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Preface

In this book we present a review of theoretical and experimental works on
the problem of mutual interplay of Anderson localization and superconduc-
tivity in strongly disordered systems. Superconductivity exists close to the
metal-insulator transition in some disordered systems such as amorphous
metals, superconducting compounds disordered by fast neutron irradiation
etc. High-temperature superconductors are especially interesting from this
point of view. Mainly bulk systems are considered, superconductor-insulator
transition in purely two-dimensional disordered systems is not discussed in
any detail, though nowadays it is a very active field of both experimental
and theoretical research.

We start with brief discussion of modern aspects of localization theory
including the basic concept of scaling, self-consistent theory and interaction
effects. In fact we try to explain these concepts in some detail as this ma-
terial is not so well known to the majority of people working in the field of
superconductivity. After that we analyze disorder effects on Cooper pairing
and superconducting transition temperature as well as Ginzburg—Landau
equations for superconductors which are close to the Anderson transition.
A necessary generalization of usual theory of “dirty” superconductors is
formulated which allows to analyze anomalies of the main superconducting
properties close to disorder-induced metal-insulator transition. Under very
rigid conditions superconductivity may persist even in the localized phase
(Anderson insulator).

Strong disordering leads to considerable reduction of superconducting
transition temperature 7. and to important anomalies in the behavior of
the upper critical field H.s. Fluctuation effects are also discussed. In the
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vicinity of Anderson transition inhomogeneous superconductivity appears
due to statistical fluctuations of the local density of states.

Although our interest is mainly in theoretical aspects of the problem,
we briefly discuss a number of experiments demonstrating superconduc-
tivity close to the Anderson transition both in traditional and high-T,
superconductors. In traditional systems superconductivity is in most cases
destroyed before metal-insulator transition. In case of high—7. supercon-
ductors a number of anomalies shows that superconductivity is apparently
conserved in the localized phase before it is suppressed by strong enough
disorder.

Essentially these lecture notes are based on previous reviews [Sadovskii
M.V. (1993); Sadovskii M.V. (1995); Sadovskii M.V. (1997)], and on a num-
ber of lectures and review talks by the author in different places and insti-
tutions. The material presented below in many respects reflects personal
research interests and results of the author and therefore does not contain
the thorough review of all works in the field.

The author 1s grateful to all his collaborators during the research work
on superconductivity and localization, especially to Prof. L. N. Bulaevskii
whose insights were so important at early stages of this work. In recent years
I have benefited very much from the joint work with Dr. E. Z. Kuchinskii.
I am also grateful to Dr. A.l.Posazhennikova for her help during the most
recent work. Useful discussions of experimental situation with Prof. B. N.
Goshchitskii and Prof. A. V. Mirmelstein are very much appreciated.

My research in this field in recent years was supported in part by the the
grants of the Russian Foundation of Basic Research N?93 —02 — 2066, 96 —
02 — 16065, 99 — 02 — 16285 as well as by the grant the Russian Ministry of
Science Program on High-Temperature Superconductivity N°96 — 051.

I am especially grateful to Dr. K.K.Phua of World Scientific for the
invitation to publish this book.

Michael V. Sadovskii, Ekaterinburg, 1999
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Chapter 1
INTRODUCTION

The concept of electron localization [Anderson P.W. (1958)] 1s basic for
the understanding of electron properties of disordered systems [Mott N.F.
(1974); Mott N.F, Davis E.A. (1979)]. Besides these classic references a
number of review papers exists, extensively discussing more modern as-
pects of this problem [Sadovskii M.V. (1981); Anderson Localization (1982);
Lee P.A., Ramakrishnan T.V. (1985); Sadovskii M.V. (1986); Vollhardt D.,
Wolfle P. (1990); Suslov .M. (1998)]. According to this concept introduc-
tion of sufficiently strong disorder into a metallic system leads to spatial
localization of electronic states near the Fermi level and thus to a transition
to dielectric state (Anderson transition). After this transition dc¢ conduc-
tivity (at zero temperature, T = 0) vanishes, despite the finite value of
electronic density of states at the Fermi level (at least in one-electron ap-
proximation).

At the same time it 18 well-known that even the smallest attraction
of electrons close to the Fermi level leads to formation of Cooper pairs
and the system becomes superconducting at sufficiently low temperatures
[Bardeen J., Cooper L.N., Schrieffer J. (1957); Gennes de P.G. (1966)]. It is
also known that the introduction of disorder which does not break the time—
reversal invariance (normal, nonmagnetic impurities etc.) does not seriously
influence superconducting transition temperature 7, and superconductiv-
ity in general (Anderson theorem) [Abrikosov A.A., Gorkov L.P. (1958);
Abrikosov A.A., Gorkov L.P. (1959); Gorkov L.P. (1959); Anderson P.W.
(1959)].

Thus a problem appears of the mutual interplay of these two possible
electronic transitions in a disordered system which leads to quite different
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(even opposite) ground states (insulator or superconductor). This problem
is very important both from theoretical and experimental points of view.
Actually superconducting properties of many compounds depend strongly
on structural disorder. In this respect we can mention amorphous systems
(metallic glasses) and superconductors disordered by different forms of irra-
diation by high-energy particles (fast neutrons, electrons, heavy-ions etc.).
It appears that in many of these systems superconductivity is realized
when the system in normal state is quite close to the metal—insulator
transition induced by disorder. In this case many anomalies of supercon-
ducting properties appear which cannot be satisfactorily explained within
the standard theory of “dirty” superconductors [Gennes de P.G. (1966);
Abrikosov A.A.; Gorkov L.P. (1958); Abrikosov A.A., Gorkov L.P. (1959);
Gorkov L.P. (1959); Anderson P.W. (1959)]. These include rather strong
dependence of T, on disorder in apparent contradiction with Anderson the-
orem, as well as some unusual behavior of the upper critical field H..».

The discovery of high-temperature superconductivity in metallic oxides
[Bednorz J.G., Miiller K.A. (1986); Bednorz J.G.,Miiller K.A. (1988)] has
lead to the entirely new opportunities in the studies of strong disorder ef-
fects in superconductors. Very soon it had been established that high—T,
superconductors are quite sensitive to structural disordering which leads to
rather fast destruction of superconductivity and metal—insulator transi-
tion. However, the high values of initial 7, as well as a small size of Cooper
pairs and quasi-two dimensional nature of electronic states in these systems
are very appropriate for the studies of the mutual interplay of localization
and superconductivity [Sadovskii M.V. (1989)]. It may be stated with some
confidence that in these systems superconductivity can be observed even in
the region of localization (Anderson insulator).

This book is mainly concerned with theoretical aspects of localization
and superconductivity close to Anderson transition. However, we shall pay
some attention to experiments demonstrating the importance of localiza-
tion phenomena for the correct analysis of superconductivity in strongly
disordered systems. Special emphasis will be on the experiments with high—
T, superconductors. We shall limit ourselves with discussing only three-
dimensional and quasi-two-dimensional (in case of HTSC) systems, practi-
cally excluding any discussion of purely two-dimensional systems, which are
quite special both in respect to localization and superconductivity. In this
case we refer a reader to a number of reviews [Ramakrishnan T.V. (1989);



Belevtsev B.I. (1990); Liu Y., Goldman A.M. (1994)] which are specifically
concerned with superconductivity in purely two-dimensional case. Only
sometime during our discussion we shall briefly refer to some aspects of
this problem, which is becoming a field of very active research in recent
years.

We must stress that the material presented in this book is concerned
mainly with the personal interests of its author and we apologize to those
people whose important contributions to this field will not be discussed in
detail or even will be missed. At the same time, we shall try to present
here some detailed discussion of rather wide number of problems, which
hopefully may be useful for beginners. Of course, it is assumed that the
reader has some basic knowledge of solid—state theory at the graduate level,
as well as some standard theoretical approaches, such as Green’s functions
or modern theory of critical phenomena. In this Introduction we shall try
to formulate the basic problems under study at some elementary level.

The usual theory of “dirty superconductors” [Gennes de P.G. (1966);
Abrikosov A.A.; Gorkov L.P. (1958); Abrikosov A.A., Gorkov L.P. (1959);
Gorkov L.P. (1959); Anderson P.W. (1959)] is a cornerstone of our under-
standing of superconducting properties of disordered metals. It is based on
the following main statements:

(1) As impurity concentration (disorder) grows a transition takes place
from the “pure” limit, when the electron mean-free path [ is much
larger than the superconducting coherence length &: [ > & =
hop/mAg to a “dirty” superconductor with £y > { > h/pp (Here
vy, pp—are Fermi velocity and momentum, Ap— is the zero — tem-
perature energy gap). Transition temperature T, changes only slightly,
mainly due to small changes of Debye frequency wp and of pairing
constant A,, which are due to relatively small changes in the elec-
tronic density of states under disordering. Transition from the free
electron motion to diffusive one does not change T, at all (Ander-
son’s theorem). These statements practically ignore any disorder
dependence of microscopic pairing interaction, which is assumed to
be some constant as in the simplest BCS model.

(2) Superconducting coherence length ¢ (at 7' = 0) determining the
spatial scale of superconducting order-parameter (the size of a Cooper
pair) diminishes with [ so that ¢ & /&l in the limit of h/pr <
1 < &.
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(3) As ¢ diminishes the critical region near T, where thermodynamic
fluctuations are important widens and is of the order of 74T, , where
T ~ [T.N(EFp)€3]=% is the so called Ginzburg’s parameter (N (Er)
is electronic density of states at the Fermi level Ep). For “pure”
superconductors 7 ~ (T./Ep)* < 1 and as | drops 75 grows as
¢ drops. However, in the limit of | > h/pp the value of 7¢ still
remains very small.

Theory of “dirty” superconductors is the basis of our understanding of
superconducting properties of many disordered alloys. However, the main
results of this theory must be modified for the mean-free path values [ of the
order of inverse Fermi momentum 7i/pp (i.e. of the order of interatomic
distance). In three-dimensional systems the growth of disorder leads to
destruction of diffusive motion of electrons and transition from extended
to localized states at critical disorder determined by [, ~ h/pp, i.e. to
transition to Anderson insulator. This metal-insulator transition is reflected
in a continuous drop to zero of the static metallic conductivity (at T =
0) as | — .. For | > . conductivity is determined by the usual Drude
formula oq ~ {, while for [ — [, it drops as ¢ ~ ([ — [,)”, where v is
some critical exponent. Transition from diffusion to localization is realized
at the conductivity scale of the order of the so-called “minimal metallic
conductivity” o. = (62pF/7TSh2) ~ (2 — 5)1020Ohm~tem™! . The usual
theory of “dirty” superconductors does not consider localization effects and
is valid for conductivities in the interval (Ep/T;)o. > ¢ > o..

Major changes in this picture occur for superconductors close

to localization transition (i.e. for ¢ < o,) are:

(1) Assuming independence of the density of states at the Fermi level
N(Ep) and of the pairing constant A, from the value of the mean-
free path [ (disorder) we can show that T, drops as disorder grows
due to respective growth of Coulomb pseudopotential p*. This ef-
fect is due to the growth of retardation effects of Coulomb inter-
action within the Cooper pair as diffusion coefficient drops close
to Anderson transition [Anderson P.W., Muttalib K.A., Ramakr-
ishnan T.V (1983)]. T, degradation starts even for ¢ > o. and
becomes fast for ¢ < o, [Bulaevskii L.N., Sadovskii M.V. (1984);
Bulaevskii L.N., Sadovskii M.V. (1985)]. The changes in the den-
sity of states with disorder due to interaction effects (as well as the
growth of spin fluctuations) also lead to the drop of T, [Kuchinskii



E.Z., Sadovskii M.V, Erkabaev M.A. (1997)]. However, under very
rigid conditions 7, can remain finite up to and after the Anderson
transition.

(2) Close to the Anderson transition the usual expression for super-
conducting coherence length for a “dirty” limit ¢ = /&yl should
be replaced by ¢ =~ (&I*)/% and it remains finite even below
Anderson transition (i.e. in insulating phase) [Bulaevskii L.N.,
Sadovskii M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985);
Kapitulnik A., Kotliar G. (1985); Kotliar G., Kapitulnik A. (1986);
Lee P.A., Ma M. (1985)], signalling the possibility of superconduc-
tivity in Anderson insulator. Obviously these results are valid only
in case of finite T, close to Anderson transition, which is possible
only if very rigid conditions are satisfied.

(3) The growth of disorder as system moves to the transition leads
to the growth of different kinds of fluctuations of superconduct-
ing order-parameter, both thermodynamic and also due to fluctu-
ations of electronic characteristics of the system (e.g. local density
of states) [Bulaevskii L.N., Sadovskii M.V. (1986); Bulaevskii L.N.,
Panyukov S.V., Sadovskii M.V. (1987); Bulaevskii L.N., Panyukov
S.V., Sadovskii M.V. (1989)].

In the following we shall present an extensive discussion of these and some
of the other problems concerning the interplay of superconductivity and
localization. However, first of all we shall briefly describe the main prin-
ciples of modern theory of electron localization and physics of metal—
insulator transition in disordered systems, which will be necessary for clear
understanding of the main problem under discussion. After that we shall
give rather detailed presentation of theoretical problem of superconductiv-
ity close to the Anderson transition. Finally, we shall describe the present
experimental situation. We shall briefly describe some of the experiments
with traditional superconductors, but our main emphasis will be on high-T,
oxides. We shall concentrate on the experiments with high—temperature—
superconductors disordered by fast neutron irradiation which is one of the
best methods to introduce disorder in a controlled fashion without any
chemical (composition) changes. In this sense our review of experiments is
also far from being complete, but we hope that it is full enough to claim that
high—T, systems are especially good for testing some of the main theoretical
ideas, expressed throughout this book. Also we believe that better under-
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standing of their properties under disordering may be important for the
development of the general theory of high-temperature superconductivity.



Chapter 2

ANDERSON LOCALIZATION AND
METAL-INSULATOR TRANSITION
IN DISORDERED SYSTEMS

2.1 Basic Concepts of Localization

In recent years a number of review papers had appeared dealing with basic
aspects of Anderson localization [Sadovskii M.V. (1981); Anderson Local-
ization (1982); Lee P.A ., Ramakrishnan T.V. (1985); Sadovskii M.V. (1986);
Thouless D.J. (1974); Efros A.L. (1978); Vollhardt D., Wolfle P. (1990);
Suslov I.M. (1998)]. Here we shall remind the main points of this theory
and introduce the accepted terminology.

In 1958 Anderson [Anderson P.W. (1958)] has shown for the first time
that the wave function of a quantum particle in a random potential can
qualitatively change its nature if randomness becomes large enough. Usu-
ally, when disorder is small, the particle (e.g. electron) is scattered ran-
domly and the wave function changes at the scale of the order of mean free
path [. However, the wave function remains extended plane—wave—Iike
(Bloch wave—Ilike) through the system. In case of strong enough disorder,
the wave function becomes localized, so that its amplitude (envelope) drops
exponentially with distance from the center of localization rq:

[v(x)] ~ exp(|r — rol/Rioe) (2.1)

where Ry, 18 localization length.

This situation is shown qualitatively in Fig. 2.1. The physical meaning
of Anderson localization is relatively simple: coherent tunneling of electrons
is possible only between energy levels with the same energy (e.g. between
equivalent sites in crystalline lattice). However, in case of strong randomness
the states with the same energy are too far apart in space for tunneling to

7
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Fig. 2.1 Electron wave—function in a disordered system: (a) — extended state. (b) —
localized state.

be effective.
At small disorder dc conductivity of a metal at 7' = 0 is determined by
Drude expression:

2 2
ne ne

og= —71=—1I (2.2)
m pFr

where 7 — 18 the mean free time, n — is electron density and e — its

charge. Usual kinetic theory can be applied if

l E
PRL S L or 25T 5 (2.3)
h h
which is a condition of weak scattering (disorder). From Eq. (2.2) and Eq.
(2.3), taking into account n = p%/(3ﬂ'2h3), we can estimate the lower limit
of conductivity for which Drude approximation is still valid:

_ c'pr (pil) e’ pr
372h? 372h?

(o] (24)

h

The conductivity value:

62PF
32k’

(2.5)

0.~
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N(E)

0 E E E

Fig. 2.2 Electron density of states near the band edge in a disordered system. Dashed
is the region of localized states, E.—is the mobility edge.

is usually called the “minimal metallic conductivity” [Mott N.F. (1974);
Mott N.F, Davis E.A. (1979)]. As disorder grows the mean free path di-
minishes and becomes of the order of lattice spacing a, so that we reach
prl/h ~ 1, and the usual kinetic theory based upon Boltzmann equation
becomes inapplicable. This was first noted by Ioffe and Regel [loffe A.F .,
Regel A.R. (1960)], who observed that at such disorder the qualitative
form of wave function must change, transforming from extended to local-
ized accompanied by metal—insulator transition. From Eq.(2.5) it is clear
that this transition takes place at the conductivity scale of the order of
0.~ (2 —5)1020Ohm=tem™! for typical h/pp ~ a ~ (2 — 3)10=8em.

Qualitative form of energy spectrum near the band—edge of a disor-
dered system is shown in Fig. 2.2. When the Fermi level lies in the high—
energy region electronic states close to it are slightly distorted plane waves.
As Fermi energy moves towards the band—edge (or with the growth of
disorder) the critical energy F. (mobility edge) separating extended and
localized states crosses the Fermi level. If Ep belongs to the region of lo-
calized states the system becomes insulating, conductivity is possible only
for T > 0 or by exciting the carriers by alternating electric field. The ap-
pearance of these hopping mechanisms of conductivity signals Anderson
transition [Mott N.F. (1974); Mott N.F, Davis E.A. (1979)].

One of the main problems is the qualitative behavior of conductivity
when the Fermi level Ep crosses the mobility edge E. (at T = 0). While
Mott assumed the discontinuous drop of conductivity from o, to zero [Mott
N.F. (1974); Mott N.F, Davis E.A. (1979)] modern approach [Sadovskii
M.V. (1981); Anderson Localization (1982); Lee P.A., Ramakrishnan T.V.
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(1985); Vollhardt D., Wolfle P. (1990)] based mainly on the scaling theory
of localization [Abrahams E. et al. (1979)] demonstrates continuous transi-
tion. Experiments at low temperatures clearly confirm this type of behavior
[Lee P.A., Ramakrishnan T.V. (1985)], and o, acts as a characteristic con-
ductivity scale close to transition. Static conductivity of a metal at 7T'= 0
close to Anderson transition within this approach is written as:

2 (d=2)v
e Ep—E
c=A o, - e (2.6)
hgloc Ec
where A — is a numerical constant, d — is space dimension, and o. =

Ae? /(ha®=?). Here we introduced the correlation length of scaling theory
diverging at the transition:

-V

h
gloc N —
PF

EF_Ec

7 (2.7)

Critical exponent v determines this divergence. In one—electron approxi-
mation and in the absence of magnetic scattering v ~ 1 [Lee P.A., Ramakr-
ishnan T.V. (1985); Sadovskii M. V. (1986); Vollhardt D., Wolfle P. (1990);
Wolfle P., Vollhardt D. (1982)]. In the region of localized states (i.e. for
Er < E.) &oc coincides with localization length of electrons Rjo.. In metal-
lic region &, determines the effective size of a sample at which “Ohmic”
behavior appears, i.e. conductivity becomes independent of a sample size
[Lee P.A., Ramakrishnan T.V. (1985); Imry Y. (1980)]. “Minimal metallic
conductivity” o, determines, as we noted, the conductivity scale close to a
transition.

In the vicinity of Anderson transition conductivity acquires an impor-
tant frequency dependence [Wegner F.J. (1976); Shapiro B., Abrahams E.
(1981a)]. For Ep = E. i.e. at the transition we have:

d—2

o(w) = o (iwr) T (2.8)

which is valid also close to the transition (from either side) for frequencies
w > we ~ [N(Ep)ét 171 For d = 3 this is sometimes referred to as Gotze’s
[Gotze W. (1981)] w!/3 — law, although this particular derivation was later
acknowledged to be wrong [Belitz D., Gold A., Gotze W. (1981)].

The spatial dimension d = 2 is the so called “lower critical dimen-
sionality” [Sadovskii M.V. (1981); Anderson Localization (1982); Lee P.A.,
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Ramakrishnan T.V. (1985); Sadovskii M.V. (1986)]. For d = 2 all elec-
tronic states are localized for infinitesimal disorder [Abrahams E. et al.
(1979)], and there is no Anderson transition. However recently a remark-
able series of experiments on high-mobility S:-MOS structures, initiated
by Pudalov [Kravchenko S.V. et al. (1995); Kravchenko S.V. et al. (1996);
Popovic D., Fowler A.B., Washburn S. (1997)], demonstrated the existence
of metal-insulator transition in two-dimensions, thus casting doubts on this
general conclusion. Common belief at the moment i1s that these systems
are somehow special, either due to unusual role of spin-orbit interaction
[Pudalov V.M (1997)], or due to general effects or electron-electron interac-
tion [Chakravarty S., Yin L., Abrahams E. (1998); Si Qimiao, Varma C.M.
(1998)]. We shall not deal with this (quite interesting!) problem further,
though some ideas relating it to superconductivity were already expressed
[Phillips P., et al. (1998)].

Quasi—two—dimensional systems are especially interesting, mainly be-
cause most of high—7T, oxides demonstrate strongly anisotropic electronic
properties. Here we shall make the simplest estimates for such systems
on the line of loffe—Regel approach. Consider a system made of highly—
conducting “planes” where the current carriers are “nearly—free”, while
the interplane tunneling is possible only due to some small transfer integral
w & Ep (Ep — is the Fermi energy of two—dimensional gas within the
plane). Conductivity within the plane is determined for small disorder as:

o = e*DyN(Ep) (2.9)

where D) = vi7/2, N(Ep) = m/(may h?), ay —is interplane spacing, which
is noticeably larger than interatomic distance within the plane. Interplane
conductivity is given by:

oL =e’Di N(Ep) (2.10)

where D; = (way)?7/h*. The appropriate mean free paths are ) = vrT,
[, = way7/h. Toffe-Regel criterion for a quasi—two—dimensional system
can be written as:

ly, =way7/h~ay (2.11)

which is equivalent to wr/h ~ 1 — the condition of breaking of coherent
tunneling between the planes. Elementary estimate shows that this corre-
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sponds to:

62

0oL ~ ~ O, 2.12
Va7~ s (2.12)

where ¢ — is interatomic distance within the planes. In isotropic case this
reduces to Eq.(2.5). For strongly anisotropic system when o) > o it is
clear that Eq.(2.12) can be satisfied even for o] > 0., because of small
values of . Formally, for 0, — 0, critical value of o) diverges, that
reflects on this elementary level the tendency towards complete localization
for purely two—dimensional case.

The important property of energy spectrum in the region of localized
states is its local discretness. As we noted above, the physical meaning of
localization itself leads to a picture of close energy levels being far apart
in space, despite the continuous nature of average density of states. Due to
exponential decay of the localized wave functions it leads to the absence
of tunneling [Anderson P.W. (1958)]. The energy spacing between levels of
electrons localized within the sphere of the radius of the order of Rj,.(E)
can be estimated [Mott N.F. (1974); Mott N.F, Davis E.A. (1979)] as:

bpp ~ [N(Ep)R},,]™" (2.13)

As the metallic system moves toward Anderson transition, 1.e. as the mean
free path drops to interatomic distance and conductivity becomes less than
~ 1030hm~'em™! there appear the well known anomalies like the neg-
ative temperature coefficient of resistivity [loffe A.F., Regel A.R. (1960);
Mooij J.H. (1973)]. These anomalies are apparently closely connected with
localization phenomena [Lee P.A., Ramakrishnan T.V. (1985)].

Up to now we discussed Anderson transition, neglecting electron in-
teractions. Its importance for the problem of metal-insulator transition in
disordered systems has been known for a long time [Mott N.F. (1974)].
In recent years there was a serious progress in the general approach to a
theory of “dirty” metals, based on the analysis of interference of impurity
scattering and Coulomb interactions [Altshuler B.L., Aronov A.G. (1979);
Altshuler B.L. et al. (1982); Altshuler B.L., Aronov A.G. (1985)]. Later
we shall review its implications for the general picture of Anderson tran-
sition. Apparently the continuous nature of metal-insulator transition is
not changed though interaction leads to a number of specific effects, e.g.
in the behavior of the density of states at the Fermi level, as well as
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to the growth of magnetic (spin) fluctuations. However, recent experi-
ments on purely two-dimensional systems [Kravchenko S.V. et al. (1995);
Kravchenko S.V. et al. (1996); Popovic D., Fowler A.B., Washburn S.
(1997)] have initiated some new ideas on the role of electron interactions
[Si Qimiao, Varma C.M. (1998); Chakravarty S., Yin L., Abrahams E.
(1998)].

Now we shall only briefly describe the concept of “soft” Coulomb gap
appearing below the transition in the region of localized states [Efros A L.,
Shklovskii B.L. (1975); Efros A.L. (1976); Shklovskii B.I., Efros A.L. (1979);
Efros A.L., Shklovskii B.I. (1985)]. Coulomb interaction between localized
electrons can be estimated as e%/eRy,., and it is obviously important if
17t (for
three—dimensional system). As a result a Coulomb pseudogap appears at
the Fermi level with the width:

this energy is comparable with the local level spacing [N(Er)R}

loc

A, = (3 /)N (Ep)]H? (2.14)

where ¢ 1s the dielectric constant. We shall see later that close to the An-
derson transition € &~ 4re? N (Er)R? , and accordingly:

A, =~ [N(EF)R}. ™ ~ g, (2.15)

so that in this case Coulomb effects are comparable with the effects of
discretness of energy spectrum in localized phase. At the moment there is
no complete theory connecting the localization region with metallic phase
within the general approaches of interaction theory.

2.2 Elementary Scaling Theory of Localization

The behavior of electronic system close to the Anderson transition can be
described by a scaling theory similar to that used in the theory of critical
phenomena [Kadanoff L.P. et al. (1967); Wilson K.G., Kogut J. (1974);
Patashinskii A.Z., Pokrovskii V.L. (1982)]. The main physical idea of this
approach is based upon a series of scale transformations from smaller to
larger “cells” in coordinate space with appropriate description of a system
by transformed parameters of initial Hamiltonian. These transformations
are usually called renormalization group. In the theory of critical phenom-
ena this approach is usually motivated by the growth of correlation length
of order—parameter fluctuations near the critical point [Kadanoff L.P. et
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al. (1967)]. This is analogous to the growth of localization length on the
approach of mobility edge from Anderson insulator.

The accepted scaling approach to localization problem was proposed by
Abrahams, Anderson, Licciardello and Ramakrishnan [Abrahams E. et al.
(1979)]. In this theory localization is described in terms of conductance g as
a function of a sample size L. For a small disorder (ppl/h > 1) the system
is in a metallic state and conductivity o is determined by Eq. (2.2) and is
independent of a sample size if this size is much larger than the mean free
path, L > [. Conductance is determined in this case just by Ohm law and
for a d—dimensional hypercube we have:

g(L) = o L472 (2.16)

If electronic states near the Fermi level are localized, conductivity of an
infinite system at 7" = 0 is zero and matrix elements for transitions between
different electronic states drop exponentially on distances of the order of
Rise. Then it can be expected that for L > Ry,., the effective conductance
becomes exponentially small:

9(L) ~ exp(—L/Rioe) (2.17)

Elementary scaling theory of localization assumes that in general case the
conductance of a hypercube of a size L satisfies the simplest differential
equation of a renormalization group:

ding(L)
dinL

Most important assumption here is the dependence for 34(g) only on one

= Pa(g(L)) (2.18)

variable g (one—parameter scaling). Then the qualitative behavior of 3,
can be analyzed in a simplest possible way interpolating between limiting
forms given by Eq. (2.16) and Eq. (2.17). For metallic phase (large g) from
Eq. (2.16) and Eq.(2.18) we get:

lim Ba(g) — d — 2 (2.19)
g—00

For insulator (g — 0) from Eq. (2.18) and Eq. (2.17) it follows that:
lim B4(g) — InL (2.20)
g—0 Je

Assuming the existence of two perturbation expansions over the “charge”
g 1n the limits of weak and strong “couplings” we can write correction to
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Fig. 2.3 Qualitative form of 84(g) for different d. Dashed line shows the behavior nec-
essary to get discontinuous drop of conductivity at the mobility edge for d = 2.

Eq. (2.20) and Eq. (2.19) in the following form:

5d(g_>0):1ngi(1+bg+m) (2.21)
ﬁd(g—>oo):d—2—§+~~ a>0 (2.22)

Following these assumptions and supposing now monotonous and contin-
uous form of F4(g) it is easy to plot it qualitatively for all ¢, as shown in
Fig. 2.3.

All the previous equations are written for dimensionless conductance,
which is measured in natural units of e?/h ~ 2.5107*Ohm=Lem =1, We see
that G84(¢) definitely has no zeros for d < 2. If expansion Eq. (2.22) is
valid there is no zero also for d = 2. For d > 2 3; — function must have
a zero: 34(g.) = 0. It is clear that g. ~ 1 and no form of perturbation
theory is valid near that zero. The existence of a zero of 34(g) corresponds
to existence of an unstable fixed point of Eq. (2.18). The state of a system
is supposedly determined by disorder at microscopic distances of the order
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of interatomic spacing a, i.e. by go = ¢(L = a). Using go as an initial value
and integrating Eq. (2.18) it is easy to find that for gy > ¢, conductivity
or = g(L)L?~4 tends for L — oo to a constant (metallic) value. For g < g.
in the limit of I — oo we get insulating behavior. Using for ¢ ~ ¢. an
approximation (shown with circles in Fig. 2.3):

1 g lg—g.
3, ~—ln—n~n ——> 2.2
1~ "9 TV a (2.28)

we obtain from Eq. (2.18) for gg > g. the following behavior of conductivity
for L — oo:

9 (d=2)v 9 . (d=2)v
oA I (mg_o) zA% ge_ (go gc) (2.24)
Ge a Ge

where A = const and we have explicitly introduced the conductivity scale
of the order of o.. (Cf. Eq. (2.5)). We see that the existence of a fixed
point leads to the existence of mobility edge, and behavior of 84(g) close to
its zero determines the critical behavior at the Anderson transition. Under
these assumptions conductivity continuously goes to zero for g — g., and
the value of o. ~ €?/(ha?"?) is characteristic scale of conductivity at the
metal—insulator transition. To get a discontinuous drop of conductivity at
the mobility edge 34(g) must be nonmonotonous as shown by dashed line
for d = 2 in Fig. (2.3). This behavior seems more or less unphysical.
Integrating Eq. (2.18) with f4(g) from Eq. (2.23) with initial go < g,

gives:
"L
g(L) = geexp {—A ‘ln— —} (2.25)

From here it is clear (Cf. Eq. (2.7)) that:

-V

Jgo — ge
Je

Rioe ~ a

(2.26)

and v 1s the critical exponent of localization length. For d = 2 we have
Ba(g) < 0in the whole interval of g, so that ..o — 0 for any initial value
of g, so that there is no mobility edge and all states are localized.

For d > 2 limiting ourselves by those terms of perturbation expansion
in g~ shown in Eq. (2.22) we can solve B4(g.) = 0 to find:

«

d—2

ge = (2.27)



FElementary Scaling Theory of Localization 17

We can see that for d — 2 the mobility edge goes to infinity which corre-
sponds to complete localization in two—dimensional case. Now we have:

Balg ~ ge) = (d —2) (gog%gc) (2.28)

and for the critical exponent of localization length we get (Cf. Eq. (2.23)):

1
v=—— 2.29
T (2.29)
which may be considered as the first term of e—expansion near d = 2
(where ¢ = d — 2), i.e. near “lower critical dimension” for localization

[Abrahams E. et al. (1979); Wegner F.J. (1979a); Shapiro B., Abrahams
E. (1981b)]. Note that the expansion Eq. (2.22) can be reproduced in
the framework of standard perturbation theory over impurity scattering
[Gorkov L.P., Larkin A.I., Khmelnitskii D.E. (1979); Abrahams E., Ra-
makrishnan T.V. (1980)]. For d = 3 this gives « = 73 (Cf.Ref.[Lee P.A.,
Ramakrishnan T.V. (1985)]).

Let us define now correlation length of localization transition as:
go—ge|

Je

(2.30)

gloc ~a

For gy < g. this length coincides with localization length Ry,.. It is easy to
see that Eq. (2.24) can be written as: [Wegner F.J. (1976)]

62

loc

It follows that for g > g. correlation length &;,. determines behavior of
conductivity close to the mobility edge, when this length becomes much
larger than interatomic distance and mean free path.

Let us consider three—dimensional case in more details. Integrating
Eq. (2.18) with 85(g9) = 1 — g./g where g. = a gives ¢(L) = (h/e?)or L =
(h/e?)o + g. so that for a finite sample close to the mobility edge (&1, >> [)
we obtain:

€7ge
hL

or = o+ (2.32)
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where in correspondence with Eq. (2.31)

62

o Ag.—— 2.33

g hgloc ( )

It follows that for L > &, > [ conductivity o, — ¢ while for | € L <€ &4

conductivity o and the appropriate diffusion coefficient, determined by
Einstein relation o = e? DN (Ep) are equal to:

2

e’ge
~ 2.34
oL R S (2.34)
ge 1
Dy ~ — 2.
L N(Ep) hL (2.35)

Thus in this latest case conductivity is not Ohmic, diffusion of electrons
is “non—classical” [Anderson P.W., Muttalib K.A., Ramakrishnan T.V
(1983); Lee P.A., Ramakrishnan T.V. (1985)]. From this discussion it is
clear that the characteristic length &;,. in metallic region determines the
scale on which conductivity becomes independent of sample size. Close to
the mobility edge when &, — oo only the samples with growing sizes
L > &1 can be considered as macroscopic. These considerations allow to
understand the physical meaning of diverging length &;,. of scaling theory
in metallic region [Imry Y. (1980)]. Close to the mobility &, 1s considered
as the only relevant length in the problem (with an exception of a sample
size L) and the scaling hypothesis is equivalent to the assumption of:

o0 =1 () (2.36)
gloc
where f(x)—is some universal (for a given dimensionality d) function. In
metallic region for L > &,. > [ it is obvious that f(z) ~ 2?2 which
reproduces Eq. (2.31).
For finite frequencies w of an external electric field a new length appears
in the system [Shapiro B., Abrahams E. (1981a)]:

L = [M]/ (237)

w

where D(w)—is the frequency dependent diffusion coefficient. L, is a length
of electron diffusion during one cycle of an external field. Close to the
mobility edge &, 18 large and for L., < &e, L and L, become the relevant
length scale. In general, for finite w localization transition is smeared, a
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sharp transition is realized only for L=t = L;! = 0. Thus for the finite
frequency case the scaling hypothesis of Eq. (2.36) can be generalized as
[Shapiro B., Abrahams E. (1981a)]:

L Ly
g(L,w)=f <€loc , &—) (2.38)

where ¢ denotes a real part of conductance. In metallic phase for L >> &,
we have ¢ ~ L%=2 so that:

e? L L e? L
— _LZ—d e T oe2-d W
U(W) h f (&loc ’ &loc) - h gloc o gloc

2
= h;ﬁF (i’w) (2.39)

loc

For small frequencies, when L, > &, we can write down the universal
function F(z) as F(z) ~ Ag. + Br%~? which reproduces Eq. (2.31) and
the small frequency corrections found earlier in [Gorkov L.P., Larkin A.I.,
Khmelnitskii D.E. (1979)]. For L, < &, i.e. for high frequencies or close
to mobility edge the relevant length is L, and frequency dependent part
of conductivity is dominating. In particular at the mobility edge itself the
length &, drops out and must cancel in Eq. (2.38) which leads to:

o(w, Ep = B.) ~ L2 ~ [D?dw)] N (2.40)

On the other hand, according to Einstein relation we must have o(w) ~
D(w). Accordingly, from [w/D(w)](@=2/? ~ D(w) we get at the mobility
edge:

o(w, Ep = E.) ~ D(w) ~w' T (2.41)

For d = 3 this leads [Wegner F.J. (1976); Gotze W. (1981)] to o(w) ~
D(w) ~ wl/3. The crossover between different types of frequency depen-
dence occurs for L, ~ &;,. which determines characteristic frequency [Shapiro

B., Abrahams E. (1981a)]:

1
hé. N(Er)

We

(2.42)

The w(d=2)/d__hehavior is realized for w > w., while for w <€ w,. we get
small corrections of the order of ~ w(?=2)/2 to Bq. (2.31).
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Finally we must stress that for finite temperatures there appear tnelastic
scattering processes which destroy the phase correlations of wave functions
at distances greater than a characteristic length of the order of L, = \/D—ﬂp
, where D is the diffusion coefficient due to elastic scattering processes con-
sidered above and 7, is the “dephasing” time due to inelastic processes
[Altshuler B.L. et al. (1982)]. For T' > 0 this length L, effectively replaces
the sample size L in all expressions of scaling theory when L > L, because
on distances larger than L, all information on the nature of wave functions
(e.g. whether they are localized or extended) is smeared out. Taking into
account the usual low—temperature dependence like 7, ~ TP (where p is
some integer, depending on the mechanism of inelastic scattering) this can
lead to a non—trivial temperature dependence of conductivity, in particular
to a possibility of a negative temperature coefficient of resistivity of “dirty”
metals [Imry Y. (1980)] which are close to localization transition.* It is
important to stress that similar expressions determine the temperature de-
pendence of conductivity also for the localized phase until L, < Rj,.. Only
for L, > Ry, the localized nature of wave functions starts to signal itself
in temperature dependence of conductivity and the transition to exponen-
tially activated hopping behavior takes place, which becomes complete for

T < [N(Ep)RS 1.

loc

2.3 Self—Consistent Theory of Localization

2.3.1 Isotropic Systems

It is obvious that qualitative scaling picture of Anderson transition de-
scribed in the previous section requires microscopic justification. At the
same time we need a practical method of explicit calculations for any phys-
ical characteristic of electronic system close to the mobility edge. Here we
shall briefly describe the main principles of so called self—consistent theory
of localization which while leaving aside some important points, leads to an

*Recently it was claimed [Golubev D.S., Zaikin A.D. (1998)] that the simple estimate
of 7, ~ TP becomes invalid at low temperatures and 7, actually saturates as T — 0
due to the effects of zero-point fluctuations. This claim was refuted in rather detailed
discussion of [Aleiner I., Altshuler B.L., Gershenzon M. (1998)]. Probably more impor-
tant is the experimental observation of 7, saturation at low temperatures [Mohanty P.,
Jariwala E.M., Webb R.A. (1997)]7 the reasons for which are not clear. Discussion still
continues, we shall adopt a standard point of view, expressed above, which is definitely
valid at least for not so low temperatures.
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effective scheme for analysis of the relevant physical characteristics impor-
tant for us. This approach, first formulated by Gotze [Gotze W. (1979);
Gotze W. (1981)] was later further developed by Vollhardt and Wolfle
and other authors [Vollhardt D., Wolfle P. (1980); Vollhardt D., Wolfle
P. (1982); Wolfle P., Vollhardt D. (1982); Myasnikov A.V., Sadovskii M.V.
(1982); Kotov E.A., Sadovskii M.V. (1983); Sadovskii M.V. (1986); Voll-
hardt D., Wolfle P. (1990)].

Complete information concerning Anderson transition and transport in
a disordered system is contained in the two—particle Green’s function:

I (Bwq) = —% < GE(pyp  E+w)GA(p_p-FE) > (2.43)
where py_ = p =+ (1/2)q, in most cases below F just coincides with the
Fermi energy Er. Angular brackets denote averaging over disorder. Graph-
ically this Green’s function is shown in Fig. 2.4. It is well known that this
Green’s function is determined by the Bethe—Salpeter equation of diagram
technique for randomly spaced scatterers also shown graphically in Fig .2.4
[Edwards S.F. (1958); Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1965); Vollhardt D., Wolfle P. (1980)]:

Cppi(Eqw) = GR(E + wpy )G (Ep-) x

—%6 p—p) Z pp (Aw)® ,, ,(Eqw) (2.44)

where GBA(Ep) — is the averaged retarded (advanced) one—electron
Green’s function, while irreducible vertex part Ulfjp,(qw) is determined by
the sum of all diagrams which can not be cut over two electron lines (Cf.
Fig. 2.4).

In fact, two—particle Green’s function Eq. (2.43) contains even some
abundant information and for the complete description of Anderson tran-
sition it is sufficient to know the two—particle Green’s function summed

over pp’ [Vollhardt D., Wolfle P. (1980)]:

1
Pit(qw) = 5= ) < GRp4pl B+ w)GApLp-E) > (245)
pp’

Using Bethe—Salpeter equation Eq. (2.44) and exact Ward identities we
can obtain a closed equation for ®£4(qw) [Vollhardt D., Wolfle P. (1980);
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Fig.2.4 Graphicalrepresentationof: (a) — two—electron Green's function @gg‘, (Eqw);

(b) — equation for full vertex part Ffp, (qw); (c) — typical diagrams for irreducible

vertex U¥  (q;w); (d) — Bethe—Salpeter equation. Dashed line denotes “interaction”
PP

Us(p—p') = p|V(p — P')|?, where p — is density of scatterers, V(p — p’)—is Fourier

transform of a single scatterer potential.
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Wolfle P., Vollhardt D. (1982); Sadovskii M.V. (1986)], and for small w and

q the solution of this equation has a typical diffusion—pole form:

1

¥’ (qw) = —N(E) s e

(2.46)
where N(F)—is electron density of states at energy E and the generalized
diffusion coefficient Dg(qw) is expressed through the so called relaxation
kernel Mg(qw) :
28 1 v2 i
D ==L __ 2.47
5 (qw) Yam MEg(qw) d Mp(qw) ( )
where vp 1s Fermi velocity of an electron. The retarded density—density
response function at small w and q is given by:

y¥(qw) = w®E* (qw) + N(E) + O(w, ¢%) (2.48)
or from Eq. (2.46):

iDp(qw)q®

Viaw) = NE) — =

(2.49)
For relaxation kernel Mg(qw) (or for generalized diffusion coefficient)
a self—consistency equation can be derived, which is actually the main
equation of the theory [Vollhardt D., Wolfle P. (1980); Vollhardt D., Wolfle
P. (1990); Wolfle P., Vollhardt D. (1982)].
For the one-electron Green’s function G4 (Ep) we can use the simplest
approximation:

1

GHA(Ep) = ————
) E— 35 +i(E)

(2.50)
where for point scatterers randomly distributed with spatial density p (V
is scattering amplitude) we have:

v = 1 TpVZN(EFr) (2.51)

2T
— the usual “Born” scattering rate. This result is obtained by summing the
diagrams shown in Fig.2.5(a), which do not have any intesecting interaction
lines, i.e. diagrams similar to that shown in Fig.2.5(b). Strictly speaking,
this approximation can be used only if perturbation theory is applicable,

ie. E > v(E) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii .E. (1965)].
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Fig. 2.5 (a) Diagrams determining the one-electron Green’s function. (c) “Maximally—
crossed” diagrams for irreducible vertex part of Bethe—Salpeter equation (“Cooperon™).

However, it is assumed that we can use it up to the metal-insulator tran-
sition, which, in fact is justified by the general feeling that no singularities
are associated with single-particle Green’s function (density of states) at
the transition. The next step of the derivation 1s actually central and it
reduces to a major approximation for the irreducible vertex part Ulfjp,(qw)
in Bethe—Salpeter equation. The approximation of Vollhardt and Wolfle
is based upon the use for Ulfjp,(qw) of the sum of “maximally-crossed”
graphs shown in Fig. 2.5(c). This series is easily summed and we get the
co called “Cooperon” [Gorkov L.P., Larkin A.I., Khmelnitskii D.E. (1979);
Vollhardt D., Wolfle P. (1980)]:

2vpV2
EC
1 = 2 2
Ve (42) Do(p +p')? + iw (2:52)
where
E 1
Dy = —— = —vhr (2.53)
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is the classical (bare) diffusion coefficient determining Drude conductiv-
ity Eq. (2.2). These "maximally crossed” diagrams lead to the following
quantum correction to diffusion coefficient:

§D(w) 1 1
=— R —— 2.54
Do TN(E) |k|z<:k —tw + l)ok‘2 ( > )

Appropriate correction to relaxation kernel can be expressed via the cor-
rection to diffusion coefficient as:
,2EF (SD((.U) ME((.U)

OMe(w) = =i B = " D)

8§D(w) (2.55)
Considering the usual Drude metal as the zeroth approximation we get:

SMp(w) = —%6D(w) (2.56)
Dy
The central point of the self-consistent theory of localization [Gotze W.
(1979)] reduces to the replacement of Drude diffusion coefficient Dy in the
diffusion pole of Eq.(2.54) by the generalized one D(w). Using this relation
in £q.(2.56) we obtain the main equation of self-consistent theory of local-
ization determining the relaxation kernel M (0w) (for q = 0) [Vollhardt D.,
Wolfle P. (1980); Wolfle P., Vollhardt D. (1982)]:

1 1
Mg(w) =2y ¢ 1+ 5 2.57
« mN(E) |k|z<:ko Wt G W) =0

or the equivalent equation for the generalized diffusion coefficient itself:

Dy 1 1
=1+ _— 2.58
Dg(w) aN(FE) Iklz<:ko —iw + Dg(w)k? ( )

Cut—off in momentum space in Eqgs. (2.54), (2.57), (2.58) is determined
by the limit of applicability of diffusion—pole approximation of Eq. (2.46)
or Eq. (2.52) [Sadovskii M.V. (1986)]:

ko ~ Min{pp, "'} (2.59)

Close to the mobility edge pr ~ [~!. Note, that from here on we are
generally using natural units with Planck constant & = 1, however in some
of the final expressions we shall write A explicitly.
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Conductivity can be expressed as [Vollhardt D., Wolfle P. (1980); Wolfle
P., Vollhardt D. (1982)]:

ne? 1

i O DE@N () forw —0 (260)

o(w) =
where we have used n/N(F) = 2F/d. Tt is clear that for metallic phase
Mg(w — 0) = i/7g, where g is generalized mean free time. Far from
Anderson transition (for weak disorder) 7z &~ 7 from Eq. (2.51) and Eq.
(2.60) reduces to standard Drude expression.

If the frequency behavior of relaxation kernel leads to the existence of
a limit {im,_.owMp(qw) a singular contribution appears in Eq. (2.46) for
w — 0 [Gotze W. (1981); Sadovskii M.V. (1986)]:
N(FE 1 N(FE 1
ORA(qu) ~ — (E) ~ _NE) (2.61)

2E 2 2 42
w 1_mm w 14+ Rj.q

where we have defined:

2F 1
9 _ .
Ry (FE)= —mdlzmw_,owiE(w) (2.62)

According to the general criterion of localization [Berezinskii V.L., Gorkov
L.P. (1979); Sadovskii M.V. (1986)] (Cf. Appendix A) this behavior corre-
sponds to the region of localized states. Using Eq. (A.16) we immediately
obtain from Eq. (2.61) the singular contribution to Gorkov—Berezinskii
spectral density (Cf. Eqs. (A.8), (A.9)):

K PEPE Dy = Im®E* (qw) = Ap(q)d(w) (2.63)

1
aN(FE)
where

1 2
STrrLme L e

loc

Agr(q) (F)q* for ¢ — 0 (2.64)

From here and from Eq. (A.11) we can see that Rj,.(F) as defined in Eq.
(2.62) is actually the localization length. Tt is useful to define a characteristic

frequency [Vollhardt D., Wolfle P. (1980)]:

Wi(E) = —limy_owMg(w) > 0 (2.65)
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Rloc(E) =1\ %ﬁ (266)

Thus, the localization transition is signalled by the divergence of relaxation
kernel for w — 0 [Vollhardt D., Wolfle P. (1980)], so that two characteristic
types of it behavior for q = 0 and w — 0 appear:

so that

%forEZEc
ME(OW)% i @forE<Ec

TE

(2.67)

The frequency wg(F) is in some crude sense analogous to the order param-
eter in the usual theory of phase transitions. It appears in the localized
phase signalling about Anderson transition.

From Eq. (A.16) neglecting nonsingular for w — 0 and q = 0 contri-
bution from Im®E#(qw) we can get explicit expression for Berezinskii—
Gorkov spectral density which is valid for small w and q [Katsnelson M.I.,
Sadovskii M.V. (1984); Sadovskii M.V. (1986)]:

L__Epe’ Drg’ -z (Metal)
< PEPE+w >>g‘: { T w2+ (DEqg?)

Ap(Q)8(w) + £ st pep (nsulator)
(2.68)

where we have introduced renormalized diffusion coefficient, determined by

relaxation time 7g:

DE = %TE = %U%TE (269)
Substituting Eq. (2.67) into self—consistency equation Eq. (2.57) we
can obtain equations for 7z and wo(E) [Vollhardt D., Wolfle P. (1982);
Myasnikov A.V., Sadovskii M.V. (1982); Sadovskii M.V. (1986)] and thus
determine all the relevant characteristics of the system. For d > 2 Eq. (2.57)
and Eq. (2.58) do really describe metal—insulator transition [Vollhardt D.,
Wolfle P. (1982); Myasnikov A.V., Sadovskii M.V. (1982); Sadovskii M.V.
(1986); Vollhardt D., Wolfle P. (1990)]. For d = 2 all electronic states are
localized [Vollhardt D., Wélfle P. (1980)].
Below we present some of the results of this analysis which will be
important for the following. For 2 < d < 4 a correlation length similar to



28 Anderson Localization and Metal-Insulator Transition

that of Eq. (2.7) and Eq. (2.30) appears:

-V

1 |F-FE.
oe(F) ~ — for £ ~ E, 2.70
e (2.70
where v = 1/(d — 2) . The position of the mobility edge is determined by a
condition:
E d
= - % (2.71)
v E=F_. ﬂ-(d - 2)

which follows if we assume the cut—off kg = pp in Eq. (2.57) and Eq.
(2.58). Static conductivity in metallic phase (F > E.) is given by (Cf. Eq.
(2.31):

00

T o (E))%2

where 0g = (ne?/m)r is usual Drude conductivity. In particular, for d = 3

(2.72)

o

g o =prllp_p, = % (2.73)
in complete accordance with lToffe—Regel criterion , and
7 pr&e(E)

Critical exponent v = 1. Mean free path which follows from Eq. (2.73)

(2.74)

corresponds to Drude conductivity :

_ “r (Pﬂ)
E=E. 3n2h? h
which is equivalent to elementary estimate of Eq. (2.5).

