton and Einstein. At
the same time, he was one of the founders of statistical physics and the kinetic the-

7 For the integral of the general form I,, = f(;)o dxx"e’w‘z, we have: I;, = %a’nTHF("T“), where I'(x) is

the I'-function whose values for half-integer values of its argument are well known and can be found
in handbooks.
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2.3 Free energy from Gibbs distribution =—— 53

ory of gases. Between 1859 and 1866, he developed the theory of the distributions of
velocities in particles of a gas, work later generalized by Ludwig Boltzmann. The for-
mula, called the Maxwell distribution, gives the fraction of gas molecules moving at
a specified velocity at any given temperature. In the kinetic theory, temperatures and
heat involve only molecular movement. This approach generalized the previously es-
tablished laws of thermodynamics. In 1871, he established Maxwell’s thermodynamic
relations, which are statements of equality among the second derivatives of the ther-
modynamic potentials with respect to various thermodynamic variables. Maxwell’s
work on thermodynamics led him to devise the thought experiment that came to be
known as Maxwell’s demon, where the second law of thermodynamics is violated by
an imaginary being capable of sorting particles by energy. As a great lover of Scottish
poetry, Maxwell memorized many poems and wrote his own. He died in Cambridge of
abdominal cancer on 5 November 1879 at the age of 48.

2.3 Free energy from Gibbs distribution

According to equation (1.175), the entropy of a body can be calculated as the average
value of the logarithm of the distribution function:

S = —<1an> = —ZWk ank. (2.41)
k
Substituting here the canonical distribution in the form of equation (2.16), we ob-
tain: —(Inwy) = InZ + % YiwiEr =InZ + <£T>, where (E) = Y, w E is the average
energy. As this average energy (E) is precisely the same thing as the energy of the body
E in thermodynamics, we can write (2.41) as: S =InZ + %, or using the expression for
the free energy in thermodynamics F = E — TS:

F:—Tan:—Tane*ETk. (2.42)
k
This is the basic relation of equilibrium statistical mechanics, giving an expression
for the free energy of an arbitrary system via its statistical sum (partition function). In
fact, this fundamental result shows that, to calculate the free energy of a body, it is
sufficient to know its exact energy spectrum. We do not have to know, e. g., the wave
functions, and finding the spectrum of the Schroedinger equation is much a simpler
task than the solution of the complete quantum mechanical problem, including the
determination of the wave functions (eigenvectors).
From equation (2.42), we can see that the normalization factor in the Gibbs distri-
bution (2.16) is, in fact, expressed via the free energy: % = e%, so that equation (2.16)
can be written as:

Wy = exp( F _TE" > (2.43)

It is the most common way to write the Gibbs distribution.
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54 —— 2 Gibbs distribution

Similarly, in the classical case, using (1.167), (2.23) and (2.24), we obtain:

pp:q) = exp< 1%(19,(;) ) (2.44)
where
F= —Tlnjdl“exp(—@) (2.45)

and drl' = (2:;%§EN1 . Thus, in the classical approach, the statistical sum is just replaced
by the statistical integral. Taking into account that E(p, q) here can always be rep-
resented by the sum of kinetic K(p) and potential U energies, and kinetic energy is
always a quadratic form of momenta, we can perform momentum integration in the
statistical integral in its general form (see the previous discussion of the Maxwell dis-
tribution!). Thus, the problem of the calculation of the statistical integral is reduced to

integration over all coordinates in e” 7 , which is of course impossible to do exactly.

2.4 Gibbs distribution for systems with varying number of
particles

Up to now, we implicitly assumed that the number of particles in the system is some
predetermined constant. In reality, different subsystems of a large system can ex-
change particles between them. The number of particles N in a subsystem fluctuates
around its average value. In this case, the distribution function depends not only on
the energy of the quantum state but also on the number of particles N of the body.
In fact, the energy levels Ejy themselves are different for different values of N. Let
us denote as w;y the probability for the body to be in the k-th state and contain N
particles. This probability distribution can be obtained in the same way as we just
derived the probability wy.

Consider the closed (isolated) system with energy E©) and number of particles
N©, consisting of two weakly interacting subsystems with energies E’ (bath) and E;y
(small subsystem) and respective numbers of particles N’ (bath) and N (subsystem):

EQ-Ey+E NO=-N+N' (2.46)

We assume that the subsystem of interest to us is small in comparison to the bath
(particle reservoir), so that:

Ew <E N«N. (2.47)

As we assume the full composite system to be isolated, it can again be described by
the microcanonical distribution. Similar to the derivation of the canonical distribu-
tion, we can find the probability distribution for a small subsystem w;, by summing
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2.4 Gibbs distribution for systems with varying number of particles =—— 55

the microcanonical distribution for the whole system over all states of the bath. In
complete analogy with equation (2.10), we get:

~W'(E? -Eyw, N9 -N)
Wi = T 00 (£, NO)

, (2.48)

where W' is the statistical weight of the bath, while WO is the statistical weight of
the full (closed) system. Using the definition of entropy, we immediately obtain:

Wiy = Constexp{S'(E? - Ey, N© - N)}. (2.49)

Now we can again expand S’ in powers of E;y and N, restricting ourselves to linear
terms only:

S'(E? - Ey. N9 - N) = §'(E?,N?)

oS’ oS’
(Z) Ey-(Z) N+---. 2.50
(aE>V,NkN <5N>E,v ' (250)

Then, remembering the thermodynamic relations for the system with a variable num-
ber of particles [19]:

dE = TdS — PdV + udN; = <a—E> (2.51)
aN S,V
or
as= L Pay By 2.52)
T T T )
we obtain:
0S 1 0S u
_ = —; —_— = —-—. 2.
(aE>V,N T <aN )E,V T (253)

Then we can rewrite the expansion (2.50) as:

S'(E? - Eg, N -N) = §'(E?,N©) - ET"N + ’g (2.54)
Notice that both the chemical potential u and temperature T of the body (subsystem)
and the bath (thermostat) just coincide due to the standard conditions of thermody-
namic equilibrium.
Finally, we obtain the distribution function:

N - E
Wiy = A exp(’l—T"N ) (2.55)
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56 —— 2 Gibbs distribution

The normalization constant A can again be expressed via thermodynamic variables.
To see this, let us calculate the entropy of the body:

1
S=-(Inwy) =-InA- %(N) +(B) (2.56)
or
TInA = (E) - TS - u(N). 2.57)

Identifying (E) with energy of the body E in thermodynamics and (N) with the particle
number N in thermodynamics, taking into account the thermodynamic relation E —
TS = F and introducing the thermodynamic potential Q as Q = F — uN [19], we have:
T1lnA = Q, so that equation (2.55) can be rewritten as:

Q+yN—EkN>

T (2.58)

This is the final form of the Gibbs distribution for the system with a variable number
of particles, which is called the grand-canonical distribution.
The usual normalization condition for (2.58) is:

Y Y Wi = e Z(e% Ze‘EkTN> =1 (2.59)
N k N k

From here, we obtain the general expression for the thermodynamic potential Q in
statistical mechanics:

E,
Q=-Tln Z(eg Ze_%>, (2.60)
N k

where the expression on the right-hand side can be called a grand partition function.
The average number of particles (N) in our system is determined by the relation-
ship:

Ny =Y Y Nuwgy = e Z(Ne% Ye ) 2.61)
N k N k

which can be considered as a kind of additional “normalization” condition. Actually,

this equation implicitly determines the chemical potential u as a function of temper-

ature and a fixed average particle number (N), which is equivalent to the number of

particles N in thermodynamics. This is the general recipe to determine y, which will

often be used in future calculations.

Expressions (2.42) and (2.60) determine thermodynamic characteristics for arbi-
trary systems in equilibrium. The free energy F is determined as a function of T, N
and V, while the thermodynamic potential Q is determined by (2.60) as a function of
T,puandV.
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2.5 Thermodynamic relations from Gibbs distribution =—— 57

Similar to previous analysis, in classical statistics the grand canonical distribu-
tion is written as:

_ W) gg™
Q+uN EN(p,q)>dp dq " _ pydly. (2.62)

dwy = eXp( T Qh) NN

The variable N is written here as an index of the distribution function and also of the
phase-space volume element to stress that there is a different phase space for each
value of N (with its own dimensions 6N). The expression for the potential Q is now:

Q= —Tln{% eg Jdl‘N exp(—]w)}. (2.63)

It is clear that in calculations of all statistical (thermodynamic) properties of the body,
except fluctuations in the total number of particles, both the canonical and grand
canonical Gibbs distributions are equivalent. Neglecting fluctuations in the particle
number N, we have Q + uN = F, and these distributions just coincide.

The use of one or the other distribution is, in most practical tasks, mostly a ques-
tion of convenience of calculations. In practice, the microcanonical distribution is
most inconvenient, while the most convenient is often the grand canonical distribu-
tion.

2.5 Thermodynamic relations from Gibbs distribution

Let us complete the statistical justification of thermodynamics by deriving its main
relations from the Gibbs distribution. Already during our discussion of the role of ad-
ditive integrals of motion and derivation of equation (1.56), which is essentially the
canonical distribution itself, we noted that the factor 8 before the energy in equa-
tion (1.56) is the same for all subsystems of the given closed system. Taking into ac-
count that in the canonical distribution we have = —1/T, we come to the conclusion
that this is equivalent to the usual thermodynamic condition for equality of the tem-
peratures for all parts of the system being in the state of thermodynamic equilibrium.®
It easy to see that for the temperature T > 0, otherwise, there appears a divergence in
the normalization sum ), w;, because the energy levels E; may be arbitrarily large.
All these properties nicely coincide with the basic properties of temperature in ther-
modynamics.

Basic thermodynamic relationships may be derived in various ways. Let us write
down the canonical distribution in operator form as:

F-H
T

p=e (2.64)

8 Equation (1.56) coincides with the canonical distribution (2.43), if we also take a = F/T and consider
the system at rest.
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Normalization condition Spp = 1 can be rewritten as:
_H
T

) (2.65)

which is in essence the definition of free energy. Differentiating this expression with
respect to T, we get:
(512
T2 ToT

Multiplying this relation by T?e7 and taking into account that (H) = E, we obtain the
basic Gibbs—Helmholtz relationship of classical thermodynamics:

e

1 _H
=5 Sp(He 7). (2.66)

oF
F=FE+T—. 2.6
+ 3T (2.67)

Comparing this expression with the definition of free energy F = E — TS, we get:

FF __Lr_my). (2.68)

S=-=__
oT T

According to equation (1.174), we can write down the entropy in operator form as:
S=-Spplnp. (2.69)

The identity of this expression for S with the previous one can be easily seen—accord-
ing to equation (2.64), we have Inp = %(F — H), and the rest is obvious.

Another way to obtain the basic thermodynamic relations is to consider the nor-
malization condition for the Gibbs distribution:

F-E

YeT =1 (2.70)
k

and differentiate it, considering the left-hand side as a function of T and some vari-
ables A, A,, ..., which characterize external conditions of the body under study. These
variables may, for example, determine the geometrical form and size of its volume,
define external fields etc. Energy levels of the system E; parametrically depend on
A Ay, ... After differentiation we obtain (for brevity, we write explicitly only one pa-
rameter A):°

Wy aEk F—Ek
— | dF — —=dA - T|=0. 2.71
%T[d o - 4T =0 @)

9 More precisely, we write down the full differential on the left-hand side of equation (2.70):

F—E;
dy eTk =k Wkd(%) = 0, which gives us equation (2.71).
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Then we have:

dFZWk —dAZ:Wkaﬂ + d—T< ZWkEk> (2.72)
Taking into account Y, wy, = 1, Y, Wi E = (E) = Eand Y wy 2k a/t = %, as well as
F — E = —TS and the relationship:'°
NE)  O(H)
oA oA @73)
we finally obtain:
dF = -SdT + au;[ ) = -SdT + ijd/l (2.74)

which represents the general form of the differential of free energy in thermodynamics.

Similarly, from the normalization condition for the grand canonical distribution'!
(2.59), we can obtain the general form of the differential of the thermodynamic poten-
tial Q:

o(H)

dQ = ~SdT - Napi +

—=dA. (2.75)

We assumed here that the external parameters A;,A,, ... characterize the macro-
scopic state of the system in equilibrium. These may be the volume (form) of a vessel,
the values of external electric or magnetic fields etc. Parameters A;,A,, ... are also as-
sumed to change very slowly in time, so that, during the time of the order of the relax-
ation time for the system to evolve to equilibrium, these parameters can be considered
as practically constant. Then we can suppose that, at any moment in time, the system
is in some equilibrium state, despite the fact that the external parameters change.
Such a process of slow change of external parameters may be called quasi-static. If we
consider the parameters A;,A,, ... as generalized coordinates, corresponding general-
ized forces can be introduced as:

oH

A = -2

=5 (2.76)

10 If the Hamiltonian H and its eigenvalues E; depend on the parameter A, we have: aEk = (4 i Hy > SO
that after the averaging we obtain (2.73).

11 Note that the grand canonical distribution can also be derived with arguments used in the deriva-
tion of equation (1.56), if we consider the number of particles as N as an additive integral (constant)
of motion. Then, for a system at rest, we can write: In wyy = a + SEyy +yN, where y and § are to be the
same for all parts of the system in equilibrium. Putting herea = Q/T, = -1/T and y = u/T, we obtain
the grand canonical distribution. By the way, here we obtained the well-known condition of equality
of chemical potentials of subsystems in equilibrium with each other.
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For a quasi-static process, the observed values of the generalized forces can be ob-
tained by averaging over the equilibrium statistical ensemble as:

o(H)

T (2.77)

(A = Splppy) = -

Let us consider some typical examples. If we choose as an external parameter the vol-
ume of the system V, the generalized force is pressure:

_ OH) OE
P= ¥ - o (2.78)
Then equation (2.74) takes the well-known form:
dF = -SdT - PdV. (2.79)

If we choose as a parameter an external electric field E, the generalized force is the
polarization (electric dipole moment of the body) P and:
H
dF = -SdT —PdE; P - -240 (2.80)
OE
For the case of an external magnetic field H, the generalized force is the magnetization
(magnetic moment) of the body M and:
dF = -SdT - MdH; M = -2 2.81)
oH
Thus, we succeeded in the construction of the complete statistical derivation of all ba-
sic relationships of thermodynamics. Historically, the development of statistical me-
chanics was directly related to this task.

The final problem to be discussed in relation to the justification of the laws of ther-
modynamics is Nernst’s theorem, sometimes called the third law of thermodynamics.
We note from the very beginning that, in contrast to the first and the second laws,
which directly follow from the Gibbs approach, a similar (in generality) proof of the
Nernst’s theorem is absent, though for all “reasonable” models of statistical mechan-
ics it is valid. Let us analyze the limiting behavior of the Gibbs distribution

F-Ej

we=eT (2.82)
for temperatures T — 0. Using the expression for the entropy:
1
S= 7((H) -F), (2.83)

we can write wy, = exp{-S + %((H) - Ep)}, or:

(2.84)

(H) - E, +E0—Ek}

= expq-S
Wy xp{ t—7 T
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where E| is the energy of the ground state of the system, so that E; > E for all k # 0.
Calculating the limit of (2.84) for T — 0, we obtain:

}i:r(l) W = Wi (0) = exp{-S(0) + Cy(0)}8g, g, » (2.85)

where

1 forE, =E
£ E, = { koo (2.86)

0 for E; + E,.

In equation (2.85) Cy(0) = (%)T:0 denotes the specific heat of the body at T = 0 and
for constant volume. However, from equation (2.83) it follows (using I’H6pital’s rule)
that for T — O:

Jo(H) OF

S5(0) = <7 - ﬁ>T—>O = Cy(0) + 5(0) (2.87)

so that Cy,(0) = O (Nernst’s theorem). Accordingly, equation (2.85) reduces to:
Wk(O) = eXp{—S(O)}ﬁEk_EO, (2.88)

which is, in fact, just the microcanonical distribution:

1
Wk(o) = WOSEkaO, (289)
where W, is the degeneracy of the ground state. Then the entropy in the ground state
atT =0:

S(0) = In W, (2.90)

For the majority of physical systems (like crystals, quantum gases and liquids etc.)
the ground state is nondegenerate, so that W, = 1, and thus the entropy tends to zero
as T — 0. Even for the case of W, > 1, but for limy_,, le InW, = 0 (entropy per
single particle), we may assume S(0) = 0, which is, in fact, the general formulation of
Nernst’s theorem.!?

Unfortunately, the situation here is not so simple and the physical behavior of
systems, described by Nernst’s theorem, is not directly related to nondegeneracy of
the ground state. Actually it reflects the behavior of an effective behavior of excitation

12 Note that Nernst’s theorem is inapplicable to amorphous solids (glasses) or disordered alloys,
which are not, in fact, in a state of complete thermodynamic equilibrium, but can be “frozen” (at
T — 0) in some of many possible metastable states with quite large or even practically infinite relax-
ation times.
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spectra of macroscopic bodies at small energies, and Nernst’s theorem manifests itself
for temperatures T, which are much larger than the energy difference between the first
excited state of the system and its ground state. Above, we have already seen that the
energy spectrum of a macroscopic body can be considered as practically continuous,
so this energy difference is, in fact, unobservable. This follows even from the simplest
estimates. Consider an ideal gas of atoms with mass m, moving in the volume V = L.
Then we can estimate:
2 2
;—mkfnin = thW where kyy, = 2% (2.91)

El - EO ~ min L

and the volume V — oo. Experimentally, for an ideal gas, manifestations of Nernst’s
theorem become observable for finite temperatures of the order or below the so-called
degeneracy temperature T, ~ %2(%)2/ 3,

To give the general proof of Nernst’s theorem, we have to understand the distri-
bution of energy levels E; close to the ground state, i. e., to find the general behavior
of the statistical weight W(E, N, V) close to E = E,. Up to now, such behavior has only
been studied for some specific models. The behavior necessary to reproduce Nernst’s
theorem in all cases, when the weak (low energy) excitations of the system can be rep-
resented by an ideal gas of quasi-particles. Later, we shall consider only such systems,
and the concept of quasi-particles will be of central importance.

This concludes our presentation of the basics of the Gibbs approach to statistical
mechanics. The rest of the book will be devoted to applications of this formalism to
various concrete problems of the physics of many particle systems.
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3.1 Boltzmann distribution

The simplest model to illustrate the applications of the general principles of statistical
mechanics is an ideal gas of noninteracting atoms or molecules.! This model played
an important role at the early stages of the development of statistical physics.?

The absence of interactions between the atoms (molecules) of an ideal gas allows
us to reduce the quantum mechanical problem of finding the energy levels E, of a gas
as a whole to the problem of finding the energy levels of an isolated atom (molecule).
We shall denote these levels as &, where k is the set of quantum numbers, determining
the state of an atom (molecule). Because of the absence of interactions the energy
levels, E, are just the sums of energies of each of the atoms (molecules). Let us denote
as n; the number of gas particles occupying the quantum state k and calculate its
average value (n; ) for the important limit of:

() < L. 3.1

Physically, this limit corresponds to a strongly diluted gas. Let us apply the canoni-
cal Gibbs distribution to gas molecules, considering a single molecule as a subsystem
in the bath (of the rest of the molecules). Then it is clear that the probability for the
molecule to be in the k-th state, and also the average number (n; ) of molecules in this
state, will be ~e‘£7k, so that

_
() =ae’ 7, (3.2
where the coefficient a can be determined by the normalization condition:

my) =N, (3.3)
k

where N is the total number of particles in a gas. The distribution function given by
equation (3.2) is called Boltzmann’s distribution.

Let us give another derivation of the Boltzmann distribution that is based on ap-
plication of the grand canonical Gibbs distribution to all particles of the gas occupying
the same quantum state, which is considered as a subsystem in the bath (of all other
particles). In the general expression for the grand canonical distribution (2.58), we

1 Surely, the existence of some weak interactions (e. g., rare collisions) between atoms or molecules
is necessary to reach the equilibrium state. However, during the calculations of the equilibrium ther-
modynamic properties of an ideal gas, we can neglect those from the very beginning.

2 Below we basically follow the presentation of [19].

https://doi.org/10.1515/9783110648485-003
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64 —— 3 Classicalideal gas

now have to set E = ni g, and N = ny.. Adding an index k also to the thermodynamic
potential Q, we obtain:

Qk+nk()4—sk)

Wy =€ T . B.4)
Q
In particular, w, = et is simply the probability of an absence of any particle in this
Q
given state. In the limit of interest to us, when (n;) <« 1, the probability w, = eTk =1,
and from equation (3.4), we obtain:

Hgk

wy=erT . (3.5)

As to probabilities of the values of n; > 1, in this approximation they are just zeroes.
Thus, in the sum determining (n;) there remains only one term:

() =) Wy m = wy, (3.6)
0%
and we get:
Hgy
gy =e 7. (37)

We see that the coefficient in equation (3.2) is expressed via the chemical potential of
the gas, which is implicitly defined by the normalization condition for the total num-
ber of particles (3.3).

3.2 Boltzmann distribution and classical statistics

While the previous analysis was based on a quantum approach, let us consider the
same problem in classical statistics. Let dN denote the average number of molecules
belonging to an element of the phase space of the molecule dpdq = dp, ---dp,dq; - --
dq, (r is the number of degrees of freedom of the molecule). We can write it as:

dpdq
N = 5 = -, R
dN =n(p,q)dt dr Gy (3.8)
where n(p, q) is probability density in the phase space. Then:
u-epq)
np.q)=e T, 39

where £(p, q) is the energy of the molecule as a function of the coordinates and mo-
menta of its atoms.
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3.2 Boltzmann distribution and classical statistics =—— 65

For a gas in the absence of any kind of external field, this distributions reduces to
the Maxwell distribution:>

N Reer?
b = VampEe T dexdpydp: (310)
3/2 2.2 2
N 7m(vx+v +vz)
dNV = V < 2]_%1 ) e iy dvxdvydvz, (3.11)

I3
T =

where m is the mass of a molecule. Comparing (3.10) and (3.9), we obtain e
%[(271)3/ 2h3(mT)*3/ 2 so that the chemical potential of a Boltzmann gas is:

~ N (27T)3/2h3

This result can also be obtained directly from normalization (3.9) for the total number
of particles in a unit volume (density) given by equation (3.3). In the classical approx-

2 2 2
imation, g, = %, so that (3.3) can be written as:
rk w( dp _mwmwi N
eT =N or erT J e Tl = — 3.13
% Qnh)3 7 (G13)

which gives (3.12) after calculation of an elementary Gaussian integral:

3 220 3/233
U= Tln{%(] (;jT—F}:)Be’p i ) } = T1n<Nm>. (3.14)

V (mT)32
Thus, the chemical potential of the gas is completely determined by the density of the
particles and temperature.

Consider now the gas in an external field, when the potential energy of a molecule
depends on the coordinates of its center of mass: U = U(x,y, z). A typical example is
a gas in a gravitational field. The Maxwell distribution for velocities remains, as was
noted above, valid, while the distribution for the center of mass coordinates is given
by:

-1

Uxy,2)

dN,=nye” 1 dV (3.15)

which gives the number of molecules in volume element dV = dxdydz. Obviously,

U(r)

n(r)=nge 1T (3.16)

gives the density of particles at the point r. Here n is the density at points, where
U = 0. Equation (3.16) is sometimes called Boltzmann’s law.

3 In contrast with the form of the Maxwell distribution discussed above, here we introduce an addi-
tional factor N/V, which is related to the normalization to particle density used here.
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66 —— 3 Classicalideal gas

As an example, consider a gas in a homogeneous gravitational field (e. g., on
Earth’s surface) directed along z-axis, so that U = mgz (g is the free fall acceleration),
and for the density distribution of a gas we obtain:

mgz

niz)=nye 7, (3.17)
where n, is the density at z = O (at sea level).

Ludwig Boltzmann (1844-1906) was an Austrian
physicist whose greatest achievement was the devel-
opment of foundations of statistical physics, which
explains and predicts how the properties of atoms
determine the physical properties of matter. Boltz-
mann’s most important scientific contributions were
in kinetic theory, including the Maxwell-Boltzmann
distribution for molecular velocities in a gas. Much
of the physics establishment did not share his belief
in the reality of atoms and molecules, and almost all
German philosophers like Ernst Mach and the physi-
cal chemist Wilhelm Ostwald disbelieved in their ex-
istence. Only a couple of years after Boltzmann’s death, Perrin’s studies of colloidal
suspensions, based on Einstein’s theoretical studies of 1905, confirmed the values
of the Avogadro’s number and Boltzmann’s constant, and convinced the world that
atoms and molecules really exist. Boltzmann tried for many years to “prove” the sec-
ond law of thermodynamics using his kinetic equation and his famous H-theorem.
However, the key assumption he made in formulating the collision term in kinetic
equation was “molecular chaos’—a statistical assumption, not related to pure me-
chanics. The idea that the second law of thermodynamics or “entropy law” is a law
of disorder was basic to Boltzmann’s view of the second law of thermodynamics. The
second law, he argued, was thus simply the result of the fact that in a world of mechan-
ically colliding particles disordered states are the most probable. Boltzmann spent a
great deal of effort in his final years defending his theories. He did not get along with
some of his colleagues in Vienna, particularly Ernst Mach. This lead to serious dete-
rioration of his mental condition and he committed suicide on September 5, 1906 by
hanging himself while on vacation with his wife and daughter near Trieste.

3.3 Nonequilibrium ideal gas

Consider an ideal gas in an arbitrary (in general nonequilibrium) state. Let us assume
that all quantum states of a single particle of the gas can be classified into certain
groups of levels with energies close to each other, and the number of levels in each
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3.3 Nonequilibrium ideal gas — 67

group, as well as the number of particles on these levels, are large enough.” Let us
enumerate these groups of levels by the numbersj = 1,2,... and let G; be the number
of levels in j-th group, while N; is the number of particles in these states. The set of
numbers N; completely determines the macroscopic state of the gas, while their arbi-
trariness, in fact means that we are dealing with an arbitrary, in general, nonequilib-
rium state of the system.

To calculate the entropy of this macroscopic state, we have to determine its sta-
tistical weight W, i. e. the number of microscopic distributions of particles over the
levels, which realize such a state. Considering each group of N; particles as an inde-
pendent subsystem and denoting its statistical weight by WV;, we can write:

w=[]w (3.18)
j

Now we have to calculate ;. In Boltzmann’s statistics the average occupation num-
bers of all quantum states are small in comparison to unity. This means that N; < G;,
though N; are still very large. The smallness of occupation numbers leads to the con-
clusion that all particles are distributed over different states, independently of each
other. Placing each of N; particles in one of G; states we obtain in all G;Vj possible distri-
butions, including physically equivalent ones, which differ only due to permutations
of identical particles. Accordingly, we have to divide the total number of possible dis-
tributions (configurations) by Nj!, so that:

GV
W= L (3.19)
=N .
Then the entropy is calculated as:
S=lnw-= Zlnl/\/j = Z(N] In G; - In N}!). (3.20)
j j

Using Stirling’s asymptotics, valid for N > 1:°

InN! = Nln(%’) (3.21)
we get:
eG;
=Y N.1n . .22
S ; i In N, (3.22)

4 This assumption is made just to simplify our analysis and does not restrict its generality.
5 For N » 1thesumInN! = Inl1+1n2+--- + InN is approximately expressed as jév dx In x, which
immediately gives equation (3.21).
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68 —— 3 Classicalideal gas

This expression determines the entropy of an ideal gas in an arbitrary macroscopic
state, defined by the set of numbers N;.Letus rewrite it, introducing the average num-
bers (n;) of particles in the j-th group of quantum levels (n;) = N;/G;. Then:

e
S=Y Ginj)ln—. (3.23)
Describing particles in a quasi-classic approximation, we can introduce the distribu-
tion function in phase space. Dividing the phase space into small elementary volumes
ApY¥AgY, which still contain a large enough number of particles, we can write down
the number of quantum states in such a volume as (r is the number of degrees of free-
dom of a gas molecule, for a one-atom gas r = 3):
Ap(i) Aq(i) )
G =—=—" =AtY. 3.24
1=~y (3.24)
The number of particles in these states can be written as N; = n(p, q)ATY. Substituting
these expressions into equation (3.23), we obtain:

e

n(p,q)

This is the so-called Boltzmann’s entropy of an ideal gas in an arbitrary (nonequilib-
rium) state, defined by the single particle distribution function n(p, q).°

What is the connection of the Boltzmann entropy (3.25) with the Gibbs entropy,
defined in (1.167)? In the expression for the Gibbs entropy:

(3.25)

S= Jd‘rn(p, q)In

dpd
S=- J’ ﬁpqﬁ q, t) lnp(p> q, t) (326)

p(p, q) denotes the full N-particle distribution function, depending on the coordinates
and momenta of all N molecules of gas. For an ideal gas of noninteracting particles this
distribution function is obviously factorized (statistical independence — absence of
interactions!) into the product of single particle distribution functions for all particles:

Nt N
P = % ]J n(p; 4;), (3.27)

where the single particle distribution functions n(p;, g;) are normalized as (for one-
atom gas, i.e.r = 3):
dp,dq,

J Wn(pl’QI) =N. (3.28)

6 Thedistribution function n(p, q) can depend on time and this time dependence can be calculated us-
ing Boltzmann’s kinetic equation. For this entropy (3.25) the famous Boltzmann’s H-theorem, is proved
in classical kinetics, describing the time growth of (3.25).

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:54 AM



3.4 Free energy of Boltzmann gas —— 69

The factor of N! /NN in (3.27) is introduced here to insure agreement between this nor-
malization and the one used above for p(p, q):

N
1 ( dp,dq, } dpdq
dl'p(p,q) = { — , =1 dl'= ——— 2
J P.q) {N J 2y P2 (27h) N (3.29)
Then, using (3.27), (3.21) in (3.26) we get:
dpldql np, q;)
S=— J iy n(p;,q;) In — (3.30)

which coincides with (3.25).

In the equilibrium state the entropy is to be maximal. This can be used to find the
equilibrium distribution function. Let us find (n;), which gives the maximal value of
the sum (3.23), with additional demands of the fixed (average) number of particles and
average energy of the system:

sz = Z Gi(n;) = N, (3.31)
j j
Y &N, =) &G(n;) = E. (332)
j j
Using the method of Lagrange multipliers we demand:

b)
a_n,-(s +aN + BE) = 0, (3.33)

where a and f are some constants. After differentiation we get:
Gj(-In(m;) + a+Bgj) = 0 (3.34)
leading to ln(nj) =a+ ﬂsj, or
(n;) = exp(a + ;). (3.35)

We obtained the Boltzmann distribution, where the constants a and f§ are related to T
and y: « = u/T, B = -1/T. This is clear, in particular, from the possibility to write (3.33)
as a relation between differentials: dS + adN + BdE = 0, which is to coincide with the
well known thermodynamic relation for the differential of energy (for fixed volume):
dE = TdS + pdN.

3.4 Free energy of Boltzmann gas

Let us apply the basic relation of statistical mechanics:

En
F=-TInZ=-Tln) e T (336)
n
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70 —— 3 Classicalideal gas

to the calculation of the free energy of an ideal gas, described by Boltzmann statistics.
Energy levels E, of the whole system (gas) are simply the sums of energies of isolated
molecules g, which in the Boltzmann case are all different (because in each quantum
state of a gas there is no more than one molecule). Then we can write down e~ 7 as
a product of factors e” * for each molecule and sum over all states of each molecule
which leads to the following expression for the partition function of the gas:’

. <; ¥ )N, (3.37)

This expression is also to be divided by N!, taking into account the number of per-
mutations of identical particles (molecules), leading to physically equivalent states
(configurations). Then we have:

N
_En 1 _&
Z=YeT :1\7(26 r) : (3.38)
n Nk
Substituting this expression into (3.36), we get:

F=-TNInY ¢ ¥ + TInN! (339)

or, using once again In N! ~ N In N/e, we obtain:
= -NT ln{ Z et } (3.40)

In classical statistics we can immediately write:

e ) d'pd q
F= —NTln[N Jdre T ] dr = oy (3.41)

where r is again the number of degrees of freedom of a gas molecule.

3.5 Equation of state of Boltzmann gas

The energy of a gas molecule can be written as:

2 2 2
2 R

&P pysP;) = . + & (3.42)

Sk Sk Ek
7 We have e~ T =e - e -+ ---e’TN, with N factors in total, with all k; (L = 1,2,...,N) different.

Calculating now Zkl Yk Dky = ()N, we get equation (3.37).
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3.5 Equation of state of Boltzmann gas =— 71

where the first term is the kinetic energy of molecular motion, while £,’< denote inter-
nal energy levels of the molecule (corresponding e. g. to the rotation of the molecule,
atomic oscillations near equilibrium positions, energy levels of atoms etc.). Here it is
important to note that e,’( do not depend on the momenta (velocities) and coordinates
of the center of mass of the molecule. Then, the sum under In in equation (3.40) is
equal to:®

1 _ ° ° s _P%*P)Z/ﬂ’z
JR— 174 2m =
;(Znhﬁe Jd Jdp" J apy J dpse (zm#) ;e

~le
"i‘x-

(3.43)

Then the free energy of the gas is written as:

F- -er[ (2nh2) Ze*?]__z\m[ (2’”;2)3/22'], (3.44)

where we have introduced an “internal” partition function of a molecule Z' = ¥, et
This sum cannot be calculated in general form, it depends on the values of the internal
energy levels of the molecules, i. e. on the type of gas. However, it is important to note
that it is some function of temperature only, so that equation (3.44) gives the complete
dependence of the free energy on the volume. This volume dependence can be written
explicitly by rewriting equation (3.44) as:

3/2
eV mT ,
F=-NTln— +Nf(T); f(T)= —Tln( 2nh2> A (3.45)
Then for the gas pressure we immediately obtain:
oF NT
pP= VSTV or PV =NT (3.46)

i.e. an equation of state of an ideal gas. If we measure the temperature in absolute
degrees, we have to write:

PV = NkgT =RT. (3.47)

For one gram-molecule (mole) of gas N = 6.023 102 (Avogadro number), R =
8.314 10" erg/K, kg = 1.3804 107 erg/K.

From F we can find other thermodynamic potentials. For example, the Gibbs ther-
modynamic potential:

(D=F+PV=E—TS+PV=W—TS=—NT1n%+Nf(T)+PV, (3.48)

8 Integral over dV here is related to integration over coordinates of the center of mass of the molecule
and reduces to the total volume occupied by gas V.
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72 —— 3 Classicalideal gas

where W is the enthalpy. Expressing V via P and T using the equation of state (3.46), to
rewrite @ as a function of P and T (remember that d® = —-SdT + VdP) and introducing
a new function of temperature as: y(T) = f(T) - T In T, we obtain:

@ = NTInP + Nx(T). (3.49)

The entropy of the gas (remember that dF = -SdT — PdV):

_ OF _ eV )
S= 5T = Nln N Nf'(T) (3.50)
or, as a function of P and T:
S= _90 ~N1InP - Ny'(T). (3.51)
oT
The internal energy of the gas:
E =F + TS = Nf(T) - NTf'(T) (3.52)

and is a function of temperature only. The same is valid for the enthalpy W = E+ PV =
E + NT. The physical reason is simple — molecules of an ideal gas do not interact, so
that the change of the average intermolecular distance during the change of volume
does not influence the energy. Due to this behavior of E and W, both types of specific
heat C, = (%)V and C, = (%) p also depend only on T. Writing the specific heat per
molecule we introduce C, = Nc, and C, = Nc,,. For an ideal gas W - E = NT, so that

the difference c, - ¢, is universal:

C

»—C, =1 or c,-c, =kg (3.53)

or Cp — Cy = R per mole.

3.6 ldeal gas with constant specific heat

From experiments it is known that in a wide interval of high enough temperatures the
specific heat of gases is a constant, independent of T. The physical reasons for such
behavior will become clear later, while now we shall show that, under the assumption
of temperature independence of the specific heat, the thermodynamic characteristics
of a gas can be calculated in general form. More precisely, in this case we can deter-
mine the general form of an unknown function of temperature f(T), introduced above
in equation (3.45), expressing it via constants to be determined from experiments. In
this case we do not have to calculate the “internal” partition function Z’. Simply dif-
ferentiating equation (3.52) for the internal energy with respect to the temperature we
find:

¢, = -Tf"(T). (3.54)
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3.6 ldeal gas with constant specific heat =—— 73

Assuming specific heat to be a constant defined by experiments, we can integrate
equation (3.54) twice to obtain:

f(T)=-¢,TInT - (T +¢,, (3.55)

where { and &, are two constants of integration. Then, from equation (3.45) we get the
free energy in the form:

F=Ney-NTln % ~Nc¢,TInT - N(T. (3.56)

The constant ( is called the chemical constant of a gas and for any concrete gas it
is to be determined experimentally. Now using equation (3.52) we obtain the internal
energy as a linear function of temperature:

E = Ney + Ne, T. (3.57)

The Gibbs thermodynamic potential is obtained by adding PV = NT to equation (3.56),
and we have to express the volume of gas via pressure and temperature. Thus we ob-
tain:

® =Ney + NTInP - Nc,TInT - N(T. (3.58)
Enthalpy W = E + PV is equal to:
W = Nej + Nc, T. (3.59)

Differentiating (3.56) and (3.58) with respect to T, we obtain the entropy expressed via
T and V or T and P respectively:

S= —<%>V = —Nln% +Nc,InT + ({ +c,)N, (3.60)
S——(ai[)) =-NInP+Nc,InT + ({ +¢c,)N (3.61)
~\otr/)p T 3 P '

From these expressions, we can obtain the relation between the volume, temperature
and pressure of an ideal gas (with constant specific heat) during its adiabatic expan-
sion or compression. During adiabatic processes the entropy remains constant and
from equation (3.61) we have: -NInP + Nc,InT = const, so that T /P = const, or
using ¢, - ¢, = 1:

TP = const, (3.62)

wherey = ¢, /c,. Using the equation of state PV = NT, we obtain the relations between
T and V and also between P and V:

TV = const PV” = const. (3.63)
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3.7 Equipartition theorem

Let us consider the problem of the calculation of thermodynamic properties of gases
from the point of view of classical statistical mechanics. A gas molecule is essentially
some configuration of atoms, performing small oscillations near respective equilib-
rium positions, corresponding to the minimum of potential energy. Obviously, this
potential energy can be represented as some quadratic form of the atomic coordinates:

Tosc

U=¢gy+ Z 995 (3.64)
ih=1

where ¢, is the potential energy of the atoms at their equilibrium positions and r,. is
the number of vibrational degrees of freedom.

The number . can be determined from a very simple analysis, starting with the
number of atoms in the molecule n. We know that an n-atomic molecule possess 3n de-
grees of freedom in total. Three of these correspond to free translations of the molecule
in space as a whole, and another three — to its rotations as a whole. The rest of the de-
grees of freedom correspond to atomic oscillations, so that ;. = 3n — 6. If all atoms
are placed along a straight line (like e. g. in two-atomic molecule), we have only two
rotational degrees of freedom, in this case r,,. = 3n — 5. For a one-atom gasn = 1 and
there are no oscillations (and rotations) at all, one atom can move only along three
directions in space and we have only translational degrees of freedom.

The full energy e(p, q) of a molecule is the sum of potential and kinetic energies.
Kinetic energy is always a quadratic function of all momenta, the number of these
momenta is equal to the total number of degrees of freedom 3n. Thus this energy can
be written as £(p, q) = €, + fi (0> @), where fi;(p, q) is some quadratic function of both
coordinates and momenta, and the total number of variables in this function is [ =
6n - 6 (for the general three-dimensional molecule) or I = 6n -5 for a linear molecule.
For a one-atom gas | = 3 and the coordinates simply do not enter the expression for
energy.

As a result for the free energy of a gas, from equation (3.41) we have:

£

fiu.q)
F=-NTIn eeNT j dre ' (3.65)

Let us here make the transformation p = p’ VT, q = ¢’ VT for all l variables of f;;(p, q).
Due to the quadratic nature of fj;(p, g) we obtain:

fuw. @) = Tfu(p'.q4") (3.66)

and T in the exponent under the integral just disappears. A similar transformation
in differentials entering dt produces the factor T2, which is moved outside the inte-
gral. Integration over the coordinates of the oscillators g is done over the possible val-
ues of the atomic oscillations within the molecule. However, due to fast convergence
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3.8 One-atom idealgas =—— 75

(quadratic function in the exponent) integration over p’ and ¢’ can be extended to the
infinite interval from —co to co, so that our integral is reduced to some constant, in-
dependent of temperature. Taking into account that integration over the coordinates
of the center of mass of the molecule simply gives the total volume V of the gas, we
obtain for the free energy the following expression:

_%% 1/2
F=-NTln % A = const. (3.67)

Then:

F=NeO—NT1n%—NéT1nT—NT1nA (3.68)

which coincides with equation (3.56), if we put:

c, == (3.69)
and ¢ = In A. Accordingly:
c,=¢C,+1=—. (3.70)

Thus the specific heat of a classical ideal gas is a constant, and for each degree of free-
dom of a molecule £(p, q) we get the same contribution of 1/2 in specific heat c, (or kg/2
in standard units). It corresponds to the similar T/2 (kzT/2 if we measure T in abso-
lute degrees) contribution to the energy of the gas. This rule is called the equipartition
law or theorem and is a quite general statement of classical statistical mechanics. In
particular it is easily generalized also for the case of condensed matter.’ Taking into
account that each of the translational and rotational degrees of freedom enter &(p, q)
only through respective momenta, we can say that each of these degrees of freedom
contributes 1/2 to the specific heat. For each of the oscillators we have a contribution of
two degrees of freedom into &(p, q) (coordinate and momentum) and its contribution
to the specific heat is 1.

3.8 One-atom ideal gas

Let us consider an ideal gas of single atoms (not molecules). Complete knowledge of
the free energy of such a gas requires the calculation of an “internal” partition function

9 As temperature lowers, significant deviations from this law are observed in experiments. It is ob-
vious that constancy of specific heat contradicts Nernst’s theorem. Historically, the violation of the
equipartition law was one of the first indications of the inadequacy of the classical treatment, which
led to the discovery of quantum mechanics.
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Z' introduced in equation (3.44):

Z'=YeT, (3.71)

where ¢, are the internal energy levels of an atom. These levels may be degenerate,
in this case the respective term enters the sum g; times, where g; is degeneracy of
corresponding level. Then:

Z'=Y) geT. (3.72)

The free energy of the gas, according to equation (3.44), is given by:

3/2
F=—NTln[%<%) z’]. GB73)

From quantum mechanics it is known that in atoms the ground state level and first
excited level (neglecting superfine splitting) are separated by an energy of the order
of the ionization energy (potential) I,,, which for most atoms lies in the interval of
Lon/kg ~ 5-28 10°K. Thus, for temperatures T < I,,,, which are of main interest to
us, the gas does not contain a significant number of ionized or even excited atoms. All
atoms can be assumed to be in their ground states.

Consider the simplest case of atoms with their orbital or spin momentum in the
ground state (L = S = 0), for example noble gases.!® In this case the ground state is
nondegenerate and “internal” partition function consists of one term: Z' = e 7.Then
from equation (3.73) we immediately obtain an expression for the free energy similar
to (3.56), with constant specific heat:

¢, =3/2 (3.74)
and chemical constant:
3 m
==ln—. 3.75
¢ 2 n 2mh? B.75)

The last expression is called the Sakura-Tetrode formula.

These expressions allow us to find the criterion of applicability of the Boltzmann
statistics. Previously we obtained the Boltzmann distribution assuming the smallness
of the average occupation numbers:

(ny) = eﬁ <1 (3.76)

10 A detailed discussion of more complicated cases, as well as of molecular gases, can be found
in [19, 20].
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Obviously, it is instead sufficient to require that:
x
eT < 1. (3.77)

From this expression it is clear that the chemical potential of a Boltzmann gas is al-
ways negative and large in absolute value. Let us find the chemical potential from its
thermodynamic definition u = ®/N, using the expression of the Gibbs thermodynamic
potential (3.58), substituting ¢, = ¢, + 1 = 5/2and { from equation (3.75). We obtain:

P (2nH? N [ 2mH?
’“““[m(w ) ]—““[v<—mr>

which obviously coincides with equation (3.12), determined in another way (from nor-
malization to the fixed average number of particles). Then from (3.77) and (3.78) we
obtain the criterion for validity of the Boltzmann statistics in the following form:

3/2 3/2

] (3.78)

2/3

2 \3/2 2
%(%) <1 or T>» %(%) ) (3.79)

Boltzmann statistics is valid if the gas is sufficiently diluted and the temperature
is high enough. The characteristic temperature (energy) from the right-hand side
of equation (3.79) is called the temperature (energy) of degeneracy. It grows with the
growth of gas density. Its physical meaning is easily understood from simple estimates
as the average distance between atoms of the gas a ~ (V/N)". Quantum indetermi-
nacy of the energy of an atom corresponding to its localization on this length scale
is of the order of E, ~ mh—; ~ %Z(N /V)?. Condition T > E, in equation (3.79) means
that we can neglect quantum effects. In contrast, for T < E, quantum effects become
important and we have to move from Boltzmann statistics to the quantum statistics of
ideal gases."

11 The expressions for thermodynamic characteristics of gases obtained above are obviously unsatis-
factory and contradicting Nernst’s theorem; neither entropy nor specific heat tend to zeroas T — 0.
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4 Quantum ideal gases

4.1 Fermi distribution

We have already seen that, as the temperature of an ideal gas decreases (at fixed den-
sity), Boltzmann statistics become invalid due to the emergence of quantum effects
(see equation (3.79)). It is clear that, to describe low-temperature (or high-density) be-
havior, we need another statistics that is appropriate for the cases when the average
occupation numbers of various quantum states are not assumed to be small.! This
statistics varies, depending of the nature (type) of the gas particles. The most funda-
mental classification of particles in modern quantum theory, based on most general
theorems of quantum field theory, is a classification into either fermions (particles
with half-integer spins) or bosons (particles with integer spin). Wave functions of the
system of N identical fermions are antisymmetric with respect to permutations of par-
ticles, while those of bosons are symmetric.

For the system of particles described by antisymmetric wave functions (fermions),
the Pauli exclusion principle applies, and the corresponding statistics is called Fermi
(or Fermi-Dirac) statistics. Similar to the derivation of the Boltzmann statistics from
the grand canonical ensemble just given (see section (3.4)-(3.7)), let us apply the Gibbs
distribution to a set of particles, occupying the given quantum state (subsystem in
the bath). Let us denote as Q; the thermodynamic potential of this set of particles.
From equation (2.60), taking into account that for the gas of noninteracting particles
E, = mé&, we obtain:

Q,=-Tln Z(e@)"k, (4.1)
ny

where n; is the number of particles in k-th quantum state. According to the Pauli prin-
ciple, in the case of fermions, this number can be either O or 1. Then, in the sum over
ny in (4.1), only two terms remain, and we get:

Qi =-Tln(1+ eﬁ). (4.2)

The average number of particles in the system is equal to minus the derivative of the
potential Q; with respect to the chemical potential y, so that:

Hgge

an erT
M) =——— = ——= (4.3)
‘ U 14e T
or:
1
(nk) = EkT (4.4)
eT +1

1 In subsequent content, we follow the analysis of [19].

https://doi.org/10.1515/9783110648485-004
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80 = 4 Quantum ideal gases

This is called the Fermi distribution. It is easy to see that we always have (n;) < 1, and

M
fore T > 1 equation (4.4) reduces to the Boltzmann distribution.?
The normalization condition for the Fermi distribution can be written as:

Y ——— =N, (45)

keT +1

where N is the total number of particles in the gas. This relation gives an implicit equa-
tion determining the chemical potential y, as a function of T and N.

The thermodynamic potential Q of the gas as a whole is obviously obtained from
Q (4.2) summing it over all quantum states:

Q=-T ZIn(l + eg). (4.6)
k

Enrico Fermi (1901-1954) was an Italian and
American physicist and the creator of the world’s
first nuclear reactor. He was one of the very few
leading physicists in history working both theoret-
ically and experimentally. Born in Rome, Italy, he
was baptized a Roman Catholic though he was an
agnostic throughout his adult life. He was awarded
the 1938 Nobel Prize in Physics for his work on in-
duced radioactivity by neutron bombardment and
the discovery of transuranic elements. He made sig-
nificant contributions to the development of quan-
tum theory, nuclear and particle physics, and sta-
tistical mechanics. After Wolfgang Pauli discovered the exclusion principle in 1925,
Fermi followed with a paper in which he applied the principle to an ideal gas, intro-
ducing what is now known as Fermi—Dirac statistics. Particles that obey the exclusion
principle are called “fermions”. Fermi left Italy in 1938 to escape Italian Racial Laws
that affected his Jewish wife. He emigrated to the United States where he worked on
the Manhattan Project during World War II. Fermi was part of the scientific panel
that advised on target selection for the first atomic bombings. The panel agreed that
atomic bombs would be used without warning against an industrial target. Following
the detonation of the first Soviet fission bomb in August 1949, he strongly opposed
the development of a hydrogen bomb on both moral and technical grounds. He was
among the scientists who testified on Oppenheimer’s behalf at the 1954 hearing that
resulted in the denial of the latter’s security clearance. Fermi also did important work

2 If we require the validity of this inequality for arbitrary &, it reduces to e!T « 1, coinciding with
the criterion of validity of the Boltzmann statistics given in equation (3.77).
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4.2 Bose distribution = 81

in particle physics, especially related to weak interactions and the physics of pions
and muons. Many awards, concepts and institutions are named after Fermi, like Fermi
liquid, Fermi surface, Fermi interaction, the Fermi National Accelerator Laboratory
and the synthetic element fermium. He died at age 53 of stomach cancer in his home
in Chicago.

4.2 Bose distribution

Consider now the statistics of an ideal gas of particles with integer spin (bosons), de-
scribed by symmetric wave functions, which is called Bose (or Bose—Einstein) statis-
tics.

The occupation numbers of quantum states for bosons can be arbitrary (unlim-
ited). Similar to (4.1) we have:

Hgg

QG =-Thn) (e )™ C)

The series encountered here is just a geometric progression, which converges if
) 3
e ™ < 1. This condition should be satisfied for arbitrary &, so that

u<o (4.8)

i. e., the chemical potential of a Bose gas is always negative. Previously we have seen
that for a Boltzmann gas p < 0 and has a large absolute value. Below we shall see that
for a Fermi gas p may have either sign.

Summing the progression in (4.7), we get:

Q =Tln(l-¢7). 4.9)

Now for (n;) = —% we obtain:

1
) = ——> (4.10)
et -1
K
which is called the Bose distribution. Again, in the case of ekT > 1, it reduces to the
Boltzmann distribution.
The normalization condition is again written as:

N = Z 1 (4.11)
k

1
et 1

and implicitly defines the chemical potential.
The thermodynamic potential Q for the whole gas, similar to (4.6), is given by:

Q=T Z In(1- eﬁ). (412
k
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82 —— 4 Quantum ideal gases

Satyendra Nath Bose (1894-1974) was
an Indian theoretical physicist. He is best
known for his work on quantum mechanics
in the early 1920s, providing the foundation
for Bose—Einstein statistics and the theory
of the Bose—Einstein condensate. The class
of particles that obey Bose—Einstein statis-
tics, i.e., bosons, was named after Bose.
Bose was born in Calcutta. While working at
the Physics Department of the University of
Dhaka, Bose wrote a paper deriving Planck’s
quantum radiation law without any refer-
ence to classical physics by using a novel way of counting states with identical parti-
cles. He sent the article directly to Albert Einstein in Germany. Einstein, recognizing
the importance of the paper, translated it into German himself and submitted it on
Bose’s behalf to the prestigious Zeitschrift fiir Physik. Bose’s formulation is now called
Bose-Einstein statistics. This result derived by Bose layed the foundation of quantum
statistics, and especially the revolutionary new philosophical conception of the indis-
tinguishability of particles. When Einstein first met Bose face-to-face, he asked him
whether he had been aware that he had invented a new type of statistics, and he very
candidly said that no, he wasn’t that familiar with Boltzmann’s statistics and didn’t
realize that he was doing the calculations differently. Einstein also did not at first re-
alize how radical Bose’s departure was, but in his second paper using Bose’s method,
he started to realize just how radical it was, and he compared it to wave-particle du-
ality, saying that some particles didn’t behave exactly like particles. Einstein adopted
this idea and extended it to atoms. Although several Nobel Prizes were awarded for
research related to the concepts of the boson, Bose—Einstein statistics and Bose—Ein-
stein condensate, Bose himself was not awarded a Nobel Prize. When Bose himself
was once asked that question, he simply replied, “I have got all the recognition I de-
serve”.

4.3 Nonequilibrium Fermi and Bose gases

Let us consider the entropy of Fermi and Bose (ideal) gases in general (nonequilib-
rium) states. Equilibrium Bose and Fermi distributions will be obtained, requiring the
maximal value of entropy in equilibrium. This analysis can be performed similar to
the case of a Boltzmann gas. Again we can consider groups of levels close in energy,
numbered by j = 1,2,.... Let G; be the number of states in the j-th group and N; - the
number of particles in these states. The set of numbers N; completely characterizes
the microscopic state of a gas.
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4.3 Nonequilibrium Fermi and Bose gases =— 83

In the case of Fermi statistics, only one particle can occupy each quantum state,
but the numbers N; are not small and of the order of G;. The number of possible distri-
butions of N; identical particles over G; states, with no more than one particle in each
state, is equal to the number of ways that we can choose N; from G; states, i.e., the
number of combinations of G; elements by N;:

G

T NG -N) (4.13)

W
Taking the logarithm and using for all three factorials in (4.13), Stirling’s asymptotics
InN! = N1In(N/e), we find entropy as:

S = Y{G;InG; - N;InN; - (G; - N;) In(G; - N))}. (4.14)
j

Introducing again the average occupation numbers (n;) = N;/G;, we obtain the follow-
ing expression for the entropy of a nonequilibrium Fermi gas:

S=- Z G;[{nj) In(m;) + (1 - (m;)) In(1 - (ny))]. (4.15)
]

Restricting its maximum with additional conditions:

YN =) Ginj)=N; Y &Gi(n)=E (4.16)
j j j

i. e., using the method of Lagrange multipliers, from:

%ﬂj)[s +aN + BE] =0, (4.17)
we immediately obtain the Fermi distribution as (n;) = [e**Pé 1+ 1), where a = —u/T,
B=1/T.

In the case of Bose statistics, in each quantum state we can place an arbitrary
number of particles, so that statistical weight WV, represents the number of all ways to
distribute N; over G; states:

(G +N; - 1)!

