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Lecture 2.
0.Introduction



1.

Previous Lecture:

Anderson Localization as Metal-Insulator Transition
Anderson model.

Localized and extended states. Mobility edges.

Spectral Statistics and Localization.

Poisson versus Wigner-Dyson.

Anderson transition as a transition between different
types of spectra.

Thouless conductance

Quantum Chaos and Integrability and Localization.
Integrable <= Poisson; Chaotic <= Wigner-Dyson



beyond real space



VOLUME 49 23 AUGUST 1982 NUMBER 8

Chaos, Quantum Recurrences, and Anderson Localization

Shmuel Fishman, D. R. Grempel, and R. E. Prange
Department of Physics and Centevr for Theovelical Physics, University of Maryland, College Park, Maryland 20742

(Received 6 April 1982)

A periodically kicked quantum rotator is related to the Anderson problem of conduction
in a one-dimensional digordered lattice, Classically the second model is always chaotie,
while the first is chaotic for some values of the parameters. With use of the Anderson-

model result that all states are localized, it is concluded that the local quasienergy spec-
trum of the rotator problem is discrete and that its wave function is almost periodic in

time. This allows one to understand on physical grounds some numerical results recent-
ly obtained in the context of the rotator problem,

Localization in the angular momentum space




Kolmogorov — Arnold — Moser (KAM) theory
A.N. Kolmogorov,
Dokl. Akad. Nauk —
SSSR, 1954. h O
Proc. 1954 Int.
Congress of

Mathematics, North-
Holland, 1957

Integrable classical HamiltonianH,, d>1:

Separation of variables: d sets of
action-angle variables

., 6, =2zxat;...,1,,6,=21mt;..

Quasiperiodic motion:

set of the frequencies,o,®,,..,o, which are
in general incommensurate. Actions |, are
integrals of motiondl, /ot =0

e @e..

tori



Integrable dynamics:

Each classical trajectory is quasiperiodic
and confined to a particular torus, which
is determined by a set of the integrals of
motion

space Number of dimensions
real space d
phase space: (X,p) 2d
energy shell 2d-1
tori d

Each torus has measure zero on the energy shell !



Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Integrable classical HamiltonianH,, d>1:

Dokl. Akad. Nauk
sgSR, 13;'4_ 2t Separation of variables: O sets of action-angle

Proc. 1954 Int. variables | @ =2zayt;..,1,,0, = 2noLt;..

Congress of ST S .
Mathematics, North- Quasiperiodic motion: set of the frequencies,

Holland. 1957 w,®,,...,0, Which are in general incommensurate
i Dy Actions | are integrals of motion Ol /@t =0

t\ﬁl &NHZ
@ ® @ ®. ot :>
. Will an arbitrary weak perturbation f)
Q _ Vof the integrable Hamiltonian H
destroy the tori and make the motion =

ergodic (when each J:oim' at the energy
shell will be reached sooner or later)

Most of the tori survive BNV
weak and smooth enough [igyises
perturbations

Viadimir. : m

Arnold



Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Will an arbitrary weak perturbation
Dokl. Akad. Nauk " V of the integrable HamiltonianH,
SSSR, 1954. " destroy the tori and make the
E?:-,Lgs";“g;‘t- motion ergodic (i.e. each point at
Matr?ematics North- the energy shell would be reached?
Holland, 1957 sooner or later) :

Most of the tori survive EVINY
weak and smooth enough [ripuEses
perturbations
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KAM Most of the tori survive weak and
10122 8l smooth enough perturbations

A ~

L] X V =0 @

Each point in the space of the Finite motion.

integrals of motion corresponds Localization in the space ?

to a torus and vice versa of the integrals of motion



KAM Most of the tori survive weak and
10122 8l smooth enough perturbations
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KAM Most of the tori survive weak and
g s il smooth enough perturbations




A\

\
U Q@ V
Matrix element of g & @ @ @
the perturbation
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| (,u)} One can speak about localization

provided that the perturbation
Is somewhat local in the space
of quantum numbers of the
original Hamiltonian

AL hops are local - one can distinguish “near” and “far”
KAM perturbation is smooth enough



Consider an integrable system.
Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of
?uanfum numbers. The whole set of the states
orms a lattice in this space.

A perturbation that violates the integrability

Er'ovides matrix elements of the hopping
etween different sites (Anderson model 1?)