Eq. (2.74) can also be rewritten as [Bulaevskii L.N., Sadovskii M.V.
(1985)] :

7'L62

o= —T
m

2
_ €PF

E=E. w3h*

(2.75)

0200{1—2}200—00 (2.76)
(oo}

where Drude conductivity og is now the measure of disorder. It is obvious
that for small disorder (large mean free path) og > 0. and Eq. (2.76)
reduces to o & 0. As disorder grows (mean free path drops) conductivity

o — 0 for oy — o,.
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In dielectric phase (E < E.) we have &,.(E) = Rjo.(F) and finite wi(E)
from Eq. (2.65) which tends to zero as & — FE, from below. This frequency
determines dielectric function of insulating phase [Sadovskii M.V. (1986)] :

2 —2v
_ Wy P— E—-FE,
e(w—0)=1+ wg(i:) =1+ kHhRE(E) ~ ‘ o (2.77)
where wf) = 4mne?/m is the square of plasma frequency, x3%, = 4we? N(E)

is the square of inverse screening length of a metal.

Thus the main results of self—consistent theory of localization coin-
cide with the main predictions of elementary scaling theory of localiza-
tion. Vollhardt and Wélfle had shown [Vollhardt D., Wolfle P. (1982);
Wolfle P., Vollhardt D. (1982)] that equations of this theory and espe-
cially the main differential equation of renormalization group Eq. (2.18)
for conductance may be explicitly derived from self—consistency equations
Eq. (2.57) and Eq. (2.58) reformulated for a finite system by introduction
of low—momentum cut—off at k& ~ 1/L, where L is the system size.

The results considered up to now are valid for w — 0. Self—consistent
theory of localization allows to study the frequency dependence of conduc-
tivity (generalized diffusion coefficient) [Wolfle P., Vollhardt D. (1982)]. At
finite frequency the main Eq. (2.58) for the generalized diffusion coeffi-
cient for d = 3 can be rewritten as [Belitz D., Gold A., Gotze W. (1981);
Wolfle P., Vollhardt D. (1982)]:

1/2 1/2 . 1/2
Delw) (BN 7 (B _w Do (2.78)
Do E 2\ F 2y Dp(w)

which can be solved explicitly. With sufficient for our aims accuracy this

solution may be written as:

Dg w<Kw, FE>F, (Metal)

o \1/3
Dp(w) ~ Dy (—%) w > w, (Metal and Insulator) (2.79)

Em w<Kw, FE<FE,(Insulator)
F

where (Cf. Eq. (2.42)):

1

We ~~ 27[pF€loc]_d ~ W (280)
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Here the renormalized diffusion coefficient:
 préioc(E)
At the mobility edge itself {,0(E = E.) = oo, so that w, = 0 and we get
the w'/3—behavior (Cf. Eq. (2.41)):

Dg (2.81)

Dp(w) = Dy (-%) v (2.82)

Note that w, is in fact determined by Dg(w.) ~ Dg ~ Do(wc/Q'y)l/?’. The
meaning of the limit w — 0 used above (Cf. e.g. Eq. (2.67)) is just that
w € we. In particular, the expression Eq. (2.68) for Gorkov—Berezinskii
spectral density is valid only for w < w,. For w, <w < 27, using Eq. (2.82)
in Eq. (2.46) we get from Eq. (A.16):

V3 Q2311342

F_
K PEPE+w >>q— ﬁwz T a2/3w4/3q2 T a4/3w2/3q4 (283)

where o = Dgup/2y = Dol ~ [N(E)]7!, where the last estimate is for
[~ p}l. Eq. (2.83) is valid also at the mobility edge itself where w, = 0.
Obviously the correct estimate can be obtained from Eq. (2.68) by a simple
replacement Dg — Dy (w/'y)l/?’. It should be noted that the self-consistent
theory approach to the frequency dependence of conductivity is clearly
approximate. For example it is unable to reproduce the correct Reo(w) ~
w?ln*w dependence for w — 0 in the insulating state [Mott N.F, Davis
E.A. (1979)]. This is apparently related to its inability to take the correct
account of locally discrete nature of energy levels in Anderson insulators
(Cf. below). However this is unimportant for our purposes while the general
nature of frequency dependence at the mobility edge is apparently correctly
reproduced.

In the following analysis we will also need a correlator of local densi-
ties of states defined in Eq. (A.3). This correlator can be expressed via
two—particle Green’s function as in Eq. (A.15). Neglecting nonsingular
for small w and ¢ contribution from the second term of Eq. (A.15) and
far from the Anderson transition (weak disorder) we can estimate the most
important contribution to that correlator from the diagram shown in Fig.
2.6. [Bulaevskii L.N., Sadovskii M.V. (1986)]

The same contribution comes from the diagram which differs from that
in Fig. 2.6 by direction of electron lines in one of the loops. Direct calcula-
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§'(Eruprg)

G‘(£+wp+g) g o (£,p)
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>
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(4T3 *,p)

Fig. 2.6 Two equivalent forms of diagram for the correlator of local density of states.
Wavy lines denote diffusion propagator, i.e. the sum of ladder diagrams.

tion gives:
N(E) 212 / d 1 !
< LS>HA VaYRe | d - :
PEPE+w g 72 (pV7) Q —iw + DoQ? —iw + Do(Q + q)*
1 1 1
~ Re -
N(E) ™ pgl* (=iw + Dog®)=4/*

(2.84)

For the first time similar result for this correlator was found for some special
model by Oppermann and Wegner [Oppermann R., Wegner F.J. (1979)].
For d = 3 from Eq. (2.84) we find:

1 Dog? 1/2
0 2 2\21-1/2
< ppprs ST~ { e+ (Do) }
T N DY? LW+ (Dog?)?
(2.85)

It is obvious that for the estimates close to the mobility edge we can in the
spirit of self—consistent theory of localization replace Dy in Eq. (2.84) and
Eq. (2.85) by the generalized diffusion coefficient D(w). In particular, for
system at the mobility edge (w. = 0) Dy — Do(w/7)*? in Eq. (2.85).
Surely, the self—consistent theory of localization 1s not free of some dif-
ficulties. Apparently the main problem is an uncontrollable nature of self—
consistency procedure itself. In more details this is discussed in Refs.[Sadovskii
M.V. (1986); Vollhardt D., Wélfle P. (1990)]. Here we shall concentrate only
on some problems relevant for the future discussion. From the definition of
generalized diffusion coefficient in Eq. (2.47) it is clear that it may be a
function of both w and q, i.e. it can also possess spatial dispersion. Self—
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consistent theory of localization deals only with the limit of Dg(q — 0,w).
At present it is not clear whether we can in any way introduce spatial disper-
sion into equations of self—consistent theory. Using scaling considerations
the ¢—dependence of Dp(qw — 0) can be estimated as follows [Lee P.A.,
Ramakrishnan T.V. (1985); Lee P.A. (1982)]. We have seen above that for
the system of finite size of L <« &, elementary scaling theory of localiza-
tion predicts the L—dependent diffusion coefficient Dg ~ (g./N(E))/LI~2
(Cf. Eq. (2.35) for d = 3). From simple dimensional considerations we can

! and get:

try the replacement L — ¢~
DE for qgloc < 1

aq?=? for g€ > 1 (2.86)

Dg(w — 0q) & {

where a ~ g./N(E) ~ Dyl and E ~ E,, 7! ~ pp. Obviously an attempt
to incorporate such g—dependence into equations of self—consistent theory
of localization (like Eq. (2.57) and Eq. (2.58)) will radically change its
structure. At the same time the L—dependence like Dp ~ a/L4% (for
L < &poc) can be directly derived from Eq. (2.58) as equations of elementary
scaling theory are derived from it [Vollhardt D., Wolfle P. (1982); Wolfle P.,
Vollhardt D. (1982); Vollhardt D., Wélfle P. (1990)]. Thus the foundations
for the simple replacement L — ¢~* like in Eq. (2.86) are rather doubtful.
More detailed analysis of wave number dependence of diffusion coefficient
leading to Eq. (2.86) was given by Abrahams and Lee [Abrahams E., Lee
P.A. (1986)] within the scaling approach. However, the complete solution of
this problem is apparently still absent. In an important paper [Suslov 1.M.
(1995)] it was shown, using some general relations obtained in [Sadovskii
M.V. (1986)] (Cf. also Appendix A), that Eq.(2.86) actually contradicts
the general localization criterion of Berezinskii and Gorkov, from which
it follows directly that at the localization transition the static diffusion
coefficient D(w = 0,q) vanishes for all ¢ simultaneously. The detailed
analysis performed in [Suslov I.M. (1995)] demonstrates the absence of any
significant spatial dispersion of diffusion coefficient on the scale of ¢ ~ ¢71,
while its presence on the scale of ¢ ~ pp is irrelevant for the critical behavior
of the system close to the Anderson transition. Direct analysis, leading
to the same conclusions within the formalism of self-consistent theory of
localization, was performed in [Novokshonov S.G., Groshev A.G. (1998)].
More importantly, on the basis of symmetry approach formulated in [Suslov
LM. (1995)] it was even argued that the ezact critical behavior at the
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mobility edge coincides with that predicted by the self-consistent theory
of localization.

Finally we would like to stress that self-consistent theory of localization
can not be applied “deep” inside localization region. Its derivation is based
on a kind of extrapolation of “metallic” expressions and it does not take
into account local discreteness of energy spectrum in the region of localized
states as discussed in previous section. This is reflected in the form of
one-particle Green’s function used in self-consistent theory [Vollhardt D.,
Wolfle P. (1980); Wolfle P., Vollhardt D. (1982); Vollhardt D., Wolfle P.
(1990); Sadovskii M.V. (1986)]. It does not describe the effects of local level
repulsion, though it does not contradict it [Ohkawa F.J. (1982)]. Thus self-
consistent theory of localization can be applied within localized region only
until local energy spacing given by Eq. (2.13) is much smaller than other
relevant energies of the problem under consideration. In fact this always
leads to a condition of sufficiently large localization length R, i.e. the
system must be in some sense close to the mobility edge.

2.3.2 Quasi-Two-Dimensional Systems

Self-consistent theory of localization for quasi-two-dimensional systems
was first analyzed by Prigodin and Firsov [Prigodin V.N., Firsov Yu.A.
(1984)]. The electronic spectrum of a quasi-two—dimensional system can
be modelled by nearly—free electrons within highly conducting planes and
tight-binding approximation for interplane electron transfer:

E(p) — Er = vr(lp)| — pr) — we(p1) (2.87)

Here w is the interplane transfer integral and ¢(pL) = cospiai, where
—7m/al <p,; < =w/ay. Then the equations of self—consistent theory of lo-
calization for anisotropic generalized diffusion coefficient take the following

form [Prigodin V.N., Firsov Yu.A. (1984)]:

1 d3q Dj(w)
D. = pY_ / i J
5= D5 = TN By ) Gr e+ Dy + Da@)(1 — o(a0)
(2.88)
where j = ||, L, and Dﬁ = v%71/2, DY = (way)*r are inplane and in-

terplane bare Drude diffusion coefficients, 7 is the mean free time due to
elastic scattering (disorder). This approach is in complete correspondence

with the analysis of Wolfle and Bhatt [Wolfle P., Bhatt R.N. (1984)] who
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has shown that the effects of anisotropy can be completely absorbed into
anisotropic diffusion coefficient. It can be seen that the initial anisotropy of
diffusion coefficient does not change as disorder grows up to the Anderson
transition and in fact we have only to find one unknown ratio:

d(w) = % = % (2.89)

which is determined by algebraic equation following from Eq. (2.88):

1
d(w) =1- X
2rEpT

2
[ /d(@)] + (wn)? + [(—iwr/d(w))(—iw/d(@) + 2w r?)]17?

In (2.90)
Due to a quasi—two—dimensional nature of the system there 1s no com-
plete localization for any degree of disorder which is typical for purely
two—dimensional system. However the tendency for a system to become lo-
calized at lower disorder than in isotropic case is clearly seen. All states at
the Fermi level become localized only for w < w,, where

w, = ﬂr‘lexp(—wEFT) (2.91)

Thus the condition of localization is actually more stringent than given by
the simplest Toffe—Regel type estimate as in Eq. (2.11). For fixed w the
mobility edge appears at:

Fp=FE. = in (ﬁ) (2.92)

wT

Thus in case of strong anisotropy when w7 <« 1 localization can in principle
take place even in case of Fr >» 771 i.e. at relatively weak disorder. These
estimates are in qualitative accordance with Eq.(2.11), which is valid in
case of relatively strong disorder Ep7m ~ 1.

In the metallic phase close to the Anderson transition:

Ep—E,
o~ T (2.93)

For w — 0 we have F. — oo which reflects complete localization in two
dimensions. We can also define inplane Drude conductivity at Ep = F. as
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a kind of a “minimal metallic conductivity” in this case as a characteristic
conductivity scale at the transition:

1 e V2h 1 e Ep
c __ 2 0 _ _ ~ _— —_
oj=¢ N(EF)D”(EF =F.)= = haJ_ln ( ) N haJ_ln ( )

wT w
(2.94)
where we have used N(Ep) = m/(TFClJ_hz), m 1s inplane effective mass,

and the last equality is valid for Ep7/h ~ 1, i.e. for a case of sufficiently
strong disorder. For the time being we again use h explicitly. From these
estimates it is clear that inplane “minimal conductivity” is logarithmically
enhanced in comparison with usual estimates (Cf. Eq. (2.5)). This log-
arithmic enhancement grows as the interplane overlap of electronic wave
functions diminishes. Accordingly in case of small overlap (w7/h < 1) this
conductivity scale may be significantly larger than (3 — 5)1020hm='em™!
which is characteristic for isotropic systems. Thus in quasi—two—dimensional
case Anderson transition may take place at relatively high values of inplane
conductivity. For a typical estimate in a high—7T, system we can take some-
thing like Ep/w > 10 so that the value of O'ﬁ may exceed 1030hm=tem=1.
Obviously these estimates are in qualitative accordance with elementary
estimates based upon Toffe—Regel criterion of Eq. (2.11) and Eq. (2.12).
Similar conclusions can be deduced from the analysis presented in Ref.[Li
Qiming, Soukoulis C.M, Economou E.N. (1989)] where it was shown by a
different method that in case of anisotropic Anderson model the growth
of anisotropy leads to a significant drop of a critical disorder necessary to
localize all states in a conduction band.

Now let us quote some results for the frequency dependence of general-
1zed diffusion coefficient in quasi—two—dimensional case which follow from
the solution of Eq. (2.90) [Prigodin V.N., Firsov Yu.A. (1984)]. We shall

limit ourselves only to the results valid close to the mobility edge in metallic

phase:
BecBe g,
dw)~ { @rEpwr?)™2B(—iwn)! P < w < w?r (2.95)
1—%171(_2{07) w27'<<w<<7'_1
where
Ep —E,|?

1
we & [2nEpwr?)? = ‘ (2.96)
T

E.
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From these expressions we can see the crossover from w!/3—behavior typ-
ical for isotropic three-dimensional systems to logarithmic dependence on
frequency which is characteristic for two—dimensional systems.

2.3.3 Self-Consistent Theory of Localization in Magnetic
Field

Early version of self-consistent theory of localization as proposed by Voll-
hardt and Wélfle was essentially based upon time-reversal invariance [Voll-
hardt D., Wolfle P. (1980); Wolfle P., Vollhardt D. (1982)]. This property
is obviously absent in the presence of an external magnetic field. In this
case in addition to Eq. (2.45) we have to consider two—particle Green’s
function in particle—particle (Cooper) channel:

1
Uit (q,w) = 5 Y. < GR(py,Ph, E+w)GA(—pL, —p-, E > (2.97)
P+P_

which for small w and q again has diffusion pole form like that of Eq.
(2.46), but with different diffusion coefficient. Appropriate generalization
of self-consistent theory of localization was proposed by Yoshioka, Ono
and Fukuyama [Yoshioka D., Ono Y., Fukuyama H. (1981)]. This theory
is based on the following system of coupled equations for relaxation ker-
nels M;(q,w), corresponding to diffusion coefficients in particle—hole and
particle—particle channels:

N, 2_
1 0 9 Veg—4mwu(n+1/2) d ;
My=2iy31— ——% —/ ez
aN(FE) — wlu Jo 2w

1
w— T]?V}Q [¢2 + 4mwpg(n + 1/2)]}

(2.98)

1 1

My = 2iy{ 1- ) 2.99

T ANE) & o= Dog?/(7M) (2.99)
qi<do

Here wy = eH/me is cyclotron frequency, Ly = (¢/eH)Y? is magnetic
length and Ny = ¢2/4mwp . These equations form the basis of self-consistent
theory of localization in the absence of time-reversal invariance and were
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extensively studied in Refs.[Yoshioka D., Ono Y., Fukuyama H. (1981);
Ono Y., Yoshioka D., Fukuyama H. (1981); Kotov E.A. (1988); Kotov E.A.
(1989); Kuchinskii E.Z., Sadovskii M.V. (1991a)]. Alternative formulations
of self-consistent theory in magnetic field were given in Refs. [Ting C.S.
(1982); Cai W., Ting C.S. (1985a); Cai W., Ting C.S. (1985b); Belitz D.
(1984); Theumann A., Pires Idiart M.A. (1991)]. All these approaches lead
to qualitatively similar results. Here we shall concentrate on formulations
given in Ref. [Kuchinskii E.Z., Sadovskii M.V. (1991a)].

Let us introduce the dimensionless parameter A = v/7E as a measure
of disorder and generalized diffusion coefficients in diffusion and Cooper
channels Dy and Ds defined as in Eq. (2.47) with M replaced by M; and
M respectively. We shall use dimensionless d; = D; /Dy (j = 1,2) in the
following.

We are mainly interested in diffusion coefficient in the Cooper channel,
which as we shall see defines the upper critical field of a superconductor.
Both this coefficient as well as the usual one are determined by the following
equations which follow from Eq. (2.98) and Eq. (2.99) after the use of
Poisson summation over Landau levels in the first equation which allows
one to separate the usual diffusion coefficient independent of magnetic field
and the field—dependent part:

3A—b62—Ao\—

{ 0z 81_)) 1 (2.100)

where
6; = (3/27 M) (—iw/ B 24 (2.101)

and
- ! vi=e cos(2mpa?/c?
B _3A,;(_1)p/o dﬂ/o e 3/2(m1()_3¢/u/;)/(d2xg)

(2.102)

where ¢ = (2wg/F)"/%.In the following we have to solve Eqs. (2.100) for
the case of small ¢; and A,. Limiting ourselves to terms linear in 61, 62 and
Ao we obtaln:

di N A,
ds 143X

(2.103)
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Using Eq. (2.103) in Egs. (2.100) we get an equation for diffusion coefficient
in Cooper channel:

3A
dy = 1_3/\+62+1—|——3/\A2 (2104)

Introducing A; which differs from A, by the replacement of dy by dy we can
write down also the approximate equation for the usual diffusion coefficient:

1
di=1-3)4+6+—A 2.1
. BA+ 8+ = (2.105)
In the absence of magnetic field (A; = Ay = 0) Eq. (2.104) and Eq. (2.105)

are the same and lead to standard results of self—consistent theory quoted
above. Eq. (2.104) can be written as:

We 33X
B 143X

where + corresponds to metallic, and — to insulating phases, while charac-

2mDy = £ 4 (< amDy) 2 4 Pn, (2106)

teristic frequency

we = Q;/_Q;’;A') E (2.107)

can be considered as a measure of disorder and separate regions with dif-
ferent frequency dependencies of diffusion coefficient.

Neglecting in Eq. (2.102) terms oscillating with magnetic field (these
oscillations are connected with sharp cut—off in momentum space used
above and disappear for smooth cut—off) we get:

(=17
Ay = —(QWH/E)I/ZZ 7 F(27pK) (2.108)
p=1
where
e [T cos(t)dt _ —iw/E 1
This gives:
W(2wr/EY'? |k < 1
Az = (2.110)

& (CiorByi) " oms? Wl

where W = — Z:;il(—l)p/pl/2 /2 0.603.
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Solutions of Eq. (2.106) for different limiting cases can be found in Ref.
[Kuchinskii E.Z., Sadovskii M.V. (1991a)]. Comparison of Eq. (2.105) and
Eq. (2.104) shows that the usual diffusion coefficient D; is given by the
same expressions as Dy with the replacement of the coefficient 3A/(1+ 3X)
before the field—dependent correction by 1/(1+43A4). Here we only quote the
results for Dy in case of w./E <« (wH/E)B/z, valid close to the transition
in the absense of magnetic field:

3

_ 1 1/3

m

] W(QWH/E)UZ} ~

1
4—W(2wH/E)1/2 wLws o (2.111)
m

2[ 3A ]L(QWH/E)Z

Y i L 2
D2_2m{( WEY 45 T30 38 (ciw/E)

} WS> Wr
(2.112)
where w* = (W/2)% 2wy /E)3/?E.

Note that for high frequencies larger than w? the correction term be-
comes quadratic in field which differs from usual square root behavior at
low frequencies.

It is easy to see that in the absence of the external magnetic field these
equations reduce to the usual self-consistency equation as derived by Voll-
hardt and Wolfle with a single relaxation kernel.

Let us finally quote some results for the purely two-dimensional case
[Kuchinskii E.Z., Sadovskii M.V. (1993a)]. Self-consistent equations for the

diffusion coeflicients take now the following form:

Dy 1 1

R T - -

D, +7TN(E)||Z<: w+ Dig?
q[<qo

Dy 1 1

— =14 — _ 2.11

D, Y aIN ) u% w1+ Dok (2.113)
qo

where k? = 4dmwg (n+ %), and we assume that w here is imaginary (Matsub-
ara) frequency, which simplifies the analysis. Actually only the dependence
on the Matsubara’s frequencies are important for further applications to
superconductivity.

Introduce again the dimensionless diffusion coefficients d; = g—;, dy =
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g—i, so that FEqs.(2.113) are rewritten as:

1 1
— = 1+ —mn(l+di—
s + n(l+ 15 )
No
A 1
- = 14+ = 2.114
dl d2 TLZ::O n+ % + 4mwwHDD dl_2 ( )
where Ny = mfis the number of Landau levels below the cutoff.
We assume that the magnetic field is low enough, so that Ny > 1, i.e.
Dy
H< — 2.115
< DQT ( )

With sufficient for further use accuracy we can write down the following

solution for the diffusion coefficient in Cooper channel:
—1/A

For weak magnetic field wg < Mf

—1/x
1 1 ¢
dy = orw > o (2.116)
2wrel/r for w < £ o

and we can neglect the magnetic field influence upon diffusion.
—1/x
For larger fields wp > 2¢ !

T

1 for w > e_le/A
e—1/2%1nQ =1/
dp = )xln(ll/ZwT) for =—— < w < & (2.117)

—1/221nQ

QWT/\InQel/AQI”Q for w <« -

where @) = :Ji‘], v a2 1.781. Here we neglect the magnetic field corrections

small in comparison to the ds value in the absence of magnetic field given

by Eq.(2.116).

2.3.4 NMR Relaxation and Localization

Measuring NMR relaxation time 73 is one of the experiments in which we
can apparently get clear evidence about electron localization in disordered
systems. Actually, this fact was noted long ago by Warren [Warren W.W.
(1971)], who used this method to study metal-insulator transition in semi-
conductor melts. Warren’s qualitative treatment was later confirmed by
Gotze and Ketterlee [Gotze W., Ketterlee W. (1983)]. The main conclu-
sion drawn in these works was a growth of the reciprocal relaxation time
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T1_1 in the metallic phase as the system approaches the Anderson transition
(as compared with the ordinary Korringa relaxation rate in metals [Narat
A. (1967)]). Later, in addition to the results of [Warren W.W. (1971);
Narat A. (1967)], we have shown that on the insulator side of the Anderson
transition 77! decreases with electron localization length (with increasing
disorder) [Zhdanov Yu.l. et al. (1992)]. Thus, the Anderson transition
can be accompanied by a peak in Tfl, which can serve as an independent
experimental proof that localization transition is realized. Here we shall
follow the treatment of [Zhdanov Yu.l. et al. (1992)].

In system with free electrons the main mechanism responsible for the
coupling between the electrons and nuclear spins is the Fermi contact inter-
action, which leads to the following expression for Tl_1 [Narat A. (1967)]:

1 T d3q
— =942 I 2.11
T 92N / (27)3 (2, wn) (2.118)
where
Xawn)=g2nh < DY 6w (Py)ow(P-)d)(P-)
pp’ vv!

fV’T - ful
Ey| — €yt +WN + 06

> (2.119)

is the electron susceptibility at the wave vector q and the NMR, frequency
wy. Here A 1s the usual hyperfine coupling constant, g. the electron gy-
romagnetic ratio, up the Bohr magneton, f, the Fermi function, 7" is the
temperature. Here we use the representation of the exact wave functions
é,(r) of an electron in the random field of a disordered system, and ¢,
are the respective exact energy eigenvalues (Cf. Appendix A). The angle
brackets stand for averaging over random configurations, and the arrows
denote the direction of electron spin.

Using the inequality wy € w, <€ T, where w, is the electron Zeeman
frequency, we get by direct calculation:

1 d*q
?1 = QAzTN(EF)ﬂ'/ W K PEp PEp+w. >>g
9 d*q RA
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where we have introduced the Fourier transform of Berezinskii-Gorkov spec-
tral density (A.2) and used its relation to the averaged two-particle Green’s
function (A.15) (Cf. Appendix A).

Now we can use the results of self-consistent theory of localization, e.g.
Eqs.(2.68),(2.83) and calculate 77! explicitly. We have only to introduce
the upper cut-off in the integral over q in (2.120) similar to (2.59). Direct
calculations for the metallic region (Er > F.) yield [Zhdanov Yu.l. et al.
(1992)]:

o2 ] " 1/3
L1 ) s e > o (2.121)
- 7K 1/3 1/3 :
I n (E—F) Ho<o, (ge )
We - F

where TlK is the Korringa relaxation time [Narat A. (1967)], which deter-
mines the relaxation of nuclear spins in a “good” metal:

% = 2A%T7[N(Ep)]*. (2.122)
The characteristic conductivity o. = 62pF/7TSh2 coincides with Mott’s min-
imal metallic conductivity. The unity in the right-hand side of (2.121) is
written explicitly, so that this expression agrees with the usual result in
the “pure” limit of ppl > 1, when ¢ > o.. The first expression in (2.121)
practically coincides with the respective expression in Ref.[Gotze W., Ket-
terlee W. (1983)], but here we have reduced it to a form more convenient
for comparison with the experimental data.

Equation (2.121) shows that in a system approaching an Anderson tran-
sition NMR relaxation rate T1_1 grows considerably in comparison with Ko-
rringa relaxation rate. Moreover, in the narrow range near the transition
point 71 begins to depend on magnetic field (via w.). Unfortunately, this
dependence emerges only for ¢ < o.(Ep/w.)"/? <« 0., that is, in an ex-
tremely narrow neighborhood of the transition, which means that observing
the we_l/?’ — dependence of NMR, relaxation rate is extremely difficult ex-
perimentally, even for systems with low values of Fermi energy, of the doped
semiconductor type. In this range the temperature dependence of conduc-
tivity, ignored above, begins to play an essential role. On the other hand,
the increase in the relaxation rate T1_1 as conductivity decreases (disorder
grows) should be observable in a fairly broad region, starting from the Toffe-
Regel limit of o ~ 1030hm~tem™!. This behavior was actually observed in
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Warren’s experiments [Warren W.W. (1971)] with liquid semiconductors.
In the localization region (Ep < E.), calculations similar to those that

lead to (2.121) yield:

-1/3 -1/3
i ~~ L (ppll)2 (%) R (g—f) if RIOC(EF) > (N(EF)We)_l/S
Lo prRioe(Er) if Ripe(Er) < (N(Ep)w.)~ /3.

(2.123)

3 dependence operates only within a very

Obviously, here too the we_l/

narrow region near the transition, where the localization length Ri,.(EF)
is extremely large. As Fermi level Ep moves deeper into the localization
region (disorder increases), Rio.(Er) decreases, so that the relaxation rate
T1_1 diminishes together with ppRi,.. The second expression in (2.123)
is valid up to ppRi,. ~ 1, when T1_1 returns to values of the order of
the Korringa rate. For smaller values of Rj,. approximations based on
self-consistent theory of localization can not be used, since in this theory
Rj,. cannot be smaller than roughly p}l. Thus, T /T) passes through a
maximum when the Fermi level crosses the mobility edge. Experimental
observation of such a maximum might serve as an independent indication
of Anderson transition.

The physical meaning of these results is simple. NMR relaxation occurs
via nuclear spin being flipped by some conduction electron flying past the
nucleus and flipping its own spin. As the system approaches the Anderson
transition, conduction electrons in the vicinity of the given nuclear spin
diffuse more slowly and, hence, interact with this spin during increased
time interval, leading to the growth of relaxation rate Tl_1 [Warren W.W.
(1971)]. This effect is most pronounced at the transition point, but sub-
sequently, as electrons remain localized in a region with dimensions of the
order of Ry, surrounding the given nucleus, localization length decreases
as the degree of disorder grows and an electron “carries away” less and less
information about the nuclear spin, leading to the decrease in Tl_l.

In the above analysis we ignored the temperature dependence of con-
ductivity. The zero value of ¢ corresponds to the Anderson transition at
T = 0, while in experiments (at finite T') conductivity is always finite.
For this reason and also because of the effects of a negative temperature
coefficient of resistivity in metallic region it is usually very difficult to deter-
mine the transition point from conductivity measurements. Measurements
of NMR relaxation offer some advantages. We also ignored, up to now,



44 Anderson Localization and Metal-Insulator Transition

electron-electron interactions,which complicate the entire picture of NMR,
relaxation, especially due to formation of localized magnetic moments (Cf.
below). Some aspect of this problem were investigated in Refs.[Gan Zi-
Zhao, Lee P.A. (1986); Shastry B.S., Abrahams E. (1994)]. It is worth
noting that we ignored the effect of the external magnetic field, in which
the NMR experiment 1s conducted. This effect on localization is not small
(Cf.above) and shifts the Anderson transition to the region of larger disor-
der. For this reason, in NMR, experiments we can only find the transition
point of the metal-insulator transition in an external magnetic field.

2.4 Phase Transition Analogy and Scaling for Correlators

Scaling description of a system close to Anderson transition can be de-
veloped also on the basis of some analogies with usual phase transitions
[Sadovskii M.V. (1981); Sadovskii M.V. (1986); Lee P.A., Ramakrishnan
T.V. (1985)]. Most successful in this respect is an approach initially pro-
posed by Wegner [Wegner F.J. (1979a); Wegner F.J. (1979b); Wegner F.J.
(1982)].

Let us consider Eq. (2.68) and Eq. (2.84) which define basic electronic
correlators (spectral densities) in a disordered system. For the metallic re-
gion we can write:

N(E)

K = N(E o P~ Re——— 2.124

Cp(aw) = N(E) < ppppyw >q~ Re—mmmp g (2.124)
pi?

Ky(qw) = N(E) < pepetw >4~ Re g (2.125)

(—iw + Dpq?)?=4/2

Wegner has noted [Wegner F.J. (1979b); Oppermann R., Wegner F.J. (1979)]
that these expressions are in some sense similar to analogous expressions for
transversal and longitudinal susceptibilities of a ferromagnet [Patashinskii

A.Z., Pokrovskii V.L. (1982)]:

M
xi(q) = Tiod (2.126)
L (2.127)

Xj(a) ~ (H + psq?)2-4/2
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Table 2.1 Anderson transition and ferromagnet close to Curie point 7.

Localization Ferromagnet
E—-FE. T-1T.
N(E) M

Kp XL

Ky X)|

—tw H

D(E) Ps

gloc g

where M is magnetization, H is external magnetic field and p; is the spin—
stiffness coefficient. Comparing Eqs. (2.124) with Eq. (2.126) and Eq.
(2.125) with Eq. (2.127) we can write down a correspondence between
electron diffusion in a random system and a ferromagnet as given in Table.
L.

Now we can use the main ideas of scaling approach in the theory of crit-
ical phenomena [Kadanoff L.P. et al. (1967); Wilson K.G., Kogut J. (1974);
Patashinskii A.Z., Pokrovskii V.L. (1982); Ma Shang-keng (1976)] and for-
mulate similar expressions for electronic system close to the Anderson tran-
sition. As was noted above scaling theory is based upon an assumption that
a singular behavior of physical parameters of a system close to a phase tran-
sition appears due to large scale (long wave—length) fluctuations of order—
parameter (e.g. magnetization) close to critical temperature T;. Scaling hy-
pothesis claims that singular dependencies on T'— T, reflect the divergence
of correlation length of these fluctuations ¢ and this length is the only rel-
evant length—scale in the critical region. Scaling approach is based upon
an idea of scale transformations and dimensional analysis. Under the scale
transformation the spatial interval Az changes to Az’, according to:

Ar — Ar' =s7 1Az (2.128)
Accordingly for the wave—vector:
q—q =sq (2.129)

Scaling dimension [Ma Shang-keng (1976)] of a physical quantity A is equal
to A if under scale transformations defined by Eq. (2.128) and Eq. (2.129)
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Table 2.2 Scaling dimensions in the theory of critical phenomena.

13 q M H
-1 +1 1/2(d — 24 n) 1/2(d +2 — )
we get:
A— A = A (2.130)

Scaling dimensions for the main characteristics of a ferromagnet are given
in terms of standard critical exponents [Ma Shang-keng (1976)] in Table II.
Correlation length of the theory of critical phenomena behaves like:

E~|T =T (2.131)

The knowledge of scaling dimension of a given physical quantity allows to
determine its dependence on ¢, i.e. on T'— T,. For example magnetization
M behaves according to Table II as:

M ~ g=Y20=24n) )8 (2.132)
where the critical exponent of magnetization equals
g = %v(d—2+n) (2.133)
Magnetic susceptibility is given by:

x(q, T —T.) =7 g(¢€) (2.134)

where g(x) is some universal function, such that g(0) ~ const, g(x — o) ~
2= (2=1)_ From Eq. (2.134) we get standard results:

(0, T —T,.) m 27 1g(0) ~ |T — T.| " (2.135)
where ¥ = (2 — n)v is the susceptibility exponent. Analogously:
x(q,T=T.)~q %" (2.136)

Here 7 1s sometimes called Fisher’s exponent.
It is easy to see that Eq. (2.134) is equivalent to scaling relation (H—
dependence is taken from Table IT):

x(sq, s, sy = 5=y (g € H) (2.137)
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It is convenient to make transformation |T — T.| — b|T — T.| so that
& — b77¢ which is equivalent to the choice of s = . Then Eq. (2.137)
transforms to:

X(byq, b_yf, bV(d-I-Z—U)/ZH) — b—’YX(q’g’ H) (2138)

Finally note that close to Curie point the spin—stiffness coefficient p, sat-
isfies the so—called Josephson relation [Patashinskii A.Z., Pokrovskii V.L.
(1982)]:

ps ~ |T = T, 4= (2.139)

and tends to zero as T — T, from within the condensed phase.

Consider now the analogy formulated in Table I. Density of states N(E)
is nonsingular at the mobility edge [Thouless D.J. (1974); Sadovskii M.V.
(1986)]. Then considering N(E) as an analog of magnetization M we have
to assume G = 0, i.e. at the localization transition:

n=2—d (2.140)

and the “order—parameter” N(F) is nonsingular at the transition £ = E..
Accordingly we have v = dv. Josephson relation Eq. (2.139) now takes the
form:

Dg ~ |E — E,|14=2" (2.141)

i.e. in fact 1s equivalent to Wegner’s relation for conductivity given by Eq.
(2.31). Correlation length exponent v remains unknown.

For electronic correlators of Eq. (2.124) and Eq. (2.125) from Eq.
(2.138) we obtain scaling relations [Wegner F.J. (1979b); Wegner F.J. (1982)]:

Kpp(b"q,6%w, b(E — E,.)) = b~ "Kpg(q,w, E - E.) (2.142)

Taking v = 1/(d — 2) form Eq. (2.29) for d = 3 and F = F, (i.e. at the
mobility edge itself) we get from Eq. (2.142):

Kpn(ba,b’w) = b7 Kp i(qw) (2.143)
which 1s equivalent to:

Kpu(aw) = LiFru(¢le) (2.144)
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where Fp () is some universal function and we introduced characteristic
length:

L, =[wN(E)~/3 (2.145)

Note that the same scaling dependence follows e.g. for Kg(qw) from Eq.
(2.84) or Eq. (2.85) after a simple replacement of Dy by a diffusion coeffi-
cient given by:

De=p.(aw) = L7 f(¢L.) (2.146)

where f(x — 0) — 1 and f(z — o0) — z. In particular in the limit of
qLy — 0 we get F(z) = (1+x4)_1/4 and the replacement Dy — Do(w/'y)l/?’
mentioned in connection with Eq. (2.85) is valid. On the other hand from
Eq. (2.140) it follows that at w = 0 we get from Eq. (2.136):

K(quw=0FE=FE)~q" (2.147)

which is equivalent to Eq. (2.68) if we take Dg—p_(w = 0,q) = ag?~? (Cf.
Eq. (2.86)) in contradiction with self-consistent theory.

Microscopic justification of this scaling hypothesis can be done with
one or another variant of field—theory approach based upon nonlinear o—
model [Wegner F.J. (1979a); Wegner F.J. (1979b); Wegner F.J. (1982)].
There exist several alternative schemes of “mapping” of the problem of an
electron in a random field onto field—theoretic formalism of nonlinear o—
models [Wegner F.J. (1979b); Wegner F.J. (1979b); Efetov K.B., Larkin
A1, Khmelnitskii D.E. (1980); Schéfer L., Wegner F.J. (1980); McKane
A.J., Stone M. (1981); Schéfer L., Pruisken A.M.M. (1982); Efetov K.B.
(1983)]. The main physical justification of this approach is to represent an
effective Hamiltonian of an electronic system in a form similar to analogous
Hamiltonian of Heisenberg ferromagnet below Curie point:

1 /oM\° .
H= 3 (31@) — HM; M= = const (2.148)

As a result an effective Hamiltonian for an electron in a random field in
terms of interacting modes responsible for the critical behavior close to mo-
bility edge appears. Following Ref.[Efetov K.B., Larkin A.I., Khmelnitskii
D.E. (1980)] we can introduce an “order—parameter” as a 2n x 2n matrix
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() (n—integer). Every matrix element of () can be represented as:

Qij = ( —A]*» D*]» ) (2.149)
i i
where D;; = D}KZ» and A;; = —A}fi, 1.e. are elements of Hermitian and anti-

symmetric matrices respectively. Analogously M? = const in a ferromagnet
()—matrix must satisfy the condition:

Q*=1, TrQ=0 (2.150)

Effective Hamiltonian for diffusion modes takes the following form [Wegner

F.J. (1979a); Wegner F.J. (1979b)]:
H = DyTr(—iVQ)? — iwTrAQ (2.151)

Here A is the diagonal matrix with first n elements equal to 1 and the
remaining n are —1. Correlation function of D—elements corresponds to
diffuson, while that of A—elements to Cooperon. Parameter n should be
put equal to zero at the end of calculations in the spirit of famous “replica
trick” in the theory of disordered systems [Ma Shang-keng (1976); Sadovskii
M.V. (1981)].

This formalism is useful also for the analysis of different kinds of ex-
ternal perturbations, such as external magnetic field, magnetic impurities,
spin—orbital scattering etc. [Efetov K.B., Larkin A.l., Khmelnitskii D.E.
(1980)]. Standard methods of renormalization group using perturbation the-
ory over (ppl)™t < 1 reproduce all the main results of elementary scaling
theory of localization, including the qualitative form of g—function as in
Fig. 2.3. However the formalism of c—model approach is quite compli-
cated and practically does not allow to get explicit expressions for physical
characteristics of the system, especially in localized phase.

Many problems of fundamental nature still remain unresolved. Most
important are questions concerning the role of nonperturbative contribu-
tions close to the mobility edge [Sadovskii M.V. (1981); Sadovskii M.V.
(1986); Kravtsov V.E., Lerner 1.V. (1985); Efetov K.B. (1983); Altshuler
B.L., Kravtsov V.E., Lerner I.V. (1986)]. Note especially strong criti-
cism of one—parameter scaling in Refs.[Kravtsov V.E., Lerner L.V. (1985);
Altshuler B.L., Kravtsov V.E., Lerner 1.V. (1986)]. Among a lot of re-
sults obtained within ¢—model approach we wish to mention an impor-
tant paper by Lerner [Lerner I.V. (1988)] where a distribution function
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for local density of states in a system close to Anderson transition was
determined and shown to be essentially non—Gaussian. Very important
results within field-theory approach to localization were obtained in re-
cent years by Suslov [Suslov .M. (1998)], apparently solving some of the
major problems connected with “ghost” poles, appearing in this theory
similarly to basic models of quantum field theory [Sadovskii M.V. (1981);
Sadovskii M.V. (1986)]. He also formulated quite different analogy (from
that discussed above) between ferromagnet and localization problem — that
of isotropic ferromagnet with infinite number of magnetization components,
which allowed him to lift contradictions with self-consistent theory of local-
ization and argue that critical exponents, obtained within this theory, are
in fact exact.

For our future analysis it is important to stress that in most cases the
results of c—model approach practically coincide with predictions of self—
consistent theory of localization which also neglects all nonperturbative
effects, except those determined by some infinite resummation of diagrams.
It must be stressed that self—consistent theory is based upon some uncon-
trollable ad hoc assumptions and in this respect it 1s not as well justified
as o—model approach. However this simple theory as we have seen above
allows practical calculation of any interesting characteristic of an electronic
system close to mobility edge including the localized phase.

2.5 Interaction Effects and Anderson Transition

The main unsolved problem of the theory of metal—insulator transition in
disordered systems is the role of electron—electron interactions. The impor-
tance of interactions for this problem has been known for a long time [Mott
N.F. (1974)]. In recent years the decisive importance of interactions was re-
vealed in the theory of “dirty metals” [Altshuler B.L., Aronov A.G. (1979);
Altshuler B.L. et al. (1982); Altshuler B.L., Aronov A.G. (1985)], as
well as in the concept of Coulomb gap at the Fermi level of strongly lo-
calized electrons [Efros A.L., Shklovskii B.L. (1975); Efros A.L. (1976);
Shklovskii B.I., Efros A.L. (1979); Efros A.L., Shklovskii B.I. (1985)]. We
have already briefly discussed Coulomb gap. It appears for strongly local-
1zed states. In case of “dirty metals” diffusive nature of electronic trans-
port leads to special interference effects between Coulomb interaction and

disorder scattering [Altshuler B.L., Aronov A.G. (1979); Altshuler B.L.,
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Fig. 2.7 Lowest order interaction corrections: (a) Simplest Fock correction for self—
energy In exact eigenstate representation. (b) Equivalent diagram in momentum rep-
resentation. (c) “Triangular” vertex defining diffusion renormalization. U—irreducible
impurity scattering vertex, ['—full impurity scattering vertex. Wavy line denotes inter-
electron interaction.

Aronov A.G. (1985)]. Most important is an appearance of some kind of a
precursor to Coulomb gap already in metallic state. It is connected with
simple exchange correction to electron self-energy, shown by diagrams of
Fig.2.7. This correction leads to the following cusp—like correction to one—
particle density of states in case of the screened Coulomb interaction in
three—dimensional system [Altshuler B.L., Aronov A.G. (1979)]:

B |E _ EF|1/2

2272 D3
where Dy 1s the usual Drude diffusion coefficient. In two—dimensional case
this correction is logarithmic [Altshuler B.L., Aronov A.G., Lee P.A. (1980);
Altshuler B.L., Aronov A.G. (1985)]. General belief is that this cusp some-

how transforms into Coulomb gap as system moves from metal to insulator.

5N(E) (2.152)

However, up to now there is no complete solution for this problem, though
we shall discuss some attempts below.

Early attempt to describe electron—electron interactions in Anderson
insulators in a Fermi—liquid like scheme was undertaken in Ref. [Fleishman
L., Anderson P.W. (1980)]. Simple generalization of the theory of “dirty
metals” [Altshuler B.L., Aronov A.G. (1979); Altshuler B.L. et al. (1982);
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Altshuler B.L., Aronov A.G. (1985)] along the lines of self—consistent the-
ory of localization was proposed in Refs.[Katsnelson M.I., Sadovskii M.V.
(1983); Katsnelson M.I., Sadovskii M.V. (1984); Sadovskii M.V. (1986)] and
later developed in [Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev
M.A. (1997)]. We shall discuss this approach in some detail in the next sec-
tion. The most general approach to this problem was introduced by McMil-
lan [McMillan W.L. (1981)] who proposed to describe the metal—insulator
transition in a disordered system by a scaling scheme similar in spirit to ele-
mentary scaling theory of localization of noninteracting electrons discussed
above. He formulated a simple system of coupled differential equations of
renormalization group for two effective “charges”: dimensionless conduc-
tance g and single—particle density of states N(E). Later it was realized
that this simple scheme can not be correct because it assumed for conduc-
tivity the relation like Eq. (2.60) with density of states while the correct
Einstein relation for interacting system contains electron compressibility
dn/d¢ (¢ is chemical potential) [Kubo R. (1957); Lee P.A. (1982); Finkel-
stein A.M. (1983)], which is not renormalized close to the metal—insulator
transition as opposed to the density of states. The most comprehensive ap-
proach to a scaling description of metal—insulator transition in disordered
systems was formulated by Finkelstein [Finkelstein A.M. (1983); Finkel-
stein A.M. (1984a); Finkelstein A.M. (1984b); Finkelstein A.M. (1990)].
Unfortunately more or less explicit solutions were only obtained neglect-
ing the scattering and interaction processes in Cooper channel which are
mainly responsible, as we have seen above, for localization itself. Some
attempts in this direction were undertaken only in Ref.[Finkelstein A.M.
(1984b)]. This approach is still under very active discussion [Castellani C.
et al. (1984); Castellani C., Kotliar G., Lee P.A. (1987); Kotliar G. (1987);
Kirkpatrick T.R., Belitz D. (1989); Belitz D., Kirkpatrick T.R. (1989);
Kirkpatrick T.R., Belitz D. (1990); Belitz D., Kirkpatrick T.R. (1990);
Belitz D., Kirkpatrick T.R. (1991); Belitz D., Kirkpatrick T.R. (1994)] and
demonstrate fundamental importance of interactions. However the prob-
lem is still unresolved and most of these works consider only the metal-
lic side of transition with no serious attempts to analyze the insulating
state. Very interesting direction of current research is that connected with
studies of Hubbard model in infinite dimensions (d = o0), where a kind
of exact approach to strong correlations is possible [Vollhardt D. (1993);
Georges A., et al. (1996)]. Within this approach many aspects of dis-
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ordered Hubbard model were also studied. However, localization effects
are, unfortunately, unaccessible within d = co — approximation, while the
regular procedure to calculate 1/d corrections is still under development.

Below we consider only some qualitative results of this approach, fol-
lowing mainly Refs.[Castellani C., Kotliar G., Lee P.A. (1987); Kotliar G.
(1987)]. Fermi liquid theory survives the introduction of disorder [Betbeder-
Matibet O., Nozieres P. (1966)], although with some important corrections
[Altshuler B.L., Aronov A.G. (1979); Altshuler B.L., Aronov A.G. (1985)],
and is actually valid up to metal—insulator transition [Finkelstein A.M.
(1983); Finkelstein A.M. (1984a); Castellani C., Kotliar G., Lee P.A. (1987);
Kotliar G. (1987)]. In the absence of translation invariance there is no mo-
mentum conservation and we have to use some unknown exact eigenstate
¢, (r) representation for electrons in random field to characterize quasi-
particles with energies ¢, (Cf. Ref.[Migdal A.B. (1983)]). The free energy
as a functional of quasi—particle distribution function n,(s,,r) (s—spin
variable) is written as in usual Fermi liquid theory:

F{ns(ey, 1)} = Z/drns(Eyr)(EV -+ %Z/ddréNs(r)éNs/(r)fss/

")

(2.153)
where Ny = >~ ng(e,r) is the total density per spin and fo = f° + ss'f¢
is the quasi—particle interaction function. The angular dependence of f—
function in dirty case can be neglected, because n;(e,r) is assumed to
describe electrons on distances larger than mean free path there only s—
wave scattering is important and Fermi—liquid interaction becomes point—
like. In an external spin dependent field V; the quasi—particle distribution
function obeys a kinetic equation:

9
ot

ns

ns — DV2n, + (3
Oe

)(—DVQ)[VS +) [ No]=0 (2.154)

where D is quasi—particle diffusion coefficient. Eq. (2.154) is obtained
from usual Fermi—Iliquid kinetic equation [Migdal A.B. (1983)] by replac-
ing vpd/Or by —DV? which reflects a crossover from ballistic to diffusive
transport in disordered system. Solving Eq. (2.154) for density—density
and spin—spin response functions one gets [Finkelstein A.M. (1983); Finkel-



54 Anderson Localization and Metal-Insulator Transition

stein A.M. (1984a); Castellani C. et al. (1984)]:

dn D,q?

Xp(qw) = Eiqu;— o (2.155)
XDsq2

Xslaw) = 55— pE— (2.156)

where dn/d{ = N(Er)/(1+ F§), x = N(Ep)p% /(1 + F¢) (pp is Bohr’s

magneton) and

D, = D(1+ F}) (2.157)

D; =D(1+ F§) (2.158)
Landau parameters F;’* are defined by
N(Ep)f* =F;  N(Ep)f* =Fg (2.159)

Here N(EF) is quasi-particle density of states at the Fermi level (for both
spin directions). If we neglect Fermi—liquid renormalization effects Eq.
(2.155) reduces to Eq. (2.49). Conductivity is given now by o = e? D(dn/d().

As system moves towards metal—insulator transition Hubbard—Ilike
interaction of electrons close to a given impurity site becomes more and
more important. It has been known for a long time [Mott N.F. (1974);
Sadovskii M.V. (1986)] that this interaction leads to the appearance of
a band of single—occupied states just below the Fermi level of a system
on the dielectric side of Anderson transition. These states actually simu-
late paramagnetic centers and lead to Curie—like contribution (diverging
as temperature 7' — 0) [Mott N.F. (1974); Sadovskii M.V. (1986)]. Thus
on the metallic side of transition static magnetic susceptibility x is ex-
pected to diverge since it is infinite (at 7' = 0) on the insulating side. At
the same time dn/d¢ remains finite. Therefore D,/D, = (dn/d()/x goes
to zero, 1.e. spin diffusion is much slower than charge diffusion close to
metal—insulator transition. This fact was first noted in Ref. [Finkelstein
A M. (1984b)] where it was assumed that it leads to a possibility of local
magnetic appearing in metallic phase before a transition. It is interesting
to note that the slowing down of spin diffusion due to interactions was
actually discovered long before [Fulde P., Luther A. (1968)] it appeared
in the context of interaction picture of metal—insulator transition. This
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idea was further elaborated in Refs. [Kirkpatrick T.R., Belitz D. (1990);
Belitz D., Kirkpatrick T.R. (1990); Belitz D., Kirkpatrick T.R. (1991)],
where extensive discussion of this magnetic transition was given. There is
an interesting problem why these localized moments are not quenched by
the Kondo effect. This can apparently be explained by the local fluctuations
of Kondo temperature due to fluctuations of local density of states induced
by disorder [Dobrosavljevi¢ V., Kirkpatrick T.R., Kotliar G.] . The result-
ing distribution of Kondo temperatures is shown to be singular enough to
induce diverging magnetic susceptibility as 7" — 0.

