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Lecture 2. Lecture 2. 
0.Introduction0.Introduction



Previous Lecture:Previous Lecture:
1. Anderson Localization as Metal-Insulator Transition

Anderson model.  
Localized and extended states. Mobility edges.

2. Spectral Statistics and Localization.                   
Poisson versus Wigner-Dyson. 
Anderson transition as a transition between different 
types of spectra. 
Thouless conductance                        

3 Quantum Chaos and Integrability and Localization.
Integrable         Poisson; Chaotic          Wigner-Dyson



Lecture 2.Lecture 2.
1. Localization 1. Localization 
beyond  real spacebeyond  real space



Localization in the angular momentum space



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory

Integrable classical Hamiltonian , d>1:

Separation of variables: d sets of 
action-angle variables

Quasiperiodic motion: 
set of the frequencies,           which are 
in general incommensurate. Actions    are 
integrals of motion

1 2, ,.., dω ω ω

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ
0=h

1θ
1I

2θ
2I⊗ ⊗…=>
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tori



Integrable dynamics:Integrable dynamics:
Each classical trajectory is quasiperiodic 
and  confined to a particular torus, which 
is determined by a set of the integrals of 
motion 

space Number of dimensions
real space d

phase space: (x,p) 2d
energy shell 2d-1

tori d

Each torus has measure zero on the energy shell ! 



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory
Integrable classical Hamiltonian , d>1:
Separation of variables: d sets of action-angle 
variables
Quasiperiodic motion: set of the frequencies,   

which are in general incommensurate 1 2, ,.., d

Actions       are integrals of motion
ω ω ω

1θ
1I

2θ
2I⊗ ⊗…=>

;..2,;..,2, 222111 tItI πωθπωθ ==

iI ∂ 0=∂tIi

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the motion 
ergodic (when each point at the energy 
shell will be reached sooner or later)

?
A:Most of the tori survive 

weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov Kolmogorov –– Arnold Arnold –– Moser (KAM) theoryMoser (KAM) theory

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the 
motion ergodic (i.e. each point at 
the energy shell would be reached 
sooner or later)

A:Most of the tori survive 
weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

?

?



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

1I

2I

0ˆ ≠V

1I

2I

Finite motion.
Localization in the space 
of the integrals of motion?Each point in the space of the 

integrals of motion corresponds 
to a torus  and vice versa



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

2I

2I 0≠h

Ly

Lx

1I
Two integrals of motion

x
y

x
x L

mp
L
np ππ

== ;

Rectangular billiard
1I



KAM 
theorem:

Most of the tori survive weak and 
smooth enough perturbations

1I

2I

0ˆ ≠V

1I

2I

1I

2I 0≠h

Energy shell



νµ ,V̂
νµ

( ) ( ) ( ){ }µµµ
dIII ,...,1=

r

Matrix element of 
the perturbation

One can speak about localization 
provided that the perturbation 
is somewhat local in the space 
of quantum numbers of the 
original Hamiltonian

( )µµ I
r

=

AL hops are local – one can distinguish “near” and “far”
KAM perturbation is smooth enough



Consider an integrable system. 
Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of 
quantum numbers. The whole set of the states 
forms a lattice in this space.

A perturbation that violates the integrability 
provides matrix elements of the hopping 
between different sites (Anderson model !?)

Weak enough hopping:
Localization - Poisson

Strong hopping:
transition to Wigner-Dyson



Square
billiard

Localized 
momentum space extended

Localized 
real space

Disordered 
extended

Disordered 
localized

Sinai
billiard



StrongStrong disorder localized
WeakWeak disorder extended

StrongStrong disorder localized

Moderate Moderate disorder extended

No No disorder chaotic extended

No No disorder integrable localized

Too weakToo weak disorder int.localized         



Glossary
Classical Quantum

Integrable Integrable

KAM Localized

Ergodic – distributed all 
over the energy shell
Chaotic

Extended ?

( )IHH
r

00 = IEH
r

== ∑ µµµ
µ

µ ,ˆ
0



Glossary
Classical Quantum

Integrable Integrable

KAM Localized

Ergodic (chaotic) Extended ?

( )IHH
r

00 = IEH
r

== ∑ µµµ
µ

µ ,ˆ
0

?µµ
µ

µ∑= EH0
ˆQ: Any Hamiltonian can 

be diagonalized.