=G - (4.18)

To understand this expression, we note that here we are speaking about, e. g., the
number of ways to distribute N; identical balls over G; boxes. Let us denote the balls
by N; points, while the boxes can be numbered and their borders can be visualized by
Gi-1 vertical strokes. In total, there are G + N; -1 point and strokes. The number we
seek is given by the number of ways to choose G; -1 places for strokes, i. e., the number
of combinations of N; + G; — 1 elements by G; - 1, which gives us equation (4.18).
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84 —— 4 Quantum ideal gases

Taking the logarithm and neglecting unity in comparison with large numbers G; +
Nj and Gj, we get:

S= Z(G +N;)In(G; + N;) - N;InN; - G;In G;}. (4.19)
j

Introducing (n;), we can write down the entropy of the nonequilibrium Bose gas as:

S=Y Gl(1+ (n))In(1+ (ny)) - (m;) In(n;)]. (4.20)
j

The equilibrium Bose distribution follows from the restriction of the maximum of this
expression, similar to the case of Fermi statistics.
For N; < G;j (4.15), (4.20) naturally reduce to the Boltzmann expression (3.23):

S= ZG(n)ln —ZG (n)(1-1n(n))]; () < 1. (4.21)

In the inverse limit of N; > G, i. e., (n;) > 1, the entropy of the Bose gas (4.20) reduces
to:
eN;

S= Z Gjln ?1’ (4.22)
]

G]- -1

N,
with statistical weight (4.18) W = W

4.4 General properties of Fermi and Bose gases

Many physical characteristics of Fermi and Bose gases can be written and calculated
in general form. In all expressions that follow, the upper plus corresponds to Fermi
statistics, while the lower minus corresponds to Bose statistics.

The energy of a free (nonrelativistic) particle can be written as:

1 p?
&= 5 — P2+ py p2) = ﬂ (4.23)
For a given value of the momentum, the state of a particle is defined also by its spin
projection. The number of particles in an element of phase space dp,dp, dp,dV can be
obtained by multiplication of the Fermi (Bose) distribution by the number of states in
this phase-space volume:
dp,dp,dp,dV

dr=g—Y = g=25+1, 4.24
8dT =g — g§=2s+ (4.24)
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4.4 General properties of Fermi and Bose gases = 85

where s is the spin of the particle. Thus we obtain:

de: gdr
ﬂ
et +1

(4.25)

Integrating over dV, we get the total volume of the gas V. Then, transforming to spher-
ical coordinates in momentum space (dp,dp,dp, — 4mp’dp), we obtain the momen-
tum distribution as:

V 2
an, - S (4.26)
23 (e’ T +1)
or the distribution of energies:
3/2
dN, = gVm fds _ /\C _(::)ds’ 4.27)
V23 T 11 e +1
where we have introduced the rather useful function:
3/2
gVm mp,
N(e) = =gV ;  Where p, = \2me, 4.28
© = o Ve=gVo o Pe (4.28)

which is called the density of states of a particle in the energy interval , € + de. These
expressions replace the Maxwell distribution for quantum gases.
Integrating (4.27) over de, we obtain:

. Ne gy  \E
N = J deME) J de— (4.29)
et +1 VPR T 11
Introducing the dimensionless variable /T = z, we can write:
N T2 T
N _gmlD) jdz vz (4.30)
Vo \2mh3 GELES!

which gives an implicit equation for the chemical potential u as a function of T and
the particle density N/V.

Making a similar transformation from summation over quantum states to energy
integration of equations (4.6) and (4.12), we get:

(o]
B gVTm3/2 J Ke
Q=52—— [develn(1+xeT). (4.31)
V2m2h3 ) ( )
After partial integration, we obtain:
2 gVm3 T’ 32
Q=-Z= de— . (4.32)
3 V2n2h3 5 e +1
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86 —— 4 Quantum ideal gases

This expression coincides, up to a factor of —2/3, with the total energy of the gas given
by:

o 32 P 3/2
E-= Jeng _ gVm j de . (4.33)
0 e

From thermodynamics, it is known that Q = —PV, so that equations (4.32) and (4.33)
give the generalized equation of state for ideal quantum gases:

2
PV = §E. (4.34)
At the limit of Boltzmann statistics, we have E = 3NT/2 (equipartition law), and (4.34)
reduces to the classical result: PV = NT.
Rewriting (4.32) as (see equation (4.30)):

g\/_m3/2T5/2 @
3n’h3 J dzez
0

(4.35)

H\E

+1

we obtain the equation of state in parametric form (parameter p!), i. e., the relation
between P, V and T for a given value of p.

Now we consider small corrections to the classical equation of state. We shall use
inequality e*/T « 1 (Boltzmann limit) and expand the integrand in (4.35) in powers of
e 1% imiting ourselves to the first two terms of the expansion. Then:

T 22 T 32 E_g B, 3w ok 1
sz = xjdzz et *(1xer ):—eT<l¢ﬁeT>, (4.36)
5 et xl } 4 2
and equations (4.36) and (4.35) can be rewritten as:
3/275/2
B . gvm Tt w1k
Q——PV——W97<1+ﬁeT . (4.37)
This expression in fact reduces to:
3/275/2
gvm'“T°'c w
Q= QBOltZ + We (438)

Small corrections to thermodynamic potentials, expressed via the appropriate vari-
ables, are equal. Thus, rewriting the correction to Qp,, via T and V, using the cor-
responding classical (Boltzmann) expressions (we drop the technical details), we can
write the free energy of the gas as:

n3/2 N2h3

F= FBOltZ + E VT1/2m3/2'

(4.39)
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4.5 Degenerate gas of electrons =— 87

From here it is easy to find:

3/2 3
Nk } (4.40)

2 V(mT)>?
We can see that quantum corrections (tending to zero as # — 0) lead to additional
growth of the pressure in a Fermi gas and to the opposite effect in a Bose gas. This
reflects the natural tendency of fermions to “avoid” each other (Pauli exclusion prin-
ciple!), while for bosons we have just the opposite behavior.

PV = NT«[I +

4.5 Degenerate gas of electrons

Quantum effects generally become important at the low-temperature limit (in practice
these temperatures may be high enough!). Of prime importance are the low tempera-
ture properties of a Fermi gas. Keeping in mind the most important applications, we
shall discuss below mainly the gas of free electrons, and we put g = 2(s = 1/2).

Let us start from the analysis of the situation at T = 0. This is the case of a so-called
completely degenerate Fermi gas. Each quantum state in a Fermi gas can be occupied
by no more than one electron. Thus, in fact, at T = O they just fill all states with ener-
gies from zero (the ground state) up to some maximum energy (which is called Fermi
energy), with a value determined simply by the number of particles (density) in the
gas.

The number of quantum states of electrons moving in the volume V, with absolute
values of momenta in the interval p, p + dp, is equal to:

4np’dpV
(2mh)3

Electrons fill all states with momenta from zero to a maximum momentum p = pp
(Fermi momentum). The total number of electrons in these states is determined by:3

(4.41)

br

|4 2 Vpy
N=—— J dp = . 4.42
h3 3m2h3 (442)
0
Then for the Fermi momentum we obtain:
1/3
13( N
pr = (310" <V> h, (4.43)
3

3 In fact, here we simply calculate the volume of the Fermi sphere Vi = 4”%, while the number of

electrons is determined by the number of available states “inside” this sphere as N = ZVQZ—;)}, which
gives (4.42). The surface of the Fermi sphere is called the Fermi surface. In metals, where the energy
spectrum of electrons may be quite different from that of free electrons, the Fermi surface may also be
quite different from the simple spherical shape. Geometry and topology of Fermi surfaces plays a very
important role in the theory of metals [24]. The simple estimates presented here are, strictly speaking,

applicable only to simple metals (e. g., Na and K).
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88 —— 4 Quantum ideal gases

which grows with the growth of electron density. It is clear that from equation (4.43)
follows a simple estimate pr ~ /a, where a is an average distance between electrons.
Correspondingly, the Fermi energy is defined as:*

2 2 2/3 2
Pr 223k <N ) h
=F_3 —(=) ~=. A
&~ om (37°) 2m\V ma? (4.44)
Naturally, it also grows with the density of the gas ~(N/ V).
The Fermi distribution:
1
My = — (4.45)
eT +1
for T — 0 becomes a “Fermi step” function:
1 forp<
n, = P=Pr (4.46)
0 forp>pr
or
1 fore<u=c¢
n, = K=o (4.47)
0 fore>pu=c¢p.

The chemical potential of a Fermi gas at T = 0 coincides with the Fermi energy:
u=¢gr (T=0). (4.48)

At finite temperatures T <« & (strongly degenerate gas), the Fermi step is
“smeared” in the energy interval ~T around the Fermi energy (see Figure 4.1). It is
easy to see that, with the growth of temperature for T > &, the Fermi distribution
transforms into the Boltzmann distribution. Accordingly, with the growth of tempera-
ture, the chemical potential starts to diminish from a positive value of the order of
and becomes negative in the Boltzmann region where T > ¢p.

The total energy of the gas at T = 0 is obtained by multiplying (4.41) by p?/2m and
integration over all momenta up to p = p:

Pr

14 4 VP;
E=—— J d = ——= 4.49
2mm?h3 . PP 10mm?h3 (4.49)

or, taking into account (4.43)
2/3
33723 1 <N>

E=———(—= N. 4,50
10 m\V (4.50)

4 Note that the value of the Fermi energy is practically the same as the degeneracy temperature (en-
ergy) of the gas introduced above (3.79).
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Figure 4.1: Fermi distribution function for various temperatures for £r/kg = 50,000 K.

Using the general expression (4.34), we can find the equation of state of a completely
degenerate gas:

5/3

2\2/3 3.2
p= (3”5) %(g) (4.51)

so that at T = O the pressure of the Fermi gas is ~(N/V)*.

In fact all the previous expressions are applicable also for finite but sufficiently
low temperatures T <« &. Corresponding temperature corrections are of the order of
(T/eF)Z. The Fermi temperature (degeneracy temperature) Tr =~ & for the gas of elec-
trons with density N/V ~ 102 cm~3, typical for metals, and mass m ~ m,, where m, is
the mass of a free electron,’ can be estimated to be in the interval of 10*~10° K. Thus,
an electron gas in metals, under normal conditions, is always strongly degenerate. In
semiconductors, where the electron density may change within rather wide limits, this
is generally not so. Quite often the statistics of current carriers may be Boltzmann’s.

To conclude this section, let us make some remarks on the role of interelectron
interactions. A degenerate electron gas becomes more “ideal” with the growth of its
density. The characteristic kinetic energy of the electrons is of the order of the Fermi
energy: &g ~ %Z(N JVY3 ~ mh—;, where a is the interelectron distance (in metals it is
practically the same as the interatomic distance). At the same time, the characteristic
Coulomb repulsion energy U ~ %2 Then the dimensionless parameter of perturbation
theory over interaction is given by the ratio % ~ %2% ~ %2 pﬂp = %, where we have
introduced the velocity of electrons on the Fermi surface (Fermi level) vy = pp/m. Now
we see that the smaller a (i. e., for higher densities or Fermi velocity), the smaller is this

5 Note that in real metals the mass of an electron is not necessarily equal to the mass of a free electron
in a vacuum.
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90 —— 4 Quantum ideal gases

parameter, and interaction effects become weaker. Remember, that the fine structure
constant ;—z = 13% ~ 1072, where ¢ ~ 3 10'° cm/sec, is the velocity of light in a vacuum.
In metals (for typical electron densities), it is easy to estimate that vy ~ 108 cm/sec.
Thus, in real metals, the perturbation theory parameter is not small: % ~ 1! Only
for electron densities much larger than typical densities in metals can an electron gas
can be considered as a nearly free (ideal) gas. So the question arises as to why the
nearly free-electrons picture is so good to describe many of the electronic properties
of metals? The complete solution of this problem is achieved only within the Fermi-

liquid theory, which will be briefly discussed later.

4.6 Relativistic degenerate electron gas*®

Compression of an electron gas leads to the growth of the average electron energy (and
Fermi energy €;), and sooner or later it becomes comparable to the rest energy mc? and
even higher. In this situation, relativistic effects become important. Let us consider the
degenerate ultra-relativistic gas with particle energies much greater than mc?. In this
case, the energy spectrum of electrons can be written as:

g, = \?p? + m’c* = cp. (4.52)

For the number of quantum states and the Fermi momentum, the previous expression

remains valid:
4np’dpV
Lt il 4.53
(2mh)3 (4.53)
Pr
|4 2 Vp;
N=— =" 4.54
m2h3 j 3m2h3 (4.54)
0
1/3
13( N
pr = (3) <V> . (4.55)
However, for Fermi energy we have the quite new expression:
1/3
N
Ep = CPp = (3n2)1/3hc<v> . (4.56)
Correspondingly, the total energy of the gas is:
oV pPr Cp4
E=—— | dpp® = v—=E 4.57
mh (J; PP 4rr2h3 (4.57)
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4.7 Specific heat of a degenerate electron gas =—— 91

or

1/3

hcN < g ) . (4.58)

361)"3
4

E

The pressure is obtained by differentiating this expression with respect to volume:

E 2\1/3 N 4/3
= - (3”4) hc<v> (4.59)
and is proportional to the power 4/3 of density.
The relationship
E
PV =— (4.60)

3

is valid for ultra-relativistic gases, not only at absolute zero T = 0 but for arbitrary
temperatures. This can be seen as follows. Using €, = cp in equation (4.6), and going
from summation over momenta to integration over energy, we get:

(o]
TV =
=-——— | deln(1+eT) (4.61)
m2c3hn3 J
"
and after partial integration:
%4 T &
Q=-PV=- j de—o—, (4.62)
3m2c3n? ) eT 11

which reduces to the finite temperature variant of equation (4.60) Note that the pres-
sure obtained from equation (4.60) is in fact the highest pressure, which can exist in
any macroscopic system [16].

4.7 Specific heat of a degenerate electron gas

At finite temperatures, the “Fermi step” is smeared over the interval of the order of ~T.
All expressions derived above for T = 0 are zeroth-order terms of expansion in powers
of the small (at low temperatures) parameter T/e. Let us find the corresponding first
order corrections. The thermodynamic potential of an electron gas, according to (4.32),
can be written as:

vm32 ® 3/2
__ 4 Vm J & (4.63)

RS ) el
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Consider the general integral containing the Fermi distribution function:

g;y b
eT +1

(o]

I= Jda /) (4.64)
where f(€) is some function (the only limitation is that the integral converges). Equa-
tion (4.63) is the specific case of f(g) = &2, For the integral (4.64) the following ex-
pansion can be derived [19, 20]:

H 2 4
N T 20 I aem
I~ Jdef(S) t e T () + —360T o)+ (4.65)

which in fact determines the expansion of all physical characteristics of the form of
equation (4.63) in powers of the small parameter T/ep.
Taking here f(g) = 3/ we write (4.63) as:

2 \/Emy2

Q:QO—VT 6h3

, (4.66)

where the first term gives the T = 0 contribution. Considering the second term as a

small correction to Q, and expressing y via N and V using the zero-order approxima-
2

tion (4.48) yu = e = ar?)Y 3zh—m(N /V)??, we can immediately write the expression for

the free energy:®

2/3

B v
F=F,- ENT2<N> , (4.67)

where we have introduced the notation B = (77/3)*>m/#?. From this, we find the en-
tropy:

v 2/3
S=BNT| — .68
(%) (468)
and specific heat:
2/3
oS %4
=T— =BNT| — . .
c-15 - svr( ) (4.69)

We see that the specific heat of a degenerate Fermi gas at low temperatures is a linear
function of temperature (Pauli specific heat). Using the expression for the density of

6 Here we once again use the theorem on small corrections to thermodynamic potentials: (6Q)7,y,, =
(6F)ryNn = (6@)rpn = (6E)syn = (6W)spn-
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4.8 Magnetism of an electron gas in weak fields —— 93

states (4.28) with g = 2 (for electrons), we can easily see that equation (4.69) can be
rewritten as:

7'[2

C=FwT, (4.70)

where we have introduced the density of electronic states at the Fermi surface:
v = N(e=ep) = V. (4.71)
This is not a simple coincidence. Equation (4.71) is rather simply interpreted in the
following way: We have seen that, in a degenerate Fermi gas, finite temperatures dis-
turb only a narrow energy layer ~T around the Fermi level. The number of electrons in
this layer 6N ~ viT. Raising the temperature by 6T leads to a change in the energy of
each of these electrons of ~§T. Then the total energy change of the gas is 6E ~ vy T6T,
and the specific heat is C = §E/6T = vgT. This elementary interpretation solves the
problem of the contradiction between the classical equipartition law and Nernst’s the-
orem. For T — 0, not all electrons participate in thermal processes, but only those be-
longing to a narrow energy layer ~T close to the Fermi level, and the number of such
electrons tends to zero as T — 0. The final result (4.70) for specific heat is very impor-
tant. In fact, it provides one of experimental methods of determination of the density
of states at the Fermi level of metals from measurements of electron contributions to
the specific heat. In the simplest case of metals, with a spherical Fermi surface, when
equation (4.71) is valid, this also enables experimental determination of the mass of
the conduction electrons in a metal, which in the general case does not coincide with
that of a free electron.
For completeness, let us write an expression for the total energy of a degenerate

Fermi gas:
2
E=E,+ JENT2<K) - Eo[l + 0.18<m—T> <K)
2 \N ) \N

where E,, is given by equation (4.49). From this expression, it is easily seen that the rel-
ative temperature correction to the energy by parameter (T/er)? is small. The specific
heat calculated from C = g—? obviously gives the previous result (4.69).

2/3 4/3

], (4.72)

4.8 Magnetism of an electron gas in weak fields

The magnetization of an electron gas in weak (external) magnetic fields consists of
two contributions: paramagnetic magnetization, connected with the spin magnetic
moment of an electron (Pauli), and diamagnetic magnetization, connected with the
quantization of orbital motion of an electron in a magnetic field (Landau).

Below we shall analyze only the case of a degenerate electron gas: T « &r. The
magnetic field is considered as weak if ygH <« T, where pp = % is the Bohr magne-
ton.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:55 AM



94 —— 4 Quantum ideal gases

Calculations can be conveniently done using the thermodynamic potential Q, de-
pending on the variables T, V, u. Then the magnetic moment of the system is defined
as:

0Q
M- -( —> . 4.73)
oH T,V.u

Let us start with the paramagnetic part of the magnetization. The additional en-
ergy of the electron, due to the spin interacting with the magnetic field, is given by
+ugH, for two spin projections ¥1/2. Accordingly, in an external field the electron en-
ergy &, = p?/2m is replaced by Epr = p?/2m + ugH. As € always enters the Fermi dis-
tribution function in the combination € - y, the statement equivalent to the previous
one is that we have to make the replacement y — u ¥ ygH in all expressions. Thus, for
the thermodynamic potential Q in a magnetic field, we can write:

1 1
Q) = 5Qo(u + upH) + SQo (U — ugH), (4.74)

where Q(u) is the thermodynamic potential in the absence of a magnetic field. The
factor 1/2is introduced here to account for the change of the number of quantum states
for fixed spin projection.

Expanding (4.74) in powers of H we obtain (terms of the first order, obviously can-
cel each other):

1 5 ,0°Qu()
Q) = Q —upH . .
(30 = Qo(u) + Sup Y (4.75)
Now we get the magnetic moment (4.73) as:
3*Qo ()
2 0
M= —HBH ayz . (4.76)
Taking into account that aa% = —N, we get the paramagnetic susceptibility (per volume
of the gas):
_ ]Jé aon(H) _ yé oN (4 77)
BTV o T v\ ey '

Neglecting small (for T « &) temperature effects, i. e., considering the gas as com-
2
pletely degenerate, we have y = g = 3% 32"—m(N JV)*3, and:

3/2
N - &)

- X 4.78
3m2h3 (4.78)

which after differentiation in (4.77) reduces to:

2 372 2
pp(2m)”’“\u  pgmp
Xo = e isz = M5V (479)
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4.8 Magnetism of an electron gas in weak fields —— 95

which is called the Pauli paramagnetic susceptibility. Thus, the paramagnetic sus-
ceptibility of the degenerate electron gas is independent of temperature (for T <« &)
and is proportional to the electron density of states at the Fermi level. This due to a
simple fact—the external magnetic field leads to a difference between the numbers
of electrons with spin oriented along and opposite to the direction of magnetic field:
N; - N| ~ vpugH, which leads to the appearance of magnetization along the field
M = pg(N; - N|) ~ ppveH, which gives the susceptibility (4.79).

Let us turn now to calculations of the diamagnetic part of the susceptibility con-
nected with the orbital motion of electrons. The energy of the orbital motion of an
electron in a magnetic field is determined by the Landau levels [18]:

1\ p; p;
e, = h(n+ 1)+ 22 < Gnv gt + 22, (480)

where w, = % is the cyclotron frequency, n = 0,1,2,..., p, is the momentum projec-
tion on magnetic-field direction. The number of states in the interval dp, at fixed n is

given by [18]:
VlielH

. 4.81
@rny2c P2 (4.8
Then, from equation (4.6), we get:
& VieH [ - (n+1/Dhw, - p2/2m
Q=-T) 2 In|1 £ "z .82
n;) Gnhyic _J dp, n[ +exp( T )] (4.82)
or
[ee]
Q=2ugH ) f[u- (n+pgH], (4.83)
n=0
where
™mv [ u p
=—— In|1 Z_ZZ ). .
f@ oy J dp, n[ +exp<T 2m>] (4.84)
—00
Summation over n can be performed using the following formula [19, 20]:
® N 7 1
D F(n + -> ~ J dxF(x) + —F'(0). (4.85)
= 2) ) 24

7 There are experimental methods allowing direct measurements of only the paramagnetic part of
the magnetization (susceptibility) in metals (e. g., Knight shift measurements in NMR), providing in-
formation on the value of the density of states, alongside measurements of electron contributions to
specific heat.
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96 —— 4 Quantum ideal gases

This expression is valid in the case of a small relative change of F during the single
stepn — n + 1. In our case, this condition reduces to ygH <« T.
Applying (4.85) to (4.83) and (4.84), we obtain:

2upH of (u — 2npgH)

Q = 2ugH J dxf(u — 2ugHx) + 2% on 0
0 "
" (2ugH) of (W)
_ _ GBH) o)
- J o - 2 ) (4.86)

The first term here does not contain H and reduces to Q,(u) in the absence of a mag-
netic field. Thus:

%Qy(u)
op?

1
Q=04 - gyéHz (4.87)

and, similar to the paramagnetic case, we find the diamagnetic susceptibility is:

_ @3290(}1) 1

= - X, 4.88
Xa 3V auz 3Xp ( )

where the last equality was obtained by comparison with (4.77). We see that the dia-
magnetic susceptibility (Landau diamagnetism) of an electron gas is equal to 1/3 of the
paramagnetic susceptibility (Pauli paramagnetism) and opposite in sign. The sum of
both contributions is positive, so that the electron gas is paramagnetic, and its total
magnetic susceptibility is equal to:

2
X=Xp+Xa= 5)(1,. (4.89)

However, it should be noted that these relations between x,, and y, are valid only for
the simplest model of free electrons. In real metals, the form of the electron spectrum
may be quite different from that of free electrons, so that these relationships may sig-
nificantly change. Due to this problem, during the discussion of real experiments on
magnetic susceptibility of metals, we are always dealing with the complicated prob-
lem of separation of paramagnetic and diamagnetic contributions.

Obviously, the total susceptibility can be calculated directly from the single ex-
pression, writing the energy levels as &, , , = (2n+1)ugH + pﬁ [2m ¥ ugH, i. e., includ-
ing the spin splitting into the Landau spectrum. This set of levels can be rewritten as:
Enp, = 2npgH + pﬁ /2m (n = 0,1,2...), where each value of n # 0 enters twice, while
n = 0 enters only once. Similar to the previous analysis, we can easily obtain:

Q= 2yBH{ %f(y) + Y flu- ZpBHn)} (4.90)
n=1
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4.9 Magnetism of an electron gas in high fields®* =— 97

and perform the summation using [19, 20]:
1F(O) + 020: F(n) = deF(x) - lF’(O) (4.91)
2 = . 127 '

Direct calculations lead to the total susceptibility given by equation (4.89).

4.9 Magnetism of an electron gas in high fields®
Consider now the case of the so-called quantizing magnetic field when
T < ugH = hw, < &g = U. (4.92)

Under these conditions, it is important to take into account the discrete nature of the
Landau levels, corresponding to electron motion in the plane orthogonal to the mag-
netic field.® Now we can not separate orbital and spin effects so that during the cal-
culations it is more convenient to use the general expression (4.90). As will be shown
later, for hw,. = ugH > T, the magnetization of an electron gas contains an oscillating
(as a function of H) part, and the amplitude of these oscillations is not small. We shall
skip some details of the calculations, which can be found in [19, 20].

While calculating (4.90) under the conditions of (4.92), we cannot use simple sum-
mation formulas like (4.91), because the function summed may change rather sharply
during the transition from n to n + 1. The standard approach here is to use the Poisson
summation formula:’

%F(O) n iF(n) = j dxF(x) + 2Re f I dxe”™  F (x). (4.93)
n=1 0 k=1 0

Then (4.91) can be written as:

™TmV _ &
Q=Q,u) + rel Rekz_:llk, (4.94)

8 In the classical approximation, this motion is a simple cyclotron rotation of an electron around the
direction of the field, with angular frequency w,. In the quantum case, this rotation is described as a
quantum oscillator with the same frequency, which leads to the appearance of the first (oscillator like)
term in the Landau spectrum (4.80). The second term in (4.80) corresponds to free-electron motion
along field direction.

9 The Poisson formula is obtained from the equality: Y2 8(x —n) = ¥ ¥k

- . The sum of
6-functions in the left-hand side is a periodic function with period 1, while the sum in the right-hand
side is the Fourier expansion of this function. Multiplying this equality by an arbitrary function F(x)
and integrating over x from O to co, we obtain the Poisson formula. We only have to take into account
that the term of the sum, corresponding to n = 0, is equal to jgo dxF(x)6(x) = F(0)/2.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:55 AM



98 —— 4 Quantum ideal gases
where

2mT T

(o) (o) 2
I, = -2ugH J dp, j dxe” ln[l + exp(% _ P ZLBHH (4.95)
© 0

We are only interested in the oscillating (with a change of magnetic field) part of the in-
tegrals, which will be denoted as I,.. After an appropriate change of variables in (4.95),
we obtain:

2 T T -£ inke inkp
I =- J dp, J de ln[l + exp(ﬂ—T >] EXp<}13_H> exp<——2mHB;_I > (4.96)

The integral over p, can be calculated explicitly [19, 20], so that:

. i T me e
I, =—-e's 2mZBH steﬂaﬂ In[1+e7 . (4.97)

0

Here we can twice perform partial integration and transform to the variable & = (¢ -
1)/ T. Dropping the nonoscillating part, we can write [19, 20]:

(4.98)

ugH 4

—00

) 3 H 5/2 ik . o £ .
j = V2m(ugH) exp(lﬂ(y m) J dz e exp(ka{>.
Tr2k>/2 (€5 +1)2 ugH
For ugH > T, the main contribution to the remaining integral comes from the region
of & ~ 1, i. e, the vicinity of the Fermi level € - u ~ T, which enables us to extend the
integration to infinity. Practically, the integral is calculated using the formula [19, 20]:

e ¢
it € _ ma
_L A" s = o (4.99)

Finally we obtain, for the oscillating part of the Q potential:

u g
G - YAmusHYPTV ST Z). (4.100)
RS eRsh(E

Calculating the magnetic moment as the derivative of (4.100) with respect to the mag-
netic field, we only have to differentiate the most oscillating factors of cos in the nu-
merators of the terms of the sum. This gives the Landau result:

1= NPTy 2 sin(pk - ) (4.101)
- 3 2Ty :
nvVH 5 \/Esh(’LTH)
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4.10 Degenerate Bose gas =—— 99

This expression is oscillating as a function of the inverse magnetic field 1/H. The pe-
riod over 1/H is given by:

A<%> - ZZ_B (4102)

and is independent of temperature. Here we have A(1/H)H ~ ugH/p < 1, so that
the oscillations are of high “frequency”. Such oscillations of the magnetic moment
in an external magnetic field are observed in metals at sufficiently low tempera-
tures and “clean” enough samples, which are called the de Haas-van Alphen ef-
fect. For ygH ~ T, the amplitude of the oscillating magnetic moment is given by
M ~ VuH Y Z(myB)3/ 2473, The monotonous part of the magnetization M is determined
by the susceptibility (4.89) calculated above, so that M ~ Vu>Hm>?y2h=. Then
M/M ~ (y/yBH)l/ 2 ».1 and the amplitude of the oscillating part is large in com-
parison to monotonous part. For uygH <« T, this amplitude drops exponentially as
exp(-m*T/u gH) and becomes negligible.
Equation (4.102) for the period of the oscillations can be rewritten as:

A<l>_@i_2|e|hi_2n|e|h

> 4,103
H me g ¢ mpi S ( )

where Sy = ntp7, is an area of maximal “cross section” of the spherical Fermi surface of
free electrons. It turns out that this last expression is also valid for metals with arbi-
trary Fermi surfaces if Sy is understood as an area of any extremal cross section of the
Fermi surface with complicated topology [24]. In a realistic case, there may be several
such cross sections, so that there appear several periods of de Haas—van Alphen os-
cillations. Experimental study of these oscillations enables us to determine extremal
cross sections of the Fermi surface of a real metal, which helps in determining its form
and topology.

The De Haas—van Alphen effect is the first of a number of oscillatory effects in
metals in quantizing magnetic fields at low temperatures; there are similar oscilla-
tions of electrical resistivity (e. g., the Shubnikov—de Haas effect). All of these effects
are related to the Landau quantization of the electron spectrum in a magnetic field
(4.80), and the “passing” of discrete Landau levels (of transverse motion of electrons)
through the Fermi level with the change of external magnetic field [24]. Experimen-
tal observation of these effects is a powerful method to study the geometry of Fermi
surfaces in real metals.

4.10 Degenerate Bose gas

Atlow temperatures, the properties of a Bose gas are radically different from the prop-
erties of a Fermi gas. At T = 0, all particles of Bose gas occupy the state with lowest
energy (ground state) € = 0, and there are no limitations due to the Pauli exclusion
principle. Let us consider the equation for the total number of particles, determining
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100 —— 4 Quantum ideal gases

the chemical potential (4.30) for the Bose case:

N g(mT)*? T vz
A dz 4104
V. \2rk3 ) -5 1 ( )

If, for fixed density N/V of the gas, we start lowering the temperature, equation (4.104)
immediately shows, that the chemical potential u drops in absolute value, remaining
negative (in accordance with the general requirements of Bose statistics). However,
U can become zero at some finite temperature, which is defined by the relation:

(6e)

3/2
Ly

VT o am J Z 1 (4.105)

The integral here is just a dimensionless constant ~ 2.315. Then, solving equa-
tion (4.105) with respect to T, we obtain the characteristic temperature TO:10

2/3

3314 (N
T, - EE<V> (4.106)

which is called the temperature of Bose condensation. The physical meaning of this
term, as well as of physical effects appearing below this temperature, can be under-
stood from the following arguments. For T < T, equation (4.105) does not give neg-
ative solutions for y, while in Bose statistics the chemical potential must be, as was
shown above, negative for all temperatures. This contradiction appears because un-
der this conditions we cannot use the standard transformation from summation over
quantum states in equation (4.11) to integration over a continuous variable (energy)
in equations (4.30), (4.104). In fact, during such a transformation, the first term in the
sum over k in equation (4.11), corresponding to energy level g, = 0, is multiplied by
v€ = 0 (see the expression for the density of states (4.28)) and just drops out of the
equation. But in reality, at T, Bose particles will tend to occupy precisely this lowest
energy state, until T = 0, when all of them will “condense” in this ground state.

Thus, in reality, the physical behavior at temperatures T < T is as follows. Parti-
cles with energy € > 0 are distributed according to (u = 0!):

B gm’?V ede

= Aty (4.107)
f 2B et 1
Accordingly, the total number of particles with energies € > 0 is equal to:
32 P 3/2
Neso = des = gv(mT) J dz vz = N<1> . (4.108)
V223 e -1 T,
0

10 Note that, similar to the Fermi temperature, this expression is of the order of the temperature of
gas degeneracy (3.79).
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4.10 Degenerate Bose gas = 101

The remaining

3/2
IS
TO

particles are already in the state with the lowest energy € = 0. This effect of a macro-
scopic number of particles being “condensed” in the ground state is called Bose con-
densation. Let us stress that we are speaking here about “condensation” of particles
in momentum space (at p = 0), which has nothing to do with the usual gas conden-
sation in real (coordinate) space. Particles in a Bose condensate form a macroscopic
quantum state with very peculiar properties.

The total energy of the gas at T < T, is determined by the particles with € > 0 (see
equation (4.33) written for y = 0):

] (4.109)

o 3/2 3/275/2
gV (mT)**T j 2212 < T > m>’T
E = d = 0.770NT| — =0.128¢————V. 4.110
v ) PeE T, S (4.110)
Then we obtain the specific heat as:
OF 5E . 3p
== == ~T". A1
G (aT >V 2T (4.111)
Integrating the specific heat, we find for the entropy:
C, S5E
- | Zvar=22 112
5= [ Far=57 (@112
0
and the free energy F = E — TS:
2
F=--E. (4.113)
3
For the gas pressure, we obtain:
oF 3/275/2
P=-{—| =0.081g———. 11
(av)T 8518 (4.114)

At T = T,, all physical characteristics discussed here are continuous, but it can be
shown that the derivative of the specific heat with respect to T has a finite discontinuity
(jump) at this point [19, 20]. In this sense, the point of Bose condensation, in fact, is
a point in some kind of phase transition. Note however, that the properties of this
transition essentially depend on the interaction between particles of the gas, which is
neglected here.

During many years, the phenomenon of Bose condensation in gases remained just
a theoretical result, though its importance was clearly understood, and Bose conden-
sation was in fact observed in such phenomena as superfluidity and superconductivity
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102 — 4 Quantum ideal gases

in condensed matter (where interactions are of prime importance). These will be dis-
cussed later, but in recent years, Bose condensation was directly observed in unique
experiments with ultracold gases of alkali metals (at temperatures ~10~ K in special
magnetic traps). Apparently, these systems are well described by the model of a nearly
free (ideal) Bose gas, though there interactions are also quite important for the expla-
nation of numerous effects. These studies are at present at the center of interests of
modern physics of many particle systems [28].

4.11 Statistics of photons

The most important physical object to study with Bose statistics is electromagnetic ra-
diation at thermodynamic equilibrium (for historic reasons also called “black body”
radiation), i.e., a gas of photons. The linearity of the equations of electrodynamics
leads to validity of the superposition principle, i. e., the absence of interactions be-
tween photons—they form an ideal gas! The spin of the photons s = 1, so this is a Bose
gas. In fact, to achieve thermodynamic equilibrium, we always have to assume the ex-
istence of some small interaction of the photons with matter. The mechanism of this
interaction consists of absorption and emission of photons by matter.!! This leads to
an important peculiarity of a photon gas: the number of particles (photons) N is not
conserved and should be determined from conditions of thermodynamic equilibrium.
Requiring the minimum of free energy (at fixed T and V), we obtain the condition:
(%)T,V = u = 0, so that the chemical potential of a photon gas is zero:

u=0. (4.115)

The distribution function of the photons over the states with definite momenta #k and
energy hw = hck (and definite polarizations—spin projections of photons) is given by
the Bose distribution with y = 0:

1

— (4.116)
eT -1

n =
which is called the Planck distribution.
Assuming the volume V to be large enough, we can as usual transform from a
discrete to a continuous distribution of photon eigenstates. The number of field oscil-
lators with components of the wave vector k in intervals d°k = dk, dk,dk, is equal to
174 (;1;’)‘3 [16]. Then, the number of oscillators with absolute value of the wave vector in
interval k, k + dk is given by:

%4

2
PIE 4rk-dk. (4.117)

11 A good example of such a system is the so-called “relict” radiation in the Universe, remaining since
the “Big Bang” throughout space.
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4.11 Statistics of photons = 103

Using w = ck and multiplying by two (there are two independent directions of polar-
ization), we obtain the number of quantum states of photons with frequencies in the
interval w, w + dw as:

2
V“'z—d;'. (4.118)
mT’c
Then the number of photons in this frequency interval is:
2
dN,, = %‘;’—d‘” (4.119)
-c et -1

Multiplying by fw, we obtain the energy contained in this part of the spectrum:

3
dE,, = Z—Z“:—d‘” (4.120)
T er —1
which is Planck’s law. The corresponding graph is presented in Figure 4.2. Expressing
everything in terms of the wavelength A = 2%, we have:

16m2chV  dA

/15 2nthe

dE, = .
em —1

(4.121)

For small frequencies hiw <« T, we obtain from (4.120) the Rayleigh—Jeans law:

T

Here, there is no dependence on A, as this is a classical limit, and this result can be
obtained by multiplying (4.118) by T, i.e., applying the equipartition law to each of

3,
1
—

W o

1,4 }/ \

0.6 5

A/ ANy
/ x
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3
Figure 4.2: Planck function s—;x = hT“’
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the field oscillators.!? In the inverse limit of Aw > T (quantum limit) from (4.120), we
get Wien’s formula:
dE, - V" e Fdw (4123)
¢ n2c3 ' ’
The spectral density of the energy distribution of a photon gas dE,,/dw has a maximum
at w = wy,, defined by the condition:

—h“T"" ~ 2822, (4.124)

Thus, an increase in temperature leads to a shift of the maximum of the energy distri-
bution to higher energies (frequencies) proportional to T (Wien’s displacement law).

Let us calculate the thermodynamic properties of a photon gas. For u = 0, the free
energy F = @ — PV = Nu + Q. Then, putting y = 0 and transforming from summation
over k to integration over w in (4.12), we obtain:

(e8]

%4 _hw

F = TW j da)wz ln(l -e T ) (4.125)
0

Introducing x = hw/T and performing partial integration, we get:

(4.126)

(o)
T X
=-V dx .
3mh3c3 J e -1
0

The integral here is equal to /15 [19, 20], so that:

2mi
T 4o 4

=——VT", 4127
45(hc)3 3c ( )

where the coefficient o (the Stefan—Boltzmann constant) is equal to:

2,4
kg

o= m (4.128)

if we measure the temperature T in absolute degrees. The entropy of a photon gas is:

oF _ 160 VT3

— == 412
oT 3c (4.129)

12 Itis easy to see that the integral (4.122) over all possible frequencies diverges, so that the energy of
the photon gas becomes infinite. This is the so-called “ultraviolet catastrophe”, which historically was
one of the strong indications of the shortcomings of classical theory, leading Planck to the introduction
of the quanta. Note that Planck suggested his formula (4.120) as the simplest interpolation between
(4.122) and the experimentally discovered law (4.123).

13 For the cosmological “relict” radiation, this maximum corresponds to T =~ 3 K.
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For the total energy of the radiation:

— 105

E=F+TS= %VT“ = -3F (4.130)
which is Boltzmann’s law. For the specific heat of the photon gas:
oE 160 3 3
C,==) =—=1~T. 4.131
Y < oT )V c ( )
The radiation pressure!” is:
oF 4o 4
p=_Z =T 4,132
< oV >T 3c ( )
so that the “equation of state” is:
E
PV = 3 (4.133)

characteristic for an (ultra) relativistic gas with w = ck. The total (average) number of

photons at a given temperature is given by:

3

= 0.244< 1) V.

N
hc

v [, o vrr T, K8
jwm = 233de
eT —1 rrcho e -1

m2c3
0

(4.134)

Max Planck (1858-1947) was a German theoreti-
cal physicist whose discovery of energy quanta won
him the Nobel Prize in Physics in 1918. Planck made
many contributions to theoretical physics, but his
fame as a physicist rests primarily on his role as the
originator of quantum theory. It is said that some
physics professor warned him against going into
physics, saying, “in this field, almost everything is
already discovered, and all that remains is to fill
a few holes”. Later Planck wrote about his work in
Berlin: “In those days I was essentially the only the-
oretical physicist there”. In 1894 Planck turned his

attention to the problem of black-body radiation. The question had been studied ex-
perimentally, but no theoretical treatment agreed with experiments. He derived the
famous Planck black-body radiation law, which described the experimentally ob-
served black-body spectrum well. The central assumption behind his new derivation,

14 This pressure is very low at normal conditions, but may become enormous for high enough tem-
perature, e. g. in astrophysics. Actually, speaking about “practical” applications of this theoretical
expression, we note that the radiation pressure of a photon gas is one of the main driving forces in

thermonuclear weapons.
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106 —— 4 Quantum ideal gases

presented to the German Physical Society on 14 December 1900, was the supposi-
tion, that electromagnetic energy could be emitted only in quantized portions. At
first Planck considered that quantisation was only “a purely formal assumption”, but
nowadays this assumption, incompatible with classical physics, is regarded as the
birth of quantum physics and the greatest intellectual accomplishment of Planck’s
career. The discovery of Planck’s constant enabled him to define a new universal set
of physical units (such as the Planck length and the Planck mass), all based on fun-
damental physical constants upon which much of quantum theory is based. When the
Nazis came to power in 1933, Planck was 74. In 1944, Planck’s son Erwin was arrested
following the attempted assassination of Hitler on 20 July 1944. He consequently died
at the hands of the Gestapo. Planck died on 4 October 1947.
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5 Condensed matter

5.1 Solid state at low temperature

In crystalline solids, atoms oscillate around equilibrium positions, which are regular
in a crystal lattice. At low temperatures, these oscillations are small and can be con-
sidered harmonic. Similar situations are characteristic of amorphous solids, where
equilibrium positions are disordered in space.

Let N denote the number of molecules (atoms) forming a solid and v, the number
of atoms per molecule (v = 1if a solid consists of atoms). Then the total number of
atoms is equal to Nv. Of the total 3Nv degrees of freedom, three correspond to transla-
tional and another three to rotational motions of the solid as a whole. The remaining
3Nv - 6 degrees of freedom correspond to oscillations. Taking into account that 3Nv is
an enormous number, we can safely neglect six of them and assume that the number
of vibrational degrees of freedom is given by 3Nv.

Below, we do not take into account electronic degrees of freedom, so that our pre-
sentation is related, strictly speaking, only to dielectric solids. In the simplest approx-
imation, we can assume that, in metals, electrons just additively contribute to all ther-
modynamic quantities.

From a mechanical point of view, the system with 3Nv vibrational degrees of free-
dom can be considered as the set of 3Nv independent oscillators, each corresponding
(in harmonic approximation) to a separate normal oscillator [17]. From quantum me-
chanics, it is known [18] that the energy of the harmonic oscillator is given by:

& = hw(n + %) (5.1)

where hiw is the quantum of oscillation,n = 0,1, 2... is the oscillator quantum number.
Then the statistical sum of a single oscillator is determined as:

_‘L'”
OSC — z e (n+l/2 (5.2)

Let us place the zero of energy at the lowest (n = 0) oscillator level, i. e., include the
zero-point oscillator energy into a constant £, defining the origin of an energy scale.
Then:

S g, 1
Zosc = z e T = T (5.3)
n=0 l1-e71

and the corresponding free energy of a single oscillator is given by:

Foee = TIn(1 - e’%w). (5.4)

1 Most of the material in this chapter is based on the presentation of [19, 20].

https://doi.org/10.1515/9783110648485-005
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108 —— 5 Condensed matter

Then the free energy of a solid can be written as:

F = Neg,, + Tz In(1- e"h%), (5.5)
a

where the summation is performed over all 3Nv normal oscillators, which are num-
bered by index a. Here, Ng, is the energy of the zero-point oscillations, obviously pro-
portional to the number of molecules in the solid, while g, is the zero energy of a
moleculeat T = 0.

Consider the limit of low temperatures. At small T, in the sum over a only terms
with small Aw ~ T are relevant. Small frequency vibrations in solids are the usual
sound waves. The wavelength of a sound wave is given by A = u/w, where u is the
speed of sound. This wavelength is large, compared with lattice constant of a typical
crystal (or the average interatomic distance in an amorphous solid): A > a. The corre-
sponding frequencies w <« u/a. To consider the relevant vibrations as sound waves,
we have to restrict the temperatures to:

T < 2. (5.6)
a

Let us assume that our solid is isotropic (this is always valid for amorphous solids). In
this case, we have to deal with either longitudinal (with velocity u;) or transversal (with
velocity u;) sound waves, as both can propagate in such a solid. Their frequencies are
given by:

w=uk and w=uk, (5.7)

where k = |K| is the absolute value of the wave vector.

The number of vibrational modes corresponding to sound waves with absolute
value of the wave vector in the interval from k to k + dk and with fixed polarization is
given by:

4rk®dk

For longitudinal polarization, we have k = w/u;, while for the transversal polarization
k = w/u;, so that, in the frequency interval from w to w + dw, we have the following
number of vibrational modes:

2

wdw( 1 2

yd( 1L, 2) 59
2 \u}  u}

Let us introduce the average speed of sound u via the following relation:

3_2 + —. (5.10)
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5.1 Solid state at low temperature = 109

Then equation (5.9) can be written as:

3wldw
—_—. 5.11
223 G.11)
In this form, equation (5.11) is applicable not only to an amorphous solid, but also to
crystals, if we assume that u is a certain average speed of sound in a crystal of given
symmetry. Then, using (5.11), we can transform the summation over « in equation (5.5)

into an integration over w and obtain:

(oe)
3VT 2 _hw
F=Ney+—— | dow'In(l-e" T), 5.12
0 2n2u3l ( ) G.12)

where the integration can be extended to infinity due to the fast convergence of the
integral at small T. Dropping the contribution Ngy, we can see that the rest of this
expression differs from equation (4.125) for the free energy of a photon gas only by the
replacement of the speed of light ¢ by the speed of sound and the factor of 3/2, related
to the three polarizations of the sound waves, as opposed to the two polarizations
of photons. Now we can conclude that the thermodynamics of a solid is determined
by the quanta of sound waves (lattice vibrations), which we shall call phonons. Here,
for the first time, we meet the situation where the theoretical description of a many-
particle system of (interacting!) atoms (molecules) is reduced to a model of an ideal
(noninteracting!) gas of quasi-particles.

Now we can use just the expressions obtained previously for a photon gas with
similar replacements. However, we shall repeat the explicit derivation. We can once
again introduce the dimensionless variable x = hw/T and perform partial integration
in (5.12) to get:

(o)

4 p I r[le‘
F=Ney-V =Neg-V——. 513
0" o J Yo =1 =0 T V30w G13)
The entropy of the system is given by:
oF 21°T?
Sl /i 5.14
oT 15(hu)3 G.14)
and the energy E = F + TS is:
2wt
‘T
E=Ney+V———-=. 5.15
o7 " 10(hu)3 (15)
The specific heat of a solid in this approximation (low temperatures!), is equal to:
oE 27'[2 3 3
C=|=)= V> ~T°. 5.16
<8T> 5(hu)? (16)

Here we can neglect any difference between C, and C, because their difference at low
temperatures C, - C, ~ T7,i.e., is much smaller than the specific heat itself [19, 20].
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110 — 5 Condensed matter

5.2 Solid state at high temperature

Let us consider now the opposite limit at high temperatures T > hu/a. In this case,
we can write:

_twe
l-e T =~ 4 q
e T (5.17)
so that from equation (5.5) we obtain:
h
F=Neo+TY In 22 = Ney - 3WT In T + 3WT In hi(w), (5.18)
a

where we have introduced the mean logarithmic frequency of vibrations (phonons)
(w) as:

In(w) = 3% Y Inw,. (5.19)
a

From equation (5.18), we find the energy E = F - T%:
E = Ney + 3MvT. (5.20)

The case of high temperatures corresponds to the classical analysis of atomic vibra-
tions and equation (5.20) corresponds to the equipartition theorem—each of the 3Nv
vibrational degrees of freedom contributes to the energy T. The specific heat now is
given by:

C = Nc = 3Ny, (5.21)

where ¢ = 3v is the specific heat per one molecule.? Thus, at high enough temper-
atures, the specific heat of solids is a constant, independent of temperature and
dependent only on the number of atoms. In particular, for all elements (v = 1), the
atomic high-temperature specific heat is the same and equal to three (or 3kg in usual
units)—Dulong—Petit’s law. At normal temperatures, this law agrees well with exper-
iments.

Using (5.21), we can write free energy as:

F =Ney — NcTIn T + NcT In h{w) (5.22)
E = Ney + NcT. (5.23)

2 Again, here we simply write C because for solids the difference of C, and C, is negligible [19, 20].
3 For composite compounds (v > 1), the Dulong—Petit’s limit is practically never achieved due to
melting or chemical decomposition at rather low temperatures.
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5.3 Debye theory =— 111

Then the entropy of a solid is:

Sz—a—F =NclnT—NclnM. (5.24)
oT e

Clearly equation (5.18) can be directly derived using classical statistics starting
from the general expression for the free energy:

F=-Tlh j dre 7. (5.25)
Substituting here the oscillator energy:

E(p.q) = % ;(pi + Widy) (5.26)
and taking into account dI' = W [1. dp.dq,, we can see that the integral here is
factorized into a product of 3Nv identical integrals of the following form:

T dp, ]9 dq, exp<—%> = % (5.27)
- -0

so that finally we obtain (5.18). Note that the limits of integration here can be extended
to infinity due to fast convergence of the integrals, though in reality atoms perform
only small oscillations around lattice sites. Accordingly, all areas of integration corre-
spond in fact to physically different microscopic states, and there is no need to intro-
duce an additional factor of N! in the denominator of the phase volume.

5.3 Debye theory

Debye proposed a simple, but very effective, interpolation for the specific heat which
can be used for arbitrary temperatures. Let us consider a model of a solid, where all
vibrational frequencies are distributed according to equation (5.11), though in reality
this expression is valid only for small (sound) frequencies. In fact, the phonon spec-
trum should be limited from above as the vibrational frequency in a solid cannot be
larger than some maximal frequency, which can be determined from the condition
that the total number of vibrations must be equal to the total number of vibrational
degrees of freedom 3Nv:

3V e Vw?
S35 j dww’ = —2 =3Nv. (5.28)
0
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112 — 5 Condensed matter

Defined thusly, the Debye frequency wy, is equal to:*

wp = u< 671:/NV> ~u/a. (5.29)

Accordingly, the frequency distribution or phonon density of states in Debye model is
given by:

2
INVY  forw < wy
Wp

plw) = (5.30)

0 for w > wp,

where we have expressed u via wp using (5.29).

Surely, since Debye’s work, there has been an enormous progress of solid state
physics and nowadays the real phonon density of states is directly measured e. g.
by inelastic scattering of neutrons. However, at small frequencies it always reduces
to the Debye (sound) dependence ~w?, though at higher frequencies it may become
rather complicated (see e.g. Figure 5.1). The limiting frequency always exists, but
equation (5.29) defines it only by the order of magnitude. However, in most cases De-
bye model produces a rather satisfactory description of the specific heat of real solids.
The Debye frequency is usually considered just as a fitting parameter, characterizing
the concrete solid, to be determined from experiments.

=
B)

gmw)

.—-—-—-——7——\

-
|
1

(S}
w
o~
[

w, 10" rad/sec

Figure 5.1: Phonon density of states in copper determined from neutron scattering experiments.
The dashed line corresponds to the Debye model which is fixed by demanding equality of the areas
under this line and the experimental density of states. Debye temperature 6, = 340K.

4 The existence of such a limiting frequency is crucial for phonon statistics and is the major difference
with the statistics of photons. For photons there is no such maximal frequency - the electromagnetic
field is the system with an infinite number of degrees of freedom and in Minkowski space-time no
minimal length (similar to lattice constant a) exists (at least at the present level of our knowledge).
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5.3 Debye theory =— 113

Again replacing the summation in equation (5.12) by frequency integration we obtain
the free energy of a solid as:

Wp
F = Ney + T9_1\£v J dww’ In(1 - e_h7w). (5.31)
w
Do

Let us now introduce the Debye temperature as:

GD = h(UD. (5-32)
Then:
T 3 6p/T
F = Neg + 9NvT<6—> j dzz’ In(1 - e7%), (5.33)
D
0

where we have introduced the dimensionless variable z = h—;’ Performing partial in-
tegration and introducing the Debye function:

X 3

3 z
D = — B
0= [ (5.34)
0
we can write (5.33) as:
_% 0p
F=N£0+NvT{31n(l—e T)—D<?>}. (5.35)
Then theenergy E=F-T % is given by:
6p
E = Neg + 3NVID T (5.36)
and the specific heat is:
bp\ 6p r( bp >}
C=3NviD| = |- —=D'( = |t. .
3v{<T> 2y % (5.37)
In Figure 5.2 we show the dependence of 3% on %.

For T « 6p we have 971’ > 1, so we can replace the upper limit of integration by
ITA

infinity and the integral is equal to 7z and

TlA

D(x) = T

(5.38)
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Figure 5.2: Temperature dependence of the specific heat in Debye model.

Then, from equation (5.37) we get:

4 3
C=~ m;‘/” (;) (5.39)
D

which coincides with (5.16).

For T » 0, we have x « 1and in first approximation we can put D(x) = 1, so that
equation (5.37) gives C = 3Nv, i. e. the Dulong—Petit law.

Note that the actual form of the Debye function D(x) shows that the border be-
tween the different temperature limits is defined by the comparison of T and 6p/4 -
the specific heat is approximately constant for T > 8p/4 and it behaves as ~T? for
T <« 6p/4. In metals, for temperatures T <« 6p/4 we can also observe the contribu-
tion linear in T to the specific heat from free electrons given by equation (4.70), which
is rather small and is rapidly “masked” by the lattice contribution at higher temper-
atures. To separate electronic and lattice contributions to the specific heat it is con-
venient to plot experimental data for the specific heat of metals at low temperatures
as the dependence of the ratio C/T on T In a metal we have at low temperatures
C = yT + BT°, so that % =y + BT?, and the value of C/T at T — 0 actually determines
the coefficient y, which in fact gives us (according to equation (4.70)) the value of the
electron density of states at the Fermi level.”

In Table 5.1 we present the values of Debye temperatures, determined experimen-
tally for a number of real solids. Excluding special cases like diamond (where 6, ~
2000 K), Debye temperatures for the majority of solids are of the order of 10° K.

5 Note that in amorphous (insulating) glasses a specific heat linear in T is also sometimes observed,
due to the contribution of so-called tunneling states (two-level systems). However, we shall not discuss
this here as this material is outside the scope of our presentation.
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5.4 Quantum Bose liquid =— 115

Table 5.1: Debye temperatures for some real systems (K).

