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Lecture1. Lecture1. 
1.Introduction1.Introduction



>50 years of Anderson Localization
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>50 years of Anderson Localization
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>50 years of Anderson Localization

q.p.



Einstein (1905):
Random walk

Dtr =2

diffusion constant

always diffusion
as long as the system 

has no memory

Anderson(1958):
For quantum 

particles

not always!

It might be that

constr t ⎯⎯ →⎯ ∞→
2

0=D

Quantum interference        memory



Einstein Relation (1905)
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Einstein Relation (1905)

2 dne D
d

σ ν ν
µ

= ≡

Conductivity Density of states

Diffusion Constant

No diffusion – no conductivity
Localized states – insulator
Extended states - metal

Metal – insulator transition



Einstein (1905):
Random walk

Dtr =2

diffusion constant

always diffusion Dtyconductivi ∝
as long as the system 

has no memory Einstein relation

Anderson(1958):
For quantum 

particles

not always!

It might be that

constr t ⎯⎯ →⎯ ∞→
2

0=D

0=tyconductivi
Quantum interference        memory Anderson insulator



Localization of single-electron wave-functions:
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I was cited for work both. in the field of magnetism and in that of 
disordered systems, and I would like to describe here one development 
in each held which was specifically mentioned in that citation. The two 
theories I will discuss differed sharply in some ways. The theory of local 
moments in metals was, in a sense, easy: it was the condensation into a 
simple mathematical model of ideas which. were very much in the air at 
the time, and it had rapid and permanent acceptance because of its 
timeliness and its relative simplicity. What mathematical difficulty it 
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and 
even fewer saw its importance; among those who failed to fully 
understand it at first was certainly its author. It has yet to receive 
adequate mathematical treatment, and one has to resort to the indignity 
of numerical simulations to settle even the simplest questions about it . 



Spin DiffusionSpin Diffusion
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Wiersma, D.S., Bartolini, P., Lagendijk, A. & Righini R. “Localization of light in a disordered 
medium”, Nature 390, 671-673 (1997).
Scheffold, F., Lenke, R., Tweer, R. & Maret, G. “Localization or classical diffusion of light”,  

Nature 398,206-270 (1999).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. “Transport and Anderson localization in 
disordered two dimensional photonic lattices”. Nature 446, 52-55 (2007).
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ExperimentExperiment



Localized State
Anderson Insulator

Extended State
Anderson Metal

f = 3.04 GHz f = 7.33 GHz



Billy  et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature  453, 
891- 894 (2008).

Localization of cold atomsLocalization of cold atoms

87Rb

Roati et al. “Anderson localization of a non-interacting 
Bose-Einstein condensate“. Nature 453, 895-898 (2008).

Q: Q: What about electrons ?What about electrons ?

A:A: Yes,Yes,…… but electrons interact with each otherbut electrons interact with each other



e
Scattering centers, 
e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities
White noise potentialWhite noise potential
Lattice modelsLattice models

Anderson modelAnderson model
Lifshits modelLifshits model



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

I   i and j are nearest 
neighbors

0 otherwise

( ) WdfIc ∗=



Why arbitrary 
weak hopping I is 
not sufficient for 
the existence of 
the diffusion

j i
Iij

Einstein (1905): Marcovian (no memory) 
process diffusion

Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why?
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von Neumann & Wigner “noncrossing rule”
Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?
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Resonance
In both eigenstates the 
probability is equally 

shared between the sites

Off-resonance
Eigenfunctions are 

close to the original on-
site wave functions



Anderson insulator
Few isolated resonances

Anderson metal
There are many resonances 

and they overlap



1 2

4 1)
2) 0

N
η

→ ∞
→limits

insulator

metal

1. take discrete spectrum Eµ of H0
2. Add an infinitesimal Im part iη to Eµ

3. Evaluate ImΣ µ

Anderson’s recipe:

4. take limit but only after ∞→N
5. “What we really need to know is the    

probability distribution of  ImΣ, not 
its average…” P.W. Anderson Nobel Lecture

!
0→η

imaginary part of the 
renormalized energy



Probability Distribution of Probability Distribution of ΓΓ=Im =Im ΣΣ

metal

insulator

Look for:

V

η is an infinitesimal width (Im
part of the self-energy due to 
a coupling with a bath) of 
one-electron eigenstates



Anderson  Transition

I > Ic I < Ic
localized and 

extended never 
coexist!