A: Yes, but second 
condition is crucial. ⇒= I

r
µ

Poisson 
spectral 
statistics

Extended 
states:

Level repulsion, anticrossings, 
Wigner-Dyson spectral statistics



Level repulsion, anticrossings, 
Wigner-Dyson spectral statistics

Extended 
states:

Localized 
states: Poisson spectral statistics

Invariant 
(basis independent)

definition



e

Example 1 Doped semiconductor
Electrons are localized on 
donors Poisson

Low concentration 
of donors

Higher donor
concentration

Electronic states are 
extended Wigner-Dyson



e

Example 1 Doped semiconductor
Low 
concentration 
of donors

Electrons are localized 
on donors Poisson
Electronic states 
are extended 
Wigner-Dyson

Higher donor
concentration

Ly

Lx

Example 2
Rectangular 
billiard

Two 
integrals 
of motion y

y
x

x L
mp

L
np ππ

== ;

Lattice in the 
momentum space
py

px

energy 
shell Ideal billiard – localization in the 

momentum space
Poisson

Deformation or 
smooth random 
potential. If 
strong enough

– delocalization in 
the momentum 
space Wigner-
Dyson



Chaotic Systems - proven
Example 3

StadiumSinai billiard

Yakov Sinai Leonid Bunimovich



Example 3

Stadium

R

a



Example 3
Stadium

R

a

R
a

≡ε - parameter



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Example 3

Chaotic
stadium

Integrable circular billiard
Angular momentum is 
the integral of motion

1;0 <<= εh

Angular momentum 
is not conserved



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson

Example 3



Example 4 D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux 
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain
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Onsite 
interaction

n. neighbors 
interaction

integrableHubbard 
model0=V

extended 
Hubbard 

model
nonintegrable0≠V
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ii
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iiii nnVnnUcccctH

Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model0=V

extended 
Hubbard 

model
0≠V

12 sites
3 particles
Total spin 1/2
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux 
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

Example 4

integrable

nonintegrable



Example 5 D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux 
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

J exchange

t hopping



1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux 
Europhysics Letters, v.22, p.537, 1993

Example 5



J=t J=2t J=5t

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux 
Europhysics Letters, v.22, p.537, 1993

Example 5

N=16; one hole



Wigner-Dyson random matrix statistics
follows from the delocalization.

Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Many-Body excitations are delocalized !

What does it mean ?



Consider a finite system of quantum 
particles, e.g., fermions. Let the one-
particle spectra be chaotic (Wigner-
Dyson).

What is the statistics of the          
many-body spectra?
a)The particles do not interact

with each other Poisson: 
individual energies are conserving 
quantum numbers.

b) The particles do interact ????

Q:



Lecture 2. Lecture 2. 
2. 2. ManyMany--Body Body 
excitation in finite excitation in finite 
systemssystems



Fermi Sea

Decay of a quasiquasiparticleparticle with an energy ε in 
Landau Fermi liquid

ε



ε′+ω

QuasiparticleQuasiparticle decay rate at T = 0 in a clean clean Fermi Liquid. 

ε−ω

ε′
Fermi Sea

ε

( ) 3
22

constant

coupling =⎟
⎠
⎞⎜

⎝
⎛∝

−

d
Fee ε

ε
ετ

h

I. I. d=3d=3

Reasons:Reasons:
• At small ε the energy transfer, ω , is small and the integration 
over ε′ and ω gives the factor ε2. 
…………………………………………………………………
•The momentum transfer, q , is large and thus the scattering 
probability at given ε′ and ω does not depend on ε′ , ω or ε



QuasiparticleQuasiparticle decay rate at T = 0 in a clean clean Fermi Liquid. 

II. II. Low dimensionsLow dimensions
Small moments transfer, q , become important at 
low dimensions because the scattering probability is 
proportional to the squared time of the interaction, 
(qvF. )-2

e vF

1/q

( ) ( ) ( )
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Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 
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ε′+ωε−ω

ε′
Fermi Sea

ε

QuasiparticleQuasiparticle decay rate at T = 0 in a clean clean Fermi Liquid. 

Conclusions:Conclusions:
1. For d=3,2 from ε<< ε F it follows that ετe-e >> η, i.e., 

that the qusiparticles are well determined and the Fermi-liquid 
approach is applicable.