Pb Na KB Ag NaCl Ga Cu Al Mo SiO, Si L

105 158 180 225 280 320 340 430 450 470 645 732

Peter Joseph William Debye (1884-1966) was a
Dutch-American physicist and physical chemist, and
Nobel laureate in Chemistry. Born in Maastricht,
Netherlands, Debye entered the Aachen University of
Technology in 1901. In 1905, he completed his first de-
gree in electrical engineering. At Aachen, he studied un-
der the theoretical physicist Arnold Sommerfeld, who
later claimed that his most important discovery was
Peter Debye. His first major scientific contribution was
the application of the concept of dipole moment to the
charge distribution in asymmetric molecules in 1912, de-
veloping equations relating dipole moments to temper-
ature and dielectric constant. In consequence, the units of molecular dipole moments
are termed debyes in his honor. Also in 1912, he extended Albert Einstein’s theory of
specific heat to lower temperatures by including contributions from low-frequency
phonons. In 1914-1915, Debye calculated the effect of temperature on X-ray diffrac-
tion patterns of crystalline solids (the “Debye—Waller factor”). In 1923, together with
Erich Hiickel, he developed the theory of electrolyte solutions, introducing the concept
of (Debye) screening. From 1934 to 1939 Debye was director of the physics section of
Kaiser Wilhelm Institute in Berlin. From 1936 onwards he was also professor of The-
oretical Physics at the Frederick William University of Berlin. These positions were
held during the years that Adolf Hitler ruled Nazi Germany. In 1939 Debye traveled
to the United States to deliver lectures at Cornell University in Ithaca, New York. Af-
ter leaving Germany in early 1940, Debye became a professor at Cornell and in 1946
he became an American citizen. In recent years there was some controversy whether
during his directorship of the Kaiser Wilhelm Institute, Debye was actively involved
in cleansing German science institutions of Jewish and other “non-Aryan elements”.

5.4 Quantum Bose liquid

In the general case, interaction between atoms (molecules) in liquids is strong, and
calculations of thermodynamic characteristics becomes a very complicated task (as
opposed to gases or solids, where interactions or atomic vibrations are small, allow-
ing an analytical approach). However, theoretical analysis simplifies in the case of
so-called quantum liquids, which are close to the ground state at nearly zero tem-
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116 —— 5 Condensed matter

peratures. In reality, there is only one such liquid, which does not crystallize up to
the absolute zero — that is liquid Helium. Most importantly, a quantum liquid is also
formed by conduction electrons in metals. There are some other more exotic examples
of quantum liquids, e. g. nuclear matter, neutron stars etc. Many properties of these
systems are quite unusual, including such spectacular phenomena as superfluidity
and superconductivity. The theory of quantum liquids is of prime importance and is
one of the major areas of the modern theory of many-particle systems.

We have seen that calculation of the thermodynamic properties requires knowl-
edge of the energy spectrum (levels) of the body. For the case of the system of strongly
interacting particles, such as a quantum liquid, we have to deal with the energy levels
of a liquid as a whole, not of separate atoms forming a liquid. At low temperatures,
while calculating the partition function, it is sufficient to take into account only the
lowest energy levels (excitations) just above the ground state, which leads to great
simplifications.

The basic idea of Landau is that lowest energy levels of a quantum liquid can be
reduced to some kind of elementary excitations or quasi-particles, with a well defined
energy spectrum. In a spatially homogeneous (translationally invariant) liquid these
excitations can be characterized by momentum (or quasi-momentum in a crystal). Un-
til the number of quasi-particles is low enough (at low temperatures) we can neglect
their interactions and assume that, in first approximation, these excitations form an
ideal gas.®

One of the possible types of energy spectrum of weak excitations of a quantum
liquid is the Bose-like spectrum, where elementary excitations can appear and disap-
pear one by one. The angular momentum of any quantum system (in our case quan-
tum liquid) can change only by integer multiples of 4. Thus, elementary excitations
appearing one by one, necessarily can possess only an integer angular momentum
(spin) and obey Bose statistics. The liquid, consisting of Bose particles must have an
energy spectrum of this kind. A typical example is liquid He* (while He> forms a Fermi
liquid).

The major characteristic of quasi-particles is dispersion (spectrum), i.e. the de-
pendence of their energy on momentum. In a Bose liquid, elementary excitations with
small momenta p (large wavelengths #/p) correspond to the usual sound waves with
dispersion:

£(p) = up, (5.40)

6 Let us stress that the concept of quasi-particles is quite nontrivial. Its final justification appeared
only within the modern theory of many-particle systems, based on Green’s functions and the quantum
field theory approach (see Chapter 11 below). Only within this approach we can derive precise criteria
for the existence of quasi-particles in concrete systems. In some cases (e. g. in so-called strongly cor-
related systems) the quasi-particle concept breaks down and a much more complicated description is
required.
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5.4 Quantum Bose liquid =— 117

where u is the speed of sound. These excitations (quasi-particles) are called phonons.
The knowledge of the spectrum &(p) at small p allows us to calculate the thermody-
namic characteristics of a liquid at very small temperatures T, when practically all
elementary excitations are phonons. Appropriate expressions can be written immedi-
ately, using the results obtained above for the thermodynamics of a solid at low tem-
peratures. The only difference is that instead of three independent polarizations (two
transverse and one longitudinal) in a solid, we have only one (longitudinal) in a lig-
uid, so that all expressions should be divided by 3. For example, for the free energy of
a liquid from equation (5.13) we obtain:

204
‘T
F=F,-V , 541
o " 90(hu)3 G41)
where F is the free energy of a liquid at T = 0. The energy is given by:
2mbs
n°T
E=E +V—_ 542
0" Y 300u) 642
and the specific heat:
27T2T3 3
c=V ~T°. 543
15(hu)3 G43)

With the growth of quasi-particle momentum &(p) dependence deviates from
a simple linear one, and its behavior becomes dependent on interactions. At large
enough momenta &(p) dependence ceases to exist, as elementary excitations with
large momenta are unstable toward decay into several excitations with smaller mo-
menta.

After a thorough study of experimental data on liquid He* Landau has postulated
the spectrum of elementary excitations for this system, as shown in Figure 5.3. We can
see a characteristic minimum at p = p, and close to it £(p) can be written as:

e(p) = A+ (p_—{’O)z. (5.44)
2h
Quasi-particles from this part of the spectrum are usually called rotons.” Now this form
of the spectrum is well confirmed by direct experiments on inelastic neutron scatter-
ing. Experimental values of the constants for the roton part of the spectrum are:

A=85K; % =1910%cm™;  ji= 0.16my,. (5.45)

1

Note that p, ~ ha ", where a is an average interatomic distance in liquid.

7 This name is of purely historic origin. In early works Landau assumed the existence of two separate
types of quasi-particles in He4—ph0nons and rotons, i. e. the existence of two independent branches
of the spectrum. Later it was discovered that there is a single branch of the spectrum with phonon
and roton parts. Contrary to the initial opinion of Landau it was also discovered that this form of the
spectrum is directly related to Bose condensation in He”.
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Figure 5.3: Spectrum of elementary excitations in liquid He*. Points represent experimental data
obtained from inelastic neutron scattering.

As roton energy has a “gap” A, at low enough temperatures T < A we are dealing with a
dilute gas of rotons, which can be described by Boltzmann statistics. Then, to calculate
the “roton” part of the free energy of He* we can use equation (3.41). Substituting £(p),
which is independent of the coordinates, we immediately obtain:

eV ( d&p _w
F-_NTIn| &Y . 46
n[ N J(znhﬁe ' ] (5.46)

The number of particles N in a roton gas is not fixed and is determined from the re-
quirement for the minimum of F. From the condition % = pu = 0 we find the number
of rotons as:

74 3 &0
= d’pe T, 5.47
= G | € (547)
where in the integrand we have just the Boltzmann distribution with y = 0. Substitut-
ing N = N, from equation (5.47) into equation (5.46), we get:

F,=-N,Tlne=-1IN, = d’pe T . (5.48)

T J
(2mh)3
Taking into account the explicit form of the roton spectrum (5.44) in equations (5.47)
and (5.48), due to p > jiT we may take p* ~ p outside integral and perform integra-

tion with infinite limits. Then we obtain:

20TV _a
= s € 5 Fr=-TNy (5.49)

Accordingly, the contribution of the rotons to the entropy and specific heat is:
2

3 A 3 A A
Sr:Nr<§+T> Cr:Nr|:1_4+T+<T> :| (5.50)
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5.5 Superfluidity = 119

so that the temperature dependence is exponential and for T < A these contributions
are small in comparison to the phonon parts determined above. For T > A roton con-
tributions to thermodynamic values may overcome those from phonons. This actually
takes place with the rise of temperature.

5.5 Superfluidity

Liquid Helium at temperatures below the so-called A-point T; = 2.18 K, acquires the re-
markable property of superfluidity — the liquid flows through narrow tubes and chan-
nels without friction (viscosity). Superfluidity was discovered by Kapitza in 1938, its
theoretical interpretation was given few years later by Landau.

Consider first the case of T = 0. Assume that the liquid flows in a tube with a con-
stant velocity v. In the presence of viscosity, friction of the liquid and the tube walls,
as well as within the liquid itself, will induce different processes of dissipation of ki-
netic energy of the flow, so that the flow slows down and finally stops. It is convenient
to consider the liquid in a coordinate system moving together with the flow. In this
system Helium is at rest in the ground state, while the tube walls move with veloc-
ity (—v). In the presence of viscosity (friction), Helium initially at rest should start to
move. From a microscopic point of view it is clear that the appearance of this motion
should start from some excitation of internal motions within the liquid, i. e. from the
appearance of some elementary excitations (quasi-particles).

Consider the situation with the appearance of only one elementary excitation with
momentum p and energy £(p). Then, the energy of the liquid E, becomes equal to the
energy of this excitation e(p), while its momentum P, becomes equal to p. Let us return
to the laboratory coordinate system in which the tube is at rest. Using the well-known
Galilean transformations of classical mechanics [17] we obtain for the energy E and
momentum P of the liquid in the laboratory system:

2
P=P,+Mv E=E;+Pyv+ MTV (5.51)

where M is the mass of the moving liquid. Substituting now the values £(p) and p for
E, and P, we have:

2
E=¢p)+pv+ A% (5.52)

The term %Mv2 here represents the initial kinetic energy of the liquid flow, while £(p) +
pv is now the change of the liquid energy due to the appearance of a single elementary
excitation. This change should be negative, to diminish the flow energy:

e(p)+pv<O. (5.53)
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120 — 5 Condensed matter

For a given value of p the left-hand side of equation (5.53) is minimal for antiparallel
p and v, thus in any case we should have £(p) — pv < 0, so that:

V> £_(p) (5.54)
)4

This inequality is to be satisfied at least for some values of the momentum p of ele-
mentary excitation. Thus, to find the final condition for the appearance of elementary
excitations in a moving liquid we have to find the minimum of (p)/p:

v, = Min s_(p) (5.55)
p

Geometrically, the ratio (p)/p is determined by the slope of a straight line drawn
from the origin of the coordinate system in the (¢, p)-plane to some point of the curve
€ = &(p). Its minimal value is determined by the point where this line is tangent to the
&(p) curve. If this minimum is nonzero, then for velocities of the liquid below v,., deter-
mined by equation (5.55), no elementary excitations can appear, so that the flow will
be dissipationless (no friction!). This is precisely the case of superfluidity and equa-
tion (5.55) represents Landau’s criterion of superfluidity. The value of v, is called the
critical velocity, its existence is confirmed by experiments.

It is easy to see that Landau’s spectrum of elementary excitations for He* satisfies
the criterion of superfluidity. Similarly, this criterion is satisfied by the energy spec-
trum with a “gap” at p = 0. At the same time, the free particle spectrum &(p) = p?/2m
obviously does not satisfy this criterion. In essence, it is necessary for the curve £(p)
not to be tangent to the abscissa at the origin. Thus, superfluidity will appear for al-
most any spectrum with phonon - like behavior in the long wavelength limit or gap at
p=0.

For finite temperatures T > O the liquid is not in the ground state and there are a
number of elementary excitations present. Kinematic arguments given above are still
valid, and the motion of the liquid through the tube with velocities satisfying Landau’s
criterion still does not produce additional excitations. However, we have to clarify the
role of the excitations already present due to finite temperatures.

Consider the gas of quasi-particles moving as a whole, relative to the liquid, with
velocity v. The distribution function for the gas moving as a whole is obtained from
the distribution function n(e) at rest by the substitution € — & — pv, where p is the
momentum of a quasi-particle.® Then, the total momentum of the unit volume of the

8 Consider a gas of excitations with respect to the liquid with velocity v. In the coordinate system
where the gas is at rest the liquid moves with velocity —v. Then the energy E of liquid in these co-
ordinates is connected with the energy E, in the coordinate system where the liquid is at rest, by:
E=Ey,-Pyv+ MTVZ Consider an excitation with energy £(p), appearing in the rest system of the lig-
uid. Then the additional energy in the rest system of the gas will be given by & — pv, which proves our
statement.
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gas is given by:

_ [P
P-= J an(e - pv). (5.56)

Let the velocity v be small, so that we can expand the integrand in powers of pv =
pvcos . The zero™-order term disappears after integration over the directions of the
vector p (6 angle) and we can write:

_ d3p dn(e)
P= —j ) p(pv) Fa (5.57)

Integrating here again over the directions of the vector p we get:

P=-v

47 1 jd 4 dn(e) (5.58)

3 (2nh)3 de

Substituting here the spectrum of phonons € = up and integrating by parts we have:

4 | sdn(p) _16m 1 T 3
P=- 3 | @ v 2 d . ,
v(2ﬂh)3 3u (J; dp v 3u (2ﬂh)3 ] pp n(p) (5 59)

Here, the integral

& p
(2mh)3

dp4np*upn(p) = J en(e) (5.60)

o0
i |
(2mh)3
0
reduces to the energy E,, of the unit volume of phonon gas, so that:

4Eph

P= vﬁ. (5.61)
The coefficient before v here defines the mass density of the liquid transported by the
flow of the quasi-particle gas. Nothing can prevent these moving quasi-particles from
being scattered by the walls of the tube and exchange momenta as in the usual gas
flow. It is clear that this part of the liquid mass will behave as a normal liquid moving
with friction. However, this is not the whole mass of the liquid, the rest behaves as a su-
perfluid! In fact, after we substitute the expression (5.42) for the energy of the phonon
gas into equation (5.61), we obtain for the phonon part of the normal density p,,:

21’ T

12 5.62
45R3u° 6.62)

(pn)ph =
which goes to zero for T — 0, when the whole mass of the liquid becomes superfluid.
Now we can say that the total density p of He* at T > 0 consists of normal and super-
fluid parts (components): p = p,, + p, though certainly it does not mean that there is
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122 — 5 Condensed matter

any kind of real separation of the liquid into two components. It is important to note
that there is no momentum transfer (friction!) between these two parts of the liquid:
we have obtained this physical picture at the state of statistical equilibrium in a gas
moving with fixed velocity. But any motion in the state of thermodynamic equilibrium
is in fact dissipationless.

Above we determined the phonon contribution to p,,, to find the roton part we
note that rotons can be described by the Boltzmann statistics, so that g—g = —% and
from equation (5.58) we get:

4 4 1 J- dap 2
=" |4 -
eny 3T(2nh)3j PP n®) = 37 | Gyt "P)
2 2~1/2 4
JPoNe o AP 4 (5.63)

3TV T 3Qm)3RTV2R3

where p, is the momentum corresponding to the roton minimum. If we take into ac-
count the experimental values for the parameters determining the spectrum of exci-
tations in He", it turns out that the roton contribution to p,, matches the phonon part
at T ~ 0.6 K and overcomes it at higher temperatures.

As the temperature T rises, more and more of the liquid becomes normal and p,, —
p (where p is the total density of He) for T — T, from below. The superfluid density
ps = O0for T — T, and p; = O for T > T,. The value of p,, close to the A-point cannot
be calculated precisely, but an approximate estimate for T) can be obtained from the
condition (p,), = p. Using here equation (5.63) we can obtain T, ~ 2.8 K, which is in
relatively good agreement with experiments.

Superfluid transition in He” is a typical second order phase transition. Such a tran-
sition always goes together with the appearance (or disappearance) of some qualita-
tive property (long-range order!). In case of the A-transition in He®, this is the appear-
ance (disappearance) of the superfluid component of the liquid. From a microscopic
point of view, we can speak about certain properties of the single-particle density ma-
trix of our system:

p(r,Y') = jdq‘P*(r, Q¥(r',q), (5.64)

where ¥(r, q) is the wave function of the system as a whole, where r are coordinates of
a single particle, while g is the set of all coordinates of the other particles, which are
integrated out. For an isotropic medium (liquid) this density matrix depends only on
|t - t'|. In a normal (nonsuperfluid) state p(r,t') — O for |r — ¥'| — co. This is not so in
superfluid phase.

Consider the Fourier components of the density matrix:

j P(r— 1) p(r, 1), (5.65)
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which, up to a constant, coincide with:

j qu dAve™™wp(r, q)‘2 (5.66)

i. e. determine the probability distribution of different values of momentum of a par-
ticle p = #k. If p(r,¥’) — 0O for [r—t'| — oo, the probability density in p-space for
p — O remains finite. However, if p(r, t') tends to a finite value Po > Oat inﬁnity,9 the
integral in (5.65) is equal to (2ﬂ)35(k)p00. This corresponds to a finite probability for
a particle to have zero momentum. Thus, in the superfluid state (opposite to the case
of normal liquid) a finite number (fraction) of particles possess zero momentum. This
clearly relates superfluidity to Bose condensation. Let us stress that this set of parti-
cles should not be identified with the superfluid component of the liquid, discussed
above. This obviously will be wrong, as at T = 0 all the mass of the liquid is superfluid,
though not all particles of the interacting system possess zero momentum (cf. below
the case of weakly interacting Bose gas).

Lev Davidovich Landau
(1908-1962) was a Soviet physi-
cist who made fundamental con-
tributions to many areas of the-
oretical physics. His achieve-
ments included the independent
co-discovery of the density ma-
trix method in quantum mechan-
ics (alongside John von Neu-
mann), the quantum mechanical
theory of diamagnetism, the the-
ory of superfluidity, the theory of
second-order phase transitions, the Ginzburg-Landau theory of superconductivity,
the theory of Fermi liquid, the explanation of Landau damping in plasma physics, the
Landau “ghost” pole in quantum electrodynamics, and the two-component theory of
neutrinos. He received the 1962 Nobel Prize in Physics for his development of a theory
of superfluidity. Landau was born in Baku, Azerbaijan, in what was then the Russian
Empire. In 1924, he moved to Leningrad and dedicated himself to the study of theoret-
ical physics. Landau travelled abroad during the period 1929-1931, where he finally
went to Copenhagen to work at the Niels Bohr’s Institute for Theoretical Physics.
After the visit, Landau always considered himself a pupil of Niels Bohr. Apart from
his theoretical accomplishments, Landau was the principal founder of the “Landau
school” of theoretical physics. He and his friend and collaborator Evgeny Lifshitz,

9 This is called off-diagonal long-range order (ODLRO).
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have written the Course of Theoretical Physics, finally completed by Lev Pitaevskii,
ten volumes that together cover the whole of the subject and are widely used up to
nowadays. From 1937 until 1962, Landau was the head of the Theoretical Division
at the Institute for Physical Problems. In 1938 Landau was arrested and held in
Lubyanka prison until his release in 1939, after the head of the institute Pyotr Kapitsa
wrote a letter to Joseph Stalin, personally vouching for Landau’s behavior. Landau
was rather briefly involved in Soviet atomic and hydrogen bomb projects. However,
for this work he received the Stalin Prize in 1949 and 1953, and was awarded the title
“Hero of Socialist Labour” in 1954. In January 1962, Landau’s car collided with an
oncoming truck. He was severely injured and spent two months in a coma. Finally,
he partly recovered, but his scientific creativity was destroyed, and he never returned
fully to scientific work.

5.6 Phonons in a Bose liquid®

Let us consider in more detail the origin of the spectrum of elementary excitations of
liquid He*, shown in Figure 5.3. The energy of the liquid can be written as a functional
of its (mass) density and hydrodynamic velocity:

Elp@),v(x)] = % J drp(0)v*(r) + EQ[p(x)], (5.67)

where EW is the part of energy independent of velocity. Consider small oscillations of
the density:

p(x) = p + 6p(x), (5.68)

where p is liquid density at equilibrium, while §p(r) and v(r) are small deviations,
describing oscillations. By definition:

1
p= v jdrp(r) jdrb‘p(r) =0. (5.69)

Limiting ourselves to terms of second order in §p and v we can replace p(r) in the first
term in equation (5.67) by its average value p. With the same accuracy E W is written
as:

ED[p®] =ED(p) + J dri(r)6p(r) + % J dr J dr' o(r,x')8p(r)8p(x’). (5.70)

The functions ¥(r) and @(r,t') are determined only by the properties of the unper-
turbed liquid, which is homogeneous and isotropic, so that (r) = i = const, while
@(r,1') depends only on the distance |r — t'|: @(r,1') = @(Jr — t'|). Then the first order
term in the expansion of E! given by equation (5.70) is proportional to j dVép(r) = 0,
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and finally we obtain:
EV[p(r)] = EV(p) + % j dr J dr'o(Ir - ¥'))6pmép(r’). (5.71)
The velocity v is related to the density oscillations via the continuity equation:
p +div(pv) = 0, (5.72)

which can be written up to first order terms in §p and v as:

8p +pdivv = 0. (5.73)
Performing Fourier transformation:
8p(r) = % Y ppe® i) = % Y vy, (5.74)
P P
1 .
o) = 7 ) ppe™ (5.75)
P

and taking into account the longitudinal nature of liquid oscillations, so that the ve-
locity v, in a wave with wave vector p is directed along p, we can write:

Vp = apP. (5.76)
Substituting these expressions into the continuity equation we immediately obtain:
.. 1p
vV, = ipp—— (5.77)
p Ppp2
so that equation (5.71) is rewritten as:
1 ppl 1
E=EY(p)+ = (—p+— 2>. 5.78
() V; o7 T 2701 (5.78)

The first term in equation (5.78) represents the energy of the unperturbed liquid, the
second one reduces to the sum of terms, each having the form of the energy of a har-
monic oscillator with frequency w),:

a)f, = ppz(pp, (5.79)

where we have taken into account that in an isotropic liquid ¢, = ¢, i. e. depends only
on the absolute value of |p|. In the quantum case the energy of such an oscillator is:'°

1
e(p):wp<n+§> n=0,1,2.... (5.80)

Thus, the spectrum of our system (liquid) is in fact determined by the spectrum of
these oscillators, i. e. by relations (5.79) and (5.80).

10 Here we use, for brevity, the system of units, often used by theorists, where 2 = 1and do not discern
momentum and wave vector.
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126 —— 5 Condensed matter

To obtain the final solution we have to express ¢,, via the characteristics of liquid.
In the quantum case the ground state energy does not coincide with E?(p) (as in clas-
sics), we have take into account the zero point oscillator energy w,,/2. Then the ground
state energy of the quantum Bose liquid becomes equal to:

E,=EV(p)+ Y %wp (5.81)
p

or, taking into account equation (5.78):

w, 1 1

P 22 2 2
Vo= WGPPI) +58p(PpI") = @plppl°), (5.82)
where the angular brackets denote averaging over the ground state, and we used
the well known result that for a quantum oscillator the average (over the ground
state) kinetic energy equals the average potential energy. Then, expressing ¢,, in

equation (5.79) via (5.82), we obtain:

p2

ep)=w, =V (5.83)
®) = = V0o
or
p2
e(p) = mSp)’ (5.84)
where we have introduced:
(Ip,*)
S(p) = T (5.85)

— the so-called structure factor of the liquid, which is determined by the Fourier trans-
form of the density—density correlation function:

S(r-r') = %([n(r) ~n][n(r') - n)), (5.86)

where n(r) = p(r)/mis (volume) density of the particles at point r, while n is the average
density of the particles in the liquid.

Equation (5.84) was first derived by Feynman, and the derivation given above be-
longs to Pitaevskii. This formula expresses the excitation spectrum via the structure
factor of the liquid. The value of S(p) in the general case can not be derived analyti-
cally, but in real liquids it is directly measured in neutron and X-ray scattering exper-
iments.

For small momenta, the excitation spectrum of liquid He” is linear over the mo-
mentum: £(p) = up, accordingly we have S(p) = p/2mu. For very large momenta much
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5.7 Degenerate interacting Bose gas =— 127

in excess of the inverse interatomic distance, p > a', we have S (p) = 1, which corre-

sponds to S(r) = (r) at small distances. In the intermediate region p ~ a™* the struc-
ture factor S(p) is determined from experiments and for the majority of liquids (not
only for He*) it demonstrates the characteristic maximum at p ~ a™* (see Figure 5.4).
The presence of this maximum is in fact related to the conservation of the rather strong
correlations between atomic positions in the liquid (short range order).

Scie) A

1,0 -

0,5 [~

1 1 1 -
0 1,0 2,0 30 4 A

Figure 5.4: Characteristic form of the structure factor of liquid He®.

From Feynman’s expression (5.84) it becomes clear that for large momenta p > a”!
the excitation spectrum reduces to the spectrum of free particles: e(p) = p?/2m. In
the intermediate region of p ~ a! the presence of the maximum in S(p) leads to the
appearance of a roton minimum.

Strictly speaking, this “hydrodynamic” derivation of Feynman’s formula is valid
only for momenta p < 1/a, i.e. when the liquid may be considered as a continuous
medium. However, this expression also gives the correct answer for p > 1/a, i.e. in
the free particle limit. It can be considered as a good interpolation also for the region
where p ~ 1/a, giving a qualitative explanation of the Landau spectrum of He®.

Note that the spectrum of density oscillations in usual (classical) liquids has a
qualitatively similar form, but with a rather strong damping of the oscillations in the
region of wave vectors p ~ 1/a. The existence of a “roton” minimum in classical liquids
is also directly related to the maximum of the structure factor.

5.7 Degenerate interacting Bose gas

Let us consider now the system of interacting Bosons from a microscopic point of view.
We shall limit ourselves to the analysis of a weakly interacting Bose gas, which can be
described using the rather rigorous approach first proposed by Bogolyubov.
Consider the simple model of a Bose gas with point-like repulsion between the
particles and limit ourselves to the case where T = 0. The Hamiltonian of the system
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128 — 5 Condensed matter

in second quantization representation can be written as:

+ O
H= z ﬂapap + — T Z ap ap ,dp,Ap,s (5.87)
PitP>=P'1+P';

where v, > 0is the coupling constant of the repulsive interaction and the creation and
annihilation operators of Bosons satisfy the commutation relations:

+ +
apa r —a Iap = 6 p/ (5.88)

Apay — Ay Ay =0 aa,-a =0.

+
p“p p pUp’ p4

+
P
In the ground state of an ideal Bose gas all particles are in a Bose condensate, i. e. in
the state with zero momentum and energy. In terms of occupation numbers N,,_, =
Ny = N, where N is the total number of particles in the gas. Accordingly Ny, = 0.
In a weakly interacting Bose gas in the ground state and also in weakly excited states
Np,o # 0, but these occupation numbers are very small compared to the macroscopic
value of Nj,. The fact that aja, = Ny ~ N > 1 means that the expression for the com-
mutator of creation and annihilation operators of condensate particles agag—aja, = 1
is small in comparison with a, and ag, so that we can neglect unity in the right-hand
side and consider these operators as the usual c-numbers:'!

ap=ay = \/N—O. (5.89)

Then we can accurately separate in the Hamiltonian (5.87) all terms, containing con-
densate operators and replace them by (5.89). After that, we can build a kind of per-
turbation theory in powers of the “small” operators ap, a;; with p # 0. The main
contribution comes from scattering processes (interactions) of condensate particles
and particles excited from the condensate (i. e. transitions of particles to and from the
condensate), while scattering processes between particles excited “above” the con-
densate can be just neglected (in first approximation).
The zero™-order term in the interaction Hamiltonian contains:

v v
—2agasagag = ﬁag = ﬁNé. (5.90)

Vo

2V
11 More rigorously it is equivalent to an assumption that in the ground state the average values of
these operators (a,) and (a) are nonzero and equal to Noei"‘p (where ¢ is an arbitrary phase of a
complex number, which can be assumed here to be just a zero), i. e. there is a finite amplitude of cre-
ation and annihilation of particles in the condensate. Then the number of particles in the condensate
is not conserved, in this sense the ground state of an interacting Bose gas breaks the particle conser-
vation law. Thus, the symmetry of the ground state is lower than the symmetry of the Hamiltonian
(5.87), which conserves the particle number. This is the first time when we meet the phenomenon of

spontaneous symmetry breaking and the appearance of anomalous averages, breaking the symmetry
of Hamiltonian.
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The terms of first order in ap, a; with p # 0 are absent, as these can not satisfy conser-
vation of momentum, as shown explicitly in equation (5.87). The second order terms
have the form:

Yo 2

(apa_
w p>0 P

+ o+ + +
p tapal, +2a,a, + 2a_pa_p). (5.91)

Limiting ourselves to second order terms we can here replace af, = N, by the total
particle number N. However, in term (5.90) we have to take into account the more
accurate relation:

ag + Z a;ap =N (5.92)
p>0

and express N, via N and Zp a;ap. After explicit calculations, combining (5.90) and
(5.91), we obtain:

N2

+ o+ +
TACRETAL Y (apa_, +apa’, +aga, +a’pa_y). (5.93)

p>0

Thus, we can rewrite the Hamiltonian (5.87) with the given accuracy as:

NZ p2
+ +
H= PTG 2)( Vo + ﬁ>(apap +a’,a_p)
p>

Vo Y (apa_p +aga’y). (5.94)
p>0

This Hamiltonian is quadratic in the operators a,, and a; and can be diagonalized by
the so-called u — v-transformation, first introduced by Bogolyubov. Let us transform
a;; and a, to new creation and annihilation operators for Bosons, related to a;; and a,
by the linear transformation:

p = Uplp T Vpay
a=ua +v.a (5.95)
p = Uplp T Vplp. .

New operators should satisfy the usual Bose commutation relations like (5.7), which
is guaranteed if the coefficients u,, and v,, satisfy the condition:

- =1 (5.96)

Substituting a;; and ay, in the form of (5.95) into the Hamiltonian (5.94) we obtain:

H= Z{( >(u +vp)+2N;° UV p}(a;ap+a p%p)

p>0
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2
P Ny, Nv, -
+Z{<ﬁ+7>2upvp+ v (up+v )}(apa p+0(1;,o(_p)

p>0
2 2
Nv0 > Ny 0 N Vo
+ Z{ ( >v + 2= UV (5.97)
5 Pty 2V
To diagonalize this Hamiltonian we have to exclude terms like a; afp and Ap0_p, which
can be achieved by the requirement:
2
p- Ny, Nv,
<ﬂ + 7>2upvp + — v (u +v ) 0, (5.98)

which gives the second relation fixing the coefficients u, and v,,. Solving equations
(5.96) and (5.98) we get:

1 Ap
u, = v, = , (5.99)
P \/1—A§, P \1-42
where
P Ny
A —0 100
»= o0 - 5 - 0 (5100)
N v 4
£(p) = p 2o, L. (5.101)

Substituting these coefficients to (5.97) we obtain diagonalized Hamiltonian, having
the form of the Hamiltonian of new noninteracting quasi-particles, corresponding to
operators a;, and ay,:

H=Ey+ ) ep)aya, (5.102)
p#0
where the spectrum of these new quasi-particles (p) (5.101) is radically different from

the spectrum of free Bosons due to interaction effects. The ground state energy is given
by:

2 2
By=Sovor 3 3 e - £~ T | (5103)

At small momenta the quasi-particle energy (5.101) can be written as:

_ /V_o =
£(p) = mVOp—up, (5.104)

where V, = V/N is the volume per particle, while u, which is completely determined by
interactions, represents the speed of Bogolyubov’s sound. For large momenta, (5.101)

2
reduces to £(p) = 5. + 17, i. €. to the spectrum of free particles.

V 1)
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Thus, at small momenta, interactions between Bosons leads to a complete trans-
formation of the spectrum of elementary excitations, which becomes similar to that
postulated by Landau, and satisfies the criterion for superfluidity, so that

vC=<£—(p)> - ,/V—°>o (5.105)
b p—0 mVO

defines the appropriate critical velocity, coinciding in this model with the speed of
(Bogolyubov) sound.

From this analysis it becomes clear that the phenomenon of Bose condensation is
crucial for the appearance of superfluidity.

Nikolay Nikolaevich Bogolyubov (1909-1992) was a So-
viet mathematician and theoretical physicist known for a
significant contribution to quantum field theory, classical
and quantum statistical mechanics, and the theory of dy-
namical systems. He was born in Nizhny Novgorod, Rus-
sian Empire. He attended research seminars in Kiev Uni-
versity and soon started to work under the supervision of
the well-known mathematician Nikolay Krylov. In 1924, at
the age of 15, Nikolay Bogolyubov wrote his first published
scientific paper. He never graduated from the University or
obtained any kind of regular higher-education. Krylov and
Bogolyubov worked together on the problems of nonlinear
mechanics and nonlinear oscillations. In 1946, he published in JETP two works on
equilibrium and nonequilibrium statistical mechanics which became the essence of
his fundamental monograph “Problems of dynamical theory in statistical physics”,
leading to the formulation of modern theory of kinetic equations (Bogolyubov’s chain
for a derivation of kinetic equations). In the late 1940s and 1950s, Bogolyubov worked
on the theory of superfluidity and superconductivity, where he developed the so-called
u-v transformations, one of the major modern techniques to solve interacting many-
body problems. In early 1950s he was briefly involved in the USSR hydrogen bomb
project. Later he worked on quantum field theory and elementary particles, develop-
ing the theory of renormalization and renormalization group, as well as rigorous the-
ory of dispersion relations and axiomatic S-matrix theory. In 1960s he introduced the
major concept of broken symmetry in quantum field theory and quasi-averages in sta-
tistical theory of phase transitions. Nikolay Bogolyubov received various high USSR
honors and international awards, such as two Stalin Prizes (1947, 1953), Lenin Prize
(1958), Hero of Socialist Labour, twice (1969, 1979), Heineman Prize for Mathemati-
cal Physics (1966), Max Planck medal (1973), Franklin Medal (1974), The Lomonosov
Gold Medal (1985) and Dirac Prize (1992).

2
g
G

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:56 AM



132 — 5 Condensed matter

5.8 Fermi liquids

A liquid of interacting particles with half-integer spin (Fermi liquid) is characterized
by the spectrum of elementary excitations and other properties, which are radically
different from those of a Bose liquid. An example of a real Fermi liquid is He’. Proba-
bly, the most common case is the liquid of conduction electrons in metals. More exotic
examples are nucleons in atomic nuclei, neutron star matter, etc. We shall see below
that the energy spectrum of elementary excitations in a Fermi liquid is somehow simi-
lar to that of an ideal Fermi gas, while the role of the interactions reduces to a relatively
minor “renormalization” of experimental observables.

The phenomenological theory of Fermi liquids was proposed by Landau. The
starting point of this theory is the statement that the classification of energy levels in
a Fermi system remains the same after adiabatic “switching™ of interaction between
particles, as we go from Fermi gas to normal Fermi liquid. Elementary excitations
(quasi-particles) in a Fermi liquid are in one to one correspondence with free particle
excitations of an ideal Fermi gas. Thus, free particles of the gas are replaced by some
effective quasi-particles of the liquid, moving in a self-consistent field created by the
interactions. The criteria for these quasi-particles to have a well defined momentum
will be briefly discussed below. Let n,, be the momentum distribution function of the
quasi-particles in a Fermi liquid. The ground state contains no quasi-particle excita-
tions and corresponds to the distribution function of quasi-particles with all states
below the Fermi momentum (i. e. for p < pg) occupied. This is equivalent to an as-
sumption of existence of a well defined Fermi surface (sphere) in momentum space.
The value of py is related to the particle density of the liquid (the number of particles
in a unit volume) by the same expression (4.43), as in the Fermi gas:12

1/3

B n1/3( N
pr=(31°) (V) h. (5.106)

It must be stressed that the total energy of a liquid E does not reduce to the sum of
quasi-particle energies: E is represented by a functional® of the distribution function
of some general form, which does not reduce to j d‘mpep, asinanideal gas. At T =0
this functional defines the ground state energy of the Fermi liquid E.

12 This is directly related to our assumption about the classification of levels in a Fermi liquid and
the Pauli principle. In fact, this result can be proved within a modern quantum-field theoretic (micro-
scopic) approach to Fermi liquids, where it is known as Luttinger theorem.
13 The usual function defines some mapping of one set of numbers into another set of numbers. The
functional defines the mapping of a set of functions into a set of numbers. A typical example of a func-
tional is definite integral: F[f(x)] = f: dxf (x). Note that the function of a function is again some func-
tion, not a functional. Functional (variational) differentiation, as used below is formally defined as
follows:

SEIf(0] _ . FIF() +e6(x ~y)] - FIF )]

50 - im . (5.107)
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5.8 Fermiliquids =— 133

We can normalize the distribution function as:
N
jd‘mp =7 (5.109)

where N is the number of particles in the liquid, dr = d°p/(27h)>. The change of E
under a small variation of the distribution function can be written as:

5E

z- Jd‘repéinp, (5.110)
6E

&, = —. (5.111)
P bn,

The value of ¢, is given by the functional (variational) derivative of E by the distribu-
tion function and corresponds to the change of ground state energy of the system due
to the addition of a single quasi-particle with momentum p. This energy of a quasi-
particle is itself the functional of the distribution function, i. e. the form of ¢, is deter-
mined by the distribution of all other quasi-particles in Fermi liquid.

The distribution function of quasi-particles (at equilibrium) has the form of the
usual Fermi distribution. This is due to the same classification of energy levels in the
liquid as in ideal Fermi gas — the entropy of the liquid is determined by the same com-
binatorial expression of equation (4.15), which for the liquid can be written as:

S=- J dr[n,Inny, + (1 -n,)In(1 - n,)]. (5.112)

Looking for the maximum (extremum) of this expression with additional conditions
of a fixed total number of particles and total energy (similar to our analysis for an ideal
gas) we obtain at finite T:

ny= . (5.113)

Ep—H
eT +1

However, it should be stressed that ¢, here is some functional of n,, so that equa-
tion (5.113) gives in fact some complicated implicit definition of n,,. In fact, it can not
be found in explicit form."

For example, for F[f(x)] in the form of the definite integral

SFIFC)] _ 1

6f(y) e—0 &
14 Within the microscopic approach to Fermi liquids it was shown by Migdal that the distribution
function of the particles (not quasi-particles!) at T = O contains a finite discontinuity at €, = J, proving
the existence of a Fermi surface in the case of interacting Fermions. The size of this discontinuity in a
Fermi liquid < 1, differentiates a liquid from an ideal gas, where it is equal to 1 (see the more detailed

discussion below in Chapter 11).

“ dx[f(x) +&b(x — y)] - J dxf(x)] = J dxé(x —y) =1. (5.108)
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134 — 5 Condensed matter

Let us discuss explicitly the spin of the quasi-particles 6. In a homogeneous and
isotropic liquid the scalar € can depend only on scalar arguments, so that ¢ can enter
the quasi-particle energy (in the absence of an external magnetic field!) only as 2 or
(6p)? (first order term like Gp is not allowed, as it is a pseudoscalar due to the axial
vector nature of the spin). For spin s = 1/2 we have:

. 3 o 0 15
== =— 5.114
o 4 (op) 4p ( )

so that o drops completely and the quasi-particle energy does not depend on spin.
Accordingly, all energy levels are twice degenerate and we have to write everywhere
dr = 2(2‘513—5)3.

We have attributed to each quasi-particle a well defined momentum. A necessary
requirement is that any indeterminacy of this momentum is to be small compared to
the value of the momentum itself and also in comparison to the size of the “smearing”
region of the distribution function in momentum space (which is defined by small
excitation energies or temperatures). The Pauli principle restricts the possible scatter-
ings of quasi-particles precisely to this region and, after the scattering, quasi-particles
should arrive also to free (empty) states from this same region. Thus, the probability
of quasi-particle scattering is to be proportional to the square of the width Ap of the
“smearing” region. This obviously leads to scattering-induced indeterminacy of the
quasi-particle momentum of the order of Ap®. Now it is clear that for small enough Ap
the indeterminacy of momentum will be small not only in comparison to the momen-
tum p ~ pp itself, but also compared to Ap, if we consider it to be small enough. Thus,
the quasi-particles in a Fermi liquid the are well defined only close enough to the Fermi
surface and quasi-particle energy ¢, is also well defined only in this narrow region of
energies (or temperatures!). Expanding the quasi-particle energy in a Taylor series in
powers of p — pr we obtain:

& =& - u=vpe(IPl-pp) M=¢p (5.115)

where vi = aa% |p=pp is Fermi velocity.

We have already noted above that during quasi-particle creation or annihilation
the angular momentum of any quantum system can only change by integer values. If
we are dealing with Fermions of spin s = 1/2 this means that quasi-particles can be
created (annihilated) in pairs. In a Fermi liquid the creation of a quasi-particle with
energy above the ground state given by equation (5.115) takes place via its excitation
from the completely filled Fermi sphere to some state above the Fermi surface, with
simultaneous creation of a “hole” (of the same energy) below the Fermi surface. Ele-
mentary excitation in a Fermi liquid is just this process of quasi-particle-quasi-hole
pair creation. This is quite similar to the case of an ideal Fermi gas, but the major
difference is that such excitations are well defined only close enough to the Fermi
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5.8 Fermiliquids =—— 135

surface, where scattering (interaction) processes between quasi-particles are strongly
suppressed due to Pauli principle limitations.

In an ideal Fermi gas we have ¢, = p?/2m and Vg = pr/m. By analogy, in a Fermi
liquid we may introduce the value of

m* = PF (5.116)

VF

which is called the effective mass of a quasi-particle.”” Then the specific heat of the
Fermi liquid is given by the usual “gas-like” expression (4.70), with the simple replace-
mentm — m”*:

2

C:%VFT VF:mpF

e (5.117)

To analyze systems with a variable number of particles it is convenient to use the
thermodynamic potential Q = F — uN. At T = 0 obviously we have F = E, so that
Q = E - uN. Consider an “excited” state of the system described by the difference:

Q - QO = E - EO - H(N - No), (5.118)
where the index 0 denotes the ground state. We can write:

N-Ny=) bn, = J drén,,. (5.119)
p

According to equation (5.111):

Eln,] = Ey + ) &,6n, + 0(6n) (5.120)
p

so that:

Q-Qy= Z(ep - p)én, + O(é‘nlz,). (5.121)
P

We consider only small variations én, close to the Fermi surface, i. e. in a narrow en-
ergy layer ~6 around it, so that &MU~ 6. But 6np ~ §itself, so that Q — Qg ~ 8, and
in an expansion of equation (5.121) we have to keep all terms of the order of ~82. Then
we can write:

1
Q-Q4= Z(ep - wén,, + 3 Zf(p,p')cﬁnpﬁnp, + 0(613,), (5.122)
p pp'

15 For example, in liquid He? it is known from experiments that m* ~ 2.4my 3, pp/h = 0.8 108 cm ™.

The region where quasi-particles (i. e. the concept of Fermi liquid itself) are well defined for He® is
limited to temperatures T < 0.5K.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:56 AM



136 —— 5 Condensed matter

where we have introduced:

5°E
(A
f(p,p') = 5m, o1, (5.123)

—the so-called Landau function, describing the interaction between quasi-particles. In
fact, from the definitions of equations (5.111) and (5.122) we can see that the variation
on,, leads to a change of quasi-particle energy:

bep = Jdr’f(p,p’)6np, (5.124)

which is completely determined by the Landau function. Here is the main difference
of the Fermi liquid theory from the model of an ideal fermi gas.

Let us assume that f(p, p') is a continuous function for p and p’ close to pg. In
practice it is sufficient to know f(p, p’) only on the Fermi surface itself, i. e. for |p| =
|p’| = pr. Then f(p, p’) depends only on the mutual orientation of the vectors p and p’
(angle in between) and on the spins @, ¢'. It is convenient to write f(p, p’), separating
explicitly independent parts, corresponding to the parallel or antiparallel orientations
of the spins of the quasi-particles:

fir(.0") =F°(p.0") +f*(p. D), (5.125)
fi1(e.p") =5 (p.0") - f(. ). (5.126)

We can say that the antisymmetric part f*(p, p) is due to some exchange interaction
2f%(p, p'), which appears only when the spins are parallel. Another representation of
the Landau function is also widely used in the literature:

foor(@:D') = (P, P") + (60" )P(p. P'), (5.127)

where ¢ and ¢’ are the spin matrices of two fermions.

Thus, in an isotropic Fermi liquid, the functions f*(p,p’) and f*(p,p’) depend
only on the angle 8 between p and p’. Then these functions can be represented as
expansions over Lagrange polynomials:

FOp.p') = Y Pycos )f@ (5.128)
1=0

so that both functions f(p, p’) are completely determined by the sets of coefficients f;’
and f;”, which are called the Fermi liquid constants. It is convenient to introduce the
dimensionless constants F IS’(”) via:

s(@ _ M PF s _ psia)
Vi = TR = RO, (5.129)
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5.9 Electron liquid in metals® = 137

The values of these constants determine the renormalization of a number of physi-
cal characteristics of the Fermi liquid and at least some of them can be determined
from experiments. In most cases only a few constants are important. In particular,
the following relation between “bare” mass of the particle and effective mass of the
quasi-particle can be derived using Galilean invariance [20, 29]:

11, P 4njdcos@cos€f(p,p’). (5.130)

m_ m* Qmh)?3

Using (5.128), (5.129) and the properties of Lagrange polynomials we can get:
* FS
m_ =1+ _1
m 3
From here, itis obvious that F: f > —3. Similarly, taking into account the interaction with

the external magnetic field (see also below), we can derive the spin (paramagnetic)
susceptibility of our Fermi liquid as [20, 29]:

(5.131)

_om'pp 1

_ , 132
Xo = M5 705 14 B (5.132)

which differs from the similar Fermi gas expression (4.79) by the replacement m — m”
and the Fermi liquid renormalization 1 + F.

5.9 Electron liquid in metals”

In our previous discussion we implicitly assumed that a Fermi liquid consists of neu-
tral particles (e. g. like He?), so that interaction is short range. For a Fermi liquid of
electrons in metals, long-range Coulomb interaction becomes important. In case of
long-range interactions the basic Fermi liquid theory relation (5.124) becomes, strictly
speaking, invalid. However, a certain generalization of the standard Fermi liquid ap-
proach for the case of charged Fermi liquids, proposed by Silin, correctly takes into
account the Coulomb interaction and reduces the theory to a form quite similar to
that of neutral Fermi liquid theory.

Note, first of all, that for the general case of a local in time relation we can write
the generalization of equation (5.124) in the following form:

3.,/

8e(p, 1) = Sp, Jdr’ J (§n§)3 F(p,p';r,¥')on(p'.¥'), (5.133)

where we have introduced an explicit dependence on the coordinates, necessary for
the analysis of spatially inhomogeneous perturbations and taken Sp over spin.'® Func-
tion F(p, p'; 1, ') here represents the second variational derivative of the ground state

16 The distribution function of the quasi-particles here is understood to be in the Wigner representa-
tion, to account for coordinate dependence.
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138 —— 5 Condensed matter

energy of the Fermi liquid and also depends no only on momenta p, p’ and spins, but
also on the coordinates r and r'. In the simplest case (self-consistent field in Hartree
approximation), neglecting exchange effects, for particles interacting via potential
U(Jr - r'|), we have:

Fy(p,p’sr,Y') = U(lr-1')). (5.134)

This expression neglects the so-called correlation effects, while the difference F - Fy
by definition is determined by these effects, including the most important effects of
exchange correlations. It is important to note that characteristic distances for correla-
tion effects are of the order of electron wavelength at the Fermi level, i. e. of the order
of the average distance between the particles (electrons) (N/ V)3 ~ 1078 cm (in met-
als). Thus, for the most interesting case, when the characteristic scale of a change of
the distribution of the quasi-particles is significantly larger than the correlation range,
we may assume:

F(p,p’sr,t') - Fy(p.p’st.t') = 6(r - X')f (p. p"). (5.135)

Then equation (5.133) can be rewritten as:

d3pl
_ ) / ! (]
8e(p.¥) = Sp,, jdr J ahy? U(lr-1'|)én(p’, ")

+Spyr J ﬁf(p p’)én(p’x). (5.136)
Qmh)3 ’

For electrons in metals U(r) = e?/r. In equilibrium, when the distribution of particles
does not depend on the coordinates, a spatially nonlocal coupling in the first term of
(5.136) is irrelevant and the properties of the system of charged particles are, in some
sense, similar to those considered above for a neutral Fermi liquid. Note, however, that
the first term in (5.136), taken literally, diverges in the case of spatially homogeneous
distributions. This divergence is actually fictitious, as we have to take into account
the existence in a metal of a homogeneous background of positive ions, guarantee-
ing the overall electrical neutrality of the system. For spatially inhomogeneous distri-
butions, this term can be considered as a manifestation of the self-consistent scalar
potential ¢(r):

d3pl 82
@rh)3 |r-r'|

ep(r) = Spy J dr' J én(p',1). (5.137)

This potential can be determined by the solution of the Poisson equation:

3.,/

d
V2p(r) = —411e Sp, j (2711; 7 én(p’,x) (5.138)

which is an integral part of Landau-Silin theory of charged Fermi liquids.
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5.9 Electron liquid in metals* =— 139

Let us now take into account the interaction with an external magnetic field B.
Then equation (5.136) for the charged Fermi liquid is rewritten as:

d3pl

Ganp! ®P)on(e.p). (5.139)

8e(p,¥) = —ugdB + e(r) + Spy J
It is important that both ¢ and ¢ are now determined by the system of coupled equa-
tions (5.138) and (5.139) in a self-consistent way. In particular, it leads to the phe-
nomenon of the screening of long-range Coulomb forces in a quantum system (metal-
lic Fermi liquid), which will be discussed later in Chapter 11.

Neglecting relativistic effects like spin—orbital coupling, we can again write down
the interaction function f(p, p’) as in (5.126) or (5.127). Then again we can introduce
the Fermi liquid constants (5.128) and (5.129), which are to be determined from exper-
iments. Finally, for the charged Fermi liquid we can also obtain expressions for the
specific heat (5.117), effective mass (5.131) and spin susceptibility (5.132), which are
just the same as for the neutral Fermi liquid [29]. Obviously, the values of the Fermi
liquid constants in different metals are different and also different from those in liquid
He?, being the characteristics of quasi-particle interactions in a given system (metal).
Beside that, in real metals the electronic Fermi liquid may be anisotropic, with a non-
spherical Fermi surface, due to the effects of the given crystal lattice. This requires the
appropriate generalizations of the isotropic model considered here.
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6 Superconductivity

6.1 Cooper instability

Up to now we have analyzed the so-called normal Fermi liquid with repulsive inter-
action between particles. However, as we shall see here, the ground state of a Fermi
liquid becomes unstable in the case of weak (even infinitesimal!) attraction between
the quasi-particles in the vicinity of the Fermi surface. This instability, discovered by
Cooper, leads to the formation of bound states of fermions (Cooper pairs), i. e., effec-
tively bosons in a fermion system. It is fundamental to the understanding of physical
phenomena such as superconductivity in metals and superfluidity in liquid He>.

In this chapter, we shall present a simplified analysis of the Cooper instability,
which gives an “almost” correct answer [1]. We have already noted that quasi-particles
in a Fermi liquid are created in pairs (he particle above the Fermi surface and the hole
below). Close to the Fermi surface, according to equation (5.115), we can introduce
quasi-particle energies as:

& = vr(Ipl —pF) (particle)
& =ve(p - Ipl) (hole) (6.1)
so that quasi-particle energy in general can be written as [¢,|.
Consider the interaction of two particles (or two holes) close to the Fermi surface.

The Schroedinger equation for two quasi-particles interacting via potential U(r, 1,)
can be written as:'

[Ho(r1) + Hy(xy) + Ulry, 1‘2)]!,[)(1‘1, 1) = E(1y, 1), (6.2)

where H(r) is the Hamiltonian of a free quasi-particle:
HO(r)l;bp(r) = |£p|'¢bp(r)> (6.3)

where (1) = %eim/ " is the wave function of a free quasi-particle. Let us analyze the
possibility of the formation of a bound state of two such particles (aCooper pair). In
the ground state, the momentum of the bound pair should be zero, and we assume the
pair has zero spin (the singlet state). Thus, the pair is described by the superposition
of two quasi-particles with opposite momenta and spins:

P, 1) = Y cppr ()P (). (6.4)
p

1 This is the point where we actually oversimplify the real many-particle problem—we analyze here
two separate quasi-particles on the background of a “rigid” Fermi surface.

2 We consider here the simplified model with almost point-like attraction of the quasi-particles, and
the Pauli principle forbids two fermions to have the same spin at the same point.

https://doi.org/10.1515/9783110648485-006
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142 — 6 Superconductivity

Substituting this expression into equation (6.2), we obtain the equation for the coeffi-
cients cp:

20&ylcy + Y Upprcy = Ecy, (6.5)
p/

where Upp is the matrix element of interaction. Let us assume that this matrix element
has the following form:

hwp ] hwp
B {—g for pr - e < Ipl, [Pl <pF + r
p’ ~

U,

p (6.6)

0 outside this interval.

The sign of the coupling constant g corresponds to attraction, while the limitations on
the momenta mean that this attraction exists only in rather thin energy layers with a
width of 2Awy, around the Fermi level. The appearance of the Debye frequency here is
connected with the well-established fact that in most metals the microscopic mech-
anism of this attraction is due to electron—phonon interaction, and phonons can in-
teract effectively with electrons only in the energy layer 2hw;, <« &er near the Fermi
surface.
From (6.5) and (6.6) we find the following expression for the coefficient c,:

gl
Ch = P EvE— (6.7)
P 2|§p| - E
where
p'=pp+ 2
I= Y ¢ (6.8)
p'=pp-"2D

VF

The bound state of two particles corresponds to the negative value of the energy F =
—2A(A > 0). Substituting this into (6.7), and (6.7) into (6.8), we get:

’_ hwp
P =Prt
2% L el A
P=Pr=
hwp b
1 1 1 wp
=gl df ———— ~ ~glvpIn —2, 6.
45V J TSGR (6.9)
—hwp

where we have transformed the summation over p to integration over ¢ = vp(p — pr),
introducing the density of states at the Fermi level vy = ;"2—’;; and taking into account
that A « hwpy. Here, the extra coefficient 1/2 is due to the summation being done over

the states of one of the particles of the pair, with a fixed spin projection, while the
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expression for the density of states vy is written for both spin projections. Accordingly
from (6.9), we obtain the equation for A:

1 hw
1 = EgVF ln TD, (6.10)

which always (even for infinitesimal values of g) possesses the nontrivial solution:

2
A = hwy exp[ v ] (6.11)
determining the finite binding energy of the pair. Now we see that our system is unsta-
ble to the formation of bound pairs of electrons even in the case of very weak attraction
near the Fermi surface. This is called the Cooper instability. Our analysis is slightly in-
accurate, as we discussed for two separate electrons above the fixed or “rigid” Fermi
surface, but it gives the correct order of magnitude estimate of the binding energy. Ob-
viously, Cooper pairs are bosons and can undergo Bose condensation at sufficiently
low temperatures. This is the main physical idea in the explanation of the microscopic
nature of superfluidity in Fermi systems (superconductivity in metals).