The idea of paramagnetic moments appearing already in metallic phase
apparently can much simplify the analysis of metal—insulator transition
and allow its description by equations of elementary scaling theory of local-
ization [Altshuler B.L., Aronov A.G. (1983a); Altshuler B.L., Aronov A.G.
(1983b); Altshuler B.L., Aronov A.G. (1985)]. In general case electron inter-
actions in diffusion channel can be classified by total spin of an electron and
hole j [Altshuler B.L., Aronov A.G. (1985)]. It can be shown that all inter-
action corrections with j = 0 do not depend on electron—electron coupling
constant (charge) and are universal [Altshuler B.L., Aronov A.G. (1985)].
If paramagnetic scattering is operating in the system it dumps scattering
processes in Cooper (localization) channel [Lee P.A. (1980)] as well as in-
teraction processes in diffusion channel with j = 1 [Altshuler B.L., Aronov
A.G. (1985)]. In this case only interaction processes with j = 0 determine
corrections to classical (Drude) conductivity. Due to universal nature of
these corrections (independence of electronic charge) their structure is ac-
tually coincide with that of localization corrections (Cooperon) [Altshuler
B.L., Aronov A.G. (1983a); Altshuler B.L., Aronov A.G. (1983b)]. This
means that renormalization group has only one effective “charge” — di-
mensionless conductance g. In this case differential equation for the con-
ductance of a finite system is again given by Eq. (2.18) with the same
asymptotic forms of B4(g). This approach is valid for systems with lin-
ear size L < Lp = /hD/T . This length Ly replaces in the theory of
interacting electrons characteristic length of phase coherence L, of non-
interacting theory. The appearance of this new length is due to the fact
that characteristic time of interaction processes [Altshuler B.L., Aronov
A.G. (1985)] is ~ h/T. We must stress that these arguments are probably
oversimplified as Refs.[Finkelstein A.M. (1983); Finkelstein A.M. (1984a);
Finkelstein A.M. (1984b); Castellani C. et al. (1984)] had demonstrated the
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relevance of interaction in the sense of appearance of additional coupling
constants ( “charges”). Also it is in no way clear that local moments appear-
ing within this approach are acting just as usual paramagnetic scatterers.
However, the simple scheme following from Refs.[Altshuler B.L., Aronov
A.G. (1983a); Altshuler B.L., Aronov A.G. (1983b)] seems to be too at-
tractive on physical grounds just to be neglected. As in noninteracting case
for d = 3 Eq. (2.18) again possesses unstable fixed point responsible for the
existence of mobility edge and absence of minimal metallic conductivity at
the metal—insulator transition. However, in this case there are no special
reasons to believe that the critical exponent v of localization correlation
length &7, will coincide with its value for noninteracting theory. At finite
temperatures as in usual scaling picture conductivity for d = 3 is given by
[Altshuler B.L., Aronov A.G. (1983a); Altshuler B.L., Aronov A.G. (1983b);
Altshuler B.L., Aronov A.G. (1985)]:

62 (&loc )
o 2.160
hgloc f LT ( )
As system approaches insulating phase &, — oo. For &, <€ Ly we have
fléioe/Lr) = A+ B(&10c/ L), where A and B are some numerical con-
stants. Thus in this region conductivity corrections are proportional to v/T

[Altshuler B.L., Aronov A.G. (1979)]. In case of &,. > Ly, i.e. very close
to transition:

2 2

o O =" \/T/Dh (2.161)
hly  h

where again C' ~ 1. Using Einstein relation [Kubo R. (1957)] ¢ = ¢?D(dn/d()

we immediately obtain:

c?/3 dn\ 23
D=7 (== 2.162
7 (dc) (2.162)
and
9 1/3
_ 23E [ pdn
o= (Tdc) (2.163)

which is valid for Ly < &, where Ly = [C’/(Tdn/dC)]l/?’.
In case of a system in alternating electric field with frequency w > T'/h
the relevant length becomes L, = [D/w]'/? as in Eq. (2.37). Accordingly
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for Ly < &, instead of Eq. (2.163) we get:

1/3
o(w) ~ % (w;l—z) (2.164)

which is analogous to Eq. (2.41) and Eq. (2.82). However we must note that
this result can not be considered very reliable since the dynamical critical
exponent in general case is an independent one [Finkelstein A.M. (1984a);
Finkelstein A.M. (1984b)].

The metal—insulator transition can be viewed as a gradual breakdown
of the Fermi—Iliquid state [Kotliar G. (1987)]. As we approach the transi-
tion different Fermi—liquid parameters, such as D, N(Ep), x etc. change
continuously and at a critical point some of these may either diverge or
go to zero. This behavior is related to the divergence of correlation length
&roe characterized by a critical exponent v. On the insulating side of the
transition this length can be also interpreted as the scale inside which a
Fermi liquid description of the system still holds.

2.5.1 Self-consistent theory with interactions

At present we are in a need of some kind of new approach to the theory of
interacting electrons in disordered systems which probably may be formu-
lated along the lines of the self-consistent theory of localization. The hope
is to provide an effective formalism to calculate the basic physical prop-
erties of the system in an interpolating scheme from metallic to insulating
state. Below we briefly describe an attempt to construct such self-consistent
approach [Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A.
(1997)]. The basic idea is in equal footing (additive) treatment of both local-
ization and interaction corrections to the current relaxation kernel defining
the generalized diffusion coefficient in Eq.(2.47). As a zeroth approxima-
tion we take the Drude metal and consider the simplest localization and
interaction corrections, so that the relaxation kernel takes the following
form:

M(w) = My + 6 M (w) (2.165)

where §M(w) = §Mj(w) + éM (w) = —Jg—g(éDl(w) + 6D(w)). Here the

localization correction to diffusion coefficient D;(w) is defined by the usual
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sum of "maximally crossed” diagrams which yields:

§D(w) 1 1
=— - 2.166
Dy aNo(EF) Iqlz<:ko —iw + Dgq? ( )

while the Coulomb correction D, (w) is given by

8D (w) So(w)

Do 2¢2No(Ep)Do (2.167)
81 /Oon > g2
P Lt aNo(EF) Pyt (—i(Q+w)+ D2+ w)g?) (=i + D(Q)¢?)?

where y = No(EFp)vg is the dimensionless point-like interaction with No(EF)
now denoting the single-spin density of states at the Fermi level for nonin-
teracting case. Conductivity correction éo due to interactions was defined
by the lowest-order diagrams shown in Fig.2.8 which were for the first time
analyzed in Ref.[Altshuler B.L. et al. (1980)], neglecting localization cor-
rections. Physically this means, that we assume rather weak interaction
between electrons and disorder remains crucial parameter, determining the
metal-insulator transition. Strongly correlated systems (e.g. undergoing
Mott transition) are definitely outside our scheme.

It was shown in Ref.[Altshuler B.L. et al. (1980)] that the total con-
tribution of diagrams (a), (b) and (c) is actually zero and conductivity
correction reduces to that determined by diagrams (d) and (e). Here we
neglect also the so called Hartree corrections to conductivity [Altshuler
B.L., Aronov A.G. (1985); Altshuler B.L. et al. (1980)], which is valid
in the limit of 2kp/kp > 1, where kp - is the inverse screening length.
This inequality, strictly speaking, is valid for systems with low electronic
density, which are most interesting for experimental studies of disorder in-
duced metal-insulator transitions. Also, if we remember the divergence of
screening length at the metal-insulator transition, we can guess that this
approximation becomes better as we approach the transition. The point-
like interaction model used above has to be understood only in this sense.

Self-consistency procedure is reduced to the replacement of Dy by the
generalized diffusion coefficient in all diffusion denominators. As a result we
obtain the following integral equation for the generalized diffusion equation:
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Fig. 2.8 Lowest order interaction corrections to conductivity.

Do _ ., | / diq 1
D(w) TNo(Ep) lal <Fo (27)% —iw + D(w)gq?

: 7 e
_ﬁﬂDoi/dQ/ L
md" " wNo(Er) lal<ko (27)
q2

(—i(Q 4 w) + D(Q + w)g?)(—iQ + D(Q)q?)?

This equation forms the basis of the proposed self-consistent approach. In
the absence of interactions (¢ = 0) it obviously reduces to the usual self-
consistent theory of localization. Cut-off in momentum space 1s assumed
here to be kg = xoMin[pr,l~1] with g ~ 1. Let us transform it to
dimensionless imaginary Matsubara frequencies which is simpler for further

analysis as it makes our integral equation real: %% — w, %]?2 — Q, and
0 0%p

Dok
also introduce the dimensionless diffusion coefficient d(w) = %%2. In these
notations integral equation (2.168) takes the following form:

(2.168)
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1
1 d—1

1 _ dyy
=14+ ——dxz? 2/7w—|—
R I I P

[e%) 1 d+1
/1/\93 / (2.169)
d(w + Q d2(Q / . 2
: ) (v +d<w++%>) (v + 7%)

where A = y/7Ep = 1/27Ep7 is the usual disorder parameter. In the
following we shall limit ourselves only to the case of spatial dimension d=3.
Diffusion coefficient of the self-consistent theory of localization (2.79) in
these notations reduces to:

a:1—3/\x0%EFE_E“ wLw., a>0 Metal

d(w) = (%3/\1‘0) g w3 W w,e Metal & Insulator
%3;\2“ w = (&rocko)*w wLw,, a<l Insulator
(2.170)
where w, = |2 > and &, - 18 the localization length, z; - the dimension-

(53Aw0)
less cutoff. Let us introduce K(w) = % and analyze Eq.(2.169) assuming
that K(w), K(2) and K(w + ) <« 1. Expanding the right-hand side of

FEq.(2.169) over these small parameters we obtain:

« T 3Axg 1/
T~ v W

oQ

KY2(Q) + 2K %(w + Q
I / : L2 (Q) + 2K (w + )2
d(w + Q *(Q) (K1/2(Q) + K'/2(w + Q)

w

(2.171)

Consider the metallic phase and look for diffusion coefficient d(w) solution
in the following form:

d(w) = d( )% (2.172)
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Substituting (2.172) into Eq.(2.171) we find d and w, and for the diffusion
coefficient we obtain:

a— o w K we
d(w) = 2 (2.173)
(%3/\1‘0)3 w3 w > w,
_ la=arp? * ~
where w, = F3az0) af =cp, ¢~ 0.89.

Thus for the metallic phase we come to a very simple qualitative conclu-
sion — Anderson transition persists and the conductivity exponent remains
v = 1. The transition itself has shifted to the region of weaker disorder
a = of = cp—interaction facilitates transition to insulating state. The fre-
quency behavior of diffusion coefficient in metallic phase is qualitatively
similar to that in the usual self-consistent theory of localization (2.170). In
the region of high frequencies w > w. the behavior of diffusion coefficient
remains unchanged after the introduction of interelectron interactions.

Consider now the insulating phase. In the region of high frequencies w >
w. the diffusion coefficient obviously possesses the frequency dependence
like d(w) ~ wl/3. Assume that for small frequencies it is also some power
of the frequency:

d(i)é w < w,

d(%) e (2.174)

where 6 1s some exponent to be determined.

Substituting (2.174) into (2.171) and considering the case of o < 0
(insulating phase of the usual self-consistent theory of localization) and
| > o, we get:

(E9)” 2 .
d(w) = a9 = Gecko)w Wt <0 < (2.175)
(%3/\1‘0)3 w3 w S W,
where w, = %, while w* = 0.1/1%#10)2 = 0.1m —is some

new characteristic frequency defined by the interactions. Note that w* — 0
as we approach the transition point when &, — 0.
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Thus, sufficiently deep inside the insulating phase when oo < 0 u |a| >
o and for the frequencies w > w*, the diffusion coefficient remains the
same as in the self-consistent theory of localization, i.e. at small frequencies
it is linear over frequency, while for the higher frequencies it is ~ w'/3.

The analysis of Eq.(2.171) shows that for the frequencies w < w™ it
is impossible to find the power-like dependence for d(w), i.e. the diffusion
coefficient in the insulating phase is apparently can not be represented in the
form of d(w) = d%(ﬁ—*)é, where 6 - 18 some unknown exponent. Because
of this we were unable to find any analytical treatment of Eq.(2.171) in the
region of w € w* within the insulating phase.

Consider now the system behavior not very deep inside the insulating
phase when o — o* < 0 while o > 0, that is when the system without
interaction would be within the metallic phase. Let us assume that the
frequency behavior of the diffusion coefficient for w <« w. possesses the
power-like form, i.e. the diffusion coefficient is defined by the expression
(2.174). Substituting (2.174) into (2.171) we get § = 1. As a result for the

diffusion coefficient we get:

2
3

(12220) 0t w<w,

(%3/\1‘0) w3 w S W,

d(w) = (2.176)

HIICN .

%. Naturally, the exact solution for the diffusion co-
33Az0

efficient should show the continuous change of frequency behavior around

where w, =

W~ we.
Thus, within the insulating phase close to transition point, where the
system without interactions should have been metallic, the diffusion coef-

ficient behaves as ~ w!/3

, everywhere, though for the low frequency region
the coefficient of w!/3 differs from that of the usual self-consistent theory
of localization and explicitly depends upon the interaction constant.

We have also performed the numerical analysis of the integral equation
(2.169) for the wide region of frequencies, both for metallic (Fig.2.9) and
insulating phases (Fig.2.10).

Solution was achieved by a simple iteration procedure using the results
of the usual self-consistent theory of localization as an initial approximation.
Numerical data are in good correspondence with our analytical estimates.

In the region of high frequencies, both for metallic and insulating phases, the
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Fig. 2.9 Dependence of dimensionless generalized diffusion coefficient on dimensionless
Matsubara frequency in metallic phase (oo = 0.5), obtained by numerical solution for
different values of u: 1. 0.24; 2. 0.6; 3. 0.95; Dashed line — the usual self-consistent
theory of localization, ¢ = 0. At the insert: Dependence of static diffusion coefficient

(d= %%l) on disorder for y = 0.24.

frequency behavior of diffusion coefficient is very close to that defined by the
usual self-consistent theory of localization. In the region of small frequencies
within the metallic phase diffusion coefficient d(w) diminishes as interaction
grows. Dependence of static generalized diffusion coefficient on disorder for
= 0.24 is shown at the insert of Fig.2.9, and 1s practically linear. Metal-
insulator transition in this case is observed at o = a® = cp, where ¢ & 0,5,
which is also in good correspondence with our qualitative analysis. Within
the insulating phase for the region of small frequencies (w < w*) we observe
significant deviations from predictions of the usual self-consistent theory of
localization. Diffusion coefficient i1s apparently nonanalytic in frequency
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Fig. 2.10 Dependence of dimensionless generalized diffusion coefficient on dimensionless
Matsubara frequency in dielectric phase (o = —0.5), obtained by numerical solution for
different values of u: 1. 0.12; 2. 0.6; 3. 1.2; Dashed line — the usual self-consistent
theory of localization, u = 0.

here and we clearly see the tendency to formation of some kind of effective
gap for the frequencies w <€ w*, with this "gap” closing as interactions are
turned off.

The above numerical analysis was performed in Matsubara frequency
region, which was used in writing down the Eq.(2.169). For real frequencies
similar calculations were done in [Kuchinskii E.Z., Erkabaev M.A. (1997)].
Of course, it requires more heavy numerical work to solve coupled system
of integral equations for real and imaginary parts of generalized diffusion
coefficient, which is necessary in this case. Appropriate results are shown
in Figs. 2.11,2.12,2.13.

In Refs.[Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A.
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Fig. 2.11 Frequency dependence of the real part of generalized diffusion coefficient for

dimensionless interaction parameter %u = 1 and different values of disorder parameter

3Azg: 1 — 0.1,...,5 — 0.5 — in metallic phase; 7 — 0.7,...,10 — 1.0 — in insulating phase.
Dashed curve 6 corresponds to transition point: 3Azg & 0.6.

(1997)] a study was made of the gradual evolution of the tunneling density
of states from metallic to insulating region, demonstrating the continu-
ous transformation of a cusp singularity of Eq.(2.152) in a metal into a
kind of interaction induced pseudogap at the Fermi level in an insulator,
which is in some respects similar to the Coulomb gap of Refs.[Efros A L.,
Shklovskii B.L. (1975); Efros A.L. (1976); Shklovskii B.I., Efros A.L. (1979);
Efros A.L., Shklovskii B.I. (1985)]. Consider the effects of interelectron in-
teractions upon the single-particle (“tunneling”) density of states which is
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Fig. 2.12 Frequency dependence of the imaginary part of generalized diffusion coeffi-
cient for dimensionless interaction parameter %u = 1 and different values of disorder

parameter 3Azg: 1 — 0.1,...,6 — 0.6 — in metallic phase up to metal-insulator transition
at 3Azg = 0.6.

defined by the well-known relation:
1 d3p R
NE)=— | —=IT 2.1
(6) T / (27‘_)3 mG (pa 6) ( 77)

where ¢ = F — Ep - is electronic energy with respect to the Fermi level and
G%E(p,¢) - is the retarded Green’s function defined by:

1

R _
CPe) = e T S p)

(2.178)

where £, = vr(|p| —pr). Consider the so called ”Fock” contribution to the
self-energy part X (¢, p) given by diagrams shown in Fig.2.7(b,c):
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Fig. 2.13 Frequency dependence of the imaginary part of generalized diffusion coeffi-
cient for dimensionless interaction parameter %u = 1 and different values of disorder
parameter 3\zg: 6 — 0.6,...,10 — 1.0 — in insulating phase. Dashed curve 6 corresponds
to transition point: 3Azg & 0.6.

) d3q 1/7’ d(.d
Ei(E,p) = Z/ (27)3 / ﬁGS‘(p —q¢&— w)v(q)72 (q,w) ~

~ iy G (p,e) (f(e) +ig(e)) (2.179)

where f(g) = ReS(e) and g(e) = ImS(e) with

a1 d?’_q Y dw 1
S(e) = 4N, (0) /|q|<k0 (271')3/5 Gy (—iw + DE(w)q2)2 (2.180)
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and G (p,¢) — the advanced Green’s function without interaction contri-
butions. Here and in the following we denote as Ny(0) the density of states
at the Fermi level in the absence of interactions.

Substituting the expression for L& (e, p) from (2.179) into (2.178) we
obtain as ¢ — 0:

oQ

5 ((50)) oo [dginGp,e) = (2.181)
7 /B p & 77+ pr9(e)
LA T2+ ()" + (2 f ()

where 2B — is the effective band width. Qualitative analysis of these ex-
pressions for the density of states was performed in [Kuchinskii E.Z. et al.
(1995)]. Here we shall present only some of the results, obtained after ex-
tensive numerical calculations in [Kuchinskii E.Z., Erkabaev M.A. (1997)],
solving the nonlinear integral equation (2.168) both in metallic and insu-
lating phases and using these results to calculate density of states. The
results of these calculations for the band of the finite width with B = Ep
are shown in Fig.2.14. These results demonstrate the formation of some
kind of “Coulomb” pseudogap at the Fermi level as system moves through
metal-insulator transition with the growth of disorder. Square-root cusp
at the Fermi level in metallic phase transforms to rather narrow (loga-
rithmic) singularity at the transition point and then to power-like behav-
ior in insulating phase T. Of course, this last behavior is similar, but
not that of “Coulomb gap” of Refs.[Efros A.L., Shklovskii B.L. (1975);
Efros A.L. (1976); Shklovskii B.I., Efros A.L. (1979); Efros A.L., Shklovskii
B.I. (1985)], which is due to long-range Coulomb forces, totally neglected
in our calculations. The effective width of our “pseudogap” grows with the
growth of disorder.

Similar behavior of the density of states was observed experimentally in
a number of disordered systems close to the metal-insulator transition [Lee
P.A., Ramakrishnan T.V. (1985); Belitz D., Kirkpatrick T.R. (1994)], from
amorphous alloys [McMillan W.L., Mochel J. (1981); Imry Y., Ovadyahu Z.

fIn the case of the band of infinite width square-root behavior persists in insulating

phase [Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A. (1997)]
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Fig. 2.14 Density of states in the case of the band with finite width 2FEr for dimen-

sionless interaction parameter %u = 1 and different values of disorder parameter 3Azq:

1 —0.1,...,5— 0.5 — in metallic phase; 7 — 0.7,...,10 — 1.0 — in insulating phase. Dashed
curve 6 corresponds to transition point at 3 zg & 0.6. Energies are given in units of
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(1982); Hertel G. et al. (1983)] to disordered single-crystals of copper-oxides
[Srikanth H. et al. (1992)]. Note, however, that though our results are very
similar to these experiments qualitatively, they fail quantitatively as in the
experiments the effective width of the “pseudogap” at the metal-insulator
transition itself is rather large and is definitely not logarithmic. At the
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same time, our results provide rather attractive interpolation scheme qual-
itatively valid in large interval of system parameters — from slightly disor-
dered metal up to disorder-induced metal-insulator transition and through
to insulating phase. The general drop of the density of states in rather wide
energy interval with the growth of disorder is also similar to that observed
in the experiments.

2.5.2 Disorder in “Marginal” Fermi—liquid

For high—7T, superconductors problems of interplay of localization and in-
teractions become especially important because of unusual nature of nor-
mal state of these systems. In the absence of accepted theory of this normal
state we shall limit ourselves only to few remarks on one specific model.
The so called “marginal” Fermi—liquid theory [Varma C.M. et al. (1989);
Kuroda Y., Varma C.M. (1990)] is a promising semi-phenomenological de-
scription of both normal and superconducting properties of these systems.
We shall see that localization effects are apparently greatly enhanced in
this case [Kotliar G., Varma C.M. (1990); Varma C.M. (1990)].

Basically the idea of “marginal” Fermi-liquid is expressed by the fol-
lowing form of one—particle Green’s function [Varma C.M. et al. (1989)]:

VA

G(Ep) = ——— =+ Gincon 2.182
(Fp) = (2182)
where £, is renormalized quasi—particle energy, vp ~ Max[e, T] is anoma-
lous (linear) decay—rate for these quasiparticles which is quite different
from quadratic in ¢ or T' decay—rate of the usual Fermi—Iliquid theory
[Migdal A.B. (1983)]. The concept of “marginality” arises due to peculiar

behavior of quasiparticle residue:
@ @
Il n—"= m In— (2.183)

i 13y lel
where @, is characteristic frequency scale of some kind of electronic ex-
citations, which is the phenomenological parameter of the theory. From
Eq. (2.183) it is clear that quasiparticle contribution to Green’s function
Eq. (2.182) vanishes precisely at the Fermi level, while exists close to it
though with logarithmically reduced weight. Note that in the case of usual
Fermi—liquid Z, =~ 1 [Migdal A.B. (1983)].

For disordered system we can estimate the impurity contribution to the
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scattering rate of quasi—particles as (it is given by diagram similar to that
in Fig.2.7(b), but with wavy dynamic interaction line replaced by dashed
static impurity line) [Kotliar G., Varma C.M. (1990)]:

v = 2pV2ZImZ A (p+q,p)G(p + q¢) =
| o
20pV2Z A (q — 0)N(EF) = ZA?y0 (2.184)

where A is the appropriate vertex—part renormalized by Fermi—liquid
effects, p again is impurity concentration, V is impurity potential and
N(Ep) = Z71No(EF) is the renormalized density of states in the Fermi—
liquid. Here Ny(Er) is density of states for noninteracting electrons at
the Fermi level, vy is scattering rate for noninteracting case. To get the
last relation in Eq. (2.184) a weak dependence of vertices and self—
energy on momentum was assumed. Now we can use the Ward identity
for A(q — Ow = 0) vertex of disordered Fermi—Iliquid theory [Betbeder-
Matibet O., Nozieres P. (1966); Castellani C., Kotliar G., Lee P.A. (1987);
Kotliar G. (1987)]:

Ag—0w=0)=(1+F)tz7" (2.185)

where F§ is Landau parameter introduced above. As a result we can eas-
ily get a simple relation between the mean free paths of interacting and
noninteracting quasiparticles [Kotliar G., Varma C.M. (1990); Varma C.M.
(1990)]:

L= (pr/m* )y~ = (pp/m)yg /A (4 — 0) = bo(1 + F3)* 2% (2.186)

Here m* = Z~'m is the effective mass of quasiparticle. Assuming F§ ~
const < 1 and using Eq. (2.183) we get at T = 0:

lo
[ln%] ’

Then from usual Ioffe—Regel criterion for localization ppl &~ 1 we obtain

= (2.187)

that all quasiparticle state within the region of the order of

lec] & Geexp(—+/prl) (2.188)

around the Fermi—Ilevel in high—T7, oxides are localized even for the case
of weak impurity scattering ppl > 1. For realistic estimates of &, =~

0.1 — 0.2V [Varma C.M. et al. (1989)] and prl < 5 the width of this
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localized band may easily be of the order of hundreds of degrees K, while
for ppl & 10 and &, &~ 1000K we get |e.| & 40K. Obviously this band
grows with disorder as the mean free path [y drops. We can safely neglect
this localization for T > ||, but for low enough temperatures localization
effects become important and all states are localized in the ground state.

Of course, the formal divergence of the mean free path denominator in
FEq.(2.187) is unphysical. Single-impurity scattering cannot overcome the
so called unitarity limit [Kotliar G., Varma C.M. (1990)], so that we must
always have:

2
1> PE (2.189)

In a typical metal with pp ~ a~! this leads to [ > 1/4mwpa® and loffe-Regel
criterion ! < @ can be easily satisfied for large impurity concentrations p ~
a=3. Thus the singularity in Eq.(2.187) does not mean that localization can
appear for arbitrarily low concentration of impurities. We can safely speak
only about the significant enhancement of localization effects in marginal
Fermi liquids.

These ideas are still at rather elementary level and we may quote only
few papers attempting to put them on more sound basis of scaling theory
of metal-insulator transition of interacting electrons [Ng T.K. (1991)] or
general picture of disorder effects in non Fermi-liquids [Varma C.M. (1997)].



Chapter 3

SUPERCONDUCTIVITY AND
LOCALIZATION: STATISTICAL
MEAN-FIELD APPROACH

3.1 BCS Model and Anderson Theorem

We shall start our analysis of superconductivity in strongly disordered sys-
tems within the framework of simple BCS—model [Bardeen J., Cooper
L.N., Schrieffer J. (1957); Gennes de P.G. (1966)] which assumes the exis-
tence of some kind of effective electron—electron attraction within energy
region of the order of 2 < w > around the Fermi level. In usual super-
conductors < w >~ wp, where wp is Debye frequency, because pairing is
determined by electron—phonon mechanism, however we shall use some ef-
fective < w > as an average frequency of some kind of Bose—Ilike excitations
responsible for pairing, e.g. in high—7, superconductors. At the moment
we shall not discuss microscopic nature of this attraction which in general
case 1s determined by the balance of attraction due to Boson—exchange
and Coulomb repulsion. Here we just assume (as always is done in simple
BCS—approach) that this effective attraction is described by some inter-
action constant g, which is considered just as a parameter. More detailed
microscopic approach will be given in later sections.

Nontrivial results concerning superconductivity in disordered systems
were obtained very soon since the discovery of BCS—theory [Abrikosov
AA. Gorkov L.P. (1958); Abrikosov A.A., Gorkov L.P. (1959); Gorkov
L.P. (1959); Anderson P.W. (1959)]. The concept of “dirty” superconductor
described the experimentally very important case of the mean free path [
short in comparison with superconducting coherence length & ~ hvp /T,
i.e. the case when:

o> 1> h/pr (3.1)

73
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Already in this case of not so strongly disordered (in the sense of closeness
to metal—insulator transition) system Cooper pairing takes place not be-
tween electrons with opposite momenta and spins as in regular case, but
between time—reversed exact eigenstates of electrons in disordered system

[Anderson P.W. (1959); Gennes de P.G. (1966)]:

(1, —P1) = (¢u(x)1, 95(r))) (3.2)

In the following we consider mainly singlet isotropic (s-wave) pairing. Some
aspects of anisotropic pairing will be analyzed later. The underlying physics
is simple: in disordered systems such as e.g. an alloy the electron momen-
tum becomes badly determined due to the lack of translational invariance.
However, in random potential field we can always define exact eigenstates
é,(r), which are just solutions of Schroedinger equation in this random
field (for a given configuration of this field). We don’t need to know the
explicit form of these eigenstates at all, the pairing partner of ¢,(r) is be-
ing given by time—reversed ¢*(r). This leads to a relative stability of a
superconducting state with respect to disordering in the absence of scat-
tering mechanisms which break the time—reversal invariance such as e.g.
magnetic impurities.

Within standard Green’s function approach superconducting system is
described by Gorkov equations [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii LE. (1965); Gorkov L.P. (1958)] which in coordinate representation
take the form:

Gi(rr'e,) = Gy(rr'e,) — /dr”GT(rr”En)A(I‘”)}"(r”r’gn) (3.3)

F(rr'e,) = /dI‘HGT(I‘I‘HEn)A*(I‘H)QT(I‘HI‘/EH) (3.4)

where G(rr's,) is an exact one—electron Matsubara Green’s function of
the normal state and superconducting order—parameter (gap) A(r) is de-
termined by self—consistent gap equation:

Ar) = gTZf-*(rrEn) (3.5)

En

where F(rr'sy) is (antisymmetric over spin variables) anomalous Gorkov
Green’s function, e, = (2n 4+ 1)#xT.
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If we consider temperatures close to superconducting transition temper-
ature T,, when A(r) is small, F(rr’e,) can be obtained from the linearized
equation:

F(rr'e,) = /dr”GT(rr”en)A*(I‘”)GT(I‘”I‘/EH) (3.6)
Then the linearized gap equation determining 7, takes the form:

Ar) = gT/dr' Z K(rr's,)A(x) (3.7)

where the kernel:
K(rr'e,) = Gi(rr'e, )G (x'rey) (3.8)

is formed by exact one—electron Green’s functions of a normal metal. Now
we can use an exact eigenstate representation for an electron in a random

field of a disordered system to write (Cf. Eq. (A.13)):

T </>VT(P)¢>§T(P’)

G en) =
1(er'ey) a—

(3.9)

v

where ¢, are exact energy levels of an electron in disordered system. Then

K(r'e,) =Tg Y ¢T(52 ETS)E_‘?E irlqi‘; l)(r) (3.10)

In the following for brevity we shall drop spin variables always assuming
singlet pairing. In case of a system with time—reversal invariance (i.e. in
the absence of an external magnetic field, magnetic impurities etc.) Eq.
(3.10) can be rewritten as:

Su ()95 (2) 9, (r") 97 (x)

' / — / / —
K(rr'e,) = Grr'e,)G(x'r —n) = Y T — (3.11)
Hy
Averaging over disorder we get:
< A(r) >= gT/dr/Z < K(rr'en)A(r') > (3.12)

Practically in all papers on the superconductivity in disordered systems it
is assumed that we can make simplest decoupling in Eq. (3.12) to get the
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following linearized equation for the average order—parameter:
< A(r) >= gT/dr’ S K(r—r'z,) < Al) > (3.13)
where the averaged kernel in case of time—invariance is given by:
K(r—1'e,) = K*(r —1t'e,) =< K(rr'e,) >=

oy SN

(len —ey)(—ien — €y)

2%

- /_Oo dEN(E) /_O:o dw (:npf(g)ﬁ?:g/)_in) (3.14)

oQ

where we have introduced Gorkov—Berezinskii spectral density [Berezinskii

V.L., Gorkov L.P. (1979)] (Cf. Eq. (A2)):

< pp()pptw(r’) >T'=

L S G )6um )6, (NO(E — )8 +w — ) > (3.15)

N(E) S

Here N(E) is an exact electron density of states per one spin direction as
it always appears in superconductivity theory (above, while discussing lo-
calization we almost always used density of states for both spin directions).

Usually the decoupling procedure used in Eq. (3.12) to reduce it to
Eq. (3.13) is justified by the assumption that the averaging of A(r) and
of Green’s functions in Eq. (3.12) forming the kernel can be performed
independently because of essentially different spatial scales [Gorkov L.P.
(1959)]: A(r) changes at a scale of the order of coherence length (Cooper
pair size) &, while G(rr's,) are oscillating on the scale of interatomic dis-
tance a ~ h/pp, and we always have £ > a. Actually it is clear that this
decoupling is valid only if the order—parameter is self—averaging (i.e. in
fact nonrandom) quantity: A(r) =< A(r) >, < A%(r) >=< A(r) >2
Below we shall see that for a system close to mobility edge the property
of self—averageness of A(r) is absent and situation is actually highly non-
trivial. In this case the so called statistical fluctuations [Bulaevskii L.N.,
Sadovskii M.V. (1986)] leading to inequality of < A%(r) > and < A(r) >2
become quite important. However, we shall start with what we call statisti-
cal mean—field approach which completely neglects these fluctuations and
allows the simple analysis using Eq. (3.13), as a necessary first step to un-
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derstand superconductivity in strongly disordered systems, which will allow
to find most of the important deviations from the usual theory of “dirty”
superconductors. The role of statistical fluctuations will be analyzed later.

If we look for the solution of Eq. (3.13) A(r) = const (homogeneous
gap), we immediately obtain the following equation for superconducting
transition temperature 7,:

1:ch/erK(r—r'6n):

- ch/dr;/_i dEN(E) /_O; dw (?ﬁi?)??ig/)—in) (3.16)

Using the general sum—rule given in Eq. (A.5) [Berezinskii V.L., Gorkov
L.P. (1979)]:

/ dr < pp(E)ppsu (') >F= 6(w) (3.17)

we immediately reduce Eq. (3.16) to a standard BCS form:

E

% 1 <w> 1
1=gT. / . dEN(E)Y FrE g/o dEN(E)th o (3.18)

En

where we introduced the usual cut—off at £ ~ 2 < w >. Note that N(E)
here is an exact one-particle density of states (per one spin direction) in
a normal state of a disordered system. From Eq. (3.18) we get the usual
result:

27 1
1. = — <w>exp (—g) (3.19)
where A\, = ¢N(EF) is dimensionless pairing constant, Iny = C' = 0.577...
is Euler constant. This is the notorious Anderson theorem: in the absence of
scattering processes breaking time—reversal invariance disorder influence
T, only through the possible changes of the density of states N(Ep) under
disordering (which are usually relatively small).

Due to the sum—rule of Eq. (3.17) all singularities of Berezinskii—
Gorkov spectral density reflecting possible localization transition do not
appear in equation determining 7: there 1s no explicit contribution from
§(w) term of Eq. (A.8) and Eq. (3.18) has the same form both in metallic
and localized phases (Cf. Ref.[Takagi H., Kuroda Y. (1982)]).
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The only limitation here which appears on the physical grounds is con-
nected with the local discreteness of electronic spectrum in localized phase
discussed above. It is clear that Cooper pairing is possible in localized phase
only between electrons with centers of localization within the distance of
the order of ~ Ry..(F), because only in that case their wave functions
overlap [Bulaevskii L.N., Sadovskii M.V. (1984); Bulaevskii L.N., Sadovskii
M.V. (1985)]. However, these states are splitted in energy by 6g defined in
Eq. (2.13). Obviously, we have to demand that superconducting gap A (at
T =0, A ~T,.) be much larger than this ég:

1

A~T, >ép~ —r—r
N(E)R], ()

(3.20)

i.e. on the energy interval of the order of A ~ T, there must be many dis-
crete levels, with centers of localization within distance ~ Rj,.(E) from
each other. In this case the problem of Cooper pairs formation within
~ Rioe(F) is qualitatively the same as in metallic state, e.g. we can re-
place summation over discrete levels ¢, by integration. Analogous prob-
lem was considered previously in case of Cooper pairing of nucleons in
finite nuclei [Migdal A.B. (1983)] and also of Cooper pairing of electrons
in small metallic particles (granular metals) [Imry Y., Strongin M. (1981);
Miihlschlegel B., Scalapino D.J., Denton R. (1972)]. For strongly anisotropic
high—7, systems we must similarly have [Sadovskii M.V. (1989)]:

A~ T, > [N(E)R}, Ry, Ri,.] ™ (3.21)
where we have introduced the appropriate values of localization lengths
along the axes of an orthorhombic lattice.

Obviously Eq. (3.20) is equivalent to a condition of large enough local-
ization length:

Rioe(E) > [N(E)A]7Y? ~ (0 /p)'/? ~ (&0l*)/? (3.22)

i.e. the system must be close enough to mobility edge or just slightly local-
ized. Here we used the usual estimate of mean free path close to Anderson
transition [ ~ p}l. Below we shall see that Eq. (3.22) is just a condition
that Cooper pairs must be much smaller than localization length, only in
this case Cooper pairing is possible in localized phase [Bulaevskii L.N.,

Sadovskii M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985)].
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3.2 T. Degradation

In usual BCS model discussed above pairing interaction ¢ is assumed to
be a given constant in the vicinity of the Fermi level. In more realistic
approach this interaction is determined by the balance of interelectron at-
traction, due e.g. to electron—phonon coupling (as in traditional super-
conductors) or some other Boson—exchange mechanism (as is apparently
the case in high—7; superconductors), and Coulomb repulsion. It is clear
that in strongly disordered system all these interactions can, in principle,
be strongly renormalized in comparison with “pure” case. The aim of this
section 1s to discuss these effects on the approach to metal—nsulator tran-
sition induced by disorder.

Usually the Coulomb repulsion within Cooper pair is strongly reduced
in comparison with electron—phonon attraction due to a retarded nature
of electron—phonon coupling [Gennes de P.G. (1966)]. Characteristic time
of electron—phonon interaction is of the order of wBl, while for Coulomb
interaction in “pure” metal it is determined by ~ h/FEp—the time during
which electrons “pass” each other in the pair. Due to metallic screening
both interactions are more or less point—Iike. However, in a disordered
metal ballistic transport changes to diffusion and as disorder grows electron
motion becomes slower effectively leading to the growth of Coulomb repul-
sion within Cooper pair and the appropriate drop of T, as was first claimed
by Anderson, Muttalib and Ramakrishnan [Anderson P.W., Muttalib K.A
Ramakrishnan T.V (1983)]. Actually electron—phonon interaction can also
change under disordering but a common belief is that these changes are less
significant than in case of Coulomb interaction [Keck B., Schmid A. (1976);
Fleurov V.N., Kondratenko P.S., Kozlov A.N. (1980)]. This problem is
still under active discussion and some alternative points of view were ex-
pressed [Belitz D. (1987a); Belitz D. (1987b); Belitz D. (1989)]. However,
the general agreement is that some kind of diffusion renormalization of ef-
fective interaction of electrons within Cooper pair provides effective mech-
anism of 7T, degradation under disordering. Later in this section we shall
also consider the possible mechanisms of 7, degradation under disorder-
ing due to magnetic fluctuations (or local moments) which appear close to
metal—insulator transition. Possible relation of these mechanisms to en-
hanced Coulomb effects will also be discussed. Also we have seen above,
that important renormalization of the density of states close to the Fermi
level takes place due to electron-electron interaction as system approaches
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metal-insulator, leading to “Coulomb” pseudogap. Obviously this leads to
additional mechanism of 7. degradation [Kuchinskii E.Z., Sadovskii M.V,
Erkabaev M.A. (1997)], which also will be analyzed here. At present it
is not very clear which (if any) of these mechanisms is dominant in real
systems. Most probably all are effective simultaneously, while there is no
theory taking all of these into account in a united manner.

The general problem of T, degradation under disordering becomes much
more complicated in case of high—temperature superconductors because of
unknown nature of pairing in these systems. However, we believe that the
mechanisms discussed here are also operational in these systems, while of
course it is difficult to say much about disorder effects upon attractive
interactions leading to Cooper pair formation in these systems.

If we assume some kind of spin-independent Boson—exchange (phonons,
excitons etc.) model of pairing interaction, the T, can be obtained from the
generalized Eliashberg equations and thus be given by the famous Allen—
Dynes expression [Allen P.B., Dynes R.C. (1975)]:

_ Lk 1.04(1 4 X)
© T 120 P\ TN S (1 + 0.62)) (3.23)

where
< w? 12 Juny — N2
A2+ A2
2 _1/2
A= 24614 3.80%); Ao = 182(14 6.3 (3.24)

Wiog

A=10+ /NP3 =1+

Here wjo, is the mean logarithmic frequency and < w >? is the mean
square frequency of Bosons responsible for pairing (the averaging is over
*

the spectrum of these Bosons), p* is the Coulomb pseudopotential, A is
the dimensionless pairing constant due to Boson—exchange. Strictly speak-
ing, Allen-Dynes formula has been derived for the electron—phonon model,
with certain assumptions about the phonon spectrum. Its use for general
Boson—exchange model here serves only for illustrative purposes. At rel-
atively weak coupling A < 1.5 Allen—Dynes expression effectively reduces

to McMillan formula [McMillan W.L. (1968)]:

_wny LA+
*T 1207 P T N = (1 + 0.62))

which for the weak coupling gives the usual BCS result T, ~< w > exp( )\:;1” ).

(3.25)
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For very strong pairing interaction Eq. (3.23) gives the asymptotic behavior
T. ~ 0.18y/ X < w? >. Below we shall mostly limit ourselves to weak cou-
pling approximation. Coulomb pseudopotential p* in the “pure” system is
given by:

T — (3.26)

- 14 pln <EZUF>

where p is the dimensionless Coulomb constant. The mechanism of T,
degradation under disordering due to the growth of Coulomb repulsion is
reflected in the appropriate growth of u* [Anderson P.W., Muttalib K.A
Ramakrishnan T.V (1983); Bulaevskii L.N., Sadovskii M.V. (1985)].

The singlet gap function with a simple s-wave symmetry which we have
discussed above has a non-zero amplitude at zero separation of the two
electrons in the pair. Thus it must pay the energy price of short-range
repulsion due to a finite p. In recent years a number of new mechanisms of
superconducting pairing were proposed which try to eliminate the effect of
repulsion assuming a pair wavefunction which vanishes at zero separation.
Qualitatively this is equivalent to the requirement that the sum over all
momentum of the BCS gap function A must vanish [Abrahams E. (1992)]:

Ay =< v 1 @9 | (1) >= 3 AK) =0 (3.27)

A number of rather exotic schemes for this were proposed [Abrahams E.
(1992)], but probably the simplest way of satisfying this requirement is
by means of higher angular momentum pairing, e.g. d-wave which became
very popular as a possible explanation of high-7. superconductivity within
the spin-fluctuation exchange mechanism [Bickers N., Scalapino D., White
S.R. (1989); Monthoux P., Balatsky A.V., Pines D. (1991); Monthoux P.,
Balatsky A.V., Pines D. (1992); Monthoux P., Pines D. (1993); Monthoux
P., Pines D. (1994)]. The sum in Eq.(3.27) is then zero because the gap
changes sign as k goes around the Fermi surface. This leads to a large
extent to cancellation of Coulomb pseudopotential effects which just do
not enter the formula for 7.. As an example of such formula we quote the
“BCS-like” expression proposed within antiferromagnetic spin-fluctuation
mechanism in [Monthoux P., Balatsky A.V., Pines D. (1991); Monthoux P.,
Pines D. (1993)] (actually as a good fit to their numerical data, obtained
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solving the appropriate Eliashberg equations):

T. = aWSF(Tc)&Z#ew <_ﬁ)

oLy (1) )

where wgp — effective paramagnon energy of the order of 10 — 100K (de-

pending on compound), £sp — correlation length of these antiferromagnetic
fluctuations, which may be of the order of several interatomic spacings a, so
that effective “Boson” energy I is typically of the order of 0.4—0.5¢V | while
the dimensionless coupling constant A(7;) = nggff (T:)xo(T:)N(EFp) varies
from 0.48 to 0.33 also depending on compound. Here g.;; —temperature de-
pendent interaction constant, yo — experimentally measurable spin suscep-
tibility, while o and 5 — material constants of order of unity. Eq.(3.28) can
really explain the values of 7T, in a number of high-7, compounds within in-
termediate to weak coupling approach, using semi-phenomenological values
(experimental) of all essential parameters, entering this expression [Mon-
thoux P., Balatsky A.V., Pines D. (1991); Monthoux P., Pines D. (1993)].
For us it is interesting to note that almost all of these parameters may
significantly change under disordering. At present it is rather difficult to
provide any kind of serious microscopic analysis of disorder effect within
this approach.

However, we shall see below that irrespective to microscopic mechanisms
of pairing, anisotropic d-wave pairing is extremely sensitive to any kind of
disordering and superconductivity is destroyed in fact long before local-
ization transition, at least within the standard BCS-like approach which
assumes disorder independent pairing interaction. The problems which ap-
pear here with respect to the experiments on disordering high-T, systems
(which demonstrate unusual stability to disordering in this sense) and the
possible ways out will be analyzed later in this section, as well as during
our discussion of experimental situation.

Among mechanisms discussed for high-7, superconductors we also men-
tion different types of so-called van-Hove scenarios [Friedel J. (1989); Newns
D.M., Pattnaik P.C., Tsuei C.C. (1991); Abrikosov A.A.; Campuzano J.C.,
Gofron K. (1993); Dagotto E., Nazarenko A., Moreo A. (1995)], which are
based upon the 1dea of T.-enhancement due to some kind of the density of
states singularity close to the Fermi level. For all such mechanisms rather
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strong 7. suppression may be due to the potential scattering smoothing out
these singularities. We shall not discuss these mechanisms here as having
almost nothing to do with localization effects.

3.2.1 Coulomb Kernel

Let us use again the exact eigenstate ¢,(r) representation for an electron
in random system, with exact energy levels ¢,. These functions and ener-
gies may correspond either to extended or to localized states. Consider the
one—electron Green’s function in this representation and take its diagonal
element GG, (¢). The influence of interaction is described by the appropriate
irreducible self—energy ¥, () [Migdal A.B. (1983); Abrahams E., Anderson
P.W., Lee P.A. (1981)]:

1

Gyule) = Y

(3.29)

Here energy zero is at the Fermi level. Let us introduce a “self—energy”
Y () averaged over some surface of constant energy ' = ¢, and over ran-

dom field configurations [Abrahams E., Anderson P.W., Lee P.A. (1981)]:
1
b)) = — S(E —e,)8, .
5 = gy < DB~ 2% () > (3.30)

Consider model with short—range static interelectron interaction v(xr — r').
Then for the simplest Fock diagram shown in Fig. 2.7 we find:

Sf == [ [arole =) Y AeitEmeme ) (331

where f, = f(e,) is Fermi distribution function. Accordingly from Eq.
(3.30) we get [Katsnelson M.I., Sadovskii M.V. (1984)]:

Eg = —/ dwf(E + w) / dr/dr/v(r — 1) € pe(r)pEtu(r’) >
(3.32)
where we again introduced Berezinskii—Gorkov spectral density defined in
Eq. (A.2) or Eq. (3.15).
Let us define the Coulomb kernel by the following functional derivative:
§xIE

K.(E—E')= SR

(3.33)
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which characterize the change of electron energy due to a variation of its
distribution function. It is easy to see that:

K (w) =

1
< <pvlo(r—)vp > 8(E —e,)8(F +w —¢g,) >=
V{5 < 2 < e (8 <) )

= /dr/dr'v(r — 1) € pe(r)pEtu(r’) >t
(3.34)

i1s actually Fock—type matrix element of interaction averaged over two
surfaces of constant energy F and F' = E + w and over disorder. We can
use K. (w) as a kernel in the linearized gap equation (Cf. Appendix B)
determining 7. which is a reasonable generalization of a Coulomb kernel
used in the theory of ordered superconductors [Vonsovsky S.V., Izyumov
Yu.A., Kurmaev E.Z. (1982)]. In momentum representation:

3
K (w) = / (;l;)lgv(q) < pEPEIw >k (3.35)
In the weak coupling approximation over pairing interaction it is the only
relevant Coulomb contribution in the gap equation (Cf. Appendix B), in
case of strong coupling there are additional contributions, e.g. connected
with diffusional renormalization of the density of states Eq. (2.152) [Belitz
D. (1987a); Belitz D. (1987b); Belitz D. (1989); Belitz D. (1985); Mackawa
S., Ebisawa H., Fukuyama H. (1985)]. We refer to these papers for the
detailed analysis of the effects of small corrections to the density of states
upon T.. Much stronger effects due to “Coulomb” pseudogap formation
are discussed later in this section.

In the following we assume point—Ilike interaction: v(q) = vg. During
our discussion of localization we have discovered that for small w < ¥
and ¢ < [7!' Gorkov—DBerezinskii spectral density acquires a diffusional
contribution:

L PEPE+w >>§d”f: Im@gA(qw) (3.36)

_1
aN(FE)
where

i (qw) = —% (3.37)
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and the generalized diffusion coefficient in metallic phase is given by:

Dg lw| € w, ~ 2y(0/0.)?

Dp(w) =~ o \1/3
B (w) Do (_%) o] > w,

(3.38)

In the absence of disorder this diffusional contribution disappears and the
kernel K (w) for |w| < Er reduces to usual Coulomb potential y = N(F)v,
[Gennes de P.G. (1966); Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z.
(1982)]. Accordingly we can use the following approximation [Bulaevskii

L.N., Sadovskii M.V. (1985)]:

Ko (w) = pl(Ep — ) + K& (W) (3.39)
where
-dif f d°q Fdiff
K (w) = / Wvo K PEPE+w g (3.40)

This form of the Coulomb kernel gives correct interpolation between the
strong disorder limit and “pure” case. Note, that in case of disordered
system besides diffusional contribution which contains singularities associ-
ated with Anderson transition there also appear “regular” contributions to
K (w) which may be modelled by p, making it different from its value in
“pure” system. Diffusional term in K.(w) is connected with diffusion renor-
malization of electron—electron interaction vertex [Altshuler B.L., Aronov
A.G. (1979); Altshuler B.L. et al. (1982); Abrahams E., Anderson P.W .|
Lee P.A. (1981); Lee P.A. (1982); Katsnelson M.I., Sadovskii M. V. (1983);
Katsnelson M.I., Sadovskii M.V. (1984)]. Fig. 2.7 shows diagrams of stan-
dard perturbation theory responsible for this renormalization. In case of
the approach based upon self—consistent theory of localization “triangu-
lar” vertex defined by Fig. 2.7 (c) is given by [Katsnelson M.I., Sadovskii
M.V. (1983); Kotov E.A., Sadovskii M.V. (1985)]:
RA 2v 1

Y (qW)%m w<y ¢l (3.41)
Singularity of Eq. (3.41) for small w and ¢ leads to significant growth
of interaction in disordered system. Actually this expression i1s the same
as in a “dirty” metal [Altshuler B.L., Aronov A.G. (1979)] but with the

replacement of Drude diffusion coefficient by the generalized one.
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3.2.2 FElectron—Phonon Interaction

The case of electron—phonon interaction is different. Diffusion renormal-
ization of electron—phonon vertex is less important because the relevant
corrections compensate each other if we take into account impurity vibra-
tions [Pippard A.B. (1955); Keck B., Schmid A. (1976); Fleurov V.N., Kon-
dratenko P.S., Kozlov A.N. (1980)]. Surely the value of electron—phonon
contribution to pairing interaction does change in a disordered system in
comparison with “pure” case [Keck B., Schmid A. (1976)]. However, these
changes are relatively insignificant in the sense of absence of drastic changes
at the Anderson transition. We shall demonstrate the absence of diffusion
renormalization of electron—phonon vertex using the lowest order diagrams
of perturbation theory following the approach of Ref. [Fleurov V.N., Kon-
dratenko P.S., Kozlov A.N. (1980)].