2. For d=1 ετe-e is of the order of η, i.e., that the Fermi-liquid 
approach is not valid for 1d systems of interacting fermions. 

Luttinger liquids



Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid

ε

ε−ω

ε1+ω

ε1

Quantum dot – zero-dimensional case ?



Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid

ε

ε−ω

ε1+ω

ε1

Quantum dot – zero-dimensional case ?

( )
2

1
TE

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠

εγ ε δ

( U.Sivan, Y.Imry & A.Aronov,1994 )
Fermi Golden rule:

Mean level 
spacing

Thouless 
energy

Decay rate of a quasiparticle with energy ε



( U.Sivan, Y.Imry & A.Aronov,1994 )
Fermi Golden rule:

( )
2

1
TE

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠

εγ ε δ

Mean level 
spacing

Thouless 
energy

Decay rate of a quasiparticle with energy ε in 0d.

Recall:
1

TE g
δ

≡

1 1TE gε δ>> >> ⇒ >>

Thouless 
conductanc

e

Zero 
dimensional 
system

Def:

One particle states are 
extended all over the system



Fermi Sea

ε

ε−ω

ε1+ω

ε1

zero-dimensional case

one-particle spectrum is 
discrete

equation 
ε1+ε2 = ε’1 + ε’2

can not be satisfied exactly

Recall: in the Anderson model 
the site-to-site hopping does 
not conserve the energy

Decay rate of a quasiparticle with energy ε in 0d.
Problem:



Decay rate of a quasiparticle with energy ε in 0d.

ε

ε−ω
ε’+ ω

ε’

Offdiagonal
matrix 
element

( ) 1
1,, δδεεω <<∝′

g
M



Chaos in Nuclei – Delocalization?

Fermi Sea

1 2 3 4 5 6
Delocalization 
in Fock spacegenerationsε

ε’ Can be mapped (approximately) 
to the problem of localization 
on Cayley tree. . . .ε1’

ε1

1 2 3 4 5



Conventional Anderson Model

Basis: ,i i

∑=
i

i iiH ε0
ˆ ∑

=

=
..,

ˆ
nnji

jiIV

Hamiltonian: 0
ˆ ˆH H V= +

)

•one particle,
•one level per site, 
•onsite disorder
•nearest neighbor hoping

labels 
sites



0d system; no interactionsεα

many (N ) particles no interaction:
Individual energies    and thus occupation 
numbers     are conserved

N conservation laws
“integrable system”

αεεβ
( )αnεγ

µµ
µ

µ∑= EĤ
( )∑=

α
α

α
µ εnE

( ){ }αµ n=

εδ

integrable system



0Ĥ Eµ
µ

µ µ= ∑

BasisBasis: µ
0,1nα =

HamiltonianHamiltonian:
0

ˆ ˆH H V= +
)

{ }nαµ =
occupation 
numbers

labels 
levelsα

( )
( )

,
V̂ I

µ η µ

µ ν µ= ∑

0d system with interactions
εα

εβ

εγ

εδ

( ) .., 1,.., 1,.., 1,.., 1,..n n n nα β γ δν µ = − − + +



Conventional Conventional 
Anderson Anderson 

ModelModel

Many body  AndersonMany body  Anderson--
like Modellike Model

Basis:Basis: i
labels 
sites

BasisBasis: ,µ
0,1nα =

{ }nαµ =
occupation 
numbers

labels 
levelsα

i

, . .

ˆ
i

i

i j n n

H i i

I i j

ε

=

= +∑

∑
( )

( )
,

Ĥ E

I

µ
µ

µ ν µ

µ µ

µ ν µ

= +∑

∑

“nearest 
neighbors”: ( ) .., 1,.., 1,.., 1,.., 1,..n n n nα β γ δν µ = − − + +



0Ĥ Eµ
µ

µ µ= ∑

BasisBasis: µ
0,1nα =

{ }nαµ =
occupation 
numbers

labels 
levelsα

0d system with interactions

HamiltonianHamiltonian:
0

ˆ ˆH H V= +
)

( )
( )

,
V̂ I

µ η µ

µ ν µ= ∑

( ) .., 1,.., 1,.., 1,.., 1,..n n n nα β γ δν µ = − − + +

εα

εβ

εγ

εδ

Few excitations       no recombination       Cayley tree 



Isolated quantum dot – 0d system of fermions

Exact many-body states:
Ground state, excited states

Exact means that the imaginary 
part of the energy is zero!

