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Previous Lectures:

. Anderson Localization as Metal-Insulator Transition

Anderson model.
Localized and extended states. Mobility edges.

. Spectral Statistics and Localization.

Poisson versus Wigner-Dyson.

Anderson transition as a transition between different
types of spectra.

Thouless conductance

Quantum Chaos and Integrability and Localization.
Integrable <= Poisson; Chaotic <= Wigner-Dyson

. Anderson transition beyond real space
Localization in the space of quantum numbers.
KAM < Localized; Chaotic < Extended



Previous Lectures:

4. Anderson Localization and Many-Body Spectrum in
finite systems. BA, Gefen, Kamenev & Levitov. PRL 1996

Q: Why nuclear spectra are statistically the same as
RM spectra — Wigner-Dyson?
A: Delocalization in the Fock space.

Q: What is relation of exact Many Body states and
quasiparticles?
A: Quasiparticles are “wave packets”

5. Anderson Model and Localization on the Cayley tree

Ergodic and Nonergodic extended states
Wigner — Dyson statistics requires ergodicity!

6. Phononless conductivity



We will call a quantum state |u)

ergodic if it occupies the number of
sites N, on the Anderson lattice,
which is proportional to the total
number of sites N :

N N
Nﬂ —>0 Nﬂ ——>const >0

nonergodic ergodic




Such a state occupies infinitely

nonergodic states many sites of the Anderson
model but still negligible fraction

of the total number of sites

Example of nonergodicity: Anderson Model Cayley tree:

transition

K- branching number
| W
* KInK

ergodicity

Ierg ~\W crossover



| <W/(KInK)
Resonance is typically far N Yy = const  |ocalized

W/K>1>W/(KInK)

Resonance is typically far N~ In N nonergodic
W>1>W/K
resonance at every step H

| >W

Typically each pair of nearest \| ~ N

; _ p ergodic
neighbors is at resonance






Phonon-assisted hopping

Variable Range

Hopping
N.F. Mott (1968)

o(T) o< I exp

i

O¢
T

1
)d+1

is mean localization energy spacing -
5 typical energy separation between two
§ localized states, which strongly overlap

Any bath with a continuous spectrum of delocalized
excitations down to @ = O will give the same exponential




In disordered metals phonons limit the
conductivity, but at low temperatures one
can evaluate ohmic conductivity without
phonons, i.e. without appealing to any bath
(Drude formula)!

A bath is needed only to stabilize the
temperature of electrons.

1 . Is the existence of a bath crucial f)
Q - even for ohmic conductivity? .

Can a system of electrons left o
QZ " alone relax to the thermal .
" equilibrium without any bath?



Main postulate of the Gibbs Statistical
Mechanics - equipartition (microcanonical
distribution):

In the equilibrium all states with the same
energy are realized with the same
probability.

Without interaction between particles the
equilibrium would never be reached - each
one-particle energy is conserved.

Common believe: Even weak interaction
should drive the system to the equilibrium.
Is it always true?

No external bathl!



Many-Body Localization:
1.It is not localization in a real spacel

2.There is no relaxation in the localized
state in the same way as wave packets of
localized wave functions do not spread.



Fermi Pasta Ulam 1955

_ Will a nonlinear system (systemf)%x;._g,- A RAEE

Q _of interacting particles) o
completely isolated from the @iy B
outside world evolve to a

microcanonical distribution
(reach equipartition).

Anderson 1958

_ Wil a density fluctuation (a wave
Q _ packet) in a system of quantum 7
particles in the presence of disorder "
dissolve in the diffusive way.




o] 11111]¢] Anderson .
A2 2 Insulator => Phonon assisted
weak e-e hopping transport

interactions

Can hopping conductivity ?
exist $

Given: 1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity o(T,»=0)
(zero or finite?)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1: Sure

A#2: No way (L. Fleishman. P.W. Anderson (1980))
Except maybe Coulomb interaction in 3D

> rd—2 9
hw
o (w) ~ € ;{)C ( ) Ind+1

O¢ is contributed by
hw rare resonances

w=§ﬁ—§a=f’y—§5

5 I e - —
ma1'r'|x - _(Q‘)‘Hl

R_yoo > clement => o(T) oc Lixexp T

vanhishes i _




Finite temperature Metal-Insulator Transition

Many body wave
functions are localized in Drude
functional space

>
Interaction
A <1 strength

_ d Y1Localization
5; =(V§ ) spacing
¢ Localization length
>

o 9% T
 AlIn

<—insulator—

o=0

1ec

D.M. Basko, I.L. Aleiner & BA, Annals of Phys. 321, 1126 (2006)



Main postulate of the Gibbs Statistical Mechanics -
equipartition (microcanonical distribution):

In the equilibrium all states with the same energy are
realized with the same probability.