Weak enough hopping:
Localization - Poisson
Strong hopping:
transition to Wigner-Dyson



Sinai

y

Disordered
billiard localized
Disordered
Localized extended Localized
momentum space extended real space
! Poisson % T wor. ! PoISSOn
02t . 0. 02t
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5 1 15 2 25 3



Strong disorder ocalizec
Weak disorde extended
Strong disorder localized

Moderate disorder extended
No disorder chaotic extended
No disorder integrable localized

Too weak disorder int. localized



Classical Quantum
Integrable Integrable
H, = Hy ) =2E, B )=|T)
KAM Localized
Ergodic - distributed all
over the energy shell Extended ?

Chaotic




Classical Quantum
Integrable Integrable
Hy = Hy 7) =2E, |ﬂ><ﬂ| ) =|T)
KAM Localized
Ergodic (chaotic) Extended ?

Q Any Hamiltonian can HAO — Z Eu‘ﬂ><ﬂ‘ 7

be diagonalized.
Poisson

* Yes, but second T
= condition is crucial. ‘,u> _‘ | > — specj'rql
statistics

Extended Level repulsion, anticrossings,
states: Wigner-Dyson spectral statistics



Extended Level repulsion, anticrossings,
states:  Wigner-Dyson spectral statistics

Localized

states: Poisson spectral statistics

Invariant
(basis independent)
definition



[EEITICEME popod semcontuctor Y Y

Low concentration Electrons are localized on \@[
of donors == donors = Poisson \-f
Higher donor =, Electronic states are \-f \-f

concentration extended = Wigner-Dyson



'Example 1 Doped semiconductor

LOW El .

. ectrons are localized
concentration ===p .
of donors on donors = Poisson

, Electronic states
Higher donor =y gre extended =
concentration Wigner-Dyson

Example 2 Qe m. o _m
L

Rec'raggular integrals Px=1"i Py=

J
|

bi"iar' Of mOtion y

Lattice in the energy

momentum space |_she Ideal billiard - localization in the
Byt iiccccerae momentum space

0000000 ..""000000O0 C> POisson

0000000000 MNOO0ODO0OO

00000000000c 000 Deformation or - delocalization in
©00000000000C OO Smoofh r'andom The momen'h..lm
©000000000000. 0[], po‘l'enTlC.l'. If Space = W|gner'-
stronqg enough  Dyson



Chaotic Systems - proven

Sinai billiard

\ MNE
Yakov Sinai Leonid Bunimovich
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Stadium

E = - parameter

a
R



VoLuME 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 DECEMBER 1996

Diffusion and Localization in Chaotic Billiards

Fausto Borgonovi.'*# Giulio Casati > and Baowen Li%7
L Dipartimento di Matematica, Universita Caitolica, via Trieste 17, 25121 Brescia, Italy
iversita di Milano, sede di Como, Via Lucini 3, Como, Ttaly
i Fisica della Materia, Unita di Milano, via Celoria 10, 22100, Milano, ltaly
o Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Ttaly
\ o Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
S Department of Physics and Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Hong Kong
“TCenter for Applied Mathematics and Thearetical Physics, University of Marihor, Krekova 2, 2000 Maribor, Slovenia
{Received 29 July 1996)

Chaotic

€>0 gtadium

M
I

& — 0 Integrable circular billiard
Angular momentum is

the integral of motion
h=0;, <<l

Angular momentum
is not conserved

Localization
and diffusion
in the angular
momentum
space



VOLUME 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 DECEMBER 1996 Local ization
| | | |
Diffusion and Localization in Chaotic Billiards a n d d Iffu s I o n
Fausto Borgonovi,'** Giulio Casati.>** and Baowen Li%” -
L Dipartimento di Matematica, Universita Caitolica, via Trieste 17, 25121 Brescia, Italy I n e a n g u a r
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{Received 29 July 1996)

Chaotic z N .
stadium = ﬁk Poisson

—0.01
& — 0 Integrable circular billiard g=0.012

Angular momentumis | y DO=--——. S
the integral of motion -1

>0

M
I

h=0 &<l

Diffusion in the
angular momentum

space 5/2 T N \ql\ _
Do g / i




Example 4 D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

_tZ( |+10' +C|+1a |a)+UZn|a | —o +V Zni,ani+1,0"

,0,0'

V =0 Hubbard integrable : :
model Onsite n. neighbors
extended interaction Inferaction

V #0 Hubbard honintegrable
model



Example 4 D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

_tZ( H—lc)' +C|+1o |o)+UZn|a | —c +V Zni,ani+1,o"

l,0,0'
V =0 Hubbard integrable . .
model Onsite n. neighbors
extended inferaction Interaction
V #0 Hubbard nonintegrable
model
1 p——r—r—— T T pep—p——— i
12 sites -\ U=4 V=0 1t . U=4 V=4 ]
3 particles 1r ' ‘
Total spin 1/2
Total momentum /6 |/ SV ,
0 lllllllll I2 . l, ....3 0 L i e é A "




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

N1 VJ \‘O{ exchange
71D t-J model on\‘f \_{ \'O{hopplng

a periodic chain

Y Y
Y




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

\'f V \Qf \'O{J \‘oﬂxchange
71D t-J model on Y1 \_{t \_o'ﬂmpping

a periodic chain

{ Y 1dt-J

forbidden



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

\_{ V \Q{ \'O{J \_Q'fexchange
71D t-J model on Y1 \_{t \_O'ﬂmpping

a periodic chain

{ Y 1dt-J

forbidden

N=16; one hole



Wigner-Dyson random matrix statistics
follows from the delocalization.