John Bardeen (1908-1991) was an American theoret-
ical physicist. He is the only person to be awarded the
Nobel Prize in Physics twice: first in 1956 with William
Shockley and Walter Brattain for the invention of the
transistor, and again in 1972 with Leon Cooper and John
Robert Schrieffer for the fundamental theory of super-
conductivity known as the BCS theory. In 1945 Bardeen
began work at Bell Labs. He was a member of a solid-
state physics group, led by William Shockley. Bardeen
and Brattain were working without Shockley when they
succeeded in creating a point-contact transistor that
achieved amplification. Shockley publicly took the lion’s
share of the credit for the invention of transistor, and this led to a deterioration of
Bardeen’s relationship with Shockley. So Bardeen began pursuing a theory of elec-
tron—phonon interactions to explain superconductivity and left Bell Labs in 1951. He
joined the engineering and physics faculties at the University of Illinois at Urbana
— Champaign in 1951. In 1957, Bardeen, in collaboration with Cooper and his doc-
toral student Schrieffer, proposed the standard theory of superconductivity known
as the BCS theory, which essentially solved the long-standing mystery of supercon-
ductivity in metals. He was an active professor at Illinois from 1951 to 1975 and then
became Professor Emeritus. In his later life, Bardeen remained active in academic
research, during which time he focused on understanding the flow of electrons in
charge-density-wave systems in metallic linear-chain compounds. While he served as
a professor for almost 40 years at the University of Illinois, he was best remembered
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by neighbors for hosting cookouts where he would prepare food for his friends, many
of whom were unaware of his accomplishments at the university. In addition to being
awarded the Nobel prize twice, Bardeen received numerous other awards including
the National Medal of Science (1965) and Franklin Medal (1975). He was elected a Fel-
low of the American Academy of Arts and Sciences (1959), a Foreign Member of the
Royal Society (1973) and a Foreign Member of the USSR Academy of Sciences (1982).

John Robert Scrieffer (born 1931)
is an American theoretical physicist
who, with John Bardeen and Leon
Cooper, was a recipient of the 1972
Nobel Prize in Physics for developing
the BCS theory of superconductivity.
Pursuing an interest in solid-state
physics, Schrieffer began graduate
studies at the University of Illinois at
Urbana-Champaign, where he was
hired immediately as a research as-
sistant to John Bardeen. Schrieffer
recalls that in January 1957 he was on a subway in New York City when he had an
idea of how to describe mathematically the ground state of superconducting elec-
trons. Schrieffer and Bardeen’s collaborator Cooper had discovered that electrons in
a superconductor are grouped in pairs, now called Cooper pairs, and that the mo-
tions of all Cooper pairs within a single superconductor are correlated. Schrieffer’s
mathematical breakthrough was to describe the behavior of all Cooper pairs at the
same time, instead of each individual pair. The day after returning to Illinois, Schrief-
fer showed his equations to Bardeen who immediately realized they were the solution
to the problem. The BCS theory of superconductivity, as it is now considered as one of
the major theories of modern physics. For many years he was developing this theory
further with the aim to apply it real metals. He also made important contributions
to other fields of solid-state theory, such as the theory of magnetic fluctuations and
impurities in metals. In 1980, Schrieffer became a professor at the University of Cali-
fornia, Santa Barbara, and rose to chancellor professor in 1984, serving as director of
the Kavli Institute for Theoretical Physics. In 1992, Florida State University appointed
Schrieffer as a university eminent-scholar professor and chief scientist of the National
High Magnetic Field Laboratory, where he continued his studies of high-temperature
superconductivity. He was elected to the National Academy of Sciences (1971) and
several other academies, becoming the Foreign Member of the USSR Academy of Sci-
ences in 1982. During the Cold War period, he actively pursued collaboration and joint
seminars between US and USSR theorists.
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6.2 Energy spectrum of superconductors

The physical nature of superconductivity in metals is the Cooper pairing of electrons,
i.e., the formation of bound states of paired particles that are close (in momentum
space) to the Fermi surface with equal and opposite momenta and spins. The micro-
scopic mechanism of attractive interaction in traditional superconductors (with a crit-
ical temperature for superconducting transition T, < 30 K) is, in most cases, attributed
to the electron—phonon interaction. The nature of this attraction in high-temperature
superconductors (copper oxides, iron pnictides and chalcogenides) with T, > 30K
is up to now not clear; most probably it is connected with the interaction of current
carriers (electrons or holes) with antiferromagnetic spin fluctuations. In < superfluid
He® (where in the temperature region T < 2.610K, there exist several superfluid
phases), this is definitely an exchange by spin fluctuations (paramagnons) among
quasi-particles in helium. A number of other pairing mechanisms were proposed in
the literature, e. g., the so-called excitonic mechanism. In any case, we speak about
interaction due to the exchange of some quanta of the collective (boson) excitations
between fermionic quasi-particles. In the following, we shall not discuss these mi-
croscopic mechanisms of the pairing, but shall limit ourselves to the traditional and
simplified model of superconductivity, proposed by Bardeen, Cooper and Schrieffer
(the BCS model).>

Bardeen, Cooper and Schrieffer proposed the following Hamiltonian model of a
superconductor:

+ g + o+
H= pz.fpawap(I -V Y A’y A Ay, (6.12)
g ]J]J’

where §, = vp(|p| - pF) is the electron energy in a normal metal in the vicinity of the
Fermi level, a;,, and ap, the creation and annihilation operators of an electron with
momentum p and spin projection o. The sign of the coupling constant g is taken here
corresponding to the attraction, and it is assumed that this constant is different from
zero only in some energy layer around the Fermi surface, as in equation (6.6). Note
that this Hamiltonian is much “reduced”—only electrons with opposite momenta and
spins interact, all other interactions are just dropped.*

3 We shall consider only spin-singlet pairing (opposite paired spins) of electrons with the pair having
zero orbital momentum (s-wave pairing), though in some metals and in superfluid He?, Cooper pairing
takes place in the spin-triplet state (parallel paired spins) and not necessarily in the s-wave orbital
state. For example, in high-temperature copper-oxide superconductors, d-wave singlet Cooper pairs
are well confirmed by many experiments.

4 As a result of this simplification (separation of the most important interactions), the problem may
be studied in detail. BCS theory remains one of the most important achievements of modern theoreti-
cal physics, and its ideas are applied in many other systems (besides metals), energy scales and tem-
peratures. Besides the examples given previously, we can mention nucleon pairing in atomic nuclei,
superfluidity in neutron-star matter and also some models of modern theory of elementary particles.
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146 —— 6 Superconductivity

To solve the Hamiltonian (6.12), we shall use the method proposed by Bogolyubov.
Let us write down the interaction part of the Hamiltonian (6.12):

g +  _+
Hine = =3 2 @y A p Gy (6.13)
pp’
and make the following approximate replacement of operator part:

+ o+ + o+
ap,Tafp;la_plapT - <aP'Ta*P’l> (a_plam)

+ <a;’Tajp’l>a—plapT +(a_p ap; >a;’Tatp’l’ (6.14)

where angular brackets denote the ground state averaging at T = 0 or statistical av-
eraging for T > 0, i.e., (---) = 71 Sp(e™T ---) (assuming that these averages exist
and are nonzero!). This replacement effectively excludes four operator terms in the
Hamiltonian, reducing it to the following form, describing interaction with some self-

consistent field, determined by these averages:

g
Hine = v Z{< a;"[atp’l > a_p|Apy + <a—plapT>a|+)’Tatp’l}
pp’

g
-7 Z(a;,Tafp, @ pagy). (6.15)
pp’
Finally, the total Hamiltonian of the system can be written as:’
* 1
H=Y &a ap, + Y (A apra_p +Aa’y ab}+ §V|A|2, (6.16)
po P
where we have introduced by definition:
«_ 8 + _+
N =T Y {agal ), (6.17)
pl
A=Y (ayayy) (6.18)
pl

the so-called anomalous averages, directly related to the order parameter of the su-
perconducting transition. Combinations of creation and annihilation operators, here
taken under the averaging (as well as in equations (6.14) and (6.15)), are in fact creation
and annihilation operators for Cooper pairs (bosons!) with zero momentum, similar
to (5.89). Then, using Bogolyubov’s idea applied before to a Bose gas, we can replace
this combination of operators in Hamiltonian (6.13) by c-numbers, defined by the aver-
ages in equations (6.14), (6.15), or by the directly related (6.17) and (6.18), i. e., assume

5 Note the sign change due to the permutation of anticommuting Fermi operators.
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6.2 Energy spectrum of superconductors =— 147

that the Cooper pairs undergo Bose condensation at sufficiently low temperatures.
Without any limitations, we can put here A* = A, i. e., choose the phase of a complex
number A = |Ale®® (order parameter) equal to zero: ¢ = 0. In the absence of an external
magnetic field, this can be done because the energy of the system does not depend on
the phase.® Note that the existence of anomalous averages of the type (6.18) explicitly
breaks the particle conservation law (compare again with the Bose gas case!); in a nor-
mal metal these averages are obviously zero [6]. The appearance of such averages cor-
responds to the breaking of this invariance during the phase transition from a normal
metal to a superconductor.” Further analysis is intended to confirm, self-consistently,
that such averages are really different from zero at sufficiently low temperatures, cor-
responding to a phase transition to a superconducting state.

Now, the Hamiltonian (6.16) is quadratic over the Fermion operators and can be
diagonalized by Bogolyubov’s u — v-transformation. Let us introduce new operators
as:

+ +
by = upap +vpayy by = Updyy —Vv,ay,) (6.19)
+ + + +
by = wyapy +Vpapy by = Upayy —Vpap,. (6.20)
Due to the assumed isotropy of the electronic-liquid coefficients, u, and v, depend
only on |p|. The linear transformation (6.20) “intermixes” the operators of quasi-

particles with opposite momenta and spins. “Old” operators satisfied the usual
Fermion commutation relations

{apg, a;/o./} = 5])])'600’ {apa, ap:a:} = {a;a, a;/g/} =0, (6.21)

where figure brackets denote anticommutators. We have to require that the new oper-
ators satisfy the same commutation relations:

{Bpos Byor} = OpprBosr {bpos by} = (b Diygr} = O (6.22)

so that “new” quasi-particles are also fermions. It is easy to see that this leads to the
following relationship between the coefficients u and v:

2 2
U, +v, =1 (6.23)

Inverse transformations have the form:
+ +
pp = Upbpy + Vb7 ap) = Uyby) —Vpb Ty, (6.24)

+ + + +
Ay = Upbp +Vpb_p|  ay =upby —Vpb_py. (6.25)

6 This was done before also in equation (5.89) for the Bose gas model.

7 Here again we meet the phenomenon of spontaneous symmetry breaking—a new ground state of
the system (superconductor) has lower symmetry, than the initial Hamiltonian (6.12). This is typical
for any phase transition of second order.
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148 —— 6 Superconductivity

Substituting (6.25) into the Hamiltonian (6.16), we obtain:
H= 2Z€PV127 —ZAZupvp + lVA2
P P g
2 2 + +
+ A8 (uy = vp) +28upv, (b by + by by )}
P

+ Y {[28u,v, - A = v2)](bpibl ) + by byp)}- (6.26)
P

Now it is seen that, if we demand the coefficients u and v to satisfy

2%,u,v, - Ay - v3) = 0, (6.27)

the nondiagonal terms in (6.26) vanish. Then we finally obtain the Hamiltonian of the
new “free” (!) quasi-particles:

H=Ey+ Y e)[bpbp + by by ], (6.28)
p

where

Eo =2 [,V - Auyv,] + éVAZ (6.29)
p

defines the ground-state energy, while
e(p) = &,(u} - ;) + 20wy, (6.30)

gives the energy of the new quasi-particles. From equations (6.23) and (6.27), it is easy
to obtain explicit expressions for the coefficients u and v:

ug,} _ 1(1 + L) (6.31)

AN

p
Then for the spectrum of new quasi-particles from (6.30), we get:

e(p) = \§7 + A (6.32)

which is the BCS spectrum with an energy gap of width 2A around the Fermi surface!

Qualitatively, this spectrum is shown in Figure 6.1. Obviously, this spectrum satisfies
the Landau criterion for superfluidity — Min ST(") > 0, i. e., guarantees superconductiv-

ity in the system of charged quasi-particles.®

8 If there is a current, the whole Fermi surface is shifted in momentum space by some vector q, such
that mvg = hq, where vy is the drift velocity of electrons. Then the energy of an elementary excitation
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6.2 Energy spectrum of superconductors = 149

PP

Figure 6.1: Energy spectrum of electrons in BCS theory.

Thus, for finite values of A (i. e., qualitatively, when there is a Bose condensate of
Cooper pairs present), the system becomes a superconductor. However, we still have
to show that such a situation is possible, i. e., we have to define conditions when the
anomalous averages (6.17) and (6.18) become nonzero. Making the u—v transformation
in (6.17) we can write:

<lva

Z apal,) = Z UVp(1 =y —1y)), (6.33)
p p
where

Myt = (Bprbyr) 1= = (by by 6.34)

In fact:

(ayra’, ) = ((uyby; +vpb_p (b’ = vybyy))
= u}zj (byppbZp)) = upvy(byybpr) + vy (b_p BT, ) - V129<b—plpr>
= UV (1 -1,y — 1)) (6.35)

close to the Fermi surface can be written as e(p) = \/fﬁ + A% + ppv,, where we have taken into account
the smallness of the drift velocity (compared to the Fermi velocity), so that §,,.4 = &, + Vzq. For an

electron with momentum parallel or antiparallel to vy, we have e(p) = \l.‘,’lf + A2+ppv,. Thus, an energy

difference hiw = 2prv, appears between opposite points on the Fermi surface, so that the excitation

spectrum becomes asymmetric. However, until hiw = 2ppvs < 2A, the gap in the spectrum persists

and for T = O there are no excited BCS quasi-particles. Accordingly, there is no dissipation of current.

For vspy > A, the upper and lower quasi-particle bands overlap, the excitation of quasi-particles into

the upper band becomes possible even for T = 0 and superconductivity vanishes. This leads to the
el

simplest estimate for the critical current of superconductor: j. = eve = e
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150 —— 6 Superconductivity

because, in the correct ground state, we have to satisfy the condition:
+ 3.+
<prbfpl> = (b_p bpy) =0,

i. e., new quasi-particles should not be spontaneously created or annihilated.’ Simi-
larly:

(@y1a_p)) = v, (1= 1y = my) = (ayaly)). (6.36)

Substituting the explicit expression (6.31) for u,, and v,, into (6.33), we obtain:

1-n, -n
1=y 2 n (6.37)

V5 V& + A2

the fundamental gap equation of BCS theory.
In the absence of an external magnetic field, the occupation numbers are Npr =Ny,
and are defined by the usual Fermi distribution of quasi-particles with spectrum (6.32):

_ _ 1
Mpr =My = —%

— (6.38)

er +1
Consider first the case of T = 0. For A # 0, there are no (excited) quasi-particles at all,
i.e., Ny = n, = 0. For T > 0, they can be thermally excited in pairs (particles and
holes) and appear above (below) the gap. Then in equation (6.37), we can transform

from summation over p to integration and write:

3 1-2n
L (6.39)
(2rth) V& + A2
For T = 0, we have:
2
- % J dp__4mp (6.40)

(2mh)3 l% +Af).

It is seen immediately that this equation does not have solutions for A, in the case
of g < 0, i.e., for repulsive interaction, because the two sides of this equation have
different signs. Remember now that the coupling constant g is nonzero only in a nar-
row energy layer of width ~2w;, around the Fermi surface (see equation (6.6)). Then,
in (6.40):

hw,
1 _pr JD ds, _2pp, 2hwp

NSRRI S S R

9 Mathematically this follows from the presence of only diagonal elements of the density matrix, cor-
responding to a diagonalized Hamiltonian (6.28). Accordingly, the averages of the diagonal products
of the operators (6.34) are different from zero, while the averages of the nondiagonal products (6.35)
are zero.

(6.41)

J dpp’
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6.2 Energy spectrum of superconductors = 151

so that equation (6.40) takes the form:

- ;'[”21;; In % (6.42)
giving the solution:
Ay = 2hwy exp(—i> = 2hwp exp(—i>, (6.43)
8Vr Ap
where vp = % is the electron density of states at the Fermi level and A, = gvp/2 is

a dimensionless coupling constant of the pairing interaction. Thus, at T = 0, the en-
ergy gap A, is different from zero, formally, even for infinitesimal values of the pairing
coupling constant )lp.lo

At finite temperatures, setting A = 0 in equation (6.39), we obtain the equation for
the critical temperature of the superconducting transition:

D
g dp 1-2n J 1 %

1=2 —r- d¢,—th—2-, 6.44
2 J @rhy? 1§, P % 26, 2T, (6.44)

—hwp

solution of which is [1]:

2 1

T, = ;thD exp(—/Tp>, (6.45)

where y =~ 1.78 is the Euler constant. At this temperature, the energy gap goes to zero
(see the following), and the superconductor becomes a normal metal.!!

In Table 6.1, we give the temperatures of the superconducting transition for a
number of metals and compounds. In the right-hand row, we show the most popu-
lar copper-oxide high-temperature superconductor. These compounds have been ac-
tively studied since 1987. The maximal temperature of the superconducting transi-
tion T, ~ 135K (under pressures up to ~150 K) was observed in Hg,Ba,Ca,Cu;04. In
2008, a new class of high-temperature superconductors was discovered, based on iron

10 Note an extra factor of 2in equation (6.43), as compared with equation (6.11), obtained above from a
simpler approach. The inaccuracy of equation (6.11) is connected with the approximation of a separate
pair of electrons on the background of a rigid Fermi surface. The correct solution is given by (6.43).

11 If the microscopic mechanism is not of an electron-phonon nature, the frequency in the pre-
exponential factor in this approximation is replaced by the characteristic frequency of bosons, respon-
sible for the attraction between current carriers. In particular, for the so-called excitonic mechanism,
this is replaced by some energy ~Er > hwp, leading to possible high-temperature superconductiv-
ity (Little—Ginzburg). In the real high-temperature superconductors discovered thus far, we deal here
with a characteristic frequency of antiferromagnetic spin fluctuations, while the basic points of BCS
theory are conserved.
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Table 6.1: Temperature of the superconducting transition for a number of metals and compounds (K).

Al Sn In Hg Pb Nb Nb3Sn Nb3Ge YBa,Cu30,

1.2 375 34 416 722 778 18.0 23.2 92

pnictides and chalcogenides. The highest T. = ~55K was observed in this class for
the Nd(Sm)FeAsO system. High-temperature superconductors are not described by
the simplified version of BCS theory described previously, though the basic qualita-
tive conclusions are still valid. In fact, in these systems, only concerning the nature
of microscopic mechanism of Cooper pairing, there is no general consensus, though
most researchers believe it to be non-phonon, most probably connected with antifer-
romagnetic spin fluctuations. There are some other differences with the simple BCS
approach, e. g., it is well established that in copper oxides the pairing is a singlet, but
anisotropic (d-wave pairing). In iron-based superconductors, the theoretical picture
is complicated by their multiple-band electronic structure.

In traditional superconductors, BCS theory gives a more or less complete descrip-
tion of this phenomenon, and there are no doubts as to the electron—phonon nature of
Cooper pairing. In Table 6.2 [9], we give the values of A, and hwp, for a number of super-
conductors, where the weak-coupling BCS model gives a pretty good description.!? As
was noted already, in superfluid He?, Cooper pairing between neutral atoms of helium
takes place at temperatures below 2.6 mK, leading to superfluidity. The microscopic
mechanism of pairing in He? is related to the exchange by spin fluctuations (param-
agnons). There are several superfluid phases on a rather complicated phase diagram,
differing by the type of pairing (orbital and spin momentum of pairs). This leads to an
unusual richness of physical phenomena observed in this system [21].

Table 6.2: Experimental values of Awp, T, and coupling constant A,.

hop ) T.(K) A,

Zn 235 09 0.18
cd 164 056 0.18
Hg 70 416 035
Al 375 12 018
Tl 100 24 027
Sn 195 375 0.25
Pb 96 7.22 039

12 For the case of strong electron-phonon coupling, BCS theory was generalized by Eliashberg and
McMillan, producing more complicated equations but conserving all the main ideas of the BCS ap-
proach.
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The concept of bound pairs in BCS theory should not be taken too literally. It is
more correct to speak about a certain correlation between pairs of particles in p-space,
leading to a finite probability for particles to have, in fact, the distribution of momenta
6p in the region of these correlations corresponding to the binding energy of a pair
(gap) ~A, i.e., 6p ~ A/vp. The appropriate correlation length, given by & ~ #/6p ~
hvg/A, defines a characteristic scale of distances between correlated particles (the size
of a pair). For T = 0, this length, also called the coherence length, is equal to:

hVF VF 1
& ~—~—+— exp<—>. (6.46)
Ay  wp Ay
Typically, in metals :)—’; ~ I%;TFD > a, where a is a characteristic distance between

the electrons. In addition to that, the exponential factor in (6.46) much exceeds unity
because usually we have A, < 1. From these estimates, it is clear that we always have
&, > a, so that “inside” each pair there are many electrons, or, in other words, pairs
are much overlapped and lose their individual nature. In high-temperature supercon-
ductors, due to the much the higher values of T, (large binding energy of a pair) and
arelatively small concentration of current carriers, the size of pairs is not overwhelm-
ingly large in comparison with the interparticle distance. These systems belong to
a crossover region between very large BCS pairs and “compact” bosons (BCS-Bose
Crossover).

In BCS theory, the electrons of a normal metal are transformed into fermion quasi-
particles with the spectrum given by equation (6.32). Simultaneously, a reconstruction
of the ground state takes place. Here, we present (without derivation) the main expres-
sions describing the ground state of a superconductor [9]. This state is described by
the following state vector:

IBCS) = [ [(up + vpapra_y,)10) (6.47)
p

where |0 > is the state without electrons (a vacuum), satisfying the obvious condition:
a,,10) = 0. Equation u + v} = 1 guarantees the normalization (BCS|BCS) = 1. The

p " 'p
average number of particles in the BCS ground state is given by:
_ + _ 2V 3, 2
(N) = 3 (BCSIaj0 00 1BCS) =23 1) = (5 | &p2r;. (6.48)

However, the fluctuation in particle numbers in the BCS state is different from zero, as
this ground state (as was noted above) breaks the particle conservation:

(N*y = (N =Y ava. (6.49)
p
From here it is easily seen that (N%) — (N)? ~ V ~ (N), but the relative fluctuation
(N>)-(N)> 1
A (6.50)
(N)? (N)

and the relative mean-square fluctuation behaves as 1/+/(N) for (N) — oo.
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Direct calculations show that the BCS ground-state satisfies the condition:
b,;IBCS) = by, IBCS) =0

i.e., is the correct vacuum state for BCS quasi-particles, originating from quasi-
particles of a normal metal via the u — v-transformation.

6.3 Thermodynamics of superconductors

Consider now finite temperatures T > 0. The gap equation (6.39) can be rewritten as:
g dp 1 J dp my

-1 = _ = 5 6.51

3 J Quhp ep) S ) @any e) (651

where g(p) is given by (6.32). Note that the integral in the left-hand side differs here
from those in equation (6.40) only by the replacement of A by A,. Then, replacing unity
in the left-hand side by the logarithm form of equation (6.42), we can rewrite the left-
hand side of equation (6.51) as g —=2& ln . In the right-hand side we write explicitly

210
the Fermi function n

, = [e R 11! and transform to an integration over d¢ = vpdp.
Then (6.51) takes the following form:

AT Y S 62
—00 /&2 + A(e T +1)
where
I(w) = j dx . (6.53)

. Vx2 + u2(exp Vx2 + u? + 1)

This integral can be calculated in limiting cases [19], and we obtain:
Y12 pmu foru > 1
I(w) = {(2”) (6.54)

In(Z) + 7{(3) 2 foru<1,

where y = 1.78 is the Euler constant, {(3) =~ 1.202 is Riemann’s {-function with argu-
ment 3. Substituting these limiting expressions to (6.52), we obtain for low tempera-
tures T <« A:

A= Ao[l e ] 6.55)

while in the vicinity of the transition to the normal state, where A — 0, we get:

By _ T 760) A?

In
A yA 8m2 T2

(6.56)
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From this equation, we can wee that the gap A becomes zero at the critical tempera-
ture:

T, = %AO ~ 0.570,, (6.57)
which, taking into account (6.43), coincides with (6.45). Note the characteristic BCS
ratio, following from these expressions: 2;& ~ 3.52, its experimental verification in

traditional superconductors was one of the first confirmations of BCS theory.'
Close to T, it follows from (6.56) that:

8 T \1" T
s =1 5517 )] =306, V' T, 39

demonstrating the characteristic square-root behavior of the gap, typical for the order
parameter of a second-order phase transition.

The general the form of the temperature dependence of the gap A in BCS theory,
following from equation (6.52), is shown in Figure 6.2. This dependence is also well
confirmed by experiments on traditional superconductors with a relatively low tran-

sition temperature T,.

1,0

T
\\
N
\
205 \
\
\
\
0,5 1,0
T/TC

Figure 6.2: Temperature dependence of the gap in BCS theory.

13 In many real superconductors, significant deviations from this BCS theory prediction are widely
observed. In fact, the “ideal” BCS value of 3.52, the ratio of full width of the energy gap and T, is char-
acteristic for weakly-coupled superconductors (with small values of the pairing coupling constant),
in accordance with BCS theory. The observed deviations (mostly growth) of this ratio are typical for
strongly coupled superconductors and are well described by the Eliashberg—McMillan approach.
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Let us consider some other properties of a superconductor at finite temperatures
(dropping the details of the derivation). The difference in free energies between the
superconducting and the normal state, close to T.(T < T.), following from BCS theory
[19, 20], is given by:

2mpFT2< T )2
F,-F,=-V cf1-—), 6.5
s—on 7TeW\ T, (6.59)

so that the superconducting state at T < T, has lower free energy than the normal
state. The difference of entropies, following from (6.59) is:

Sg =S, = (6.60)

_a(FS -F,) _ _V4mpFTC <1 T >

oT e\ T.)

Accordingly, we obtain the value for the specific heat discontinuity at the transition
point:

o(Ss - S,) _ 4mppT,

C.-C,=T . 6.61
s— oT 7(3)H (6.61

Taking into account that C,, = VmpT/3k> (see equation (4.70)), we obtain:
€ 12y o4, 6.62)

Cu(T)  7¢03)

This universal value is also rather well confirmed in measurements of the specific heat
on traditional (weakly-coupled) superconductors, while strong coupling leads to sig-
nificant deviations from this prediction of simple BCS theory.

To calculate the specific heat at low temperatures, we can use the relationship:

OF = z e(p)(Ony; + 6ny|) = ZZs(p)énp (6.63)
p p

for the total quasi-particle energy change due to variation of occupation numbers. Di-
viding this expression by §T and going from summation to integration, we obtain the
specific heat as:

L Y
c-var j age(p) L. (6.64)

. _zw) > . . .
For T « A, we can write n, ~ e" 7 and e(p) = Ay + %. Then, simple integration
0
gives:

\/impFAg/z _b
C= VWG T (6.65)
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so that at T — O the specific heat of the electron gas in a superconductor is exponen-
tially small, due to the existence of a finite gap in the quasi-particle spectrum.

At T = 0, it can be shown [19, 20] that the difference between the ground-state
energies of superconducting and normal states is given by:

mpg

1
s En=V oo Ny = —=Vvphj, (6.66)

4

The negative sign here corresponds to the instability of the “normal” ground state in
the case of attraction between quasi-particles and makes the superconducting state
the real (stable) ground state of the system. The physical meaning of equation (6.66)
is pretty clear: in an energy layer of width ~A around the Fermi level, we have ~vzA
quasi-particles, each gaining energy of the order of ~A, due to gap formation. The
estimate of the total energy gain per one electron is ~A?/e.

6.4 Coulomb repulsion”

Up to now, we assumed that there is an attractive interaction between the electrons,
acting in a narrow energy layer of width 2w, around the Fermi surface.'* Such an at-
traction can exist in metals due to electron—phonon interactions. However, a strong
Coulomb repulsion is obviously acting between all electrons in metals, which def-
initely opposes the formation of Cooper pairs (and thus superconductivity). Let us
show how this repulsion can be taken into account in the equations of BCS theory.

In the general case, the energy gap of a superconductor, when taking into account
various interaction mechanisms, is defined by a rather complicated integral equation.
Close to T,, this equation can be linearized over A as the gap goes to zero for T — T,.
In the weak-coupling approximation, we can write the following gap equation close
to T,, which is the direct generalization of equation (6.44) and determines the critical
temperature of the superconducting transition [9]:

® ]
86 = | drvie W) s 2 ) (6:67)
) 287\ 2T,
where N(&) is the density of electron states in a normal metal (per one spin projection),
and V(£,¢') is the “potential” of an effective interaction between the electrons. We
assume that A(¢) here is some unknown function of the energy of a quasi-particle &,
which is to be determined depending on the accepted model of the interactions. In our
previous discussion, A was assumed to be a constant and just canceled out, dropping
out from equation (6.44).

14 In this section, we put 4 = 1 and measure frequency wp in units of energy.
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Effective electron—electron attraction in superconductors is determined in re-
ality by some balance between attraction due to electron—phonon interaction and
Coulomb repulsion. We may assume for the “potential” V(£,¢’) the following very

crude model:
V(§.8') = -Ve(§.8) + Vu(8:87), (6.68)
where
Ve(§,8") = Vebler - 1€D0(er - 1)), (6.69)
Von(§,8") = VpnBlwp — 1§D8(wp ~ 1£]) (6.70)

are the “potentials” of electron—electron and electron—phonon interactions respec-
tively and wy, is the Debye frequency. Constants V. > 0 and V,;, > 0 describe repul-
sion and attraction, acting (due to &z > wp) in significantly different intervals of en-
ergy: electron—-phonon attraction acts only on electrons in an energy layer of width
2wy, close to the Fermi level, while the (screened) Coulomb repulsion acts between all
conduction electrons on an energy scale of the order of the Fermi energy ¢f.

After substitution of this expression into equation (6.67) and simple transforma-
tions, using the (presumably) even gap function A(¢), we get:

BE) = [Vl - §)- Vebler - )] [ agN(g) e £ )ace)
0

V0 - f)jds*N(s()—th( 5') (). 671)

In a rough approximation, we can seek a solution of this equation in the form of two
“step” functions [9]:

AE) = {Aph’ 1§l < wp, 6.72)

A, wp<|él<ep

where Ay and A, are some constants, which can be determined (after substitution
of (6.72) into (6.71)) from the following system of homogeneous linear equations (ob-
tained after substitution of (6.72) into (6.71)):

- t-vomon{ 32 - o83 (3.

(O)K< 5T )Aph + {1 LV NO(O)[K< TC> _ K(T>

}AC =0, (673

15 We assume interelectron repulsion to be short-ranged due to the strong screening of the Coulomb
interaction in metals.
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where we have replaced the density of states by its constant value N(0) = %vF at the
Fermi level and introduced the notation:

X 1 ,
K(x) = J dx’;th(x ). (6.74)
0

A nontrivial solution of this system exists if the determinant of this system of equations
is zero, which gives the equation for T:

(/1—;1")K<;u—£> =1,

v erfod) ()

where we have introduced p* —the so-called Coulomb pseudo-potential, u = V.N,(0)
is the dimensionless Coulomb (repulsion) coupling constant, while A = VonNo(0) is a
dimensionless pairing-coupling constant due to electron—phonon interaction.

Due to inequality & > wp > T,, the integral in (6.74) can be calculated for x > 1,
so that K(x) = ln(%x), where y is again the Euler constant. Then for the critical tem-
perature of the superconducting transition, we immediately obtain:!®

-1
(6.75)

2 1
TC = ;ya)D eXp<_A—7>’ (6.76)

which coincides with the BCS expression (6.45), if we write the pairing constant as
A, = A - p*. The Coulomb potential u* is given here by the following expression:

P.__H

r— 6.77
lerlna‘i—';J (6.77)

From this result we can see that Coulomb repulsion naturally opposes pairing and

reduces T, diminishing /\p by u*. However, in most metals, this effect is largely sup-

pressed due to relatively large (for e > wp) value of In(ex/wp) (the so-called Tol-
machev’s logarithm). In particular, even for A < p, i. e., when for all energies the total
constant of electron—electron interaction is formally repulsive, superconductivity may

still persist if A > p*.

Using equation (6.76), we may propose the following ways to raise the critical tem-
perature of the superconducting transition:

1.  We may raise the value of wp or try to use another (non-phonon) mechanism of
pairing via the exchange by some collective excitations with characteristic fre-
quencies larger than wy,. A typical example is the so-called excitonic mechanism,
for which wy, is replaced by an energy of the order of &g.

16 This important result was obtained by Tolmachev soon after the BCS work.
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160 —— 6 Superconductivity

2. Another way is to raise the pairing coupling constant A, either by rising attractive
coupling A, or by reducing the Coulomb pseudo-potential u*.

Nearly all attempts to search for high-temperature superconductivity were undertaken
this way. Many theoretical explanations of high transition temperatures observed in
real high-temperature superconductors are explicitly or implicitly based on these or
similar ideas. In fact, the practical realization of these tasks is pretty complicated.
Even on this elementary level, it can be seen that the necessary requirements are
rather contradictory. For example, raising the pre-exponential wy, in (6.76) up to the
values of the order of & inevitably leads to the appropriate growth of the Coulomb
pseudo-potential, due to the diminishing value of Tolmachev’s logarithm. On the
other hand, raising the effective pairing constant demands the replacement of the
weak-coupling approximation used in simple BCS theory."”

Concluding our review of the microscopic theory of superconductivity we note
that in this chapter we always supposed that Cooper pairing takes place in a singlet
state (antiparallel spins), and with zero orbital momentum of the pair (s-wave pair-
ing). In real superconductors, the situation may be more complicated. It was shown
by experiments that in some systems Cooper pairing takes place in a triplet state (par-
allel spins), and also in a state with nonzero orbital momentum (He3, the so-called
“heavy fermion” systems etc.). In copper oxides, Cooper pairing is a singlet in spin, but
a d-wave. In iron pnictides, the situation is complicated by a multiple-band electronic
structure, leading to different superconducting gaps in different bands etc. Obviously,
the microscopic description of such systems requires more complicated theories, but
the main ideas and qualitative conclusions of BCS theory remain valid.

17 As an example of the appropriate development of microscopic theory, we give here the interpola-
tion formula for T, proposed by Allen and Dynes, which is valid for the wide interval of the dimen-
sionless coupling constant of electron—-phonon pairing interaction, including the values A ~ 1:

Te= 1200 P "1 e v 0620 | (6.78)
where
13 w2 Jwye — 1172
A=l @) =1
A +A2
(6.79)
. o (W)
A =246(1+38u"); A =182(1+63u")——,
wlog

where w), is the average logarithmic frequency of the phonons, while (w?) is the average square of
the phonon frequency (the averaging in both cases is over the phonon spectrum). These parameters
replace wp of BCS theory; the other parameters were defined earlier.

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:57 AM



6.5 Ginzburg-Landau theory =— 161

Vitaly Lazarevich Ginzburg (1916-2009) was a Soviet
and Russian theoretical physicist, astrophysicist, Nobel
laureate, a member of the Soviet and Russian Academies
of Sciences and one of the most active defendants of
science in modern Russia. He was the successor to Igor
Tamm as head of the Department of Theoretical Physics
of the Lebedev Physical Institute in Moscow and an out-
spoken atheist. He was born in Moscow in 1916 and grad-
uated from the Physics Faculty of Moscow State Univer-
sity in 1938. Among his achievements are a phenomeno-
logical theory of superconductivity, the Ginzburg—Lan-
dau theory, developed with Lev Landau in 1950, the the-
ory of electromagnetic wave propagation in plasmas and a theory of the origin of cos-
mic radiation, as well as various aspects of the theory of phase transitions. He was
an active proponent of the idea of high-temperature superconductivity long before it
was discovered experimentally in cuprates. He was awarded the Nobel prize in 2003
for his part in the development of the Ginzburg—Landau theory of superconductivity,
which actually forms the basis of many modern theories in physics, such as the Stan-
dard Model of elementary particles. In the late 1940s and early 1950s, he also worked
on the Soviet atomic project, contributing some major ideas on hydrogen-bomb de-
sign (e. g., the use of LiD). Ginzburg was an atheist and criticized clericalism in the
press and in his books on religion and science. His regular seminar in Lebedev Insti-
tute had attracted scores of theorists for more than 40 years. Besides his Nobel prize,
he had numerous scientific awards, such as the Stalin (1953) and Lenin (1966) prizes,
Wolff prize in physics (1994) and the Lomonosov Gold Medal of the Russian Academy
of Sciences (1995). He was also a member of a number of foreign academies, including
the Foreign Members of the Royal Society (1987).

6.5 Ginzburg-Landau theory

The complete microscopic theory, describing the behavior of superconductors in an
external electromagnetic field, is too complicated to be discussed here. However, the
analysis can be very much simplified if we restrict ourselves to the temperature region
of T — T, where the phenomenological Ginzburg-Landau (GL) theory can be applied.
In fact, GL theory is one of most outstanding physical theories; its main ideas play a
major role not only in superconductivity, but in many other branches of theoretical
physics (such as, e. g., the Standard Model of elementary particles). At the same time,

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 1:57 AM



162 —— 6 Superconductivity

from a phenomenological point of view, GL theory is an impressive example of the use
of the general Landau theory of phase transitions of second order [19].18

In the general Landau theory of phase transitions of the second order, the dif-
ference between “nonsymmetric” and “symmetric” phases is described by the order
parameter. For a superconductor, the natural choice of the order parameter is the com-
plex energy gap, or more precisely, the anomalous average (6.18), which is propor-
tional to the condensate wave function of Cooper pairs. In the general case, this order
parameter can be inhomogeneous in space. Assuming for simplicity cubic symme-
try of the crystal lattice, we note that the superconducting state is characterized by a
scalar n,-density of superconducting electrons (pairs). Thus, it is convenient to nor-
malize the condensate wave function by the condition |¥)? = ng/2, and introducing its
phase ¢ to write it in the form [20]:

¥ = %e"‘i’ ~A. (6.80)

Thus, the order parameter is the complex (two-component) function.
According to the general rules of quantum mechanics, we can write the density of
the supercurrent as:

ieh eh
jo = — vy vt = Dy v, 81
Js Zm( v V') 2mn5v¢ (6.81)

where the last equality is valid for the case of a spatially homogeneous density n,
while the doubled mass is introduced here only formally, to stress that the supercur-
rent carriers are Cooper pairs.

The starting point of GL theory is the expression for the free energy of a supercon-
ductor as a functional of W(r). Consider first a superconductor in the absence of an
external magnetic field. It is obvious that the physical properties should be invariant
with respect to a gauge (phase) transformation ¥ — We'®, This requirement excludes
odd power terms in the Landau expansion of the free energy."”

Thus, the free-energy expansion in powers of the order parameter ¥ for a super-
conductor can be written as:?°

2
F=F,+ Jdv{h—w\mz ral¥P+ 2|\}f|‘*}. (6.82)
4m 2

18 Note that GL theory can actually be derived from microscopic BCS theory, though in fact the GL
approach was formulated nearly a decade earlier.

19 Note that phase invariance in quantum mechanics is responsible for particle conservation. The
order parameter itself is not invariant with respect to this transformation. In this sense, as was already
noted, in the superconducting state this symmetry is broken. Symmetry breaking takes place at any
second-order phase transition, so that the condensed phase is always “nonsymmetric”.

20 The basic postulate of Landau theory is precisely the possibility to perform such an expansion due
to the smallness of the order parameter close to the transition temperature [19].
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6.5 Ginzburg-Landau theory —— 163

Here F,, is the free energy of a normal state, coefficient b > 0 and coefficient a is written
in usual Landau form:

a=a(T-T.) a>0 (6.83)

so that for T < T. we have a < 0. The coefficient before |V¥|? is taken in the form
which leads to the expression (6.81) for the current (treated later). Identification of m
with the electron mass is of no importance, as well as is the definition of n,.

For the case of the homogeneous order parameter, we have:

F=F,+aV(T - T)I‘I’| bV|‘I’|. (6.84)

The value of |¥|? at equilibrium is determined by the minimum of this expression and
is given by:

IP)” = _E = E(T T) (6.85)

for T < T, and is zero for T > T,. The value of the order parameter || goes to zero
for T — T, according to the square-root law, in complete accord with equation (6.58).
The value of ng ~ |¥|> — 0 linearly in T, - T.

Substituting (6.85) into (6.84), we obtain:

2
F,-F, = —V’z"—b(T ~T,) (6.86)

which is equivalent to equation (6.59).%! Differentiating equation (6.86) with respect to
T, similar to (6.60), we can find the difference between the entropies and the specific-
heat discontinuity at the transition point:

£ (6.87)

which agrees with equation (6.87).

Close to T,, (6.86) gives a small correction to the free energy, and, according to
thermodynamics, it also represents (being expressed via T, P instead of T, V) the dif-
ference between the Gibbs thermodynamic potentials @; — ®,,. This difference coin-
cides with the value of — V <, where B, is the thermodynamic critical field destroying
the superconducting state. Then we easily obtain:

b= () - (N r, -y (689)

21 GL theory was derived from microscopic BCS theory of superconductivity by Gorkov, giving an ex-
plicit microscopic expression for the GL coefficients a and b. These expressions can be easily obtained
by direct comparison of equations (6.85) and (6.58) with equations (6.58) and (6.86). Thus for “pure”

12

superconductors (without impurities), we have: a = 7653;5 andb = “Tc, wheren = 3p L isthe electron

density, with T, given by the BCS expression (6.45).
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In the presence of an external magnetic field, equation (6.82) for the free energy can
be written as:

2 2
F:Fn+JdV{B n
8m

2ie 2
(v-2a)e
4m

h

+al¥)P + gm"}, (6.89)

where B = rot A. The structure of gradient term here is determined by the gauge in-
variance of electrodynamics; in particular, the coefficient i’—ce here is expressed via fun-
damental constants, in contrast to #%/4m. The presence of 2e reflects the charge of a
Cooper pair—in GL theory we are dealing with a charged-order parameter!

Looking for an extremum of F as a functional of three independent variables ¥,
W*, A,?? we can find a differential equation determining the distribution of ¥ and the
magnetic field in the superconductor. Varying (6.89) with respect to ¥* and transform-

ing the integral of (V - 2ieA/hc)VSY™ by partial integration, we get:

2
§F = J dV{—f—(V - il—eA) Y a¥ b|\1/|2\y}5\1/
P 4§ds<vw - 21—eA\I’>6\I’ (6.90)

where the second integral is taken over the surface of the superconductor. Demanding
6F = 0, we get the condition for the volume integral being zero for arbitrary §%*, in
the form of the following Ginzburg-Landau equation:

4;( ihv 2—6A> ¥+ a¥ + bIWPRY = 0. (6.91)

Variation over ¥ gives the complex-conjugate equation for ¥*. Variation of (6.89) over
A leads to Maxwell’s equation:

rotB = %"i, (6.92)

where

. ieh 2¢?
= (P WV - = |¥PA. (6.93)
Here we have written j as the superconducting current because in the equilibrium state
the normal current is absent.
The boundary condition for these equations is obtained from the condition that
the surface integral in (6.90) be zero:

n<—ihV‘P - ;—iA)‘{’ =0, (6.94)

22 Complex ¥ consists of independent real and imaginary parts, so it is convenient to consider ¥
and ¥*, as independent variables.
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6.5 Ginzburg-Landau theory =—— 165

where n is the unit vector normal to the surface of the superconductor. It leads to the
equivalent relation: nj = 0. Equation (6.94) is valid on the boundary of the supercon-
ductor with a vacuum (insulator) which, in case of a boundary with a normal metal,
takes another form. The boundary condition for B reduces to the continuity of B at the
border.

In a weak magnetic field, we may neglect its influence on |¥|* and set it equal to
(6.85). For spatially homogeneous ng = 2|¥|? from (6.93), we get (see (6.81)):

he 2e
j=—n,| V- —A|. 6.

J 2mns( ¢ hc ) (6.95)
Applying rot to both parts of this equation and using rot A = B, we obtain London’s
equation:

2

rotj = -5 B, (6.96)
mc

From Maxwell’s equations (6.92) and divB = 0, substituting j from the first equation
into (6.96) and using rot rot B = grad div B - V?B = —V°B, we can write London’s equa-
tion as:

1
VB = 7B (6.97)
where
s _me _< mc?b )”2_[ mc?b ]”2 (698)
~ 4men ~ \ 87e?|al [ 8n2a(T, -T)| )

Near the flat surface of the superconductor, taking it as the yz-plane and directing the
x-axis into the body of superconductor, we can reduce equation (6.97) to:

B 1
- "B 6.
ax? & (6.99)
and immediately get the solution:
B(x) = Bye ™%, (6.100)

where the vector B, is parallel to the surface. This gives the description of the Meiss-
ner effect—the “exclusion” of the external magnetic field from a superconductor. The
characteristic length § is called the penetration depth, and it is directly measurable.
Its typical values for real superconductors at low temperatures is § ~ 10~ — 107 cm.
For T — T,,itdiverges according to (6.98), which corresponds to complete penetration
of the external magnetic field into a normal metal.
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In addition to §, another characteristic length appears in GL theory—the so-called
coherence length or correlation length of the order parameter fluctuations &(T). Us-
ing the standard expressions of the Landau theory of second-order phase transitions
(treated later), this length is expressed via the GL coefficient as follows:

é(T) = i h I &~ F‘Tﬁ (6.101)

2Amla)? ~ 2(ma)V2(T - T2 %0 T.- T’ i

where in the last estimate we used the microscopic expressions for the GL coefficients
and the estimate of the BCS coherence length (6.46), determining the size of Cooper
pairs. We can see that the coherence length &(T) (pair size) also diverges for T — T.
(pairs grow and become destroyed at T = T,.).

The dimensionless ratio of these characteristic lengths:

oo 8 _ mcb'/?
ST 2m)2eln

(6.102)

defines the so-called Ginzburg-Landau parameter. Depending on its value, all super-
conductors are divided into two classes with significantly different properties in an

external magnetic field: superconductors with x < \/Li are called type-I superconduc-

tors, while those with k > % are called type-II superconductors. Most superconduc-
tors used for practical applications, as well as all high-temperature superconductors,
are in fact type II superconductors.

Let us derive one remarkable result following from equation (6.95) and the Meiss-
ner effect. Consider a superconductor forming a torus and place it in an external
magnetic field. We assume that both diameters of the torus are much larger than the
penetration depth and coherence length (macroscopic torus). Now we can show that
the value of the magnetic flux through the torus is quantized—it may only be integer
units of the elementary “flux quantum”, expressed via the fundamental constants
(flux quantization). Deep inside the superconducting torus (outside the border region
defined by the penetration depth), the current density is obviously zero j = O (there is
no field to induce the current), while the vector potential is nonzero (only its rotor is
zero, so that B = 0). Consider some closed contour C, going around the torus inside
its body, far from its surface. Circulation of A along the contour C coincides with the
magnetic flux through the contour, i. e., with the flux ® through the torus:

<j§Ad1 _ J rot Adf = j Bdf = ©. (6.103)

On the other hand, taking (6.95) equal to zero and integrating it around the contour,
we get:

hc hc
Adl= — Q Vedl = —6¢, 6.10
CJS 2e ¢ 2e ¢ ( 4)
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where ¢ is the change of the phase of the wave function as we go around the con-
tour. Demanding the single-valuedness of the wave function, after we perform a total
circulation (one or several times), we conclude that this change of phase can only be
2, multiplied by an integer. Thus we obtain:

mthe

lel
where n is an integer. The value of ¢, represents an elementary quantum of magnetic
flux. This remarkable result is directly confirmed by the experiments, which is, by the
way, a direct proof that (super)current carriers in superconductors are quasi-particles
with an electric charge equal to 2e (Cooper pairs).

If we consider a massive cylinder in an external (longitudinal) magnetic field B
made of a type-I superconductor, it will undergo a first-order phase transition to the
normal state, if we reach the thermodynamic critical field B,; discussed above. For a
type-II superconductor, even before we reach the thermodynamic critical field B, it
becomes favorable thermodynamically to form some small regions of normal phase
inside the cylinder and the unusual penetration of the magnetic field to the body of
the superconductor, in the form of the so-called Abrikosov’s vortices of normal phase,
oriented along the field, and allowing the magnetic field to penetrate inside. It only
becomes possible once the external field reaches the value of the so-called first (or
lower) critical field B,;. For B < B, the superconductor is in the usual Meissner state
(no field inside). If we start with a metal in the normal state in a high external field,
the lowering of this field up to some second (or upper) critical magnetic field B, > B,
makes it favorable for finite regions of the superconducting phase to form inside the
normal metal. Thus, in the field region B, < B < B, atype-II superconductor is in the
mixed (Shubnikov) phase. The phase diagram of such a superconductor in a magnetic
field is shown schematically in Figure 6.3.

The value of B, can be determined from GL theory. It is clear that for B < B,,,
but close to it, nuclei of the superconducting phase possess small values of the order
parameter ¥ (¥ — 0 for B — B,,). Then we can write the linearized GL equation:

® =n¢, where ¢, = =210 Gauss cm?, (6.105)

1 2\
—<—ihV - —A) ¥ - |ale, (6.106)
4m C

which has the form of Schroedinger equation for a particle with mass 2m and charge
2e in a magnetic field. The value of |a| on the right-hand side of this equation plays the
role of an energy level. The boundary condition at infinity is ¥ = 0. Now remember
the quantum mechanical (Landau) problem of a charged particle in a constant ho-
mogeneous magnetic field [18]. The minimal value of the energy of such a particle is
E, = hwg/2, where the cyclotron frequency wg = 2|e|B/2mc = |e|B/mc. Starting from
this value, we have a continuous energy spectrum. Thus our superconducting nuclei
can exist only for:

la] > @B (6.107)
2mc
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Normal phase
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Meissner phase B ‘,&d
0 T T. ‘

Figure 6.3: Phase diagram of a type-Il superconductor in a magnetic field. The dashed line shows the
thermodynamic critical field B;.

so that
2mclal| 1
B. = = V2B, = pg————, 6.108
c2 |€|Fl c ¢0 Zﬂfz(T) ( )
where we have introduced ¢, = T _the elementary flux quantum of superconduc-

le]
tivity theory already introduced, and also determining the magnetic flux through a

single Abrikosov’s vortex. During the derivation of the remaining equalities, we have
used equations (6.88), (6.101) and (6.102).

The description of the vortex structure of the mixed state of type II superconduc-
tors by Abrikosov remains one of the most remarkable achievements of Ginzburg-
Landau theory. Unfortunately, we have to limit ourselves to this qualitative discussion.

Finally, let us briefly discuss the limits of applicability of GL theory. First of all, it
is necessary to satisfy the condition for T, - T « T, which is equivalent to &(T) >
&,. Then we can use the Landau expansion. However, for T — T,, the validity of GL
theory is limited also by the general condition for the applicability of Landau theory of
phase transitions, connected with the growth of order-parameter fluctuations in the
immediate vicinity of T, (in the so-called critical region to be discussed later). In case
of superconductivity, this is a very weak limitation. Later, during the discussion of
order-parameter fluctuations in Landau theory, we shall see that its region of validity
(where we can neglect fluctuations) is expressed via GL coefficients by the following
inequality:

b2T1?
T

¢~ T > W (6109)
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Estimating the right-hand side here using microscopic values of these coefficients, de-
rived in BCS theory, we get:

4

L-T > <E> ) (6.110)

Tc €F

Due to the smallness of the ratio T, /e ~ 1073 - 107* in usual superconductors (usual
metals), we can conclude that this limitation is practically irrelevant. The situation
changes in high-temperature superconductors, where the critical region becomes ob-
servable.

Aleksei Alekseevich
Abrikosov  (1928-
2017) was a Soviet,
Russian and Ameri-
can theoretical physi-
cist whose main con-
tributions are in the
field of condensed
matter theory. He was

the co-recipient of the
} 2003 Nobel Prize in
Physics, with Vitaly
Ginzburg and Anthony James Leggett, for theories about how matter behaves at
extremely low temperatures. He graduated from Moscow State University in 1948.
From 1948 to 1965, he worked at the Institute for Physical Problems of the USSR
Academy of Sciences, where his scientific supervisor was Lev Landau. From 1965 to
1988, he worked at the Landau Institute for Theoretical Physics of the USSR Academy
of Sciences. He was a full member of the USSR (later Russian) Academy of Sciences
from 1987. In his two works in 1952 and 1957, Abrikosov explained how magnetic
flux can penetrate a class of type-II superconductors. The accompanying arrange-
ment of magnetic-flux lines is usually called the Abrikosov vortex lattice. In his early
works, he made significant contributions to quantum electrodynamics, and later to
the theory of magnetic impurities in metals, as well as to various aspects of the the-
ory of superconductivity. He also was an author of major developments in the use of
quantum field-theory methods (Feynman diagrams) in condensed matter theory. As
one of the most original and famous members of the Landau school of theoretical
physics he was well known among theorists in Russia and abroad. From 1991 until his
retirement, he worked at Argonne National Laboratory in the US. Abrikosov was an
Argonne Distinguished Scientist at the Condensed Matter Theory Group in Argonne’s
Materials Science Division. Besides the Nobel prize, Abrikosov was awarded the
Lenin Prize in 1966, the Fritz London Memorial Prize in 1972 and the USSR State Prize
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in 1982. In 1989, he received the Landau Prize from the USSR Academy of Sciences,
Russia. Two years later, in 1991, Abrikosov was awarded the Sony Corporation’s John
Bardeen Award. The same year he was elected a Foreign Honorary Member of the
American Academy of Arts and Sciences, and in 2000 he was elected to the US
National Academy of Sciences. In 2001 he became a Foreign Member of the Royal
Society.
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7 Fluctuations

7.1 Gaussian distribution

The physical observables that characterize the macroscopic body are, with high accu-
racy, equal to their average values. However, small deviations from the average value
always take place—there are fluctuations! Let us discuss the ways to find the probabil-
ity distributions for fluctuations.!