Without interaction between particles the equilibrium
would never be reached - each one-particle energy is
conserved.

Common believe: Even weak interaction should drive the
system to the equilibrium.
Is it always true?

Many-Body Localization:

1.It is not localization in a real spacel

2.There is no relaxation in the localized
state in the same way as wave packets of
localized wave functions do not spread.



Finite temperature Metal-Insulator Transition

)

¢ ¢ <
3&| 111,3\| A A2
e? |k '
d—2 [T T
Sloc

< Insulators

A

- Metal >
.T:J‘.T[mj T lel) ;
Includes, 1d '
) Good
case, although is Bad metal (Drude)

not limited by it. metal



There can be no phase transitions

at a finite temperature in 1D
Van Howe, Landau

Thermal fluctuation destroy any
long range correlations in 1D

T=0 Normal fluid - Insulator Phase Transition:

True phase

fluids (metals) nor _|transition:
glasses (insulators) | still | singularities in

exhibit long range transport (rather
than thermodynamic)

properties

Neither normal

correlations



Conventional Anderson Model

-one particle,

*one level per site,

I OOOS
Basis: ‘ i>, | Igﬁgi:s @@®®
Hamiltonian:l:l = I-AIO +\7 @@@@

Ho =2ali)il V= 21|

I, j=n.n.



0d system with interactions

Basis: ‘,u> e { n“}

n% =0 1occupa‘rion labels

numbers o levels



Many body Anderson-like Model

o E@&E3




Many body Anderson-like Model
 many particles,

 several levels @@@@ Basis: ‘,Ll>
per S|te

ens 5. O@O@  u={n’

. onsite disorder . labels labels
 Local mteractlon@@@@ | sites alevels

Hamiltonian: " a occupation
g — H +V +V H, = Eﬂ Eﬂ‘,u><,u‘\7 i numbers




Conventional

Anderson
Model

Basis: ‘ i>
i labels
sites

=3l
> 1li)i

I, j=n.n.

Two types of
“nearest
neighbors”:

Many body Anderson-

like Model
Basis:‘ ,u>, U= { ni“}

(94
- |labels labels N, —O_’l
sites levels occupation
numbers
ZE ) (| +
N
sites

Z ) {v (u )\
Z U\ﬂ><

(1)

one-particle
levels per site

., N’ —1,..,njﬂ+1,..>, i, j=n.n.

LN =1..n"-1.,n" +1.,n° +1,..>




Anderson’s recipe:

1. take discrete spectrum E , of H,

= insulator
2. Add an infinitesimal Im partisto E, i
E

3. Evaluate ImZ'M

£ @ .| | -
(@ 9%
= 5

£ E limits2) s -0
4. take limit s —> 0 but only after N — oo?? metal
5. “What we really need to know is the i

probability distribution of M2, not
its average...” o £




Probability Distribution of /=Im 2’

7 is an infinitesimal width (Im
part of the self-energy due to
a coupling with a bath) of
one-electron eigenstates

x 1/n

Look for:
> 0; metal
lim lim P(I' >0) = {

=+ 0V—00 0; insulator



Stability of the insulating phase:

NO spontaneous generation of broadening

I' (e)=0 &E—>e+In
Is always a solution linear stability analysis
I I
>ro(e—¢& )+

(6=&,)° +I° (6-&,)°
After N iterations of / \N
the equations of the n AT 1
Self Consistent Pn (F) oC 1_,3/2 const 5— In z
Born Approximation \ g y,

first n — o0

then n — O (...) <1 -insulator is stable !