Let us limit our analysis to homogeneous continuous medium. The ap-
pearance of deformation u leads to the variation of density of the medium
given by ép = —pdivu. Accordingly, taking into account the electroneutral-
ity condition we get the variation of electron density as én = —ndivu. This
leads to the following change of the free electron Green’s function:

o d
6G_1(Ep) = —ndwu%[E —vr(lp|—pr)] =

d 1
= —nvpdivu% = —gUFdeiUu (3.42)

where we have used n = p%./(37%). Let us define electron—phonon vertex

A by:

oG §G~1 §G~1
Sa GAG = -G Sa G A=— Sa (3.43)
For u(r,?) = uexp(iqr — iwt) we get from Eq. (3.42):
§G=1(Ep) = —iqu “F:fF (3.44)
so that the “bare” electron—phonon vertex (i is vector index):
A = iqi% (3.45)

Consider the system with impurities randomly placed at points R,, which
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/'-\\ /‘--‘\\ /"\i
(a) (4)

P P4

Fig. 3.1 Electron—phonon interaction and impurity scattering: (a) Self —energy due to
impurity scattering. (b) Diagrams representing changes of (a) due to impurity vibrations.
(c) Diagrams for “bare” electron—phonon vertex in case of vibrating impurities.

create the potential:
Ur)=> V(r—R,) (3.46)

Vibrations of the medium lead to vibrations of impurity atoms, so that
R, — R, +u,(?) with u,(¢) = uexp(iqR,,, — iwt). Random field of static
impurities leads to a simplest self—energy correction given by Fig. 3.1
(a) [Edwards S.F. (1958); Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1965)].

Impurity vibrations can be accounted for by the additional interaction

term:
- Rn . .
V(r—Ry,) = Muel‘p(zano — wt)
6Rn0
so that
5%
Agiu; = %Uz =

V(i —-R,
= Zn: {WG(N’ vt )V(r' — Rno)uin+
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(@)

Fig. 3.2 Electron—phonon vertex renormalization: (a) Impurity “ladder” (diffusion)
renormalization. (b), (c), (d) Simplest corrections due to impurity vibrations.

oV — R,
+V(r — Ryo)G(xt, r/t')Mum > (3.47)
dR:,

where the angular brackets define as usual the averaging over random impu-
rity positions. In momentum representation and for point—Ilike impurities
we get in lowest order over w/FEp and ¢/pp:

5 d3p/

Azi(p, @) = pV / i = p)G(EP') +i(p; — pi)G(ED)] =

= 2pV2/ (275/3 [—i(p:i — P))G(EP)] =
= 21pVAN(E)p; = 2vpi
(3.48)

The relevant diagrams are shown in Fig. 3.1 (b) [Nielsen P.E., Taylor P.L.
(1974)].

“Bare” electron—phonon vertex is thus given by the sum of three dia-
grams shown in Fig. 3.1 (b) and reduces to:

AP = A 4 ALY = g, UF3PF + 27p; (3.49)

Diffusion renormalization of electron—phonon vertex can appear due to
impurity scattering ladder corrections as shown in Fig. 3.2 (a). Similar
diagrams shown in Fig. 2.7 (¢) lead to diffusion renormalization of Coulomb
vertex. However, in case of electron—phonon interaction we have to make
the same renormalization of three diagrams of Fig. 2.7 (¢). Let us consider
simplest corrections shown in Fig. 3.2 (b,c,d). For the contribution of graph
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of Fig. 3.2 (b) we have:

d3p/
AL — 2-iUFPF(/‘ Ep\CH(E / ~
v =V | (g CEPICE T e )

1+iw/2'y—D0q2/2'y]%iqiw w,q—0 (3.50)

UFPF[
3

A ig;

and for the sum of graphs of Fig. 3.2 (¢,d):

AL — 912 &GE’GE ! »e
9; — 4PV Y (271_)3 ( p) ( +wp +q)pl ~
d3p’ 0
~ 2pV g, / WPQG(EP’)ap,G(Eerp’) A
d3p’ vp VFPF
~ 2 . oy Ur / 2 N i,
~ 2ypV qlpp/ @) 3 G(Ep)G*(Ep’) = —ig; 3 (3.51)
Thus for w — 0, ¢ — 0 we obtain:
A AL =0 3.52
le¢ 21

and we have total cancellation of initial diagrams contributing to diffu-
sion ladder. Apparently there is no diffusion renormalization of electron—
phonon vertex (for w,q — 0): this cancellation is valid for any graph ob-
tained from the simplest corrections by adding further impurity lines to the
ladder. Similar cancellation apparently takes place in case of adding to dia-
grams of Fig.3.2 (b,c,d) corrections due to maximally crossed impurity lines
(Cooper channel). Thus there is no significant change of electron—phonon
vertex due to Cooperon and the only relevant contribution to electron—
phonon vertex in impure system is defined by the sum of diagrams of Fig.
3.1 (b) leading to Eq. (3.49) which does not contain diffusion type renor-
malization. Localization appears via generalized diffusion coefficient which
replaces the Drude one. Thus localization singularities does not appear in
electron—phonon vertex, though surely this interaction is really changed by
disorder scattering in comparison with “pure” case. However, the question
of whether localization effects contribute to renormalization of electron—
phonon coupling is still under discussion [Belitz D. (1987a)]. Probably more
important aspect of this problem is reflected by the fact that superconduc-
tivity is actually determined not by electron—phonon vertex itself, but
by the famous integral expression over the phonon spectrum of Eliashberg
function a?(w)F(w) which defines the pairing constant A [Allen P.B., Dynes
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R.C. (1975); Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)]. This
integration will apparently smooth out all possible singularities.

In the following we shall model pairing interaction due to phonon ex-
change by some constant A as in BCS model. Of course we must stress
that this constant is different from that in regular metal. It i1s constant in a
sense that it does not contain singularities due to metal-—nsulator transi-
tion. Electron—phonon kernel in the linearized gap equation (Cf. Appendix
B) can be taken in the simplest form:

. A E|, F'l<wp
Kon(E, ) :{ ; |E|| ||E|,|>|WD (3.53)

and consider A as relatively weakly dependent on disordering. More detailed
discussion of electron—phonon pairing in disordered systems can be found
in Refs. [Keck B., Schmid A. (1976); Belitz D. (1987a); Belitz D. (1987b)].

As we mentioned above it is quite difficult to speculate on disorder de-
pendence of pairing interaction in high—temperature superconductors. In
case of the “marginal” Fermi—Iliquid approach [Varma C.M. et al. (1989);
Kuroda Y., Varma C.M. (1990)] pairing interaction can be modelled as
in Eq. (3.53) with the replacement of Debye frequency wp by some phe-
nomenological electronic frequency @, which we briefly mentioned above
while discussing localization in “marginal” Fermi—Iliquid. In the following
we shall just assume that this pairing interaction is weakly dependent on
disorder as in the case of phonon mechanism of pairing.

3.2.3 Metallic Region

In metallic region we can use Eqs. (3.35—3.37) and Eq. (3.39) and find
the diffusional contribution to Coulomb kernel:

1
w+iDgq?

. 43
Kflff(w) = —/ @ 4 volm
T
1

)3
~ Y0 Wl 1
203 | [De()ll | D3 *(w)|

1 |w|1/2 |
Vo Del e (.d| <L we

o (%) ol > w.
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Accordingly for the Coulomb kernel defined by Eq. (3.39) we get [Bulaevskii
L.N., Sadovskii M.V. (1985)]:

y U |w] < we
K (w)=pb(Ep — |w|)+ — —-1/3
“) ( 1) prl z%(;_v) w,e<w<y~Ep

Upper limit cut—off in the integral in Eq. (3.54) was taken ~ [~!. Rough
estimate of contribution of higher momenta can be achieved introducing
cut—off ~ pp (Cf. Ref.[Belitz D. (1985)]). This will cancel (pg{)~! in Eq.
(3.55). Close to Anderson transition [=! ~ pp and this correction is ir-
relevant. We shall assume that far from transition these higher momenta
corrections can be included in the definition of y. From Eq. (3.55) we
can see that diffusion renormalization of Coulomb kernel leads to substan-
tial growth of Coulomb repulsion close to Anderson transition (i.e. when
conductivity drops below o,—“minimal metallic conductivity”).
Superconducting transition temperature 7, is determined by the lin-
earized gap equation [Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)]
which in the weak coupling approximation can be written as (Cf. Appendix

B) [Dolgov O.V. (1977); Dolgov O.V., Sadovskii M.V. (1984)]:

<w> dw’ ’

Alw) = M(< w > —w)/o —-AW)th 2“’T -
Ep / /
dw' / / i
—0(Ep — w)/o " K (w—wHAW"th o7, (3.56)

Consider metallic region and take w, >»>< w > which in accordance with
w,. estimate given in Eq. (3.38) roughly corresponds to o > o, for typical
Ep/ < w >~ 102 so that the system is not very close to Anderson tran-
sition. The change of T, due to diffusion contribution in Coulomb kernel
Eq. (3.55) can be determined by perturbation theory over K%//(w) in gap
equation. First iteration of Eq. (3.56) gives:

- L N T
c D 0 (3.57)

TCO 7 w —
ﬁafdw[Ao(w)]z[chﬁ] 2

where Ag(w) is the usual “two—step” solution of Eg. (3.56) [Gennes de
P.G. (1966); Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)] which
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is valid for standard form of Coulomb kernel K .(w) = pbd(Ep — |w|), and

1
T., =113 <w>exp <_/\—WS) (3.58)
is a critical temperature in regular superconductor when the Coulomb pseu-
dopotential is given by :

% K
= 3.59
Ho 1+ puln <E;)F> ( )

Using the first relation in Eq. (3.55) we get from Eq. (3.57):

(STC H 1 Oc
—_— 3.60
T.o A=p$)prl o (3.60)
This change of T, is equivalent to the following change of Coulomb pseu-

dopotential [Bulaevskii L.N., Sadovskii M.V. (1985)]:

2

o] (3.61)

* o

op™ =

where we have used Eq. (2.76) and ppl = 0¢/0. = (0 + 0.)/0. to replace
prl in Eq. (3.60). As we noted above this later factor disappears from
Eq. (3.60) if we use cut—off at ¢ ~ pp in Eq. (3.54). According to Eq.
(3.61) Coulomb pseudopotential = grows as o drops and this dependence
is more strong than a similar one obtained in Ref.[Anderson P.W., Mut-
talib K.A., Ramakrishnan T.V (1983)], which is connected with our use
of the results of self —consistent theory of localization. Method of Ref.[An-
derson P.W., Muttalib K.A., Ramakrishnan T.V (1983)] is based upon the
use of ¢g—dependence of diffusion coefficient as given by Eq. (2.86) . Our
expression for éu* leads to a significant growth of p* for conductivities
o < 1030hm~'em™'. This growth can easily explain the typical T, degra-
dation in “very dirty” superconductors as their conductivity in normal state
drops approaching the Ioffe—Regel limit [loffe A.F., Regel A.R. (1960)]. At
the same time expressions for y* proposed in Ref.[Anderson P.W., Muttalib
K.A., Ramakrishnan T.V (1983)] can explain experimental data only under
the assumption that a characteristic conductivity scale determining p* is
an order of magnitude larger than Toffe—Regel limit, for which we see no
serious grounds. Additional extensive discussion can be found in Ref.[Belitz

D. (1987a)].
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Let us consider now the situation at the mobility edge itself, when o = 0
and w, = 0 so that K.(w) is determined by the second expression in Eq.
(3.55) for all frequencies below y ~ Ep. In this case we can show [Bulaevskii
L.N., Sadovskii M.V. (1985)] that the influence of Coulomb repulsion on 7.
is again described by effective pseudopotential p* which can be estimated
as:

1/3
w~ap <<;y>) a~1 (3.62)

In this case T, may remain finite at the mobility edge only under very strict
conditions: both Ep ~ 7 and g must be very small, while A must be at least
close to unity. As a crude estimate we can demand something like A ~ 1, 1 <
0.2 and Er < 103T.y. Obviously only some narrow band superconductors
like Chevrel phases can satisfy these conditions among traditional systems.
High—7T. superconductors are especially promising. Experimental situation
will be discussed later.

Using Eq. (3.61) and Eq. (3.62) we can write down a simple inter-
polation formula for the conductivity dependence of p* [Bulaevskii L.N.,

Sadovskii M.V. (1985)]:

ap(<w > [29)713 — iy
¥ (<w> /2 Polo + 0.)]07

*

[T NTr (3.63)

To get an expression via observable parameters we may take into account
the simple relation < w > /vy &~ (< w > /EF)(1 4 0/0.). These expressions
describe continuous crossover from the region of weak localization correc-
tions to the vicinity of Anderson transition where its influence upon 7.
becomes very strong. This crossover takes place at w, ~< w >.

3.2.4 Localization Region

Let us now consider Anderson insulator. According to Eq. (3.35) and Eq.
(A.9) Coulomb kernel acquires in this case §(w)—contribution:

K(w) = v Apé(w) = voﬁ < Zé(E — &), ()2 |6u (v))? > (3.64)

Ap = Ap(r — v/)|p=r ~ R;,2(3.65)

which is actually connected with “Hubbard—Ilike” repulsion of electrons in
a single quantum state becoming nonzero in localization region [Mott N.F.
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(1971); Katsnelson M.I., Sadovskii M.V. (1983); Sadovskii M.V. (1986)].
This mechanism acts in addition to diffusion contributions in Coulomb
pseudopotential p* considered above, which are due to “regular” part of
Gorkov—Berezinskii spectral density. Using Eq. (3.65) as a full Coulomb
vertex in linearized gap equation (3.56) we can solve it exactly [Bulaevskii

L.N., Sadovskii M.V. (1985)] and find:

O(< w>—|w|)Ay

Aw) = T 2%2%) 1th n (3.66)
where
<w> 1w
A = /\/0 de(w);th 5T (3.67)
and equation for T, takes the form:
<w> thss-
1:AA dwzzjm;ﬁﬁr (3.68)

IN(E)

To account for “regular” diffusion contributions to pu* we can just replace
here A — X* = A — i7", where y* is given by Eq. (3.62). Then our equation
for T, can be approximately represented by[Bulaevskii L.N., Sadovskii M. V.

(1985)):
ln% ~ U (% + %) — v (%) (3.69)

where ¥(z) is digamma function, and 7% is taken to be equal to T, of the
system at the mobility edge which is given by Eq. (3.58) with g replaced
by p* from Eq. (3.62). Here we slightly overestimate the role of Coulomb
repulsion in localization region. We can see that this additional “Hubbard—
like” repulsion acts upon 7, as magnetic impurities [Gennes de P.G. (1966);
Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)] with effective spin—
flip scattering rate:

1 AR p
=T

Tsf B N(E) ( )R?oc( )
Obviously this result is connected with the appearance below the mobility
edge of the “band” of singly occupied electron states of the width [Mott N.F.
(1971); Katsnelson M.I., Sadovskii M.V. (1983); Sadovskii M.V. (1986);

(3.70)
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Kamimura H. (1980)] UQRI_O?. Superconductivity persists until 7's_f1 < 0.57TF,
i.e. until

1/3
Rin(B)> | yoire |~ @ e~ @ @)
where the last estimates are valid for typical values of parameters and cor-
respond to the simple estimate of Eq. (3.20). Thus the Coulomb repulsion
in a single (localized) quantum state leads to a sharp reduction of 7, below
the mobility edge even if superconductivity survived up to the Anderson
transition. Another interpretation of this effect is the influence of “free”
spins of Mott’s band of singly occupied states below the Fermi level of
Anderson insulator.

Coulomb gap [Efros A.L., Shklovskii B.L. (1975); Efros A.L. (1976);
Shklovskii B.I., Efros A.L. (1979); Shklovskii B.I., Efros A.L. (1979); Efros
A.L., Shklovskii B.I. (1985)] effects in rough approximation can be neglected
here [Bulaevskii L.N., Sadovskii M.V. (1985)] because according to the
estimates given in Eq.(2.14) and Eq. (2.15) the Coulomb gap width:

A, ~INEYR} (ENT' < T, ~A (3.72)

loc

i.e. is small in comparison to superconducting gap A (or 7¢) under con-
ditions given by Eq. (3.20) which is necessary for the observation of su-
perconductivity in localization region. However, we shall see below, that
renormalization of the density of states due to interactions becomes impor-
tant even in metallic phase and acts as an independent mechanism of 7.
degradation.

3.2.5 Spin Fluctuations

As we mentioned during our discussion of interaction effects upon Ander-
son transition the role of magnetic fluctuations (spin effects) in general
becomes stronger as we approach metal—insulator transition. The band of
single—occupied states 1s being formed below the Fermi level of Ander-
son insulator, which is equivalent to the appearance of localized moments
[Mott N.F. (1971); Sadovskii M.V. (1986); Kamimura H. (1980)]. These
effects actually may become important already before metal—insulator
transition [Finkelstein A.M. (1984b); Kirkpatrick T.R., Belitz D. (1990);
Belitz D., Kirkpatrick T.R. (1990); Belitz D., Kirkpatrick T.R. (1991);
Altshuler B.L.,; Aronov A.G. (1983a); Altshuler B.L., Aronov A.G. (1983b);
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Altshuler B.L., Aronov A.G. (1985)], and lead to additional mechanism of
T, degradation. Unfortunately there is no complete theoretical understand-
ing of these effects and accordingly only few estimates can be done con-
cerning superconductivity. Here we shall mention only some of these crude
estimates following Refs. [Fukuyama H. (1985a); Fukuyama H. (1985b);
Ebisawa H., Fukuyama H., Maekawa S. (1985)].

In the framework of Hubbard model with weak disorder it can be shown
[Fukuyama H. (1985a)] that the spin susceptibility is represented by:

_ Xo ___Xo Xo
I-UN(E)+v% -y n—-7 1

Xs (3.73)
where yp is spin susceptibility of free electrons, ng = 1 — UN(E) + 7o is
enhancement factor for the ordered case (U is Hubbard interaction, vy is
correlation correction to RPA approximation), v’ is the correction due to
the interference of Hubbard interaction and disorder scattering:

v = BX  B=6V3r[N(E)UJ? {1 - %UN(E)} (3.74)

Here A = 1/(2xE7) = 1/(prl) is the usual perturbation theory parameter
for disorder scattering. As 7' > 0 we can see from Eq. (3.73) that disor-
dering leads to diminishing denominator = g — 4'. If we reach a critical

disorder defined by:
7]0 B
Ao =/ — le=24]— 3.75
Vg prlle=2y 770 (3.75)

we get xs — oo. It should be stressed that this divergence of xs in a
disordered system must not be identified with any kind of ferromagnetic
instability but may signify something like the appearance of a spin—glass
state or just of localized moments. In any case it means the growth of spin
dependent effects under disordering.

If the initial enhancement of spin susceptibility is strong enough (e.g.
due to a large U), i.e. ng < 1, the critical disorder defined by Eq. (3.75)
may be lower than the critical disorder for Anderson localization, appearing
at prpl ~ 1. Then these spin dependent effects may become important well
before Anderson transition. In the opposite case these effects will appear
only very close to metal—insulator transition. In general case the relation
between these two transitions depends on parameters.
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If spin fluctuations are strong enough (7 < 1) a strong mechanism for
T, degradation in superconducting state appears [Fukuyama H. (1985b)]
analogous to similar effect due to magnetic impurities [Gennes de P.G.

(1966); Vonsovsky S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)]:

c0 1 1
mi —g (L) —w(d .
", (2 p) (2) (3.76)

where [Fukuyama H. (1985b)]:

_9\/§WA2UN(E)_9\/§ UN(E)] A2
F=— 0 2 B | a_az

(3.77)

As p from Eq. (3.77) diverges as (A, — A)~! for A — A. superconducting
transition temperature T, drops to zero.

If A, < 1, which is possible for 5y < 1, superconductivity will be de-
stroyed long before metal—insulator transition. In the opposite case this
mechanism may lead to its destruction on the either side of metal—insulator
transition depending on the parameters of the system, such as U. In general
we need a more accurate analysis which must include the mutual interplay of
magnetic fluctuations and disorder scattering leading to metal—insulator
transition. In any case magnetic mechanisms of 7, degradation close to
metal—insulator transition may be as important as Coulomb effects con-
sidered above.

3.2.6 Density of States Effects

In Chapter 2 we formulated a kind of a theory [Kuchinskii E.Z. et al. (1995);
Kuchinskii E.Z., Erkabaev M.A. (1997)] of metal-insulator transitions which
generalizes the self-consistent theory of localization [Wélfle P., Vollhardt D.
(1982); Sadovskii M.V. (1986); Vollhardt D., Wélfle P. (1990)] taking into
account the effects of electron-electron interaction. This approach has al-
lowed us to study the behavior of the generalized diffusion coefficient for the
wide interval of disorder parameter both for metallic and insulating regions.
These results were used in calculations of one-particle density of states with
the account of interelectron interactions. Calculations demonstrate the for-
mation and the growth of the “Coulomb pseudogap” in the density of states
close to the Fermi level. In metallic region this behavior of the density of
states corresponds to the usual square-root Altshuler-Aronov correction

[Altshuler B.L., Aronov A.G. (1979); Altshuler B.L., Aronov A.G. (1985)].
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As disorder parameter grows and system moves towards the metal-insulator
transition this “pseudogap” deepens, while the effective region of square-
root behavior diminishes, and at the point of the metal-insulator transition
the density of states at the Fermi level becomes equal to zero — we obtain a
kind of a” Coulomb gap”. In the insulating region, for the band of the finite
width, we obtain the typical quadratic behavior of the density of states close
to the Fermi level, reminiscent of the Coulomb gap of Efros and Shklovskii
[Efros A.L., Shklovskii B.L. (1975); Shklovskii B.I., Efros A.L. (1979);
Efros A.L., Shklovskii B.I. (1985)], widening with the further growth of
disorder. Such behavior of the density of states is in qualitative agreement
with experiments on the number of disordered systems close to the metal-
insulator transition [Belitz D., Kirkpatrick T.R. (1994)], from amorphous
alloys [McMillan W.L., Mochel J. (1981); Imry Y., Ovadyahu Z. (1982);
Hertel G. et al. (1983); Bishop D.J., Spencer E.G., Dynes R.C. (1985)]
to disordered single-crystals of metallic oxides, including high-temperature
superconductors [Srikanth H. et al. (1992)]. Here we use the results of these
calculations of the density of states for the numerical study of “Coulomb
gap” effects on the T, suppression for superconductors which are close to
the metal-insulator transition [Kuchinskii E.Z., Sadovskii M.V., Erkabaev
M.A. (1997)].

We shall analyze superconductivity within the framework of the sim-
plest BCS-model. In the weak coupling approximation the linearized gap-
equation takes the following form (Cf. Appendix B):

oQ

A€) = — / d€’V(€,€’)N(€’)QL€,th(

fl
27

JA(E), (3.78)

— 00

where N (&) - is the averaged on disorder density of states which includes
the effects of electron-electron interaction, V(£,&’) - is the effective pairing
interaction. The only difference with the standard approach is in the ac-
count of non-trivial dependence of N(€) on the electron energy £, close to
the Fermi level E'p.

In BCS theory we usually assume the existence of some effective electron-
electron attraction, which is determined by the balance of pairing attraction
due to electron-phonon interaction and Coulomb repulsion. Thus we con-
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sider the effective pairing interaction in the following simple form:
V(E€) = Ve(&, &)+ Vonl€,€), (3.79)

where Va(€, &) = V.O(Er — [E)0(Er — |¢']) and Vpn(€,€') = —Vp Ol —
[€)0(wp — |€']) - are the respectively the electron-electron and electron-
phonon interactions, wp - is the Debye frequency, or the characteristic
frequency of any other Boson excitation responsible for pairing. The con-
stants V. > 0 and V5 > 0 correspond to repulsion and attraction which
effectively operate on rather different intervals of energy: Ep > wp. Af-
ter using this expression in Eq.(3.78) and some transformations using the
even-odd properties of the gap function A(&) we obtain:

AEQ) = Wb~ —VitlEr = €)] [ de/N &) Zeh( A€ -
~ VB =) [ dENEHEDAE) (3.80)

We look for the solution of this equation in the usual two-step form [Vonsovsky
S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)]:

I AV €] < wp,
Alo) = { Ai, wp < [¢] < Ep, (3:81)

where App, A, - are some constants which are determined from the follow-
ing system of homogeneous linear equations, which is obtained after the
substitution of Eq.(3.81) into Eq.(3.80):

(1= (Vn = VO No O K (52} Agn + VoNo(O)[K () = K (5214 =0,

wp
27,

w E
VCNO(O)K(%)AM + {1+ VcNo(O)[K(%

)= K(229]A, =0,

(3.82)

where Ng(0) - is the one-electron density of states of noninteracting elec-
trons at the Fermi level and we introduce
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K(e) = j dg' g th(s' [%] | (3.83)

Equation for T, follows from the usual zero-determinant condition for this
homogeneous system:

(O = HIKGE =1,

W=l + KGR - KGR (3.84)

where p* - is the Coulomb pseudopotential, pr = V. Ny(0) - is the Coulomb
constant, A = Vp,Ng(0) - is the pairing constant due to electron-phonon
interaction. In the clean limit, when the density of states at the Fermi level
is constant, this reduces to the usual BCS-expression for 7.

Equation (3.84) for T, was solved numerically for disorder parameter
changing in wide interval both for metallic and insulating regions. The
density of states was calculated taking into account lowest order corrections
over electron-electron interaction as in Chapter 2 (Cf.(2.177),(2.179)) and
in [Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A. (1997)]:

N(©) = —2tm [ SR w.0) (3.85)

where

1
E—& iy — S (p,¢)
- is the retarded (advanced) electron Green’s function, . (A)(p,g) - is

"Fock” contribution to electron self-energy [Altshuler B.L., Aronov A.G.
(1979); Altshuler B.L., Aronov A.G. (1985); Kuchinskii E.Z. et al. (1995)]:

G (p,6) = (3.86)

R(4) ~ 4iv2 N H0)GAB (p 1
Eee (p’g) 417 /’LNO ( / / ZW+D( ) ] .

(3.87)

lal<ko
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Here D(w) - is the generalized diffusion coefficient, which is determined
from the self-consistent nonlinear integral equation (2.168) of Chapter 2

[Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A. (1997)]:

D(w) L D) d*q 1

Dy ~ 7No(0) Dy (27)3 —iw + D(w)q?
lal<ko

_|_

s [ | :
37 wNg(0 (—i(Q+w)+ D2+ w)g?)(—iQ + D(2)¢?)?
w lal<

(3.88)

where Dy = Er/ 3my - is the usual Drude diffusion coefficient, y = 1/27 -
Born scattering rate, 7 - mean free time, kg = Min{pr, (=1} - cut-off in the
momentum space, pr - Fermi momentum, [ - mean free path. The data on
static conductivity used below were also obtained by numerical solution of
Eq.(3.88) [Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A.
(1997)].

In Fig.2.14 we have shown the behavior of the density of states close to
the Fermi level which demonstrated the evolution of the ” Coulomb pseudo-
gap” as disorder grows. This behavior obviously leads to superconducting
T. suppression as the system moves towards the metal-insulator transition.

Fig.3.3 demonstrates T, suppression as disorder parameter (pgl)~! grows
for different values of the Coulomb constant p and fixed value of pairing
constant A. For large p and growing disorder (prl)~! the value of T, drops
rather fast and becomes zero in metallic region far enough from metal-
insulator transition. For smaller values of p this drop of 7. with growing
disorder (prl)~! becomes slower and for small g and large enough A (dashed
curves) we get the possibility of superconductivity persisting even in the
insulating region. This possibility is clearly seen at the insert in Fig.3.3,
where we show the 7. dependence on the static conductivity of the system o
for the appropriate values of A and p. For large values of y as conductivity o
drops T, also drops and superconductivity is completely suppressed rather
far from the metal-insulator transition. For small values of y this drop of T,
with ¢ becomes slower and for sufficiently large values of A (dashed curves)
T. remains finite even in the case of ¢ — 0.

Fig.3.4 demonstrates T, degradation with the growth of disorder param-
eter (ppl)~! for different values of the pairing constant A for the fixed value
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Fig. 3.3 T, degradation as a function of disorder parameter (ppl)_1 for fixed pairing
constant A (A = 0.5—full curves, A = 1.0-dashed curves) and for different values of

dimensionless Coulomb constant ;—Tru: 1-0.2,..,5—1.0. At the insert we show T,

dependence on static conductivity ¢ for the appropriate values of pairing constant A and
Coulomb repulsion w.

of the Coulomb constant g. For small A and disorder parameter (ppl)~!
growing the value of 7T, drops rather fast and becomes zero in the metallic
state far from the metal-insulator transition. As A grows this drop of T,
becomes slower and for large enough values of A superconductivity is com-
pletely suppressed only somewhere in the insulating region. At the insert in
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Fig.3.4 we show the dependence of the Coulomb pseudopotential p* on the
disorder parameter (ppl)~! for the appropriate values of A and p demon-
strating rather insignificant growth of g* with disorder (ppl)~! close to the
point where superconductivity is completely suppressed. Apparently this
behavior is natural enough because we neglect all the processes renormaliz-
ing the matrix element of Coulomb interaction in Eq.(3.79) due Anderson
localization which can actually lead to rather important growth of Coulomb
pseudopotential close to the metal-insulator transition as was shown in pre-
vious sections. Also we neglect here all possible effects of spin-fluctuations.
Later in the book we shall try to compare these predictions with exper-
iments on real systems [Kuchinskii E.Z., Sadovskii M.V., Erkabaev M.A.
(1997)].

3.2.7 Localization and d-wave Pairing

There is a growing body of experimental evidence in high-7, superconduc-
tors that indicate that the pairing state is of dy>_,> symmetry [Wollman
D.A. et al. (1994); Tsuei C.C. et al. (1994); Annett J., Goldenfeld N.,
Leggett A.J. (1996)]. In superconductors with an anisotropic order pa-
rameter, both magnetic and non-magnetic impurities are pair breaking.For
d-wave symmetry, the effect of non-magnetic impurities is equivalent to
magnetic impurities in s-wave superconductors [Gorkov L.P., Kalugin P.A.
(1985); Radke R.J. et al. (1993)]. Effectively this means that superconduc-
tivity in such systems in most cases cannot persist until disorder becomes
high enough to transform the system into Anderson insulator. The situation
is different for the so called extended s—wave symmetry. This corresponds
to an order parameter with uniform sign which could, in particular, van-
ish at certain directions in momentum space [Fehrenbacher R., Norman
M.R. (1994)]. Point impurities are not pair—breaking in this case, but
they are “pair—weakening”: for small impurity concentration 7, decreases
linearly with disorder, but the critical impurity concentration is formally
infinite, i.e. Anderson’s theorem works after essential isotropisation of the
gap[Markowitz D., Kadanoff L.P. (1963)].

We shall present now some of the relevant equations along the lines
of our discussion of the Anderson theorem. More traditional derivation of
the same results will be given in the next Chapter. We shall consider d-
wave pairing on two-dimensional lattice induced by the following interaction
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Fig. 3.4 7T, degradation as a function of disorder parameter (ppl)_1 for fixed value
of Coulomb constant %u = 0.4 and for different values of pairing constant A: 1 —
0.3,2 — 0.4,..., 8 — 1.0. At the insert we show the dependence of effective Coulomb
pseudopotential ©* on disorder parameter (ppl)_l) for appropriate values of pairing
constant A and Coulomb repulsion p. An arrow shows the point of metal-insulator

transition.
Hamiltonian:

Hing=—g Y AIA, (3.89)

where r denotes lattice sites. This Hamiltonian corresponds to an instanta-
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neous anisotropic attractive interaction with an implicit cutoff at a charac-
teristic energy < w >. In order to model d,2_,» symmetry we choose Al

expressed via electron creation operators cf in the following form:

A 1
Al = 7 Zq (CITCI_I_él - Cllcl+6T) (3.90)
5
with 6 = teq, +es being the lattice vectors, and €10, = —€4e, = 1.

Next we can perform the analysis similar to that used in deriving Eqgs.
(3.7)—(3.16) and find that now we again have Eq.(3.16) determining the
critical temperature T, with the kernel K(rr's,) in the exact eigenstates
representation taking the following form [Rojo A.G., Balseiro C.A. (1998)]:

95 (x)9) (x4 8)¢, ()6, (v 4 &)

K / n) = T < ; >= 3.91
er'en) =0T < 2 eoto o N o) (39
- / dEN(E)/ a5 dEWdp s+ () >
oo oo (iEn + E)E +w—igy)
where we have introduced the spectral density:
< dg(r)d (x') >= L X
E E+w — N(E)

<> %: eseor @y (x+ 8)du(r)dh (), (v + 8)8(E — £,)8(E +w —,0) >
(3.92)

Now we can rewrite Eq.(3.16) for T, as:

1= gT. /Oo dEN(E) /Oo di > 9(w) (3.93)

o (E 4 ien)(E +w —icy)

En

where
g(w) = / dr’ < dg(r)dpie(t’) >=< drdpiw >q=0 (3.94)

No sum rules similar to that given by Eqs.(A.5)-(A.6) exist for the spectral
density of Eq.(3.92). However, it can be easily expressed via the Green’s
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functions and we obtain the following relations similar to those obtained in

Appendix A:

1
< dpdpiw >q= N ) Im{<I>RA q) — FH(wq)} (3.95)
where
1
i @) = —5= D090 < GRpapt F+ )G D plpoB) > o,
pp’

(3.96)
with the vertices 'yg = cos ppa—cos pya for d—wave. If from now on we ignore
the lattice effects then 'yg = cos 20, which corresponds to a gap function
A(p) = A(T) cos 20, where 0}, is the polar angle in the plane [Fehrenbacher
R., Norman M.R. (1994)]. Similar expressions will determine 7, for the case
of anisotropic s-wave pairing with the vertices 'yg replaced by appropriate
angle-dependent expressions [Fehrenbacher R., Norman M.R. (1994)].

Now we can write as usual:
Im{q)RA (wq=0)} = (3.97)

9lw) = le(E

1 1
= T(E)Im 5 Zcos 26, <I> (qu =0) cos 20,

Here @gl‘;‘,(qu = 0) obeys the q = 0 limit of the Bethe-Salpeter equa-
tion Eq.(2.44) which is easily transformed to the following kinetic equation
[Vollhardt D., Wolfle P. (1980)]:

OA (Ew)| (3.98)

i
(@ = D) (Ew) = —AGy |6(p —p') + Z UL
with AGp = GE(pE +w)— GA(pE). If we replace in (3.98) the irreducible
vertex by the bare vertex Uy = pV?, we obtain finally:

o(w) = 1 T

pex yry sl (3.99)

with the usual scattering rate 1/7 = 2xpV 2N (E). Inserting (3.99) in (3.93)
and following the standard analysis [Gennes de P.G. (1966)] we obtain the
well known expression for the critical temperature:
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In(Teo/T.) = W(1/2 4 1/4x7T.) — ¥(1/2) (3.100)

where ¥(x)-is the di-Gamma function, and which is identical to Abrikosov—
Gorkov dependence in the case of magnetic impurity scattering in super-
conductors [Abrikosov A.A., Gorkov L.P. (1960); Gennes de P.G. (1966)].
However here the normal potential scattering rate is operational leading
to very fast degradation of T, — superconducting state is completely de-
stroyed for critical scattering rate 1/7 > 29, = 1.76T,0. This scattering
rate actually defines the appropriate critical concentration of impurities as
well as the critical value of residual resistivity of the normal phase:

2mey. _ 87,

2
P

PAG = (3.101)

ne?  w
where n and m are electron concentration and mass, w, is plasma frequency
of electrons [Radke R.J. et al. (1993)]. Actually this result does not depend
on spatial dimensionality of the system. It is very convenient to use the
relation similar to (3.101) to express 1/7 = 2y in (3.100) through experi-
mentally measurable resistivity p to compare the observed dependences of
T, on p with predictions of (3.100) [Radke R.J. et al. (1993)].

It seems that effectively this makes practically impossible to reach the
Anderson transition before superconductivity 1s destroyed: critical disorder
for metal-insulator transition is determined by 1/7 ~ Ep > T.. Some ini-
tial hope is to analyze the quasi-two-dimensional case, where this critical
disorder can be reduced due to a small enough interplane transfer integral w
as in Eqs.(2.91)-(2.92). Localization appears for w < w, = @exp(—ﬂ'EFT)
and taking as an estimate 1/7 = T, so that superconductivity is still pos-
sible, we can arrive at the following criterion of coexistence of localization
and superconductivity:

w < Tepexp(—7Ep/Teo) (3.102)

In typical situation even for high-temperature superconductors we have
Teo < 0.1EF and inequality in Eq.(3.102) can be satisfied only for extremely
anisotropic systems with w < T,.o. Most known superconductors apparently
fail in this respect.

However, there is enough experimental data on the closeness of e.g.
radiationally disordered high-T, systems to the disorder induced metal-
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insulator transition, which will be discussed in the experimental part of
our book. The obvious question arises — how to reconcile these data
and all the evidence for d-wave pairing in these systems? Of course, the
above reasoning does not apply to the case of anisotropic s-wave pair-
ing, where Anderson theorem effectively works for large degrees of dis-
order [Borkovski L.S., Hirschfeld P.J. (1994); Fehrenbacher R., Norman
M.R. (1994)]. In this respect the experiments on disordering in high-
T, systems can become crucial in solving the problem of the nature of
pairing (and thus of its microscopic mechanisms) in these systems. But
still, the evidence for d-wave pairing in high-7, superconductors is com-
pelling enough [Annett J., Goldenfeld N., Leggett A.J. (1996)]. One of
the possible explanations of greater stability of d-wave pairing may be
due to the effectiveness of anisotropic impurity scattering in these sys-
tems, which really makes d—wave pairing more stable to disordering, than in
the standard case, described by Eq.(3.100) [Haran G., Nagi A.D.S. (1996);
Posazhennikova A.I., Sadovskii M.V. (1997a)]. We shall discuss this model
in the next Chapter. However, this explanation seems to be rather non-
universal and limited. There is an obvious need of some more general reason
for greater stability of d—wave pairing in copper oxides. Such a general idea
was proposed on qualitative level in [Posazhennikova A.l., Sadovskii M.V.
(1997b)].

Consider the (opposite to the usual BSC-picture) limit of extremely
strong pairing interaction, leading to compact Boson formation [Nozieres P.,
Schmitt-Rink S. (1985)]. In this case T, is determined by the temperature
of Bose condensation of free Bosons. In case of an impure system Bose-
condensation point can be determined using the general method valid for
any interacting Bose-system [Patashinskii A.Z., Pokrovskii V.L. (1982)].
The number of particles (Bosons) with momentum p is given by:

np=—TY G(p,wn), (3.103)

where

1
G(p,wn) = - - . (3.104)
Wn + H— 2p_m - E(pawn)

where w, = 2n7T is the even Matsubara frequency, p is the chemical poten-
tial, X(p, wy) — self-energy of Bosons, interacting with random impurities.
In the simplest approximation used below ¥ is independent of momentum:
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Y(p,wn) = X(wy).

Bose-condensation leads to the divergence of the number of particles ng
with momentum p = 0. The divergence of ng according to (3.103) may
be due to two reasons: either the series diverges, or one or few terms in
it diverge. Terms of (3.103) with large w, behave as in an ideal Bose-gas
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1965)]. In an ideal Bose-
gas (X = 0) ng diverges due to the divergence of the term with w,, = 0,
while the sum of remaining terms is finite[Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii L.E. (1965)]. Thus at the transition point at least one of the
terms in (3.103) becomes infinite for p = 0, so that:

G710, w,) = 0. (3.105)

If this equation is valid for n # 0, then it is equivalent to two real equations
(for real and imaginary parts of G71), so that it determines an isolated
singular point in the plane of ¢ — 7. In an ideal Bose-gas the transition
line is determined by ¢ = 0. From continuity arguments it can be expected
that in an interacting case the phase transition will take place along some
line in this plane. This situation is described by Eq.(3.105) with w, = 0
(if X(p, 0) is real) [Patashinskii A.Z., Pokrovskii V.L. (1982)]. Thus in case
of impure system condensation point can be determined by the following
equation:

fp — 2(0) =0 (3.106)

where f1,, is the chemical potential of pairs and X(0) is the zero-frequency
limit of Boson self-energy due to impurity scattering, which in case of im-
purities with point-like potential V| randomly distributed in space with
concentration 7;m, (we introduce this notation herenot to mix impurity
concentration with resistivity p), reduces to the one-loop expression, corre-
sponding to diagram shown in Fig.3.5:

d3p 1
Y(wn) = nimpv2/ 5 - ; (3.107)
(27)% i, — S+ Hp
where m* = 2m is the mass of the pair, and we assume temperatures

T > T.. In the following we consider only three-dimensional systems.
Let us show that in this approximation X(0) is real. From (3.107) we
can obtain the following expressions for real and imaginary parts of X:
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Fig. 3.5 Omne-loop self-energy part of Boson in an impure system.

, 2 % 20 p2
ReXi(wn) = _m;np;/ /dp 2p (zn;; ﬂp))z’ (3.108)
g Wi + (g0 = Hp
n
ImX(wy) = Zmpz / (3.109)
2w , (s — 1)

Direct calculations yield:

oV 2r3)2
ReE(wn):EOCJF% Sz 4wl — g2, (3.110)

iV 2*312 .
ImY(w,) = —2m2 : o ~ : (3.111)
T
VH R = Hg
where £y, = —:’:—;nimpvzpo —1s the band-edge shift due to impurity scatter-

ing [Sadovskii M.V. (1986)], po — is some cut-off in momentum space of the
order of inverse lattice spacing a='. Then we see that really ImX(0) = 0,
and 3(0) can be written as:

3(0) = ReX(0) + Fo. (3.112)
and

- 1
ReX(0) = — iy V2m* 32 /| | (3.113)
™

Actually, Fqy. leads just to renormalization of the chemical potential: i =
tp — Eq., so that in renormalized form Eq.(3.106) reduces to:

1
pll—=—=—=
( V2|jlm

Mimp Vzm*?’/zsignﬁ) =0 (3.114)
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with the only relevant (i < 0 for Bosons at T' > T;) solution of i = 0,
ie. pp, — Fo. = 0, determining the Bose condensation temperature of the
impure system by the standard equation:

T 1
2oy / deN (£) ——— (3.115)
2 eTe — 1

where ¢ = 25 4+ 1 (for Bosons of spin s), N(¢) is the impurity averaged
density of states, which in case of the simplest approximation of Eq.(3.107)
just reduces to N(F — Fy.) - the usual free particle expression with energy
¢ calculated with respect to the shifted band-edge. Obviously we obtain
the standard expression for 7, [Landau L.D., Lifshits E.M. (1976)]:

3.31 (n/2)"/

T. =
¢ g3 mx

(3.116)
which 1s independent of disorder. The only possible disorder effect may be
connected with exponentially small “Lifshits tail” in the density of states in
Eq.(3.115) due to localization [Lifshits I.M., Gredeskul S.A., Pastur L.A.
(1982)], which is neglected in our simplest approximation of Eq.(3.107).
Thus, our conclusion is that in case of extremely strong pairing interaction
(compact Boson picture of superconductivity) T, is practically disorder in-
dependent for any value of the spin of Cooper pair, e.g. s-wave, d-wave
ete.

It was shown rather long ago by Nozieres and Schmitt-Rink [Nozieres P.,
Schmitt-Rink S. (1985)] for non impure superconductor that as the strength
of the pairing interaction grows, there is a smooth crossover of 7T, from the
weak-coupling BCS-picture to that of compact Bosons. In the impure case
similar analysis for 7, can apparently be performed solving the following
coupled system of equations generalizing similar equations of Ref.[Nozieres
P., Schmitt-Rink S. (1985)] — the usual equation for BCS instability:

1—-x(0,0)=0 (3.117)
and the equation for Fermion density (chemical potential of electrons p):

Ly [ e 10
s=n= [ 5[5 =) (3.118)

c
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Fig. 3.6 Diagrammatical representation of Cooper susceptibility x(qw) - (a). I' — im-
purity scattering vertex-part in Cooper channel in “ladder” approximation - (b).

where ny(y,T¢) is the free Fermion part of density,

Imy(qw)
1 — Rex(qw)’

and Cooper susceptibility x(qw) is determined by diagrams shown in Fig.3.6.
In this figure the vertices contain the symmetry factors for different types
of pairing, e.g. in case of cubic lattice [Scalapino D.J., Loh E., Hirsch J.
(1987)]:

§(qw) = arcty (3.119)

Ys(p) =1 (isotropic s-wave)
Y1 (p) = cos pya + cos pya + cosp,a (anisotropic s-wave)

Ya s

2 ,2(P) = cospya—cospya  (d-wave)

Y, »_,.(P) = 2cosp,a — cospya — cospya etc.  (3.120)

Pairing interaction is assumed to have the following form:

Vi(p,P') = Vopr ¥i(P)¥i(P") (3.121)
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with ¢;(p) defined as above and pairing potential

y
Vop = — - (3.122)

P2 P2

¢(1+ pﬁ) (1+ pﬁ)

similar to that used in [Nozieres P., Schmitt-Rink S. (1985)] with py ~ a1
Numerical work required to solve Eqs.(3.117),(3.118) is very heavy even

for non impure case [Nozieres P., Schmitt-Rink S. (1985)]. However, it
1s more or less clear that these equations will produce also the smooth
crossover in 7T, dependence on disorder, interpolating between the BCS
and compact Boson limits discussed above. In isotropic s-wave case T, will
remain practically independent from disorder, 1.e. the Anderson theorem
remains valid also for compact Boson limit. In case of d-wave pairing the
universal dependence of T; on disorder defined by Eq.(3.100) ceases to be
valid in the crossover region from large Cooper pairs to compact Bosons.
The physical reason for this is quite clear — depairing mechanism of T,
suppression by disorder ceases to operate with the growth of attractive
interaction within pairs, and in the strong coupling region 7, is determined
by Bose condensation of pairs in impure system. Qualitative behavior of
T, dependence on disorder is shown in Fig.3.7.

It illustrates the smooth crossover in 7, dependence on normal state
resistivity from universal Abrikosov-Gorkov dependence (curve d) to T,
independent on disorder (curve s). Dashed lines correspond to transition
region and the values of coupling constant V growing from curve 1 to curve
2. It is clear that for d-wave system belonging to this transitional region we
can easily obtain superconducting state persisting for rather large disorder
with p > pag.

Crossover region is qualitatively defined by the simple inequality intro-
duced in Ref. [Pistolesi F., Strinati G.C. (1994)]: 77! < ppé < 27, where
pr 1s Fermi momentum and ¢ is superconducting coherence length. Tt
appears that high-temperature superconductors lie on the the so-called Ue-
mura plot [Uemura Y.J., et al. (1991)] near the “instability” line ppé = 27
[Pistolesi F., Strinati G.C. (1994)]. This can explain deviations of 7, de-
pendence on disorder in these systems from universal Abrikosov-Gorkov
curve and their relative stability to disordering, despite the possible d-wave
symmetry of the pairing state.

This qualitative picture was essentially confirmed by more detailed cal-
culations performed in [Franz M., et al. (1997)]. By numerical solution of
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Fig. 3.7 Qualitative dependence of superconducting transition temperature 7. on dis-
order (residual resistivity p). Curve d — universal Abrikosov-Gorkov dependence, defined
by Eq.(3.100). Line s — the case of isotropic s—wave pairing. Dashed curves — d—wave
pairing in transition region from BSC-pairs to compact Bosons.

Bogoliubov — deGennes (BDG) equations [Gennes de P.G. (1966)] they
demonstrated that the standard Abrikosov-Gorkov theory of 7. in dis-
ordered d-wave superconductors breaks down in short-coherence length
(small size pairs) systems. It was shown that the correct description of
such superconductors must allow for the spatial variations of the order
parameter, which is strongly suppressed in the vicinity of impurities but
mostly unaffected elsewhere [Franz M., Kallin C., Berlinsky A.J. (1996)].
Somehow similar ideas were expressed in Ref.[Zhitomirsky M.E., Walker
M.B. (1998)]. Suppression of 7. was found to be significantly weaker than
that predicted by Abrikosov-Gorkov relation (3.100) in complete agreement
with the picture presented above. It is clearly seen in Fig.3.8 taken from
[Franz M., et al. (1997)].

Finally let us mention another situation when localization effects be-
come important and interesting in the case of d-wave pairing — that of
localization of BCS-quasiparticles within superconducting gap at relatively
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Fig. 3.8 (a) — Normalized zero-temperature superfluid density as a function of impurity
concentration: fully self-consistent solution of BDG equations (solid symbols), solution
with uniform order parameter (open symbols), and analytic t—matrix solution with uni-
tary scatterers (dash-dotted line). (b) — Normalized critical temperature and average
gap. Dash-dotted line is numerical solution of Eq.(3.100).

small disorder [Lee P.A. (1993); Balatsky A.V., Rosengren A., Altshuler
B.L. (1994); Nersesyan A.A., Tsvelik A.M., Wenger F. (1994); Nersesyan
A.A., Tsvelik A.M., Wenger F. (1995)]. It is known that while in the pure
d-wave superconductor density of states close to the Fermi level is linear in
energy N(F) ~ FE due to the gap nodes at the Fermi surface, the impurity
scattering makes it finite at £ = 0 [Gorkov L.P., Kalugin P.A. (1985)].
In this sense the system becomes similar to the normal metal and we can
calculate [Lee P.A. (1993)] the low lying quasiparticle contribution to con-
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ductivity o(w — 0). This conductivity equals to:

o —22 (3.123)

where &y = vp /7 is the superconducting coherence length and a is the
lattice spacing (we assume 7' = 0). The surprising thing is that o indepen-
dent of the scattering rate 1/7, i.e. of disorder. For two-dimensional case
(applicable probably for high-T, systems) we know that all states are local-
1zed with localization controlled by dimensionless conductance which now
is equal to g = o/(e?/27h) = &/a. The value of ¢ may be small enough
in high temperature superconductors due to the small values of &y, which
are typically only slightly larger than the lattice constant. This can make
localization effects important with BCS-quasiparticles forming a mobility
gap in the vicinity of the Fermi level, leading to anomalies in the low tem-
perature behavior of microwave conductivity and the penetration depth of
a d-wave superconductor [Lee P.A. (1993)].