Why the random matrix
Q " theory (RMT) works so well ?
" for nuclear spectra =

Many-Body excitations are delocalized !
What does it mean ?



Consider a finite system of quantum
particles, e.g., fermions. Let the one-
particle spectra be chaotic (Wigner-
Dyson).

B What is the statistics of the ?
= many-body spectra? =

Q

a)The particles do not interact

with each other = Poisson:
individual energies are conserving

quantum numbers.

b) The particles do interact 7?7?77



Lecture 2.
2. Many-Body

excitation in finite
.systems



Decay of a quasiparticle with an energy & in
Landau Fermi liquid

Fermi Sea




Quasiparticle decay rate at | =0 in a clean Fermi Liquid.

Wy

&
Fermi Sea Te_e (

constant

cmw *é’+a)I & N2 .2
h (couplmg) E

(x -

g) Er

Reasons:

At small £ the energy transfer, (0, is small and the integration
over £”and @ gives the factor &

*The momentum transfer, { , is large and thus the scattering
probability at given & “and @ does not dependon & ’, Q or&

3



Quasiparticle decay rate at | =0 in a clean Fermi Liquid.

/

Il. Low dimensions

Small moments transfer, (J , become important at

low dimensions because the scattering probability is
proportional to the squared time of the interaction,

©

(qV,..)? 1/ CV

Ve

gz/glr d=3
I (e e o) -
5 d=1



Quasiparticle decay rate at in a clean Fermi Liquid.

5z d=3

—0w *5,+ng T_h(g) oc (52/5F)|Og(gF/5) d=2

£ d=1

Conclusions:

1. For d=3,2 from E<< & gitfollows that ET,,_, >> 1, i.e,,

that the qusiparticles are well determined and ?ﬁg Fermi-liquid
approach is applicable.

2. Ford=1 &7,_, is of the order of 1, i.e., that the Fermi-liquid
approach is not valid for 1d systems of interacting fermions.

Luttinger liquids



Decay of a quasiparticle with an energy & in

Landau Fermi liquid

o Quantum dot - zero-dimensional case ?

E— e

&1 e

Fermi Sea




Decay of a quasiparticle with an energy & in

Landau Fermi liquid

e Quantum dot - zero-dimensional case ?
£~ e Decay rate of a quasiparticle with energy &
( U.Sivan, Y.Imry & A.Aronov,1994 )
£+0® Fermi Golden rule:

Fermi Sea

Mean level
spacing

Thouless
energy



Decay rate of a quasiparticle with energy € in 0d.

( U.Sivan, Y.Imry & A.Aronov,1994 )
Fermi Golden rule:

Thouless
conductanc
e

Mean level
spacing

Thouless
energy

Zero
Def: dimensional E, >>¢&>>0, = g>>1

system ‘[

One particle states are
extended all over the system



Decay rate of a quasiparticle with energy € in 0d.

e zero-dimensional case

]

E— o . -
one-particle spectrum is
discrete
equation

E+E, =E,+&,
can not be satisfied exactly

Fermi Sea

Recall: in the Anderson model
the site-to-site hopping does
not conserve the energy




Decay rate of a quasiparticle with energy € in 0d.

Offdiagonal
matrix
element



Chaos in Nuclei - Delocalization?

1 2 3 4 5 6 o
- Delocalization
E® generations
in Fock space

&' ® Can be mapped (approximately)
to the problem of localization

on Cayley tree

Fermi Sea




Conventional Anderson Model

-one particle,

*one level per site,

I OOOS
Basis: ‘ i>, | Igﬁgi:s @@®®
Hamiltonian:H = I-AIO +\7 @@@@

Ho =2ali)il V= 21|

I, j=n.n.