DoS DoS

all states are
localized

- mobility edges (one particle)

extended



I > Ic I < Ic
extended localized

( ) ( ) ( )1 2 0cI f d W f f= × = =

?StrongStrong disorder localized
WeakWeak disorder extended



extended

localized

Eigenfunctions

?Q: Does anything interesting 
happen with the spectrum



Density of States Density of States

energy energy
W− W # I# I−

0I = 0W =

Density of States

energy

0; 0I W≠ ≠

extendedLifshits 
tail

Lifshits 
tail

Mobility 
edge

Mobility 
edge



Density of States is not singular 
at the Anderson transition

!This applies only to the 
average Density of States

Fluctuations ?



Lecture1.Lecture1.
2. Spectral statistics 2. Spectral statistics 
and  Localizationand  Localization



RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics

Eα - spectrum (set of eigenvalues)

ααδ EE −≡ +11 - mean level spacing

...... - ensemble averaging

( )sP
1

1

δ
αα EEs −

≡ + - spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

( )

( ) 4211

00

,,=∝<<

==

ββssP

sPSpectral Rigidity

Level repulsion



Orthogonal 
β=1

Wigner-Dyson; GOE
Poisson

Unitary
β=2

Simplectic
β=4

Gaussian
Orthogonal
Ensemble

Poisson – completely 
uncorrelated 
levels



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Dyson Ensembles

Ensemble
orthogonal
unitary

simplectic

    β
    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



( ) 0P s → 0 :s →Reason for                           when
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus ( ) 1P s s β∝ =
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of the diagonal 
matrix elements
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function of the 
spacing ( )P s



( ) 0P s → 0 :s →Reason for                           when

11 12

12 22
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( )2 2
2 1 22 11 12E E H H H− = − +

small small small

1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 1P s s β∝ =

2( ) 2P s s β∝ =



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

-W < εi <W
uniformly distributed

Q: ?
Is there much in common between Random Matrices 
and Hamiltonians with random potential ?

What are the spectral statistics 
of a finite size Anderson model



Anderson  TransitionAnderson  Transition
Weak disorderStrong disorder

I < Ic I > Ic
Metal

There appear states extended
all over the whole system

Insulator 
All eigenstates are localized

Localization length ξ
Any two extended 

eigenstates repel each other
The eigenstates, which  are 
localized at different places 

will not repel each other

Wigner – Dyson spectral statisticsPoisson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

Disorder W



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales in the localization problem.
((Thouless, 1972))

This scale exists in the Random Matrix theory



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the
inverse diffusion time of 
the traveling through the 
system or  the escape 
rate (for open systems)

dimensionless
Thouless

conductance

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

Energy scales in the localization problem.
((Thouless, 1972))

1

TEg
δ

=
2

hg G
e

=

In the Random Matrix theory 
this energy scale is absent This energy scale exists in the Random Matrix theory.

This is the only energy scale in the RM theory



g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

Transition at g~1.
Is it sharp?



Conductance g

The bigger the system the sharper the transition



Anderson transition in terms of 
pure level statistics

P(s)



Lecture1.Lecture1.
3. 3. Quantum Chaos,      Quantum Chaos,      

Integrability Integrability and and 
LocalizationLocalization



Finite size quantum physical systems

Nuclei
Atoms
Molecules
.
.
.