These results were first obtained [Lee P.A. (1993)] for the point-like im-
purity scattering, later it was shown in Ref.[Balatsky A.V., Rosengren A.,
Altshuler B.L. (1994)] that the finite range of the impurity potential can
lead to the nonuniversal disorder-dependent behavior of conductivity which
becomes proportional to the normal state scattering rate. Situation was fur-
ther complicated by the claim made in Refs.[Nersesyan A.A., Tsvelik A.M.,
Wenger F. (1994); Nersesyan A.A., Tsvelik A.M., Wenger F. (1995)] that
the more rigorous analysis leads to the density of states of the impure d-
wave superconductor behaving as N(F) ~ |F|* with & > 0, but dependent
on the type of disorder. The renormalization group for the conductivity
then apparently leads to some kind of fixed point of intermediate nature,
suggesting the finite conductivity in two-dimensions. Opposite results were
obtained in an exactly solvable model in Ref.[Ziegler K., Hettler M.H.,
Hirschfeld P.J. (1996)]. Numerical studies of localization of low-energy
quasiparticle states in disordered d—wave superconductors were performed
in [Franz M., Kallin C., Berlinsky A.J. (1996)]. All these aspects of disor-
der and localization for d-wave superconductors deserve further intensive
studies.
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3.3 Ginzburg-Landau Theory and Anderson Transition

3.3.1 General Analysis

The main result of the previous analysis may be formulated as follows.
Despite many mechanisms leading to 7, degradation and destruction of
superconductivity in strongly disordered systems there seems to be no gen-
eral rule prohibiting a possibility of a superconducting state in Anderson
insulator. Of course we must meet very rigid conditions if we hope to ob-
serve this rather exotic state. There is almost no chance to observe it in
traditional superconductors but high—7T, systems seem promising. The fol-
lowing analysis will be based on the general assumption that 7, survives in
a strongly disordered system or even in Anderson insulator, i.e. that these
strict conditions are met. Qur aim 1s to study superconducting properties
of such a strongly disordered system to determine specific characteristics
which will make this case different from the usual case of “dirty” super-
conductors. We shall see that even before Anderson transition there are
significant deviations from the predictions of standard theory which make
strongly disordered system different. So on the practical side our aim is
simply to generalize the usual theory of “dirty” superconductors for the
case of strong disorder in a sense of the mean free path becoming of the
order of interatomic spacing or | ~ p}l.

To claim that superconductivity is possible close to disorder—induced
metal—insulator transition it is not sufficient just to demonstrate the finite
values of T,.. Even more important is to show the existence of supercon-
ducting response to an external electromagnetic potential A. In general
case the analysis of response functions of a superconductor with strong
disorder seems to be a difficult task. However, close to 7T, significant sim-
plifications take place and actually we only have to show that the free—
energy density of the system can be expressed in the standard Ginzburg—
Landau form [Ginzburg V.L., Landau L.D. (1950); Gorkov L.P. (1959);
Gennes de P.G. (1966)]:

| 4 2ie 9
Fy = F, + A|A| —|—§B|A| —|—C’|(V—%A)A| (3.124)

where F), is free energy density of the normal state. Our problem is thus
reduced to a microscopic derivation of expressions for the coefficients A,
B, and C of Ginzburg—Landau expansion Eq. (3.124) taking into ac-
count the possibility of electron localization. This will be the generaliza-
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tion of the famous Gorkov’s derivation [Gorkov L.P. (1959)] of similar ex-
pressions for the case of “dirty” superconductors. Such analysis was first
done by Bulaevskii and Sadovskii [Bulaevskii L.N., Sadovskii M.V. (1984);
Bulaevskii L.N., Sadovskii M.V. (1985)] and later by Kotliar and Kapitul-
nik [Kapitulnik A., Kotliar G. (1985); Kotliar G., Kapitulnik A. (1986)].
The same results were obtained also by Kravtsov [Kravtsov V.E. (1991)].

Within the BCS model coefficients A and B which determine the tran-
sition temperature and the equilibrium value of the order—parameter A do
not change in comparison with their values found in the theory of “dirty”
superconductors, even if the system is close to Anderson transition. This
corresponds to the main statement of Anderson theorem. Less trivial is
the behavior of the coefficient €, which in fact defines the superconduct-
ing response. In the usual theory of “dirty” superconductors [Gorkov L.P.
(1959)] this coefficient is proportional to diffusion coefficient of electrons,
i.e. to conductivity (at 7'= 0). As the Fermi level approaches the mobility
edge conductivity drops to zero. However, we shall see that the coefficient
C remains finite in the vicinity of Anderson transition, even in the region
of localized states.

Simple scheme for microscopic derivation of Ginzburg—Landau expan-
sion for the free energy is outlined in Appendix C. In fact, to derive
Ginzburg—Landau coefficients we must know the two—electron Green’s
function in the normal state [Gorkov L.P. (1959)]. Let us introduce the
following two-particle Matsubara Green’s functions in momentum repre-
sentation [Bulaevskii L.N., Sadovskii M.V. (1985)]:

1
Vp(q,wm, en) = —5 < G(p+,Ply, —n +wm)G(—pL, —p-, —€n) >
P+P_

(3.125)

bolain o) = 5 3 < Gloe by =5 + @GP =) >
P+P_

(3.126)
where py_ = p £+ q/2 and w,, = 27mT. Graphically these functions are
represented in Fig. 3.9. Then Ginzburg—Landau coefficients are defined
by (Cf. Appendix C) [Gorkov L.P. (1959); Takagi H., Souda R., Kuroda Y.
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Fig. 3.9 Graphic representation of two—particle Green’s functions ¥pg(qws,) and
® g (dwm) (for wym = 2ey,). There is no summation over =, in the loops.

(1982)]:

1
A= ——|—2mTZ\I!E (q = Owpm = 2¢,) (3.127)

En

= WTZ 5 W (qum = 2¢5)|g=0 (3.128)

Thus the superconducting properties are determined by the Green’s func-
tion ¥ g describing the propagation of electronic (Cooper) pair. At the same
time we have seen that the Green’s function ®g determines transport prop-
erties of a normal metal and Anderson transition. In case of time-reversal
invariance (i.e. in the absence of external magnetic field or magnetic impu-
rities) we have [Yoshioka D., Ono Y., Fukuyama H. (1981)]:

\IIE(qwm(‘:n) = <I)E(qwmgn) (3129)

and it is sufficient to know only ®g(quw., = 2¢,) to determine Ginzburg—
Landau coefficients.

As a one—electron model of Anderson transition we can take the self—
consistent theory of localization which will allow us to perform all calcu-
lations explicitly. We only have to formulate the main equations of this
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theory in Matsubara formalism (finite 7') [Bulaevskii L.N., Sadovskii M.V.
(1985)]. For small ¢ and w,,, analogously to Eq. (2.46), we have:
N(E)
ilwm| + De(lwn )

Pp(qum) = W = 2mmT (3.130)
where the generalized diffusion coefficient Dg(wy,) is determined by the
self—consistency equation analogous to Eq. (2.58):
Dy 1
_— =1 —— P m 3.131
Dilwm)  7NAE), % plan) G431
q 0

In three-dimensional case Eq. (3.131) reduces to (Cf. Eq. (2.78)):

(3.132)

Dp(wm) 1 i+fi Dy wm]'?
Dy Ao 2,

Dp(wm) 27

where we have used the same notations as in our discussion of self—consistent
theory of localization. Analogously to Eq. (2.79) and with accuracy suffi-
cient for our aims we can write down the solution of Eq. (3.132) as:

1/3
Wm Wm
Dp(wnm)~ Maz{ D . Dy [ Zm 1
B(wn) { B o 3D (E)) 00 0(27) } (8.133)

where Dp is the renormalized diffusion coefficient defined in Eq. (2.81) and

wo is the fundamental frequency defined by Eq. (2.65), which signals a tran-
sition to insulator. Details of calculation of Ginzburg-Landau coefficients
are given in Appendix C.

As we have already noted Ginzburg—Landau coefficients 4 and B
are given by the usual expressions valid also for “dirty” superconductors

[Gorkov L.P. (1959); Bulaevskii L.N., Sadovskii M.V. (1985)]:

T T-"T.
A= N(Ep)inge ~ N(Er) = (3.134)
where T is given by the usual BCS relation of Eq. (3.19), and
7¢(3)
B = N(E Nl

where ((#) is Riemann zeta—function ({(3) = 1.202...). These coefficients
depend on disorder only through the appropriate disorder dependence of
N(Er) and are valid even in localized phase. This is equivalent to the main
statement of Anderson theorem.
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Significant changes appear in the gradient term coefficient C'. Using Eqs.
(3.128)—(3.130) with Eq. (3.133) we can find that in different limiting
cases this coefficient can be expressed as (Cf. Appendix C) [Bulaevskii
L.N., Sadovskii M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985)]:

E:TCDEZF/S E10c(EF) < (€003, Ep > E,

9 (DT_il) ~ (€012)2/3 gloc(EF) > (€012)1/3;

N(EFp)¢” = N(EF) Ep ~ E.

RIZOC(EF)ITL% Rloc(EF) < (€012)1/3;
Ep < E,

C

(3.136)
where we have defined the coherence length &, and & = 0.18vp /T, is BCS
coherence length, [ as usual is the mean free path. Practically the same
results were obtained in Refs.[Kapitulnik A., Kotliar G. (1985); Kotliar G.,
Kapitulnik A. (1986)] using the approach based upon elementary scaling
theory of localization, which is as we already noted is equivalent to our use
of self—consistent theory of localization. In Ref.[Kravtsov V.E. (1991)] the
same results were confirmed using the o—model approach to localization.

In metallic state, as Fermi level Er moves towards the mobility edge
E. localization correlation length &;,. grows and the coefficient C' initially
drops as the generalized diffusion coefficient Dg,, 1.e. as conductivity of a
system in the normal state. However, in the vicinity of Anderson transition
while ¢ — 0 the drop of C' coeflicient saturates and it remains finite even
for Ep < E., 1.e. in Anderson insulator. With further lowering of Ep into
localization region (or with E. growth with disorder) the C coefficient is
being determined by localization radius Rj,. which diminishes as Fr moves
deep into insulating state. However, remembering Eq. (3.20) and Eq. (3.22)
we recognize that our analysis is valid only for large enough values of local-
ization length, which satisfy Eq. (3.22). In this sense the last asymptotics
in Eq. (3.136) is actually outside these limits of applicability.

The finite value of the coefficient C' in Ginzburg—Landau expansion
in the vicinity of Anderson transition signifies the existence of supercon-
ducting (Meissner) response to an external magnetic field. Accordingly, for
T < T, the system can undergo a transition from Anderson insulator to su-
perconductor. The physical meaning of this result can be understood from
the following qualitative picture (Cf. Ref.[Imry Y., Strongin M. (1981)])
where the similar estimates were used for the granular metal). In Anderson
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insulator all electrons with energies E close to Fermi level are localized in
spatial regions of the size of ~ Rjy:(F). Nearby regions are connected by
some tunneling amplitude ¥ which determines the probability of electron
transition between such regions as:

Pr = 27|V|*’N(E)R} (F) (3.137)

loc

However, Anderson localization means that

1
Vi<

G (3.138)

and coherent tunneling between states localized in these regions is impos-
sible, so that Pr < 2rN~Y(E)R;;>. At the same time if conditions given
by Eq. (3.20) or Eq. (3.22) are satisfied inside each region ~ Rj,. Cooper
pairs may form and superconducting gap A appears in the spectrum. Then
a kind of “Josephson” coupling appears between regions of localized states
which determines the possibility of pairs tunneling:

By~ n?[N(E)R} .(E)*|V]*A (3.139)

loc
It is easy to see that for

2 1
A > ;7N(E)R?OC(E) (3.140)
we have Ey > Pr, so that if Eq. (3.20) is satisfied we can get Ey >
N=YE)R™3(FE) despite of Eq. (3.138) and tunneling of pairs between
nearby regions of localized states is possible, even in the absence of single—
particle tunneling.

It is convenient to rewrite Eq. (3.136) using the the relation between
generalized diffusion coefficient and conductivity like Eq. (2.60) as well as
Eqgs. (2.74), (2.76). Then using the Ginzburg—Landau expansion and the
expressions for its coefficients we can easily find the temperature dependent
coherence length &(7T') [Gennes de P.G. (1966); Bulaevskii L.N., Sadovskii
M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985)]:

T, Eol=2 o>0° (Ep>FE)
D) = —— 7+7s 3.141
&) T.—T | (&%) o< o* (Ep~FE) ( )
where o, = 62pF/(7TSh2) and characteristic conductivity scale o* is given
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by

7\ /3
o Uc(ppgo)_l/?’ ~ o, ( = ) (3.142)
Ep
Thus in the region of very small conductivities o < o* the scale of &(T)
is defined not by & ~ /€l as in the usual theory of “dirty” superconduc-
tors [Gorkov L.P. (1959); Gennes de P.G. (1966)] but by the new length
&~ (folz)l/?’ ~ (50/1)%)1/3, which now is the characteristic size of Cooper
pair close to Anderson transition. From Eq. (3.141) we can see that ¢*(7)
initially diminishes as we approach metal—insulator transition proportion-
ally to ¢ as in the case of a “dirty” superconductor. However, already in
metallic region for o < ¢* it diminishes much slower remaining finite both
at the transition itself and below.

In a case if w!/3

—Ilaw for a diffusion coefficient at the mobility edge is
invalid and we have w®—behavior, with some unknown critical exponent
8 (which is possible because the modern theory actually cannot guarantee
precise values of critical exponents at Anderson transition (remember also
possible role of interaction effects!) [Wegner F.J. (1976); Sadovskii M.V.

(1986)]) we can easily show in a similar way that for conductivities o < o* a2

1=s
o.(pré€o)~? the coherence length is defined by & ~ &7 = Qualitatively
this leads to the same type of behavior as above.

The superconducting electron density n, can be defined as [Gennes de

P.G. (1966)]:
ns(T) = 8mCA*(T) = 8mC(—A)/B (3.143)
Close to Anderson transition we can estimate:

ns ~ mN(Ep)e2A? ~ mpp(&o/ph)*PA% ~ n(T}? | ER) (T, — T)
(3.144)
where n ~ p?. is total electron density. If we take here T~ 0.57 i.e. more
or less low temperatures we get a simpler estimate:

T 4/3
Ng ~ 1 (EF) (3.145)

which is actually valid up to 7" = 0, as we shall see below. From these

estimates we can see that only a small fraction of electrons are supercon-
ducting in a strongly disordered case. However this confirms a possibility
of superconducting response of Anderson insulator.
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Characteristic conductivity o* defined in Eq. (3.142) gives an impor-
tant conductivity scale at which significant influence of localization effects
upon superconducting properties appear [Bulaevskii L.N., Sadovskii M.V.
(1985)]. While o. is of the order of Mott’s “minimal metallic conductivity”
[Mott N.F. (1974); Mott N.F, Davis E.A. (1979)] o* is in general even lower.
However, for small enough Cooper pairs (i.e. small & which is characteris-
tic of strong coupling and high—T, superconductors) it is more or less of
the order of o.. Experimentally it can be defined as a conductivity scale
at which significant deviations from predictions of the standard theory of
“dirty” superconductors appear under disordering.

We must stress that these results show the possibility of Cooper pairs
being delocalized in Anderson insulator, while single—particle excitations
of such superconductor are apparently localized, which may lead to some
peculiar transport properties of “normal” electrons for T° < T.. First at-
tempts to explore this peculiar situation were undertaken in Refs.[Opper-
mann R. (1987); Oppermann R. (1988); Oppermann R. (1990); Kravtsov
V.E., Oppermann R. (1991)].

These results are easily generalized for the case of strongly anisotropic
quasi—two—dimensional systems such as high—7, superconducting oxides.
Using the analysis of such systems within the self—consistent theory of
localization [Prigodin V.N., Firsov Yu.A. (1984)] we can write down the
following Matsubara generalization of Eq. (2.95):

D;(wm) Mazx [—EFE_CE“ (27 Epwr?) =23 (w, )3 Wy & WA
D]O - 1-— ﬁln (wiﬂ') W > sz
(3.146)
where j = ||, L. Now carrying out calculations similar to that of Ref.[Bu-

laevskii L.N., Sadovskii M.V. (1985)] we obtain for the coefficients of gra-
dient terms in Ginzburg—Landau expansion [Sadovskii M.V. (1989); Alek-
sashin B.A. et al. (1989)]:

CjL = N(Er) | (3.147)

where for the coherence lengths £ 1 we obtain a number of different ex-
pressions, depending on the value of the ratio w?r/27T.h which determines
as we shall see the “degree of two—dimensionality” of the problem under
study. For the case of w?7/27T.h > 1, corresponding to an anisotropic but
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three—dimensional system, we have:

2 _ 7 0 EF - Ec 0 EF — Ec
S S_TCDH,J_ (T) & L. (Tc (3.148)

where fﬁ ~ hop [T, €9 ~ way /T, ) = vrr and L = way7/h are the
longitudinal and transverse BCS coherence lengths and mean free paths.
The above expressions are valid in the conductivity region o) > o™, where

§ [ 12\
* o~ ool = 3.149

Here gjj was defined in Eq. (2.94). The condition of w?r/2aT.h > 1 is
equivalent to the requirement:

EL~ /€L > ar (3.150)

which clarifies its physical meaning: the transverse size of a Cooper pair
must be much greater than interplane lattice spacing. In this case we have
just anisotropic three-dimensional superconductivity.

In the immediate vicinity of the Anderson transition, for o < o* we
have:

2/3
D”vJ- ~ (go )2 Tcz
(EpT.w)?/37 I+ Erw
(3.151)

It is easy to see that for w ~ Ep all these expressions naturally go over to

& L~ (1=27°)(167%)71/3¢(5/3)

those derived above for the three—dimensional case.
For the case of w?r/27T.h < 1 which corresponds to “almost two—
dimensional” case of

£~ /&l <ay (3.152)

i.e. of transverse size of Cooper pairs smaller than interplane spacing, we
can roughly estimate *:

Do
L Er—FE. *

€~ T . (o) > 0™)
e i .
(4m2BpT.w)2/37 (U|| <o )

*Here we just put w?7/27T.h = 1 and use the first expression of (3.146) as only the first
term in the sum over Matsubara frequencies determining C' (Cf. Appendix C), while
for the rest of the sum we use the second expression of (3.146).
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+(72/8—1)% l— gy (3.153)
T, 2nEpT 2711

Essential difference from just anisotropic case of Eq. (3.148) and Eq.(3.151)
is the appearance here of a second term of “two-dimensional” type. In purely
two—dimensional problem (w = 0) we have [Takagi H., Souda R., Kuroda

Y. (1982)]:

52:7Dﬁ lm iy (3.154)
= 8T, orEpr 2717 '

For high—T, oxides it is reasonable to estimate fﬁ ~ Ay, Te o~ w, T ~
0.1FEp, so that ¢~ ~ O'ﬁ, i.e. these systems are always more or less close to
the Anderson transition. For T, ~ w and h/7 ~ Ep which is characteristic
of rather strongly disordered case, we have w?r/27T.h < 1, so that for these
systems we can realize almost two—dimensional behavior, though in gen-
eral high—7T, oxides are apparently an intermediate case between strongly
anisotropic three—dimensional and nearly two—dimensional superconduc-
tors.

The significant change of Ginzburg—Landau coefficients and the new
scale of coherence length close to the Anderson transition lead to an in-
creased width of critical region of thermodynamic fluctuations near 7, [Ka-
pitulnik A., Kotliar G. (1985); Kotliar G., Kapitulnik A. (1986)]. These are
well known to be important for any second—order phase transition. The
width of the critical region is defined by the so called Ginzburg criterion
[Kadanoff L.P. et al. (1967); Patashinskii A.Z., Pokrovskii V.L. (1982)]
which may be expressed via the coefficients of Landau expansion. Mean—
field approximation for the order parameter in Landau theory is valid (for
d = 3) for [Kadanoff L.P. et al. (1967); Patashinskii A.Z., Pokrovskii V.L.
(1982)]

T-1T
T,

B2T?
aC? =T

1> ‘ > (3.155)

where « is defined by A = a(T — T¢)/T.. In case of superconducting tran-
sition we have: o« = N(Ep), B ~ N(Ep)/T? and C = N(Ep)&?. Ac-
cordingly, from Eq. (3.155) we get the following estimate for the critical
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region:

1 Er\? 1
~—_— =) 1
o~ e~ () o (3:450)

In the “pure” limit & = & ~ vp/T. and we get ¢ ~ (1./Er)?, so that
critical region is practically unobservable. In a “dirty” superconductor & ~

V&l and

T, 1
e~ | =/ ) —= 3.1567
¢ (EF) (prl)? (3.157)
and again we have 7¢ < 1. However, for a superconductor close to mobility

edge &€ ~ (&/p%)'/? and from Eq. (3.156) we get [Kapitulnik A., Kotliar
G. (1985); Kotliar G., Kapitulnik A. (1986)]:

ra ~1 (3.158)

Note that in fact 7¢ may still be small because of numerical constants which
we have dropped in our estimates. Anyhow, the critical region in this case
becomes unusually wide and superconducting transition becomes similar
in this respect to superfluid transition in Helium. Fluctuation effects may
thus become observable even in bulk three—dimensional superconductor.
In this respect it is interesting to note, that in high-temperature super-
conductors the critical region is not small and readily observable [Junod
A., Ertb A., Renner C. (1998)]. Note that in localized phase £ ~ Ry,
and 7g ~ [N?(Ep)R{ T?]7' > 1 if the condition given by Eq. (3.20) is
violated.

Finally we should like to mention that thermodynamic fluctuations lead
[Kapitulnik A., Kotliar G. (1985); Kotliar G., Kapitulnik A. (1986)] to an
additional mechanism of 7T, degradation for a system which is close to An-
derson transition. This follows from the general result on the reduction
of mean—field transition temperature due to critical fluctuations. If these
fluctuations are small (and we can use the so called one—loop approxima-
tion) for a three-dimensional system it can be shown that [Kapitulnik A.,

Kotliar G. (1985); Kotliar G., Kapitulnik A. (1986)]:

7¢(3)

To=Tp———2?
" 167N (Ep)

(3.159)

where T.q i1s the mean—field transition temperature. If we use here our
expressions for £ valid close to metal—insulator transition we easily find
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for ¢ > o* [Kotliar G., Kapitulnik A. (1986)]:

O 3/2 TcO 1z
1-05 (;) (EF) (3.160)

For o < o this fluctuation correction saturates as the further drop of coher-

T.~T,,

ence length stops there. Obviously higher—order corrections are important
here, but unfortunately little is known on the importance of this mechanism
of T, degradation outside the limits of one—loop approximation.

3.3.2 Upper critical field

Direct information on the value of ¢%(7") can be obtained from the mea-
surements of the upper critical field H.» [Gennes de P.G. (1966)]:
Po
Hop= — 3.161
? 7 2xe(T) (3.161)
where ¢o = mch/e is superconducting magnetic flux quantum. Using Eq.
(3.141) we obtain the following relation between normal state conductivity
o, the slope of the upper critical field at T = T, given by (dH.2/dT)r,
and the value of electronic density of states at the Fermi level (per one spin
direction) N(Ep) [Bulaevskii L.N., Sadovskii M.V. (1984); Bulaevskii L.N.,
Sadovskii M.V. (1985)]:

o (dch) " SSEQSQ o> o
N(Ep) \ dT" )1, T %o N(EF)(EZP)?/?’TC ~ ¢0[N(EFU)TC]1/3 o< o”
(3.162)
For o > ¢* the r.h.s. of Eq. (3.162) contains only the fundamental con-
stants. This so called Gorkov’s relation [Gorkov L.P. (1959)] 1s often used
to interpret experimental data in “dirty” superconductors. Using it we

may find N(Ep) for different degrees of disorder from measurements of
(dH;2/dT)7, and conductivity o. On the other hand N(Ep) can in principle
be determined from independent measurements e.g. of electronic contribu-
tion to specific heat. However, our expression for ¢ < ¢* which is valid close
to metal—insulator transition shows that in this region Gorkov’s relation
becomes invalid and its use can “simulate” the drop of N(Ep) with the
growth of resistivity (disorder). Roughly speaking Eq. (3.162) shows that
under the assumption of relatively smooth change of N(Ep) and T, with
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disorder the usual growth of (dH.2/dT)p, with disorder saturates in con-
ductivity region of o < ¢* close to the Anderson transition and the slope
of the upper critical field becomes independent of resistivity. Of course
this picture may be complicated in real case by 7T, degradation and disor-
der renormalization of the density of states. In particular this stresses the
importance of independent measurements of N(Er).

Note that the qualitative behavior given by Eq. (3.162) is retained also
in the case when w®—dependence of diffusion coefficient at the mobility
edge (with some arbitrary critical exponent &), only the expression for o*
is changed as noted above. Thus this behavior is not related to any specific
approximations of self—consistent theory of localization, except the general
concept of continuous transition.

For an anisotropic (quasi—two—dimensional) system we have similar
relations:

dHz5 Po
( dT )TC T 2T, (3.163)

al,\ b0
( - )TC = ST (3.164)

with ) L given above during our discussion after Eq. (3.147). This leads
to relations and qualitative behavior similar to Eq. (3.162). However, we
would like to note an especially interesting relation for the anisotropy of

the slopes of the upper critical field [Sadovskii M.V. (1989)]:

(dul,/dryp, g e

(dH5/dT)7. & wa/h (3.165)

We see that the anisotropy of (dH.o/dT)r, is actually determined by the
anisotropy of the Fermi velocity irrespective of the regime of superconduc-
tivity: from the “pure” limit, through the usual “dirty” case, up to the
vicinity of the Anderson transition.

The above derivation of C' coefficient of Ginzburg—Landau expansion
explicitly used the time—reversal invariance expressed by Eq. (3.129). This
is valid in the absence of the external magnetic field and magnetic im-
purities. Accordingly the previous results for the upper critical field are
formally valid in the limit of infinitesimal external field and this is suffi-
cient for the demonstration of superconducting (Meissner) response and for
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the determination of (dHo/dT)r,, because Hepo — 0 as T — T,. In a fi-
nite external field we must take into account its influence upon localization.
The appropriate analysis was performed in Refs.[Kuchinskii E.Z., Sadovskii
M.V. (1991a); Kuchinskii E.Z., Sadovskii M.V. (1991b)] and with a slightly
different method in Ref.[Theumann A., Pires Idiart M.A. (1991)]. The re-
sults are essentially similar and below we shall follow Ref.[Kuchinskii E.Z.,
Sadovskii M.V. (1991a)]. The standard scheme for the analysis of super-
conducting transition in an external magnetic field [Gorkov L.P. (1959);
Gennes de P.G. (1966); Werthamer N.R., Helfand E., Hohenberg P.C.
(1966); Saint-James D., Sarma G., Thomas E.J. (1969)] gives the following

equation determining the temperature dependence of Ho(T):

T 1 1
In— = 27T — 3.166
T Z{2|en|+2tz<2|en|>H/¢o 2|en|} (3.166)

En

where D2(2|ey|) is the generalized diffusion coefficient in the Cooper chan-
nel as defined after Eqs. (2.98) and (2.99). Eq. (3.166) is valid [Gennes de
P.G. (1966)] for

mevp

= A
Ry = ———>¢ (3.167)

Ry 18 Larmor radius of an electron in magnetic field, & is the coherence
length. Note that Eq. (3.166) describes only the orbital motion contribution
to Hes. In fact H.o is also limited by the paramagnetic limit [Gennes de
P.G. (1966); Saint-James D., Sarma G., Thomas E.J. (1969)]:

1
§g0uBH < A (3.168)

where gg is the usual g—factor of an electron, pp is Bohr magneton. Here
disorder may enter apparently only through the appropriate dependence of
the gap A.

Standard approach of the theory of “dirty” superconductors is based
upon the replacement of D2(2|¢,|) in Eq. (3.166) by Drude diffusion coeffi-
cient Dy which is valid for a metal with [ > p}l. For a system which is close
to the Anderson transition we must take into account both the frequency
dependence of diffusion coefficient and the fact that in magnetic field D,
is not equal to 1); — the usual diffusion coefficient determining electronic
transport. Actually we shall see that the external magnetic field influence
upon localization leads to rather small corrections to H.o(7T) practically
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everywhere except the region of localized states [Kuchinskii E.Z., Sadovskii
M.V. (1991a)]. Thus we may really neglect this influence as a first approx-
imation as that was done in Refs.[Bulaevskii L.N., Sadovskii M.V. (1984);
Bulaevskii L.N., Sadovskii M.V. (1985)] and start with the replacement of
Dy in Eq. (3.166) by D1 = Dg, where Dg is the frequency dependent
generalized diffusion coefficient in the absence of magnetic field. Detailed
analysis of Eq. (3.166) can be found in Ref.[Kuchinskii E.Z., Sadovskii
M.V. (1991a)].

Summation over Matsubara frequencies in Eq. (3.166) must be cut—off
at some frequency of the order of < w > — the characteristic frequency of
Bose excitations responsible for pairing interaction. It is convenient here
to measure the distance from Anderson transition (degree of disorder) via
frequency w, defined in Eqs. (2.42),(2.80) or Eq. (2.107) . If a system is far
from Anderson transition, so that w, >< w > we can completely neglect
the frequency dependence of diffusion coefficient and find the usual results
of the theory of “dirty” superconductors:

4 T, T,
Ho(T) = F‘%O e T~T, (3.169)
1 ¢oT. 1 [4yT\?
Heop= — — T<T, 1
2= 5 p, 24<Tc) < (3.170)

where v = 1.781.... For the H.s derivative at T' = T, we find from here the

first relation of Eq. (3.162), and H.o(7T = 0) is conveniently expressed as

[Gorkov L.P. (1959); Werthamer N.R., Helfand E., Hohenberg P.C. (1966)]:
HCZ(O) 7'1'2 ~

—m = a ~ 0.69 (3.171)

In this case H:o(T) curve is convex at all temperatures below T, [Gorkov

L.P. (1959); Werthamer N.R., Helfand E., Hohenberg P.C. (1966); Gennes

de P.G. (1966); Saint-James D., Sarma G., Thomas E.J. (1969)]. Very

close to the Anderson transition, when w, < 277 , only w!/3 behavior of

diffusion coefficient is important in Eq. (3.166) and it takes the following
form [Kuchinskii E.Z., Sadovskii M.V. (1991a)]:

l”% =2 {[(n +1/2) + (n+ 12)V3(E/AnT)* P (wy /E)] ™Y = [n + 1/2]—1}

(3.172)
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where wyg = eH /me. From here we get:

A7)2/3 T,
Hoo(T) = m 22D sy, e (3.173)
T c1 T
2[4\
Hoo(T) = m (w2372 5105 |1 = 2y ( ? ) T<T,
T 3 T,
(3.174)

where ¢; = Zzozo(n—i— 1/2)_5/3 ~ 4.615 and ¢5 &~ 0.259. From these expres-
sions we get:

1 (dH.»\  (4m)%3 ;521 o
v (), = o ma e = s )

which makes precise the second relation in Eq. (3.162), while for H.2(T = 0)
we obtain:

HCZ(O) C1
— = ~1.24 1
T.(dH.o/dT)p, — (47)%/3 (3.176)

As was first noted in Refs.[Bulaevskii L.N., Sadovskii M.V. (1984); Bu-
laevskii L.N., Sadovskii M.V. (1985)] this ratio for the system at the mo-
bility edge is significantly larger than its classical value 0.69. In this case
H2(T) curve is concave for all temperatures below T, [Bulaevskii L.N.,
Sadovskii M.V. (1985)]. Detailed expressions for the intermediate disorder
when 277 <« w. €< w > can be found in Ref.[Kuchinskii E.Z., Sadovskii
M.V. (1991a)].

On Fig.3.10 we present the results of numerical solution of Eq. (3.166)
for the different values of characteristic frequency w., i.e. for the differ-
ent disorder. A smooth crossover from the classical behavior of the theory
of “dirty” superconductors [Werthamer N.R., Helfand E., Hohenberg P.C.
(1966); Gennes de P.G. (1966); Saint-James D., Sarma G., Thomas E.J.
(1969)] to anomalous temperature dependence close to the Anderson tran-
sition [Bulaevskii L.N., Sadovskii M.V. (1985)] is clearly seen.

Below the mobility edge (i.e. in Anderson insulator) and for w, =

1/(27?N(E)R3

0 e) € 27T, ie. very close to mobility edge we can again
1/3

use w-/“—behavior of diffusion coefficient and find the same temperature
dependence of H.» as at the mobility edge itself or just above it. For

27T < w, < 27T, Eq. (3.166) takes the form [Kuchinskii E.Z., Sadovskii
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Fig. 3.10 Temperature dependence of the upper critical field H.>. Numerical solution
for the dependence of h = wH/Tf/SEl/3 on T /T, for different values of § = w./Te: 1.
6 =100;2. § =10;3. 0 = 2m; 4. 6 = 3; 5. 6 = 1; 6. § = 0 (Mobility edge). Metallic
state, no magnetic field influence on diffusion. At the insert: Low temperature part of
h on T/T. close to the Anderson transition. 1. Mobility edge (¢ = 0) with magnetic
field influence on diffusion. 2. Metallic phase (§ = 0.1), no magnetic field influence. 3.
Mobility edge (¢ = 0), no magnetic field influence. 4. Insulating phase (6§ = 0.1), no
magnetic field influence. Numerical cut—off was taken at < w > = 100 T..

M.V. (1991a)]:

np—1

znTZ = S {(n+ Y21+ (Bfw) P wn/ B} +

¢ n=0

+ i {(n+1/2) + (n + 1/2) /(B /4xT)*(wp / E)}

> (4127t (3.177)
n=0
where ng = w,./47T, corresponds to a change of frequency behavior of

diffusion coefficient. Defining & = wH/wg/SEl/?’ we can reduce Eq. (3.177)
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to:
In(T/T:) = wln(yw. /7T:) + %(1 + 2)In(1+ 2) (3.178)

which implicitly defines H.2(7") and shows [Kuchinskii E.Z., Sadovskii M.V.
(1991a)] that now H.o(T) — oo for T — 0 (logarithmic divergence). Nu-
merical solution of Eq. (3.177) is shown at the insert in Fig.3.10. Below
we shall see however, that this divergence of H. is lifted by the inverse
influence of magnetic field upon diffusion.

Let us now turn to the problem of magnetic field influence upon diffu-
sion and its consequences for H.s temperature behavior. If we are far from
the Anderson transition magnetic field influence is small on parameter ~
Jwg /E and its influence upon H.s is insignificant. Close to the transition
magnetic field correction may overcome the value of D(H = 0) and we have
to consider its influence in detail [Kuchinskii E.Z., Sadovskii M.V. (1991&)].
Accordingly we shall limit ourselves with the case of w./E < (wg/E)*/?
for which we have already discussed the magnetic field behavior of gener-
alized diffusion coefficient in Cooper channel. It was given in Eq. (2.111)
and Eq. (2.112). In this case we have seen that characteristic frequency w,
is replaced by:

W = (pwn/E)**E (3.179)

where ¢ = W?/2 & 0.18 (W was defined during our discussion of local-
ization in magnetic field). For T' ~ T, there is no change in the slope of
H.s given by Eq. (3.175) as was noted already in Ref.[Bulaevskii L.N.,
Sadovskii M.V. (1985)]. Here we shall consider the case of T' < T..

For 27T > w, in all sums over Matsubara frequencies we can take
D(w) ~ w!/3 and actually we can neglect magnetic field influence upon dif-
fusion. In this case H.o(T') behaves like in Eq. (3.174) i.e. as at the mobility
edge in the absence of magnetic field effects. For 27T < w’. equation for

H.5(T) takes the form [Kuchinskii E.Z., Sadovskii M.V. (1991a)]:

ng—1

ln% = > (n+1/2)+ (we/ E)P(wp /4xT)) " +

¢ n=0

+ i {(n+1/2)+ (n +1/2) (B4 T)* ([ E)}

n=ng
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— i(n +1/2)7  (3.180)

where ng = w’./4xT. In this case we find

Po -1/3 2/32/3 [+1/3 4y r

Ho(T)=m—(1 T:°F l-

2( ) m T ( + SD) (7/7) c 3@1/3(1 4 QD) Tc
(3.181)

Accordingly we have
H2(0) -1/3_ &

e ~ 1.18 3.182
T dTy, ~ L9 s (3.182)

and the change in comparison with Eq. (3.176) is actually small. However,
for 27T < w’, the H.2(T) curve becomes convex. The inflexion point can be
estimated as T* = w! /27 = 0.027. This behavior is shown in the insert on
Fig.3.10.

Consider now insulating region. We shall see that the magnetic field
effects on diffusion lead to the effective cut—off of the weak divergence of
H.y asT' — 0 noted above. Generalized diffusion coefficient D5 in insulating
phase and at low enough frequencies is determined by the following equation

[Kuchinskii E.Z., Sadovskii M.V. (1991a)]:
1
ImDy = —(wc/E)l/?’—|—(—iw/E)1/2(2mD2)‘1/2—|—§W(2wH/E)1/2 (3.183)

Now we can see that the external field defined by

w 1/3

5V 2wn/E > (w./E) (3.184)

transfers the system from insulating to metallic state. If the system remains
close to mobility edge we can estimate the upper critical field as above by
W R (71'/7)2/3T62/3E1/3 and Eq. (3.184) reduces to:

1 T
N < S (W/VDPT. ~ 0.147. 3.185
QTZN(E)R?OC < ’}/( /\/_) ( )

We

and practically in all the interval of localization lengths where according to
our main criterion of Eq. (3.20) we can have superconductivity in Anderson
insulator the upper critical field in fact destroys localization and the system
becomes metallic. Accordingly there is no way to observe the divergence
of the upper critical field as T — 0 and the H:o(T) curves in “insulating”
phase all belong to the region between the curves of H.o(T) at the mobility
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edge defined in the absence of magnetic field (curve 3 in the insert on
Fig.3.10) and at the mobility edge defined in magnetic field (curve 1 in the
insert). This result actually shows that it may be difficult to confirm the
insulating ground state of strongly disordered superconducting system just
applying strong enough magnetic field to destroy superconductivity and
perform usual transport measurements at low temperatures.

Note that another mechanism for the change of H.o(7T) at low tem-
peratures was proposed by Coffey, Levin and Muttalib [Coffey L., Levin
K., Muttalib K.A.(1985)]. They have found the enhancement of H.; at
low temperatures due to the magnetic field dependence of the Coulomb
pseudopotential p* which appears via the magnetic field dependence of dif-
fusion coefficient. Magnetic field suppression of localization effects leads to
the reduction of Coulomb pseudopotential enhancement due to these effects
[Anderson P.W., Muttalib K.A., Ramakrishnan T.V (1983)]. Accordingly
it is possible to get the enhancement of H., at low temperatures. Unfor-
tunately very important effects of the frequency dependence of generalized
diffusion coefficient were ignored.

Returning to general criteria of validity of Eq. (3.166) we note that
the condition of Ry > £ 1s reduced to wyg < Tcl/?’Elzw/3 which is obviously
satisfied in any practical case. Note, however, that our estimates for H.s
at low temperatures lead to wy = AO(EF/AO)US > Ag which can easily
overcome paramagnetic limit. In this case the experimentally observed H.o
of course will be determined by paramagnetic limit and anomalous behavior
due to localization will be unobservable at low temperatures. At the same
time in case of H.o being determined by paramagnetic limit it may become
possible to obtain insulating ground state of the system applying the strong
enough magnetic field. Note that the effective masses entering to cyclotron
frequency and paramagnetic splitting may be actually very different and
there may be realistic cases when orbital critical field may dominate at low
T.For T'~ T, H.s is always determined by orbital contribution.

Similar analysis can be performed for the two-dimensional and quasi-
two-dimensional cases [Kuchinskii E.Z., Sadovskii M.V. (1993a)], which are
important mainly due to quasi-two-dimensional nature of high-temperature
superconductors. We shall limit ourselves only to the case of magnetic field
perpendicular to highly conducting planes, when the temperature depen-
dence of H.o(T) is again determined by Eq.(3.166) with Da(w) having the
meaning of diffusion coefficient in Cooper channel along the plane.
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If we neglect the magnetic field influence upon diffusion the frequency
dependence of diffusion coefficient in purely two-dimensional case is deter-
mined by Eq.(2.116). Tt is easy to see that the possible anomalies in the

temperature behavior of the upper critical field due to the frequency depen-

=1/

dence of diffusion coefficient will appear only at temperatures T' < “—
At higher temperatures we obtain the usual dependence of the ” dirty” limit.
Accordingly, from Eq.(3.166) we obtain two different types of behavior of

HCQ(T):

(1) For T, > <=2
4 ¢0 Tc
1 6T, T\’ e~/
Hoo(T) = — 1—-2.12( =) ) f T < T. (3.187
(1) = - -2z () ) for S < T < (318T)

For T' & e the upper critical field 1s defined by the equation:

T

—1/x Dy TH —1/x Dy 7H

Y € 0 Tilc2 Y € 0 Tilc2

In| — = (1+d7——F)in | — 1+4r——F+
n(?ﬂ' 71 ) ( o e—l/A)n<2ﬂ' 7T, ( o e—l/A))

(3.188)
from which we can explicitly obtain the dependence of T'(Ha).

/X

o=

Thus, up to very low temperatures of the order of ~ the up-

—
per critical field is determined by Drude diffusion coefficient and

we obtain the standard H.o(T') dependence of a ”dirty” supercon-
Heo(T) gy €722 <« T <« T, is equal to the

aH
To( =72 )TC T

ductor. The ratio —

=1/
pm

usual value of 0.69. For low temperatures T < we obtain
significant deviations from the predictions of the usual theory of
7dirty” superconductors. H.s(T') dependence acquires the positive
curvature and the upper critical field diverges as 7" — 0. The be-
havior of the upper critical field for the case of T, > e

in Fig.3.11, curve 1.

1s shown

(2) ForT, < ¥ the upper critical field behavior for any temperature
is defined by Eq.(3.188). H.2(T)—dependence acquires positive
curvature and H., diverges for 7' — 0. For small fields H.» <

%o e~/
Do 7

,le. for T ~ T, Eq.(3.188), gives the explicit expression
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Fig. 3.11 Temperature dependence of the upper critical field for two-dimensional su-

e—1/X W T . .
perconductor ( —— = 04,A = 0.1,h = S ). 1—mo magnetic field influence upon

diffusion, 2—with rcnagnetic field influence upon diffusion, 3—standard theory of "dirty”
superconductors.

for H,s:

_ Lgoenr In(F)
_47TDO T In (le—l/*)

H. (3.189)

27 7T

The slope of H.2(T) at superconducting transition is determined

by:

oy dch) e? e~ 1/A
- = 4 (3.190)
N(E) ( dT" Jp, 27 tT,in (;—We;;/})

o1/

T

The behavior of the upper critical field for the case of T, <
is shown in Fig.3.12; curve 1.

It is clearly seen from Eqs.(2.116) and (2.117) that magnetic field influ-
ence upon diffusion becomes relevant only for high enough magnetic fields
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Fig. 3.12 Temperature dependence of the upper critical field for two-dimensional su-
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perconductor ( —— = 4,2 = 0.126,h = S ). 1—mo magnetic field influence upon

diffusion, 2—with fnagnetic field influence upon diffusion.

=1/

H.o > g—‘; —, i.e. for very low temperatures 7' < 7. If we use Eq.(2.117)
in the main equation (3.166), we obtain the following results:

o1/

T

(1) The case of <T, <L
For high enough temperatures 7" >

o1/

= the diffusion coefficient

entering Eq.(3.166) coincides with Drude’s Dy and the upper crit-
ical field is determined by Eqs.(3.186) and (3.187).

2
2 x 1
—1/A ln( s
€

For — <<T<<¥We obtain:
1 ¢oT. T

H.o(T) = — 1—3.56— 191

(1) = 5= S5 = 3567 (3.19)

FEq.(3.191) differs from Eq.(3.187) only by temperature dependent
corrections and we can say that the magnetic field influence upon
diffusion in this case leads to the widening of the temperature region
where we can formally apply the usual theory of ”dirty” supercon-
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Fig. 3.13 Temperature dependence of the upper critical field for quasi-two-dimensional
—1/x

superconductor (S—7— = 4,A = 0.126,h = Tru;\—’;{) for different values of the interplane

transfer integral around the critical value of w. corresponding to Anderson transition at

a given disorder. 1—purely two-dimensional behavior (w = 0), 2—dielectric side close to
Anderson transition (L = |2in(w/w.)| = 0.7), 3—metallic side close to Anderson tran-
sition (L = 2ln(w/we) = 0.7), 4—metallic state far from Anderson transition (L = 3).
5—purely three-dimensional dependence (AL = 1). Dashed line represents the behavior
at the Anderson transition (L = 0).

ductors.
S (2
For T« ¢ — the upper critical field is defined by:
—1/X%InQ 9 NnQ 2 9
7€ v n v
n|—— | =22 "% [p| L—— 3.192
"\ore 4T Q e~1/A*nQ " (ﬂ'Q TTC) ( )

where () = ;—WfoI . % From Eq.(3.192) we can obtain the ex-

plicit dependence T'(H.2). The upper critical field in this case is

slightly concave as in case of Eq.(3.188) where we have neglected
the magnetic field influence upon diffusion. However, now we have
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no divergence of H.» for T'— 0 and

Y ¢ 1

Heo(T=0)= 27 Do 7 (3.193)
In fact the value of H.o(T = 0) will be even smaller, because for
these values of the field the number of Landau levels below the
cutoff will be of the order of unity and we are now outside the limits
of applicability of Eqs.(2.114). However, the order of magnitude of
H (T = 0) given by Eq.(3.193) is correct. H.2(T) behavior with
the account of magnetic field influence upon diffusion i1s shown in
Fig.3.11, curve 2.

(2) The case of T, < 6_;” .

For small fields H,» < g—?}e—;”, 1.e. for T ~ T, magnetic field
influence upon diffusion is irrelevant and the upper critical field is
determined by Eq.(3.189). For low temperatures H.o(T) is deter-
mined by Eq.(3.192), i.e. magnetic field influence upon diffusion

liquidates the divergence of the upper critical field as T'— 0. The
behavior of H:o(T) for T, < e/

T

is shown in Fig.3.12; curve 2.

=1/

It should be noted that the case of T, <« =
ciently strong disorder. For typical 7, ~ 10~*Ep this case can occur only

is possible only for suffi-

for A > 0.2. Superconducting pairing can exist only in case the condition
similar to Eq.(3.20) is satisfied. In two-dimensional case this condition leads
to mequality 7. > /\¥ which makes the region under discussion rather
narrow.

Quasi-two-dimensional case was extensively discussed in Ref.[Kuchinskii
E.Z., Sadovskii M.V. (1993a)]. Situation here is in many respects similar
to that of two-dimensions, e.g. the anomalies in the upper critical field
behavior due to the frequency dependence of diffusion coefficient appear
only for temperatures 7' < ﬁ, while at higher temperatures H.o(7T) is
well described by the usual theory of “dirty” superconductors. As the in-
terplane transfer integral w grows the smooth transition from purely two-
dimensional behavior to that of three-dimensional isotropic system can be
demonstrated.In case of T, >> ¥ deviations from the usual temperature
behavior of H.5 is observed only for very low temperatures T' < #, while
close to T, there are no significant changes from the standard dependence of
H.5(T). For T, < 22
ature dependence of H.2(T) changes from purely two-dimensional concave

as interplane transfer integral w grows the temper-
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behavior for all temperatures to convex three-dimensional like dependence.
In Fig.3.13 we show the typical transformations of H.o(T') behavior as trans-
fer integral w changes driving the system through metal-insulator transiton
[Kuchinskii E.Z., Sadovskii M.V. (1993a)]. This clearly demonstrates the
sharp anomalies in H.o behavior which can appear due to localization ef-
fects.

3.3.3 Anisotropic pairing

Up to now in this Chapter we have implicitly assumed that we are dealing
with isotropic s—wave pairing. In this section we shall analyze Ginzburg-
Landau expansion in disordered system with anisotropic Cooper pairing
(both d-wave and anisotropic s—wave.). Strictly speaking, here we shall
not deal with localization transition, limiting ourselves to rather standard
weak-coupling BCS treatment, when in most cases superconductivity is
destroyed long before localization appears (Cf. discussion on d-wave pairing
above). However, we shall discover some new ways to increase stability
of anisotropic superconducting state to disordering, as well as some extra
predictions for anomalous behavior of superconducting properties.

Following Refs.[Borkovski L.S., Hirschfeld P.J. (1994); Fehrenbacher
R., Norman M.R. (1994); Posazhennikova A.I., Sadovskii M.V. (1996);
Posazhennikova A.l., Sadovskii M.V. (1997a)] and assuming further ap-
plications to high-temperature superconductors, we shall analyze two —
dimensional electronic system with isotropic Fermi surface and separable
pairing potential of the form:

9(p,p') = 9(4,¢") = —ge()e(9'), (3.194)

where ¢ is a polar angle, determining the electronic momentum direction in
the conducting plane, and e(¢) is given by the following model dependence
e(6) = { V2cos(2¢)  (d— wave ), (3.195)

V2|cos (2¢)| ( anisotropic s— wave ).

The pairing constant ¢ is as usual different from zero in some region of the
width of 2 < w > around the Fermi level (< w > — is again some charac-
teristic frequency of the quanta, responsible for the pairing interaction). In
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this case the superconducting gap (order parameter) takes the form:

A(p) = A¢) = Ae(9), (3.196)

and positions of its zeroes for s and d cases just coincide. Note that while
the form of ¢—dependence in (3.195) was chosen rather arbitrarily just to
describe the required symmetry, it is precisely this form of angular depen-
dence of the energy gap which is observed (e.g. in ARPES experiments) in
high-T. copper oxides [Randeria M., Campuzano J.C. (1997)].

We shall again examine a superconductor containing “normal” (non-
magnetic) impurities, which are chaotically distributed in space with con-
centration p. Following Ref.[Haran G., Nagi A.D.S. (1996)] we consider the
square of the scattering amplitude of the impurity in the following form:

Vimp (P, P)I* = [Vimp(0, ¢")* = [Vo|” + [Vi* () (), (3.197)

where Vj is 1sotropic point-like scattering amplitude, V7 1s anisotropic scat-
tering amplitude, and f(¢) is angular-dependent model function (¢ is a
polar angle mentioned above) which describes the type of anisotropic scat-
tering. We consider the scattering to be essentially isotropic and impose
the following constraints [Haran G., Nagi A.D.S. (1996)]:

Vil <Vol% < F>=0; < f2>=1, (3.198)

where < ... > denotes the averaging over the momentum direction on the
Fermi surface (i.e. over the ¢-angle). Accordingly, the second part in
FEq.(3.197) represents the deviations from the isotropic scattering.