O 0d system; no interactions

g, —o—  Mmany (N ) particles no interaction:
Individual energies £ and thus occupation
87, —O0— numbers n( )ar'e conserved

l

_OO N conservation laws
&s —O— “integrable system”

l

infegrable system

|
=26, |u)u|  u=i"]



0d system with interactions

Basis: ‘,u> e { n“}

n% =0 1occupa‘rion labels

numbers o levels



Conventional Many body Anderson-

Anderson like Model
Model Basis:‘,u>, 1= { n“}
Basis: ‘ |> o Ilce;ls:llz n“ =01 Oﬁﬁ‘rﬁ;‘;“g"
i Ia!oels
sites
H =2 &)+ A=Y E, | {u]+
I H
2 | > ) v(u)
I, j=n.n. ﬂ’v(ﬂ)
“nearest

neighbors”: v(g)y=]..n* 1.0 =L.,n" +1,..,n° +1,..)



0d system with interactions

e O Basis: ‘,u> U= { n“}
a occupation labels
&p —O— n* =0,1 numpber's & evels
87,-0 """"""
50_ Hamiltonian: H g 7
- amiltonian: H = Ho +V
Es 4
—O—

Few excitations == no recombination == Cayley tree



Isolated quantum dot - Od system of fermions

Exact many-body states: Exact means that the imaginary
Ground state, excited states part of the energy is zerol

Quasiparticle excitations: Finite decay rate

Q:Wha’r is the connection 7



e ;

—
current

No e-e interactions -
resonance tunneling



gate

source @ drain

—
current
A g P TR S
Mean level
spacing &,

No e-e interactions -

resonance tunneling



current

0 o0

D

The interaction leads to

additional peaks —

many body excitations



| S |
oo D Db

Resonance tunneling Inelastic cotunneling
Peaks Additional peak




current

0 o0

S

The interaction leads to

additional peaks —

many body excitations



current

Landau
quasiparticle with
the width A




Landau
quasiparticle with
the width A

extended

Localized - finite # of the satelites (for finite £the number of the

Extended - infinite # of the satelites Satelites is always finite)

Ergodic — nonergodic crossover!



J, Phys, C: Sohd State Phys, Vel &, 1972, Printed in Great Britain, & 1973

Anderson Model on a Cayley tree

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersoni$ and D J Thoulesst
t Depariment of Mathematical Physics, University of Birmingham, Birmmngham, B15 2TT

1 Cavendish Laboratory, Cambridge, England and Bell La®oratories, Murray Hill, New
Jersey, 07974, TISA

Beceived 12 Janwary 1973

Abstract. A new basis has been found for the theory of localization of elecirons m disorderad
swstems, The method 15 based on a selfconsistent solution of the eguation for the self energy
in second order perturbation theory, whose solution may be purely real almost everywhaere
(localized states) or complex evervwhere {nonlocalized states) The equations used are
exact for a Bethe lattice. The selfconsisténcy condition grves a nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy, A simple approximation for the stability himit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close to Anderson’s best estimate. A general and simple formula for the stability
Lirnit is dertved; this formula should be valid for smooth distribution of st energies away
from the band edge. Results of Monte Carloe calculations of the selfconsistency problem
are described which confirm and go beyond the analytical results, The relation of this
theary to the ald Anderson theory 5 exammed, and it 15 concluded that the present theory
1% similar but better.



Anderson Model on a Cayley tree

I, W K — branching number
W 1
| oc
K InK

| = W n Resonance at W W Sparse

K every generation K In K <l< K  Presonances




We will call a quantum state |u)

ergodic if it occupies the number of
sites N, on the Anderson lattice,
which is proportional to the total
number of sites N :

N N
Nﬂ —>0 Nﬂ ——>const >0
nonergodic ergodic

Localized states are N

: : > const
obviously not ergodic: # No«

Q: Is each of the extended state ergodic ?
A: In 3D probably yes



volume=8x8x 8
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The bigger the system
the sharper the transition
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Thouless conductance J

Energy / Spacing
S w»n o

]
[t

= tUn

0.

)

\

K
X
\

T
i

T R NANY

L
)

5
S

=
[a——y

-

P(s)

08 f

0.6
0.4 Var S
0.2
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metal, W=5 «
critical, 16.5 =
insulator, 100 -

07 F

Scaling of level spacing variance

Linear size of 3D cube

A £ i |

0.1

In 3D —only critical
point. Metal is ergodic
Corresponds to the
scaling theory

| a2

unstable
fixed point




In 3D - the transition is sharp in the limit, when
system size tends to infinity, only critical point.
Extended states are always ergodic states.
This follows from the scaling theory.

This is doubtful already in 4D : variance of the
mesoscopic fluctuations d
2\ (99
(@) )= [
g

shows ultraviolet divergence.

For very high dimensions close to the
transition the extended states are almost for
sure nonergodic !