Consider an arbitrary closed system, and let x be some physical parameter, char-
acterizing our system or its part. In the following it is convenient to assume that the
average value (x) is already subtracted from x, so that we always have (x) = 0. In most
cases, (x) = x*, where x* is the most probable value of x. During our general discus-
sion of entropy, we have seen (see (1.180)) knowledge of the entropy as a function of
some macroscopic parameters x = (xy,Xy,...,X,), and we can find the probability of
their specific values as:

w(x) = Cexp{S(E,N,V,x)}, 7D

which is called Boltzmann’s principle. Thus, the probability to find a value of some
physical characteristic x in the interval x, x + dx is proportional to exp S(x), where S(x)
is entropy as function of an exact value of x. This is a way to define the probability
distribution of x in a most general way, enabling us to find the appropriate average
values and fluctuations. Equation (7.1) is the starting point of the theory of fluctuations
developed by Einstein.

If (x) is not subtracted from x, we should note that in equilibrium the entropy is
equal to Sy = S({x)). Then the probability for the system to be in a state characterized
by the value of x, belonging to the interval (x), (x) + dx, takes the form:

dw = w(x)dx = Cexp[S(x) — S((x))]dx = Ce™dx, (7.2)

where AS is the entropy change due to the fluctuation dx. In equation (7.1), the value
of 5™ js simply absorbed into the normalization constant C.

Consider the limits for the applicability of equations (7.1) and (7.2). All previous
arguments implicitly assumed the classical nature of x. Thus, it is necessary to find
the condition for the quantum effects to be neglected. From quantum mechanics, it is
known [18] that the quantum indeterminacy of energy and some other physical vari-
able x are related by the following relationship:

AEAX ~ hx, (7.3)

1 Subsequently, we mainly follow [19].
https://doi.org/10.1515/9783110648485-007
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172 = 7 Fluctuations

where x is the classical time derivative of x.?
Let T be a characteristic time of change of x, so that x ~ x/T and

MM~%. (7.8)

It is clear that we can speak about a well-defined value of x only if Ax « x, so that it is
necessary to have

AE > ? (7.9)

i. e., the quantum indeterminacy of the energy must be large in comparison to #/7.
Then the entropy of the system has an indeterminacy
h

A —. 1
S > T (710)

For equations (7.1) and (7.2) to be valid, it is necessary for the indeterminacy of entropy
to be small in comparison to unity:

T > h > E (7.11)
T T

This is the condition we seek. At sufficiently low temperatures and in the case of very
fast changes of x in time (small 7!), these fluctuations cannot be considered as classi-
cal (thermodynamic); instead, they become quantum fluctuations! Here we shall limit
ourselves only to the case of classical fluctuations.

2 Consider two physical variables f and g, described by operators satisfying the commutation rela-
tionships:

fg - &f = —ine, (74)

where ¢ is also some operator. In the quasi-classical limit # — 0, the first approximation ¢ can be
replaced by c-number. Then:

f& - &f = ~inc. (75)

This commutation relationship is similar to p,x — xp, = —ih, but with 4 — #c. Then, in analogy with
the Heisenberg relation AxAp, ~ h, we can conclude that in the quasi-classical approximations of f
and g satisfy the following indeterminacy relationship:

AfAg ~ he. (7.6)

In particular, when one of the variables is the energy, f = H, and the second operator (§) does not
depend on time, using the g = %(I:I & — gH), we obtain ¢ = g and the quasi-classical indeterminacy
relationship takes the form:

AEAg ~ hg. 77)

For g = x, it reduces to (7.3).
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7.1 Gaussian distribution = 173

Let us return to equation (7.1). The entropy S has a maximum at x = (x) = 0. Then:

2
oS 0 o0°S

95| _y 95 0. 12
ax o o (712)

x=0

The value of x due to the fluctuation is small. Expanding S(x) in powers of x up to the
second order, we have:

S(x) = S(0) - gxz; B> 0. (713)

Substituting this into (7.1), we obtain:
_By
w(x)dx = Ae 2" dx. (714)

The normalization constant A is defined by fzo dxw(x) = 1, giving A = /2.
We see that the probability distribution of fluctuations in x is given by Gaussian
law:
B

B
w(x) = L (7.15)
2

The average square of the fluctuation is equal to:

(x2> = _L dPw(x) = % (7.16)

Thus, the Gaussian distribution can also be written as:

w(x) =

1 x?
exp ( - ) ) (717)
V21 (x%) 2(x?)
Function w(x) has a sharper maximum for smaller values of (x?).
Knowledge of (x?) allows us to find a similar characteristic for any function o(x).
Due to the smallness of x, we have:

2
((89)*) = (Z—‘p> (). (718)
X /x=0

Similarly, we can determine the probability of simultaneous fluctuations of sev-
eral thermodynamic variables. Let us denote these deviations from equilibrium (av-
erage) values as x, X5, ..., X,. Introducing the entropy S(x;,x,,...,x,), we write this
probability distribution as wdx; - - - dx,, ~ exp[S(xy,...,X,)]dx; - - - dx,. Expanding S in

powers of x; up to terms of second order, we get:

1< 1
AS=-= Z Bixixx = == BucXiXys (719)
255 2
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174 = 7 Fluctuations

which is a negative quadratic form. Obviously S;, = B;;. In the latter equality, we as-
sume the usual rule of summation over repeating indices. Then:

1
w=A EXP<—§ﬁikXiXk>> (7.20)

where A is defined by the normalization f dx, ---dx,w = 1. Further calculations pro-
ceed as follows. Let us make a linear transformation of x;:

X; = Ayxy, (7.21)
diagonalizing the quadratic form S;x;x;. To get:
BacXixec = X; = X{Xy .22
we require that the coefficients of our transformation (7.22) satisfy the condition:

BixiGim = Oim- (7.23)

The determinant of the matrix on the left-hand side is equal to the product of the de-
terminants:

pa® =1 B =DetPy a=Detay. (7.24)

The Jacobian of the linear transformation x; — x{ is equal to a. Then, after the lin-
ear transformation in (7.21), the integral is factorized into the product of n identical
integrals. Taking into account (7.24), we get:

Aa[ T dx’' exp(—%xQ)]n = %(271)"/2 =1 (7.25)

Finally, the Gaussian distribution for several variables is written as:

VB

Qmn’2

1
exp(—zﬁikxixk> ﬁ = Det |Bik|> (726)
and using it we can find:
(xXxe) = Byl (7.27)

where Bi‘kl is the matrix element of the matrix inverse to f;. For statistically inde-
pendent fluctuations in x; and x,, the average of their product factorizes: (x;x,) =
(x1){x,) = 0,sothat B[zl = 0.Inthe case of a Gaussian distribution, the inverse theorem
is also valid. If {(x;x,) = 0 (i.e. ﬁl‘zl = 0), then fluctuations in x; and x, are statistically
independent.
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7.2 Fluctuations in basic physical properties = 175

Albert Einstein (1879-1955) was a German-born the-
oretical physicist who developed the theory of relativ-
ity, as well as quantum theory and statistical mechan-
ics. He received the 1921 Nobel Prize in Physics “for his
services to theoretical physics, and especially for his
discovery of the law of the photoelectric effect”. Here
we briefly mention only his contributions to statisti-
cal physics. Two of his papers published in 1902-1903
attempted to interpret thermodynamics from a sta-
tistical point of view. Actually Einstein independently
rederived the main principles of statistical mechanics,
without any knowledge of the book by Gibbs, which ap-
peared precisely at that time. These papers of Einstein were the foundation for his
1905 paper on Brownian motion. Later in 1910, Einstein returned to the problem of
thermodynamic fluctuations, giving a treatment of the density variations in a fluid
at its critical point and finalizing the general theory of fluctuations in statistical
physics. In a 1905 paper, Einstein postulated that light itself consists of quantum
particles—the photons. Einstein actually suggested that this idea would explain cer-
tain experimental results, notably the photoelectric effect. In 1907, Einstein proposed
a model of matter where each atom in a crystal lattice structure is an independent
harmonic oscillator, which essentially explained the temperature-dependent specific
heat of solids. Later Peter Debye only refined this model. In 1924, Einstein received
a letter from Indian physicist Satyendra Bose, which described statistics based on
a counting method that assumed that light could be understood as a gas of indistin-
guishable particles. Einstein noted that Bose statistics may be applied to some atoms
as well. He also published his own articles describing this model and its implications,
among them the Bose—Einstein condensation. In July 1939, Einstein and Szilard wrote
a letter to U.S. President Roosevelt on the dangers of atomic bombs being developed
in Hitler’s Germany and recommending that the US pay attention and be engaged in
its own atomic bomb research, starting the actual development of nuclear weapons.

7.2 Fluctuations in basic physical properties

Let us calculate the mean-square fluctuations in basic the thermodynamic variables
of some separate small part of a macroscopic body. This small part is assumed to still
contain a sufficiently large number of particles.

For such variables as energy and volume, which also have a direct mechanical
interpretation, the notion of fluctuation is obvious. However, it needs clarification for
such variables as entropy and temperature, because a definition of these variables is
necessarily connected with the system’s evolution during finite time intervals.
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176 —— 7 Fluctuations

The probability w can be written as:
w ~ expAS, (7.28)

where AS is the entropy change due to fluctuation. From thermodynamics, we know
[19] that
AS = ~Rmin (7.29)
Ty
where R.;, is the minimal necessary work for a reversible change of thermodynamic
variables in the given small part of the body (due to fluctuation), while the rest of the
system plays the role of a bath with temperature T,. Thus:

w~ exp<—%>. (7.30)
0

Now we can substitute here (for fixed temperature and pressure of the bath):
Ryin = AE — TyAS + PyAV, (7.31)

where AE, AS, AV are changes of energy, entropy and volume of the small part of the
system due to fluctuation, while T, and P, are the temperature and pressure of the
bath, i. e., the temperature and pressure of our system in equilibrium. In the following,
we drop the index zero and understand that the coefficients are taken at equilibrium.
The we obtain:

AE—TAS+PAV> ~exp< ACD>’ (732)

WN"XF’(‘ T T

where A® is the change of thermodynamic potential due to fluctuation. For AV = 0,
i. e., in the absence of volume fluctuations, we have:

w o~ exp(—%), (7.33)

here AF is the free-energy change due to fluctuation.

Note that equations (7.32) and (7.33) are actually applicable to arbitrary fluctua-
tions, both small and large. In case of small fluctuations, we may proceed as follows.
Expanding AE in a power series, we get:

2 2
o'E ASAV + a—E(AV)2 , (7.34)

AS)? +2
B8+ 2557 EYE

AE—TAS+PAV=%

o8
052

where the first-order terms in the expansion of AE canceled out as g—’; = Tand g—‘E, =-P.
It is easily seen that (7.34) can be rewritten as:

1 OE OE 1
3 [ASA<% )V + AVA< 37 )S] = E(ASAT — APAV). (7.35)
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7.2 Fluctuations in basic physical properties = 177

Then we obtain the probability of fluctuation as:

<APAV—ATAS)
~exp| ————— ).

°T (7.36)

From this general expression, we can find the fluctuations in various thermodynamic
variables.
First, let us choose V and T as independent variables. Then:

_(3s 3s ¢ oP
AS-(aT> AT + <av> AV = TAT+<aT> AV, (7.37)
oP oP
AP= () AT AV. .
<6T>V " <8V> (738)

Substituting these expressions into (7.36), we can see that terms with AVAT cancel,
and what remains is:

Sy a4 (aP ) @v) } (739)

w~ exp{ v

212

This expression factorizes into two factors, depending only on AT or AV. Thus, the
fluctuations in temperature and volume are statistically independent:

(ATAV) = 0. (7.40)

Comparing each of the two factors in equation (7.39) with the general expression for
the Gaussian distribution (7.17), we find the following expressions for the mean-square
fluctuations in temperature and volume:

W T?
((AT)") = o (7.41)

v

(AV)?) = —T( ZD (7.42)

The positivity of these expressions is guaranteed by the thermodynamic inequalities
C, > 0and (0P/oV)y < 0 [19].
Now, choose P and S as independent variables in equation (7.36). Then:

oV oV
AV = <aP>AP+<aS>AS (7.43)
oT oT oT
AT—<68> AS + <aP>AP C—AS+<aP>AP (7.44)
But according to dW = TdS + VdP, we have ( )p ( )S, and then:
ov oT
AV = <8P> AP+<aP> AS. (7.45)
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178 =—— 7 Fluctuations

Substituting AV and AT into (7.36), we obtain:

W~ exp{%(%)s(AP)z - ﬁ(AS)Z]». (746)

As before, this expression factorizes in two factors, depending on AP and AS. Thus:
2
(AS)") =C,, (7.47)

2 oP
((ap)) = _T<W>s' (7.48)

From the relationships just obtained, it is seen that mean-square fluctuations
in additive thermodynamic variables, such as volume and entropy, are proportional
to the size (volume) of those part of the system to which they are related. Accord-
ingly, these fluctuations are ~VV, while the relative fluctuations are ~1/VV. At the
same time, for temperature and pressure, the mean-square fluctuations are already
inversely proportional to the square root of the volume.

Expressions for the fluctuations in thermodynamic variables can also be obtained
directly from the Gibbs distribution. As an example, let us consider the fluctuations of
particle numbers. Using the grand canonical distribution, we have:

E,
(Ny=e? Y NeT Yot (749)
N n

Differentiating this expression with respect to u (at constant ¥ and T), we get:

ON)y 1 ¢ 2 0Q\ w _Eav
—:Tef %(N +N$>ef zn:e T

o
_ 12 9Q
_ T((N Y+ (N ap>' (750)
But 0Q/0ou = —(N), so that:
ON) 1 0o an2y 1 2
o 7 (V) = (N)%) = =((ANY"), (7.51)
and accordingly:
((AN)?) = T(3(N) /o) .- (7.52)

From these expressions, it is clear that the mean-square fluctuations in such variables
as energy, volume and pressure tend to zero as T — 0. This is a general property of all
thermodynamic variables, which also have a direct mechanical meaning, but in gen-
eral it is not so for such purely thermodynamic variables such as entropy and tempera-
ture. According to equation (7.41), for fixed energy, we can not attribute a well-defined
temperature to our system, since it fluctuates, and equation (7.41) characterizes the
limits for a precise determination of the temperature of an isolated system.
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7.3 Fluctuations in ideal gases =— 179

7.3 Fluctuations in ideal gases

Consider now the calculations of ((AN)?) from another point of view. According to
equation (742), fluctuations in volume are given by ((AV)%) = —T(%)T. Dividing both
parts of this equality by N2, we find the fluctuation in the volume per one particle to
be:

()5,

This enables us to find the fluctuation in the particle number in any separate volume
inside the body. The volume V is fixed, so that AI% = VA}V = —I%AN , and substitution
into equation (7.53) gives:

o N2(OV
((6NY) = —Tﬁ(a—P>T. (754)

Using now the equation of state of an ideal gas, giving V = NT/P, we obtain:
((ANY’) =N. (7.55)

Then the relative fluctuation is:

M = L (7. 56)
N VN
Consider now the fluctuations in the particle distribution over different quantum
states. Let nj, be the number of particles in k-th quantum state. Due to the total inde-
pendence of this (sub)system of particles from the rest of the system (gas), we may
apply equation (7.52) thus:

(Bn?) = T (7.57)

op

For a Fermi-gas, after the substitution of () = [e(gk’“)/ L 1171, we obtain:
((Bmp?) = () (1= (). (7.58)
Similarly, for a Bose-gas:
() = () (1 + (ny)). (7.59)
For a Boltzmann gas, after substitution of (n;) = eH=e/ T, we obtain:
() = (). (7.60)
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180 —— 7 Fluctuations

Previous expressions of equations (7.58) and (7.59) reduce to (7.60) for n;, <« 1. Let us

sum (7.58) and (7.59) over the group of G; close levels, containing N; = > my particles.
Due to the statistical independence of fluctuations in various n;., we have:

2 _ _ (N

((AN]-) Y= G]-(n]-)(l F (n]-)) =N;(1+ — ) (761)

Gj

where (n;) is the average value of (n;) close to each other, and (N;) = (n)G;.

These expressions can be applied, e. g., to a photon gas, putting in (7.59) u = 0.
Consider the set of quantum states of photons (in volume V) with close frequencies,
belonging to a small interval Aw;. The number of relevant states is G; = ijzAa)j Jmc.
The total energy of the quanta in this frequency interval is given by EM; = Njhw;.
Multiplying (7.61) by (hwj)2 and dropping the index j, we obtain the following Einstein
expression for the fluctuation in the energy E, , of a photon gas, in the given frequency
interval Aw:
°(Ep,)’
CVohw

Let us consider also fluctuations in the particle number within the given volume
of an ideal gas V. In principle, we can analyze sufficiently large fluctuations with N —
(N) of the order of (N). This is relevant only for a Boltzmann gas, because, in Fermi
and Bose gases, the probability of such fluctuations becomes noticeable only in small
volumes such that quantum fluctuations become important. According to the grand
canonical ensemble, the distribution of N particles of the gas over various quantum
states is proportional to

((AEp,)?) = hwEy, + (7.62)

exp{—QwN_ng}, (7.63)
T

where Y g, is the sum of the energies of the particles. To obtain the probability distri-
bution wy, we have to sum this expression over all states of the particles in the given
volume V. Performing the summation independently over the states of each particle,
we have to divide the result by N!, so that:

Q/T o \N
e g
Wy = W(%e T > . (7.64)

The sum written in this expression is simply the average number of particles in the
given volume:

K€
YeT =(N). (7.65)
k
Then:
_ (NN
wy = const T (7.66)
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7.3 Fluctuations in ideal gases =— 181

and finding const = e~™ from normalization® we obtain:

_ (e

Wy A , (7.67)

which is the so-called Poisson distribution. Using it we can directly show [19], that the
mean-square fluctuation in the particle number is again:

((AN)*) = (N) (7.68)

and this expression is valid not only for large, but also for arbitrary, values of (N).

3 This reduces to Q = —PV = —(N)T, in accordance with the equation of state of an ideal gas.
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8 Phase transitions and critical phenomena

8.1 Mean-field theory of magnetism

This chapter is an elementary introduction to the theory of second-order phase transi-
tions and critical phenomena. The simplest microscopic model of such a phase tran-
sition is the mean (or molecular) field theory of Curie and Weiss, which gives a quali-
tative description of a phase transition in ferromagnets. This model allows us to study
the main aspects of the general problem, which are also characteristic for all other
types of second-order phase transitions.

Consider first the statistical mechanics of free spins in an external magnetic field
(e. g., aparamagnet with localized magnetic moments). The Hamiltonian of the system
of N noninteracting spins S; in an external magnetic field H is written as:

N
H=—-gug Y SH, (8.1)

i=1

where g is gyromagnetic ratio and up = % is the Bohr magneton. To shorten nota-
tions in the following, we introduce ji = gug. Quantum states of spin are defined by
its projections on an external magnetic field, which are given 2S + 1 possible values
(mj=-S,-S+1,...,5S-1,S).

The partition functions of this system of spins takes the form:

~ my=S
Z= Zexp(—%i&ﬂ) z Z exp(xim,-), (8.2)
S i=1

m=-S  my=-S i=1

where
_
= (8.3)
The summation in equation (8.2) is especially simple in the case of S = 1/2:
N ( m=1/2
Z = H{ z exp(xml-)}
i=1 Umj=-1/2
N 1 1
= H2ch<—x> = ZNChN(—x>. (8.4)
i=1 2 2
For arbitrary S, we have:
N N
7 {exp(—xS)[l - exp{(2S + 1)x}] } _ [sh{(S +1/2)x} ] (8.5)
- 1-exp(x) - sh(x/2) )

https://doi.org/10.1515/9783110648485-008
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184 —— 8 Phase transitions and critical phenomena

The free energy is now given by:

_ _ sh{(S +1/2)x} ]
F(T,H)=-TInZ = NTln[—sh(x/Z) (8.6)
Then the magnetization is obtained as:
oF 0
M(T,H)=—-(— ) =T—1InZ=M,B R .
(T, H) (aH)T 012 = MyBy(5%) (8.7)

where M, = M(T = 0,H = 0) = NSji = NSguj is the maximal possible value of the
magnetization, while

25+1 25+1 1 1
BS(X) = TCth< 25 X> — ECth<£X> (8.8)

is the so-called Brillouin function. This function relates the magnetization of the para-
magnet to the value of an external magnetic field, which is shown graphically in Fig-
ure 8.1. For the case where S = 1/2, the Brillouin function is given by:

Bl/z<%x> = 2cth(x) — cth(x/2) = th(x/2). (8.9)

From Figure 8.1, we see that M = 0 for H = 0, which is in fact obvious for a param-
agnet state. In ferromagnets, the situation is different: spins interact with each other
and at low temperatures the system acquires a spontaneous magnetization, which
exists also in the absence of an external magnetic field, i. e., for H = 0. The basic as-
sumption of the mean field-theory approach to magnetic ordering is that spin—spin in-
teraction produces within the system some mean (or “molecular”) magnetic field H,,,

[AHS
kT

0 ] 1 ! 1 1 1

Figure 8.1: Dependence of relative magnetization of a paramagnet o = M/M, on the parameter
[IHS/T, described by the Brillouin function for various values of spin S.
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8.1 Mean-field theory of magnetism =— 185

which is to be added to the external field H. It is also assumed that this field is just
proportional to the internal magnetization of the system

H,, = AM(T, H) (8.10)
so that an effective field acting upon each spin is given by:
Heg = H + AM(T, H). (8.11)

The parameter A > 0 is called the molecular field parameter. All the relationships just
derived remain valid, and we only have to substitute H — H,g. In particular, after such
a substitution, equation (8.7) reduces to:

M = MyBg [ FTS(H + AM)]. (8.12)
Now setting H = 0, we get the equation determining the magnetization M:
M- MOBS<HTAM ) (8.13)

A graphic solution of this equation is shown in Figure 8.2. Equation (8.13) possesses
the trivial solution M = O for arbitrary values of the temperature T. However, there is
also the possibility of a second (nontrivial) solution for M # 0, when the initial slope
of the curve, representing the right-hand side of equation (8.13), is steeper than the
left-hand side. To analyze this situation analytically, we perform a Taylor expansion
of Brillouin function:

S+1X_S+1252+2S+1 3
3S 3S 3082

Then the initial slope of the curve, for the right-hand side of (8.13), is defined by:

S+1\pSA A
M"( 35 >T‘CT’ (8.15)

(8.14)

Bg(x) =

M(T H=0)

Figure 8.2: Graphic solution of the equation for the magnetization in molecular (mean) field theory

B =1".
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186 —— 8 Phase transitions and critical phenomena

where we have introduced the so-called Curie constant:

NiS(S +1)
3

C

(8.16)

expressing M, via microscopic parameters, in accordance with an expression after
equation (8.7). Now from equation (8.15), we can see that a nontrivial solution exists
for T < AC, giving the value of the critical temperature of the ferromagnetic phase
transition in mean-field theory:

T, = AC. (8.17)

For lower temperatures, M # O even in the absence of an external magnetic field. The
transition temperature T.. obviously tends to zeroas A — 0, when we return to the case
of a paramagnet.

Let us consider the origin of the molecular field from the microscopic point of
view. The majority of models for magnetic ordering are based upon the concept of the
exchange interaction between spins, which in the simplest case can be described by
the Heisenberg model, with the interaction Hamiltonian written as:

1 .
H=-3 ; J;SiS; - i Z S;H, (8.18)
where Jj; is the so-called exchange integral, which is taken to be positive (the case of
ferromagnetic ordering).

Very popular is also the simplified version of this model called the Ising model,
described by the Hamiltonian (8.18) with only S, spin components left. Usually, the
Ising Hamiltonian is written as:

H-= —% Z Jisisi — It Z s;H, (8.19)
1#] 1

where the Ising “spins” s; = 1, i. e., take only two values. Actually, the Ising model
can be solved exactly on a two-dimensional lattice [19]. This solution, first obtained
by Onsager, is very important for the theory of phase transitions, but we shall not
describe it here.

The mean (molecular) field approximation reduces to the approximate replace-
ment of the microscopic Hamiltonian (8.18) by an effective Hamiltonian of the follow-
ing form:

H ==Y J(S,)S;, — 1) S H, (8.20)
i# i

where the external magnetic field is assumed to be oriented along the z-axis, while

(S,) denotes the average value of the z-component of the spin on an arbitrary lattice

site. It is clear that equation (8.20) describes the system of free (noninteracting) spins
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8.1 Mean-field theory of magnetism =— 187

in an effective (mean or molecular) field, oriented along the z-axis and given by:

]T()(Sz) - H+ Jo_ (8.21)

Heﬁ=H+ 7 Nﬂz s

where

Jo=YJ; Ji=0. (8.22)
j

It can be said that the molecular field on the given lattice site is actually the mean
magnetic field, which is self-consistently created on this site by all other spins of the
system. Comparing equations (8.21) and (8.11), we can see that the molecular field
constant A in this model is determined by the following expression:

A_]_O

- (8.23)

From equation (8.17), it now follows that the critical temperature of the ferromagnetic
phase transition (Curie temperature) is given by:

T, = %]OS(S +1). (8.24)

In case of spins interacting with nearest neighbors only, i. e., for Ji=17 when the site j
is one of the z nearest neighbors of site i, while for other cases Jij = 0, we have:

T. - %ZIS(S 1), (8.25)

Let us return to the simplest case where S = 1/2. According to equations (8.9) and
(8.12), we can write:

M= Moth[%ﬂ(H + }LM)]. (8.26)

Introducing the dimensionless (relative) variables 0 = M/M, and t = T/T,, we can
rewrite equation (8.26) as:

1pH 0)
= e — . 2
o th( L (8.27)
Using th(x +y) = %, we rewrite (8.27) as:
aH > o - tho/t)
h=thl = | = ——~. 8.28
< 2T 1- ath(a/t) ( )

Near the critical point (H = 0, M = 0, T = T,), all arguments of the hyperbolic func-
1.3

tions in (8.28) are small, and we can perform the Taylor expansions: thx = x — 3x° +
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%x +---. Then:

h:o<1—1>+o3[i+l_—l/t]. (8.29)
t 33 t
This is the so-called magnetic equation of state, which determines the behavior of all
the relevant physical characteristics of the magnet close to the critical point.

For example, we can consider the magnetization and the magnetic susceptibility.
From equation (8.28), it is seen that in a zero external field h = 0, and for T < T,
equation (8.29) takes the form:

2
T-1 T.-T
02=/—+...s3<1> e °

RN T T (8.30)

Cc c

Thus, we obtain the following behavior of the magnetization in a zero field close to T,
(for T < T,):

T-T,
) 8.31
- (831)

(o

~ff =

where the critical exponent of the magnetization (order parameter) § = 1/2.
The isothermal susceptibility in a zero field y; = (%I)T satisfies the following
relationship:

oM a0 oh 1 y)(@o) C<ao>
e = — ) =( =N = 8.32
Xr <ao >T<ah>f<aH>T (z ")( oh o (832
where the Curie constant was taken from (8.16) for the case of S = 1/2. Differentiating
both sides of (8.29) with respect to h for T = T, we get:

(1) ()

00

1=
oh

or, using (8.32),

crr o1
XT = T[? + t_3 (8.34)
Then, for T > T. we have ¢ = O for H = 0 and (8.34) reduces to:
C(T.T-T, c _y
~ R 8.
Xr = T<T T, > T-1T, (8:35)

where the critical exponent of susceptibility y = 1. For T < T,, according to (8.30), we
have 02 ~ -37, so that from (8.34) we get:

Xr=s=—=~ltl", (8.36)
and the critical exponent of susceptibility for T < T, is also y' = 1.
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8.1 Mean-field theory of magnetism — 189

Direct calculations within the mean (molecular) field model show that the specific
heat of the system at T = T, has a discontinuity ACy = 3/2N. Within this model, we
can also study the critical behavior of a number of other physical characteristics of the
system, described by the appropriate critical exponents.

In general, the molecular field model (approximation) gives a rather satisfactory
qualitative description of the ferromagnetic phase transition. It is easily generalized
to the case of an antiferromagnetic transition. In fact, this model is the origin of a
number of similar mean field models for the microscopic description of various phase
transitions in many physical systems. For example, the BCS model of superconductiv-
ity, described previously, is the typical mean field model, where the relevant “mean
field” is described by the anomalous averages (6.17) and (6.18), while the Hamiltonians
(6.15) or (6.16) are direct analogs of (8.20).! In superconductivity theory, this approach
actually gives a very accurate description of the system’s behavior close to T.. For a
majority of other phase transitions, e. g., in real magnetics, this description is only
qualitative, the experimental values of the critical exponents are significantly differ-
ent from mean field theory predictions. The physical reason for these discrepancies is
the increasing role of the fluctuations in the critical region close to T.. We shall sub-
sequently return to this problem.

Pierre Curie (1859-1906) was a French physicist, a pi-
oneer in crystallography, magnetism, piezoelectricity
andradioactivity. In 1903, he received the Nobel Prize in
Physics with his wife, Marie Sklodowska—Curie. Marie
Curie was awarded the second Nobel prize in 1911.
Though mainly known for his studies of radioactivity,
Pierre Curie studied ferromagnetism, paramagnetism,
and diamagnetism for his doctoral thesis, and discov-
ered the effect of temperature on paramagnetism which
is now known as Curie’s law. The material constant in
Curie’s law is known as the Curie constant. He also dis-
covered that ferromagnetic substances exhibited a crit-
ical temperature transition, above which the substances lost their ferromagnetic be-
havior. This is now known as the Curie temperature. Curie worked with his wife on iso-
lating polonium and radium. They were the first to use the term “radioactivity” and
were pioneers in its study. Pierre and Marie Curie’s daughter, Irene, and their son-in-
law, Frederic Joliot—Curie, were also physicists involved in the study of radioactivity,
and each received Nobel prizes for their work as well. Both the Curies experienced ra-
dium burns, both accidentally and voluntarily, and were exposed to extensive doses of

1 The BCS Hamiltonian can even be rewritten via some “pseudospin” operators (introduced by An-
derson), when it is reduced to practically the same form as (8.20).
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190 —— 8 Phase transitions and critical phenomena

radiation while conducting their research. Even now, all their papers from the 1890’s,
even her cookbooks, are too dangerous to touch. Their laboratory books are kept in
special lead boxes and people who want to see them have to wear protective clothing.
Pierre Curie died in a street accident in Paris on 19 April 1906. Had he not been killed
as he was, it is likely that he would have eventually died of the effects of radiation, as
did his wife, their daughter, Irene, and her husband, Frederic Joliot.

Pierre-Ernest Weiss (1865-1940) was a French
physicist specialized in magnetism. Weiss devel-
oped the molecular or mean field theory, which is
often called Curie—Weiss mean-field theory, that
lead to the discovery of the Curie—Weiss law. Pierre
Weiss is considered one of the first discoverers of
the magnetocaloric effect and domains in ferro-
magnets. He made several experimental discover-
ies that led to the development of the strongest
electromagnets of the beginning of the 20th cen-
tury. He worked at the universities of Rennes,
Lyon, ETH Zurich and finally at Strasbourg. In ETH
Zurich he became a physics professor and the director of the Institute of Physics. In
1907, he published an important work on the nature of ferromagnetism where he in-
troduced the concept of molecular field, a precursor idea to mean field theory. At this
moment in life, he met Albert Einstein and Peter Debye, who were also professors at
Zurich. During World War I, he came back to France and worked on military appli-
cations of acoustics. After the war, Pierre Weiss chose to become a physics professor
at the Faculty of Physics of the University of Strasbourg and the director of the Insti-
tute of Physics. He also founded, in Strasbourg, an institute focused on the research
of magnetism, similar to the one he founded in Zurich. In the 1930s, Weiss supported
the popular front which was controversial in the mostly conservative population of
Strasbourg of the time. In 1939, he followed his friend Jean Perrin to the University of
Lyon where he died in 1940.

8.2 Quasi-averages”

The microscopic theory of phase transitions addresses the very important question
of the degeneracy of the system’s ground state and the closely related problem of the
proper definition of statistical averages. Consider as an example a Heisenberg ferro-
magnet, described by the Hamiltonian (8.18). In the absence of an external magnetic
field (for H = 0), this Hamiltonian is obviously invariant with respect to rotations in
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8.2 Quasi-averages® =— 191

three-dimensional space. It is clear, as it is in this case, that (8.18) depends only on
scalar products of spins at various lattice sites. However, the ferromagnetic ground
state is not invariant with respect to three-dimensional rotations—spontaneous mag-
netization has a definite direction in space, and the system is invariant only with re-
spect to rotations around this direction. At the same time, it is obvious that the other
ground state of the same system, characterized by the other direction of the magneti-
zation vector, corresponds to the same energy. Accordingly, there is an infinite set of
ground states, differing only by the directions of the magnetization. The introduction
of an external magnetic field (even infinitesimal) breaks this degeneracy and allows
well-defined calculations of all statistical averages. This leads to the concept of quasi-
averages [7]—one of the central concepts in the theory of phase transitions.

Let us return to the Heisenberg model in the absence of an external magnetic field:

1
H= -5 > JiS:S; (8.37)
i#j

The total spin of this system:

S = Z S; (8.38)
j

is anintegral of motion (this is valid for each of its components; in quantum mechanics
each one commutes with the Hamiltonian of the system). Consider now the commu-
tation relationships:

5., ~S,S, =S,
5,5, - S,S, = iS,
5.5, — S5 = S, (8.39)

Using these relationships, we can write:
_H _H
iSp(S,e 7) = Sp[(S,S, - S,S,)e T]. (8.40)

Because S, commutes with H, we get:

SP(S,S,¢T) = Sp(S,€ 7S, ) = Sp(S,S,e T, (8.41)
so that
Sp(S,e”7) = 0. (8:42)
Similarly we find that:
H H
Sp(Sce 7)=0 Sp(S,e 7)=0. (8.43)
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Let us introduce the magnetization of the unit volume as:

_Byg R
M_V]Zs] 7S (8.44)

Then:
Sp(Me 7) =0 (8.45)
so that the average magnetization is:

o) = lim PMe D) _

. (8.46)
V=00 Sp(eT)

Thus, the standard definition of the statistical (Gibbs) average leads to zero average
magnetization, which correspond to the invariance of the system with respect to three-
dimensional rotations.

Let us stress that this result is valid for arbitrary temperatures, e. g., for temper-
atures below the Curie temperature. It may seem paradoxical because for T < T, the
system acquires a spontaneous magnetization. However, the direction of the magne-
tization vector in the absence of an external field is arbitrary, so that the (statistical)
equilibrium state is actually infinitely degenerate.

Let us introduce the external magnetic field ve(v > 0, €* = 1), replacing the Hamil-
tonian (8.37) by

H, =H+vVeM. (8.47)
Then, for temperatures below the Curie temperature, we have
(M) = eM,, (8.48)

where M, will have a finite (nonzero) limit as the intensity v of the external field tends
to zero. Formally, we can say that here we observe a kind of “instability” of the usual
definition of averages due to the addition to the Hamiltonian of a term with an in-
finitesimal external field,? and the average value of (M) acquires the finite value:

em wherem= lir% M,. (8.49)
V-

Now it is convenient to introduce the concept of the quasi-average. Consider some
dynamic variable A, built on spin operators. Then its quasi-average is defined as:

<A> = lin(l) (A)ye> (8.50)
V—

where (4),, is the usual statistical average of A with Hamiltonian H,,.

2 It is assumed that we first perform the thermodynamic limit of statistical mechanics V — oo, and
only after that we tend v to zero.
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Thus, the degeneracy is actually reflected in the quasi-averages via their
dependence on the arbitrary direction of the unit vector e. The usual average is given
by:

(A) = J <A>de (8.51)

i.e., is obtained by integration over all directions of e. Obviously quasi-averages are
more convenient and “physical”, in comparison with usual averages, if we are dealing
with degenerate equilibrium states. In fact, in practical calculations in phase transi-
tion theory, we are always using quasi-averages (explicitly or implicitly).

As another example, we can mention the BCS theory of superconductivity. As we
just noted, the BCS state breaks the gauge symmetry related to particle number con-
servation, which is reflected in the appearance of anomalous averages like (6.17) and
(6.18). Here we do not have the real physical field, breaking this symmetry, as in the
case of an external magnetic field breaking the rotational symmetry of a Heisenberg
ferromagnet. However, we can instead introduce the fictitious infinitesimal “source”
of Cooper pairs in the BCS Hamiltonian (6.12), writing it as:

H,=H-v) [a_p ay +aya’, ], (8.52)
P

which explicitly breaks particle-number conservation (gauge symmetry). Accordingly,
all the averages in the superconducting state are to be understood as quasi-averages
obtained with the Hamiltonian (8.52), with v — 0 at the end of the calculations. Natu-
rally, all these averages depend on the arbitrary phase angle ¢. While just discussing
the superconducting state, we assumed ¢ = 0, which is quite similar to fixing the
direction of magnetization of the Heisenberg ferromagnet in the mean field theory ap-
proach, which we oriented along the arbitrary direction of the z-axis, defined by the
direction of an external magnetic field. Quite similarly, we can analyze Bose conden-
sation [7].

In fact, discussing any kind of phase transition, we always assume the introduc-
tion of an infinitesimal Bogolyubov’s field or “source”, lifting (breaking) the appro-
priate symmetry. Then, during all calculations, we have to take into account appro-
priate anomalous averages, breaking the symmetry of the initial Hamiltonian. The
“condensed” state after the phase transition (appearing for T < T,) is characterized
by finite values of the anomalous averages, which remain nonzero even after the ex-
ternal field (or “source”) is put to zero, i.e., for v — 0. In the “normal” phase (for
T > T.), anomalous averages tend to zero as v — 0, and the appropriate symmetry
remains unbroken. In this sense, all phase transitions of second order are associated
with “spontaneous” breaking of some (usually continuous) symmetry.
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8.3 Fluctuations in the order parameter

Let us discuss now fluctuations in the order parameter. We have already noted above
that these fluctuations become important near the critical transition temperature, sig-
nificantly modifying the results of mean field theories. Our analysis will be essentially
based on Landau theory, as a typical mean field theory of second-order phase transi-
tions.

In most cases, the order parameter in Landau theory can be represented by an
n-component vector, either in the usual coordinate space, or in some associated space,
according to the nature of the symmetry breaking during the phase transition. In the
Heisenberg model, this is the usual three-component vector (magnetization), while in
Ginzburg-Landau superconductivity theory this is the complex (i. e., two-component)
wave function of the Cooper pairs condensate etc. Subsequently, we shall analyze the
simplest possible variant of the phase transition, described by a single-component
order parameter 77, which corresponds, e. g., to the Ising model.?

In thermodynamics, the minimal work necessary to create some fluctuation out
of the equilibrium state of the system (at fixed pressure and temperature) is equal to
the appropriate change of the thermodynamic potential A®. Thus, according to equa-
tion (7.32), the probability of a fluctuation at fixed P and T is estimated as:

w~ exp(—A—;D ) (8.53)

Let us denote the equilibrium value of 1 as 7. For a small deviation from equilibrium
write:

1, o a2q>>
AD = Z(n- — 8.54
50 =1) <an2 o1 (8.54)

The equilibrium value of the order parameter is determined by the Landau expansion:
O(T,P,n) = ©y(P, T) +atn’ + By* - nhV, (8.55)

where t = T — T.(P), and h is an external field interacting with the order parameter
(e. g., a magnetic field in the Ising model). Using equation (8.55), we define the equi-
librium value of the order parameter 7} from:

(@> _o, (8.56)
on /Jru
which reduces to:

2atf + 4Bi> = hV, (8.57)

3 We omit the discussion of the very important symmetry aspects of Landau theory, related to the
specific type of crystal lattice [19] and assume our system to be homogeneous and isotropic.
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which is equivalent to the result (8.29) derived from mean (molecular) field theory. The
solution of equation (8.57) for h — 0 has the form:

77=0 fort >0
_2 (8.58)

at
-— fort<O
T="2p

so that the critical exponent of the order parameter is equal to 1/2, the same value as
in equation (8.31).
The susceptibility is defined as:

on )
= == . (8.59)
X < oh T;h—0
Differentiating (8.57), we obtain for h — 0:
om___V (8.60)

oh ~ 2at +12Bi?

Substituting now (8.58), we get:

X= v fort>0

T (8.61)

x=—— fort<o,
—4at

which is similar to equations (8.35) and (8.36) and demonstrate the divergence of y ~
|T - TCI‘l, so that the critical exponent of susceptibility y = y’ = 1, as obtained from
the molecular field approximation. In fact, Landau theory is a typical mean field the-
ory and all critical exponents are obtained in the same way as in similar microscopic
models.
Using (8.60), we can write:
1

RGN

Thus, the probability of a fluctuation is determined from (8.53) and (8.54) by the fol-
lowing expression:

1LV
AD = 2()1 7)) X (8.63)

5 2
-V 2)(’71") V], (8.64)

w ~ exp

Now, in accordance with the general form of the Gaussian distribution (7.17), we obtain
the mean square of the order parameter fluctuation as:
Tx 1

2o ZA -
((An)°)y = v forT - T.. (8.65)

We see that the fluctuations grow close to T, and diverge as ~|T — T,| ™.
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For a deeper understanding of the physical nature of this phenomenon, it is useful
to find the spatial correlation function of order-parameter fluctuations. For an inhomo-
geneous system (fluctuations actually create inhomogeneities!), the thermodynamic
potential is conveniently written as @ = dedD(r), where @(r) is its density (which
is a function of the coordinate). We shall actually use the thermodynamic potential
Q(T, u) and consider some volume V within the body, containing a variable number
of particles N. The potential Q(T, u,n), for the unit volume, can be expanded in the
usual Landau form, similar to (8.55):

Q(T, u,n) = Qo(T, p) + atn’ + by — nh, (8.66)

wherea = a/V,b =B/V,t=T-T.(u). This form of expansion is valid for the homoge-
neous case. Ininhomogeneous systems, it must contain spatial derivatives of the order
parameter 1. For long-wavelength fluctuations, we can limit ourselves to the lowest or-
der derivatives and their lowest powers. Terms linear in the derivatives such as f (1) g—)z
reduce to surface integrals after volume integration, thus corresponding to irrelevant
surface effects. We shall limit ourselves to the simplest case (valid for crystals with
cubic symmetry), when the density of thermodynamic potential can be written as:

Q = Qg +aty’ + bn* + g(Vn)> - nh. (8.67)

For the homogeneous state to be stable, we have to require that g > 0. In the opposite
case, Q does not have a minimum for 1 = const.
Considering fluctuations as fixed u and T, we write the fluctuation probability as:

w~ exp(—@> (8.68)

T
because the minimal work required to bring the system out of equilibrium under these
conditions is given by R,;, = AQ.
Let us consider fluctuations in a symmetric (e. g., paramagnetic) phase (at h = 0),
when 7 = 0, so that A = 5. Limiting ourselves to second-order terms in the fluctua-
tions, we can write the change of Q as:*

AQ = J dV{ozt(n)2 + g(Vn)z}. (8.70)

4 Note that quite similar results can be obtained on the other side of the transition, in the broken-
symmetry phase. Here we have nonzero fj = (-at/2b)"/? and for the change of Q, up to terms of the
order of ~(An)?, we get:

80 = [ av{-2at(an’ + gvny’) (8.69)

Thus, for any characteristics of the system, we obtain expressions that differ from those for the sym-
metric phase by substitution of at by 2a|t|.
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Let us introduce the Fourier expansion of r(r):
nw =Y me™ = (8.71)
k

Then its gradient can be written as:

vn(r) = Z iknkeikr. (8.72)
K

Substitution of these expressions into equation (8.70) and volume integration leaves
only nonzero terms, containing the products, such as 1,1_x = I1x/>- Then we obtain:

AQ =V Y (gk* + at)my | (8.73)
k

so that:

T

2V (gk? + at)’ (6.74)

(Iml?) =
This expression is usually called the Ornstein-Zernike correlator. From this expres-
sion, it is clear that only the long-wavelength fluctuations with k ~ +/at/g grow as
t — 0. Actually, the expression (8.74) is valid only for long enough wavelengths k%,
which are large in comparison to the average interatomic distance a.
Let us define the correlation function in coordinate space as:

G(r; - 1)) = (n(r)n(ry)). (8.75)

This can be calculated as:

i &Pk
G = Y (Im*)e™ = VJ =™ Iy ). (8.76)
. (2m)
Then from (8.74) we obtain:”
_ I _r
G(r) = 87 exp( 5), (8.78)

5 Here we use the following expressions for the Fourier transformation:

J Ay et _ 47
r k2 + K2

J, d3k eikr ~ Py (8 77)
@3 k2 +x? 4mr’ )
These are most easily obtained if we note that ¢(r) = ‘Z_—,: satisfies the differential equation: V2p—x%p =

—4716(r). Multiplying both sides of this equation by e ™ and integrating over all space (performing

partial integration of e'ikrvzw twice), we obtain the required result.
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where

_ & _r_ 712
é’—\]:t (T-T,)". (8.79)

The parameter ¢ is called the correlation length of the fluctuations and defines the
characteristic distance for the decay of their correlations. We have already encoun-
tered this length in the Ginzburg-Landau theory, where it was called the coherence
length. The divergence of & for T — T.(T > T.) corresponds to the appearance (at
T = T,) of long-range order. The correlation length critical exponent v = 1/2, which is
again the standard result of the mean field theory.

For r = 0, the integral in (8.76) determines the average square of the order pa-
rameter fluctuation 7(r) at the given point of space. Its divergence is directly related
to the inapplicability of equation (8.74) for large k ~ a™*. This is easily avoided by the
introduction of the cutoff:

ko
T > 1
G(0) = — | dkk"——, 8.80
©) 47121 (gk2+at (8:80)

where k, ~ 1/a. Here we observe a significant dependence on the spatial dimensions.
For d-dimensional space, instead of (8.80) we have to write:

ko
_ 1
G(0) ~ | ik : 8.81
© J e &2 (881
0
This integral is easily estimated as:
k ko-¢1 d=3
G(0) ~ J didk®> ~ {in(ky?) d =2 (8.82)
° 1
&t & - % d=1

From this estimate, we see that for T — T., when § — oo, the average square of
the order-parameter fluctuation at the given point is finite for d = 3 and diverges for
d = 1,2. This reflects the impossibility of the existence of long-range order in one-
dimensional and two-dimensional systems [19]. Let us stress that here the relevant
divergence of the integral in (8.82) is at the lower integration limit (“infrared” diver-
gence), not at the upper limit, where it is regularized by a cutoff. In the theory of crit-
ical phenomena, a spatial dimensionality d = 2 is called the lower critical dimension-
ality. The reasoning presented here is rather crude, but qualitatively valid. More ac-
curate proof of the impossibility of long-range order in low-dimensional systems also
requires an analysis of the situation for T < T, [32]. In fact, the lower critical dimen-
sionality d = 2 is valid only for phase transitions breaking the continuous symmetry,
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while, for the Ising-like single-component order parameter, the lower critical dimen-
sion d = 1. This is clear, for example, from an exact Onsager solution for the two-
dimensional Ising model, which demonstrates the existence of the phase transition
ford = 2[19].

To avoid confusion, we note that equation (8.65) determines fluctuations in the
order parameter 1, averaged over the volume V with linear dimensions L > £. Let us
denote it by (n?)y.. The average of n(r) over the volume V is given by n;._o. Thus, it is
natural that for k = 0 (8.74) coincides with (8.65), so that:

X= TK Jer(r). (8.83)

Cc

The value of (?)y can also be directly obtained from the correlation function:

)y = 75 [ dndn ) = 3 [ aveo), (5.80

Now we can formulate the criterion for the applicability of the Landau theory of
phase transitions (or mean field theory), based on the expansion (8.67). For the valid-
ity of this theory, we have to demand that the mean-square fluctuations in the order
parameter 7, averaged over the correlation volume ~¢2, be small compared with the
equilibrium value of the order parameter f]z ~ a|t|/b. Using (8.65) with V' ~ & 3 we
arrive at the condition:

Tex _ alt|

F < > (8.85)

or, taking y and ¢ from (8.61) and (8.79):

212
c

alt] > (8.86)

g
This condition is usually called the Ginzburg criterion for the applicability of the Lan-
dau theory of phase transitions.® This inequality defines the size of the so-called crit-
ical region around T,, where fluctuations are large and significantly change the mean
field picture of the phase transition, e. g. the critical exponents.” The description of
the system within the critical region belongs to the field of the theory of critical phe-
nomena [32]. Some aspects of this theory will be discussed in the next section.

6 Expansion in powers of t = T — T, in Landau coefficients also requires the validity of condition
2

chs <L

ag

7 Here, we have already mentioned the Ginzburg criterion while discussing the limits of the Ginzburg—

Landau theory of superconductivity. We have seen that in superconductors the size of the critical re-

gion is negligible.

t < T.. For this to be in agreement with (8.86), it is also necessary to satisfy:
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Leo Kadanoff (1937-2015) was an American the-
oretical physicist. He was a professor of physics
at the University of Chicago. He contributed con-
siderably to the fields of statistical physics, chaos
theory and theoretical condensed matter physics.
He received his undergraduate degree and doc-
torate in physics from Harvard University. After a
post-doctorate at the Niels Bohr Institute in Copen-
hagen, he joined the physics faculty at the Univer-
sity of Illinois in 1965. Kadanoff’s early research fo-
cused on superconductivity and the development
of quantum field-theory methods for condensed
matter physics. In the late 1960s, he studied the theory of type II phase transitions.
Here Kadanoffintroduced the concepts of scaling and universality, which significantly
developed the Landau theory for the vicinity of the critical temperature. These same
ideas have been extended to apply to a broad range of scientific and engineering
problems and have found numerous and important applications in computer science,
hydrodynamics, biology and applied mathematics. In recognition of these achieve-
ments, he won the Buckley Prize of the American Physical Society (1977), the Wolf
Prize in Physics (1980), the 1989 Boltzmann Medal of the International Union of Pure
and Applied Physics and the 2006 Lorentz Medal. In 1978, he moved to the University
of Chicago. Much of his work in the second half of his career involved contributions
to chaos theory, in both mechanical and fluid systems. He was elected a Fellow of the
American Academy of Arts and Sciences in 1982, and he was one of the recipients of
the 1999 National Medal of Science. He was a member of the National Academy of
Sciences and a Fellow of the American Physical Society. During the last decade, he
received the Centennial Medal of Harvard University and the Lars Onsager Prize of
the American Physical Society.

8.4 Scaling

The theory of critical phenomena introduces the following standard set of charac-
teristics of the system and appropriate critical exponents, determining the singular

behavior of these characteristics at the critical point, as a function of the parameter
T-T,
T,

T= — 0.

c
The order parameter is:

i~ T-T.-0, (8.87)

i~h

SIS

T=T,. (8.88)
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The susceptibility is:

Y TLT 40
X~{T Tl (8.89)

lll” T-T.-o.

The correlation function of the order parameter (d is spatial the dimensionality) is:

exp (-r/§)
G(r) ~ W) (8.90)
where the correlation length:
™ T->T.+0
£~ , LT (8.91)
TV T ->T,-0.
At the critical point itself:
G _1 (8.92)
"~ Ta :
1
G(k) ~ an (8.93)
The critical exponent a of the specific heat is introduced in a similar way:
A+
C(t,h=0) = 7[‘F”‘—1]+BJr T—T,+0, (8.94)
C(t,h=0) = A—,[|r|‘“' ~1+B T—T.-0 (8.95)
a

with a = 0 corresponding to a logarithmic singularity.

The theoretical problem of the description of critical phenomena reduces to the
derivation of these expressions and the calculation of the critical exponents a, o', S,
v.V,6,1n,v,Vv.

Significant progress in the study of critical phenomena was achieved after the in-
troduction of the concept of scaling or scale invariance. This is essentially based on
the idea that the growth of the correlation length close to T, leads to significant inter-
action of the fluctuations that defines the singular behavior of the physical character-
istics at the critical point. At the same time, as the correlation length becomes much
larger than the interatomic spacing ¢ > a, the microscopic details of the interactions
are probably not so important. The hypothesis of scale invariance (scaling) assumes
that the singular dependence of the physical characteristics on T — T, is controlled by
the divergence of the correlation length &, and it becomes the only relevant parameter
of length in the problem.

Let us discuss scaling using the simple qualitative arguments due to Kadanoff. For
simplicity we consider the system of N Ising spins (see (8.19)) in a d-dimensional lat-
tice, with interaction parameter J, different from zero only between the nearest neigh-
bors. The external magnetic field is H. Then the Hamiltonian (8.19) can be rewritten
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202 —— 8 Phase transitions and critical phenomena

in units of T as:

H N

T -K Z sisj—h Z Si» (8.96)
(i) i=1

where we have introduced the dimensionless parameters K = J/2T and h = iH/T.

Let us break the lattice into cells with linear dimensions La, where a is the lattice
parameter and L is an arbitrary integer (L > 1). (see Figure 8.3). Then we obtain a total
of N = N/L9 cells, each containing L4 spins. Subsequently, we consider only tempera-
tures close enough to T, so that the correlation length ¢ is much larger than the size of
acell,i.e., & > La. It guarantees that each cell containing L4 spins, with1 « L « &/a,
contains only spins oriented “up” or “down”. Then the total magnetic moment of each
cell s, (@ = 1,2,...,N) can, in some sense, be considered as similar to the single site
moment s;. This assumption is qualitatively valid if the given cell is inside the group
of correlated spins. The resulting moment of this cell is given by L4, with + sign. It is
convenient to introduce 5, = s, /Ld, i. e., normalize the spin of the cell to unity. Then,
if we try to rewrite the Hamiltonian as a function of cell moments s, (not site moments
s;), we can expect it to be of the same form as (8.96) for the standard Ising model, but
with different values of the parameters, i.e, with K and h replaced by some K; and h; :

H L .
= =-K; Z 5,84 — hy st (8.97)
T (aa') a
where the summation is performed over the Kadanoff cells numbered by a.

If the external magnetic field h — 0, the effective field h; in the cell formulation
obviously also tends to zero. Similarly, as T — T. and K — K, with K. = 2176 given
by the initial Ising model, we should get K; — K. Thus, we can assume the following
scaling relationships:

7, =70 forK; =K, -1L’, (8.98)
h; = hL*, (8.99)
& & & & & & & & B & 3 & B & B & B A B b S 8 2B A M
S| & & @ S| & & 9 &|F & & B 4| & > & 0 k[ & & F B\
*|e & & @ 4| & & @ S| & ¢ & 3 G|F e EE e e
*|® & & & #|" & 5 & S| B " S S| " s B[ R
*|® & & & S| & 5 & B|% & B S| F B % s B[ @ P B0
s & & & S| & b & S| & & P ¢ B S e B[ @ s |8
ol & & 0 | e AP RS s E|E e R
d|l® & & & S| & » 8 & & B & S BB RS
st [0 — —| @ [— ‘
g 4 __‘

Figure 8.3: Kadanoff construction for an Ising lattice.
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where 1 = K. - K, 1; = K, - K;. Critical values of the interaction parameters are
the same in both formulations because we assumed their equivalence.® The critical
exponents x and y remain undetermined, but we shall see that all other (physical)
critical exponents can be expressed via these, so that only two critical exponents are
independent.