Quasiparticle excitations: Finite decay rate

Q: ?What is the connection



S

D

gate

QDQDsource drain

current

No e-e interactions –
resonance tunneling



S

D

gate

QDQDsource drain

current
g

No e-e interactions –
resonance tunnelingMean level 

spacing δ1

VSD



S

D

gate

QDQDsource drain

current
g

No e-e interactions –
resonance tunneling

The interaction leads to 
additional peaks –
many body excitations

VSD



D

SS

D
Resonance tunneling

Peaks
Inelastic cotunneling

Additional peak



S

S

gate

QDQDsource drain

current
g The interaction leads to 

additional peaks –
many body excitations

VSD



S

D

gate

QDQDsource drain

current
g

Ergodic - WDNE

Landau 
quasiparticle with 
the width γSIA

loc VSD



Ergodic - WDNE

Landau 
quasiparticle with 
the width γSIA

loc VSDextended

Localized - finite # of the satelites
Extended - infinite # of the satelites

(for finite ε the number of the
satelites is always finite)

Ergodic – nonergodic crossover!



Anderson Model on a Cayley tree



Anderson Model on a Cayley tree

K – branching numberI, W

1
lnc

WI
K K

∝

WI
K

= +
ln
W WI

K K K
< <Resonance at 

every generation
Sparse 
resonances



Definition: We will call a quantum state      
ergodic if it occupies the number of 
sites     on the Anderson lattice, 
which is proportional to the total 
number of sites : 

µ

µN

N

0⎯⎯ →⎯ ∞→NN
Nµ 0>⎯⎯ →⎯ ∞→ const

N
N

N
µ

ergodicnonergodic

Localized states are 
obviously not ergodic: constN N ⎯⎯ →⎯ ∞→µ

??Q: Is each of the extended state ergodicQ:
A:A: In 3D probably yes



Thouless conductance gThe bigger the system 
the sharper the transition

P(s)

In 3D –only critical 
point. Metal is ergodic
Corresponds to the 
scaling theory



In 3D – the transition is sharp in the limit, when 
system size tends to infinity, only critical point. 
Extended states are always ergodic states. 
This follows from the scaling theory.

This is doubtful already in 4D : variance of the 
mesoscopic fluctuations 

shows ultraviolet divergence.

( ) ∫∝ 4
2

q
qdrδσ

For very high dimensions close to the 
transition the extended states are almost for 
sure nonergodic ! 



Such a state occupies infinitely 
many sites of the Anderson 

model but still negligible fraction 
of the total number of sites

nonergodic states

Example of nonergodicity: Anderson ModelAnderson Model Cayley treeCayley tree:

transition
– branching number

KK
WIc ln

=

K

ergodicity

Nlnn ∝ WIerg ~ crossover



( )lnI W K K<
Resonance is typically far n const= localized

( )lnW K I W K K> >
Resonance is typically far Nn ln~ nonergodic

KWIW >>
Typically there is a 
resonance at every step

Nn ln~ nonergodic

WI >
Typically each pair of nearest 
neighbors is at  resonance

Nn ~ ergodic
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3. 3. ManyMany--Body  Body  
localizationlocalization



87Rb

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan1, D.Clément, L.Sanchez-
Palencia, P. Bouyer & A. Aspect, “Direct observation of Anderson localization of 
matter-waves in a controlled Disorder” Nature 453, 891-894 (12 June 2008)

ExperimentExperiment
Cold AtomsCold Atoms

L. Fallani, C. Fort, M. Inguscio: “Bose-Einstein condensates in disordered 
potentials” arXiv:0804.2888

Q: Q: What about electrons ?What about electrons ?