The normal and anomalous temperature Green’s functions in such a su-
perconductor are [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii .E. (1965)]:

it
A*
Flen,p) = )

&+ &+ A

where £, = (2n 4 1)aT, £— is electronic energy with respect to the Fermi

level, while
- _ . dp’ : N2 ’
En(p) =cn+ip lemp(p—p)l G(en, '), (3.200)
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A(p) = A(p) + p/ %“/imp(p —p )’ F(en, p).

are Matsubara frequency and gap renormalized by impurity scattering. To
determine the transition temperature we can limit ourselves to Eqs.(3.200)
linearized over A:

00 27 5
” :€n+p$/ dg/ d¢’{|VO|2—|—|V1|2f(¢)f(¢/)}52%52’
A
248
(3.201)

AoAd N;f/ dﬁ/ﬂdfb{IVoIZJerllf( )

The critical temperature 7, is determined by the linearized gap-equation:

A(p)

Following standard procedure from Eqs.(3.201),(3.202) we obtain the fol-
lowing general equation for the critical temperature 7:

ln(go) = <<e >4 <ef >? —1) [w(%JFQZOT)—\If(%)]JF (3.203)
cor pE) (3 -2)

where T,o- is the transition temperature in the absence of impurities, ¥(z)-

is the usual digamma function, yo = 7pVZN(0) and v; = 7pVZN(0) — cor-
respondingly the isotropic and anisotropic impurity scattering rates, while
< ef >? describes the “overlap” between the functions e(p) and f(p).

For the sake of simplicity we take the function f(p) in the form analo-
gous to that in Eq.(3.195):

flp) = f(¢) = \/§COS(Q¢), (3.204)

This corresponds to the maximum overlap for d-case. More general treat-
ment one could find in Ref.[Haran G., Nagi A.D.S. (1996)]. Now the renor-
malized Eqs.(3.201) can be written as follows:

27
5 = e+ 'ZT—O de + —cos(2¢ / dg/ d¢'cos(2¢")

e ~2 _|_€2 ~2 _|_€2’
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A
a+e
(3.205)

00 A 00 27
A=Ay 20 / d¢ AL 7_12c05(2¢) / d¢ / d¢'cos(2¢")
—00 0]

T J_ o0 E24E2 27m

From here we obtain the well-known expression for the renormalized fre-
quency in both cases:

€n = &n + Yosigne,. (3.206)

In the case of d—wave pairing the gap symmetry in the presence of
impurities is not changed and:
|0

|En] — 11

(3.207)

In the case of s—wave pairing the gap is shifted by a constant, which does
not depend on ¢ and 7;:

(3.208)
Finally T,-equation for superconductor with d—wave pairing is written as:
Tc 1 1 ”)/1 ”)/0
l =VU(=)-"(= 1—— . 3.209
() =0@) G (-2)ER) e
For superconductor with anisotropic s—wave pairing 7.-equation is written
T, 8 1 Yo 1

l =|(1-—=]|(¥|= —U{-]]. 21
(7)) Gram) )] o

Note that anisotropic scattering rate dependence drops from Eq.(3.210).

The appropriate dependencies of T¢(vyy /7o) are shown in Fig.3.14, for
the case of d—wave pairing with different values of the normalized anisotropic

as:

scattering rate v1 /0. In the case of s—wave pairing the transition temper-
ature T, is only relatively weakly suppressed with the growth of v5/T.o. In
the case of d—wave pairing 7, suppression 1s rather fast for small values of
71, but the critical value of 44./T.0 leading to the complete destruction of
superconducting state rapidly increases with the growth of the anisotropic
scattering rate 41 /90. In this sense, anisotropy of impurity scattering can,
in principle, be another reason (in addition to small size of the pairs) for
extra stability of d-wave pairing under disordering, allowing even to con-
serve finite 7. up to disorder induced metal-insulator transition. However,
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25

Fig. 3.14 Critical temperature 7. as a function of the normalized isotropic scattering
rate vo/Tc0. The dashed curve represents the s-wave pairing case, the solid curves repre-
sent the d-wave pairing case for different values of the normalized anisotropic scattering
rate v [v0: 1—1 /v =0.0; 2—0.3; 3—0.5; 4—0.6; 5—0.7; 6—0.8; 7—0.9; 8—0.95.

the detailed analysis of this possibility is at present impossible, because of
the lack of any analysis of the effects of anisotropicscattering on Anderson
transition. Apparently, such analysis can be performed using self-consistent
theory of localization. Anisotropic s—wave pairing is practically as stable to
disordering as the usual isotropic case analyzed above, so that all qualita-
tive dependencies discussed above for isotropic s—wave case can be applied
here.

The gap function as usual can be used as an order parameter in the
Ginzburg-Landau expansion for the free-energy density. We consider its
amplitude A(T)) to be a slowly varying function of the spatial coordinates.
Accordingly in momentum space we get the Fourier-component of the order
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parameter:
A8, 9) = Ag(T)e(9)- (3.211)

The Ginzburg-Landau expansion for the free energy density difference
between superconducting and normal state in the region of small ¢ up to
terms quadratic over A takes the usual form:

Fy— Fy = A|A? 4+ ¢2C1A, )2 (3.212)

and 1s determined by the diagrams of loop-expansion for the free-energy of
electrons moving in the field of superconducting order parameter fluctua-
tions with some small vector ¢, shown in Fig.C.2 in Appendix C. The only
change in comparison with s—wave case is that we must add extra factors of
e(¢) in each vertex to take into account the symmetry of the order param-
eter. Some details on calculating the impurity vertex I'pps in the case of
anisotropic impurity scattering, as well as Ginzburg-Landau coefficients for
the case of d—wave pairing can be found in the Appendix D. Note, that for
the d—wave superconductors the contribution of diagrams Fig.C.2(b,d) ac-
tually vanishes up to terms of the order of ¢?, if we don’t take into account
an anisotropy of impurity scattering. In the case of s—wave superconductor
all calculations are analogous, we only note that in this a case a dependence
on anisotropic scattering rate 1s absent.
Finally we can express GL-coefficients in the following form:

A= AgK4; O =CoKe, (3.213)

where Ay and Cy are just the usual GL-coefficients for the case of 1sotropic
s-wave pairing [Gennes de P.G. (1966)] in two — dimensional case:

7¢(3) v

T-T,
3272 T2’

T.

A = N(0) Cy = N(0) (3.214)
where vp, N(0)-are electron velocity and normal density of states at the
Fermi level, and everything specific to our model is contained in dimen-
sionless combinations K4 and K¢. In the absence of impurities for both
models we obtain: K§ =1, KX = 1. For the impure system we get:

(A) d-wave pairing:

<w> o
Ky=-0 / E 1" a e¥e + (3.215)
47T Jocws> € Jooo (624 73)ch? (az-iT_f)
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71 (270 + 1) / Y e e
AT, —oo (€2 4 42)(e2 + (70 — 71)2))ch? (ZT)

T. 27T, 1 - 1
Ko = 3 m U=+ Yo Y1 N s Yo
7B | m 2" TonT. 2" 9T,

1 _
U (5 + P&ﬁ)} . (3.216)

(B) anisotropic s-wave pairing:

L[> d¢ [™
K= {_/ d¢ de e+¢&
T s € e (55)

2 [ 1
+0 [ e ] } (3.217)

™ (e ag)en (g

3(nx? —8) 1 7 2472 T2 T. 6r T,
Ko=————"2V" = = l —
YOS T3 2T ) TR (=8 '\ T ) T3 70
(3.218)
The appropriate dependencies of dimensionless coefficients on disorder pa-
rameter o /T,o in the case of d—wave pairing and for different values of the
normalized anisotropic scattering rate v1 /yo are shown in Figs.3.15,3.16.
GL-coefficients A and (', as usual, define the temperature dependence
of the upper critical magnetic field close to 7. [Gennes de P.G. (1966)]:
$o po A
Ho=—rr=—1—— 3.219
T o1y T 2 C (3:219)
where ¢ = c¢m/e — is again the magnetic flux quantum, £(77) — is tempera-
ture dependent coherence length. Now we can easily find the “slope” of the
temperature dependence of H.o(7T') near T, i.e. the temperature derivative:
247y . Ka

= T.— 3.220
T, 7C(3)U% K¢ ( )

In the case of the usual s-wave superconductivity anisotropic scattering does

dHcZ
dr

not influence the behavior of the slope of the upper critical field. The appro-
priate dependencies of dimensionless parameter h = |dH.»/dT |7, /|dHeo/dT | 1.0
on disorder vy /Teo in the case of d—wave pairing for different values of the
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Fig. 3.15 Dependence of dimensionless coefficient K, /K 40 on disorder parameter
~Y0/Teo. The dashed curve represents the s-wave pairing case, the solid curves repre-
sent the d-wave pairing case for different values of the normalized anisotropic scattering
rate v [v0: 1—1 /v =0.0; 2—0.4; 3—0.6; 4—0.7; 5—0.8; 6—0.9; 7—0.95.

normalized anisotropic scattering rate 41 /vy are shown in Fig.3.17. In the
case of anisotropic s-wave pairing the slope as usual grows with disorder
and in the limit of strong disorder vy > 7. it crosses over to the linear

dependence described by Gorkov’s relation (Cf.(3.162)):

o dch
N(0) | dT

2
=8 4 (3.221)
T

=

which is characteristic of the impure superconductors with isotropic s-wave
pairing. Here o = N(0)e?v% /370 - is residual conductivity in the normal
state. It means that strong disordering suppresses gap anisotropy and we
obtain a usual limit of the impure superconductor. For the case of d-wave
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Fig. 3.16 Dependence of dimensionless coefficient K /Kco on disorder parameter
~Y0/Teo. The dashed curve represents the s-wave pairing case, the solid curves repre-
sent the d-wave pairing case for different values of the normalized anisotropic scattering
rate v [v0: 1—1 /v =0.0; 2—0.4; 3—0.6; 4—0.7; 5—0.8; 6—0.9; 7—0.95.

pairing the slope of H.y drops to zero on the scale vy ~ T, for the small
values of the rate 71 /79. For the values of anisotropic scattering rate on
the interval 0.5 < 71/90 < 0.6 the behavior of the slope is qualitatively
changed: h smoothly but nonlinearly increases with the growth of vy /7.0,
crosses over the maximum and then has a sharp drop. The interval where
the slope grows extends as y; approaches vg. In our opinion these sharp
anomalies in dependence of the slope of the upper criticalfield on disorder
can be used for determining the pairing type and possible role of anisotropic
impurity scattering in ”unusual” superconductors. Unfortunately, in case
of high-T, oxides the situation is complicated by the known nonlinearity
of temperature dependence of H.s, which is observed in rather wide region
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10

20 25

Fig. 3.17 Dependence of normalized slope of the wupper critical field A =
A |T / dH e oon disorder parameter vy /7Tco. The dashed curve represents the
0

dT dT
s-wave pairing case, the solid curves represent the d-wave pairing case for different val-
ues of the normalized anisotropic scattering rate v1 /vo: 1—vy1 /70 =0.0; 2—0.4; 3—0.5;
4-0.6; 5—0.7; 6—0.8; 7—0.9; 8 0.95.

close to T, and and also by some ambiguity in experimental methods to
measure H.o.

3.4 Fluctuation Conductivity Near Anderson Transition

Fluctuation conductivity of Cooper pairs (above T,) is especially interest-
ing in strongly disordered system because the usual single—particle con-
tribution to conductivity drops to zero as the system moves towards An-
derson transition. We shall use the standard approach [Aslamazov L.G.,
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Larkin A.I. (1968)] which takes into account fluctuational Cooper pairs for-
mation above T,. We assume that it is possible to neglect the so called
Maki—Thompson correction which describes the increased one—particle
contribution to conductivity due to superconducting fluctuations [Keller
J., Korenman V. (1972)]. We expect that these estimates [Bulaevskii L.N.,
Varlamov A.A., Sadovskii M.V. (1986)] will enable us to find a correct scale
of fluctuation conductivity close to mobility edge.
Consider first the averaged fluctuation propagator:

L™ Haq, Q%) = A7 = TI(q, %) (3.222)

where the polarization operator

I(q, %) = ZZ < G(p4Phen + )G (p-pl —n) >=
¢n pp’

= —2inT Y Op(qwm =260 + Q) wp =2mmT  (3.223)
During our analysis of Ginzburg—Landau coefficients we were interested
n wy, = 2¢,, so that one of the Green’s functions in &g was automatically
retarded, while the other was advanced. Now we need a more general ex-
pression of Eq. (3.223) with w,, = 2¢, + Q. Accordingly, instead of Eq.
(3.130) we must use the following expression with additional é-function:

N(E)0len(en + )]

ela,w en + Q) i|2ep, + Q| + iDe (|26, + Q|)¢?

(3.224)

where the generalized diffusion coefficient is again determined by Eq. (3.132)
and Eq. (3.133). From Eqgs. (3.222)—(3.224), performing summation over
£, we get the following form of fluctuation propagator for small q (Dgq? <
T):

L™ (a, Q) = —=N(E) {lnTz + ¥ (2 + %) —~ ¥ (%) + 77(|Qk|)q2}

(3.225)
where
Dp(2e, + |Qk|)
(1)) =47T ) ——— 575 =
n(|2]) Z (2en + |Q%|)2
[ B s e (3.220)
TS (55 ) e > (G7)?



Fluctuation Conductivity Near Anderson Transition 153

{a) 7.1

fc) ' (d)

Fig. 3.18 Diagrams for fluctuation conductivity. Wavy lines denote fluctuation propa-

gator, dashed lines—disorder scattering.

It is also useful to know the form of fluctuation propagator for || > T In
this case, close to the Anderson transition, we may replace the sum over ¢,
in Eq. (3.223) by integral, while far from the transition it can be calculated

exactly. As a result we get:

0 2
g+ (34128 4+ 22 —w(d
gloc < (€012)1/3 B> Ec
2/3 R
T 3 [ Dy
Ing- +3in |:(47TT) + (47TT)2_/aq(27)_1/a]

gloc > (€012)1/3

L™ (q, Q) = —N(E)

(3.227)
Diagrams determining fluctuation conductivity are shown in Fig.3.18. Contributions
of graphs Fig.3.18 (a) and (b) are nonsingular close to T, because at least
one of fluctuation propagators transfers a large momentum of the order of
pr. Thus we have to consider independent contributions formed by three
Green’s functions entering graphs Fig.3.18(c). We can calculate these con-
tributions using the usual approximations of self—consistent theory of lo-
calization taking into account the renormalization of triangular vertices
by maximally—crossed graphs [Katsnelson M.I., Sadovskii M.V. (1983);
Kotov E.A., Sadovskii M.V. (1985)] (Cf. Eq. (3.41) as in Fig.3.18 (c)).
We shall neglect graphs like in Fig.3.18 (d) where the topology of disorder
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scattering lines is not reduced to the renormalization of triangular vertices.
We assume that these approximations are sufficient at least for a qualita-
tive inclusion of localization effects. Note that it 1s sufficient to calculate
the contribution of three Green’s functions B(q, Qy,wy,) for small q and
zero external frequency w,, = 0. It can be easily found differentiating the
polarization operator of Eq. (3.223):

0
B(q,9,0)=qC = —£H(q, Q) (3.228)

The contribution of diagram of Fig.3.18 (c) to the operator of electromag-
netic response [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1965)] is
now determined by the following expression:

4e2T
T om?

@ap = ;/ (;lf},(an)(C%)L(q, Q) L(a, Q% +wn)  (3.229)

Close to T, we can also neglect the dependence of C' on . Then C' re-
duces to Eq. (3.136) and we have C' = N(E)&2. Fluctuation propagator
analytically continued to the upper halfplane of complex w takes the usual
form:

1 1
Liqw)=— — — (3.230)
N(E) TTCTC — iz 1 €242
Further calculations can be performed in a standard way and for fluctuation
conductivity for (T'—T,)/T. < 1 we get the usual result [Aslamazov L.G.,
Larkin A.I. (1968)]:

2 T. 1/2
UAL_%(T—TC) (3231)

but with the coherence length & being defined as (Cf. Eq.(3.136)):

€ol 1z 2\1/3
f = (M) gloc < (fol ) E>F, (3232)
(&) ~ (/PP e > (E)VP E~ E.

From these estimates we can see that as the system approaches the Ander-
son transition a temperature interval where the fluctuation contribution to
conductivity is important widens. Fluctuation Cooper pair conductivity be-
comes comparable with a single—particle one for o < 0* & Uc(ppfo)_l/?’ ~
O'C(TC/EF)US, i.e. close enough to mobility edge. In fact this confirms the
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above picture of Cooper pairs remaining delocalized while single—particle

excitations localize as the system undergoes metal—insulator transition.
It is not difficult to find also the fluctuation contribution to diamagnetic

susceptibility [Bulaevskii L.N., Varlamov A.A., Sadovskii M.V. (1986)].

Close to T, it is determined by a standard expression:

2T, 7. \'/?
it = =5 (T_ - ) (3.233)

where the coherence length is again defined as in Eq. (3.232).

Thus our expressions for fluctuation effects follow more or less obviously
from our general picture of Ginzburg—Landau expansion: for the system
close to Anderson transition we have only to replace the usual coherence

length /&ol of a “dirty” superconductor by & ~ (£002)M3 ~ (&0 /pr)*/3.

3.5 Superconductivity in Anderson Insulator at T = 0

We have already considered the superconducting response of a system which
is close to Anderson transition within Ginzburg—Landau approximation,
1.e. for temperatures 7' ~ T,. In fact it is not difficult to obtain similar
results also for 7' = 0 [Lee P.A., Ma M. (1985)].

Superconducting current density at 7' = 0 is given by [Gennes de P.G.
(1966)]:

nse’

Js=— A (3.234)

mc

where ng is superconducting electron density, A is vector potential of an
external magnetic field. On the other hand, using exact eigenstates repre-
sentation DeGennes has obtained the following beautiful relation between
superconducting response at 7' = 0 and conductivity of a system in the

normal state [Gennes de P.G. (1966); Lee P.A., Ma M. (1985)]:

1 ne?
js =< — [ de [ d¢'L(g ¢ - ——>FA 2
o= {om [ [agne et - ) - (3.239)
All characteristics of a superconducting state are contained here in the
kernel:

_LER — ¢ — A

L, ¢) = 3 EE(ELE) (3.236)
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where E = /€2 + A2 and Ay is superconducting gap at 7' = 0. Note that

in normal state j, = 0 and we can rewrite Eq. (3.235) as:

jo= o / ¢ / 0E'[L(E, €| aza — L(E,€)|amo]Reo(é — €)A  (3.237)

Taking into account that L(€,&")|a=a, — L(€,&")|a=o for large | —¢&'| drops
as |€ — £/|73 it is sufficient to know only the low—frequency response of a
system in normal state. In particular, for “pure” system (with no scattering)
we have Reo(w) = (ne?/m)r~16(w) and comparing Eq. (3.234) with Eq.
(3.237) it is immediately clear that at 7' = 0 we have n; = n, i.e. in an
ideal system all electrons are superconducting.

Close to the Anderson transition we can use the results of elementary
scaling theory of localization, e.g. Eq. (2.31) and Eq. (2.33) to write

Afe w<w
Eloc ¢
o(w) ~ 1/3 3.238
D azm ()" o (3.258
Eloc \We

where w, ~ [N(E)¢ ]71 is defined in Eq. (2.42), g, is the critical conduc-
tance of scaling theory (g, ~ 1), A ~ 1. From Eq. (3.236) and Eq. (3.237)
it is clear that the main contribution into integral in Eq. (3.237) comes

from |€ —&’| ~ Ao, so that the value of ns; depends on the relation between
Ay and w.. For Ay < w, we have 6(Ag) = Age/Eoc and

(3.239)

For Ag > w, we have g(Ag) = Agc[N(E)Ao]l/?’ and it becomes indepen-
dent on the further growth of &,. in the region of &,. > [N(E)Ao]_l/?’.
Accordingly ng does not vanish at the mobility edge but saturate at

m
ny = Ae—zgc[N(E)Ao]l/?’ (3.240)
In localization region we can write instead of Eq. (3.238)

0 w < W,

o(w) ~ { Agc[N(E)w]l/?’ o> w, (3.241)

which again leads to o(Ag) & Agc[N(E)Ao]l/?’ and Eq. (3.240) remains
valid until Rj,. > [N(E)Ao]_l/?’. Thus the density of superconducting
electrons n; remains finite close to Anderson transition both in metallic
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and insulating states. From Eq. (3.240) it is easy to see that close to

n, Ag 4/3
— ~ | = 3.242
(EF) ( )

n

Anderson transition

This coincide with an estimate of Eq. (3.145) based upon Ginzburg—
Landau expansion. For typical Ag and Ep only small part (~ 10=% in tra-
ditional superconductors) of conduction electrons form Cooper pairs. The
condition of Rj,. > [N(E)Ao]_l/?’ ~ a(EF/Ao)l/B as discussed above de-
fines the size of possible superconducting region in Anderson insulator. This
region 1s of course quite narrow, e.g. if metal—insulator transition takes
place with a change of some external parameter # (impurity concentration,
pressure, fluence of fast neutrons etc.), so that Ri,c ~ al(z — z.)/x:| 77,
then for v & 1 and typical Ep/Ag ~ 10* we get |z — z.| < 0.1z,.

These estimates are in complete accordance with the results of our dis-
cussion of Ginzburg—Landau approximation [Bulaevskii L.N., Sadovskii
M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985)] and in fact we now
have the complete qualitative picture of superconductivity in Anderson in-
sulator both for T'~ T, and T"— 0, i.e. in the ground state.
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Chapter 4

STATISTICAL FLUCTUATIONS OF
SUPERCONDUCTING ORDER
PARAMETER

The previous discussion of superconductivity in a strongly disordered sys-
tem was based upon important assumption of the existence of self—averaging
superconducting order—parameter A. This assumption was first used in the
theory of “dirty” superconductors [Abrikosov A.A., Gorkov L.P. (1958);
Abrikosov A.A., Gorkov L.P. (1959); Anderson P.W. (1959); Gennes de
P.G. (1966)] and also in all early papers on the interplay of localization and
superconductivity. It was expected that spatial fluctuations of this order
parameter A(r) are actually small and we can always use some disorder
averaged parameter < A(r) >. It seems natural for ¢ > o, and it really
can be justified in this region as we shall see below. However, close to the
mobility edge there are no special reasons to believe in correctness of this
assumption. In this case electronic characteristics of the system become
strongly fluctuating and we shall see that these lead to the strong spatial
(statistical) fluctuations of superconducting order parameter, or even to the
regime inhomogeneous superconductivity. At the same time we must stress
that these fluctuations are in some sense similar to the usual thermody-
namic critical fluctuations of the order parameter and become important
in some new critical region (we call it statistical critical region) close to Te.
In this sense all the previous analysis is just a kind of statistical mean—
field approximation and of course it is a necessary step for further studies
taking into account the statistical fluctuations. The importance of these
fluctuations is stressed by the fact that the statistical critical region widens
(similarly to the usual critical region) as the system goes to the Anderson
transition and apparently the role of fluctuations becomes decisive for the
physics of the interplay of localization and superconductivity.

159
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4.1 Statistical Critical Region

Here we shall start by a demonstration of the appearance of the new type of
fluctuations which are at least of the same importance as the usual critical
fluctuations of superconducting order—parameter. We call them statistical
fluctuations [Bulaevskii L.N., Sadovskii M.V. (1986)] and their nature is
closely connected to the problem of self—averaging properties of this order
parameter (i.e. with a possibility of decoupling transforming Eq. (3.12) into
Eq. (3.13)). We shall more or less follow Ref.[Bulaevskii L.N., Sadovskii
M.V. (1986)], equivalent results were later obtained in Ref.[Ng T.K. (1991)].
Some extra development along similar lines was discussed by [Zhitomirsky
M.E., Walker M.B. (1998)].

Let us return to the Eq. (3.7) and analyze the situation in more details.
We shall use a simple iteration procedure assuming that fluctuations of the
kernel K (rr’) due to disorder are small. Similar approach was first used in
Ref.[Caroli C., De Gennes P.G., Matricon J. (1962)]. In this case we can
represent K (rr’) and A(r) as

K(rr') = Ko(xr — v') + Ky (x1'); Ko(xr —1') =< K(xr') >
Alr) =< A > +Aq(r) (4.1)

where < A > is the solution of linearized gap equation with averaged
kernel Ky(xr — ') while A;(r) is the first order correction over the pertur-
bation defined by Ki(rr’). We have seen that the linearized gap equation
Eq. (3.13) with the averaged kernel Ky(r — r') determines the standard
transition temperature of BCS theory given by Eq. (3.19) which we shall
now denote as T,g. In the first order over K; there is no correction to 7.q:
< K1 >=0. In the second order of this perturbation theory we obtain the
following change of transition temperature, defined as the temperature of
appearance of homogeneous order—parameter:

T, — TcO B _/ d3q K1(q0)K1(0q)
31— Ko(q,Te)
Ky = /dreiqPK(r,TC) (4.2)

where

K1(0q) = K1(—q0) = /dr/dr elqr K(rr') — Ko(r —1')] =
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<w

>
dE  E .
= Ap / fthQTc /dI‘@ q

0

ﬁ Z 6u()28(E — ) — 1| (4.3)

Here A, = ¢N(EF) and we have used the completeness and orthonormality
of exact eigenfunctions ¢,(r). It is obvious that correction to T.q given by
Eq. (4.2) is always positive. After averaging Eq.(4.2) over disorder we get
the relative change of transition temperature due to fluctuations as

6Tc Tc - TcO / d3q Sp(q)
= s = Ap =
Two Two (27)3 1 — Ko(q, T,)

olq) = /dreiqrgo(r) (4.4)

where

<w> <w>
dil = F dr' E' 1
= —th th — (0) >H —1
o= [ G [ G { i < retn > -1}
0 0

(4.5)
and we have introduced the spectral density of Eq. (A.3)
1
< pp(r)pe () >T= N ) < D 16u(@)P16n (&) P8(E — €u)6(E" — ) >
wy
(4.6)

which is actually a correlation function of local densities of states.
Remember now that in a “dirty” system [Saint-James D., Sarma G-,

Thomas E.J. (1969)]:

) 1
1-— [\O(an) =1- QTTAP ; 2|5n| =+ DE(2|5n|)q2 ~
T-1,
~ Ap [ Two : -1—52(]2] en = (2n+ )T (4.7)

where £ is the coherence length defined previously e.g. in Eq. (3.136). The
approximate equality here is valid for [T — T.o|/T. < 1, €£2¢? < 1. From
Eq. (4.4) and Eq. (4.7) we get the change of transition temperature in the
following form:

8T :/ q_p(a) (4.8)
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Here we must cut—off integration at ¢ ~ ¢~! in accordance with limits of
applicability of the last expression in Eq. (4.7). However, the contribution of
short—wave fluctuations here may be also important, so that the previous
expression should be considered as an order of magnitude estimate.

The Ginzburg—Landau functional expressed via non—averaged order
parameter A(r) has the following form [Gennes de P.G. (1966)]:
F{A} = /dr {@|A(r)|2 — N(EF) / dr' K (rr’)A(r)A(r) + %B|A(r)|4}

! (4.9)

where we have neglected the fluctuations of pairing interaction A, and of
the coefficient B, which is defined by the standard expression given in Eq.
(3.135). Using Eqs. (4.1)—(4.3) we can find Ginzburg—TLandau equations
which describe the slow changes of A(r):

{N(EF)TCOTC_OT + 6 A(r) — B|A(r)|2—|—05—;}A(r) =0 (4.10)
where
§A(r) = N(Ep) / dethQ% {ﬁ > ey (@)8(E —e,) - 1}

(4.11)
describes the fluctuations of the coefficient A of Ginzburg—Landau expan-
sion and we have neglected the fluctuations of the C' coefficient .

Ginzburg—Landau equations with fluctuating coefficients were analyzed
for the first time by Larkin and Ovchinnikov [Larkin A.I., Ovchinnikov
Yu.N. (1971)]. It was shown that §A(r)—fluctuations lead to a shift of
transition temperature given by Eq.(4.8) and the solution of Eq. (4.10) for
the order parameter in the first order over fluctuations has the form of Eq.

(4.1) with:

Ay(r) = / %Al(q)eiqr
_<A> 8A(q)
N(Ep)&2¢> 4+ 2r

Ai(q) = (4.12)

where 7 = (T, — T)) /T, is temperature measured relative to the new transi-
tion temperature. The mean—square fluctuation of the order—parameter
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itself is determined from Eq. (4.12) by:

< A% > [ dPqa p(q)
<A>2 / (27)3 [€2¢2 + 272

(4.13)

where p(q) was introduced in Egs. (4.4), (4.5). Tt is important to note
(as seen from (4.13)) that fluctuations of A(r) as opposed to T,—shift are
determined by small q behavior of ¢(q).

We can see now that all the physics of statistical fluctuations is described
by the correlation function of local densities of states (or spectral density
of Eq. (4.6)). This function was determined above in Eqs. (2.84), (2.85)
within self—consistent theory of localization or by Eqs. (2.144), (2.146)
which follow from from scaling approach close to the mobility edge.

Using Eq. (2.85) for the metallic state not very close to the mobility
edge we can get from Eq. (4.5):

§

RES (4.14)

plq=10) ~
where & = /&yl and Dy i1s the Drude diffusion coefficient. Estimating the
T.—shift from Eq. (4.8) we get:

6T, 1 . 1

ole Lt L 4.1
T.,  N2Ep)D2€2 " Ep (prl)® ¢ (4.15)

where 7¢ is the size of Ginzburg critical region defined by Eq. (3.155).
We have seen that in the usual “dirty” superconductor 7¢ <« 1. For the
order—parameter fluctuations from Eq. (4.13) we obtain:

<A Lela=0) (TD)”2

7]

<A>Z T 8w e3 ]

From here we can see that the width of the temperature region where

(4.16)

statistical fluctuations are important is given by:

22(0) | TN 1,
T NN4<EF>D3£4N<E) (el ™7 (#-17)

It 1s obvious that in a“dirty” superconductor we have 7p € 7¢ < 1 and
statistical fluctuations are absolutely unimportant.

Situation change for a system which is close to the mobility edge. Using
Eq. (2.85) with Dy replaced by Do(w/7)"3 or Eqs. (2.144)—(2.146) we
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obtain:

Te

wlq) ~ 71/2 / dw [w2 D 7_2/3w2/3q4]—1/4 ~ fSIni (4.18)
N2(Er)D?T. J Ve 0 g ¢

where £ ~ (fopgz)l/B. Similarly we get:

— 1= ln— ~ ——In— 4.19
<A >? (22 4+ 27)2 ¢¢ \/m 7] ( )

£
< A% > 1 / Eq¢%dyg 1 1 1

0
From Eq. (4.19) it follows that close to the mobility edge statistical fluc-
tuations become important and even overcome thermodynamic fluctua-
tions due to the logarithmic factor in ¢(q). Thus in this region we have
™ > 1g ~ 1.

The crossover from the regime of weak statistical fluctuations (7p <

7¢) to the strong fluctuation regime occurs at the conductivity scale o ~

o~

Uc(ppgo)_l/?’ which was extensively discussed above. Thus close to
the mobility edge the superconducting order—parameter is no more a self—
averaging quantity. Here the mean—field theory approach becomes formally
invalid due to thermodynamic and also because of statistical fluctuations.
Below we shall analyze this situation in more details.

Finally we shall briefly discuss the region of localized states. The ap-
pearance here of a singular §(w)—contribution to the correlator of local
densities of states given by Eqs. (A8)—(A10) leads to the additional con-

tribution to ¢(q):

_ 7 ap E N Ag(q) Apx _

wla) = / ﬁ( 2Tc) NEr) T NEST. T T
1

T N(ERTL(+ R,

+oo 0 (4.20)

Accordingly a new contribution to A(r) fluctuations is given by:

L
< A? > N 1 / ¢2dq 1
<A >2 - N(EF)TC (€2q2 + 2|T|) (1 + Rlocq ) N(EF)T Rloc
0

(4.21)
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and it grows fast as the localization length Ej,. diminishes. Using our main
criterion of superconductivity in localized phase given by Eq. (3.20) we can
see that in all region of possible superconductivity statistical fluctuations
of A(r) remain of the order of unity and are important in rather wide
temperature interval around 7..

4.2 Superconducting Transition at Strong Disorder

We consider now superconductivity in systems with strong statistical fluc-
tuations of the “local transition temperature” T,(r) as described by Eq.
(4.10) and Eq. (4.11). In this analysis we shall follow Refs.[Bulaevskii L.N.,
Panyukov S.V., Sadovskii M.V. (1987); Bulaevskii L.N., Panyukov S.V.,
Sadovskii M.V. (1989)]. For simplicity we assume Gaussian nature of these
fluctuations. Note, however, that close to the mobility edge the fluctua-
tions of local density of states become strongly non—Gaussian [Lerner 1.V.
(1988)] and this can complicate the situation. Unfortunately the impor-
tance of this non—Gaussian behavior for superconductivity has not been
studied up to now. We shall see that in our model | depending on the de-
gree of disorder, which we shall measure by the ratio 7p /74 , two types of
superconducting transition are possible. For 7p smaller than some critical
value 775 the superconducting transition is the usual second—order phase
transition at 7' = 7,. The superconducting order—parameter is in this case
equal to zero for T > T, and is spatially homogeneous over scales exceeding
the correlation length &(T') below T,. Statistical fluctuations lead only to
a change of critical exponents at the transition [Khmelnitskii D.E. (1975);
Lubensky T.C. (1975)]. At 7p > 7% the superconducting state appears in
inhomogeneous fashion even if the correlation length of disorder induced
fluctuations of T¢(r) is small compared with the superconducting correla-
tion length & (microscopic disorder). This case was first analyzed by Toffe
and Larkin [loffe L.B., Larkin A.I. (1981)]. Investigating the case of ex-
tremely strong disorder they have shown that as the temperature is lowered
the normal phase acquires localized superconducting regions (drops) with
characteristic size determined by £(7'). Far from T, their density is low, but
with further cooling the density and dimensions of the drops increase and
they begin to overlap leading to a kind of percolative superconducting tran-
sition. According to our previous estimates, if we take into account only the
fluctuations of local density of states, the parameter 7p/7¢ increases from
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very small values to a value greater than unity as the system moves towards
the mobility edge. An onset of an inhomogeneous superconducting regime
is therefore to be expected as the localization transition is approached.

Our treatment of superconductors with large statistical fluctuations will
be based on the Ginzburg—Landau functional:

Piae, 201 = [ae{ B84 vz [+ ioplamp

} (4.22)

where B = rotA is magnetic field and we have redefined the coefficient
of quartic term as B = N(Ep)A. Here #(r) is defined by Eq. (4.11) as
8§A(r) = N(Ep)t(r) and plays the role of the fluctuation of “local critical
temperature”, which appears due to fluctuations of local density of states. In

2

1
+& + 5/\|A(P)|4

(v - %A(r))) A(r)

general case it also can have contributions from local fluctuations of pairing
interaction or other types of microscopic inhomogeneities. As noted above
we assume Gaussian statistics of these fluctuations, though real situation
close to the mobility edge may be more complicated [Lerner 1.V. (1988)].
Given the distribution of ¢(r), the free energy of the system and the order—
parameter correlator are equal to:

F{tx)} =-Tlnz, 7= /D{A, Atexp[-F{A(r),A(x)}/T] (4.23)

< A(®)A@F) >= 771 / D{A, A}A(r)A(x)exp[—F{A(r), A(x)}/T]
(4.24)

and must be averaged over the Gaussian distribution of t(r). From our
definition of ¢(r) and using the approach of the previous section, assuming
the short—range of fluctuations of local density of states (on the scale of
&), it is easy to estimate the correlator of ¢(r) as:

<H@() >=y8(r —1'), Ty (4.25)

Then the probability of a configuration with a given ¢(r) is given by

PLt(r)} = exp [_% / drtz(r)] (4.26)
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The problem reduces thus to calculation of the functional F{t(r)} and
correlator < A(r)A(r’) > with subsequent averaging over P{t(r)}.

We shall limit ourselves to consideration of noninteracting drops and no
vortices. Then we can consider the phase of the order—parameter A(r) as
nonsingular. After the gauge transformation

A() — A(K) + (ch/26)V6(x)
A(r) — A(r)exp[—id(r)] (4.27)

where ¢(r) is the phase of the order parameter we can use real A(r) and
Ginzburg—Landau functional of Eq. (4.22) becomes:

F{A(r),A(x)} = /dr {BS—E:‘) + N(Ep) [(7 + t(r))A*(r)
462€2
c2h?

A?(r)A%(r) +€4(VA(r)* + %AA‘*(r)]} (4.28)

Integration over phase of the order parameter in Eq. (4.23) gives an inessen-
tial constant factor to the partition function which we disregard.

To average the logarithm of the partition function Eq. (4.23) over t(r)
we can use the so called replica trick [Grinstein G., Luther A. (1976)] widely
used in the theory of disordered systems, which permits the averaging to be
carried out in explicit form. We express the average free energy Eq.(4.23)
of the system in the form:

< F>=-Tlim l[< Z" > —1] (4.29)

n—0n

To calculate < Z” > in accordance with the idea of the replica method,
we first assume n to be an arbitrary integer. Expressing Z” in terms of
an n—fold functional integral over the fields of the replicas A,, A, (r),
a =1,...,n and carrying out exact Gaussian averaging over ¢(r), we get

< 7" >= /D{A,A}exp[—Sn{Aa,Aa}] (4.30)

n

S{As, Ay} = /dr {Zaj ]ZT(TP) + % > [rAu(x)?

(a4

> Alr)

2
462€2

2
c2h

ALDAL) +EVALE) + pale)] - T
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The last expression here represents the “effective action” and parameter
¥ = yN(Ep)/T. =~ T;)/ZN(EF)/TC grows with disorder . Note that the
random quantities ¢(r) have already dropped out of these expressions, and
that the action S{Aq, Ay} is translationally invariant. For the correlator
of Eq. (4.24) we obtain:

< A(AQR) >= 71115% % / D{A, Atexp[—Sp{Aq, Anl] Z Ay (r)Ay (")
(4.31)

where we have symmetrized over the replica indices.

Far from the region of strong fluctuations of the order parameter |7] >
Tp, Tg the functional integrals in Eq. (4.30) and Eq. (4.24) can be calcu-
lated by the saddle—point method. The extrema of the action (in absence
of external magnetic field) are determined by classical equations:

T VAL =7 AY(r) [ Aax)=0  AL=0 (4.32)

The nontrivial fact is that these equations (besides spatially homogeneous
and trivial solutions Ag(r) = 0) do have localized solutions with finite
action (instantons) *. These correspond at 7 > 0 to superconducting drops.
We shall limit ourselves to a picture of noninteracting drops and consider
only instanton solutions above T, (at 7 > 0). We shall be interested only
in those solutions that admit analytic continuation as n — 0. We designate
them A(ai)(r), where the superscript ¢ labels the type of solution. These
finite action solutions (instantons) of Eq.(4.32) exist for 7 > 0 and for
¥ > A (besides the trivial solution A, = 0) and have the following form
(Cf. Refs.[Cardy J.L. (1978); Sadovskii M.V. (1979); Sadovskii M. V. (1986)]
and Appendix E):

A()() Ao(r)bai, =1, L
FX[5<T>] (1) =7 )

where the dimensionless function x(x) satisfies the condition dy(x)/dz|y=0 =
0 and its asymptotic form: x(z) ~ z7texp(—z) for z > 1 (for spatial di-
mension d = 3). The qualitative form of this solution is shown in Fig. 4.1.

*Good introduction into the concept and physics of instantons can be found in Refs.[Cole-
man S. (1979); Rajaraman R. (1982); Vainshtein A.I. et al. (1982)].
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§x(r)

Fig. 4.1 Qualitative form of instanton solution.

The size of instanton (superconducting drop) is effectively determined by
coherence length &(7T). From Eq. (4.33) it is seen that instantons are ori-
ented along axes of replica space (there are n types of instanton solutions)
which is due to the “cubic anisotropy” term AA? in the effective action
of Eq. (4.30). Index ¢ characterizes the direction in replica space along
which the symmetry breaking takes place. For A — 0 the action becomes
O(n)—symmetric and instantons take the form :

Au(r) = Ag(r)ea, Y el =1 (4.34)

i.e. are oriented along arbitrary unit vector € in replica space. Such instan-
tons earlier were studied in the theory of localization [Cardy J.L. (1978);
Sadovskii M.V. (1979); Sadovskii M.V. (1986)].

To find instanton contribution different physical quantities (e.g. parti-
tion function or correlators) we must expand the action of Eq. (4.30) up to
the terms quadratic in deviations ¢, (r) = Ay(r)— A(Cf)(r). It can be shown
that fluctuations of the fields A,(r) can be neglected if we consider non-
interacting drops [Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1987);
Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1989)]. This quadratic ex-
pansion of the effective action near instanton solution takes the form (Cf.

analogous treatment in Refs.[Cardy J.L. (1978); Sadovskii M.V. (1979);
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Sadovskii M.V. (1986)]):

S(Aa} = S(AP}+ 5 [ dr Y (eadtles) (4:35)

a,f

where the operator Mc(jg on instanton solutions 1s equal to:

M) = [Mp8a; + Mrp(1 — b0:)]bas (4.36)
with
My = PO e (4.37)
where
Ur(e) = 1= 3x2[r/E(T)] (436)

Ur(r)=1—(1=X/7)"x*[r/&(T)]

The value of Gaussian functional integral over ¢, is determined by the
spectra of eigenstates of operators M; and Mp. Actually, to calculate
this integral we have to expand ¢, over normalized eigenfunctions of these
operators:

Z ck@ka

k
Y Migerp = crpra (4.39)
8
Inserting this to (4.35) gives:
i 1
S{AL} = S{AWY + 5 > chex (4.40)

k

Then the Gaussian integral over ¢, is calculated with the following change

/D{% / Qic’i/z (4.41)

and its value is obviously defined by eigenvalues of M (). Detailed analy-
sis can be found in Refs.[Bulaevskii L.N., Panyukov S.V., Sadovskii M.V.
(1987); Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1989)]. The qual-
itative form of the spectra of My and M7 is shown in Fig. 4.2.

of variables:
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é‘T

Fig. 4.2 Qualitative structure of eigenvalues of M (a) and My (b) operators. le =0
— translation zero—mode sg — 0 for A — O—transforms to “rotation” zero—mode.
The continuous part of the spectrum is shaded.

Operator My always possesses an eigenvalue ef = 0—the so called
translation zero—mode, connected with translation symmetry: instanton
center may be placed anywhere in space, the action does not change .
However, this is not a lowest eigenvalue of My, there i1s always a negative

L < el = 0. It can be shown rigorously that it is the only

eigenvalue ¢
negative eigenstate of My [Zinn-Justin J. (1981)]. Operator My possesses
also a single negative eigenvalue ¢ < 0 [Bulaevskii L.N., Panyukov S.V.,
Sadovskii M.V. (1987); Bulaevskii L.N., Panyukov S.V., Sadovskii M.V.
(1989)], however this eigenvalue tends to zero for A — 0 becoming the
“rotation” zero—mode, reflecting the arbitrary “direction” of instanton in
replica space in the absence of cubic anisotropy in the action [Cardy J.L.
(1978); Sadovskii M.V. (1979); Sadovskii M.V. (1986)]. For A = \* = 2/37
we have My = My and the spectra of both operators coincide.

Including the contributions of instantons oriented along all the axes in
replica space we obtain the following one—instanton contribution to the
partition function entering Eq. (4.29) [Bulaevskii L.N., Panyukov S.V.,
Sadovskii M.V. (1987); Bulaevskii L.N., Panyukov S.V., Sadovskii M.V.
(1989)]:

/2 .
< Z" >=nfd (g—L) [Det/ML]_%[DetMT]Texp{—SO(T)} (4.42)
m
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where € is the system volume,

L= é/dr (aaAro)z - 2N(TEF) SZ(ZT) (4.48)

and the action at the instanton is given by:

37112

So(r) = ./4—7 “T/N(Ep)

(4.44)
where A a2 37.8 is a numerical constant [Lifshits I.M., Gredeskul S.A., Pas-
tur L.A. (1982)]. The prime on Det My means that we must exclude the
zero—eigenvalue ef = 0 from the product of eigenvalues determining this
determinant. The condition of applicability of the saddle—point approxi-
mation looks like Sp(7) > 1, and in fact all our analysis is valid outside the
critical regions both for thermodynamic and statistical fluctuations.

In the limit of n — 0 the total cancellation of imaginary contributions
appearing due to negative eigenvalues takes place in Eq. (4.42) and using
Eq. (4.29) we get for ¥ > 3/2X the following real contribution to the free
energy:

F = —ps(r)TQ (4.45)
where the density of superconducting “drops”

pulr) = [WTWSM] s [%] ey (o)

Thus for ¥ > 3/2X even for T' > T, the superconducting “drops” (instan-
tons) appear in the system which directly contribute to the equilibrium
free energy. This contribution given by Eqs. (4.45)— (4.46) exists along
the usual thermodynamic fluctuations. The condition of 4 > 3/2\ defines
critical disorder 7p > 7§ > 7g, and this inhomogeneous picture of su-
perconducting transition appears only for the case of sufficiently strong
statistical fluctuations. The knowledge of qualitative structure of spec-
tra of eigenvalues of My and Mrp allows to analyze different asymptotics
of Eq. (4.45) [Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1987);
Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1989)]. For 75,(7) <
A € X we get:

1/2
pe(r) ~ E5(T) (3) S22 (r)epl—5o(r)] (4.47)
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For A — X* we obtain:

5 X 3/2 3/2
P =@ (5 -1) S elsn]l @4
Thus the density of superconducting “drops” ps;(7) vanishes as A — A*,
they are destroyed by thermodynamic fluctuations.
For the order—parameter correlator of Eq. (4.24) we get the following
result:

< A()A(X) >= ps(T)/dRvo(r + Ro)Ao(r' + Ro) (4.49)

The integration over instanton center Rg here means in fact averaging over
different positions of “drops”. Note that over large distances this correlator
decreases like exp[—|r — v'|/€(T)] and does not contain the usual Ornstein—
Zernike factor |r — /|71,

To understand the physical picture obtained above on more elementary
level note, that for a given configuration of #(r), defining local values of
transition temperature, superconducting drops may appear only in the re-
gions where this temperature is higher. Let us number these regions by
index ¢. In each of these regions, the order parameter is defined by non-
trivial localized solution AE;) of Ginzburg-Landau equations, so that the
contribution of such drop to partition function is given by:

©)
N fi(x) Yeap (—ET)
ES i) = F{0, AV (x)) (4.50)

where Egli) is the energy of the drop, defined in fact by (4.28). Preexponen-
tial factor N? is determined by configurations of A(r) which are close to
classic configuration given by AE;)(I‘). Summing over configurations with
arbitrary number ob drops and neglecting their interaction with each other,
we can obtain the following form of partition function in (4.23):

, £
14 ZN(Z)ea:p _Td +

1 ) ) E(i)—I—E(j)
—I-EZN(Z)N(])(M‘]) (_% +..0l=
ij

Z = 7y
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. B
= Zgexp [Z NWegp <_Td)] (4.51)
where Z; is partition function of the system without drops. Substituting
(4.51) into (4.23) and performing the averaging of the free energy over
random configurations of ¢(x) with (4.26), we obtain:

(D 4 (p
F=—1 [ Dty S NOltwear (—W) (452)

where N is some normalization factor, while F is the free energy of a single
drop:

Falt(r)} = Eq{t(r)} — Tln P{t(x)} (4.53)

Main contribution to the functional integral in (4.52) comes from configu-
rations tg(r) corresponding to the extremum of (4.53):

to(r) = —5A%(r)
¥ =yN(Ep)/T: (4.54)

Note that to(r) is negative, which corresponds to higher value of local
transition temperature in the region where drop appears. Using (4.54) in
Ginzburg-Landau equations following from (4.22) we immediately obtain
nonlinear equation, determining A4(r) of superconducting drop, which in
fact is equivalent to Eq. (4.32) with (4.33). Superconducting drops are lo-
calized on the length scale of the order of £(T). Instanton solutions, along
with (4.54), define the free energy (action) of the drop given in (4.44). In
fact, these simple relations define the free energy (4.52) with exponential
accuracy. Rather complicated instanton formalism used above is necessary
only to calculate preexponential factors.

We have found the free—energy of inhomogeneous superconducting
state in the temperature region 7 > 7p, where the “drop” concentration is
exponentially small and the picture of noninteracting “drops” is valid. They
give exponentially small contribution to the specific heat and diamagnetic
susceptibility. The characteristic size of “drops” is determined by &(7T') and
as T'— T, the “drops” grow and begin to overlap leading to a percolative
superconducting transition. Thus for 7p > 755 > 7¢ superconductivity first
appears in isolated “drops”. This is similar to the picture of decay of a
metastable state in case of the first—order phase transitions [Langer J.S.
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(1967)]. However, in this latter case instantons give imaginary contribution
to the free energy determining the decay rate of a “false” equilibrium state
(critical bubble formation). Here instanton contributions lead as was noted
above to real free energy and “drops” appear in the true equilibrium state.

It 1s more or less obvious that between isolated “drops” a kind of Joseph-
son coupling may appear and lead to rather complicated phase diagram
of the system in external magnetic field, e.g. including the “supercon-
ducting glass” phase [John S., Lubensky T.C. (1985); John S., Lubensky
T.C. (1986)]. The existence of inhomogeneous regime of superconductiv-
ity will obviously lead to the rounding of BCS—Ilike singularities of the
density of states and superconductivity may become gapless. Note that
diffusion—enhanced Coulomb interactions can also lead to the gapless-
ness of strongly disordered superconductors via Coulomb—induced inelas-
tic scattering [Browne D.A., Levin K., Muttalib K.A. (1987)]. Fluctuation
conductivity in a similar inhomogeneous superconducting state was studied
in Ref.[Char K., Kapitulnik A. (1988)]. Note the closely related problem
of strongly disordered superfluids [Ma M., Halperin B.I., Lee P.A. (1986);
Fisher D.S., Fisher M.P.A. (1988)]. Some results of this work may be quite
useful for the case of strongly disordered superconductors, though the lim-
itations of this analogy are also important.