Consider the change of free energy of the system under a small change of h. Let us
assume that the magnetic field varies at various sites of the lattice, but these changes
are smooth enough, so that it is effectively constant within each Kadanoff cell. Then,
the change of the free energy is given by:

F
o(%)-- Y00t = - 3 (50 Ohue (8.100)

where (s;) is an average spin at the lattice site and (s,) is an average spin of a cell.
Both expressions should be equivalent. Due to the assumption of a smooth change of
magnetic field in space, we can write within each cell:

L9(s,)6h; = (s,)6hy,. (8.101)
Using (8.99), we obtain:
(s;) = L"%s,). (8.102)

Consider now the homogeneous field, independent of site number i. Then the magne-
tization at the site (which is equivalent to the order parameter #) is a function of 7 and
h only:

(s;y = F(t, h). (8.103)

According to our basic assumption, in terms of s, we are describing the same system,
but with new values of 7; and h;, so that the value of (s,) is represented by the same
function, depending on new variables:

(Sq) = F(tp, hp). (8.104)

Then from equations (8.100), (8.102), (8.103) and (8.104), we can see that the order
parameter can be written as:

7 = (s) = F(t,h) = " “F(L1,L*). (8.105)

8 Parameter 7, defined here, has the same meaning as previously in the case where ] = const. In
principle, we can also consider the phase transition with the change of J at a fixed temperature.
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204 —— 8 Phase transitions and critical phenomena

Now, the length L introduced above is a purely mathematical invention and should
cancel from all physical characteristics of the system! This is possible only if the func-
tion F(t, h) has the following form:

n= <|—Z|>Ifldyxf<ﬁ>. (8.106)

The factor h/|h| here is added just to guarantee the change in sign of the magnetization
with the sign of an external magnetic field.

The explicit form of function f(z), entering (8.106), is unknown. However, these
arguments enabled us to transform an unknown function of two variables 7 and h into
a function of a single variable z = 1/|h| : Remarkably, this is sufficient to express all
physical critical exponents of our system via the exponents x and y, or, in other words,
express all physical critical exponents via any two of them (which can be determined
from experiments).

For example, remembering (8.87), i.e., ) ~ 718, which is valid for small negative
values of T and h — 0, we note that f(—co) = const and

pod=x (8.107)

<

Differentiating (8.106) with respect to h for h — 0, we get the susceptibility: y ~
d-x d-x

7| v %f(r/lhl ﬁ) ~ |T|7+1|h|’§’ f'(z). However, the dependence on h in y should can-

cel for h — 0. Then it is clear that ' (z) ~ 27571 andy ~ |77 ~ |1] d_TZX . Thus we obtain:
y=Y = ﬂ (8.108)

y
Similarly, for 7 = 0 according to (8.88), we should have 7} ~ hs. Equation (8.106) for
x-d
T = 0 should become independent of 7, which is only possible if f(z — 0) ~ z v . Then
d-x
from (8.106), we immediately obtain 7} ~ |h| * , so that

6= 8.10
i (8:109)
From these relationships, we get:
dly=y+2B=PBE+1), (8.110)
which gives the scaling relation between experimentally measurable exponents 3, y, 6.
d-x
Integrating 7} ~ 2—5 ~ |17 f(z/IhP"X), it is easy to get

F~lo jdhf(r/mly/") ~ el jdzf(z»
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Then the specific heat is:
C —Taz—F )52 (8.111)
72 . .
Comparing with (8.95), we obtain:
a:a':z—g or E:Z—a (8.112)
y y
so that comparison with (8.110) gives:
y+28=B6+1)=2-a. (8.113)
Consider now the correlation function, which is in general defined as:
G(t; - 1)) = G(R, T, h) = ([s5; — ()][s; — ()], (8.114)

where R is the distance between two lattice sites: R = |r; -1jl/a.Ina similar way, we can
write the correlation function in terms of the cell variables s,, defined in (8.102). This
expression is to be identical to G(R, 7, h), but with different scales of length, 7 and h:

R > R/L
-1 =1L
h — h; = hL*. (8.115)
From here we get:
G(R, T, h) = L** D ([s, - (s)][s% — (5a)]) = LV G(R/L, 7L, hL) (8.116)

and G(R, 1, h) is independent of an arbitrary parameter L if we take:
GR.T.h) = [tV G(RIly /IR (8.117)

forR>1,|t|<landh <« 1.

Equation (8.117) determines the critical exponents v, v/, n. We immediately ob-
serve (see (8.90) and (8.91)) that for h = 0 the correlation length & ~ |77, Accord-
ingly, its critical exponent is given by:

1_ -2z (8.118)
y d

Finally, the last of the critical exponents 7 is determined from (see (8.93)):

1

G(R,TZO,hZO)N ﬁ

(8.119)
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Then, demanding cancellation of the 7-dependence in (8.117) for 7 — 0, we obtain
G(R) ~ R2X-D _ R4 gq that:

—(d-2+n)=2(x-4d). (8.120)

From equation (8.109), we have x = %, and then from (8.120), using (8.113), we get:

2d 24 28

oyp= 2 _ 4P _ P 121

d 1 6+1 2-a v (8.121)
or
1

B= E(d =2+ (8.122)

From (8.110) and (8.118), we have y = ‘y—i - 2B = dv - 2B, and using (8.122) we obtain one
more scaling relationship:

-nv=y. (8.123)

It is rather easy to also derive the following relations:

i:2—01,
2-1n
_d+2-7
5—d_2+n. (8.124)

In the conclusion of our discussion, we provide a summary of the most widely
used scaling relationships between physical critical exponents:

v=v =Y (8.125)
2-1n

a=a =2-vd, (8.126)

B= %V(d -2+7). (8.127)

Remarkably, all experiments in the critical region of widely different physical systems,
undergoing phase transitions of the second order, confirm the scaling relations for
critical exponents, derived here.

The theoretical problem of the calculation of the values of the critical exponents
remained, for a rather long time, one of the most difficult problems of statistical
physics. The physical reason for these difficulties was the strong interaction between
fluctuations in the critical region and the absence of a natural small parameter for
the development of some kind of perturbation theory. This problem was successfully
solved by Wilson using a renormalization group approach, originating from quantum
field theory. Renormalization group transformations are actually the modern and

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 2:00 AM



8.4 Scaling =—— 207

rigorous realization of scaling transformations, extending the elementary discussion
given previously. We shall not discuss this formalism here, referring the reader to
the special literature on the modern theory of critical phenomena [32] and limiting
ourselves only to some qualitative results of this theory.

First of all, note that the values of the critical exponents obtained in Landau the-
ory (mean field approximation):

y:

B=

O NIm

6=3 (8.128)

N = —_

do not satisfy the scaling relations (8.127) and most experiments in real three-dimen-
sional systems. At the same time, it is easy to see that the Landau theory exponents
(8.128) satisfy the scaling relations if we formally take the space dimensionality d = 4.
In this sense, we can say that Landau theory gives the correct description of critical
phenomena for spatial dimensionality d = 4 and, as is actually shown in modern
theory [32], for all d > 4. The spatial dimensionality d = 4 is usually called the upper
critical dimension. A remarkable result of the modern theory of critical phenomena
is the universality of critical behavior—the values of the critical exponents in various
physical systems actually are determined only by the spatial dimensionality of the
system and the number of components n of the order parameter (i. e., by the type of
the symmetry broken at the phase transition).

Wilson proposed an original method to calculate critical exponents, based on per-
turbation theory with respect to an artificial small parameter € = 4 — d—a small de-
viation from the upper critical dimension d = 4, for which the critical exponents co-
incide with predictions of Landau (mean-field) theory (¢-expansion). Next we present
the theoretical values of the critical exponents up to terms of the order of ~&? with an
n-component order parameter [32]:

n+2§ n+2nm+2n+52¢

=1 — 4, 8.12
"n+82 "n+s (n+8)2 4+ (8129)
2 2
2V:“_n+2§+n+2n +23n+60£_+ (8.130)
n+82 n+8 (n+8? 4
n+2 5 n+?2 [6(3n+14) 1]3
= &+ - — (& +-, 8.131
1= m+82° " 2n+82l (n+82 4 (8131
1 n+2 2
5=3+£+[—— ]s +een, 8.132
2 (n+8)? ( )
1 3 &€ (n+2)2n+1)
=c- < 4, 8.133
B=5 7782t 2 7 (8:133)
a=3-NE L (8.134)
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Table 8.1: Critical exponents for the model with n = 1 (Ising).

Exponent Wilson Numerical Landau

v 0.626 0.642 0.5
n 0.037 0.055 0
y 1.244 1.250 1
a 0.077 0.125 0
B 0.340 0.312 0.5
o 4.460 5.15 3

In Table 8.1, we compare the values of the critical exponents obtained from these ex-
pressions for the case of d = 3 (¢ = 1) and n = 1 (Ising case), with the results of nu-
merical calculations (high-temperature expansions) for the three-dimensional Ising
model. In the table, we also give the values of the critical exponents from Landau the-
ory. We can see that the e-expansion gives a rather satisfactory agreement with the
results of numerical analysis.’

Modern methods of calculation significantly improve the results of the simplest
form of the e-expansion, taking into account the higher orders and asymptotic behav-
ior of the appropriate perturbation series, and produce the values of critical exponents
in full agreement with the results of numerical calculations and experiments.

Kenneth Geddes Wilson
(1936-2013) was an Ameri-
can theoretical physicist with
major contributions to quan-
tum field theory and the the-
ory of critical phenomena in
type-1I phase transitions. He
was also a pioneer in the de-
velopment of computer stud-
ies in particle physics. He was
awarded the 1982 Nobel Prize
in Physics for his work on the
use of renormalization groups in the theory of phase transitions. He went to Harvard
College at age 16 and earned his PhD from Caltech in 1961, studying under Murray
Gell-Mann. He did post-doc work at Harvard and CERN. Wilson’s work in physics in-
volved formulation of a comprehensive theory of scaling: how fundamental properties

9 Another effective method for the calculation of critical exponents is based on a perturbation expan-
sion in powers of the inverse number of order parameter components 1/n [32] because for n — oo it can
be shown that the critical exponents are also given by the mean-field approximation (Landau theory).
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and forces of a system vary depending on the scale over which they are measured. His
novel formulation of renormalization group theory provided profound insights into
the field of critical phenomena and phase transitions in statistical physics enabling
calculations of critical exponents (the so-called € — expansion). As an example of
an important problem in solid-state physics that he solved using the renormalization
group is the so-called Kondo problem, related to the unusual behavior of magnetic
impurities in metals. He extended his methods on scaling to answer fundamental
questions about the nature of quantum field theory, including the physical meaning
of the renormalization group. He also pioneered our understanding of the confine-
ment of quarks inside hadrons, utilizing lattice gauge theory, where he initiated an
approach permitting strong-coupling calculations on computers. Beside his Nobel
prize, he was awarded numerous international awards, such as the Dannie Heine-
man Prize for Mathematical Physics (1973), the Boltzmann Medal (1975), the Wolf
Prize (1980) and the Franklin Medal (1982).
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9 Linear response

9.1 Linear response to mechanical perturbation

Up to now, we mainly discussed the problems of equilibrium statistical mechanics.
Actually, there is a wide class of problems related to nonequilibrium processes, which
can be rigorously formulated and solved within the general formalism of equilibrium
theory. We are speaking about the rather common situation where the system is ini-
tially in an equilibrium state, but later it is perturbed by some weak external pertur-
bation. This class of problems is analyzed within linear response theory, which gives
a well-developed and general approach to the solution of such nonequilibrium prob-
lems.!

There are two major types of external perturbations that can be applied to an ar-
bitrary physical system at equilibrium. First of all, we may consider mechanical per-
turbations, corresponding to the action of some external physical fields, which can
be introduced by additional terms in the Hamiltonian describing the physical inter-
actions with these fields. Perturbations, which cannot be described in this way, are
called, in nonequilibrium statistical mechanics, thermal perturbations. Typical ex-
amples are temperature or concentration gradients. For simplicity, in the following,
we are dealing only with mechanical perturbations, though the general formalism of
linear response theory is also well developed for thermal perturbations.

Consider the response of a quantum Gibbs ensemble, corresponding to the time-
independent Hamiltonian H, toward an external perturbation Htl, explicitly depen-
dent on time. The total Hamiltonian of the system is given by:

#H=H+H,. (9.0)
Let us assume that at t = —oo the external perturbation was absent, so that:

H}li—_oo = 0. 9.2)
In the majority of practical cases the perturbation Ht1 can be written as:

H} = - BjF;(1), 93)
j

where F;(t) are some functions of time (c-numbers, external fields), while B; are op-
erators with no explicit time dependence, which are “conjugated” to the fields F;(t).
Explicit examples will be given in the following.

1 In the following, we follow mainly [37].

https://doi.org/10.1515/9783110648485-009
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212 — 9 Linearresponse

For definiteness, we shall consider an adiabatic “switching on” of a periodic (in
time) external perturbation written as:

Hf =-Y 7B, (e +0), (9.4)
w

where B, = B_,, due to Hermiticity of the Hamiltonian.
In the general case, the statistical operator (density matrix) of the system p satis-
fies the quantum Liouville equation:

ihz—lt) _[H+H.\p] ©5)

and the initial condition is, in our case, written as:

1 1
T

P |t:—oo =pPo =
which simply means that at initial moment ¢ = —co our system is at the state of ther-
modynamic (statistical) equilibrium and described by the canonical Gibbs ensemble.
Of course, the grand canonical ensemble can also be used to describe the initial state
of the system.

Let us perform now a canonical transformation of the following form:

iHt iHt

pp=erpe ., 9.7)

Then the Liouville equation is reduced to the following form:

.0
m% = [H\0.p1] (9.8)
with the initial condition:
Pilt=—co = Po- (9.9)
Here we introduced
1 H g _iHt
H/(t)y=e®"H,e *, (9.10)

i. e., the perturbation operator in the Heisenberg representation with Hamiltonian H,
so that with respect to the total Hamiltonian (9.1) this defines the so-called interaction
representation.

Equation (9.8) with the initial condition given by (9.9) can be integrated and writ-
ten as a single integral equation:

t
pi(0 =po+ | dt' LIH(E)pu(e) (911)
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or, making the transformation to the initial form of the density matrix p(t) using (9.7):

iH(t-t")

t N
iH(t-t")
p(t) = po + j dt'e " E[Htl,,p]e I (9.12)
(o)

where we have also used (9.10).
If the perturbation Ht1 is small, the solution of equation (9.12) can be obtained by
iterations, taking p, as initial value. In the first-order (linear) approximation, we get:

t
p=po+t j dt’%[H},(t’ —1),p0]. (9.13)

The second term on the right-hand side represents a nonequilibrium correction to the
density matrix, calculated in a linear approximation over the external perturbation.
Up to now, we have not used the explicit form of p,. Now we can do it, taking into
account the explicit form of the canonical distribution (9.6).

Let us use the so-called Kubo identity, which is valid for any quantum operator A:

B
[A, e PH 1= —ePH J areMa, Hlje ™. (9.14)
0

The proof of this identity will be given soon, but now we can use it to rewrite (9.13) as:

B t
p= po{l - Jd)l J dt' e H (' - t)e ™ } (9.15)
0 00

where
HY(E —t) = %[H},(t’ —6).H]. (9.16)

If we take p,, in the form of the grand canonical distribution, equation (9.15) remains
valid, and we only have to make the replacement H — H — uN.
Now, let us derive the Kubo identity. We write:

(4, = e PH5(p), 9.17)

where S(f) is an operator to be determined. Differentiating (9.17) with respect to 8, we
obtain a differential equation for S(B):

oS g _BH
% SMA Hle (9.18)

with the initial condition S|g_o = 0. Integrating with this initial condition, we get (9.14).
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Equations (9.13) and (9.15) allow us to calculate (in linear approximation over Htl)
the average value of an arbitrary physical variable, represented by some operator A:

(A) =SppA
t
(A) = (A)g + j dt'%([A(t),H},(t’)])O, (9.19)

—00

where we used (9.13) and have taken into account the invariance of Sp with respect to
cyclic permutation of operators? and

e
At)=en Ae & (9.20)

is the A operator in Heisenberg representation, and (--- ), = Spp, - - - is the averaging
with the equilibrium density matrix. This means that the nonequilibrium problem of a
linear response is reduced to equilibrium problem, as all the averages to be calculated
now are, in fact, calculated for the equilibrium state. This remarkable result (Kubo)
allows the application of the powerful apparatus of equilibrium statistical mechanics
to the solution of this kind of (weakly) nonequilibrium problems.

Equation (9.19) describes the response of the average value of an operator A to an
external perturbation Htl,. Note that here we are dealing with the retarded response —
it appears at the moments in time after the perturbation is switched on. This reflects
the causality principle, which is basic to all physical processes. Formally extending
the integration over time in (9.20) to +oco, which may be done by the introduction of a
step — like O(t — t')-function, it is convenient to rewrite (9.19) as:

(A) = (A)g + j dt' ((AH (1)), (9.21)

where we have introduced the retarded double-time (commutator) Green’s function
(Bogolyubov, Tyablikov), defined for the pair of arbitrary operators A and B as [36]:

((A(t), B(t"))) = 6(t - f')%([A(f%B(t')Do, (9.22)
where
ot t') = {1 fort >t (0.23)
0 fort<t.

2 We have Sp[Htl, (t' - ), po]A = SppylA, Htl, (t' — t)] etc. The expression for A(t) appears here with on
account of (9.10) and further permutations of operators under Sp.
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As a result the problem is reduced to the calculation of appropriate double-time
Green’s functions, using the well-developed mathematical formalism [36].

The response to external perturbations can be expressed also in another form,
using the time correlation functions. Let us use the Kubo identity (9.14). Then:

B t
A) = Ao~ [ar [ de i (e)e A,
0 —00
B t
~ (Ag) + jd}l j dt' (Y (¢)e M AD),, (9.24)
0 —00

where we have used the so-called stationarity condition:
(AH, (' 1))y = —(A(t = t')Hy ), (9.25)

The last equality follows from the fact that the equilibrium average of the product of
dynamic variables depends only on the time difference:

(AHp(t' =)o = (A(t ~t')Hyp ), (9.26)

which is obtained by cyclic permutations of operators like e'n in the averaging. Dif-
ferentiating (9.26) with respect to t we obtain (9.25).
Equation (9.24) can also be rewritten as:

B t
(A) = (A)o - Jd/l j de' (L (¢ — ihA)A(D),
0 —00
B t
— (M) + Jd/l J dt' (H (¢ — ihA)A(D)). (927)
0 0

Equations (9.21) and (9.27) give the general expressions for a linear response of the
system to a mechanical perturbation. For an external perturbation (9.3) these can be
written as:

) = o~ Y [ de ((AB(EME(E), (0.28)
i~
t B
(A) = (A)q + J dt’jd)l(eAHBj(t’)e"AHA(t))OF]-(t’). (9.29)
T o o

These are the so-called Kubo formulas for the linear response of a quantum mechan-
ical system, which reduce the nonequilibrium problem to calculations of equilibrium
correlators. This last task is, in general, quite nontrivial and requires the development
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of a special formalism, such as e. g. the theory of double-time commutator Green’s
functions.

The physical meaning of the retarded double-time Green function can be easily
understood considering the reaction of the system toward instantaneous §-like per-
turbation:

H} =B8(t-t,) (9.30)
substituting this into (9.21) gives:
(A) = (A)o + ((A(DB(ty)))- (9.31)

There is a number of well developed methods to calculate such Green’s functions.
Here we briefly describe the approach based on the method of equations of motion
(chain equations) [36]. The equation of motion for Green’s function (9.22):

Gap(t,t') = ((A(®), B(t'))) = 9(t—l‘) (4@, B(E)])o (932)

can be easily obtained from the general equation of motion for an arbitrary quantum
operator in Heisenberg representation:

ih% =[A,H] = AH - HA. (9.33)

The right-hand side of this equation can be calculated for each concrete problem, us-
ing the explicit form of the Hamiltonian and the commutation relations for the opera-
tors. Differentiating (9.32) with respect to t we obtain the equation:

dG do(t - t") ' dA(t)
ih—F = ———([AW®, B(t")]), < ih— = B(t >> (9.34)

Taking into account the obvious relation of the 6(t) step-like function to the 6-function
of t:
t’
o(t) = J as(t' (935

-0

as well as the equations of motion for the operator A (9.33), we can write the equation
of motion for the Green’s function in the following form:

dt

The right-hand side of equation (9.36), in general, contains double-time Green’s func-
tions of higher order than the initial one, which is connected with the nontrivial in-
teraction in any many-particle system. For these Green’s functions we can again write
equations of motion similar to (9.36) and obtain the chain of interconnected equa-
tions of motion for the set of Green’s functions of higher and higher orders. This chain

ih =8(t - t')([A®), B(t")]), + (({AMH(t) - HDAW®)}, B(t'))). (9:36)
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9.2 Electrical conductivity and magnetic susceptibility =— 217

of equations is, in the general case, infinite, so that we are dealing with an infinite
system of integrodifferential equations, which can not be solved. However, in most
practical cases this chain of equations can be approximately “decoupled”, expressing
in some way the higher-order Green’s functions via the lower-order ones. Then we ob-
tain a finite system of equations (or sometime even a single equation), which is much
easier to solve. Unfortunately, there is no general theoretical recipe for decoupling this
chain of equations, everything depends on the skills and abilities of a theorist, trying
to solve the problem. Examples of successful decouplings and solutions of a number
of physical models by using this method can be found in the literature [36].

Ryogo Kubo (1920-1995) was a Japanese the-
oretical physicist, best known for his works in
statistical physics and nonequilibrium statisti-
cal mechanics. Kubo studied physics at the Uni-
versity of Tokyo. Since then he worked at the Uni-
versity of Tokyo (from 1954 professor of physics).
His Ph.D. thesis was devoted to the polymer
physics. Then he worked on the statistical the-
ory of nuclear spin resonance and relaxation.
In the end of 1950s, Kubo introduced the gen-
eral linear response theory for near-equilibrium
condensed-matter systems, in particular the un-
derstanding of electron transport and conductivity, through the Kubo formalism,
which was later extended with the use of Green’s function approach to linear response
theory for general quantum systems. Actually, he was able to reduce the problem of
linear response of nonequilibrium system to equilibrium problem, which can be solved
by the methods of Gibbs’s statistical mechanics. In 1977 Kubo was awarded the Boltz-
mann Medal for his contributions to the theory of nonequilibrium statistical mechan-
ics, and to the theory of fluctuation phenomena. He is cited particularly for his work
in the establishment of the basic relations between transport coefficients and equilib-
rium time correlation functions: relations which are commonly called Kubo’s formu-
las. Ryogo Kubo was the President of the Physical Society of Japan (1964—-1965) and
the member of many foreign academies. Since 1985 he was professor of physics at the
Keio University of Yokohama.

9.2 Electrical conductivity and magnetic susceptibility

Consider the reaction of the system to an external electric field. The perturbation (9.3)
can in this case be written as:

H' =- Z e;(Ex;) cos wte® = —(EP) cos wte, (9.37)
j
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218 — 9 Linearresponse

where € is the charge of the j-th particle, X; is its coordinate, E is the electric field,
playing the role of an external (c-number) “force”,

P = z e]-X]- (9.38)
j

is the polarization vector, considered here as a quantum mechanical operator. This
perturbation induces the electric current, which according to (9.21) it can be written
as:

o0

J) = J dt’' ({Jo(6), HA (¢))). (9.39)

—00
Here, we do not have the constant term, as in equilibrium the electric current is just

zero, {J,) = 0. Also in equation (9.39) we have:

H{(t) = —(EP(0)) cos wte™  J,(t) = Y ejkjy(t) = Py(t), (9.40)
j

where ], is an electric current operator, Xj, is the appropriate velocity component of
the j-th particle.
Taking into account (9.40), expression (9.39) can be written as:

(o]

Ty = -% j dt' (T (OP4(¢')))Eg cos wt'e". (941)
Accordingly:
Ja) = Y Re{op(w)e ™ Ep, (9.42)
;
where
Ogp(w) = - T dte™ " ((JPp(b))) (9.43)

is the conductivity tensor in a periodic external field. The limit of € — 0 is to be taken
here after the thermodynamic limit V — co, N — oo (V/N — const).

Thus, an adiabatic switching on of the electric field leads to the appearance of
an electric current in a system with finite conductivity (irreversible process). Static
conductivity can be obtained from (9.43) taking the limit of w — 0:

[ee]

0gp = lim | dte™ ({1,Py(0). (9.44)

-0
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9.2 Electrical conductivity and magnetic susceptibility = 219

Let us rewrite (9.43) as (making permutations of operators in Sp):

0
0up(@) =~ | dte™ Sp{[Py(0).po ) (9.45)

and apply the Kubo identity:
B
[Pa(),p0] = ~ifipg j e by(ye ™. (946)
0
Then we obtain:

dteiwt7£t<eAH]ﬁef/lH]a(t)>0

dte™ ™ (JoJ (¢t + ihA)),, (9.47)

which is the notorious Kubo formula for conductivity.
In the static limit we have:

B oo
0y = lim j j dte ™ (JgJ (¢t + i), (948)
00

Thus, the problem of the calculation of conductivity is reduced to the calculation of the
time correlation functions of the currents in thermodynamic equilibrium. In concrete
systems this is obviously a rather complicated task, which can be analyzed and solved
by different methods, which we shall not discuss here.

Consider now the response of the system to the switching on of a homogeneous
(in space) time-dependent (periodic) magnetic field (periodic) H(t) with frequency w:

H(t) = H cos wte! = Re e @Iy, (9.49)
This perturbation is described by the operator (9.3) of the following form:
H; = -MH(t) = -MH cos wte”, (9.50)

where M is the operator for the (total) magnetic moment the system. Under the influ-
ence of this perturbation, the magnetic moment of the system changes, according to
(9.21), as:

(M) = Mo + | de'(MUOH} (), (951)
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220 — 9 Linearresponse

where (M,), is the average projection of the magnetic moment on a-axis at equilib-
rium. If there is a magnetic field present at equilibrium we have (M, ), # 0. Expression
(9.51) can be written as:

(Ma) = (MU()() + Z Re{)(aﬁ(w)e_iwt+gt}Hﬁ, (952)
B
where

Xep@) = — | dte”™ (M My(t))) (9.53)

g—38

is the tensor of the magnetic susceptibility in the periodic magnetic field. With the
help of the Kubo identity equation (9.53) can be rewritten also as:

B 0o
Xag = | [ dte == g (e + ). (0.54)
0 0

These expressions are widely used e. g. in the theory of magnetic resonance.

As an elementary example of the use of the Kubo formulas we consider electric
conductivity, making the simplest assumptions for the time behavior of the correlation
functions. Using equations (9.22), (9.44) we get:

0
0up = ~lim 2 [ de” ([, Py(o)). (055)

Let us assume that
(U Pa®O)g = (Ve Peldoe ™" (9.56)

where T is some relaxation time. The correlation function at coinciding times can be
found in an elementary way as:

(U Pgl)o = <[z %p;",Zexf] >o

e? « B L. e
= E Z[pl ’Xi ] = —lh&aﬁEN, (9.57)

1

where N is the total number of particles, and we used the standard commutation re-
lation [xlﬁ ,D}'] = ih64. Then we find:

0
Ne? . Ne?
Uaﬁ = 7664; llj;% J dte(”l/r)t = 71’6‘4; (958)

-0
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or, per unit volume:
2

Oup = *Toyp, (9.59)
which is the usual Drude expression for conductivity. Let us stress that the real prob-
lem for the theory is, of course, the derivation of behavior like that given by equa-
tion (9.56) from some microscopic model, which also allows the calculation of the
dependencies of T on temperature (or the concentration of impurities) for different
mechanisms of scattering. These problems can be solved by modern theoretical meth-
ods, such as the Green’s functions formalism.

9.3 Dispersion relations

Now we shall discuss some general properties of response functions. Consider again
a time-depending mechanical perturbation, which is switched on adiabatically is and
described by the following term in the Hamiltonian:

n
H = -} F(t)B; (9.60)
j=1

where F(t) ~ e fort —» -0, € — +0, B; are some dynamical variables (operators),
while F;(t) are c-number “forces”, representing external fields acting upon the vari-
ables B;. For simplicity we assume below, that in the equilibrium state (for F;= 0) we
have (4;), = 0, so that the response of the system to an external perturbation (9.60) is
written, according to (9.21), in the following form:

t

@) = [ dt (e~ OF(0) 061
where
Ky(t —t') = ~((4OB,(t))) (9.62)

is the generalized response matrix. The retarded Green’s function is different from zero
only for the positive values of time difference, so that:
Ki(t—t')=0 fort <t (9.63)

which reflects the causality: the response of the system can not be earlier in time than
the perturbation due to which it appears.
Let us make a Fourier expansion of F(t) and (4;):

(0]

(A;) = 2i J dwe ™ A;, (w) (9.64)
7'[_00
1 h —iw

RO =5 J dwe™ “'F, (w) (9.65)
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where the Fourier components:

Aw) = | €A 0), (9.66)

Fj(w) =

dte™"F(t). (9.67)

[
[

Making the Fourier transformation in (9.61) we reduce the integral relation to an alge-
braic one:

Ai(w) = k;(w)Fj(w), (9.68)

where

K;j(w) = Jdte"‘”xu(t) ~((AiIB}))Y,,

J dte-@t-st J dAA(BA(t +ihA) (9.69)
0

is the Fourier-transformed generalized susceptibility matrix. The last expression is
sometimes called Kubo’s fluctuation—dissipation theorem.>
As both 4; and F; are real, we have:

Aj(w) = A (~w) Fj(w) = F (-w) (9.70)
so that
K = K;}(—(u) (9.71)

and we obtain

Re K,-j(a)) Rex;; ( w)
Im x5(w) = - Im k(-w). (9.72)

We see that the real part of the generahzed susceptibility k;(w) is even, while the imag-
inary part is odd over frequency w.*

3 The fluctuation—dissipation theorem can be written in different forms and gives the relation be-
tween the susceptibilities (or transport coefficients) and the appropriate equilibrium correlators (fluc-
tuations).

4 It canbe shown that Im k;; determines the dissipation of energy of an external field, so that Im x;; (w >
0) > 0.
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Due to causality (cf. (9.63)) the first integral in (9.69) is in fact reduced to (for
brevity, we drop indices i, j in the following):

k(w) = Jdtk(t)ei“’t. (9.73)
0

From this fact alone we can obtain some quite general relations for k(w), considering
it as a function of the complex frequency w = ' +iw" . Consider the properties of x(w)
in the upper half-plane of w. From (9.73) and the fact that k(t) is finite for all positive
values of ¢ it follows, that x(w) is a finite single-valued function in the whole upper
half-plane of w, where it never becomes infinite, i. e. it does not have any singulari-
ties there. The proof is simple: for w’' > 0 there is an exponential dumping factor of
exp(-tw'") in the integrand of (9.73), the function k(t) is finite over the whole range of
integration, so that the integral in (9.73) converges. Let us stress that the conclusion
about the absence of singularities of k(w) in the upper half-plane, from a physical point
of view is a direct consequence of causality. Causality alone transforms the integration
in (9.73) to the limits from O to co (instead of —co to co). The function x(w) is nonsin-
gular also along the real axis of the frequency (w" = 0), except probably at the origin
(w=0).

Let us derive now the general formulas connecting the real and imaginary parts
of k(w). Let us choose some real and positive value of w = w, and integrate ("J‘f—";)o over
the contour C, shown in Figure 9.1.

D

w, +

=1 4

— 00

Figure 9.1: Contour of integration used in the derivation of the Kramers—Kronig relations.

nnnity Kk — 0 so that ——- tendas 1o zZero raster than 1/w. 1 nus the integra W —
Atinfinit 0so that ) tends to zero faster than 1/w. Thus the integral [, dw 2.

converges. The function K(a(;) does not have singularities in the upper half-plane and
point w = w,, is excluded from integration, so that ("J‘f—“a’}o is analytic inside contour C,
so that our integral is just zero (Cauchy theorem).

The integral over the semicircle becomes zero at infinity, due to fast dumping of
the integrand. The point w,, is surpassed by a small semicircle (with radius p — 0).
This encirclement is performed clockwise and leads to a contribution -ink(w,) (the
integral over the complete circle gives —2imk(w,)). If k(0) is finite, surpassing the origin
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224 — 9 Linearresponse

is excessive and integration along the real axis leads to:

wy—p 0o
lim{ J dw K@) + J dw K@) }—im((wo)zo. (9.74)

p—0 w - wy w - wy
-00 wo+p

The first term here is the integral from —oco to oo, understood as a principal value, thus
we obtain:

ink(wg) = P J do X (9.75)
Jow- wy
This relation is obtained immediately if we consider the integral _~ "= along the real
axis and use the famous relation for generalized functions:
! P— —inb(x) & — +0. (9.76)
X +1i6 bs

The previous discussion in fact just gives the derivation of this useful relation.

The integration variable w in (9.75) takes on only real values. Let us denote it £, and
from now on use w to denote the fixed real value of the frequency w,. Then, separating
the real and imaginary parts in (9.75), we obtain:

a 1 Im k(&)
Rek(w) = - J dé Fw (9.77)
Im x(w) = —%P J d{R; k@), (9.78)

These are the notorious Kramers—Kronig relations. The only property of k(w) used
in our derivation was the absence of singularities of this function in the upper half-
plane.” Thus, we may say, that the Kramers—Kronig relations directly follow from the
causality principle.

Using the oddness of Im k(¢), we can rewrite the first of these relations as:

Re k() = 711 J & h; Q) , J d{I? f(j) (9.79)

or

¢ Imx(w)

P (9.80)

Rex(w) = ;{ J dé———-
0

5 As to the property of x — 0 for w — o0, it is not so important: if the limit of x, is finite, we can
simply consider the difference x — k, instead of x, with appropriate changes in all expressions.
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9.3 Dispersion relations = 225

If x(w) has a pole at w = 0, so that close to it k¥ = iA/w, surpassing this pole over
the semicircle produces an additional —A/w contribution to the integral, which is to be
added to the left-hand side of (9.75). Accordingly, a similar term will appear in (9.78):

Rex({)

- to (9.81)

Imx(w) = —:[ J dé

-0

The Kramers—Kronig relations are the most important exact expressions allowing
to control theoretical models and calculations, with important experimental applica-
tions: measurements of Re x(w) in a wide frequency interval allow to restore the values
of Im x(w) (and vice versa), performing numerical integration of experimental data.
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10 Kinetic equations

10.1 Boltzmann equation

The theory of linear response is appropriate to describe the reaction of a system to
weak external perturbations, moving it slightly outside of thermodynamic equilib-
rium. In principle, it can be applied to systems of a quite general nature. Another
problem is the description of arbitrary nonequilibrium states. Up to now, there is no
general theory of this kind applicable to arbitrary systems of particles. However, much
progress has been made in the studies of general nonequilibrium behavior of gases of
weakly interacting (or rarefied) particles (or quasi-particles). Historically, this was the
first branch of nonequilibrium statistical mechanics, started in works of Boltzmann.
This is often called physical kinetics or the theory of kinetic equations.

Here we shall rather briefly discuss the derivation of the basic equation of the
kinetic theory of gases, determining the distribution function f (p, r, t) of separate par-
ticles in the general nonequilibrium case.! This equation is essential to the solution of
many problems involving the physical kinetics of gases [11, 23]. Similar quantum ki-
netic equations describe nonequilibrium processes in gases of quasi-particles in quan-
tum liquids and solids at low temperatures.

If we neglect atomic collision, each atom represents a closed subsystem and its
distribution function satisfies the Liouville equation:

af _

i 0. (10.1)

The total derivative here denotes differentiation along the phase trajectory of an atom,
determined by the equations of motion. In the absence of an external field, the value
of a freely moving atom remains constant, while only its coordinates r change. Then:

g _o

=5tV (10.2)

where v is the velocity. If our gas is in an external field, defined by the potential U(r),
we have:

of

@ _f of
op’

FTRlET +VvVf +F

(10.3)

where F = —VU is the force, acting upon an atom due to this field. In the following, for
brevity, we assume that an external field is absent, so that F = 0.

1 Previously, during our discussion of Boltzmann’s statistics (e. g., equations (3.8), (3.28) etc.), we
denoted this function as n(p, q). For simplicity we limit ourselves to one-atom gases.

https://doi.org/10.1515/9783110648485-010
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228 =— 10 Kinetic equations

Atomic collisions break the equality in equation (10.1) and the distribution func-
tion is not conserving along the phase trajectories, so that, instead of (10.1), we have
to write:

df
— =Stf, 10.4
S =stf (10.4)
where St f denotes the rate of the change of the distribution function due to these
collisions. Using equation (10.2), we can write:
of

= = VY St (10.5)

which defines the total change of the distribution function at a given point in phase
space, where the first term in the right-hand side determines the number of atoms leav-
ing the given phase-space element due to free motion. The most important term St f is
called the collision integral, while equation (10.4) itself is called the kinetic equation.?

Obviously, the kinetic equation becomes well-defined only after we establish the
explicit form of the collision integral. For qualitative estimates of the kinetics in gases,
a very common (and crude) form of the collision term can be introduced using the
concept of mean free time 1, i. e., the average time between two successive atomic col-
lisions (the so-called T-approximation):

Stf = —Jj, (10.6)

T

where f;, denotes the equilibrium distribution function. The numerator of this expres-
sion guarantees the vanishing of the collision integral in equilibrium, while the minus
sign reflects the fact that collisions, in general, lead to the equilibrium state of the sys-
tem, i. e., diminishing the deviation of the distribution function from its equilibrium
value. In this sense, the value of 7 plays the role of relaxation time for the establish-
ment of equilibrium in each elementary volume of the gas.

The consistent derivation of the collision integral for a classical gas can be per-
formed using Bogolyubov’s method, which gives the regular procedure for the deriva-
tion of not only the simplest Boltzmann’s equation (which can also be obtained
through a purely heuristic approach [23]), but also corrections to it. However, in the
following we limit ourselves to the derivation of Boltzmann’s collision integral, which
is sufficient for us to illustrate the general method.

The starting point of Bogolyubov’s approach is the use of the chain of equations
for partial distribution functions (1.93):

oF (s) N oU(r; - r 1|)aF 1
05 = (HO, By} + V;j e G d (107)

1

2 Sometimes it is also called the transport equation.
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Our aim is to construct the closed equation for the one-particle distribution function
fp.r.0) = TFx.p.t).

Using the definition of the Poisson brackets and equation (10.7) we immediately
obtain the first equation of the chain for F;(r, p, ) as:

oF(t,T) OFitTy) _ N J U, OF,(t, 71> Ty)

dr,, 10.8
ot or, Vvlory op, %2 (10.8)

where for brevity we introduced the variables 7 = r, p.
Similarly, the second equation of the chain takes the form:

oF, oF, oF, 0Uy,, oF, 00Uy oF,
— VAV, - — - —= =
ot or; or, or; op; Or, 0p,
N [, [ 200y, 36005

op; or;  0p, Or,

v (10.9)

It is not difficult to see that the integral in the 1. h. s. of the last equation is small. In
fact, the interaction potential U(r) is effectively nonzero only within the limits defined
by the radius of the forces it creates, which we denote by d, i.e., for r < d. Thus,
integration over the coordinates in dr; is performed over the region defined by |r; -
r;] < dorlr, - 13| < d, i.e., the volume of the order of ~d>. Using (1.81), we have
‘l, jF3d‘r3 = F,, where integration is over the whole phase space. Then we get the
following estimate:

_0U(r) oF, &’

dr, ~ 20 (10.10)

b [[eran,
or op, a3’

V J1op; oy

where a is the average distance between the particles in our gas. Then it is clear that
the r. h. s. of equation (10.9) is small with respect to the parameter (d/a)® (we assume
the gas to be rarefied!), as compared with terms containing oU/or in the 1. h. s. Thus
the r. h. s. can be neglected. The sum of all terms in the 1. h. s. of the equation in fact
represents the total derivative dF,/dt, where 1y, 1,, p;, P, are considered as functions
of time, satisfying the equations of motion for the two particle problem, defined by the
Hamiltonian:

2 2
p p
H-= ﬁ + ﬁ +U(|t; - 1,)). (10.11)
Thus, we have:
d
EFz(t, Tl’ Tz) = O (10.12)

3 Thedistribution function f(p, r) is normalized to the total number of particles (3.28), while F; (r, p, t)
is normalized to unity, according to (1.80).
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Up to now our analysis was purely mechanical. To derive the kinetic equation we
have to make some assumptions of a statistical nature. Let us assume that all collid-
ing particles of the gas are statistically independent. This assumption will be used as
a kind of initial condition for the differential equation (10.12). This assumption intro-
duces time asymmetry, which leads to an irreversible kinetic equation, despite our use
of the time-reversible equations of motion of classical mechanics. The essence of the
problem here is that any correlation between coordinates and momenta of the parti-
cles in the gas appears only during the pretty short collision time of the order of ~d/v
(v is the average velocity of gas particles), and affects particles up to distances of the
order of d only.

Let t, be some moment in time before the collision, when the two particles are
rather far from each other, so that (|r;, —¥5| > d, where the subscript zero denotes the
values at this given moment). The statistical independence of the colliding particles
means that, at this moment ¢,, the two particle distribution function F; is factorized
into the product of one particle functions F;. Then, integration of equation (10.12) from
t, to t gives:

Fz(t, Tl’ Tz) = Fl(tO’ TlO)Fl(tO’ Tzo). (10.13)

Here, 7,5 = (ry9,P1o) and 7,9 = (¥y9, Pyo) are to be understood as the values of the
coordinates and momenta, which the particles should have had at the moment ¢, to
achieve the given values of 7; = (r;, p;) and 7, = (r,, p,) at time ¢. In this sense, 1, and
T,o are functions of 7;, 7, and t-¢,,. Furthermore, only r;, and r,, depend on t-¢t,,, while
the values of p;o and p,, related to the free-moving particles before the collision, do
not depend on t - ¢,

Let us return to equation (10.8)—the future kinetic equation. The left-hand side
here is of the required form, but we are interested in the right-hand side, which should
become the collision integral. Let us there substitute F, from (10.13) and introduce
f(p,r,t) = %Fl(r, p. t) instead of F;. Then we obtain:

of (t, T1) of (¢, T1) _
AR Stf, (10.14)
where
oU,, o
Stf = J dry 52 S [t o) (o T (10.15)
1 9P

In (10.15), the relevant region for integration is determined by |r, - 1;| ~ d, i.e., by
the region where the real collision takes place. In this region, in first approximation,
we can simply neglect the coordinate dependence of f, as it significantly changes only
on the scale of the order of the mean free path I, which is much greater than d. The
final form of the collision integral does not change at all, if we consider from the very
beginning only the spatially homogeneous case, assuming that f does not depend on
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coordinates. In accordance with previous remarks, this means that in the functions
f(ty, P1o) and f (g, P1g) We can just neglect an explicit time dependence via r,4(t) and
Iy(t).

Let us transform the integrand in (10.15) using (10.12) and taking into account the
absence of an explicit dependence on time:

d
Ef(fo)lho)f(tm P2o)

0 o odUp o dUy 0
= <V1$ + V2_ - _12_ - _12_>f(t0, plo)f(to, pzo) = 0. (10.16)
1

or, Or; op; Or, Jp,
Now, we can express the derivative with respect to p, via the derivatives with respect
tor;,r, and p, and substitute the expression obtained in this way into (10.15). The term
with d/0p, disappears after transformation into a surface integral in momentum space
(using Gauss’ theorem). After that we get:

Stf(t,py) = JVlza—ar[f(to’P1o)f(t0>on)]dBrdgpp (10.17)

where we have introduced the relative velocity of the particles v, = v; — v,, and
taken into account that both p, and p,q and, correspondingly, the whole expression
in square brackets depends not on r; and r, separately, but only on the difference
Y = 1, — ¥,. Let us introduce, instead of r = (x,y, z), cylindrical coordinates z, p, ¢, with
the z-axis along v;,. Noting that v;,0/dr = v,,0/0z, and performing integration over
dz, we rewrite (10.17) as:

Stf(t,py) = J[f(to)plo)f(to»on)] *, Viopdpdpd’p,, (10.18)

where the limits z = 0o should be understood as distances large in comparison with
d, but small in comparison with the mean free path L. This is due to our use of equa-
tion (10.16) during transformation from (10.15) to (10.18), which is valid until the par-
ticles under consideration do not collide anymore.

Remember now that p;y and p,y are the initial momenta (at the moment ¢;) of
particles, which at the final moment ¢ possess p; and p,. If in the final moment z =
2, — 2, = —00, the particles 1 and 2 are at a distance, which is obviously greater than d
and do not interact with each other, and there were no collisions between them, then
the initial and final momenta just coincide: p;g = Py, Pyo = P, for z = —co. If at the
final moment z = +oo, there was a collision, and the particles acquired momenta p,
and p, as a result of it. In this case, we denote p; = p’;(p) and p, = p’,(p) for z = co.
These values for the momenta are functions of the coordinate p, which is actually the
impact parameter, while the product

pdpdp = do (10.19)
represents the classical differential scattering cross section [17].
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232 — 10 Kinetic equations

Note finally that the explicit dependence of the functions f(ty, p;g) and f(¢y, P2o)
on t, can be replaced, on the same level of approximation, by a similar dependence
on t. In fact, the validity of (10.13) requires only that t — ¢, > d/v: at the moment
ty, the distance between the particles must be great in comparison with the effective
radius of the forces d. At the same time, the time difference ¢ - ¢, can be chosen to
satisfy t — t, <« l/v, where [ is the mean free path. The ratio of l/v gives the mean
free time, which is just a characteristic time for a significant change of distribution
function. Then, the change of distribution function during the time interval ¢ — ¢, will
be relatively small and can be neglected.

Taking into account these remarks we can reduce (10.18) to the final form:

Stf(t,py) = j[f (t.p')f(t.p'5) - f(t. P)F(t, Py vipdod’p,, (10.20)

which is called Boltzmann’s collision integral. The kinetic equation (10.5) with such a
collision integral is called Boltzmann’s kinetic equation.

Boltzmann obtained his collision integral from simple heuristic considerations,
based on the so-called Stosszahlansatz. It is clear that the collision integral can be
written as St f = R - R, where R represents the growth rate of the distribution function
f(x,p;, t) due to atomic collisions in the gas, while R is its drop rate due to similar col-
lisions. Let us first determine R. Consider some atom within the volume element d°r
surrounding point r, with its momentum belonging to some element d3p1 of momen-
tum space around p,. Within the same spatial volume, we have atoms with arbitrary
momenta p,, which can be considered as a beam of particles, scattered by an atom
with momentum p;. The flow of these scattered atoms is given by:

I=f(r,p, t)d3P2|V1 —Vyl. (10.21)

According to the Stosszahlansatz, the distribution function f in (10.21) coincides with
our distribution function, to be determined from the kinetic equation. This seems an
almost obvious assumption, but actually it is the central point of our derivation, with
no rigorous justification. The number of collisions like p,, p, — p’;, p’,, taking place
in volume element d°r during one unit of time, is given by:

Ido = f(x, py, t)|v; — V,|do. (10.22)

The drop rate R of the distribution function is obtained by summation of (10.22) over
all values of p, and multiplication of the result by the density of the atoms in volume
element d’p, in velocity space:

R=f(r,p;,t) J dp,dolv, — V,|f(t, py, t). (10.23)

In a similar way, we can determine also the value of R. Consider the collisions
p',p’, — Py, Py Where momentum p, is considered as fixed. Consider the beam
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10.2 H-theorem =—— 233

of atoms with momenta p’,, colliding with an atom possessing the momentum p';.
The flow density of this beam is given by:

fep'5 )PsV', V'], (10.24)
The number of collision of this type per unit of time is:
fe,p'5 )@phIv', - V' |do’. (10.25)

The growth rate of the distribution function R is determined by the integral:
Rd’p, = J d’pido’ V', -V |[f(x, 01, )L If (5, p' 5, 1). (10.26)

Due to the time invariance of the equations of motion, the differential cross sections
of the direct and inverse scatterings are the same: do = do’. Besides that, the conser-
vation laws (we consider only elastic scatterings!) give:

! !
Vi =V, = [V] =V

&’pd’p, = I’pid’p). (10.27)
Then:

R= J dp,dolv, - v,|f (r,p' 1, Of (1, P, 1). (10.28)

It is necessary to note that the momentum p; here is fixed, while p’; and p’, are func-
tions of p,, p,.

Using the derived expressions for R and R, and introducing the obvious shortened
notations, we obtain:

Stf=R-R- J Pp,dolv, - Vol(FIf o), (10.29)

which coincides with equation (10.20).

10.2 H-theorem

A nonequilibrium gas freely evolving with no external perturbations tends to equilib-
rium. Similar behavior is characteristic of any closed macroscopic system. This should
be accompanied by a corresponding entropy growth. This is experimentally observed
behavior, and the evolution of the nonequilibrium distribution function, following
from the kinetic equation, should satisfy this observation. In fact, we can derive this
(irreversible!) behavior directly from the Boltzmann’s equation.
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234 — 10 Kinetic equations

We have shown (equations (3.25) and (3.30)), that the entropy of an ideal gas in
the nonequilibrium (macroscopic) state, described by the distribution function f, is
equal to:

- J fln ;dVd3p. (10.30)

Differentiating this expression with respect to time, we can write:

% - j %(fln ;)dVd3p =- j InfS oS -dVd’p. (10.31)

An equilibrium state in a gas is achieved via atomic (molecular) collisions, and the
corresponding entropy growth should be related precisely to the change in the distri-
bution functions due to these collisions. The change in the distribution function due
to the free motion of atoms cannot change the entropy of the gas. This change is de-
termined (for a gas in an external field) by the first two terms on the right-hand side
of:

o _
ot

= —vVf - Fa—]; +Stf. (10.32)

The corresponding contribution to dS/dt is given by:

Jl f[-va’; g’;]dvf ” §+F—]<flnf>dVd3 (1033)

The integral over dV of the term with derivative d/0r is transformed via Gauss’ theorem
to the surface integral at infinity, which is actually zero, because outside the volume
occupied by gas, we have f = 0. Similarly, the term with derivative 0/dp integrated
over d’p is transformed into the surface integral at infinity in momentum space and
is also just equal to zero.

Thus, we obtain the rate of change of entropy as:

as _

i j InfSt fd’pdv. (10.34)

Substituting here Boltzmann’s collision integral (10.29), we get:

as _

== J #p, j dp2dalv, - vol(FLf! — fofy) Inf. (10.35)

The integral here does not change after permutation of the variables p,andp,, as the
scattering cross section is invariant with respect to this permutation. Performing this
change of integration variables and taking the half-sums of the new and previous ex-
pression (10.35), we obtain:

as

i —% J d’p, j &p,dolv, - vi|(f5f - fof) In(ify). (10.36)
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This integral is also invariant with respect to the mutual permutation of p;, p, and
p';, 0’5, because each direct collision process corresponds to the inverse collision with
the same cross section. Accordingly, we can write:

ds 1
P J a’p; J &pyda’Iv'y -1 I(Rf - ) In(ff). (10.37)

Noting that d’p|d°p}, = &®p,d’p, and |V, -~ v/;| = |v, — v;| and do’ = do, we take the
half-sum of equations (10.36), (10.37), and obtain:

ds

- j &p, j Pp,dalv, —viI(Fif] - )N - In(FE)]. (1038)

The integrand in (10.38) is never positive, which is clear from the previously used in-
equality x In x > x—1(valid for x > 0). Thus, we have proved the notorious Boltzmann’s
H-theorem: % > 0, which is equivalent to the law of entropy growth.”

It is easy to see that Z—f = 0 only in the case of the integrand in (10.38) being iden-
tically zero. This is only so when all distribution functions, entering the collision in-
tegral, are equal to their corresponding equilibrium (Boltzmann distribution) values.
It is now also clear that the arbitrary initial (nonequilibrium) distribution function
f(p, t) tends to the equilibrium value as t — oo.

10.3 Quantum kinetic equations”

Let us now consider the derivation of the quantum kinetic equations. Our task now
is to derive the closed equation for the one-particle density matrix from Bogolyubov’s
chain of equations for partial density matrices (1.163). The version of Bogolyubov’s
approach discussed in the following was proposed by Zyrianov [38].

Let us start from the quantum Liouville equation (1.128) for a general (N-particle)
density matrix:

ihg_‘t’ = [H,p] = Hp - pH. (10.39)

We shall work in the secondary quantization representation, built upon eigenfunc-
tions of the Hamiltonian of “free” particles (quasi-particles):

Hylv) = E,|v), (10.40)
H, =) E,a;a,, (10.41)
v

where a;, a, are the creation and annihilation operators of fermions or bosons in the
quantum state |v). Here v denotes the quantum numbers, characterizing elementary

4 The name H-theorem is historical, as Boltzmann used the notation H = -S.
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236 —— 10 Kinetic equations

excitations in our system. In most cases, these correspond to free particles with def-
inite momenta (or quasi-momenta) and spin: |[v) = |p,0) = )(aeipr/ " where Xo is the
spinor part of the wave function. In absence of external fields, E, = E, = p?/2m. How-
ever, within this formalism, we can also discuss less trivial cases. For example, v may
correspond to the set of Landau quantum numbers of an electron in an external (ho-
mogeneous) magnetic field: v = {n, p,, g}, or these may be some quantum numbers of
the energy levels for some other exactly solvable model, when the Hamiltonian can be
written in diagonal form (10.41).

The operators of second quantization satisfy the usual commutation relation-
ships:

la,.a;], =6, (10.42)

la,,a,], =0 [a;,a,], =0, (10.43)

where + refers to fermions and bosons respectively. It is supposed here that these op-
erators are written in Schroedinger representation and are time-independent.

Our aim is to derive an equation for the one-particle density matrix, defined in
equation (1.163) as:

Fin = (VIFV') =Sppala, = (aa,). (10.44)

Naturally, we are going to discuss the case of interacting particles, when the total
Hamiltonian is written as:

H=Hy+7V, (10.45)

where V represents some interaction Hamiltonian, which is also written in secondary
quantization representation.
Using the Liouville equation (10.39), we can write:

., 0 ., 0
zha Sppa,a, = zh& (aya,) = Sp[H,pla, a,
=Sppla,a,, H] = ([a,a,, H]), (10.46)
where we have performed an obvious cyclic permutation of the operators in Sp. Thus,
our problem is reduced to calculating the average value of the commutator, standing

in for the r. h. s. of this equation. Now we have to introduce some specific model of
interaction.