A:A: Yes,Yes,…… but electrons interact with each otherbut electrons interact with each other



sr

More or less understand

strength 
of the 
interaction

strength 
of 
disorder g1 Strong disorder + Strong disorder + 

moderate interactionsmoderate interactions

Wigner 
crystal

Fermi 
liquid



Temperature dependence of the conductivity Temperature dependence of the conductivity 
of of noninteractingnoninteracting electronselectrons

DoS DoSDoS



Temperature dependence of the conductivity Temperature dependence of the conductivity 
oneone--electron pictureelectron picture

Assume that all the 
states 

are localized DoS

( ) TT ∀= 0σ



Inelastic processesInelastic processes
transitions between localized states

α

β energy
mismatch

00 =⇒= σT

?0 =⇒> σT



PhononPhonon--assisted hoppingassisted hopping

α

β

Variable Range 
Hopping
N.F. Mott (1968)

Optimized
phase volume

Mechanism-dependent
prefactor

βα εεω −=h
ωh

Any bath with a continuous spectrum of delocalized 
excitations down to ω = 0 will give the same exponential



Can hopping conductivity Can hopping conductivity 
exist exist without phononswithout phonons

Common 
belief:

Anderson 
Insulator 
weak e-e 
interactions

Phonon assisted
hopping transport

1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Given:

Find: DC conductivity σ(T,ω=0)
(zero or finite?)



Q: Q: Can eCan e--h pairs lead to h pairs lead to phononphonon--lessless variable range variable range 
hoppinghopping in the same way as phonons doin the same way as phonons do ??



Q: Q: Can eCan e--h pairs lead to h pairs lead to phononphonon--lessless variable range variable range 
hoppinghopping in the same way as phonons doin the same way as phonons do ??

A#1:   Sure
1. Recall phonon-less 

AC conductivity:
N.F. Mott (1970)

2. FDT: there should be Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Q: Can eCan e--h pairs lead to h pairs lead to phononphonon--lessless variable range variable range 
hoppinghopping in the same way as phonons doin the same way as phonons do ??

A#1:   Sure

is contributed by 
rare resonances

δ
α

βγ

R ∞→

⇒∞→R
matrix 
element 
vanishes

0

Except maybe Coulomb interaction in 3D

×



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Q: Can eCan e--h pairs lead to h pairs lead to phononphonon--lessless variable range variable range 
hoppinghopping in the same way as phonons doin the same way as phonons do ??

A#1: Sure

A#3: Finite temperature MetalMetal--Insulator TransitionInsulator Transition
(Basko, Aleiner, BA (2006))

insulator
metal

σ = 0

Drude



insulator

Drude

metal
Interaction 
strength

Localization
spacing( ) 1−

≡ dνζδζ

Many body 
localization!

Many body  wave 
functions are localized in 

functional space

Finite temperatureFinite temperature MetalMetal--Insulator TransitionInsulator Transition

σ = 0

D.M. Basko, I.L. Aleiner & BA, 
Annals of Phys. 321, 1126 (2006) 
cond-mat/0506617 v1 23 Jun 2005



`̀Main postulate of the Gibbs Statistical Mechanics Main postulate of the Gibbs Statistical Mechanics ––
equipartition (microcanonical distribution): equipartition (microcanonical distribution): 
In the equilibrium all states with the same energy are 
realized with the same probability.
Without interaction between particles the equilibrium 
would never be reached – each one-particle energy is 
conserved.
Common believe: Even weak interaction should drive the 
system to the equilibrium. 
Is it always true?

ManyMany--Body Localization:Body Localization:
1.1.It is not localization in a real space!It is not localization in a real space!
2.There is 2.There is no relaxation no relaxation in the localized in the localized 
state in the same way as wave packets of state in the same way as wave packets of 
localized wave functions do not spread.localized wave functions do not spread.



Good 
(Drude) 
metal

Bad metal

Finite temperatureFinite temperature MetalMetal--Insulator TransitionInsulator Transition

Includes, 1d 
case, although is 
not limited by it.



There can be no finite temperature There can be no finite temperature 
phase transitions in one dimension! phase transitions in one dimension! 
This is a dogma.

Justification:Justification:
1.Another dogma: every phase transition is 
connected with the appearance 
(disappearance) of a long range order

2. Thermal fluctuations in 1d systems 
destroy any long range order, lead to 
exponential decay of all spatial correlation 
functions and thus make phase transitions 
impossible 



There can be There can be nono finite temperature finite temperature 
phase transitions phase transitions connected to any connected to any 
long range order long range order in one dimension! in one dimension! 

Neither metal nor Insulator are 
characterized by any type of long 
range order or long range correlations.

Nevertheless these two phases are 
distinct and the transition takes place 
at finite temperature.