A major unsolved problem here 1s the possible influence of statistical
fluctuations of gradient term coefficient in Ginzburg—Landau expansion
which has been neglected above, or the equivalent problem (Cf. Eq.(3.143))
for superconducting electron density ns. This problem was briefly consid-
ered for the case of weak disorder in Ref.[Spivak B., Zyuzin A. (1988)]. It
was shown that:

64

9(&)

where g(€) = o€ is the conductunce of metallic sample with the size of the
order of superconducting coherence length & = /&yl. Extrapolating this
estimate up to the Anderson transition using & = (£o/p3)*/? we get:

< (8ng/ng)? >~ (Eoprl)~t ~ (4.55)
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Obviously we get < (éns/ns)? >> 1 for o < 0* so that statistical fluctua-
tions of ng; become important close to the Anderson transition in the same

< (8ng/ng)? >~ (4.56)

region we have discussed above. This further complicates the picture of su-
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perconducting transition and can also be very important for the possible
anomalous behavior of H., which was recently studied on the similar lines
in Ref.[Spivak B., Zhou Fei (1995)]. Some qualitative conjectures for the
case of < (&ng/ns)? >> 1 were formulated in Ref.[Spivak B., Kivelson S.A.
(1991)], where it was argued that in this case there will occur regions in
the sample with locally negative values of superfluid density. This is equiva-
lent to a negative sign of a Josephson coupling betweenthe “drops”. In this
sense, the disordered superconductor is unlike a Bose liquid. This leads to
an important prediction that in a small superconducting ring, if there is a
segment with negative ng, the ground state of the ring will spontaneously
break the time—reversal invariance. The ground state will have nonzero
supercurrent and magnetic flux (or rather random, trapped fluxes in the
ground state) and will be two—fold degenerate. At longer times the sym-
metry will be restored due to thermal activation of macroscopic quantum
tunneling between the two states, but according to Ref.[Spivak B., Kivelson
S.A. (1991)] it can be expected that for dirty metal rings with conductance
of the order of €2 /h there will be “roughly 50% chance that the ground state
will break time—reversal symmetry”. By the way this means that in the
presence of disorder there may be no way to distinguish between an anyon
superconductor [Laughlin R.B. (1988)] and a conventional superconductor.
Of course we must stress that these speculations are entirely based upon a
simple extrapolation of Eq.(4.55) to the vicinity of metal—insulator tran-
sition and there is no complete theory of statistical fluctuations of gradient
term in this region at the moment.

The physical picture qualitatively very similar to that described above
was obtained recently for 7' = 0 in [Ghosal A., Randeria M., Trivedi N.
(1998)], where the effects of non-magnetic impurities on two-dimensional
s—wave superconductors were studied beyond the weak disorder by numeri-
cal solution of Bogoliubov — de Gennes (BDG) equations. It was shown that
the local pairing amplitude develops a broad distribution with significant
weight near zero with increasing disorder. However, the density of states
continued to show a finite spectral gap. This persistence of the spectral
gap was shown to arise from the break up of the system into supercon-
ducting “islands”. Superfluid density and off-diagonal correlations showed
substantial reduction at high disorder.



Chapter 5

SUPERCONDUCTIVITY IN
STRONGLY DISORDERED
METALS: EXPERIMENT

Our review of experiments on strongly disordered superconductors will be
in no sense exhaustive. This is mainly a theoretical book and the author
1s in no way an expert on experiment. However, we shall try to illustrate
the situation with the interplay of Anderson localization and superconduc-
tivity in bulk (three—dimensional) superconductors, both traditional and
high—temperature. Again we must stress that we practically exclude any
discussion of numerous data on thin films which are to be described by
two—dimensional theories. In this case we just refer to existing reviews
[Ramakrishnan T.V. (1989); Belevtsev B.I. (1990); Liu Y., Goldman A.M.
(1994)]. Here we shall confine ourselves to a limited number of the experi-
ments ; which we consider most interesting from the point of view of illus-
tration of some of the ideas expressed above, just to convince the reader,
that previous discussion, while purely theoretical, has something to do with
the real life. More than anywhere else in this book our choice of material
is based on personal interests of the author, or his direct involvement in
the discussion of experiments. We shall not deal with the general prob-
lem of disorder influence upon superconductivity, but shall consider only
the systems which remain superconducting close to the disorder—induced
metal-insulator transition.

5.1 Traditional Superconductors

There exists a number of strongly disordered systems which remain super-
conducting close to the metal—insulator transition induced by disorder.
The drop of T. with conductivity decrease from the value of the order of
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10*Ohm~'em™! was observed in amorphous alloys of GeAl [Nichida N. et
al. (1982)], SiAu [Furubayashi T. (1985)] and MoRe [Tenhover M., John-
son W.L., Tsuei C.C. (1981)], in Chevrel phase superconductors disordered
by fast neutron irradiation, such as Pbi_,UsMogSs [Alekseevskii N.E. et
al. (1983)], SnMoeSs [Davydov S.A. et al. (1983)], MogSes [Davydov
S.A., Arkhipov V.E., Goshchitskii B.N. (1986)], in amorphous InO, [Fiory
A.T., Hebard A.F. (1984)], in BaPb;_,Bi,O3 in the concentration interval
0.25 < = < 0.30 [Batlogg B. (1984)] and in metallic glass Zrqg 71rg 3 [Poon
S.J. et al. (1985)]. In all of these systems superconducting transition is
observed apparently not very far from the metal—insulator transition. For
a number of these systems, such as Pbi_,U;MogSs, SnMogSs, MogSesg,
Zry7lrys and BaPby 75Big 2503 and some others a characteristic strongly
negative temperature resistivity coefficient has been observed. Note, how-
ever, that this fact alone in no way indicates that a specimen is on one
side or the other of the metal—insulator transition. The drop of T, close to
the mobility edge apparently was also observed in AsyT'es [Berman 1.V. et
al. (1986)]. In all of these systems 7, apparently vanishes before metal—
insulator transition. Below we present some of the data on these and other
similar systems.

On Fig.5.1 we show the dependence of T, and |dH.o/dT|p, in SnM o555
(Chevrel phase superconductor) on the fluence of fast neutron irradiation
(the number of neutrons which passed through a crossection of a sam-
ple during irradiation)[Davydov S.A. et al. (1983)]. In the region of
large fluences (large disorder), when the system becomes amorphous, char-
acteristic values of conductivity in the normal state are of the order of
~ 1030hm~tem™!, which is not far from the values of “minimal metal-
lic conductivity” o, ~ 5 102 Ohm~'em™!, which define the conductivity
scale of disorder induced metal—insulator transition. The negative temper-
ature coefficient of resistivity was observed in this conductivity range. The
experimental data on T, decrease with the growth of resistivity in this sys-
tem were rather well fitted in Ref.[Bulaevskii L.N., Sadovskii M.V. (1985)]
using the p* dependence on resistivity given by Eq. (3.63). A clear ten-
dency for |dHo/dT|p, saturation with disorder is also observed. Analogous
dependence of T, and |dH.o/dT|pr, on the resistivity in the normal state
for MogSes disordered by fast neutrons is shown in Fig.5.2[Davydov S.A
Arkhipov V.E., Goshchitskii B.N. (1986)]. Here superconductivity exists up
to conductivities o ~ 250 Ohm~'em™!. Further disordering (irradiation)
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Fig. 5.1 Fluence dependence of T¢ and |dHco /dT |1, in SnMos Ss.

leads to the destruction of superconducting state and metal—insulator tran-
sition (an unlimited growth of resistivity with decrease of 7', with variable—
range hopping conduction [Mott N.F. (1974); Mott N.F, Davis E.A. (1979)]
is observed). The slope of the upper critical field |dH.2/dT|r, also has a
tendency to saturate with the growth of resistivity. Standard interpretation
of such behavior of |dH2/dT|r, was based upon the use of Gorkov’s rela-
tion (Cf. first relation in Eq. (3.162)) and lead to the conclusion of N(Ep)
decrease under disordering. In fact, we have seen that no such conclusion
can be reached for systems with conductivities ¢ < 1030hm~tem™", be-
cause such saturation behavior may be a natural manifestation of the ap-
proaching metal—insulator transition. Similar dependencies were observed
in other Chevrel phase superconductors [Alekseevskii N.E. et al. (1983);
Goshchitskii B.N., Arkhipov V.E., Chukalkin Yu.G. (1987); Aleksandrov
A.S. et al.(1989)].

In Fig.5.3 we show the dependence of conductivity and 7, on the pa-
rameter ppl/h in amorphous InQ, alloy [Fiory A.T., Hebard A.F. (1984)].
In Fig.5.4 from Ref.[Hebard A.F., Paalanen M. (1984)] the data on the
temperature dependence of H.o in amorphous In/InO, (bulk) films are
presented for different degrees of disorder. ~ We can see that in the low
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Fig. 5.2 Resistivity dependence of T, and |dH»/dT |7, in MogSes.

temperature region H.o(T) deviates from the standard temperature de-
pendence, apparently confirming the qualitative form predicted above for
systems which are close to Anderson transition. The same system was also
studied in Ref.[Shahar D., Ovadyahu Z. (1992)]. In Fig.5.5 we show the de-
pendence of two characteristic energies on disorder which in the opinion of
the authors of Ref.[Shahar D., Ovadyahu Z. (1992)] demonstrate the narrow
region of coexistence of superconductivity and insulating state. In Fig.5.6
we show the dependencies of localization length and superconducting coher-
ence length on disorder according to Ref.[Shahar D., Ovadyahu Z. (1992)].
It demonstrates the qualitative agreement with our general criterion of co-
existence of superconductivity and localization—localization length must
be larger or at least of the order of the size of the Cooper pair.

Very impressive are the data for amorphous Si,_, Au, alloy [Nichida
N. et al. (1982); Furubayashi T. (1985); Furubayashi T. et al. (1986)].
In Fig.5.7 [Furubayashi T. (1985)] the data on 7, and conductivity depen-
dence on the gold concentration x are shown. In Fig.5.8 Ho(T) dependence
for this system is shown for different alloy compositions [Furubayashi T.
(1985)]. From these data it is clearly seen that 7. vanishes before metal—
insulator transition. The metal—insulator transition itself is continuous,
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Fig. 5.3 Conductivity o and T. dependence on the parameter pr{/i in amorphous
InO,. op is estimated Drude conductivity.

conductivity vanishes linearly with the decrease of gold concentration and
the values of conductivity significantly less than the estimated “minimal
metallic conductivity” are definitely observed. The system remains super-
conducting even for such low conductivity values. The slope of H.o(T) at
T = T, is practically constant , despite the change of conductivity (disor-
der) in rather wide range. This behavior apparently cannot be explained
only by the appearance of correlation pseudogap in the density of states
observed in Ref.[Furubayashi T. et al. (1986)], which becomes significant
only very close to metal—insulator transition. Low temperature deviation
from standard convex dependence on 7' is also clearly seen. In Fig.5.9 from
Ref.[Furubayashi T. et al. (1986)] we show the temperature dependencies
of resistivity and superconducting energy gap (determined by tunneling)
of a sample with z = 0.21. It nicely demonstrates superconducting transi-
tion in the system which is very close to disorder induced metal—insulator
transition. Note, that according to Ref.[Furubayashi T. et al. (1986)] the
superconducting energy gap in this sample is substantially broadened which
may indicate the growth of statistical gap fluctuations due to the same fluc-
tuations of the local density of states. These data are in obvious qualitative
correspondence with the general theoretical picture described throughout



182 Ezperiment

0o
O-FiLM a
80+ pa:
= QO -Film b
IN-FiLm &
'_'g 501 -
it
o
- &
L0 O .
8]
20L -
o] >

T {K}

Fig. 5.4 H:>(T) in amorphous films of In/InO;. Lines show standard theoretical de-
pendencies.

this book.

We can see that in systems which are superconducting close to the dis-
order induced metal—insulator (Anderson) transition 7, decreases rather
fast and practically in all reliable cases vanishes before the transition to
insulating state. At the same time the temperature dependence of H.y is
not described by the standard theory of “dirty” superconductors both with
respect to (dH.2/dT)p, behavior and at low temperatures, where the up-
ward deviations from the standard dependence are readily observed. This
confirms most of our theoretical conclusions.

Some indications of a possible superconducting state in the insulating
phase of granular Al and Al — Ge were observed in Refs.[Chui T. et al.
(1981); Shapira Y., Deutscher G. (1983)]. Obviously, the granular systems
are more or less outside the scope of our analysis. However, we should like
to mention that the strong smearing of BCS—Tlike density of states and the
gapless regime of superconductivity was observed (via tunneling measure-
ments) in Refs.[Dynes R.C. et al. (1984); White A.E., Dynes R.C., Garno
J.P. (1986)], close to the metal—insulator transition in these systems. This
may confirm our picture of statistical fluctuation smearing of the density
of states. Note, that more recent work on granular Al [Miller T.A. et al.
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Fig. 5.5 The dependence of activation energy of hopping conductivity (triangles) and
superconducting transition temperature T, (squares) in amorphous films of In/InO,
on disorder parameter pr{/f as determined from room-temperature conductivity and
Hall measurements.Long-dashed line represents A = 1.767, following the BCS gap for-
mula.The short-dashed line best fits the insulating data points with (ppl/h). &~ 0.35
—the critical disorder of metal-insulator transition. A narrow region of superconductiv-
ity within insulating phase can be inferred from these data.

(1988)] apparently exclude the possibility of superconductivity in the in-
sulating phase. In this work a small amount of B: was added to granular
Al in order to enhance spin-orbit scattering, which leads to antilocaliza-
tion effect [Altshuler B.L. et al. (1982)]. This shifts both metal—insulator
and to the same extent the superconducting transition, with the preser-
vation of a narrow range of concentration on the metallic side where the
material 18 not fully superconducting. The fact that the superconducting
transition shifts with metal—insulator transition demonstrates that its po-
sition is determined by the vicinity of the metal—insulator transition, and
that it is the impending transition to the insulating state which inhibits su-
perconductivity. Similar conclusions on superconductivity vanishing at the
point of metal—insulator transition were reached for amorphous Al,Geq_,
[Lesueur J., Dumoulin L., Nedellec P. (1988)] and amorphous Ga — Ar
mixtures [Zint Th., Rohde M., Micklitz H. (1990)]. This later case is par-
ticularly interesting because it has been shown that conductivity exponent
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Fig. 5.6 Disorder dependence of localization length (full curve) and superconducting
coherence length in amorphous In/InO; films. Squares represent superconducting & for
metallic films while triangles refer to insulating samples.

at metal—insulator transition here is v & 0.5 which places this system to a
different universality class than those discussed above and similar to that
observed in some doped uncompensated semiconductors like Si : P [Mil-
ligan R.F. et al. (1985)]. Usual interpretation of this difference is based
upon the importance of interaction effects in these systems [Castellani C.,
Kotliar G., Lee P.A. (1987)], though no theory at present produces the value
of v = 0.5. Starting with the value of T, of amorphous Ga (T, = 7T.6K),
T, decreases rather slowly with decreasing Gla volume fraction v, until one
enters the critical region near v, & 0.145. Further approach to v. leads to
a rapid decrease of T,. Taking McMillan formula Eq.(3.25) for T, (with
Wiog/1.20 = 320K and A = 0.45) and assuming negligible Coulomb re-
pulsion p* for pure amorphous Ga the increase of p* on the approach of
metal—insulator transition can be determined from the experimental data
for T,. This increase is approximately given by p* ~ (v—v.)~%33. From this
it is easy to see that T, — 0 for v — v., so that these data does not indi-
cate the survival of superconductivity beyond metal—insulator transition.
These results are not surprising since we have seen the existence of strong
mechanisms of 7T, degradation close to disorder induced metal—insulator
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Fig. 5.7 Conductivity ¢ and 7. dependence on gold concentration in amorphous
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transition.

In Ref.[Sugawara K., et al. (1993)] the critical temperature and the
coherence length in the layered superconductor 2H — NbSes_,S, with
z = 0 — 0.6 were investigated. T, decreases with the increase of residual
resistivity in general agreement with predictions of Ref.[Bulaevskii L.N.,
Sadovskii M.V. (1985)]. Coherence lengths both along and across the
layers were estimated from the measurements of the upper critical field
and compared with our predictions for quasi-two-dimensional case made in
Ref.[Aleksashin B.A. et al. (1989)] with rather good agreement found for
z < 0.6, the discrepancy at & = 0.6 being attributed to to the change of
the crystal structure.

The interesting new high-pressure metastable metallic phase of an amor-
phous alloy C'd435b57 exhibiting the gradual metal—insulator transition
during the slow decay of this phase at room temperature and atmospheric
pressure has been studied in Refs.[Teplinskii V.M., Gantmakher V.F., Barkalov
0.1. (1992); Gantmakher V.F. et al. (1992)]. Authors claim that during this
decay the system remains homogeneous while going from metallic to insu-
lating phase. At the same time the metallic phase is superconducting with
T, ~ 5K and remains such up to metal—insulator transition. Close to it su-
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Fig. 5.8 Hc2(T) in amorphous S71_; Au, alloy.

perconducting transition becomes smeared, while incomplete transition per-
sists even in the insulating state. While these data are reminiscent of data on
quench-condensed films of Sn and Ga[Markiewicz R.S. (1988)], which were
interpreted as reentrant superconductivity due to sample inhomogeneities,
it is stressed in Refs.[Teplinskii V.M., Gantmakher V.F., Barkalov O.I.
(1992); Gantmakher V.F. et al. (1992)] that in this new system situation
is different and we are dealing with intrinsically inhomogeneous supercon-
ductors state discussed in Refs.[Bulaevskii L.N., Sadovskii M.V. (1986);
Bulaevskii L.N., Panyukov S.V., Sadovskii M.V. (1987); Bulaevskii L.N.,
Panyukov S.V., Sadovskii M.V. (1989)]. From our point of view further
studies of this system are necessary in order to show unambiguously the
absence of structural inhomogeneities. Also rather peculiar characteristic of
this system is almost complete independence of the onset temperature of
superconducting transition on disorder.

Now we shall try to make more detailed comparison of some of these
experimental results with certain theoretical predictions discussed earlier
in the book. To be precise, we shall use the approach to the mechanism
of T.~degradation proposed in Ref.[Kuchinskii E.Z., Sadovskii M.V., Erk-
abaev M.A. (1997)] and based upon density of state effects (“Coulomb”
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pseudogap). We shall see that within this approach it is possible to ob-
tain rather good agreement with experiments on amorphous alloys of InO,
[Fiory A.T., Hebard A.F. (1984)], Nb,Si;_, [Hertel G. et al. (1983); Bishop
D.J., Spencer E.G., Dynes R.C. (1985)], Au,Si;_, [Nichida N. et al. (1982);
Furubayashi T. (1985); Nichida N, et al. (1985)].

As we have seen above the authors of Ref.[Fiory A.T., Hebard A.F.
(1984)] had presented the results of the measurements of disorder parameter
(prl)~! for the amorphous alloy of InQ,, as well as the data for T, and
static conductivity close to the metal- insulator transition. According to
our work[Kuchinskii E.Z. et al. (1995); Kuchinskii E.Z., Erkabaev M.A.
(1997)] the static conductivity close to the metal-insulator transition can
be expressed as:

o = ool(prl)Wa(yr) - 11, (5.1)

where o - 1s some characteristic scale of conductivity close to the metal-
insulator transition, W,(u) - the value of disorder parameter (depending
on the Coulomb constant) corresponding to the point of metal- insulator
transition. Approximating the experimental data for InO; by Eq.(5.1)
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allows us to estimate the characteristic conductivity scale og and also, from
the value of W, the Coulomb constant p. Satisfactory correlation (Cf.
the insert in Fig.3.4) are obtained for the following values: o¢ ~ 324.95
Q! em™! and W, ~ 0.606 giving g ~ 1.0. Fig.5.10 demonstrates the
comparison of our results with experimental data on 7, dependence on
static conductivity ¢ for the amorphous I'nO, using the value of 7., = 3.41
K,wp =112 K and Ep = 9.98-10* K, [wp/Er] ~ 1.1-1073 - for pure
In and the given above values of oy and g, which allow us to estimate
the pairing constant A. Satisfactory agreement is obtained for A ~ 0.45.
Dashed curves correspond to the values of A ~ 0.4 and 0.5.

Let us discuss now the results for T, and static conductivity dependence
on the Si content for amorphous alloys of Nb, Si1_, [Hertel G. et al. (1983);
Bishop D.J., Spencer E.G., Dynes R.C. (1985)] and Aw,Si;_, [Nichida N.
et al. (1982); Furubayashi T. (1985); Nichida N., et al. (1985)] close to the
metal-insulator transition. Assuming that the disorder parameter in this
case is just proportional to Si concentration, so that (ppl)= ~ 1 — 2z, we
can express Fq.(5.1) for static conductivity in the following form:

T —zx,
0
1—z’

oc=oc (5.2)
where z. - the critical concentration of Nb or Au at the point of metal-
insulator transition. Approximating the experimental data for conductivity
in NbySii_p u AugySii_p by Eq.(5.2) allows us to estimate o and criti-
cal concentration z.. Satisfactory correlation (Cf. inserts in Fig.5.11 and
Fig.5.12) is obtained for:

NbySti_p: 00 ~1963.9Q 1. ecm™1, 2, ~0.115;

AugSti_p: 09~ 278213 Q71 .em™1, 2, ~ 0.14.

Fig.5.11 and Fig.5.12 present the comparison our results with the experi-
mental data for T, - dependence on conductivity ¢ for amorphous Nb;S7;_
and Awu,St 4, using for the pure Nb: T,, = 9.26 K, wp = 276 K and
Ep = 6.18 -10* K, [wp/Er] ~ 3.0 - 1073; while for Au,Si;_, we as-
sume Ty = Toppae =~ 0.86 K, wp = 170 K and Er = 6.42 - 10* K,
[wp/Er] ~ 0.9 - 1073 with the mentioned above values of oo, which al-
lows us to estimate the pairing constant A. Assuming for these systems the
Coulomb constant p ~ 1, the satisfactory agreement is obtained in case of
Nb,Si1_, for A ~ 0.54 and for Au,Si;_, with A ~ 0.62. Note that correla-

tion pseudogap in the density of states was actually observed for Au;S?1_,
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Fig. 5.10 T, dependence on static conductivity ¢ for amorphous alloy of InO;. At the
insert we show our approximation of the data on static conductivity ¢ as a function of
disorder parameter (pgl) 1.

in Ref.[Furubayashi T. et al. (1986)].

Surely the results presented above are essentially based upon the sim-
plest BCS-model and are probably oversimplified. More rigorous approach
to calculations of T, must be based upon Eliashberg equations and realis-
tic models of electron-phonon interaction[Vonsovsky S.V., Izyumov Yu.A
Kurmaev E.Z. (1982)]. Especially this is important in case of large enough
values of A, which demonstrate the possibility of superconductivity persist-
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Fig. 5.11 7T, dependence on static conductivity o for amorphous alloy of Nb;Si1_,. At
the insert we show our approximation of the data on static conductivity ¢ as a function
of Nb concentration.

ing in the insulating phase. At the same time, in present analysis we were
not concerned with the problem of the genesis of the initial value of T,
in pure system, but were studying only the 7, dependence on disorder. In
this sense our results may be also qualitatively valid also in the case of
strong-coupling superconductivity. We must also note that the more rigor-
ous analysis is also needed taking into account disorder effects in the matrix
element of Coulomb repulsion, which lead to the additional mechanism of
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Fig. 5.12 7T, dependence on static conductivity o for amorphous alloy of AugSi1_,. At
the insert we show our approximation of the data on static conductivity ¢ as a function
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T, degradation 7. and were extensively discussed in Chapter 3. Here we
have only taken into account pseudogap effects in the density of states. It
is possible that rather satisfactory agreement with experiments can signify
the dominating role of pseudogap formation effects in the problem of T,
degradation under disordering, which was claimed (on the level of small
corrections) already in Ref.[Belitz D. (1989)].

Our general conclusion is that in most cases of traditional supercon-
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ducting systems we can not find unambiguous demonstration of the possi-
bility of superconductivity in insulating state induced by disorder. At the
same time we can see rather rich variety of data on superconductivity close
to metal-insulator transition which stimulate further studies. Some of the
anomalies of superconducting behavior discussed above can be successfully
explained by theories presented in this book, while the other require further
theoretical investigations.

5.2 High—7T,. Superconductors

Very soon after the discovery of high—temperature oxide superconductors
[Bednorz J.G., Miiller K.A. (1986); Bednorz J.G. Miiller K.A. (1988)] it was
recognized that localization effects has an important role to play in these
systems. There are many sources of disorder in these systems and the low
level of conductivity indicates from the very beginning their closeness to
Anderson transition. In the field where there are hundreds of papers pub-
lished on the subject it is impossible to review or even to quote all of them.
More or less complete impression of the status of high—7, research can
be obtained from Conference Proceedings [Proc. M2S-HTSC]. It must be
stressed that even now, after more than ten years of intensive studies, there
is a lot of contradicting data and explanations of different anomalies in
these systems. Here we shall start with early papers dealing with disorder-
ing by fast neutron irradiation which we consider probably the “purest”
method to introduce disorder into the system (allowing to neglect the
complicated problems associated with chemical substitutions). Also histor-
ically it was apparently the earliest method used to study disorder effect in
high—T, superconductors in a controllable way [Voronin V.I. et al. (1987);
Goshchitskii B.N., Kozhevnikov V.L., Sadovskii M.V. (1988)]. After that
we shall briefly discuss some of the more modern papers devoted to stud-
ies of high—7T, systems disordered by impurities and some other types of
irradiation.

There are several reasons for localization effects to be important in
high—7T, oxides:

e Intrinsic Disorder. Practically all samples of high—7,. supercon-
ductors contain intrinsic disorder, which is mainly due to differ-
ent degrees of oxygen non-stoichiometry, impurities, lattice defects
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or even macroscopic inhomogeneities; associated with complicated
processes of phase separation [Proc. M2S-HTSC].

o Two—Dimensionality. All the known high—T, systems (with T, >
30K) are strongly anisotropic or quasi-two-dimensional conductors.
We have seen above that for such systems it is natural to expect
the strong enhancement of localization effects due to the special
role of spatial dimensionality d = 2: in purely two-dimensional case
localization appears for infinitely small disorder [Abrahams E. et
al. (1979); Sadovskii M.V. (1981); Lee P.A., Ramakrishnan T.V.
(1985); Sadovskii M.V. (1986)]. The inplane conductivity scale for
metal—insulator transition in such systems as given by Eq. (2.12)
or Eq. (2.94) is larger than in isotropic case. Reasonable estimates
show that the values of inplane “minimal metallic conductivity”
may exceed 1030hm~'em™'. While due to continuous nature of
Anderson transition there is no rigorous meaning of minimal metal-
lic conductivity, these estimates actually define the scale of conduc-
tivity near the metal—insulator transition caused by disorder. Then
it is clear that most of the real samples of high—7, superconduc-
tors are quite close to Anderson transition and even the very slight
disordering is sufficient to transform them into Anderson insulators
[Aleksashin B.A. et al. (1989)].

e “Marginal” or non Fermi Liquid. During our discussion of interac-
tion effects we have seen that there are serious reasons to believe
that importance of localization effects in high—7, oxides may be
actually due to more fundamental reasons connected with anoma-
lous electronic structure and interactions in these materials. The
concept of “marginal” Fermi liquid [Varma C.M. et al. (1989)]
leads to extreme sensitivity of such system to disordering and the
appearance of localized states around the Fermi level at rather weak
disorder [Kotliar G., Varma C.M. (1990)]. “Only Fermi-liquids are
metals” [Varma C.M. (1997)].

On the other hand high—7, systems are especially promising from the point
of view of the search for superconductivity in the Anderson insulator:

e High transition temperature 7. itself may guarantee the survival of
superconductivity at relatively high disorder.

e Due to small size of Cooper pairs in high—7, systems in combi-
nation with high—T, (large gap !) we can easily satisfy the main
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criterion for superconductivity in localized phase as given by Eq.
(3.20). This fact may help to overcome the obvious difficulties due
to almost certain d-wave symmetry of pairing in these systems.

e Being narrow band systems as most of the conducting oxides high—
T, systems are promising due to low values of the Fermi energy
Er which leads to less effective T, degradation due to localization
enhancement of Coulomb pseudopotential p*.

Anomalous transport properties of high—7T, oxides in normal phase are
well known [Iye Y. (1992)]. Experimentally there are two types of resistiv-
ity behavior of good single-crystals of these systems. In highly conducting
ab plane of Y BasCuzO7_s and other oxides resistivity of a high quality
single-crystal always shows the notorious linear—7T' behavior (by “good”
we mean the samples with resistivity p,; < 10> Ohm e¢m). However, along
orthogonal ¢ direction the situation is rather curious: most samples produce
semiconductor-like behavior p. ~ 1/T though some relatively rare samples
(apparently more pure) show metallic-like p, ~ T' (with strong anisotropy
pe/pas ~ 10% remaining) [Iye Y. (1992); Forro L. et al. (1992)]. Metallic
behavior in ¢ direction was apparently observed only in the best samples of
Y BayCuzO7_s and almost in no other high—7, oxide. In Fig.5.13 taken
from Ref.[Ito T. et al. (1991)] we show the temperature dependence of p,.
in a number of high—T, systems. It is seen that p.(7) changes between
metallic and semiconducting behavior depending on whether the resistivity
is below or above the loffe—Regel limit defined for quasi-two-dimensional
case by Eq. (2.12). Rather strange is the absence of any obvious correlation
between the behavior of p. and T..

This unusual behavior leads us to the i1dea that most of the samples of
high—T, systems which are studied in the experiment are actually already
in localized phase due to internal disorder which is always present. Surely,
we realize that such a drastic assumption contradicts the usual expecta-
tions and propose it just as an alternative view open for further discussion.
The attempted justification of this idea may be based upon the quasi-two-
dimensional nature of these systems or on marginal Fermi liquid effects. In
this case a simple conjecture on the temperature behavior of resistivity of
single-crystals can be made which qualitatively explains the observations
[Sadovskii M.V. (1990); Kotliar G. et al. (1991)]. In case of localized states
at the Fermi level and for finite temperatures it is important to compare
localization length R, with diffusion length due to inelastic scattering
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Fig. 5.13 Temperature dependence of p. for different high—7T. cuprates. The dashed
region indicates the resistivity range corresponding to loffe—Regel limit.

L, & /D7y, where D is diffusion coefficient due to elastic scattering on
disorder, while 7, is phase coherence time determined by inelastic pro-
cesses. For T' > 0 this length L, effectively replaces the sample size L in
all expressions of scaling theory of localization when L > L., because on
distances larger than L, all information on the nature of wave functions
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(e.g. whether they are localized or extended) is smeared out. Taking into
account the usual low—temperature dependence like 7, ~ TP (where p is
some integer, depending on the mechanism of inelastic scattering) this can
lead to a non—trivial temperature dependence of conductivity, in particu-
lar to a possibility of a negative temperature coefficient of resistivity [Imry
Y. (1980)]. Similar expressions determine the temperature dependence of
conductivity also for the localized phase until L, < R,.. In this case elec-
trons do not “feel” being localized and conductivity at high enough 7" will
show metallic like behavior. For localization to be important we must go to
low enough temperatures, so that L, becomes greater than f,.. If disor-
dered high—7T, superconductors are in fact Anderson insulators with very
anisotropic localization length, R& > Rf and both localization lengths
diminish as disorder grows, L, is also anisotropic and we can have three dif-
ferent types of temperature behavior of resistivity [Sadovskii M.V. (1990)]:

(1) Low T or strong disorder, when we have

LY w~ \/Dapt, > R, LS~ /Dery > Ri, (5.3)

This gives semiconductor-like behavior for both directions.
(2) Medium T or medium disorder, when

loc loc

LY <R, LS > Ri (5.4)

and metallic behavior i1s observed in ab plane, while semiconducting
temperature dependence of resistivity is observed along ¢ axis.
(3) High T or low disorder, when

LY <RY  L,<Rj, (5.5)
and metallic behavior is observed in both directions.

Here we do not speculate on the inelastic scattering mechanisms leading
to the concrete temperature behavior in high—7, oxides, in particular on
linear T' behavior in ab plane or 1/T behavior in ¢ direction. Unfortunately
too little is known on these mechanisms [Iye Y. (1992)] to be able to make
quantitative estimates on the different types of behavior predicted above.
Of course detailed studies of such mechanisms are necessary to prove the
proposed idea and to explain the temperature dependence of resistivity in
high-T. systems on its basis. However, most of the experimental data as we
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shall see below at least do not contradict the idea of possibility of Anderson
localization in disordered high—7, cuprates.

Now let us consider the experiments on controllable disordering of high—
temperature superconductors. Already the first experiments on low tem-
perature (7' = 80K) fast neutron irradiation of ceramic samples of high—
T, systems [Aleksashin B.A. et al. (1988); Davydov S.A. et al. (1989a);
Davydov S.A. et al. (1989b); Goshchitskii B.N. et al. (1989a); Goshchitskii
B.N. et al. (1989b); Goshchitskii B.N. (1989d)] has shown that the growth
of structural disorder leads to a number of drastic changes in their physical
properties:

e continuous metal—insulator transition at very slight disordering,

e rapid degradation of T,

e apparent coexistence of hopping conductivity and superconductiv-
ity at intermediate disorder,

e approximate independence of the slope of H.o at T' ~ T, on the
degree of disorder,

e anomalous exponential growth of resistivity with defect concentra-
tion.

These anomalies were later confirmed on single-crystals and epitaxial films
[Goshchitskii B.N. et al. (1989c); Goshchitskii B.N. et al. (1990); Valles
J.M. et al. (1989); Karkin A. et al. (1991)], and were interpreted [Alek-
sashin B.A. et al. (1989); Sadovskii M.V. (1989)] using the ideas of possible
coexistence of Anderson localization and superconductivity.

In Fig.5.14 we show data [Aleksashin B.A. et al. (1989)] on the de-
pendence of the superconducting transition temperature and resistivity
(at T = 100K, i.e. just before superconducting transition) on fast neu-
tron fluence for Y BasCuszOg.95. In all high—7T,. compounds introduction
of defects leads to strong broadening of superconducting transition. The
derivative (dH.2/dT)r, in ceramic samples measured at the midpoint of
the superconducting transition does not appreciably change as p1gox grows
by an order magnitude. In Fig.5.15[Aleksashin B.A. et al. (1989)] we show
the temperature dependence of resistivity for samples of Y BasCusOg o5
and Laj g357rg17CuQ4 for different degrees of disorder. In all these ma-
terials the p(T) curves vary in the same way. In the fluence range ® >
10%°em=2, where superconductivity is absent, p(7') follows a dependence
which is characteristic of conductivity vialocalized states [Mott N.F. (1974);
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Mott N.F, Davis E.A. (1979)]:
p(T) = poeap(Q/T*) Q= 2.1[N(Ep)R},]™/* (5.6)

as shown in Fig.5.16. (Mott’s variable-range hopping conduction).

The most striking anomaly of resistivity behavior of all high—7T, systems
under disordering is nonlinear, practically ezponential growth of resistivity
at fixed temperature (e.g. p(T" = 100K)) with fluence, starting from the
low fluences ® < 7 10¥em=?, including superconducting samples [Alek-
sashin B.A. et al. (1988); Aleksashin B.A. et al. (1989); Davydov S.A. et
al. (1989a); Davydov S.A. et al. (1989b); Goshchitskii B.N. et al. (1989a);
Goshchitskii B.N. et al. (1989b)]. These data are shown in Fig.5.17 [Alek-
sashin B.A. et al. (1989)] for the dependence of p(T = 80K ) on ® obtained
from measurements made directly during the process of irradiation. For
comparison the similar data for SnMogSs are shown which do not demon-
strate such an anomalous behavior, its resistivity 1s just proportional to ®
and saturates at large fluences. We can apparently relate this exponential
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Fig. 5.15 Temperature dependence of resistivity p for ceramic samples of
Y BaysCu3Og. g5 (curves 1—3 and 5—8) and La1.83.Srg.17CuO4 (curves 4, 9) irradiated
at T = 80K with different fluences: 1—® = 0; 3, 6, 8 — ® = 2.5 and 710"%cm =2 plus
annealing for 2 hours at 300K; 2, 5, 7 — irradiated with ® = 2.5 and 7 10'®c¢m =2 plus
annealing for 2 weeks at 300K;4 — ® = 0; 9 — ® = 5 10'®cm =2 plus annealing for 2
hours at 300K.

growth of p with the increase of @ (i.e. of defect concentration) in all high—
T, systems to localization, which already appears for very small degrees of
disorder in samples with high values of T,. As we have seen in samples with
much reduced or vanishing 7, localization is observed directly via Mott’s
hopping in the temperature behavior of resistivity given by Eq. (5.6). From
these results it follows that the electronic system of high—7T, superconduc-
tors is very close to the Anderson transition. The observed variation of p
as a function both of fluence and of temperature can be described by the
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and for LaaCuOy for ® = 2 101°cm ™2 annealed for 2 hours at 300K (8).

following empirical formula [Aleksashin B.A. et al. (1988)]:
p(T,®) = (a+ cT)exp(bq)/Tl/4) (5.7)

Identifying the exponential factors in Eq. (5.6) and Eq. (5.7) it is possible
to obtain a fluence dependence of localization length (Cf. Ref.[Aleksashin
B.A. et al. (1989)] and below).

Detailed neutron diffraction studies of structural changes in irradiated
samples were also performed [Aleksashin B.A. et al. (1988); Aleksashin
B.A. et al. (1989); Voronin V. et al. (1991)]. These investigations has
shown definitely that there are no oxygen loss in Y BasCuszOg o5 during
low temperature irradiation. Only some partial rearrangement of oxygens
between positions O(4) and O(5) in the elementary cell occur as radiation-
induced defects are introduced. In addition, in all high—7,. compounds
the Debye— Waller factors grow and the lattice parameters a, b, ¢ increase
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slightly [Aleksashin B.A. et al. (1989); Voronin V. et al. (1991)]. The
growth of Debye—Waller factors reflect significant atomic shifts, both static
and dynamic, from their regular positions, which induce a random potential.
This disorder is pretty small from the structural point of view, the lattice
is only slightly distorted. However, we have seen that this small disorder
is sufficient to induce metal—insulator transition and complete degrada-
tion of superconductivity. At the same time this relatively small amount
of structural disorder can support the idea of essentially homogeneous na-
ture of disordering, which is important for direct application of the most of
theoretical schemes discussed above®. The absence of oxygen loss implies
that there is no significant change in concentration of carriers and we have
really disorder—induced metal—insulator transition. This is also confirmed

by other methods [Goshchitskii B.N. (1989d); Podlesnyak A. et al. (1991)].

*In fact our theories neglected all kinds of macroscopic inhomogeneities, which may be
present in these samples either due to irradiation, or phase separation (which may be
an intrinsic property of copper oxides).
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Fig. 5.18 Temperature dependence of Hall concentration for the irradiated (left) and
oxygen deficient (right) ceramic samples of Y BasCuzO7_s.

In Fig.5.18 we show the data [Goshchitskii B.N. (1989d); Goshchitskii B.N.
et al. (1990)] on temperature dependence of the Hall concentration of ce-
ramic samples of irradiated and oxygen deficient Y BasCuzOr_s. 1t is seen
that disordering weakens the anomalous temperature dependence of Hall
effect, but Hall concentration ng at low T practically does not change in
striking difference with data on oxygen deficient samples, where ng drops
several times. This also confirms the picture of mainly disorder—induced
metal—insulator transition in radiation disordering experiments. Similar
Hall data were obtained on epitaxial films [Valles J.M. et al. (1989)] and
single-crystals [Karkin A. et al. (1991)]. Qualitatively the same resistiv-
ity behavior as discussed above was also obtained in the experiments on
radiation disordering of single-crystals [Goshchitskii B.N. et al. (1989c);
Goshchitskii B.N. et al. (1990)] and epitaxial films [Valles J.M. et al.
(1989)]. Electrical resistivities of Y BasCuzO7_s single crystals were mea-
sured at 7' = 80K directly during irradiation by fast neutrons. The data
are shown in Fig.5.19. We can see that p,; increases exponentially with
& (defect concentration) starting from the smallest doses, while p, grows
slower and only for ® > 10'%¢m~2 they grow with the same rate. At large
fluences both p,; and p, demonstrate [Davydov S.A. et al. (1990&)] Mott’s
hopping Inpgp . ~ T=1% Similar data of Ref.[Valles J.M. et al. (1989)]
show Inp ~ T~1/? characteristic of the Coulomb gap. We do not know the
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Fig. 5.19 Fluence dependence of p,; and p. at T = 80K during fast neutron irradiation.

reasons for this discrepancy between single-crystalline and epitaxial films
data (note that another method of disordering by 1MeV Ne¥ ions was used
in Ref.[Valles J.M. et al. (1989)]). Anisotropy p./pas at T = 80K drops
rapidly (to the values ~ 30 for ® = 10'%¢m=2) and then practically does
not change and “residual” anisotropy of the order of its room—temperature
value 1n initial samples remains. This means that temperature dependence
of anisotropy weakens in the disordered samples. Note, that unfortunately
only the single-crystals with “semiconducting” temperature dependence of
resistivity along ¢ axis were investigated in these experiments up to now.
Remarkable results were obtained in Refs.[Ando Y., et al. (1995);
Boebinger G.S., et al. (1996)] where 617" pulsed magnetic field was used to
suppress superconductivity in Las_,Sr, CuQO4 single crystals with different
doping. It was found that both in-plane resistivity pg; and c-axis resistivity
pe diverge for T/T, — 0, for all underdoped samples with z < 0.16. Some
of these data are shown in Figs.5.20, 5.21, 5.22. Low-temperature data,
shown in Fig.5.22 demonstrate logarithmic divergence of pgp for x = 0.13
sample as T — 0 [Ando Y., et al. (1995)]. Thus, in underdoped samples
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a superconductor to insulator transition occurs upon applying a magnetic
field, with no evidence of metallic phase at low temperatures. The z = 0.13
data of Fig.5.23 are particularly striking, because pqp shows linear-T' be-
havior above 150K, which extrapolates to a zero intercept at 7' = 0, while
pap crosses over to logarithmic insulating behavior at low temperatures,
similar to what may be expected for two-dimensional case. Normal state
anisotropy ratio of resistivities becomes temperature independent over the
entire range of this “insulating” behavior. Optimally doped and overdoped
samples show metallic behavior which is clearly seen even in p. data shown
in Fig.5.21. This lead the authors of Ref.[Boebinger G.S., et al. (1996)] to
propose the qualitative “phase” diagram shown in Fig.5.23. These results
indicate insulating ground state of the system without superconductivity
at least for all uderdoped samples. It must be stressed, that this insulating
behavior is not due to Cooper pair localization, because Cooper pairs would
not exist above H.o. Apparently, single-particle states are localized.

Very similar data were obtained independently in Ref.[Karpinska K., et
al. (1996); Malinowski A. et al. (1997)] on the same system. Here for low-z
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samples the data for resistivity were well fitted to Mott’s 7~ '/4~hopping
law, demonstrating apparently more or less usual localization, after sup-
pression of superconductivity. The same type of behavior was obtained in
the experiments with La-doped BiySroCuO, (T, = 13K) in pulsed 617
magnetic fields in Ref. [Ando Y., et al. (1996)] and also in Zn-doped single
crystals of Y BayCuszO7_s by suppressing superconductivity with magnetic
fields of up to 187 [Segawa K., Ando Y. (1998)]. In La-doped Biy SroCu0y
single crystals and Las_;S7,;C'uQ4 thin films normal state Hall coefficient
was also measured in [Ando Y., et al. (1997)] after suppressing supercon-
ductivity by high enough magnetic field. In contrast to data above T,
Hall coefficient below 10K shows little temperature dependence in all sam-
ples, irrespective of whether p,; exhibits insulating or metallic behavior. In
Ref.[Gantmakher V.F. et al (1997)] the low temperature resistivity of sin-
gle crystals of Y BasCuzOgy, with @ = 0.37 was measured after applying
magnetic field and also reducing the hole concentration varying the oxygen
content. The temperature dependence of in-plane resistivity p,; was fitted
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Fig. 5.22 In-plane resistivity p,p for the # = 0.13 sample of Las_,Sr,CuO4 plotted
vs linear 7' at high temperature and In7T at low temperature. The dotted line is the
extrapolated linear-T dependence.

by logarithmic law in the temperature range of almost two decades. How-
ever, a different fit by a power law typical for a three-dimensional metal
near the metal - insulator transition, given e.g. by Eq.(2.163), was also
rather good. The c-axis conductivity followed the power law and could not
be fitted by logarithm. It was concluded that there were both supercon-
ductor - normal metal and normal metal - superconductor transition in this
system, distanced in oxygen content by éx ~ 0.025.

The nature of insulating states in these experiments remains unclear.
Logarithmic temperature behavior at low temperatures suggests two — di-
mensional (weak) localization of carriers in CuOy planes. However, ob-
jections to this interpretation were raised in [Ando Y., et al. (1995)],
based on magnetoresistance and p. behavior. More detailed comparison
with predictions of weak localization theory in [Castellani C., Schwab P.,
Grilli M. (1998)] shows, that it is difficult to get quantitative fit of exper-
imental data to this theory. At the same time, the obsevation of hop-
ping conduction in low-doped system in [Karpinska K., et al. (1996);
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Malinowski A. et al. (1997)] clearly shows, that localization (probably even
strong!)is at work here. Apparently, we must somehow take into account
complicated effects of electron-electron interactions [Varma C.M. (1997)],
including possible non-Fermi-liquid behavior. Still these data are at least
in qualitative agreement of general predictions discussed in this book.
The upper critical fields of ¥ BasCuzO7_s single-crystals (determined
from standard resistivity measurements) for different degrees of disorder
are shown in Fig.5.24 [Goshchitskii B.N. et al. (1990)]. Temperature de-
pendence of H.o in disordered samples is essentially nonlinear, especially
for samples with low 7,, which strongly complicates the estimates of the
slope of the upper critical field close to 7T,.. The estimated from high-field
regions temperature derivative of H (field along the ¢ axis) increases with
disorder. However, similar derivative of le (field along ab plane) drops in
the beginning and then does not change. Anisotropy of H.; decreases with
disorder and in samples with 7, ~ 10K the ratio of (Hllz)’/(HcJ‘z)’ is close
to unity. According to Eq. (3.165) this means the complete isotropisation
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Fig. 5.24 Temperature dependence of Hl|2 (upper curves) and HcJé (lower curves) for
the single-crystals of Y BasCusO7_s with different degrees of disorder.

of the Cooper pairs. This is illustrated by Fig.5.25 [Davydov S.A. (1991)].
The remaining anisotropy of resistivity may be connected with some kind
of planar defects in the system.

In Ref.[Osofsky M.S. et al. (1993)] the authors presented rather unique
data on the temperature dependence of the upper critical field of high-
temperature superconductor Bi,SroCu0, in wide temperature interval
from T, ~ 19K to T" ~ 0.0057., which has shown rather anomalous de-
pendence with positive curvature at any temperature. It was noted in
Ref.[Osofsky M.S. et al. (1993)] that this type of behavior is difficult to ex-
plain within any known theory. In fact, it is sharply different from the stan-
dard behavior of BCS-model. It was demonstrated in Refs.[Kuchinskii E.Z.,
Sadovskii M.V. (1993b); Kuchinskii E.Z., Sadovskii M.V. (1994)] that the
observed dependence of H.2(T) can be satisfactorily explained by localiza-
tion effects in two-dimensional (quasi-two-dimensional) model in the limit
of sufficiently strong disorder. Measurements of H.s in Ref. [Osofsky M.S.
et al. (1993)] were performed on epitaxially grown films of By SraCu0y,
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however it 1s quite possible that the films were disordered enough, which
can be guessed from rather wide (~ 7K) superconducting transition. Un-
fortunately the relevant data, in particular on the value of conductivity of
the films studied, were absent. This gives us some grounds to try to inter-
pret the data obtained in Ref.[Osofsky M.S. et al. (1993)] in the framework
of rather strong disorder the effects of which are obviously enhanced by the
quasi-two-dimensional nature of high-temperature superconductors. The
general discussion of the temperature dependence of the upper critical field
in two-dimensional and quasi-two-dimensional case with strong localization
effects was presented above in Chapter 3. Note that we analyzed there the
case of magnetic field perpendicular to the highly conducting planes, which
is precisely the case of Ref.[Osofsky M.S. et al. (1993)]. We have seen
[Kuchinskii E.Z., Sadovskii M.V. (1993a)] that the anomalies of the upper

critical field due to the frequency dependence of diffusion coefficient appear
i/
—
the usual behavior as in the theory of ”dirty” superconductors. Also we

only for temperatures T < For higher temperatures we obtained
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Fig. 5.26 Temperature dependence of the upper critical field: theoretical curve (1) is
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have noted [Kuchinskii E.Z., Sadovskii M.V. (1993a)] that superconduc-

tivity survives in a system with finite localization length if 7, > /\6_;/},

which is equivalent to our criteria of the smallness of Cooper pair size com-

pared with localization length. This latter length is exponentially large
in two- dimensional systems with small disorder (A < 1). The most in-
teresting (for our aims) limit of relatively strong disorder is defined by
T. € ﬁ, so that in fact we are dealing with pretty narrow region of

A’s when /\‘8_71/A < T, < 6_;”. In this case we have seen that the upper

critical field is determined by Eq.(3.188) :

—1/x Dy TH —1/x Dy TH
7€ 0 Tilc2 7€ 0 Tilc2
In| = = (1 +4r=— In | - 14 47— —"=
”(27 T ) (I44m e—l/A)”<27r RS e—l/A))

(5.8)
(v = 1.781) from which we can directly obtain the T'(H.2)—dependence.
The appropriate behavior of the upper critical field for two sets of pa-

rameters is shown in Fig.5.26. The dependence of H., on temperature
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demonstrates positive curvature and H.s diverges for 7" — 0. We have
seen that this weak (logarithmic) divergence is connected with our neglect
of the magnetic field influence upon diffusion. Taking this influence into
account we can suppress this divergence of H., as T' — 0. This is the
main effect of broken time reversal invariance and it is clear that it is im-
portant only for extremely low temperatures [Kuchinskii E.Z., Sadovskii
M.V. (1993a)]. For the quasi-two-dimensional case on the dielectric side
of Anderson’s transition, but not too very close to it, the behavior of dif-
fusion coefficient 1s quite close to that of purely two-dimensional case, so
that the upper critical field can be analyzed within two-dimensional ap-
proach. Close to the transition (e.g. over interplane transfer integral)
both for metallic and insulating sides and for parameters satisfying the in-
equality /\¥ < T, K e_Tl/A
fact again very close to those in purely two-dimensional case considered
above[Kuchinskii E.Z., Sadovskii M.V. (1993a)]. Some deviations appear
only in a very narrow region of very low temperatures [Kuchinskii E.Z.,
Sadovskii M.V. (1993a)]. In Fig.5.26 we also show the experimental data
for H . from Ref.[Osofsky M.S. et al. (1993)]. Theoretical curve (1) is given
for the parameters which lead to rather good agreement with experiment

, the temperature dependence of H.5 1s in

in the low temperature region. The curve (2) corresponds to parameters
giving good agreement in a wide temperature region except the lowest tem-
peratures. The cyclotron mass m was always assumed to be equal that

of the free electron. In general we observe satisfactory agreement between
—1/A

TeT

the second curve, while corresponding to quite reasonable values of A, lead

& for

theory and experiment. Unfortunately, the values of the ratio

to nonrealistic (too small) values of T,7, which are rather doubtful for the
system with relatively high 7. For the first curve situation is much better
though the electron damping on the scale of T, is still very large which cor-
responds to strong disorder. Note however, that the detailed discussion of
these parameters is actually impossible without the knowledge of additional
characteristics of the films studied in Ref.[Osofsky M.S. et al. (1993)]. In
particular it is quite interesting to have an independent estimate of A. We
also want to stress relatively approximate nature of these parameters due to
our two- dimensional idealization. More serious comparison should be done
using the expressions of Ref.[Kuchinskii E.Z., Sadovskii M.V. (1993a)] for
the quasi-two-dimensional case, which again requires the additional infor-
mation on the system, in particular, the data on the anisotropy of electronic
properties. In our opinion the relatively good agreement of experimental
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data of Ref.[Osofsky M.S. et al. (1993)] with theoretical dependencies ob-
tained for the two-dimensional (quasi-two- dimensional) case of disordered
system with Anderson localization illustrates the importance of localization
effects for the physics of high-temperature superconductors. However, we
must note that the similar anomalies of the temperature dependence of the
upper critical field were also observed in Ref.[Mackenzie A.P. et al. (1993)]
for the single crystals of the overdoped Ty BasC'uOg4s which authors claim
to be extremely clean, so that apparently no explanation based upon strong
localization effects can be used. Similar data were recently obtained for thin
films of underdoped Y Baa(Cug.974n0.03)307-s with pretty low transition
temperatures [Walker D.J.C. et al. (1995)]. These films again seem to be
disordered enough to call localization effects as a possible explanation of
unusual positive curvature of H.o(T) dependence for all temperatures.