Stability of the metallic phase:

Finite broadening is self-consistent

. _ 1 _(r—<r>>2]
P V/2m(6T2) exp[ 2(0r=)

)
(6T2) < () aslongas | T > Xc

o (I') <4, (levels well resolved)

o quantum kinetic equation for transitions between
localized states

o(T) o A2T| (model-dependent)






>

<— jnsulator—>f«—— metal o> O >
— d Y1 localization
54 —(Vé' ) spacing

interaction
A strength

Conductivity o

Drude metal
<)

temperature T)

Bad metal

* Does "localization length” have any 7
* meaning for the Many-Body Localization =



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop
W

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created N, (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

Size of the cascade N, <= "“localization length”



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created N, (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

At some temperature T=T_ n(T)—> .

This is the critical temperature T,
Above T, one phonon creates infinitely many pairs, i.e., the
charge transport is sustainable without phonons.



Many-body mobility edge

mobility

T. k= transition —
edge



Metallic States

1" A Large E (high T): extended states

good metal ergodic states

bad metal nonergodic states

mobility

T. k= transition —
edge

Such a state occupies
infinitely many sites of
the Anderson model but
still negligible fraction of
the total number of sites



Large E (high T): extended states

good metal ergodic states
____________________ crossover
bad metal nonergodic states
transition — MoP!IY ?
edge .

No r'elaxaﬁqn to
mlqrocpnoqlcal
distribution

- no equipartition



1

1e

Large E (high T): extended states

good metal ergodic states
bad metal nonergodic states
_______________________ mobility

transition —
edge

Why no
activation:



Temperature is just a

T measure of the total
energy of the system

good metal
TR T
bad metal
Nl R -
. b transition — MoPIlity
edge

E(T)-E

No activation:

x Volume

E, E, oc volume exp(

T

C
} volume — oo > O






What about experiment?

1. Problem: there are no solids without phonons

ho(T) _5 & L3
AllmAl A A2
E’.E,”i 1
Cf_z _____________________________
.y | lators i i
r I T
'I‘ : ‘.—
T. T T T

2. Cold gases look like ideal systems for studying
this phenomenon.



F. Ladieu, M. Sanquer, and J. P.
Bouchaud, Phys. Rev.B 53, 973 (1996)

G. Sambandamurthy, L. Engel, A.
Johansson, E. Peled & D. Shahar, Phys.
Rev. Lett. 94, 017003 (2005).

M. Ovadia, B. Sacepe, and D. Shahar,
PRL (2009).

V. M. Vinokur, T. I. Baturina, M. V. Fistul,
A. Y.Mironov, M. R. Baklanov, & C.

Strunk, Nature 452, 613 (2008)

S. Lee, A. Fursina, J.T. Mayo, C. T.
Yavuz, V. L. Colvin, R. G. S. Sofin, |. V.
Shvetz and D. Natelson, Nature

Materials v 7 (2008)
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M. Ovadia, B. Sacepe, and D. Shahar
PRL, 2009

Kravtsov, Lerner, Aleiner & BA:

Switches <= Bistability <—Electrons are overheated:

High resistance => low Joule heat => low el. temperature



Electron temperature
versus

bath temperature

T,,(T ) bistability diagram

0.25 —————
Electroh temperatu re
0-16 | LR 1 | I ‘ |
0.12 unstable i
HB/ I].15—+ Pl 3 : —
L~ 3
0.08 ol ~
~ e i
P 0.1
0.04
Phonon :
temperature .I;Sr e |
h
0.02 0.04 0/06 0.08 0.1
u{l {].II]5 lII].I1 I].'Il 5 I]I.?_ 0.25

Arrhenius gap 40~1K, which is

measured independen’rly is the Experimental bistability diagram
only "free parameter” (Ovadia, Sasepe, Shahar, 2008)



ms [ " | | I=I*[ex|;wm 1] | I-,a-r*fI:I" Common WiSdOm:
10" : 0" = o
9 no heating in the
; insulating state
=11
— 10 | .
= g |no heating for
=" . phonon-assisted
0 \ | —=—T=12mK N hopplng
-L3 L T=50mK i
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-14 T=90mk .
10 [ T=100mK 4 Tl |] _
35 | e, b
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Kravtsov, Lerner, Aleiner & BA:
Switches < Bistability < Electrons are overheated:

Low resistance => high Joule heat => high el. temperature
High resistance => low Joule heat => low el. temperature



M. E. Gershenson,Yu. B. Khavin, D. Reuter, P. Schafmeister,
and A. D. Wieck Phys. Rev. Lett. 85, 1718 (2000).
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Power: P=3.7x10" [W](Te4'5 —T4-5)



Phonon-assisted variable range hopping




Low temperature anomalies

Voltage dependence of [ B .
the conductance in the .|
High Resistance phase _ ;|
f_z 10" -
10"
Theory : G(Vy)/G(V>0)<e | WL
1ok E?ggr:ﬁ w;*}FH]l_"[ . I-_Flmild,l []| _
Experiment: this ratio can || == ] LR |/40 g
exceed 30 R Ewrmr /1 / —
Vi (107V)

Many-Body Localization ?