10.3.1 Electron—phonon interaction
Consider (not the simplest possible case!) the system of electrons (fermions), occupy-

ing the states |v), interacting with phonons (bosons), with states characterized by a
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10.3 Quantum kinetic equations® = 237

quasi-momentum |k). Then we write:

Hy = Hy + Hy, (10.47)
Hy =Y E,aja, Hpy =Y hocbiby, (10.48)
v k
V=Hypm= ) A(V,v,K)aa,(by+b’y), (10.49)
vy k

where A(V',v,K) = g, (v|eik'|v’ ) is the matrix element of the electron—phonon interac-
tion, and gy, is the corresponding coupling constant.

In this problem, we actually have to construct the system of interconnected kinetic
equations for one-particle density matrices of electrons (10.44) and phonons:

Ny = (KIN;[K') = Sppby by = (byby). (10.50)

Consider first the exact equations of motion similar to equation (10.46):
i a0) = e B+ iy ), wos
I )= (B + o ). 1052

Now, it is necessary to perform explicit calculations of the different commutators here,
using the basic commutation relationships (10.42) and (10.43). In particular, it is pretty
easy to derive the following relations:

laya,,azae] = a,awb,, — aya, 8,0 (10.53)
[bibg bibie ] = bybeSqn - bibgSqe- (10.54)

Then, using (10.53) in (10.51), we obtain:

.. 0 * *
<lha—t + EK - EKr >F1KKI = Z {A(V,,V, q) [5VKIHKVIq - 6KV' VK’q]

w'q
+ A" (V' v, Q)[6, Hyyrg = B0 Hygl ) (10.55)
where we have introduced:
Hyoq = (@Gyaobq)  Hygoq = (ayaobg). (10.56)

Similarly, using (10.54) in (10.52), we obtain:

<ih% + hwy, — hwy >N1kk, =Y {A*(V',v,K)H,,x - AV, v, K)H,,10}. (10.57)

WI
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These are the first equations of Bogolyubov’s chain. In the next step, we have to write
down the equations of motion for H,,.q and Hy,, q

irz3<a,ta,<bq> ([} ay b, HE + Hiy + Ho pn])
lh (a auby) = ([ayaubl, Hy + Hyy + Hy_yp]). (10.58)
Using again (10.53) and (10.54) and also
b Bibic] = bicbiq (bl bibi] = ~biibiq, (10.59)

we get:
.. 0
<lha +E,—Ey +hwq> K xq = Z AWy d'){{ayay bg by) b0

+ (a ay b’ i bq) 80 — (ay by bg),
—(ayaub’  bg)b,x — (ayapaya,)deq}, (10.60)

., 0 *
<lh& +EK — EK’ - hwq>HK’,K,q z A y v, q (axa ’bq’bq>5yx'

+ (aKay,b_q,bq)Sy,(, —(ay @by bq)8,
—(ayau b’y bq)6y — (ayauayay)dqq}.  (10.61)

In principle, this procedure can be continued, and we shall obtain the next equations
in the chain, but for most practical problems it is sufficient to limit ourselves to the
equations derived previously (at least for sufficiently weak interactions). The only way
to “cut” Bogolyubov’s chain is to use some approximate “decoupling” of the higher-
order correlators (density matrices) via lower-order correlators (e. g., factorize higher-
order density matrices into products of lower-order density matrices). Unfortunately,
in the general case, this procedure is not completely unambiguous, and there may be
several ways to perform such a “decoupling”. For the problem under consideration,
the two-particle correlators may be expressed via the one-particle correlators in the
following way:’

(@@ebibir) = Fiyo Nyae

(@yabyby) = (@) (S + byobi) = Frgo (e + Nygaer)

<a:ax’a\tav’> = lex’Flw’ + lev’ (5K’v - Flvx’)

(ayaubyby) = {aabyby) = 0. (10.62)

5 Itis easy to see that here we have taken all possible combinations of the pair products of the creation
and annihilation operators (called “pairings”), the average values of those giving the one-particle den-
sity matrices. Such decoupling is equivalent to the use of the so-called Wick theorem, which is strictly
valid if we average over the equilibrium density matrix [2].
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Using (10.62) in (10.60) and performing formal integration, we get:

Hxx’q(t) = eé(EK_EK, et {Hxx’q(to)

t

1 g _ ¢

to Jdt'eh(E* Eqthug)(t ”I,f,ﬁ,’q(t’)}, (10.63)
fo

where ¢, is the initial moment in time, and we used the notation:
It Z AWy, &) [(Fryy 8y = Frypr6,1,0) Bgqr + Nigqr)

(FlKK'FIKy (6 Flyx’)) q’]th (10.64)

where the last index denotes that all the density matrices (correlators) in square brack-
ets are taken at the time ¢t'.

Let us introduce now Bogolyubov’s condition for “weak correlations” far distant
in the past:

hm | Hq(to) = 0. (10.65)
The choice for this condition in the past is obviously connected with causality, and
equation (10.65) explicitly introduces the “arrow of time”.

Then equation (10.63) can be rewritten as:

t
1 ~L(E~E, +hwg)(t'~t) fFN
Howq() = J !¢ H BB o DL (1) (10.66)
00

so that, after the change of the variable t' - t = 7, we obtain:

0
Hgoq(®) :% j dre BB Y (¢4 1), (10.67)

—00

Thus, in principle, the values of the correlator H,,4 at time ¢ are determined by the val-
ues of the density matrices F; and N; in all previous moments in time (a solution with a
“memory”). Following Bogolyubov, we shall assume that the characteristic time scale
of this “memory” is of the order of the typical (microscopic) time scale of the electron—
phonon interaction 7, so that afterwards, the time evolution of all (kinetic) variables
is determined only by the time dependence of the one-particle density matrices. Then,
being interested only in the evolution of the system on the time scale t > 1, we can
totally neglect the “memory” effects in equation (10.67). Accordingly, using

~] -

e—-0" 1

0 0
J dte+lXt — 111’11 1 J dte:i(xiis)t
(ee] (¢
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= lim — = P1 Fib(x) (10.68)
e—0* X L i€ X
we immediately obtain:
1
H rq = 1‘ A ,a > ! F 4
wa = O E “E.+ hwg + i yqu’ oy afFuys,

— FlyK’ 6y’x)(6qq’ + quql) - (lex’Flyy’ + Fler (6yx/ - Flyxl))(sqql}. (1069)
Similarly, from equation (10.61), we get:

* . 1 *x ] !
Hiacq = glirg E¢ —Ey — hwg +ie y};l,A (V¥ @) (Fry Sy Nrgrq + Bqqr)

- FlyK’ 8yIKN1qq/) - (FlyK’ley’ - FlKK’Flyy’)éqq’}' (1070)

Note that the solutions (10.67) and (10.67) follow immediately from (10.60) and (10.61)
(after the decoupling (10.62)), if we assume the absence of an explicit time dependence
of H and H*, which allows us to perform, in equations (10.60) and (10.61), the formal
substitution ih% —igb

We see that the substitution of (10.69) and (10.70) into (10.55) and (10.57) already
produces the closed system of kinetic equations for F; and N;. However, their general
form becomes much simpler if we assume the diagonal nature of the one-particle den-
sity matrices:

Fioo = Fibr  Npae = Nixciaer- (10.71)

The validity of this assumption actually depends on the properties of the system un-
der consideration and on the quantum number of the electrons v, as well as on the
possibility to neglect spatial inhomogeneities in the phonon gas. If these conditions
are satisfied, the quantum kinetic equations for electrons and phonons acquire the
final form:

aFl 2 2
a_tx =5 %{m(x, v, Q)|"8(E, — E, + hwy)
x [Fp, (1 - F)(Nyg +1) = Fyy(1 - FlV)qu] + AW, k, q)|26(EK -E, - hwg)
x [Fp,(1- Fiy)Niq = Fiye(1 = Fp, )(Nyg + i}, (10.72)
d 2n 2
a—tle = 7 Z |A(V, V’,k)| 5(Evl - EV - h(l)k)
WI
x {[Fy = F1, Ny + Fp,r (1= Fp )} (10.73)

These kinetic equations (collision integrals) for the electron—phonon system form the
basis for the solution of numerous problems of physical kinetics in solids [38].

6 This corresponds to Bogolyubov’s assumption that, on time scales typical for kinetic phenomena,
higher-order density matrices (or distribution functions) depend on time only through the appropriate
time dependence of one-particle density matrices (distribution functions).
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10.3.2 Electron-electron interaction

Let us discuss briefly the derivation of the quantum kinetic equation for the case of
interacting electrons (fermions), described by the Hamiltonian:

H=Y Eaya,+ ) wlUWV)aa,a,ay, (10.74)
v yy/wl

where we assume that the interaction is of a short-range (screened) nature (the case
of Coulomb interaction requires special treatment). The matrix element of this inter-
action can be written as:

&k
(2m)3

U@ V'Y = j UK) (ule™ 1y (vle™ 'y (10.75)

Let us introduce again the partial density matrices:

Fioo = Sppayae = {aza.) (10.76)

(xkx'|Fyw') = Sppaga)a,a, = (aya,a,a,). (10.77)

Then, the appropriate Bogolyubov’s chain looks like:

.. 0
<lh— +E,~Eq >F1m<' = Z (uvIUIV)Y [Vl V') 8,0

at ! !
W pp
— (VUIF|u' k") 8,1 + (kUIFo|U'V') By, — (kVIFS V)80 ], (10.78)
., 0
(zha +Ey +E —E, - Ey,><m<'|F2|yy’>
= Y UV ([aya,a,ay, a;aya,a,l). (10.79)
'

After calculations of the commutators in (10.79) we obtain the averages of the prod-
uct of three creation and three annihilation operators, which can be decoupled in the
following way:

<a;r a; a, a:; ayay, > = Flvy’ Flyv’Flk’y + FlVV’FlnylK’y'
+ Flvalyy’ ((slel - FlK’V')
(ayaya,a,a,ay) = FuyFryFior + FuouFry Fiay + Fio Fryp Fyy. (10.80)
As before, analyzing only the sufficiently slow kinetic processes, in equation (10.79),
we can replace ih% — ig, which enables (taking into account (10.80)) an immediate
solution. After substitution of this solution into equation (10.78), we obtain the kinetic
equation for Fy,,s. Assuming the diagonal nature of F;,,» = F;,8,,, we can reduce our
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kinetic equation to the following form:

oF 2 2
T WZ |(W'[Ulii")|“8(E, + E,y = Ey — Ey)
X [Flv(l - FIK)FIV'(l - FlK’) - Flk(l - FIV)FIK’(l - Flvl)]. (10.81)

In momentum representation:

IK) = viveipf (10.82)

Fiye = 1y (10.83)

E, — £(p) = p*/2m (10.84)
ule™ vy = % jdre%(p’_l”k)r etc. (10.85)

so that the kinetic equation for electrons is written as:

on 2 2
a_tp = m J dp,ldplzdp2|U(pl - p'1)| 8(py+ D, - P’1 - Plz)
x 8(e(py) + £(D,) — £(p'1) - £(p"2)) [Ny My, (1 =1y YA =11y, )
- np1 npz(l - np/1)(1 - Tlprz)], (1086)

where U(p) is the Fourier transform of the interaction potential.
Writing the entropy of the electron gas as in equation (4.15):

d3
S-= 2j ﬁ [(1 - ) In(1 - ny) =y I (10.87)
and using (10.86), we can (after some tedious calculations) prove the quantum version
of the H-theorem: % > 0.

The equilibrium Fermi distribution

-1 (10.88)

e T +1

leads to a zero value of the collision integral in equation (10.86), which can be checked
by direct calculations, taking into account the energy conservation law for scattering
particles, expressed by the §-function in the collision integral. It can be easily seen in
this case that the combination of (equilibrium) distribution functions in square brack-
ets in (10.86) becomes identically zero.

The derived expression for the collision integral for the system of interacting elec-
trons plays a major role in studies of low temperature kinetics in metals and other
Fermi-liquids.
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11 Basics of the modern theory of many-particle
systems

11.1 Quasi-particles and Green’s functions

We have seen previously the major role played by the concept of quasi-particles in the
modern theory of condensed matter. A rigorous justification of this concept is achieved
within the formalism of Green’s functions, which is at present the standard appara-
tus of the theory of many particle systems. The Green’s functions approach allows a
clear formulation of the criteria for the existence of quasi-particles in concrete sys-
tems (models) and gives the universal method for calculating practically any physical
characteristics of many particle systems, taking into account various interactions. This
method first appeared in quantum field theory, where it was widely following the for-
mulation of a quite effective and convenient approach, based on the use of Feynman
diagrams. Later it was applied to general many-particle systems, which in fact lead to
the creation of modern condensed matter theory [20]. Obviously, here we are unable to
give the complete and coherent presentation of the Green’s functions formalism; our
aim is only to introduce some of its major definitions and give a qualitative illustration
of some simple applications.!

In the following, we mainly consider the case of temperature T = 0. A general-
ization of the Green’s functions’ approach to finite temperatures is rather straightfor-
ward, and we shall briefly discuss it at the end of this chapter. Let us start from the
case of a single quantum particle, described by the Schroedinger equation:?

)
ot

i - Hy(r,t) = 0. (11.1)
Instead of this equation, we may introduce the equation of motion for the Green’s func-
tion G(r, t;1', t'):

.0G .

i —HG = i6(r-1')5(t-t") (11.2)
with initial condition G(r, t + 0;¢',t) = 6(r — r'). Green’s function represents the proba-
bility amplitude of the particle transition from point ¥’ at time ¢ to point r at time t. The

1 The clearest presentation of the Green’s functions method, as well as the Feynman diagram tech-
nique, with applications to the problems of statistical physics, was given in the classic book by
Abrikosov, Gorkov and Dzyaloshinskii [2]. Rather detailed material can be found in [20]. A more el-
ementary presentation of Green’s functions is given in [26, 27, 31].

2 Subsequently, we use the system of units with # = 1, which is standard in most modern texts. If
necessary, the value of # can be easily restored in the final expressions.

https://doi.org/10.1515/9783110648485-011
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244 — 11 Basics of the modern theory of many-particle systems

squared modulus of this amplitude gives the probability of this transition. We can see
this by expressing the i-function at time ¢ + 7 via Y-function at time ¢:

Y, t+71) = J ar'G(r,t + ;X' t)Y(r', t). (11.3)

It is easily seen that Y(r,t + 7), written in this way, satisfies the Schroedinger equa-
tion (11.1), while for T — 0 it transforms into 1(r, t) due to the initial condition G(r, t +
0;r',t) = 6(r — t'). Besides that, we assume (by definition) that G = 0 for 7 < 0 (causal-
ity!).

Consider the eigenfunctions and eigenvalues of our Schroedinger equation:

Hep,(x) = g3, (1). (11.4)

The physical meaning of the quantum numbers A may be different, depending on the
nature of the problem under discussion. In a translationally invariant system, A — p,
the momentum for an electron in an external magnetic field A represents the Landau
quantum numbers etc. Let us consider a particle in a potential field:

p2

H==—+V(r). (11.5)

2m
In particular, this may correspond to the nontrivial problem of nucleons in a potential
well—an atomic nucleus [27]—so that A represents the quantum numbers of the shell
model. Any solution of the Schroedinger equation can be expanded over this (com-

plete) system of eigenfunctions:

P t) = ;cﬂ(t)w(r) (11.6)

so that (11.3) can be written as:
t+T1) = Az G (T)cp (8), (11.7)
Gue(@) = [ drdr G(ex 1)} pu (¥, (11.8)

which gives the Green’s function in A-representation. As ¢, is an eigenfunction of the
Hamiltonian H, which is time-independent, there are no transitions to other states, so
that ¢;(t + 1) = e "¢ (b), i. e.,

G (T) = Gy(T)8 = e E70(1), (11.9)
where 6(t) = 1for7 > 0 and 8(1) = O for 7 < 0. Let us make the Fourier transformation:

Gy () =% J dre G, (1), (11.10)
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11.1 Quasi-particles and Green’s functions = 245

. T de —i
Gy(1) =1 J 7€ TGy(e). (11.11)

Then, after an elementary integration, we obtain:

Gyle) = ———— 6 +0. (11.12)
E—& +16

The sign of § — 0 is chosen to guarantee G,(7) = O for 7 < 0. In fact, we have:

e de efisr

Gy(n)=i | —————
A lj 2re—¢) +16
e T fort>0

= (11.13)
0 fort < 0.

The integrand here possesses a pole at € = g, — i6. Then, for 7 > 0, we can perform
integration over € closing the integration contour in the lower half-plane of the com-
plex variable ¢ (because the factor of e 7 guarantees exponential damping of the in-
tegrand on the semicircle at infinity), so that the pole is inside the integration con-
tour, and the integral is easily calculated using the Cauchy theorem, giving the result
shown previously. For 7 < 0, in a similar way, to make the contribution of semicir-
cle zero at infinity, it is necessary to close the integration contour in the upper half-
plane of €. Then, there is no pole inside the integration contour, and the integral is
Zero.
In the mixed (r, €) representation, we get:

G(r,r',e) = Z G (©)@a®epy (r')
AN
z PAM@; () (r')

11.1
E-g +i6 (11.14)

Here the sum over A is performed over all bound states of a particle in a field, as well
as over the continuous spectrum. We see that G(r,¥’, €) possesses poles at the values
of € equal to €,, the energies of the bound states, and a cut (continuum of poles) at the
part of the real e-axis, corresponding to the continuous spectrum.

Let us consider now a many-particle system. Next we are only dealing with sys-
tems consisting of Fermions. For systems of Bose particles, we may construct a similar
approach, but we shall not discuss it here due to lack of space; a proper presenta-
tion can be found in [20, 2]. We shall start with the case of noninteracting fermions
(ideal Fermi gas). We have already seen that elementary excitations in this system are
formed by pairs of particles (above the Fermi surface) and holes (below the Fermi sur-
face).
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246 —— 11 Basics of the modern theory of many-particle systems

Let us find the explicit form of the Green’s function G,y (1), i.e., the transition
amplitude of a single particle from state A to state A’, in a system of noninteracting
Fermions. We have to take into account the Pauli principle and exclude all transi-
tions to occupied states. This is achieved by the introduction into the definition of
the Green’s function of an extra factor (1 — n,), where

{1 forg, <ep
ny = (11.15)

0 forg >e¢p
is the number of particles in state A (Fermi distribution at T = 0). Thus, we obtain:

N e fort >0
0 fort < 0.

Let us find similar expression for a hole. The number of “free” places for holes in
state A is proportional to n,, so that

6 (D) 5 e’ fort >0 (1L17)
I\T)=n ' .
M AT 0 fort <0,

where we have taken into account that the energy of the hole, calculated with respect
to the Fermi level, has the sign opposite to that of a particle.

It is convenient to introduce the Green’s function G, (1), defined both for 7 > 0 and
T<O0:

Gy (T fort>0
Ga() = i (11.18)
-G (-1) fort<oO.
The Fourier transform of this function is easily calculated as:
oy 0
Gy(e) = -i(1-my) J dre E\THET | in, J dreEiTriET
0 —00
1-
5 it (11.19)

= . + . >
e—g+i6 e—¢g -6

where § — +0 is necessary to guarantee the convergence of the integrals. This expres-
sions is conveniently rewritten as:

1

£—¢g +i6signeg,
1
£—&,+i6
1
£—&,—16

Gy(e) =

fore, > g

(11.20)
forey < gp,
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11.1 Quasi-particles and Green’s functions =— 247

where we have introduced the sign function: sign(x) = 1 for x > 0 and sign(x) = -1
for x < 0. Note that the Fourier transform of the Green’s function possesses a pole at €
equal to the energy of the particle (hole).

Consider now the system of interacting fermions (Fermi liquid). A single particle
Green’s function in the system of interacting particles is defined by the following ex-
pression:

G (rt:Y't),., = OOy’ (r't)0), (11.21)

where |0) is an exact eigenfunction of the ground state (“vacuum”), corresponding to
the filled Fermi sphere and (rt) is the fermion-creation operator in the Heisenberg
representation:

P(t) = ef(rye ™, (11.22)

where H is the total Hamiltonian of the many-particle system, which includes the in-
teractions. The operator l];(r) can be expressed via the annihilation operators a; of
particles in eigenstates A and (1" is similarly expressed via creation operators aj ):

P(r) = Z ayp,(x). (11.23)
1

Expression (11.21) obviously represents the amplitude of a particle propagation’ from
point (r't') to point (rt).
For hole propagation, we can similarly write:

G (xt;Y't)),. . = (Ol xtyp(r't)0), (11.24)

where we have taken into account that (in a fermion system) the annihilation of a
particle in a given point is equivalent to the creation of a hole.

Expressions (11.21) and (11.24) are defined for ¢t > t'. It is convenient to define a
single Green’s function, which fort > ¢’ describes a particle, while for t < t' it describes
a hole (similar to (11.18)):

G @t;r't"y  fort>t'
G(rt;¥'t') = ( ) (11.25)
-G ('t';rt) fort<t'.
Another way to write this definition is:
G(x,x") = (O|TY )P (x')|0), (11.26)

3 Green’s functions are often called propagators.
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248 —— 11 Basics of the modern theory of many-particle systems

where we have denoted x = (rt) and introduced an operator of T-ordering, which
places all operators to the right of T in order of diminishing times in their arguments,
taking also into account the change of signs due to (possible) permutations of fermion
operators. The formal definition of T-ordering (originating in quantum field theory) is
written as:

Fi(t)F,(t,) fort, >t
T{F(t)Fy ()} =1 © 272 1o (11.27)
-F(t)F (&) forty <t
for fermion operators, and
B,(t))B,(t,) fort, >t
T{B,(t)By(ty)} =1 "1 272 1oz (11.28)
By(6)By(t;) forty <t

for boson operators.

The Green’s function defined according to (11.26) is called Feynman or casual
(T-ordered).*

Let us limit our consideration to an infinite (translationally invariant) system,
where G(rt;¥'t') = G(r - t', t—t'). Accordingly, it is convenient to introduce the Fourier
representation over t — t' and r — r':

G(pt) = J ErGrr)e P, (11.29)
where
G(pT) = (Olape"’%”aglo)e"E?T >0 (11.30)
—<O|a;e’HTap|O)e"E°T T<0,

and E; is the ground state energy.
Quasi-particles in our system can be introduced if the one particle Green’s func-
tion can be written in the following form (7 > 0):

G(pt) ~ Ze E@YPIT L .. and  y(p) < &(p) (11.31)

i. e., it contains a contribution, resembling the Green’s function of an ideal Fermi gas,
which we derived previously. Equation (11.31) means that the state |0) contains a wave

4 Let us stress that this definition is different from the definition of the double-time Green’s function
given in (9.22) and naturally appearing in linear response theory, even at the limit of zero tempera-
ture. The advantage of the use of Feynman Green’s functions is the possibility to construct a diagram
technique that much simplifies all the calculations. There is no diagram technique to calculate double-
time Green’s functions (9.22). There are certain exact relations and methods that allow us to express the
Green’s functions of linear response theory via Feynman functions at T = 0 [2], as well as appropriate
generalizations for the case of finite temperatures, to be considered subsequently [20, 2].
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11.1 Quasi-particles and Green’s functions = 249

packet with amplitude Z, representing a quasi-particle with energy (p) and damping
y(p). The necessary requirement is the weakness of this damping y(p) <« &(p), i.e.,
the requirement for a quasi-particle to be “well-defined”.” Similarly, for T < 0, we can
define the Green’s function of a quasi-hole. Thus, in a system with well-defined quasi-
particles, the Fourier transform of the Green’s function (11.26) can be written as:

1-n n

G(pe) = Z{ L P } + Grog(PE)

e—e(p) +iy(p)  €—e(p) - iy(p)

Z
i G ’ 11.32
€ —&(p) +iy(p) sign(p - pr) + reg(pg) ( )

We see that the pole of this expression defines the spectrum of quasi-particles and
their damping. This is the most important property of Green’s functions, allowing us
to determine the spectrum of elementary excitations in a many-particle system. The
value of the nonsingular term G, in (11.32) is determined by multiparticle excitations
and, in most cases, is not of great interest. At the same time, we have to note that
in systems with strong interactions (correlations) there are cases, when we cannot
separate a singular pole-like contribution to the Green’s function, related to single-
particle elementary excitations (quasi-particles). In that case, all the physics is in fact
determined by G,., and situation becomes more complicated.

What else do we need Green’s functions for? Actually, with their help, we can cal-
culate the averages (over the ground state) of various physical characteristics of our
system. Using the one particle Green’s function, just introduced, we can calculate the
ground-state averages of operators, which are represented by sums over all particles
(one particle operators):

A= ZAi(.{i,pi), (11.33)

where ¢; is the set of spatial and spin variables, while p; are the momenta of all the
particles of the system. Typical examples are:

n(r) = Z 5(r—1;) (11.34)

— particle density at point r,
. e
i) = - > pibr-r) (11.35)
i

— current density at point r etc.

5 This condition is valid in Landau Fermi liquids, where, close to the Fermi surface, we have (p) =
vr(Ipl - pp), and y(p) ~ (Ip| - pr)*.
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250 —— 11 Basics of the modern theory of many-particle systems

Operator A in secondary quantization representation can be written as:
A= [ dgp" A PG, (1136)
Consider the Green’s function (11.25), (11.26) at t = t' — 0:

G(&,&,7)|,_o = (0" (&NP(&)|0). (11.37)

Then, the ground state average value of operator A is given by:
@A) = jde(&p)G(s,&’,r = ~0)|e_sr =~ SPAGl,—o. (11.38)

We conclude, that G|,__, just coincides (up to a sign) with the one particle density
matrix (cf. (1.163)) at T = O:

p(&',&) = O (&"PY(E)I0) = —Gl,_o. (11.39)

To find the averages of two-particle operators like:

B =) By(&ps &pio) (11.40)
ik
we need to calculate two-particle Green’s function:

G,(1,2;3,4) = (O|TYp (YY" 3)y* (4)/0) (11.41)

etc.
From (11.37) we immediately obtain the particle momentum distribution function
as:

n(p) = i J %G(pe)e"'” (11.42)

7—-0

Here, we can not simply take the limit of 7 = 0, as G ~ % and for € — oo the integral
j deG(pe) diverges. For finite and negative T we can transform the integral over the
real axis of € to an integral over the closed contour C, shown in Figure 11.1. After that
we can put T = 0, so that:

. [ de
=—i| — . 11.
n(p) = -i | 55G(pe) (11.43)
C
Consider a Green’s function like that of equation (11.32) (quasi-particles!):

Z
€ —&(p) +iy(p) sign(p - pg)

G(pe) = + Gyeg(pE). (11.44)
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—® 0 + o0

Figure 11.1: Integration contour used in calculations of the distribution function.

We see that the damping (imaginary part in the denominator of the first term) changes
sign at p = pg: it is positive for p > pr and negative for p < pg. Thus, for p < pp we
have a pole inside the contour C, so that the integral is equal to Z, while for p > pp the
pole is in the lower half-plane and the integral over C is equal to zero. Neglecting the
regular many-particle contribution G,., we have:

n(pg — 0) —n(pg +0) = Z. (11.45)

As 0 < n(p) < 1, it follows that 0 < Z < 1. Now it is clear, that the qualitative form of
the distribution function of Fermions at T = O (interacting Fermions, Fermi liquid!)
has the form, shown in Figure 11.2. Thus, despite the presence of interactions (not
necessarily weak!), which “smears” the momentum distribution of particles, there is
still a “trace” of the Fermi distribution for an ideal gas. Even in a Fermi liquid there
is a finite discontinuity in the distribution function at p = py. This important result
was first derived by Migdal and gives a major microscopic justification of one of the
most important assumptions of phenomenological Fermi liquid theory, introduced by
Landau. Surely, our analysis is valid only for momenta p close enough to pp, where
the concept of quasi-particles “works” due toy ~ (p — pr)?, making damping small in
comparison to the real part of the spectrum £(p) = vp(|p| — pr)-

4@

0

3
Figure 11.2: Qualitative form of the distribution function of particles in a Fermi liquid at T = 0..
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252 — 11 Basics of the modern theory of many-particle systems

Arkady Migdal (1911-1991) was a Soviet theoret-
ical physicist and a Member of the USSR Academy
of Sciences. Graduated from Leningrad Univer-
sity in 1936, then worked in a number of insti-
tutes, including Kurchatov Institute of Atomic En-
ergy and Landau Institute of Theoretical Physics
USSR Academy of Sciences. He was one of the
most prominent members of Landau school of the-
oretical physics. In 1940s and 1950s he has taken
partin Soviet atomic bomb project. He contributed
to nuclear physics and quantum field theory ap-
proach to condensed matter. He developed consis-
tent Green’s function approach to electron—phonon interactions in metals (Migdal
theorem) and the Fermi liquid approach for protons and neutrons in atomic nuclei,
including the picture of Cooper pairing between nucleons, as well as vacuum polariza-
tion in strong magnetic fields. Migdal received a number of major government awards
like the Orders of Lenin and October revolution. He was a creator of original wooden
sculptures, an enthusiast of skiing and one of the first divers in the Soviet Union.

Richard Phillips Feynman (1918-1988) was an
American theoretical physicist, known for his ma-
jor contributions into the path integral formulation
of quantum mechanics (actually a completely new
formulation of quantum mechanics), the theory of
quantum electrodynamics, and the physics of the
superfluidity of liquid helium, as well as to parti-
cle physics where he proposed the parton model
of hadrons. He also significantly contributed to the
theory of weak interactions. For his contributions
to the development of quantum electrodynamics
(which is probably most precise theory in physics),
Feynman, jointly with Julian Schwinger and Shinichiro Tomonaga, received the Nobel
Prize in Physics in 1965. Feynman developed a widely used pictorial representation
scheme for the mathematical expressions describing interactions of quantum parti-
cles, known as Feynman diagrams — one of the most widely used methods in mod-
ern theoretical physics. He assisted in the development of the atomic bomb during
World War II working in Manhattan project. Feynman also has been credited with
pioneering the field on quantum computing and introducing the concept of nanotech-
nology. Feynman was a great popularizer of physics through both books and lectures
including his famous undergraduate lectures, “The Feynman Lectures on Physics”.
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Feynman also became known to general public through his autobiographical books
“Surely You’re Joking, Mr. Feynman!” and “What Do You Care What Other People
Think?” Besides his Nobel prize and numerous other awards he was elected a For-
eign Member of the Royal Society in 1965, received the Oersted Medal in 1972, and
the National Medal of Science in 1979. He was also elected to the National Academy
of Sciences, but later resigned.

11.2 Feynman diagrams for many-particle systems

The Feynman diagram technique is an elegant and compact formulation of the per-
turbation theory rules to calculate Green’s functions. Unfortunately, we are unable to
present here the detailed derivation of these rules and the reader should reger to [2, 20]
for the complete presentation of Feynman’s approach. An elementary, though detailed
enough, presentation can be found in [26]. Many examples of the practical use of Feyn-
man diagrams are given in [31]. Here we shall limit ourselves to the formulation of the
elementary rules of the diagram technique (without derivation), which is sufficient to
get some impression of the method and to not be “frightened” by the appearance of
Feynman diagrams, which are rather ubiquitous in modern literature.

To be concrete, let us consider a system of interacting Fermions, with the Hamil-
tonian, written in secondary quantization formalism as:

1
H-= Zs(p)a;;aIJ +3 Z Vka; +ka;_kaqap. (11.46)
P pgk

By definition, the Green’s function G(pt) is dealing with the motion of a single particle.
In the absence of interactions (free Green’s function) we can represent this motion by a
straight line, e. g. directed from right to left. Since the unperturbed ground state of the
system is the filled Fermi sphere, there is a possibility of a hole motion, which we shall
represent by a straight line, directed from left to right. Thus, a directed line represents
the free Green’s function G(pt), corresponding to a free particle with momentum p.
The interaction corresponds to the scattering of one particle by another. In
first/order perturbation theory over Vy, we have two types of scattering processes,
represented by the Feynman diagrams, shown in Figure 11.3. The process correspond-
ing to the first diagram corresponds to a particle moving freely until it is directly scat-
tered by the particles inside the Fermi sphere (surface) at time 7;, while afterwards
it continues the free motion from time 7, to time 7. The act of interaction (scattering)
is represented by the wavy line and a closed circle describes the process, where a
particle is scattered from the state with some momentum below the Fermi surface and
returns to the same state. The process corresponding to second diagram represents
the so-called exchange scattering on the particles below the Fermi surface; its mean-
ing is obvious from the diagram itself — the free motion after scattering is continued
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T T 0 T '[1 '[l 0

Figure 11.3: Diagrams of the first order for the Green’s function.

by a particle excited from below the Fermi surface, while the initial particle has gone
to a state below.

In second order perturbation theory, the number of possible scattering processes
increases. Examples of appropriate Feynman diagrams are shown in Figure 11.4. All
diagrams here, except the last one, show different combinations of scattering of the
first order, considered above. The last diagram describes something new — at time
7, the particle is scattered, creating a particle-hole pair, exciting it from states below
the Fermi surface. At time 7, the particle is scattered again, as a particle-hole pair
annihilates, returning to the initial state. Physically, this process corresponds to the
polarization of particles below the Fermi surface.

?? AL L T

o ) 0 )

Figure 11.4: Examples of diagrams of the second order for the Green’s function.

Most conveniently, the rules of the diagram technique are formulated for calculations
of the Fourier transform of Green’s function G(pe). In this case the arrows on lines,
representing Green’s functions, do not denote the direction of time, but correspond
simply to incoming and outgoing “energies” € and momenta p, which are conserved
in each vertex (interaction point). The rules to construct an analytic expression, cor-
responding to a given Feynman diagram, are formulated as follows:
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1. To each straight line we attribute a momentum p and an “energy” €, and write the
corresponding analytic expression:
i
£ -g(p) +ibsigne(p)’

iGo(pe) = (11.47)

2. To each interaction (wavy) line corresponds the factor —iV (in the case of instan-
taneous interaction) or —iV(qw) for retarded interaction.

3. In each vertex (a point where the wavy line is attached to the Green’s function
lines) energy and momentum are conserved, with energies and momenta at-
tributed to the lines directed toward the vertex, taken with plus-sign, while ener-
gies and momenta attributed to outgoing lines are taken with minus-sign.

4, Ttis necessary to perform integration over each p and € not fixed by conservation
laws:

(2711) - J &p J de---. (11.48)

5. Each closed Fermion loop is attributed an extra factor of (-1).

6. Summation over the spins (e. g. in a loop) introduces a factor of 2 (for Fermions
with spin 1/2).

Consider the simplest expressions corresponding to specific diagrams. For example,
the first diagram of Figure 11.3 corresponds to an analytic expression:

2
(2n)?

where in the first expression we have already taken into account (11.43) and N is the
total number of particles. This gives the so-called Hartree correction. The second dia-
gram of Figure 11.3 gives:

izGO(pe)(—iVO){ Jd3p (—n(p'))}iGO(pe) = Go(pe)(-iVy)NGy(pe),  (11.49)

. 1 .
6o (pE) 553 | @ac-ive)(-n + )Go(pe) (11.50)
which is the Fock correction. The last diagram of Figure 11.4 corresponds to:
1 . . .
Go(pe)m J &q J dwiGy(p - ge - w)(—qu)z[—1H0(qw)]GO(pe), (11.51)

where we have introduced the so-called polarization operator, corresponding to the
loop in this graph:
d3pl de’ .
00 [ 9 6,0 e ')
_ J d’p n(p) - n(p - q)

@3 e(p-q) -&(p) +w+ibsignw’

_iTly(qw) = 2(~)(-1) J

(11.52)

Note that this expression gives only the simplest contribution to the polarization op-
erator, in the general case we have to deal with higher-order corrections, e. g. of the
type shown in Figure 11.5.
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Figure 11.5: Higher corrections for polarization operator.

11.3 Dyson equation

A remarkable property of the Feynman diagram technique is the possibility to perform
an intuitively clear graphical summation of an infinite series of diagrams. Let us denote
an exact Green’s function (taking into account all interaction corrections) by a “fat”
(or “dressed”) line, while the free-particle Green’s function is denoted by a “thin” line
as above. The total transition amplitude from point 2 to point 1 is, obviously, equal to
the sum of all possible transition amplitudes, appearing in all orders of perturbation
theory, i. e. to the sum of all diagrams of the type shown in Figure 11.6. Now we can
classify these diagrams in the following way: first of all we separate the single graph,
corresponding to free-particle motion. All the remaining diagrams have the following
form: up to some point the particle moves freely, then it is scattered, which leads to
creation and annihilation of several particles and holes (or it is scattered by particles
below the Fermi surface), then again it performs free motion, then it is scattered again
etc. Let us denote as Z the sum of all diagrams which cannot be cut over the single
particle line. Examples of such diagrams are shown in Figure 11.7. ¥ is called the irre-
ducible self-energy part, or simply self-energy. It is easily seen, that the full (“dressed”)
Green’s function is determined by the so-called Dyson equation, derived graphically
in Figure 11.8. Analytically, it corresponds to the following integral equation:

G(1,2) = Gy(1,2) + Jdr3dr4GO(1, 3)2(3,4)G(4,2). (11.53)

Iterating this equation, we obviously obtain the complete perturbation series for the
Green’s function. After Fourier transformation the Dyson equation becomes a simple

1 2:1 2+1<€2+1J12+
3 4
s 19 e O

Figure 11.6: Diagrammatic series for the total (exact) Green’s function.
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U o~y

Figure 11.7: Simplest diagrams for irreducible self-energy part.

=+ () —

Figure 11.8: Diagrammatic derivation of the Dyson equation.

——

algebraic equation:

G(pe) = Go(pe) + Go(pe)Z(pe)G(pe), (11.54)

which is easily solved as:

1

€ - &(p) - X(pe)’
where we have taken into account the explicit form of G, (pe). It is clear that the self-
energy part X(pe) describes, in a compact way, all the changes in particle motion due
to its interactions with all other particles in the system. In the general case, the self-
energy is a complex function consisting of real and imaginary parts (this is why in
equation (11.55) we have dropped the infinitesimally small imaginary contribution
from the free particle Green’s function i6 sign(e — 5)). The energy of the quasi-particle
can now be determined as a solution of the equation determining the pole of the total
Green’s function:

G(pe) = (11.55)

€ = g(p) + Z(pe). (11.56)

In the real case, the solution of this equation for € may be quite complicated.
For the examples given above in equations (11.49), (11.50) and (11.51), the appro-
priate contributions to the self-energy part are:

Sy = NV, (11.57)
d3q
ZF = - J Wan(p + q), (11.58)
dq (dw_,
ool = J @y J EVqu(qw)Go(P - ge - w). (11.59)
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258 —— 11 Basics of the modern theory of many-particle systems

Let us return once more to the question of the possibility to introduce well-defined
quasi-particles, i. e. to reduce the exact Green’s function to the form given by equa-
tion (11.32). In a Fermi system, it is convenient to count all energies from the chemical
potential u. For free particles we have (p) = % - u. In an isotropic system (Fermi lig-
uid) Z(pe) depends only on the absolute value of p. Let us define the value of the Fermi
momentum py (radius of the Fermi sphere) for the system of interacting Fermions by
the following equation:

P

> FEPR0) = . (11.60)

This definition assumes, of course, that Im (p, 0) — O for p — pgp, € — 0 (Fermi liquid
behavior!). For the system of interacting Fermions we can prove in rather general form,
that Im X(pe) ~ Max{e?, (p - pr)*} sign e. Then, expanding Z(pe) in a power series over
p - pr and g, we obtain the following expression for G(pe) close to the Fermi surface:

2
G_I:e—p—+y—2(pe)

2m
2
Boneamo-(2) o)
~E- o HH 2(pF,0) (ap F(p Dr) = F£+1a|8|e
_[1 <aS>F]e [m+ ) (p -pr) +id'|ele, (11.61)

where a’ = const. From equation (11.61) we can see, that Green’s function can be writ-
ten in the required form:
Z
- +
€—-vp(p —pF) +ialele

G(pe) = Gregs (11.62)

where Gy, contains all contributions dropped in (11.61), and we defined:

_ oz oG!
7l-1-(22) = (22— 11.6
<38>F ( o€ >F (11.63)
p oz 9G™!
o 2o _m e o (11.64)
F=m— a6ty 7 a6t )
(e )F (G )F

where a = Za'. Thus, we obtain the Green’s function of Fermion quasi-particles with
an effective mass m*, which, like everything else, is determined by the behavior of
X(pe) close to the Fermi level (surface). Note that in a simplified case, when Z(pe) does
not depend on p, so that (%)F = 0, we have:

PE _PEy jeo T _z71 (11.65)
m m m
so that Z simply renormalizes the mass of the quasi-particle. Due to the general prop-
erty of Z < 1, the effective mass in a Fermi liquid is larger than the mass of free particles.
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All these properties of Z(pe) are rather easily confirmed, if we limit ourselves to
the contributions of the simplest Feynman diagrams, both for the case of point-like or
Coulomb interactions. A rigorous choice and summation of “dominating” (sub)series
of diagrams can be made for the cases of high or (inversely) low density of Fermions,
when there exist appropriately small parameters, allowing the use of perturbation the-
ory [2, 20, 26]. All basic assumptions of Fermi liquid theory are thus explicitly con-
firmed by microscopic calculations. In the general case, when there is no small pa-
rameter and no “dominating” subseries of diagrams (a typical example are electrons
in metals!), formally all diagrams have to be taken into account and we can only limit
ourselves to a rather general analysis, of the kind briefly illustrated above, which con-
stitutes the basis of the microscopic version of Landau Fermi liquid approach.

In recent years, the number of models of so-called strongly correlated systems
demonstrated non-Fermi liquid behavior, breaking the main assumptions of Lan-
dau theory, such as the possibility to introduce the well-defined quasi-particles.
This is a rather typical situation in low-dimensional systems, especially in the one-
dimensional case. Two-dimensional systems apparently form a kind of borderline
between non-Fermi liquid and Fermi liquid behavior. The situation here is under
active discussion at present, e. g. with respect to the properties of high-temperature
superconductors in the normal state.

A similar diagram technique can be constructed for all other basic types of inter-
actions in many-particle systems, such as electron—phonon interaction, scattering by
impurities etc. Depending on the type of interaction, we can have different topologies
of Feynman diagrams and diagram rules. For example, in the case of electron-phonon
interaction wavy lines denote phonon (Bose) Green’s functions, while in the case of
random impurity, scattering diagrams do not have closed Fermion loops etc. Details
of all these cases can be found e. g. in [2, 31].

Freeman Dyson (born 1923)
is an English — born Ameri-
can theoretical physicist. He
is known for his work in quan-
tum electrodynamics, solid—
state physics, astronomy and
nuclear engineering. He the-
orized several concepts that
bear his name, such as Dyson
equation and Dyson sphere.
In 1949, Dyson demonstrated
the equivalence of two formu-
lations of quantum electrodynamics (QED): Feynman’s diagrams and the operator
method developed by Julian Schwinger and Shinichiro Tomonaga. He was the first
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260 —— 11 Basics of the modern theory of many-particle systems

person after their creator to appreciate the power of Feynman diagrams, and his pa-
per written in 1948 and published in 1949 was the first to make use of them, developed
rules for calculating the diagrams and completely solved the renormalization prob-
lemin QED. Dyson’s paper and also his lectures presented Feynman’s theories of QED
in a form that other physicists could understand, facilitating the physics community’s
acceptance of Feynman’s work. Later he made significant contributions to physics
of magnetism (spin waves), random matrices and stability of matter. In 1960, Dyson
wrote a short paper for the journal Science, titled “Search for Artificial Stellar Sources
of Infrared Radiation”. In it, he theorized that a technologically advanced extraterres-
trial civilization might completely surround its native star with artificial structures in
order to maximize the capture of the star’s available energy. Eventually, the civiliza-
tion would completely enclose the star, intercepting electromagnetic radiation with
wavelengths from visible light downwards and radiating waste heat outwards as in-
frared radiation. Therefore, one method of searching for extraterrestrial civilizations
would be to look for large objects radiating in the infrared range of the electromag-
netic spectrum. Dyson has won numerous scientific awards but never a Nobel Prize.
He remarked in 2009, “I think it’s almost true without exception if you want to win a
Nobel Prize, you should have a long attention span, get hold of some deep and impor-
tant problem and stay with it for ten years. That wasn’t my style.”

11.4 Effective interaction and dielectric screening

As another example of the use of a diagrammatic approach, below we shall discuss
diagram summation, leading to the concept of an effective (screened) interaction in
Fermion system. Let us define the effective (renormalized or full) interaction by the di-
agrams shown in Figure 11.9. In Figure 11.10 we show the diagrams for the full polariza-
tion operator (containing higher-order corrections) and for the so-called vertex parts,
representing complicated “blocks” of diagrams, describing the processes of multiple
scatterings of Fermions. Unfortunately, for vertex parts we can, in general, not find
closed integral equations similar to the Dyson equation discussed above. It is only
possible in some specific approximations and models. The screened effective interac-
tion (“fat” wavy line in Figure 11.9) can be related to a frequency- and wave-vector-

i
%
%

é

Figure 11.9: Feynman diagrams for effective interaction between particles.
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Figure 11.10: Full polarization operator and vertex parts.

dependent dielectric function of the system e(qw). Using the diagrams shown in Fig-
ure 11.9, we get the screened interaction as:

iV
e(qw)
= —iVq + (1) [-iTl(qw)] (-iV)

+ (=1Vg) [-ITI(q) | (-iV) [-Tl(qw) | (=iVg) + ---
= —iVq + (-1Vq )[—il‘[(qw)](—iV(qw))

-V(qw) = -

= =iV + (V) [-iI(qw)] (<iVq) ——— (qw)

= 1 Vallaw) |

so that:

1 =
e(qw)

1
1-V,I(qw)——. (11.66)
9 qw)
From here, we can obtain the general expression for the dielectric function (perme-
ability) of a many-particle system via the polarization operator:

e(qw) =1+ V4ll(qw). (11.67)

In the case of Coulomb interaction in the system of electrons we have Vq = l%fz, o)

that:

e(qw) =1+ l‘q—en(qw) (11.68)
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Consider the simplest approximation for the polarization operator (11.52).° After cal-
culation of all integrals, this polarization operator can be written as [2, 26, 31]:

Il (qw) = vpP(quw), (11.69)

where vy is the electron density of states at the Fermi level and

1

1 Vpgx
@ L I D i Al
(qw) 2 j Xa)—qux
w w+vpq| . w
=1- 1 6 - w). 11.70
2vpq n‘w “veql " v ") (1.70)
In particular, @(g0) = 1, which gives:
1(g0) = vg. (11.71)
Then we obtain:
2 2
e(q0) =1+ [gvp =1+ K—z (11.72)
q q
where
K= lmeva. (11.73)
Accordingly:
2 2
V(qo) = me_ _ _4me (11.74)

Pe(@0) P+

which describes the so-called Debye screening of the Coulomb potential in a quantum
plasma of electrons at temperature T = 0. Obviously, in coordinate space we have
V(r) = "’TZe"" , so that equation (11.73), in fact, determines the screening radius k'

In the inverse limit of high frequencies of w > vrq, we can show that ®(qw) =

2 2
—';%, so that:

elw)=1- ve=1- =1-—. 11.75
(w) 32 F (11.75)

6 This approximation is justified in the limit of a high enough density of electrons, when the Coulomb
interaction can be considered weak. Appropriate estimates were given above during the discussion of
the basic properties of Fermi gases.
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Here we used vp = %gl, where n is the density (concentration) of electrons. We also
F

introduced the square of the plasma frequency:

2 47tne?
w

p m

(11.76)

Equation e(qw) = O determines the frequency of the plasma oscillations (plasmons)
for the whole range of g. In particular, for small values of g, when plasmon damping
is absent, we can find the dispersion (spectrum) of the plasmons as:

2 2.3 5
W =w,+ ngq . (11.77)
In fact, the frequency of plasmons is very weakly dependent on their wavelength and
this dispersion is just a small correction.

11.5 Green’s functions at finite temperatures

The Feynman diagram technique discussed above was generalized by Matsubara to
the case of finite temperatures [2]. Below we shall briefly discuss this generalization,
limiting the discussion to Fermi systems only. The thermodynamic Green’s function of
a Fermi particle is defined according to Matsubara as:

G(p, 7, -1y = —i(Tap(Tz)a;(Tl)>, (11.78)
where, by definition:
a,(1) = 1N )Tape_<H_"N " (11.79)

and0< 1y, T, <f = % are real variables, while the angular brackets denote averaging
over the grand canonical Gibbs distribution, which is convenient to write here as:

@) = 2PA

where p = e PHHV), (11.80)
Spp P

Taking into account that Z = Sp p, this is equivalent to the definition used above. The
reason why the Green’s function G can be represented by the same diagrammatic se-
ries as the Green’s function G, previously defined for the case of T = 0, can be seen
as follows: we have seen that diagrammatic expansion for G is a fundamental conse-
quence of the time-dependent Schroedinger equation (11.1). The statistical operator p,
written in the form of (11.80), satisfies the so-called Bloch equation:

%P _ —(H - uN)p, (11.81)

op
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264 =—— 11 Basics of the modern theory of many-particle systems

which is easily verified by direct differentiation. Now we see the direct correspondence
between the time-dependent Schroedinger equation (11.1):

Ypop HoH-uUN ito p. (11.82)
Thus, making the substitution
H-H-uN it->r1 (11.83)

in all expressions of the previous paragraphs, we can obtain the diagrammatic tech-
nique for G, which is practically of the same form as in the case of T = 0. Substitution
H — H — uN only shifts the energy scale of single particle energy by u:

Hy - uN = ) ((p) - p)agay. (11.84)
p

Though Matsubara’s Green’s functions G depend on “imaginary time” 7,” we can al-

ways perform a transformation to real time in the final expression putting 7 — it, or
more precisely, making an analytic continuation to the real axis of time.

We noted above that the values of 7; and 7, in (11.78) vary over the interval from 0
to B. Thus, to make a transformation to the (p, w) representation, we have to introduce
the periodically continuous function G, obtained by periodic repetition of G on the
interval from —oo to co. For this function we can write down an expansion into the
Fourier series:

o0

G(pr) = % TG (pw,), (11.85)

where the summation is performed over the discrete (Matsubara) frequencies w,, =
mnT. Accordingly

B
j dre" G (pt). (11.86)
-B

NI =

Q(Pwn) =

The “time” difference T = 7, — 7, varies in the interval (-f, ), as the values of ; and
T, vary in the interval (0, §). The function G(p7) periodically repeats itself in the inter-
vals (-, ), (8,3B),(3B8,58),...,(=3B,-PB),.... For a system consisting of Fermions, the
even values of n drop out of the series for G(pt) due to the “quasi-periodic” boundary
condition:

G(p,7) = -G(p,7+pP) fort<O. (11.87)

7 The variable 7 is real, but Green’s function G is obtained from G by the replacement it — 7, so that
actually we are making a transformation to “imaginary time” t = —ir.
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To see the validity of this relation, we can use the property Sp AB = Sp BA. Assuming
' =1 > 0, we have:

Gp,t-7) = % Sp e"ﬁ(H_”N)a;(T')ap(T)
= % Sp ap(r)e_ﬁ(H_"N)a;(T’)e
- é Sp e PH M PHN 7)o BHIN g (11
= % Sp e"B(H_"N)ap(T +B)ay(7') (11.88)
or
G(p.1-7)=-G(p.T-7 +p), (11.89)

which for 7’ = 0 just coincides with (11.87). The minus sign appeared here due to the
anti-commutation of the Fermi operators. Substituting (11.87) into (11.85) we can see
that all terms with even n become zero. Thus, for Fermions we are always dealing with
odd Matsubara frequencies:

2 1

w, = % = (2n + 1)nT. (11.90)

In a similar way, for Bosons only even Matsubara frequencies remain:

2nmn
w, = — =2nnaT. (11.91)
B

Remembering equations (11.16), (11.17) and (11.18) for free particle Green’s func-
tions at T = 0, we can easily write down Matsubara’s Green’s function for free

Fermions as:
Go(P, T, — ) = —i{0(1, — T))(1 - n(p)) - O(1; — Ty)n(p)}e EP M@, (11.92)

where n(p) = [e/¢®® 1 1]7! is the Fermi distribution for finite T. Thus, the step-like
functions, entering the definition of Gy at T = 0 are “smeared” by a finite T, so that
the state with a given p can be filled either by a particle or a hole.

Substituting (11.92) into (11.86) we find:

Go(pw,) = w, = (2n+ HnT. (11.93)

i
iwy, —€(p) + 4
With the only change, related to the transition to discrete frequencies, which also
“conserve” in the vertices, Matsubara’s diagram technique for T > 0 is practically
identical to the Feynman technique for T = 0. In particular, the full (exact) Green’s
function is determined by the Dyson equation:

i

won ) + - Spwy Wn- b (11.94)

g(pwn) = i
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However, we must stress that Matsubara’s Green’s functions are not quantum propa-
gators (transition amplitudes) at all!

Calculation of Matsubara’s Green’s functions allows us, in principle, to find ar-
bitrary thermodynamic characteristics of the many-particle system at finite tempera-
tures. In particular, it is possible to construct a diagrammatic expansion for the in-
teraction correction to the thermodynamic potential Q [2]. Appropriate diagrams of
the lowest orders are shown in Figure 11.11. For concreteness we show here diagrams
for the case of interacting Fermions. A perturbation series for AQ consists of loop di-
agrams, restricted to the case of connected diagrams. A certain difficulty here is re-
lated to the appearance in this series of an extra combinatorial factor of % for ev-
ery contribution of the n-th order. This makes a series for AQ rather inconvenient for
summation. In particular, for AQ we can not derive any analogue of the Dyson equa-
tion. As Q = -VP(u, T), in fact here we are calculating the corrections to the pressure
AP = P - Py(u, T), where P, is the pressure in a system of free particles (ideal gas), so
that we are actually dealing with quantum corrections to the equation of state.

2 |—
2 |—

w|—

Figure 11.11: Diagrammatic expansion for the thermodynamic potential.

Finally, we shall mention the diagram technique, proposed by Keldysh, which is appli-
cable to finite temperatures and, more importantly, to the analysis of nonequilibrium
processes in many-particle systems in real time, including the derivation of the kinetic
equations. A detailed enough presentation of this technique can be found in [23].

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 2:06 AM



A Motion in phase space, ergodicity and mixing

A.1 Ergodicity

From classical mechanics, it is known that the differential equations of motion for any
conservative mechanical system can be written in Hamiltonian form:
OH oH

_9E - (A1)
e C ogy

Qx
where g, py are the generalized coordinates and momenta (k = 1,2,...,n = 3N, i.e,,
in total we have 2n = 6N equations, where N is the number of particles in the system,

and n is the number of degrees of freedom),

Hp,q) = HpyP2 - Pps G159 - - - Gn) (A.2)

is the Hamiltonian of the system, which is equal to the total energy, expressed as a
function of the generalized coordinates and momenta. The Hamiltonian is related to
the Lagrangian L by the well-known relation:

n
H=Y pugy-L (A.3)
k=1

The equations of motion (A.3) can be integrated and their solutions can be written
in the following form:!