Under irradiation, localized moment contribution appears in the mag-
netic susceptibility of high—7, oxides [Aleksashin B.A. et al. (1988);
Aleksashin B.A. et al. (1989)]. In the temperature range from 7, to
300K x(T) is satisfactorily described by Curie—Weiss type dependence:
X(T) = xo + C/(T — ©). The value of xo and the Curie constant C' as a
function of fluence ® are given in Fig.5.27. The value of C' is proportional
to fluence. Note that the threefold larger slope of C(®) in Y BasCuzOs 95
as compared with Lay g3570.17Cu0y4 is an evidence that this Curie-law tem-
perature dependence is associated with localized moments forming on C'u
(there are three times more coppers in the elementary cell of ¥ compound
than in La compound).

The data presented above show that electronic properties of high—T,
systems are quite different under disordering from that of traditional su-
perconductors [Goshchitskii B.N., Arkhipov V.E., Chukalkin Yu.G. (1987);
Aleksandrov A.S. et al.(1989)] or even some closely related metallic oxides
[Karkin A. et al. (1991); Davydov S.A. et al. (1990b)]. We associate these
anomalies with the closeness of the Anderson transition and believe that
real samples of high—T, systems which always possess some noticeable dis-
order may well be already in the state of the Anderson insulator. However,
we must stress that it is quite difficult to decide from the experiments de-
scribed above the precise position of the Anderson transition on disorder
scale.

Additional information on this problem may be obtained from experi-
ments on NMR relaxation rate R = 1/T} in disordered state, using the ap-
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Fig. 5.27 Dependence of the Curie constant C' and the temperature-independent part
Xo of magnetic susceptibility on neutron fluence ® for Laq g3S5r9.17CuO4 (black circles)
and Y BasCusOg g5 (circles).

proach proposed rather long ago by Warren [Warren W.W. (1971)] and later
quantified theoretically in Refs.[Gotze W., Ketterlee W. (1983); Sadovskii
M.V. (1985)]. As we have demonstrated above the approach of the system
to localization transition leads to the significant enhancement of nuclear
spin relaxation rate in comparison with the usual Korringa-like relaxation
in metals. In metallic phase, according to (2.121), this enhancement factor
1 can be introduced as:

L SO S (5.9)
= T 3o(c+o0.) ’

where Korringa relaxation rate can be written from (2.122) as:

R L gprpp e (5.10)
K= —— = [i— .
T 2u%

where x5 = 2upN(EF)? is the spin susceptibility of conduction electrons.
In localized phase n must drop with disorder according to (2.123). The
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study of NMR relaxation rate on ®°Y nuclei in radiationally disordered
Y BayCuzOg g5 (which opposite to C'u nuclei demonstrate Korringa behav-
ior) was performed in Refs. [Verkhovskii S.V. et al. (1992); Zhdanov Yu.l.
et al. (1992)]. Disorder (fluence) dependence of enhancement factor n was
estimated form experimental data on Knight shift and NMR relaxation
using the obvious relation, following from (5.9),(5.10):

CRE@) [n(@=0)\?
"= o>< (@) ) (5:11)

where the last factor, containing y;, takes into account the change in the
electronic density of states under disordering. In fact the Knight shift
data of Refs.[Verkhovskii S.V. et al. (1992); Zhdanov Yu.l. et al. (1992)]
strongly indicate some kind of the pseudogap opening at the Fermi level
of strongly disordered oxides with rather significant drop of the density of
states at the Fermi level with disordering. Similar conclusions follow from
tunneling experiments of Ref.[Srikanth H. et al. (1992)] on a number of
oxides disordered by doping. In this case we are most probably dealing
with correlation (Coulomb) pseudogap discussed above, which is due to the
effects of electron-electron interactions. However, similar behavior may be
due to a smearing of some kind of Van Hove singularity close to the Fermi
level. In Fig.5.28 we show the data for the enhancement factor 7, obtained
by [Zhdanov Yu.l. et al. (1992)]. We can clearly see a mazimum of the
enhancement factor which according to our discussion after Eq.(2.123) may
indicate the Anderson transition somewhere in the fluence interval ® = (1—
2)10*%em=2. In metallic region these data are rather well described by (5.9)
with reasonable values of 0. and o values taken from the data on the same
samples at T' > 100K [Verkhovskii S.V. et al. (1992); Zhdanov Yu.l. et al.
(1992)]. Unfortunately the number of samples in these experiments was too
limited to place the transition point more precisely, while superconductivity
disappears exactly in this interval. In this sense we still have no direct proof
of coexistence of superconductivity and localization in disordered high—T,
oxides. However the method used in Refs.[Verkhovskii S.V. et al. (1992);
Zhdanov Yu.l. et al. (1992)] seems to be very promising.

Using the experimental data on electrical resistivity of disordered sam-
ples of Y BasCuzOg 95 and the relations given by Eq. (5.6) and Eq. (5.7)
(assuming that exponentials there are identical) we can calculate the change
of localization length Rj,. as a function of fluence [Aleksashin B.A. et



High—T. Superconductors 215

| { |

2 3 4 5
F.o10%em™

Y

Fig. 5.28 Enhancement factor n of NMR relaxationrate (5.11) as a function of the fast-
neutron fluence at T = 300K form the measurements of 3°Y relaxation in radiationally

disordered Y BasCu3zQOg 9.

al. (1989); Davydov S.A. et al. (1989a); Davydov S.A. et al. (1989b);
Goshchitskii B.N. et al. (1989a); Goshchitskii B.N. et al. (1989b)]. This
dependence is shown on Fig.5.29 along with fluence dependence of T;. It
can be seen that superconductivity is destroyed when localization length
Rj,. becomes smaller than ~ 30;21, l.e. it becomes of the order or smaller
than a typical size of the Cooper pair in this system (Cf. Fig.5.25) in com-
plete accordance with our basic criterion of Eq. (3.20). We can estimate
the minimal value of Rj,. for which superconductivity can still exist in a
system of localized electrons via Eq.(3.20) [Aleksashin B.A. et al. (1989)]
taking the free-electron value of N(Ep) a5 1033(ergem®)=! (for carrier
concentration of ~ 6 102tem=3) and the gap value A ~ 57, corresponding
to very strong coupling [Goshchitskii B.N., Kozhevnikov V.L., Sadovskii
M.V. (1988)]. We obtain the result shown in Fig.5.29. In any case we can
see that criterion of Eq. (3.20) ceases to be fulfilled for ® ~ (5—7)10*®em=2
in rather good agreement with the experiment.

In the absence of accepted pairing mechanism for high temperature
superconductors it is very difficult to speculate on the reasons for 7, degra-
dation in these systems. If we assume that the main mechanism of 7, degra-
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Fig. 5.29 Dependence of T on fluence for Y BasCusOg .95 (circles). The solid curve is
the localization length calculated from hopping conductivity. Dashed curve defines the
minimum localization length at which superconductivity can exist at given 7.. Dashed-
dotted curve is theoretical fit using expressions described in the text.

dation is connected with the growth of Coulomb effects during disordering,
as discussed above, we can try to use appropriate expressions to describe
the experimental data. Assuming superconductivity in the localized phase
we can use Eq. (3.69), estimating Ri,. as above from empirical relation
Eq. (5.7) and Eq. (5.6) (or directly expressing the parameters entering Eq.
(3.69) via experimental dependence of resistivity on fluence as described by
Eq. (5.7) [Aleksashin B.A. et al. (1989)]). The results of such a fit (with
the assumption of = 1) are also shown in Fig.5.29. The agreement is also
rather satisfactory, the more rapid degradation of T, for small degrees of
disorder can be related to additional contributions to Coulomb repulsion
within Cooper pairs neglected in the derivation of Eq. (3.69). Surely we
do not claim that this is a real explanation of T, degradation in disordered
high temperature superconductors. However, note its relation to localized
moment formation under disordering which leads to the usual Abrikosov-
Gorkov mechanism of depairing due to spin-flip scattering on magnetic im-
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purities. According to Mott [Mott N.F. (1971)] (Cf. also Refs.[Kamimura
H. (1980); Sadovskii M.V. (1986)]) the appearance of localized moments
may be related to the presence of localized states (single occupied states
below the Fermi level as briefly discussed above). We can then estimate the
value of the effective magnetic moment (in Bohr magnetons) in unit cell as

[Aleksashin B.A. et al. (1989)]:

PR2Q0 = plyeor (5.12)
where Qg is the volume of a unit cell. For large degrees of disorder (& =
2 1019cm_2) and Ri,. ~ 84 with i &~ 1 we obtain ptzheor = 0.66 for
Y BayCuz0g 95 in full agreement with experiment. However, for smaller
fluences pipeor 18 considerably smaller than the experimental value. Note,
though | that the estimate of Eq. (5.12) is valid only for small enough val-
ues of Rj,., i.e. when the Fermi level is well inside the localized region. On
the other hand, the accuracy with which the Curie constant is determined
in weakly disordered samples is considerably less than in strongly disor-
dered case. Of course, the other mechanisms of local moment formation,
which were discussed above and can become operational even before the
metal—insulator transition can be important here.

Of course, a plenty of works on localization effects in high-7,. oxides are
being done using disorder induced by different types of chemical substitu-
tions in these systems. Of these we shall rather arbitrarily quote Refs.[Ell-
man B. et al. (1989); Infante C. et al. (1990); Jayaram B., Lanchester P.C.,
Weller M.T. (1991); Mandrus D. et al. (1991); Cieplak M. et al. (1992)],
which demonstrate the data quite similar, though not necessarily identi-
cal, to those described above on different types of systems and obtained
by different experimental methods. We note that the effects of chemical
disorder are almost always complicated by the inevitable changes of car-
rier concentration due to doping effects. Still all these data indicate that
superconductivity in high-7, systems is realized close to disorder induced
metal—insulator transition, so that these systems provide us with plenty of
possibilities to study experimentally the general problems discussed in our
book. More details on chemical substitutions can be found in the extensive
review paper of [Agarwal S.K., Narlikar A.V. (1994)].

Special attention should be payed to studies of angle resolved photoemis-
sion in C'o and Nt doped single-crystals of BizSraCaCus0s.4y [Quittmann
C. et al. (1994); Beschoten B., et al. (1996)]. Doping By SroCaCusOsgyy
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with C'o causes superconductor to insulator transition (C'o doping decreases
T. and causes increase in residual resistivity). The changes in temperature
behavior of resistivity from metallic to insulating like correlate with the
disappearance of the dispersing band-like states in angle-resolved photoe-
mission. Authors believe that Anderson localization caused by the impurity
potential of the doped C'o atoms provides a consistent explanation of all
experimental features and 7, reduction is not caused by magnetic impu-
rity pairbreaking effects, but by spatial localization of carriers with super-
conducting ground state being formed out of spatially localized carriers.
Similar data were also obtained for some exceptional (apparently strongly
disordered) samples of undoped BiySroCaCusOgyy [Ma Jian et al. (1994)].
Of course it will be very interesting to make similar type of experiments on
neutron irradiated samples where we are dealing with pure disorder. Co-
existence of superconductivity and localization was also claimed to follow
from transport measurements on BisSra(Ca, Pri_,)CusOsyy [Beschoten
B., et al. (1996)].

Superconductor-insulator transition was observed in Zn-substituted sin-
gle crystal of Y BasCuzOr_, and Las_,Sr;CuO4 [Fukuzumi Y. et al.
(1996)]. The primary effect of Zn was to produce a large residual resis-
tivity. In the underdoped regime (low carrier density in CuO plane) only
a few percent Zn was sufficient for resistivity to reach the critical value
near the universal two-dimensional resistance h/4e? and to induce a su-
perconductor — insulator transition. Note, that 7. suppression rate with
disorder in this work was found in general to be more slow, than predicted
by d-wave pairing theory [Radke R.J. et al. (1993)].

Based upon all of these data we can come to an apparently wrong conclu-
sion that studies of disorder effects in high—/7.. superconductors more or less
exclude any possibility of d-wave pairing in these systems [Sadovskii M.V.
(1997)]. We have seen in Section 3.2.7 that this kind of pairing is extremely
sensitive to disordering (if we analyze it within the standard BCS approach)
and 1s completely suppressed, roughly speaking, at the disorders measured
by the energy scale 1/7 ~ T,, which is at least an order of magnitude
smaller than the disorder necessary to induce the metal-insulator transi-
tion which can be estimated as 1/7 ~ Ep. Quite similar conclusios were, in
fact, reached after rather extensive theoretical analysis in Ref.[Radke R.J.
et al. (1993)]. However, nowadays the experimental evidence for d—wave
pairing in these systems is almost compelling [Wollman D.A. et al. (1994);
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Tsuei C.C. et al. (1994); Annett J., Goldenfeld N., Leggett A.J. (1996);
Proc. M2S-HTSC]. In fact, modern ARPES data [Randeria M., Cam-
puzano J.C. (1997)] for the anisotropic energy gap can even be nicely fitted
to simplest angular dependence of the gap assumed e.g. in (3.195),(3.196),
while Josephson data definitely signal the change of the sign of the gap
[Tsuei C.C. et al. (1994); Annett J., Goldenfeld N., Leggett A.J. (1996)], as
in the first expression in (3.195). This poses probably one of the most diffi-
cult theoretical problems with our understanding of high—7T, superconduc-
tors. There may be several ways out of this dilemma, some were discussed in
Section 3.2.7 above. One possible (and in our opinion most probable) solu-
tion is that high-temperature superconductors are actually in the transition
region between BCS-like systems with very large Cooper pairs to supercon-
ductors with very compact Cooper pairs (Bosons) [Posazhennikova A.I.,
Sadovskii M.V. (1997b); Franz M., et al. (1997)]. The other way to con-
serve finite T, in systems with d—wave pairing up to disorder-induced metal-
insulator transition is to assume that strong enough anisotropic disorder
scattering operates in all of these systems [Haran G., Nagi A.D.S. (1996);
Posazhennikova A.I., Sadovskii M.V. (1997a)], despite the fact that very
different types of disorder were studied experimentally.

Here we shall discuss some of attempts to understand data on disor-
dered high—7T. superconductors within the picture of d-wave pairing. In
Ref.[Giapintzakis J., et al. (1994)] the authors carried out direct resis-
tivity measurements of an untwinned single-crystal of Y BasCuszO7_s in
a high-voltage electron microscope to determine how the superconducting
transition temperature 7, and resistivity change with with low-temperature
electron irradiation. They concluded that point defects introduced by oxy-
gen displacements from the C'uO5 planes make the dominant contribution
to the irradiation-induced suppression of 7T.. The data on 7. suppression
were in general agreement with the picture of anisotropic pairing, but the
rate of T, degradation with the growth of disorder (resistivity) was signifi-
cantly slower, than predictions of BCS-like theory for d—wave pairing, given
by (3.100) and (3.101). In a later work [Giapintzakis J., Kirk M.A., Gins-
berg D.M. (1995)] the same authors has given more data on 7, suppression
in the same system. They have achieved rather good fit of their data to
Abrikosov-Gorkov dependence for d—wave depairing (3.100) as a function
of residual resistivity, but only using rather unrealistic values of plasma
frequency w, in (3.101). The use of the values of w, determined from inde-
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pendent optical experiments leads to (3.100) predicting significantly faster
T. suppression, than observed in the experiment.

Somehow similar and even more detailed study of 7. suppression by
disorder was performed in Ref.[Tolpygo S.K. et al. (1996)], where electron
irradiated films of Y BasC'ugOgsy, with different oxygen content were stud-
ied. Here also the comparison with T, suppression by other in-plane defects
such as Zn substitution for C'u, Pr substitution for YV, and radiation de-
fects in Bi — 2201 and Bi — 2212 was made. The authors claimed that 7T,
suppression by defects occured in a universal way which was independent
of the T.p, carrier concentration, and number of C'uQs planes per unit cell.
This universal dependence could be described by pair-breaking theory for
normal scattering in d—wave superconductors (3.100),(3.101), but requir-
ing the pair-breaking rate be a factor of 3 smaller than suggested by the
transport data. Thus again the unexpected stability of d—wave pairing to
disorder was clearly demonstrated.

In a recent paper by [Lin J.Y. et al. (1999)] a study was made of impu-
rity effects on the superconducting transition temperature 7, and the up-
per critical field H.q in electron irradiated Y BasCuzO, with in-plane oxy-
gen defects and Y Bas(Cui—5Zny)30y,. T, decreased slower in irradiated
Y BasCuz0y than in Zn-doped system (it is known for a long time, that
Zn is especially effective in pair-breaking in copper oxides.). The authors
were able to fit their 7, data on Zn-doped system to Abrikosov-Gorkov
dependence of (3.100) (compare, however, the data of Ref.[Fukuzumi Y.
et al. (1996)]), while data for irradiated samples were well fitted to gen-
eralized pair-breaking dependence of (3.209) [Haran G., Nagi A.D.S. (1996);
Posazhennikova A.1., Sadovskii M. V. (1997a)] with unusually high anisotropy
of disorder scattering 1 /7o & 0.54. The data on H,, demonstrated the drop
of the slope (dH.2/dT)r, with disorder growth, as predicted by [Posazhen-
nikova A.I.; Sadovskii M.V. (1996); Posazhennikova A.I., Sadovskii M.V.
(1997a)], and nicely fitted to appropriate theoretical predictions of [Won H.,
Maki K. (1998)], similar to that of Ref. [Posazhennikova A.I., Sadovskii
M.V. (1997&)]. This seems to first confirmation of the drastic difference
in disorder dependence of the slope of H., in d—wave case in comparison
with even anisotropic s—wave pairing, predicted in Refs. [Posazhennikova
A1, Sadovskii M.V. (1996); Posazhennikova A.I., Sadovskii M.V. (1997a)].
However, it should be taken into account, that reliable data on the slope
of H.s in copper oxides are rather difficult to obtain, mainly due to non-
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linear dependence of H., on temperature close to 1., which 1s observed
in most experiments. Also these new data are in some contradiction with
earlier studies quoted above. As to a good fit of 7T, dependence on disor-
der, obtained in [Lin J.Y. et al. (1999)] using (3.209), it must be noted
that the origin of scattering anisotropy in this case remains completely un-
clear. As we have already noted, scattering anisotropy really can explain
the slower suppression rate of 7. with disorder in d-wave pairing systems,
but it seems rather artificial explanation in view of rather universal problem
of unusual stability of 7T, in a wide range of copper oxides with completely
different types of disorder, as discussed above. In this sense we are in
need of more general explanation, e.g. like slower suppression rate of 7, in
systems with “small” pairs [Posazhennikova A.I., Sadovskii M.V. (1997b);
Franz M., et al. (1997)].

We shall limit ourselves to this discussion of localization effects in high
temperature superconductors. Our conclusion is that these effects are ex-
tremely important in these systems and some of the anomalies can be suc-
cessfully described by theoretical ideas formulated in this book. At the
same time, these descriptions were only of qualitative nature and neglected
many important aspects of the problem. We must stress that much ad-
ditional work is needed both theoretical and experimental to clarify the
general picture of disorder effects in high-T, superconductors and we can
expect that the future progress, especially with the quality of samples, may
provide some new and exciting results.
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Chapter 6

CONCLUSION

We conclude our book trying to formulate the basic unsolved problems.
From the theoretical point of view probably the main problem is to formu-
late the theory of superconducting pairing in strongly disordered system
along the lines of the general theory of interacting Fermi systems. This
problem is obviously connected with the general theory of metal-insulator
transition, which as we mentioned during our brief discussion above is rather
far from its final form. Nevertheless, there were several attempts to analyze
superconducting transition within this framework [Finkelstein A.M. (1987);
Ma M., Fradkin E. (1986); Kirkpatrick T.R., Belitz D. (1991); Kirkpatrick
T.R., Belitz D. (1992); Belitz D., Kirkpatrick T.R. (1994)]. In all cases, the
authors limited themselves to certain universality classes within the general
renormalization group approach of interaction theory of metal-insulator
transition. Ref.[Finkelstein A.M. (1987)] dealt only with two—dimensional
problem, while Refs.[Ma M., Fradkin E. (1986); Kirkpatrick T.R., Belitz
D. (1991); Kirkpatrick T.R., Belitz D. (1992); Belitz D., Kirkpatrick T.R.
(1994)] also considered the bulk case. These papers have demonstrated a
large variety of possible behavior of superconductivity under disordering,
from disorder—induced (triplet) superconductivity [Kirkpatrick T.R., Belitz
D. (1991)] to a complete destruction of it close [Finkelstein A.M. (1987);
Ma M., Fradkin E. (1986)] or even long before the metal-insulator transi-
tion [Kirkpatrick T.R., Belitz D. (1992)]. Our point of view is that at the
moment 1t is rather difficult to make any general conclusions from the re-
sults of these approaches. In particular, we do not believe that the present
status of these theories is sufficient to prove or disprove the general possi-
bility of superconductivity in Anderson insulators. However, it is obvious
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that further theoretical progress in the problem of 7T, behavior under dis-
ordering will be largely possible only within this general approach. In this
sense our simplified discussion of Coulomb effects and other mechanisms of
T, degradation in this book is only of qualitative nature. Still, more general
approaches apparently do not change our qualitative conclusions. These
problems become even more complicated if we address ourselves to the case
of high temperature superconductors, where we do not know precisely the
nature of pairing interaction even in regular systems, as well as probably
unusual role of interelectron interactions (non Fermi-liquid behavior etc.).

Concerning the semiphenomenological approach to the theory of super-
conductivity close to the Anderson transition we must stress the necessity of
further investigation of the region of strong statistical fluctuations with the
aim of more detailed study of their influence upon different physical prop-
erties, like e.g. the upper critical field, density of states, nuclear relaxation
etc. Obviously, all of them may be significantly changed in comparison with
predictions of what we called the statistical mean—field theory. Especially
important are further studies of rather exotic predictions of random fluxes
in the ground state [Spivak B., Kivelson S.A. (1991)].

Despite our explicit limitation to a discussion of superconductivity in
bulk disordered superconductors we have to mention the extremely inter-
esting problem of universal conductivity at the superconductor—insulator
transition at 7' = 0 in two-dimensional systems which attracted much at-
tention recently [Fisher M.P.A., Grinstein G., Girvin S.M. (1990); Cha Min-
Chul et al. (1991); Girvin S.M. et al. (1992); Liu Y., Goldman A.M. (1994)].
It was argued that the transition between the insulating and superconduct-
ing phases of disordered two-dimensional system at zero temperature is of
continuous quantum nature, but the system behaves like a normal metal
right at the transition, i.e. the conductivity has a finite, nonzero value.
This value is universal and, apparently, equal to (2¢)?/h (with 2e being
the Cooper pair charge). There is strong experimental evidence [Hebard
A.F., Paalanen M. (1984); Hebard A.F., Paalanen M.A. (1985); Havi-
land D.B., Liu Y., Goldman A.M. (1989); Lee S.J., Ketterson J.B. (1990);
Wang T. et al. (1991); Liu Y., Goldman A.M. (1994)] that a variety of
systems (metallic films, high-T, films, etc.) show the onset of supercon-
ductivity to occur when their sheet resistance falls below a value close to
h/4e? 2 6.45k2. The theoretical analysis here is based upon Boson (Cooper
pairs) approach to superconductivity and the main conclusion is that in
contrast to the case of localization of fermions in two dimensions, bosons
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exhibit a superconductor to insulator transition (as disorder grows) with
the value of conductivity at the critical point being independent of micro-
scopic details. A major theoretical problem arises to describe a crossover to
such behavior e.g. in quasi-two—dimensional case of BCS superconductivity
as interplane coupling goes to zero.

Very interesting problems arise with respect to the study of disorder
effects in anomalous “pseudogap” state observed in underdoped high—T,
cuprates [Randeria M. (1997)]. There is almost no theoretical and very few
experimental studies of disordering in this peculiar state.

So we are not short of theoretical problems in this important field of
research. As to the experiments, certainly too much is still to be done for
unambiguous demonstration of exotic possibility of superconductivity of
Anderson insulators.
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Appendix A

Spectral Densities and Criterion for
Localization

Convenient formalism to consider general properties of disordered system
is based upon exact eigenstate representation for an electron in a random
field created by disorder. These eigenstates ¢, (r) are formally defined by
the Schrodinger equation:

H¢l/(r) = €V¢V(r) (Al)

where H i1s one—particle Hamiltonian of disordered system under consid-
eration, ¢, are exact eigenvalues of electron energy in a random potential.
Obviously ¢,(r) and ¢, are dependent on locations of scatterers R, for a
given realization of random field.

Let us define two—particle spectral densities [Berezinskii V.L., Gorkov

L.P. (1979); Sadovskii M.V. (1986)]:

< pp(r)ppre(r) >"=

T(E < s (I8 (S e b =) > (12)
< pp(X)pptw(r) >T=
T < D WPl PE =)o (E+w—en) > (A

2%

where angular brackets denote averaging over disorder and
N(E) =< Yo, (x)|’8(E —¢,) > (A.4)
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is one—electron (average) density of states. Obviously Eq. (A.3) is just a
correlation function of local densities of states in a disordered system. Spec-
tral density given by Eq. (A.2) determines electronic transport [Berezinskii
V.L., Gorkov L.P. (1979)]. The following general properties are easily veri-
fied using the completeness and orthonormality of ¢(r) functions:

/dr < pE(r)ppta () >T'=6(w) /dw < pE(r)pptu (') >T=6(r -
(A.5)

or for the Fourier—components:
L PEPE+w Dq=0= 0(w) /dw K PEPE+w Dq=1 (A.6)

and € pppp4e >q> 0. From general definitions given in Eqs. (A.2) and
(A.3) it is clear that:

L pr(r)pEte(t) >T'=< pp(v)pptu(r) > (A7)

i.e. these spectral densities coincide for r = r’.

Terms with £, = ,7 are in general present in Eqs. (A.2) and (A.3).
However, if these states are extended the appropriate wave—functions ¢, (r)
are normalized on the total volume Q of the system and these contributions
to Egs. (A.2) and (A.3) are proportional to to Q7! and vanish as Q — co.
Things change if states are localized. In this case states are normalized
on finite volume of the order of ~ Rfoc. This leads to the appearance of
§(w)—contribution to spectral densities:

< pp()ppen () SP= Ap(r —x)0(w) + o5 (1 —vw)  (A8)
or in momentum representation:
< ppppre >4 = Ap(@)d(w) + o (qw) (A.9)

where the second terms are regular in w. This singular behavior was pro-
posed as a general criterion for localization [Berezinskii V.L., Gorkov L.P.
(1979)]. Tt is easy to show that

Ap(r—1') = ﬁ < TAE I > (A0

Ap = Ap(r = )|p=w ~ Ry,
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Ap(r — r') represents the so called inverse participation ratio [Thouless D.J.
(1974); Wegner F.J (1980)]. Roughly speaking its value at r = v/ is inversely
proportional to the number of atomic orbitals which effectively form quan-
tum state v. These §(w)-singularities in spectral densities signal nonergodic
behavior of the system in localized state. This leads to a difference between
so called adiabatic and isothermal response functions [Kubo R. (1957);
Katsnelson M.I., Sadovskii M.V. (1984); Sadovskii M.V. (1986)]. The inti-
mate connection between localization and nonergodic behavior was already
noted in the first paper by Anderson [Anderson P.W. (1958)].

From general properties given by Eqs. (A.5) and (A.6) for ¢ — 0 in
localization region we have [Berezinskii V.L., Gorkov L.P. (1979)]:

< PEPE+w >>g% [1 - Rlzocqz]é(w) + (All)

Fe = gy [ 4 < S OE =PI OF > (412

defines the localization length. Delocalization leads to smearing of §(w)—
singularity for finite ¢.

Spectral densities of Eqs. (A.2) and (A.3) can be expressed via two—
particle Green’s functions [Sadovskii M.V. (1986)]. Using nonaveraged re-
tarded and advanced Green’s functions:

R A oo
G*(rxr'E) = G*(xr'E Z . + 26 (A.13)
we immediately get from Eqs. (A.2) and (A.3):

1
/ F_ R Anl At
L pe(r)pp(r) > = 7272N(E)Re {< GH (' EYGAX'rE) >

< GRAYE)GRA(YrE) >} (A14)

<L pp(r)pr(r) >= Re {< GR(xrE)GA(x'Y'E) >

1
272N (E)
- < GR’A(I‘I‘E/)GR’A(I‘/I‘/E) >} (A.15)

In momentum representation Eq. (A.14) is equivalent to:

1
L PEpEtw D h= T(E)Im {25 (wa) — 2£"(wa)} (A.16)



230 Spectral Densities and Criterion for Localization

where

1
Ot aw) = —5 =3 < GU(p4PL E+ )G (plpoE) > (A7)
PP’

and py_ =p £ 1/2q. It can be shown [Vollhardt D., Wolfle P. (1980);
Vollhardt D., Walfle P. (1982)] that @gR(AA)(wq) are nonsingular for small
w and q. Accordingly §(w)—singularity signalling localization can appear
only from the first term in Eq. (A.16).

The appearance of é(w) singularities in (A.8) and (A.9) immediately
leads to 1/w-singularity in ®%4(qw) in the localized phase [Sadovskii M.V.
(1986); Suslov .M. (1995)]:

@ (qw) =~ )+ 0 () (A.18)

reg

where the second term in the right-hand side is some non-singular contri-
bution. Comparison of (A.18) with (2.46) shows that in the localized phase
Dg(qw) ~ w, as the slower w-dependence will destroy the 1/w-singularity
in (A.18) , while the faster will lead to disappearance of q—dependence of
the singular part of (2.46),(A.18). Thus in fact we have the following form
of the generalized diffusion coefficient in the localized phase:

Dp(qw) = (—iw)d(q) (A.19)

where in d(q) the limit of w — 0 is assumed. Thus from the general local-
ization criterion of Berezinskii and Gorkov it follows that Dg(qw — 0) — 0
for all values of q simultaneously, leading to conclusions and criticism fol-

lowing (2.86).



Appendix B

Linearized Gap Equation in
Disordered System

Let us consider the derivation of linearized gap equation Eq. (3.56) used to
determine 7. [Dolgov O.V. (1977); Dolgov O.V., Sadovskii M.V. (1984)].
Equation for Gorkovs’s anomalous Green’s function in an inhomogeneous
disordered system (before any averaging procedure) at T = T, takes the
following form:

(en +EDF(xr'ey) = =T. Y V(rr'e, — &) F(xr'e,) (B.1)

where ¢, = (2n + DT, and V(rr'e, — €5,) is an effective interelectron
potential, &, is one—electron energy operator (energy zero is at the Fermi
energy). Define

Afrr') = —Qércth;—j‘:Tc Y F(r'e,) (B.2)

and assume the following relation between A(rr’) and F(rr'e,):

1
2 4 22
ea + €

F(rr'e,) = .Y V(rr'e, —em) Q(rr'e, )A(rr')  (B.3)

1
2 22
ea, +€;

where @ is some unknown operator. Then after substitution of Eq. (B.3)
into Eq. (B.2) we get a BCS—Iike equation for T¢:

o thg
A(rr') = —U(rr)——=A(rr') (B.4)
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where the operator of “effective” interaction is defined by:

1
Uer') = 2é,cth <2T)TZ€2+A2T ZVI‘ren—em)x

1 ALy, . Er
XET%’L T Q(rr em)25rcth2—Tc (B.5)

/

From Eqs. (B.1)-(B.3) we obtain the following equation for Q (we drop rr
for brevity):

1 -

QEn —1_TZV mQ(Em)‘F

—|—25cth< ) Z = AzT ZVen— ﬁ@(&n) (B.6)

In case of weak coupling in the lowest order over interaction in Eq. (B.6)
we can leave only the first term Q(g,) = 1. Then Eq. (B.5) reduces to

T(er') = 2 SEr 1
Ulrr') = 2épcth <2Tc) TCZ E CZV (rr'ep—em) 2y 25rcth Tc

(B.7)
and Eq. (B.4) completely determines T¢.
Using the usual definition of superconducting gap:

Axr'e,) =T. Y V(rr'e, — ) F(xr'ey) = —(c) + €2)F(xr'e,)  (B.8)

it 1s easy to get:
A(rr'e,) = Q(rr’gn)A(rr/) (B.9)

so that A(rr’) represents the energy gap in the absence of frequency dis-
persion, while @ describes the frequency dependence of the energy gap.

Cooper pairing takes place in the states which are time-reversed, thus
in the exact eigenstate representation of an electron in disordered system
we have:

= 3 A0, (1) (B.10)
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and Eq. (B.4) gives

1 eyt
A, =— th—
ZI; 2e,0 2T,

Uppi A (B.11)

where the kernel
Uypr = /dr/dr/(bﬁ(r)(b’;,(r/)U(rr/)qS,,(r/)qS,,(r) (B.12)

has the form of “Fock” matrix element of an effective interaction. From Eq.

(B.7) we have:
2e,¢
vv! — T2 . Va
v tha”th ’anzez—i—ezez —1—6,

X/dr/dr/qSJ;(r)qS’;,(r/)V(rr%n —em)u(r)yi (T) (B.13)

It is convenient to rewrite Eq. (B.11) introducing summation over states
belonging to some surface of constant energy with subsequent integration
over energies:

A, = /dE’QE/ o Z N(EYU, ey Avien (B.14)
oo IEEI

where N(E) =3, 8(E —¢y).

Consider now averaging of the gap equation. Define

! 7 < S OAS(E—g,) > (B.15)

1.e. the gap averaged over disorder and a surface of constant energy £ =¢,.
Here as usual we denote N(F) =< N(F) >. Suppose now that A, =
A(gy) = A(F = ¢,), i.e. that A, depends only on energy F = ¢,, but not
on the quantum numbers v. This is similar to the usual assumption of A(p)
depending only on |p| in a homogeneous and isotropic system [Vonsovsky
S.V., Izyumov Yu.A., Kurmaev E.Z. (1982)].

After the usual decoupling used e.g. in transforming Eq. (3.12) into Eq.
(3.13), i.e. assuming the self—averaging of the gap, we obtain the following
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linearized gap equation determining 7:

oQ

1 £’
A(E) = — dE'K(E,E' th A(E' B.1
(B)=- [AERE ) o AE) (B10)
where
1
e N , _ /_ , —
K(EE") = NE) < E Uppib(E —€,)8(E —e,0) >

2%

2F 1 2F’ 1
=77
¢ ZH:; [th(E/m) 2 E2] [th(E’/QTC) SR e
X /dr/dr/V(r —1'en —em) < pe(r)pe (x') > (B.17)

where we have again introduced Gorkov—Berezinskii spectral density de-
fined in Eq. (A.2). Effective interaction can be written as:

Vir—r'e, —en) = V(v —r'ep —ep) + Vo(x —v'ey, — £4) (B.18)

i.e. as the sum of some kind of Boson—exchange attractive interaction V,,
and Coulomb repulsion V., which leads to:

K(E,E')=K,(E,E')+ K.(E, E') (B.19)

Assuming Vo (r — v'e, —gp) = v(r — 1’), i.e. static approximation for Coulomb
repulsion, we obtain:

K.(E,E') = /dr/dr/v(r —1') < pe(r)pp (') > (B.20)

which coincides with Eq. (3.34) used above in our analysis of Coulomb re-
pulsion within Cooper pairs in disordered systems. Above we have used the
approximation of Eq. (3.53) to model K, due to electron-phonon pairing
mechanism (or similar model for some kind of excitonic pairing). In this
case Eq. (B.16) reduces to Eq. (3.56).

Note that V.(r — r's, — &5, ) may be taken also as dynamically screened
Coulomb interaction. Then we must use the appropriate expressions for
dielectric function e(qwy,) which may be found using the self-consistent
theory of localization [Katsnelson M.I., Sadovskii M.V. (1983); Katsnelson
M.I., Sadovskii M.V. (1984)]. Then after some tedious calculations we
can get the expressions for K.(F, E') which for small |E — E’| practically
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coincide with those used by us above for the case of static short-range

interaction [Dolgov O.V., Sadovskii M.V. (1984)].
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Appendix C

Derivation of Ginzburg-Landau
Coefficients

Here we present some details on the derivation of Ginzburg-Landau expan-
sion for the free-energy of a superconductor. Consider an electron propa-
gating in a random field of superconducting order-parameter fluctuations
Aq with small wave-vector q above 7. Let us calculate a correction to
the free-energy due to these fluctuations. In general case it is expressed via
the average finite temperature scattering o-matrix [Abrikosov A.A., Gorkov

L.P., Dzyaloshinskii I.E. (1965)]:

AF =-Tln < ¢ >, (C.1)
where
Wis
oc="Trexp{ — / Hipe(T)dr 3| (C.2)
0

and 7 - imaginary (Matsubara) time. The interaction Hamiltonian in
our case describes the system of free electrons in the field of fluctuating
“sources” of Cooper pairs:

Hini(T) = Z [Aqa;r(r)afp_ (1) + Afla_p_ (T)ap, (1)], (C.3)
P
where px = p £+ q/2, a;';,ap — creation and annihilation operators of

electrons with momenta p. Next we consider only static fluctuations, ne-
glecting 7 — dependence of Ag.

Free-energy correction is determined by connected (loop) diagrams from
perturbation theory expansion of < o > [Abrikosov A.A., Gorkov L.P.,
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Dzyaloshinskii I.E. (1965)]:
AF =-T{<o>. -1}, (C4)
where < o >, —1 up to a fourth order in H;,; is given by:
1/T

/ dry (Ty (Hiny(r1) Hine(72))) +

<o>.—1=

[\>|H

41 / dra (Tr (Hine(11).o Hine(4))) (C.5)

//

0

1T 1T
0/
Calculating these contributions via Wick-theorem [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii L.E. (1965)] we get the following expression for free-
energy of an electron in the field of fluctuating pairs:

AF =~ —|Aq"TY Y " Genpt)G(—en—p-)
P n

F LAY Y G2 )G (D). (C6)

We can now obtain Ginzburg-Landau expansion for the free-energy differ-
ence between superconducting and normal state of the system if we rewrite
(C.6) in such a way that the coefficient A of |A4|? for ¢ = 0 be negative
for T < T. and zero at T' = T, [Gennes de P.G. (1966)]. To guarantee this
we can subtract from the right-hand side of (C.6) an additional term equal
to the |A4|? correction to the free-energy at 7' =T, and q = 0. As a result
we get the Ginzburg-Landau expansion in the following form:

Fy— Fy==|Ag"TY > Genp1)G(—€n—p-) +

AT Y03 Glenp)Gle0) + 1Al T 3 G enp)6 (~en—p)(C.T)

Here we have taken into account that the coefficient B is finite for T' = T,
so that it can be taken at T'= T, and neglect its dependence on q.
Using the standard BCS equation for T, we can rewrite (C.7) as:

1
Fy—F, = E|Aq|2 - |Aq|2TZZG(€nP+)G(_En_p—)
P n
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Fig. C.1 Diagrams determining Ginzburg-Landau expansion of a superconductor with-
out impurities.

-I-TSO |Aq|4ZZG2(enp)G2(—€n—p). (C.8)

Now it is clear that the Ginzburg-Landau expansion can be derived from
diagram expansion shown in Fig.C.1. Expressions given above assume s—
wave pairing, in case of anisotropic pairing we have to add to the vertexes
extra factors of e(¢), defined e.g. in (3.195), to take into account the
symmetry of the order parameter (e(¢) = 1 for isotropic s—wave pairing).
Subtraction of the second diagram, corresponding to the usual 7.—equation,
guarantees correct behavior of the coefficient A.

In the case of an impure superconductor these diagram expansion is
obviously generalized as shown in Fig.C.2. From here we can easily obtain
all the expressions like (3.134), (3.135) used in the main text.

Now we give some details of the calculation of the expressions (3.134),
(3.135), (3.136) for the GL-coefficients. Using (3.127), (3.129), (3.130), we
obtain:

nx

1 1 1 <w > T
A=—--2N(FE =——N(FEp)Inl.13 =N(Ep)ln —
g (F);Qn—l—l g~ NEr)n T (Br)n
- (C.9)
where n* = % has been introduced to cut off the logarithmic divergence,

taking into account that electron attraction exists in the energy region of
the order of 2 < w > around the Fermi level. The generalized diffusion
coefficient Dg(wy,) does not contribute (due to ¢ = 0 in (3.127)). This is
a reflection of the Anderson theorem — disorder influences 7, only through
changes in the density of states N(Ep).
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Fig. C.2 Diagrams determining Ginzburg-Landau expansion of a superconductor with
impurities. Only diagrams up to a second order in Agq are shown. I' — vertex-part of
impurity scattering in the “ladder” approximation. Diagrams (c,d) are calculated for
g =0 and T = T.. Extra factors of e(¢) are shown at the vertexes, taking into account
the symmetry of the order-parameter.

We shall calculate the coefficient B, neglecting the weak dependence
on q. Then it can be seen from that the contribution of the diagrams
in Figs.C.3b and C.3¢ is small in comparison with that of Fig.C.3a. The
“triangular” vertex can be found in the self-consistent theory of localization
as described in [Katsnelson M.I., Sadovskii M.V. (1983); Katsnelson M.L.,
Sadovskii M.V. (1984)]. We have

=0 =2e,)~r1 ! C.10

Y(@=0,wm =2e,) ~ +m (C.10)

where the first term takes account of “high” frequencies, while the next is
a diffusion contribution. Then, from Fig.C.3a we obtain:

B N(EF)TZ/ dépy (@ = 0,wm = 26,) G2 (enép)GH(—enkp)

= N(EF)Tg 3 ELB = ;i—(fT)N(EF)(C.ll)
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Fig. C.3 Diagrams determining the coefficient B.

where

Glentp) = ———

. C.12
ZEn_€p+ZZ_T ( )

En
|€n

is the usual approximation for one-particle Green’s function in “dirty” sys-
tem.

Consider now derivation of the coefficient C. Using (3.128), (3.129),
(3.130), we find for the metallic region (Ep > FE.), not very close to the
mobility edge, when Dg(wnm) = Dg,,

o° 1
C = —inTN(E 902 2ilel+iDm a2
i ( F); 0q? 2ilen|+ iDg.q? ¢=0
Il _ N(Ep)Dp, ! u
i 1 = _—N(Ep)D
*TN(Er)Dg, ; 27 T %:0 (2n+1)2 8T (Er)Dpy
(C.13)

Analogously, for an insulator (Ep < F.), but also not very close to the
mobility edge, when (Cf.(3.133))

Wm
wm + 3Dpwd /v

DE((.dm) = DEF (C14)

we obtaln

T 1
C'= STN(Ep) Z gDEF (2len])
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27T — (2n+ 1)+ (2n + D)3Dg,w?/27Tv4
N(Ep)wh [ 1 3Dg,w? 1
= SR 2 g 22 Ee0y (o
3wk (2 47TTU% ) (2)
1 Dg 1
= N(Ep)R},, |¥(z 4+ —5—) = ¥(=
()L 95 + o) = ()|

1.78 Dg
~ N(Ep)R? In———%
( F) loc n ﬂ_TRZ

loc

(C.15)

where the approximate expression is valid for Dg, R? . > 47T
In the vicinity of the mobility edge, both for a metal and an insulator,
we have (Cf.(3.133)):

Dpp(wm) &~ (1/2)Y3Do(wnm)'? = (n/2V3)3(Dol)* 3w 3 (C.16)
so that

T 1 T 2/3 1
= “TN(E D, (2en) = = [ — DoD2PTN(E e
0= 5TNED Y g Dm QR = (T5) (DTN Y

1 (Dol\*"? 1
== | = N(E 7=
61/3 ( T ) ( F)T%:0 (2n + 1)5/3

1 1 5 Do\ *?
Expression (C.17) dominates over (C.13) for
Dg,. /T, ~ Dyl/Ri,.T, < DA/3(1/T.)2/3 (C.18)

which defines the limits of applicability given in (3.136).
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Anisotropic scattering

Here we shall present some technical details concerning the analysis of
anisotropic impurity scattering. The Bethe-Salpeter equation for the vertex
part takes the form (for brevity we drop some of the arguments):

[ppr = U(p,p’) + Z U(p, PH)GR(PH)GA(PH)FP”p’a (D.1)
pl/

where U(p, p')-is irreducible vertex function. We take U(p,p’) in the fol-
lowing form (“ladder” approximation):

Up,p) = pV5 + PV F(p)f(P'). (D.2)

where the notations and definitions are the same as in (3.197) and (3.198).
Then Eq.(D.1) can be written as:

Tppr = Vi + pVE L) (') + pV5 ¥ (D) + oV f(p) (D) (D.3)
where
U(p') = GHP")GH (P Tprp, (D.4)
p//
o(p') =Y F(p")GR(P")G (P )prp-
p//

From Eq.(D.3) one can obtain the following equations for ¥(p’) and ®(p’):

{ U(p') = pVi L + pV2F (D)2 + pVELY(D') + pV2 1 ®(p), (D.5)

®(p') = pVi'la + pViF(D') I3 + pVi U(D') + pVP I39(p'),
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where
L =Y GHp)G*(p),
L=Y f(p)G"(p)G*(p), (D.6)

L= f(p)G"(p)G*(p).

Solving system (D.5), one can find the appropriate expressions for ¥(p’)
and ®(p’) and hence the expression for the vertex part:

oo = PVEA = pVIs 4 pVEF(R) ) + pVE((R) () (L = pVE L) + pV3 f(P) 1)
o (1= pVgI)(L = pViPIs) — pVi PV I3

(D.7)
Unfortunately, similar analysis has not been performed yet within the for-
malism of self-consistent theory of localization (i.e. using less trivial form
of irreducible vertex), so that the effects of anisotropic scattering upon
Anderson transition are at present unclear.
Now let us consider some details on calculating Ginzburg-Landau coef-
ficients for the system with anisotropic impurity scattering. We can easily
see that the contribution of the diagram Fig.C.2(a) is

_%Ag Z/dp26052(2¢)G(5nP+)G(—Enp_) _

dé N(0)mvi T, 1
—AgTN(O)Z/€~2 s + A ( )8 £ EF (D.8)

The contribution of the diagram Fig.C.2(c) is

Ay > [ dp2c05 2006606 (—20p) = ~ AL (0) Z/ el
(D.9)

The contribution of the diagram with diffusion propagator Fig.C.2(b) is

~T 3 3" V2c05(20) G (1 )G (D) ppr V2eos(26) GF (9, )GA (pL)-
o (D.10)
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Taking into account (D.6) and (D.7) we get from here

V(20| = 10)?
_TN(0)r _ VplZlen] . D.11
”Z[w =7~ 8aaPeal =11 (D-11)

Note that in the absence of anisotropic scattering for the case of d—pairing
the contribution of diagrams Fig.C.2(c) actually vanishes up to terms of
the order of ¢°.

In the same way we get the appropriate contribution of the diagram

Fig.C.2(d)

(D.12)

0)mn Z B

Finally we get the expression for Fs — F,, and Ginzburg-Landau coefficients
cited in Section 3.3.3.

|5n| 1)
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Appendix E

Instanton solution

The existence of instanton solutions of Eq.(4.32) of the form (4.33) can
be demonstrated using very simple mechanical analogy [Sadovskii M.V.
(1986)]. Substituting (4.33) into (4.32) we obtain the following dimension-
less nonlinear differential equation for x(¢) (which we write for the general
d—dimensional case):

L (URE &0, (B1)

This can be considered as an equation of motion of a particle of unit mass
in a potential U(x), shown in Fig.E.1:

1 1
U =-3x" + (E.2)

which is also subjected to a time-dependent frictional force. Clearly, we are
seeking solutions that satisfy the initial conditions:

Al g (E.3)

x(t = 0) = const;
dt t=0

The asymptotic form of the solutions of (E.1) at “time” ¢ >> 1 can be
easily determined by linearizing this equation near the extremal values of
U(x). An instanton with minimal action corresponds to the motion when
our “particle” rolls down an incline of U(x) and stops at the point y = 0
for t — oco. The asymptotic form of this solution at ¢ > 1 1is:

A1) ~ 10D 2eap(—1) (E.4)
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uXx

Fig. E.1 Potential energy corresponding to the equation of motion (E.1). The “particle”
moves downhill with friction diminishing with “time” as ~ 1/t.

while its general form was shown in Fig.4.1. Of course, this general form can
be determined by numerical solution of Eq.(E.1). All other types of motion,
following from (E.1), lead either to infinite action solutions or instantons
with larger actions.

More general and rigorous mathematical analysis using methods devel-
oped e.g. in Refs.[Makhankov V.G. (1977); Coleman S., Glaser V., Martin
A. (1978)] shows that the finite action solutions of the type we are seeking
exist for Eq.(E.1) only for d < 4.
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