Such a state occupies infinitely

nonergodic states many sites of the Anderson
model but still negligible fraction

of the total number of sites

Example of nonergodicity: Anderson Model Cayley tree:

transition

K- branching number

ergodicity

Ierg ~\W crossover



| <W/(KInK)
Resonance is typically far N = const

W/K>1>W/(KInK)
Resonance is typically far n~InN

W>1>W/K

Typically there is a n~InN
resonance at every step

| >W

Typically each pair of nearest  _ N
neighbors is at resonance

localized

nonergodic

nonergodic

ergodic






Cold Atoms

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan1, D.Clément, L.Sanchez-

Palencia, P. Bouyer & A. Aspect, “Direct observation of Anderson localization of
matter-waves in a controlled Disorder” Nature 453, 891-894 (12 June 2008)

L. Fallani, C. Fort, M. Inguscio: “Bose-Einstein condensates in disordered
potentials” arXiv:0804.2888

Q: What about electrons ?

A': VYes,.. but electrons interact with each other



s'rr'engfhl/ g Strong disorder +
disorder moderate interactions

4/%
O
)
DX
% strength
(% g
%% of the rs
intferaction

Wigner
crystal




Temperature dependence of the conductivity
of noninteracting electrons




Temperature dependence of the conductivity

one-electron picture

Assume that all the
states
are localized -' DS

)=0 VT

3

O



Inelastic processes

transitions between localized states

— B — |
_:._____ﬂ ________ 55 — £y energy

mismatch



Phonon-assisted hopping

Variable Range o(T) x exp

Hopping
N.F. Mott (1968) | i

Mechanism-dependent

prefactor Optimized
phase volume

Any bath with a continuous spectrum of delocalized
excitations down to @ = O will give the same exponential



o] 11111]¢] Anderson .
A2 2 Insulator => Phonon assisted
weak e-e hopping transport

interactions

Can hopping conductivity ?
exist $

Given: 1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity o(T,»=0)
(zero or finite?)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1: Sure

1. Recall phonon-less o )
AC conductivity: _ Cloe (0 1pd+1 0¢
N.F. Mott (1970) ow)=—% o) |

2. FDT: there should be Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1: Sure

A#2: No way (L. Fleishman. P.W. Anderson (1980))
Except maybe Coulomb interaction in 3D

> rd—2 9
hw
o (w) ~ € ;{)C ( ) Ind+1

O¢ is contributed by
hw rare resonances

w=§ﬁ—§a=f’y—§5

5 I e - —
ma1'r'|x - _(Q‘)‘Hl

R_yoo > clement => o(T) oc Lixexp T

vanhishes i _




Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1: Sure
A#2: No way (L. Fleishman. P.W. Anderson (1980))

A#3: Finite temperature Metal-Insulator Transition

R (Basko, Aleiner, BA (2006))

o(T')
Drude

<—insulator—

o=0

v




Finite temperature Metal-Insulator Transition

Many body wave
functions are localized in Drude
functional space

<—insulator—

A Interaction
<< strength
d Y1 o
Vé/ Localization
spacing

% T
 AlIn

o=0

1ec

D.M. Basko, I.L. Aleiner & BA,
Annals of Phys. 321, 1126 (2006)
cond-mat/0506617 v1 23 Jun 2005



Main postulate of the Gibbs Statistical Mechanics -
equipartition (microcanonical distribution):

In the equilibrium all states with the same energy are
realized with the same probability.

Without interaction between particles the equilibrium
would never be reached - each one-particle energy is
conserved.

Common believe: Even weak interaction should drive the
system to the equilibrium.
Is it always true?

Many-Body Localization:

1.It is not localization in a real spacel

2.There is no relaxation in the localized
state in the same way as wave packets of
localized wave functions do not spread.



Finite temperature Metal-Insulator Transition

)

¢ ¢ <
3&| 111,3\| A A2
e? |k '
d—2 [T T
Sloc

< Insulators

A

- Metal >
.T:J‘.T[mj T lel) ;
Includes, 1d '
) Good
case, although is Bad metal (Drude)

not limited by it. metal



There can be no finite temperature
phase transitions in one dimension!

This is a dogma.

Justification:

1.Another dogma: every phase transition is
connected with the appearance
(disappearance) of a long range order

2. Thermal fluctuations in 1d systems
destroy any long range order, lead to
exponential decay of all spatial correlation
functions and thus make phase transitions
impossible



There can be no finite temperature
phase transitions connected to any
long range order in one dimension!

Neither metal nor Insulator are
characterized by any type of long
range order or long range correlations.

Nevertheless these two phases are
distinct and the transition takes place
at finite temperature.