P = on(ar-pat) @ = ¥i(ap-pl. ), (A4)

where g?, p{ are the initial values of the coordinates and momenta. The functions ¢y,
Y, represent (according to the Cauchy theorem) single-valued and continuous func-
tions of the arguments g}, p}.

To obtain (conserving) integrals of motion, we can use the following procedure.
Divide all the other 2n — 1 equations (A.1) by equation p; = —g—g. Then we get:

p oH p oH
q; op, Dn 94, (
dg, _ o P _ o4, A.5)
d o d aH
Dy %4, Dy 2,

This system of equations does not contain time ¢ (for H independent of t) and defines
conserving quantities. In total, it gives 2n — 1 integrals of motion, obviously including
energy, which we denote as:

®,(q,p) =H(p,q) =, = E. (A.6)

1 Subsequently we mainly follow [22].
https://doi.org/10.1515/9783110648485-012
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Then, the rest of the 2n — 2 integrals of motion can be written as:

D,(q,p) = ay,...,Dy(q,p) = @
¥y(q.p) = Bo, .-, (g, D) = B> (A7)

where ay,...,a, B, ..., B, are integration constants. One more integral of motion is
obtained by solving the equation p; = —0H/dq; and using equations (A.6), (A.7). This
can be written as:

Yi(g,p) =t +pi. (A.8)

Adding an arbitrary constant to t does not change the equations of motion, as the time
t enters only through differentials.

Consider the simplest example of a system with one degree of freedom—the har-
monic oscillator. Then (setting the mass m = 1), the Hamiltonian is written as:

1
H= 5(p2 +w’q). (A9)
Hamilton’s equations of motion now are:
q:—:p p:——:—a}q, (A.lO)

which give the following solutions (integrals):

0

q = q° coswt + % sinwt, p=-wq’sinwt+p° coswt, (A1)

which can be rewritten as an energy integral:
2H =p* + w’q* = 2E (A12)
and the relationship, determining the dependence of p and g on time:

1 arccos L B t+p. (A.13)
w p? + Wq?

An oscillator with one degree of freedom possesses these two integrals of motion. The
mechanical state of the oscillator is represented by a point in the (p, q)-plane, which
is the phase space for this simple system. The motion of the system is represented by
the movement of the phase point over the “ergodic surface” (a line on (p, g)-plane),
determined by the value of the energy E. These lines of constant energies, as is ob-
vious from equation (A.12), form ellipses like those shown in Figure A.1. The second
integral (A.13) determines the velocity of the movement of the phase point over these
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q
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V2(E+AE)
V2E W
w
f
V2E b

V2(E + AE)

Figure A.1: Phase space of an harmonic oscillator. Shown are the iso-energetic “surfaces” — ellipses,
corresponding to oscillators with energies differing by AE in energy. The microcanonical distribution
function is equal to a constant different from zero, in the area Q between these ellipses.

ellipses. The integrals of motion for the oscillator (A.11) can be rewritten, using equa-
tions (A.12), (A.13), as:

q= ? sinw(t +B) p = V2E cos(t + p). (A14)

For this simple system the time average can be calculated in an elementary way. Due
to the periodicity of motion (A.14), the time average of an arbitrary function of the
dynamic variables F(q, p) on an infinite time interval, can be reduced to the average
over the period of the motion T = %”

N
3

F=2 J th{? sinw(t + B), V2E cos w(t + B)}. (A.15)
0

This average depends on E, with E being fixed here. Without changing the value of
(A.15), we can calculate its average over an infinitesimally small interval of energies:

E+AE
F= lim — J dEF
AE—
E
2
E+AE

AILETOZJ'[AE J dEId {—smw(HB) \/_coswt+/5’)} (A.16)

Let us transform from variables E and t to q and p. Using (A.14), we can calculate the
Jacobian of this transformation as:

1 g
3g.p) _ @co:? w(t +p) oy sinw(t + p) _ A1)
o(t,E) |-wV2Esinw(t + B) 55 Cosw(t +p)
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Then we obtain:

_~ . a}
F=lim -2 j dq j dpF(q.p), (A18)

where the integration is performed over the infinitesimally narrow area between the
ellipses of constant energies E and E + AE with AE — 0.

On the other hand we can define the microcanonical distribution for an oscillator,
with probability density p(p, ) equal to a constant (independent of specific values of
p and q) within the area Q between the ellipse p* + w’q* = 2E and ellipse p? + w?q* =
2(E + AE), and equal to zero outside this area (cf. Figure A.1):

w

—— forp,qcQ

P =127 (A19)
P 10 forp,q ¢ Q,

where to guarantee normalization of p(p, q) to unity, we have taken into account that
the actual area of Q is:

A(rtab) = A(%) = # (A.20)

where a and b denote the semi-axes of the ellipse, corresponding to energy E. Then,
the microcanonical average (over phase space) of F(q, p) is equal to:
PPHwtq?=2E
. w
(F) = j dpdqp(p,9)F(¢,p) = lim ——— “ dpdqF(q,p). (A.21)

AE—0 2nTAE
P2 +w?q?=2(E+AFE)

Comparing (A.18) and (A.21) we can see, that in this simplest case of a system with only
one degree of freedom, the time average simply coincides with the microcanonical
average.

In the general case the, as we have seen above, the integrals of the Hamilton equa-
tions can be written as:

Pk = Qi+ B Bos o By @, .. ty)
QG =Pt + BB B A s ... ) (A.22)

or in shortened form:
X=0(t+B1,By B 01,05, ... Q). (A.23)

The time average of an arbitrary dynamic variable F(X) is determined by:

(o)

- 1
F= Th—{rolof Jth(X)

1
= lim
T—oo0

~|

0
J AtF{O(t + By, Bas - - - B> 0, U, . .. )} (A.24)
0
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This average, in general, depends on all 2n - 1 integration constants (integrals of mo-
tion) By, ..., By 1> Ay, - . . &y, €XCept By, on which it does not depend. At the same time,
we have shown before that statistical mechanical averages of any dynamic variables
in equilibrium depend only on one integral of motion — that of energy.? Thus, the
many-particle systems under consideration should satisfy the special property that
the time averages of any single valued dynamical variable is dependent only on the
energy a, = E:

F(X) = fz(E). (A.25)

Such systems are called ergodic. For ergodic systems the time average of any single-
valued dynamical variable is equal to its average over the microcanonical ensemble.
The proof of this statement is rather simple. Consider the microcanonical average:

(F) = J dXF(X)wg(X), (A.26)
where
we(X) = % (A.27)

As the value of (F) does not depend on time, its time average is equal to itself, so that:

T
(F)y = (Fy = Jim % j dt j dXF(X)wg(X). (A.28)
0

Variables X determine the state of the system at time ¢, let us make a transformation to
variables X,, determining the state of the system at ¢ = 0. These variables are related
through the solutions of the Hamilton equations, which can be written as:

X = Ot X,). (A.29)
Then
F(X) = F{®(t,X,)}. (A.30)
Obviously H(X) = H(X,), so that
WalX) = S{H(X) - E} _ 8{H(Xo)—E} _ Wl (A31)

Q(E) Q(E)

2 For fixed external parameters like volume, pressure, external fields etc.
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272 —— A Motion in phase space, ergodicity and mixing

and according to the Liouville theorem dX = dX,,. Thus, after changing the variables
we have:

T
(F) = lim % jdt J dXowg(Xo)F{®(t, X,)}. (A32)
0

Let us change the order of integration over ¢t and X, then:
. T
(F) = JdXowE(XO) Jim jth{@(t,XO)} - JdXOwE(XO)F. (A.33)
0

Due to the assumed ergodicity the time average F depends only on the energy H(X,,),
so that:

F = fe[H(Xy)]. (A.34)
Thus
(F) = [ dXgw(Xo)fe[HOXo). (A35)

But wg(X,) is different from zero only for H = E, so that fz(H) can be taken out of the
integral, putting H = E. Then we get:

(F) = f(E) j dXows(Xo) = fy(E) = F, (A36)

where we have taken into account that the integral is equal to unity, due to the renor-
malization condition. This ends the proof of the equivalence of time and microcanon-
ical averaging for ergodic systems.

It may seem that ergodic mechanical systems just do not exist at all, as the general
time average (A.24) definitely depends on other integrals of motion a5, a3, ..., 3,, be-
sides energy. Consider one of them, e. g. @,(X) = a,. The time average of ®,(X) is obvi-
ously equal to a, and depends not on the energy integral E = a;, but on a,. However, for
ergodic systems the left parts of all integrals of motion ®; = ay, ¥} =B (k=2,...,n),
besides energy, momentum and angular momentum are multivalued functions of the
coordinates and momenta (and can not be transformed to single-valued functions).
This is always so for systems with inseparable variables. Systems with separable vari-
ables are, in this sense, trivial — they are exactly solvable and are also called inte-
grable, their motion is regular (nonrandom) and we do not need statistics at all to
describe their properties.> The restriction to single-valued functions F(p, q) is quite

3 More details on this can be found in [17], where it is shown that in the general case of systems with
inseparable variables, the set of single-valued integrals of motion is limited to those, which are directly
related to general properties of time and translational invariance, as well as to the isotropy of space,
i. e. to energy, momentum and angular momentum conservation laws.
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natural from a physical point of view; for systems at rest we can drop the momen-
tum and angular momentum integrals of motion. Statistical mechanics is dealing with
complicated nonintegrable systems (performing nontrivial motion). In recent decades
a number of explicit examples of such systems, sometimes consisting of rather few
particles, were demonstrated to show all the properties of ergodic motion [35].

A.2 Poincare recurrence theorem

Let us continue our discussion of the system motion in phase space using more ab-
stract language. Consider the phase point (p, q). Let us define the operator of time
translation T(¢) as:

(a(®), p(t)) = T(£)(q(0), p(0)). (A.37)

This operator gives a complete description of the phase point motion and is implic-
itly defined by the Hamilton equations. We shall not try to construct such operators
explicitly for specific systems, but it is clear that, in principle, they always exist. The
Liouville theorem corresponds to the conservation of an arbitrary phase volume I' un-
der the action of the operator T

T(t) = T(H)[(0) = T(0). (A.38)

Using the Liouville theorem, it is rather easy to prove the so-called Poincare recur-
rence theorem [35]. Consider a conservative (H is time independent) mechanical sys-
tem, performing motion in a finite region of its phase space. Let us take some region
(set of points) of the phase space A and chose an initial point z, = (qq, ) in it. We
shall now show that, after a certain (finite) time, the system will necessarily return
to the region A (Poincare theorem), except probably a set of initial points of measure
zero. The proof can be done through reductio ad absurdum. Let us denote as B the sub-
set of points in A, which never return to A. Suppose that after some large time ¢, the
set B moves to B;:

T(t,)B = B,. (A.39)

According to the definition of B the intersection of B, and A is an empty set:

B nA=0. (A.20)
After time interval ¢, = 2¢; we have:
T(2t))B = T(t,)B; = B,. (A.41)
Then also
B,nB; =0. (A.42)
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274 —— A Motion in phase space, ergodicity and mixing

If this is not so, there exist points, which have not left B,;. However, due to time re-
versibility of the Hamilton equations that would mean, that these points could not
have entered B;. This contradicts their past: at ¢ = 0, according to our assumption,
they belonged to A. Continued application of T(nt,)-operator to B leads to an infinite
sequence By, B,, ... of nonintersecting images of B. According to Liouville theorem:

I'(B)=T(B)) =I'(By) =+, (A43)

so that during the motion, the points from B cover the phase volume I' = co. However,
due to the finite nature of the motion of our system, this volume is to be finite. This is
possible only in case of I'(B) = 0, which proves the Poincare recurrence theorem.
From Poincare’s theorem it follows, that the system will return to the initial re-
gion A infinitely many times. It may seem that this result contradicts the irreversible
evolution of many-particle systems, observed in experiments, and the possibility of its
description along the lines of statistical mechanics. Actually, this is not so. To under-
stand this situation, we have to consider the average recurrence time or the duration
of the Poincare cycle. Let us make a rough estimate of this time for the simplest many-
particle system — an ideal gas [30]. Consider N molecules of the gas moving in volume
V. We may understand the recurrence in the sense of a repetition of the state of each
molecule with some finite accuracy Av for its velocity and some Ax for its coordinate.

This accuracy corresponds to an element of the phase volume AT = [mAvAx]*Y, while

2
the total set of possible states of the gas, with fixed energy E = }; % =3 NT, corre-

-2
sponds the phase volume:*
3N/2
T= C3N<m2 va) VN = Gy BNTm)?N 2V N, (A.4t)
i

It is clear, that before returning (with the given accuracy) to the initial position, the
phase point, representing our system, is to pass through ~A—rr states. Let 7 be some
characteristic time for the gas, e. g. mean free time of the molecule. Then, the recur-

rence time can be roughly estimated as:
N 3N/2

N
T vV 3NT vV T
TR”ENQN(E) (mA> <E> <—mA> £ (A.45)

Let us take Ax ~ 0.1(V/N )1/ 3 i.e. of the order of 10 % of the interparticle distance in
our gas, and Av ~ O.1(T/m)1/ 2 i.e. of the order of 10 % of an average velocity (so that
the conditions for its “return” are rather crude). Then, we obtain:

3N/2

3N/2

g ~ T(10N)V (10%) NV, (A46)

4 Here C3y = (23% )>N/2 is related to a constant in the expression for the volume of an n-dimensional

2?2 . .
PR For n > 1, using the asymptotic
,wegetC, = (

sphere V,, = CR", the exact value of this constant being C,, =

)/Ze—n/Z

expression for I-function T'(n/2) ~ 21)?(n/2)"! Z%e)"/ 2,

Brought to you by | Newcastle University
Authenticated
Download Date | 4/7/19 2:03 AM



A.2 Poincare recurrence theorem = 275

For1cm’ ofa gas in normal conditions we have N ~ 108, so that

18
(0% ~ 102" (A.47)

and the ratio of the recurrence time 7 to the mean free time 7 ~ 10~®sec, or to
one second, one year, or even to a characteristic “lifetime” of our Universe
(~10"° years ~ 10" sec), with a logarithmic accuracy the same (!) and of the order
of 10210, Thus, the typical time of the Poincare cycle, even for such a simple system,
is immensely large, and the probability of such a return is immensely small. This leads
to an obvious conclusion, that the most probable behavior of a many-particle system
is, in fact, the irreversible behavior, observed in reality.

Henri Poincare (1854-1912) was a French mathe-
matician, theoretical physicist, engineer, and philos-
opher of science. As a mathematician and physi-
cist, he made many original fundamental contribu-
tions to pure and applied mathematics, mathematical
physics, and celestial mechanics. He was responsible
for formulating the Poincare conjecture, which was
one of the most famous unsolved problems in math-
ematics until it was solved in 2002-2003 by Grig-
ori Perelman. In his research on the three-body prob-
lem, Poincare became the first person to discover a
chaotic deterministic system which laid the founda-
tions of modern chaos theory. He is also considered to be one of the founders of the
field of topology. Poincare made clear the importance of paying attention to the invari-
ance of laws of physics under different transformations, and was the first to present
the Lorentz transformations in their modern form. He is commonly considered as a
co-discoverer of special relativity. Beginning in 1881 and for the rest of his career,
he taught at the University of Paris (the Sorbonne). In 1887, at the young age of 32,
Poincare was elected to the French Academy of Sciences. He became its president in
1906, and was elected to the Academie Francaise in 1908. In physics, the Poincare
recurrence theorem states that certain systems will, after a sufficiently long but finite
time, return to a state very close to, if not exactly the same as, the initial state. This the-
orem is commonly discussed in the context of ergodic theory, dynamical systems and
statistical mechanics. Poincare had philosophical views opposite to those of Bertrand
Russell, who believed that mathematics was a branch of logic. Poincare strongly dis-
agreed, claiming that intuition was the life of mathematics. His famous book “Science
and Hypothesis” contains the idea that creativity and invention consist of two mental
stages, first random combinations of possible solutions to a problem, then a critical
evaluation.
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276 —— A Motion in phase space, ergodicity and mixing

A.3 Instability of trajectories and mixing

Consider the motion of a drop of “phase liquid” in the phase space. The character
of this motion may be very complicated and, as time grows, the borders of the drop
may become irregular, with the drop becoming “amoeba”-like (cf. Figure A.2), filling
different regions of the phase space. The volume of the drop is conserved (Liouville
theorem). Such motion is called mixing. The phase points, which were close to each
other initially, may become very far from each other during this time evolution, and
move in practically independent ways. The property of mixing is natural to expect for
systems, characterized by unstable motion, when phase trajectories, initially close to
each other, become exponentially far away from each other with the growth of time,
i.e. small perturbations of the initial conditions lead to arbitrarily large deviations
of the phase trajectory from unperturbed motion. If the phase space is finite (and we
are interested just in this case — the system moves over the hypersurface of constant
energy!), the phase trajectories can not deviate more than the characteristic size of this
space and begin to intermix in a very complicated way. Denoting by D(t) the distance
between two points in the phase space, belonging to two different trajectories at time ¢,
we can formally define the local instability of motion in the following way [35] — there
exists a direction in phase space for which:

D(t) = Dye™", (A.48)

where the increment of instability (Lyapunov exponent, h, > 0) is, in general, a func-
tion of a point in phase space and has the statistical meaning [35] of an inverse time
of “decoupling” of correlations between trajectories during mixing. It is obvious, that
this picture can be directly related to an idea of the description of entropy growth,
using the coarse-grained distribution function, which we used previously. The ques-
tion arises — whether we can define entropy in such a way, that will allow its use for
dynamical systems, using only the properties of phase trajectories (not distribution
functions)? This problem was solved by Kolmogorov, who introduced the notion of dy-
namic of K-entropy. Consider again the evolution of some initial element of the phase

Figure A.2: Qualitative evolution of a phase drop during mixing.
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volume AT,. According to the Liouville theorem:
AI(t) = AT, (A.49)

but the structure of the phase drop changes with time (cf. Figure A.2). There may ap-
pear “bubbles”, empty regions etc. As t grows, the “bubble” structure becomes more
and more fine, while the external border of the phase drop becomes wider and wider.
Let us take some ¢ (of dimensionality I') and “coarsen” the structure of the phase drop
up to an accuracy of the order of €. Then, qualitatively it is clear that all thin struc-
tures of the drop, with thickness smaller than &, will be effectively “dressed”, so that
the coarse-grained phase volume AL(f) will actually grow with time. Knowing (A.48),
it is easy to understand that

AT(f) = ATe, (A.50)

where h is some quantity, related to the increment of instability of phase trajectories
hy. Then we may define entropy as:

S = InAT(f) = In(ATye™) = ht + In AT,,. (A.51)

We are interested in defining physical characteristics, including entropy S, with high-
est possible accuracy. If coarse graining is defined by &, then it is obvious, that there
is no sense in taking AI'; less than €. Thus, we can put Ay = € and go to the limit of
& — 0. Consider:

£—0t—o00 -0 t—00

lim lim %lnm = lim lim %(ht +Ineg) = h. (A.52)

This expression is the definition of K-entropy h. Let us stress the importance of the

order of taking the limits here. The basic properties of K-entropy are:

1. K-entropy h determines the velocity of the entropy S change due to the purely
dynamic process of the mixing of phase trajectories in phase space.

2. K-entropy h, the increment of local instability h, and the inverse time of decou-
pling of time correlations are of the same order of magnitude.

These properties explain the physical meaning of Kolmogorov’s entropy.

How does the physical entropy S reach its maximum? For ¢ — 0, i.e. defining
the entropy S(t) = ht (t — oo) with arbitrarily large accuracy, the entropy S does not
reach a maximum, but the situation changes if we fix the finite accuracy of the coarse
graining &,. Then, from (A.50) it is easy to find the characteristic time t,, during which
the region AT, = &, is expanded up to the value AT = 1:

1 1

to=—-In—. A.53

0=} n & (A.53)

During this time the phase drop of the size £, homogeneously fills the whole phase
volume and the further growth of entropy stops.
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B Statistical mechanics and information theory

B.1 Relation between Gibbs distributions and the principle of
maximal information entropy

Information entropy

The notion of entropy in statistical mechanics is closely related to the similar notion in
information theory [33]. There exists a wide range of literature, where this relation is
discussed in detail [8, 13]. Below, we shall deal with some of the problems, illustrating
the basic principles, and connecting these fundamental concepts.

In a narrow sense, information theory represents the statistical theory of commu-
nications, i. e. transmission of signals, texts etc. [33]. The main concept in this theory
is that of information entropy, which acts as a measure of the information, contained
in a given communication, text, set of signals etc., which are considered as a more or
less random sequence of symbols or events. More precisely, information entropy gives
the measure of indeterminacy of information, corresponding to a given statistical dis-
tribution of such events. Let p; be some discrete probability distribution of events,
enumerated by index k. Information entropy is defined as [33]:'

n n
H:—Zpklnpk; Zpkzl. (B.1)
k=1 k

In fact, the value of H equals zero if some of p;, = 1, while the remaining p; = 0,
i. e. when the result can be predicted with certainty and there is no indeterminacy in
the information at all. H acquires its maximum value, when all p; are equal, i. e. for
Py = 1/n. It is obvious, that this limiting case corresponds to maximal indeterminacy
— we do not know anything about specific events, all are equally probable (i. e. letters
of the text appear absolutely randomly, in physics this corresponds to an absolutely
random realization of different states of the system etc.). The maximum of information
entropy corresponds to the maximum of our ignorance about events and in this case
our information on these is minimal.

The entropy H is additive for independent events, realized with probabilities u;
and v;, when py = u;vy, so that

H= —Zp,-klnpik = —Zuilnui—kalnvk; Zui =1 ka =1 (B.2)
ik i k i k

For the continuous distribution of events x, characterized by a probability density f (x),
the information entropy is given by:

H=- J dxf(x) Inf(x); def(x) =1 (B.3)

1 For us it is irrelevant here, that in information theory this definition normally uses the logarithm
with base 2, i. e. log,, which is related to measuring information in bits, instead of In.

https://doi.org/10.1515/9783110648485-013
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For independent events, again we have additivity. If f (x,y) = f;(x)f,(y), we obtain:

H=- j dx j dyf oo y) Infx,y) = - j dxf, (0 Inf (x) - j dH) Inhy).  (B4)

The Gibbs entropy defined by the distribution function p(p, q) in phase space is
essentially also the information entropy:

S=- J dlplnp; J dlp =1 (B.5)

and can be considered as a measure of our ignorance (absence of information) of the
details of the microscopic states of the macroscopic system.

For ensembles with a variable number of particles equation (B.5) is generalized
as:

S=- Z _[derN 1npN; z JderN =1 (B.6)
N>0 N>0
Below we consider extremal properties of Gibbs ensembles, which were estab-
lished long before the formulation of information theory. The proofs will be given us-
ing the Gibbs inequality (1.187):

J drp’ ln<%,> >0, (B.7)

where p and p’ are two normalized distributions, defined in the same phase space.
Equality here holds only in the case of p = p'.

Claude Shannon (1916-
2001) was an American
mathematician, electrical en-
gineer, and cryptographer,
creator of information theory.
Shannon founded informa-
tion theory in his landmark
paper, “A Mathematical The-
ory of Communication”, that
he published in 1948. He is,
perhaps, equally well known
for founding digital circuit
design theory in 1937, then a master’s degree student at the Massachusetts Insti-
tute of Technology — he wrote his thesis demonstrating that electrical applications
of Boolean algebra could construct any logical numerical relationship. Shannon
contributed to the field of cryptanalysis for national defense during World War II,
including his fundamental work on codebreaking and secure telecommunications. In
his theory Shannon developed information entropy as a measure of the uncertainty in
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a form mathematically equivalent to Gibbs entropy in statistical mechanics. He never
considered its relation to physical entropy, which was anticipated by Leo Szilard and
developed later by other people, like Leon Brillouin. Information theory’s fundamen-
tal contribution to natural language processing and computational linguistics was
further established in 1951, in his article “Prediction and Entropy of Printed English”,
showing upper and lower bounds of entropy on the statistics of English — giving a
statistical foundation to language analysis. In cryptography he formulated what is
called Shannon’s maxim as “the enemy knows the system”, or “one ought to design
systems under the assumption that the enemy will immediately gain full familiarity
with them”, so that cryptosystem should be secure even if everything about the system,
except the key, is public knowledge. In contrast to “security through obscurity”, it is
widely embraced by cryptographers. In his later life Shannon developed Alzheimer’s
disease and spent the last few years of his life in a nursing home in Massachusetts
oblivious to the marvels of the digital revolution he had helped create.

Extremal properties of microcanonical distribution

Let us prove that the microcanonical distribution corresponds to the maximal infor-
mation entropy among all distributions with the same number of particles in the same
energy layer. Let p be the distribution function of the microcanonical ensemble, while
p' is an arbitrary distribution function, defined in the same phase space and in the
same energy layer, with both satisfying the normalization condition:

.[de' = JdI‘p =1 (B.8)
Substituting p and p’ into inequality (B.7), we obtain:
- j drp'Inp’ < - J drp'Inp = ~Inp J drp’ = - J dlplnp (B.9)

and the proof is complete. In equation (B.9) we used the constancy of the microcanon-
ical distribution p in its energy layer and the normalization conditions for p and p'.

Extremal properties of the canonical distribution
Let us show that the Gibbs canonical distribution corresponds to maximal information
entropy at fixed average energy of the system:

(H) = J dTHp (B.10)

with the normalization condition:

J dfp=1. (B.11)
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Consider the canonical distribution:

p=2Zlexp(-BH); Z- J dr exp(~BH), (B.12)

where 8 = 1/T. Consider p’ — another normalized distribution, corresponding to the
same average energy as the canonical distribution p:

Jdl“p', H-= Jdl‘pH, (B.13)
while in all other respects p’ is arbitrary. Substituting (B.12) to (B.7), we get:
- J drp'Inp’ < - J dlp'Inp=1nZ + B J dlp'H=1InZ + B J dTpH

ie. - J drp' Inp’ < - j dlplnp (B.14)

which completes the proof.

Extremal properties of the grand canonical distribution
Let us give an example of the proof for the quantum case. The entropy of a quantum
ensemble is defined as:

S=-Spplnp, (B.15)
where p is the density matrix. In diagonal representation (cf. (1.175)):

S=- Z wi Inwy, (B.16)
k

which has the explicit form of (B.1) — the information entropy for a discrete sequence
of events (in our case quantum states).
Extremal properties of quantum ensembles can be derived using the inequality:

Spp'Inp’ > Spp’Inp, (B.17)

where p and p’ are arbitrary normalized statistical operators. Equality again holds only
for the case of p = p’. This general inequality follows from In x > 1-1/x, which is valid
for x > 0 (equality holds for x = 1). Substituting x = p'p! and averaging over p', we
have:

Spp'In(p'p™") = Spp’(1-pp' ™) =0 (B.18)

as both density matrices are normalized to unity and we can make permutations of
operators under Sp.
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Let us demonstrate that the grand canonical quantum ensemble corresponds to
the maximum of information entropy at fixed average energy:

(H) = SppH (B.19)
and average number of particles:
(N) = SppN (B.20)
with the normalization:
Spp =1 (B.21)

Let us write the grand canonical ensemble as:

(B.22)

;e
T

Q—H+yN> -2
T

=Sp exp(—H_MN)

-

Then, from inequality (B.17) we obtain (assuming that p' is an arbitrary density matrix
with the same averages (B.19), (B.20), (B.21)):

p'<9_ﬂ+ﬂ>] — _Spplnp, (B.23)

-Spp'Inp’ <-Spp’Inp = -
Spp'lnp < -Spp'lnp=-Spip{ = - T+

which proves our statement. Here we used (B.19), (B.20), (B.21), which are valid for p
andp',i.e.

Spp'H =SppH, Spp'N =SppN. (B.24)

These extremal properties of Gibbs ensembles can be used as their definitions.
This gives another approach to the justification of equilibrium statistical mechanics.?
From our discussion it becomes clear that the physical entropy describes the lack of
information on the real microscopic structure of a multi-particle system. This lack of
information leads to the possibility of different microscopic states, which we can not
discern from each other, which corresponds to real randomness in hidden degrees
of freedom of the system. It is maximal, when the system is in equilibrium, and we
know almost nothing about the details of its microscopic organization, and its state is
completely determined by a few thermodynamic parameters. Attempts to clarify the
microscopic details of the internal organization of the system will inevitably perturb
the equilibrium state and lead to lower values of the entropy.

2 In fact, we have just shown, that different versions of the Gibbs distribution correspond to the max-
imum of thermodynamic entropy with specific additional conditions. This naturally defines the corre-
sponding equilibrium states.
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Leo Szilard (1898-1964) was a Hungarian—German—
American physicist and inventor. He anticipated the
nuclear chain reaction in 1933, patented the idea of
a nuclear reactor with Enrico Fermi in 1934, and in
late 1939 wrote the letter for Albert Einstein’s signa-
ture that resulted in the Manhattan Project that built
the atomic bomb. In addition to the nuclear reactor,
Szilard submitted patent applications for a linear ac-
celerator in 1928, and a cyclotron in 1929. He also con-
ceived the idea of an electron microscope. Between
1926 and 1930, he worked with Einstein on the devel-
opment of the Einstein refrigerator. After Adolf Hitler
became chancellor of Germany in 1933, Szilard urged his family and friends to flee
Europe while they still could. Szilard moved to the United States in 1938, where he
worked with Enrico Fermi on means of achieving a nuclear chain reaction. He was
present when this was first demonstrated on December 2, 1942. He worked for the
Manhattan Project’s Metallurgical Laboratory on aspects of nuclear reactor design.
His doctoral dissertation was praised by Einstein and involved a long-standing puzzle
in the philosophy of thermal and statistical physics known as Maxwell’s demon. The
problem was thought to be insoluble, but in tackling it Szilard recognized the connec-
tion between thermodynamics and information. In 1929 Szilard published a second
paper on Maxwell’s Demon “On the reduction of entropy in a thermodynamic system
by the intervention of intelligent beings”, that had actually been written soon after
the first. This paper is the first, where (negative) entropy was related to information.
As such, it established Szillard as one of the founders of information theory, but he
did not pursue it further.

B.2 Purging Maxwell’s “demon”

An interesting relation between statistical thermodynamics and information theory
can be studied by analyzing the problem of Maxwell’s demon [8]. We have just noted
that attempts to get information on the details of the microscopic organization of the
system by interfering with microscopic processes within the system can move it out
of the equilibrium state. Probably the first example of such interference was proposed
by Maxwell, introducing the paradox of a “demon”, which “works” against the second
law of thermodynamics. The simplest variant of such a demon can work as follows.
Consider a vessel with a gas in equilibrium state, with a wall inside, separating the
vessel into parts A and B, and a hole in the wall with a door. We can imagine, that our
demon is sitting near this door and can let fast molecules passing through the hole,
say from A to B, while from B to A it allows the passage of slow molecules. Then, after
some time interval, since the start of these activities, in part Bwe shall collect more fast
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B.2 Purging Maxwell’s “demon” = 285

Figure B.1: Maxwell’s demon.

molecules, than in part A. The thermodynamic equilibrium will be broken, the tem-
perature of the gas in part B will become higher than in part A. This situation explicitly
contradicts the second law, it is not difficult now to make heat pass from a colder part
of the vessel to a warmer part. Obviously, we may replace the demon by some auto-
matic device, which will violate the second law in this way. More so, it seems much
more probable that a kind of “intellectual being” will deal with this process even more
effectively. At the same time, we are sure that the second law is of universal nature and
all processes in Nature should obey it. In fact, this is a correct conclusion and we shall
see shortly, that no demon will be able to overcome this law via decreasing entropy in
a closed system, which includes himself (itself). The paradox of Maxwell’s demon was
first resolved by Szilard, who used clear and simple arguments, as will be discussed
below [8].

The essence of Szilard’s argument is, that the demon has to observe separate
molecules, to separate “fast” molecules from “slow”. This observation can be made
using some physical methods, e.g. he can shine on molecules using electric light,
so that he can see them and start to act. Thus, the closed system to be analyzed may
consist of:

— agas at finite temperature T = T,,, contained in a vessel with a wall and a door;
— ademon, operating the door;
— an electric light with a charged cell, giving energy to an electric bulb.

The cell energy heats the wire in the bulb up to some high enough temperature T; > T,,.
This allows us to obtain the light with quantized energy hw; > T, which is necessary
for these quanta to be recognized on the background of the “black body” radiation,
which in turn is always present within the vessel with a gas with temperature T,. Dur-
ing the experiment, the cell gives energy E to the bulb, the bulb wire radiates this
energy and looses entropy. This change in entropy is estimated as:
E
Sp=—— B.25

=1 (B.25)
and it is introduced to the gas as a negative entropy. With no interference from the
demon’s side, the energy E is absorbed by gas at temperature T,j, and we observe the
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286 —— B Statistical mechanics and information theory

total growth of entropy:

E E E

S=—+S8=—-—=—>0. B.26

ST, T (B.26)
Consider now the demon at work. It (or he) can find a molecule only in the case where
it will scatter at least one quantum of energy hw, from the molecule to its (his) “eye”

(or to photomultiplier). This inevitably leads to the growth of demon’s entropy:
AS; = —. (B.27)

The obtained information can be used to decrease the entropy of the system. The initial
entropy of the system is given by:

So =1nQy, (B.28)

where Q is the statistical weight of the (closed) system. After getting the information,
the system is defined in more detail, Q, is decreased by some value p:

Ql = QO —p. (B.29)
This leads to a decrease in entropy:

AS; =S, - Sy =In(Qy -p) - InQ, = —QE (B.30)
0

as in most practical cases we have p « Q. The total balance of entropy is expressed
by:

AS,+AS; =2 -2 50 (B.31)

as hw,/Ty > 1, but p/Qq < 1. Thus, as a result, the entropy of the closed system in-
creases, in accordance with the second law.

Let us consider this situation in more detail. Suppose that after some time, the
demon has created the temperature difference AT between parts A and B of the vessel:

TB>TA; TB—TA:AT

TB = TO + %AT, TA = TO - %AT (B.32)

After that, the demon chooses a fast molecule in the region A with kinetic energy % T+
€,) and sends it to the region B. Then he chooses a slow molecule in B with kinetic
energy %T(l —&,) and allows it to pass to the region A. To observe both molecules, the
demon needs at least two light quanta, which leads to a decrease of his entropy:

h
AS, = 2% >2. (B.33)

0
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B.2 Purging Maxwell’s “demon” = 287

The exchange of molecules leads to a transfer of energy from A to B:

AQ = ;T(s1 + &), (B.34)
which, taking into account (B.32), corresponds to a decrease of total entropy:
1 1 AT 3 AT
ASi :AQ<T_B — T—A> = —AQF = —5(814-82)?. (B.35)

The values of €, and ¢, are, most probably, small and AT « T, then:
AS; = —%n; n <1, sothat

AS; +AS; = (2)bﬂ S > >0 (B.36)
T, 2
in agreement with the second law.

In principle, we can analyze another situation, that of the demon at low temper-
ature, when its temperature T, « T,. In this case it can absorb quanta hw, radiated
by molecules of the gas at temperature T,. Then, instead of conditions T; > T, and
hw, > T, used above, we have hw > T, and T, < T, and we can repeat our arguments.
We always need some difference of temperatures, or the demon will not be able to
operate. But in any case it will not be able to overcome the second law.

These results lead to an important conclusion: physical measurements of rather
general nature can lead to an increase in entropy. There is some low limit, below which
most measurements become impossible. A rough estimate for this limit corresponds
to a decrease in entropy of ~1(~ kg). A more accurate estimate gives the value of this
limit as kg In 2 = 0.7kg, per one bit of acquired information [8].

However, this is not the end of the story of Maxwell’s demon. Though all argu-
ments, given above, are undoubtedly valid for typical physical measurements, more
recent studies demonstrated the specific ways to determine the positions of the mole-
cules, not leading to an appropriate increase in entropy [4]. It was also discovered that
some operations with information data, e. g. writing data from one device to the other,
can under certain conditions be performed without thermodynamic limitations. How-
ever, there is still a deep reason why the appropriate demon will not be able to break
the second law. The thing is that it first has to “forget” the results of the previous mea-
surement, i.e. destroy information (and thus “pay” in thermodynamic sense). Any
memory state (e. g. of a computer) is represented by appropriate physical states (elec-
tric current, voltages, magnetizations etc.). The corresponding cleaning of memory, as
was first noted by Landauer, is a thermodynamically irreversible operation, leading to
a general increase in entropy of the closed system.’

3 If the demon possesses a very large memory, it can surely simply remember the results of all mea-
surements, so that there are no irreversible actions. However, this situation does not correspond to
the thermodynamic cycle. Demon just increases the entropy of its memory to decrease the entropy of
surrounding medium.
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288 —— B Statistical mechanics and information theory

Below we briefly explain the Landauer principle of information erasure, analyzing
the so-called Szilard engine model.” The Szilard engine consists of a one-dimensional
cylinder, whose volume is V,,, containing a one-molecule gas and a partition that
works as a movable piston. The operator, e. g. a demon, of the engine inserts the par-
tition into the cylinder, measures the position of the molecule, and connects to the
partition a string with a weight at its end. These actions by the demon are ideally per-
formed without energy consumption [4]. The demon’s memory is also modeled as a
one-molecule gas in a box with a partition in the middle. Binary information, 0 and 1,
is represented by the position of the molecule in the box, on the left and on the right,
respectively.

The following is the protocol to extract work from the engine through information
processing performed by the demon (see Figure B.2), where we denote “SzE” for the
Szilard engine and “DM” for the demon’s memory at each step of the protocol. Initially,
the molecule in the cylinder moves freely over the volume V.

Step 1(SzE) The partition is inserted at the center of the cylinder.
Step 2 (SzE, DM) The demon measures the location of the molecule, either the left

(“L”) or the right (“R”) side of the partition. The demon records the measurement

outcome in his memory. When it is L (R), his memory is recorded as “0” (“1”).

Szilard Engine Demon Memory
o
= e ] (o] Jo X\

Step 1 L [

Vol2 (Vo2

Step 2

Step 2 L+ Step2 | | ~

* Lo i) To
Step 3 L& M

[~ ]

Q

Step4 L& [

. e Step 5

£ Step6
J o

Figure B.2: A protocol of Szilard engine (left side) and demon’s memory (right side). This figure
shows an example in which the molecule was found on the right-hand side of the cylinder. In the
demon’s memory, the state after removing the partition is denoted by “x”.

4 This example is taken from A. Hosoya, K. Maruyama, Y, Shikano. Phys, Rev. E 84, 061117 (2011).
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B.2 Purging Maxwell’s “demon” = 289

Step 3 (SzE) Depending on the measurement outcome, the demon arranges the de-
vice differently. That is, when the molecule was found on the left (right) hand
side, i. e., the record is O (1), he attaches the string to the partition from the left
(right). In either case, by putting the cylinder in contact with the heat bath of tem-
perature T, the molecule pushes the partition, thus exerting work on the weight,
until the partition reaches the end of the cylinder. The amount of work extracted
by the engine is

W =ksTIn2, (B.37)

as can be seen by applying the combined gas law in one dimension.

Step 4 (SzE) The demon removes the partition from the engine, letting the molecule
return to its initial state.

Step 5 (DM) The demon removes the partition from his memory to erase information.

Step 6 (DM) In order to reset the memory to its initial state, the demon compresses
the volume of the gas by half.

In order to complete the cycle for both the Szilard engine and the memory, the demon
has to reset the memory, which follows the erasure of one bit of information. More pre-
cisely, the physical process of information erasure and memory resetting described in
Steps 5 and 6, goes as follows. The box is in contact with the thermal bath at the same
temperature T as that of the engine. The record in memory can be erased simply by
removing the partition, since the location of the molecule becomes completely uncer-
tain. To bring the memory back to its initial state, e. g., 0, one has to compress the gas
by a factor two, by sliding a piston from the right end to the middle. The necessary
work for this compression is kT In 2, which exactly cancels out the work gain by the
engine (B.37).

Let us look at the same process in terms of thermodynamic entropy. By Steps 1
and 2, the volume of the gas in the engine is halved, regardless of the outcome of the
measurement. As the entropy change of an ideal gas under the isothermal process is
given by AS = S(V') - S(V) = kgIn(V'/V), the entropy of the engine is lowered by
kg In 2. The isothermal expansion in Step 3 increases the entropy of the gas by kg 1n 2,
while that of the heat bath is decreased by the same amount. As far as the Szilard
engine and its heat bath are concerned, the net result is an entropy decrease of kz In 2.
This is exactly canceled out by the entropy increase due to information erasure and
the reset performed in Steps 5 and 6.

These last two steps are of crucial importance when closing a cycle of memory.
Information erasure in Step 5 is an irreversible process and increases the thermody-
namic entropy by kg In 2. The isothermal compression to reset the memory in Step 6
requires work and dissipates an entropy of kz In 2 to its heat bath. This is the essence of
the Landauer-Bennett mechanism that finally resolves the Maxwell’s demon paradox.
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C Nonequilibrium statistical operators

C.1 Quasi-equilibrium statistical operators

There have been many attempts to construct a general formulation of nonequilibrium
statistical mechanics along the lines of the general Gibbs approach to equilibrium sta-
tistical mechanics. Below, we briefly discuss one of the most popular formulations,
developed essentially by Zubarev and coworkers [37, 25].

In classical nonequilibrium statistical mechanics we have to analyze solutions of
the Liouville equation (1.50) for the general statistical distribution function p:

op
g = {H7p}> (C'l)

where {H, p} denote the Poisson brackets (1.49) for H and p.
The quantum Liouville equation (1.128) for the general density matrix p (statistical
operator) in operator form is written as:

ap
ih— = [H,p]. C.2
5 = HP] (C.2)
Below we consider only the quantum case, since the classical equations can be for-
mulated in a similar way.
The formal solution of the Liouville equation (C.2) can be written as:

pt) = Ult, to)p(to) U™ (t, t), (C3)

where p(t,) is an arbitrary statistical operator at the initial time ¢,, while U(t, t,)) is the
operator of time evolution, determined by the equation:

WL - Lhue, g (C4)
with initial condition U(t,, t;) = 1. However, this solution can be useful only in case of
an appropriate choice for the statistical operator p(t,) and initial moment ¢,. A typical
example is linear response theory, where we choose t, — —co and p(—oo) is assumed
to be an equilibrium Gibbs ensemble. Thus, the main problem of nonequilibrium sta-
tistical mechanics is not reduced to finding the formal solutions of the Liouville equa-
tion, but to the proper choice of initial conditions.

Note that, depending on the specific problem, the number of parameters, neces-
sary to describe the nonequilibrium state of a system, depends on the characteristic
time-scale of interest to us. For larger time-scales we actually need a smaller num-
ber of such parameters. For example, at the hydrodynamic stage of a nonequilibrium
process it is sufficient to deal only with the average values of energy, momentum and
particle densities. This idea of a reduced description of nonequilibrium processes at

https://doi.org/10.1515/9783110648485-014
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292 —— C Nonequilibrium statistical operators

large enough intervals of time is basic for almost all theories of nonequilibrium pro-
cesses (cf. our discussion of the derivation of the kinetic equations in Chapter 10). It
was clearly formulated first by Bogolyubov.

We are interested in solutions of the Liouville equation for not very short time
intervals, when the description of nonequilibrium state can be achieved with some
set of operators P,,, where the index m may be both discrete or continuous. We shall
look for those solutions of the Liouville equation, which depend on these operators
and its conjugated parameters F,,(t), which will be explained a bit later. Depending
on the choice of the operators P,,, such an approach is possible for both the kinetic
or hydrodynamic stage of a nonequilibrium process. For the hydrodynamic stage we
can choose P,, as operators of energy, momentum and particle densities H(r), p(r) and
n(r). For the kinetic stage P,, may be chosen as the appropriate one-particle density
matrices.

To formulate a proper initial condition for the Liouville equation, we now intro-
duce the notion of the quasi-equilibrium statistical operator. It can be defined similarly
to that we have used in our discussion of the equilibrium statistical operators in Ap-
pendix B. Let us assume that our nonequilibrium state is characterized by the set of
the averages of operators P,,. The quasi-equilibrium statistical operator can be defined
as corresponding to the extremum of information entropy:

S=-Spplnp (C.5)
under additional conditions of fixing the average values of P,,:
SpPPy, = (Py)' (C.6)
and the normalization condition:
Spp=1 cn
To solve this problem we can look for the extremum of the following functional:
L(p) = -Spplnp - ;Fm(t) SppP,, — (D(t) - 1) Spp, (C.8)
where F,,(t) and @(t) — 1 are the appropriate Lagrange multipliers. Demanding
8L(p) = — Sp{ [lnp +D(t) + ZFm(t)Pm]ap} =0 (c9)
m

for arbitrary variations §p, we get the quasi-equilibrium statistical operator as:
o= exp{—CD(t) - ZFm(t)Pm} = exp{-S(P,,, 1)}, (C10)
m
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C.1 Quasi-equilibrium statistical operators =— 293

where
@(t) = InSp exp{— ZFm(t)Pm} (C.a1)

and
S(Pyst) = @(t) + ) Fyy(t)Py, (C12)
m
is the entropy operator for a quasi-equilibrium ensemble.
Conjugate parameters F,, are determined by demanding that the physical aver-

ages from the total density matrix coincide with the averages, calculated with the
quasi-equilibrium statistical operator:

SppP,, = Spp/P, (C13)
or

(Pt = (Pt (C.14)

The entropy of the quasi-equilibrium ensemble is:

t
S =—(Inp); = (S(Pp, 1)) = D(t) + Y Fu(t)(Ppa);
m
=O(t) + Y (P (C.15)
m

Thus, by construction, the quasi-equilibrium statistical operator (C.10) corresponds
to the extremum (in fact maximum!) of information entropy, at fixed values of the av-
erages (P,,) and with normalization, in the same way as equilibrium Gibbs ensembles
correspond to the maximum of information entropy, at fixed average values of the ap-

propriate integrals of motion! (cf. Appendix B). In the particular case of the hydrody-
namic regime we can take:

FO(r> t) :ﬁ(r’t)) PO :H(r)
Fi(r,t) = -B(x, t)v(r, ¢), P, = p(r) C18)

Fy(t,£) = —B(x, 6)| u(r, t) - gvz(r, 0], Py =n),

1 In the equilibrium state (C.10) naturally reduces to either the canonical distribution
p=exp{-®-pH}, ®=InZ=1InSpe?? (C.16)
with @ = —F/T, or to the grand canonical distribution
p =exp{-®-B(H - pN)}, ®=InZ =InSp g PHHN, (a7

where ® = -Q/T.
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where ﬁ’l(r, t), u(r,t) and v(r, t) are the (local!) temperature, chemical potential and
velocity.

The quasi-equilibrium statistical operator (C.10) guarantees the validity of the
thermodynamic relations between @, F,, and S 2

oS

o) ¢
=—(P ), ——
e SR

5F 0 - =F,(t) (C19)

so that F,, (t) and (Pm)f are each other’s conjugate.

However, the quasi-equilibrium statistical operator, defined as in equation (C.10),
does not satisfy the Liouville equation and does not describe nonequilibrium pro-
cesses. At the same time, as we shall see below, it can be used as a proper initial
condition to the Liouville equation, to find the general form of the nonequilibrium
statistical operator.

Dmitry Nikolaevich Zubarev (1917-1992) was a
Soviet theoretical physicist known for his contribu-
tions to statistical mechanics, nonequilibrium ther-
modynamics, and to the development of the double-
time Green’s functions formalism. Dmitry Zubarev was
born in Moscow in the family of an engineer. In 1941
he graduated from the Physics Department at Moscow
State University and soon after that, on 25 June 1941,
volunteered to participate in the Second World War.
He participated in the Battle of Moscow and met the
end of the war in Berlin. After the war he worked for
several years in the Soviet Atomic project. In this pe-
riod of time he was greatly influenced by Nikolay Bogolyubov and Andrei Sakharov.
Then, in 1954 he moved to Steklov Institute of Mathematics, where continued to work
for the rest of his life. He made a significant contribution to the theory of double-time
temperature Green’s functions in statistical mechanics, where his work became world-
famous. In the period 1961-1965, he developed a method of nonequilibrium statistical
operator, which is now a classical tool in the statistical theory of nonequilibrium pro-
cesses. This method allowed him to include nonequilibrium phenomena in the frame-
work of statistical mechanics in a natural way following the ideas of Josiah Willard
Gibbs. Using this method, he constructed relativistic thermodynamics and relativistic
hydrodynamics, the statistical transport theory for systems of particles with internal
degrees of freedom, and the statistical thermodynamics for turbulent transport pro-
cesses.

2 Ifindex mis discrete, the functional derivatives in (C.19) are replaced by the usual partial derivatives.
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C.2 Nonegquilibrium statistical operators and quasi-averages

Both the classical (C.1) and quantum Liouville equations (C.2) are symmetric with re-

spect to time inversion (in the classical case this corresponds to t — —t, reversal of the

momenta (velocities) of all particles and of the direction of the magnetic field). How-
ever, the solution of the Liouville equation is unstable to small perturbations, breaking
this symmetry.

Let us introduce into the Liouville equation an infinitesimal “source”, which sat-
isfies the following requirements:

1. the source is breaking time reversal invariance of the Liouville equation and goes
to zero for € — 0 (after the thermodynamic limit);

2. the source selects retarded solutions of the Liouville equation. This requirement
determines the sign of € > 0, ¢ — +0. Advanced solutions, corresponding to the
opposite sign, will lead to a decrease of the entropy with time;

3. the source becomes zero for p equal to the quasi-equilibrium statistical operator
p; (C.10). For the equilibrium state the source is just absent.

We may consider two ways to introduce the source into the Liouville equation. The
first one is to introduce this infinitesimal source directly into the r. h.s. of Liouville
equation:

9 1
L+ —[peH] = ~e(p, ~p), (C.20)

where p — +0, after taking the thermodynamic limit (during calculations of statis-
tical averages). This infinitesimal source breaks the time reversal invariance of Liou-
ville equation, as the L. h. s. changes sign under this reversal, while the r. h. s. does not
change.

Let us rewrite equation (C.20) in the following form:

d
E(eﬁpg(t, 1) = ee“py(t, t), (C.21)

where

pg(t> t) = U+(t) O)pg(t: O)U(t: O)
pi(t,t) = U'(t,0)py(t,0)U(t, 0)

U(t,0) = exp{—i%} (C.22)
(H is assumed to be time independent) and we introduced the notations:
Pe = pg(t: 0)) P = P(t) 0) (C-23)
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Integrating equation (C.21) from —oco to t and assuming that lim,_,_. p(t,t) = O, we
get:

t t
pe(t,t)=¢ J e 0p (b, t)dty = € j Upt+tt+t)dt. (C.24)

—00 —00

Finally, the solution of Liouville equation (C.20) gives the nonequilibrium statistical
operator in the following form:

t
pe = pe(t,0) = (£, 0) = € J o (t+t,t)dt'. (C.25)

—00

Integrating by parts, we can rewrite equation (C.25) as:

0 1
pe=py+ J dt'e®! Jdre’fs“”"")s(t +t e Vst + ), (C.26)
—00 0
where
, _05(t,0) 1
S(60) = ===+ = [S(¢,0),H]
S(t,t") = U*(t,0)8(t,00U(t', 0) (c.27)

defines the operator of entropy production, which can be proved to be positive defi-
nite [25].

The parameters F,,(t), entering the expression for the entropy operator are cho-
sen so that the average values of P,,, calculated with the nonequilibrium statistical
operator (C.25), coincide with the averages over the quasi-equilibrium statistical op-
erator (C.10):

(P = (P, (C.28)
where

()= slil?o SP(pe ). (C.29)

Then (Pm)t and F,,(t) become conjugate parameters, so that:

60 _ t_ t
BF.(6) Py = —(Pp). (C.30)

The nonequilibrium statistical operator (C.25) can be used to calculate the average
value of an arbitrary operator A as:

(A) = lim Spp,A = <A>, (C.31)
&—+0
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which is a typical quasi-average, as introduced by Bogolyubov (cf. discussion in Chap-
ter 8). Applying (C.31) to the operators P,, and taking into account (C.28) we obtain the
transport equations:

0 . , . .
5;<Pm>§:<Pm>f=EEHbSpngm::<Pm>. (C.32)

The second way to introduce infinitesimal sources uses the fact that the logarithm
of a statistical operator satisfying the Liouville equation, also satisfies the Liouville
equation:

dlnp
ot

+%Mnm=a (C.33)

We may introduce an infinitesimal source directly into equation (C.33) as:

dln 1
atpg + E[lnpg,H] = -¢(lnp, - Inpy), (C.34)

where € — +0 is again taken after the thermodynamic limit. Once again we see, that
this extra source breaks the time reversal symmetry of equation (C.33).
Let us rewrite equation (C.34) as:

%(e‘“ Inp,(t,t)) = ee” Inp(t,t). (C.35)

Integrating equation (C.35) from —co to t, we obtain:

t 0
Inp,(t,t) =€ J e Inp,(ty, t)dt; = € J e Inpy(t+ 't +t')dt (C.36)
(0]

% _
so that this version of the nonequilibrium statistical operator is written as:

0
pe = Pe(t,0) = exp{lnp,(t,0)} = exp{—s j dt'e™ Inp,(t + t',t')]», (C.37)

-0

where again € — +0 after taking the thermodynamic limit. After partial integration,
we can rewrite (C.37) as:

0
pe = €Xp {—E(T,_(/))} = exp{—S(t, 0) ++ J dt'eet,S(t + t',t')}. (C.38)

—00

The parameters F,,(t), entering the expressions for S(¢,0) and entropy production
S(t,0), are defined, as above, by equations (C.28).

It can be shown that the nonequilibrium statistical operator (C.38) corresponds to
the extremum of information entropy (C.5) under the additional conditions of fixing
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(P (")) = SppP,,(t') for any previous moment in time —co < t' < 0 and the usual
normalization condition.

Nonequilibrium statistical operators (C.25), (C.38) were used by different authors
to derive equations for hydrodynamics, relaxation equations and kinetic equations
[25]. It can be shown that in the lowest orders of interactions, or in case of small ther-
modynamic perturbations, both (C.25) and (C.38) lead to the same transport equations
(C.32). However, the question of the equivalence or nonequivalence of these forms of
nonequilibrium statistical operators is still open. A detailed discussion of nonequilib-
rium statistical operators and applications to various physical problems can be found
in [25].
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