Quantum 
Dots



Main goal is to classify the eigenstates in 
terms of the quantum numbersATOMS

NUCLEI For the nuclear excitations this program does 
not work

Wigner: Study spectral statistics of a particular
quantum system – a given nucleus



Main goal is to classify the eigenstates in 
terms of the quantum numbersATOMS

NUCLEI For the nuclear excitations this program does 
not work

Wigner: Study spectral statistics of a particular
quantum system – a given nucleus

Random Matrices Atomic Nuclei
• Ensemble

• Ensemble averaging

•Spectral averaging (over α)
•Particular quantum system

Spectra: {Eα}

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics



sP(s) Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s) Particular 
nucleus

166Er

N. Bohr, Nature 
137 (1936) 344.



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Original 
answer:



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

These are systems with a 
large number of degrees of 
freedom, and therefore 
the  “complexity” is high

Original 
answer:

there exist very “simple”
systems with as many as 2 
degrees of freedom (d=2), 
which demonstrate  RMT -

like spectral statistics

Later it
became
clear that



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples

Stadium



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples

StadiumSinai billiard



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples B

Stadium
Kepler problem 
in magnetic field 

Sinai billiard



Classical Chaos 
h =0

•Nonlinearities
•Exponential dependence on 
the original conditions (Lyapunov 

exponents)

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



QuantumClassical

? PoissonIntegrable

? Wigner-
DysonChaotic



Square
billiard

Sinai
billiard

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

Disordered 
localized

Disordered 
extended

All integrable 
systems are 
integrable in 
their own way





Lecture1.Lecture1.
4. Localization 4. Localization 
beyond  real spacebeyond  real space



Localization in the angular momentum space



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory

Integrable classical Hamiltonian , d>1:

Separation of variables: d sets of 
action-angle variables

Quasiperiodic motion: 
set of the frequencies,           which are 
in general incommensurate. Actions    are 
integrals of motion

1 2, ,.., dω ω ω

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ
0=h

1θ
1I

2θ
2I⊗ ⊗…=>

1 1 1 2 2 2, 2 ; ... , , 2 ;..I t I tθ πω θ πω= =

iI
0=∂∂ tIi

tori



Integrable dynamics:Integrable dynamics:
Each classical trajectory is quasiperiodic 
and  confined to a particular torus, which 
is determined by a set of the integrals of 
motion 

space Number of dimensions
real space d

phase space: (x,p) 2d
energy shell 2d-1

tori d

Each torus has measure zero on the energy shell ! 



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory
Integrable classical Hamiltonian , d>1:
Separation of variables: d sets of action-angle 
variables
Quasiperiodic motion: set of the frequencies,   

which are in general incommensurate 1 2, ,.., d

Actions       are integrals of motion
ω ω ω

1θ
1I

2θ
2I⊗ ⊗…=>

;..2,;..,2, 222111 tItI πωθπωθ ==

iI ∂ 0=∂tIi

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the motion 
ergodic (when each point at the energy 
shell will be reached sooner or later)

?
A:Most of the tori survive 

weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the 
motion ergodic (i.e. each point at 
the energy shell would be reached 
sooner or later)

A:Most of the tori survive 
weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

?

?



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

1I

2I

0ˆ ≠V

1I

2I

Finite motion.
Localization in the space 
of the integrals of motion?Each point in the space of the 

integrals of motion corresponds 
to a torus  and vice versa



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

2I

2I 0≠h

Ly

Lx

1I
Two integrals of motion

x
y

x
x L

mp
L
np ππ

== ;

Rectangular billiard
1I



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

1I

2I

0ˆ ≠V

1I

2I

1I

2I 0≠h

Energy shell



νµ ,V̂
νµ

( ) ( ) ( ){ }µµµ
dIII ,...,1=

r

Matrix element of 
the perturbation

One can speak about localization 
provided that the perturbation 
is somewhat local in the space 
of quantum numbers of the 
original Hamiltonian

( )µµ I
r

=

AL hops are local – one can distinguish “near” and “far”
KAM perturbation is smooth enough



Consider an integrable system. 
Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of 
quantum numbers. The whole set of the states 
forms a lattice in this space.

A perturbation that violates the integrability 
provides matrix elements of the hopping 
between different sites (Anderson model !?)

Weak enough hopping:
Localization - Poisson

Strong hopping:
transition to Wigner-Dyson



Square
billiard

Localized 
momentum space extended

Localized 
real space

Disordered 
extended

Disordered 
localized

Sinai
billiard



StrongStrong disorder localized
WeakWeak disorder extended

StrongStrong disorder localized

Moderate Moderate disorder extended

No No disorder chaotic extended

No No disorder integrable localized

Too weakToo weak disorder int.localized         