Low temperature anomalies

107 F - .

1. Low T deviation (b L
from the |
Ahrenius law

IDﬁE'

R(O)

“Hyperactivated resistance in
TIN films on the insulating
side of the disorder-driven
superconductor-insulator
transition”

T. . Baturina, A.Yu. Mironov, V.M.
Vinokur, M.R. Baklanov, and C. Strunk,

29(]%0; *D. Shahar and Z. Ovadyahu, Phys. Rev. B (1992).
V. F. Gantmakher, M.V. Golubkov, J.G. S. Lok,
A.K. Geim,. JETP (1996)].
*G. Sambandamurthy, L.W. Engel, A. Johansson,
and D.Shahar, Phys. Rev. Lett. (2004).

IDSE'

10 ¢

/T(1/K)



Lectute 3.

4. Many-Body Localization
1D bosons + disorder



1D Localization

Exactly solved: Gertsenshtein & Vasil'ev,
all states are localized 1959
Conjectured: Mott & Twose, 1961

. correct for
1-particle problem === bosons as well
as for fermions



Bosons without disorder

‘Bose - Einstein condensation
-Bose-condensate even at weak enough repulsion

//:I-Even in 1D case at T=0 - “algebraic superfluid”

*Finite temperature - Normal fluid

&>@ T

Normal fluid




Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,

891- 894 (2008).

4/_
L~
-~
~ ’
L~
-~
4‘/
(“ g

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate®. Nature 453, 895-898 (2008).

No interaction !



E‘hermodynamic}:\s of ideal

ose-gas in the presence

of disorder is a pg‘rholo ical — Need
problem: all particles will

occupy the localized state

with the lowest energy

repulsion



Weakly interacting bosons

Bose - Einstein condensation

‘Bose-condensate even at weak enough repulsion

‘Even in 1D case at T=0 - “algebraic superfluid”

1. No interaction

disorder
For any
energy at
= finite
N = .
" S disorder
S o 1D
= | localization

2. No disorder

Normal fluid

Superfluid-
insulator
fransition

T

3. Weak repulsion
disorder

insulator

Superfluid-
insulator

transition

superfluid



T=0 Ssuperfluid - Insulator Quantum Phase Transition

disorder

insulator

-g transition
= in 1+1

o dim

Q

S

7))

E. Altman, Y. Kafri, A. Polkovnikov & G. Refael,
Phys. Rev. Lett., 100, 170402 (2008).

G.M. Falco, T. Nattermann, & V.L. Pokrovsky,
Phys. Rev., B80, 104515 (2009).



disorder

‘)

superfluid insulator

Normal fluid

Is it a normal fluid at any Temper'cn‘ur'e?



What is insulator?

Perfect Zero DC conductivity at
Insulator finite temperatures
Possible if the system is decoupled from any outside bath

Normal Finite (even if very small)
metal DC conductivity at finite
(fluid) temperatures




VW ET o ([ .UM [T Bl bosons = fermions ?

Bosons with infinitely _ .
strong repulsion ~ Free fermions

Fermions with infinitely

Free bosons X strong attraction

Weakly interacting ~ Fermions with strong
bosons

"~/

attraction

>

As soon as the occupation numbers become large
the analogy with fermions is not too useful



All one-particle states are localized in 1D
- perfect insulator without interaction

This is correct for both fermions and bosons

Fermi-systems remain perfect insulators at
low enough temperatures even in the
presence of the interaction Basko, Aleiner & BA, 2005

What about bose-systems ?

Difference: many bosons can occupy a given
one-particle state. Interaction matrix
elements increase with occupation numbers



1D Weakly Interacting Bosons + Disorder

Aleiner, BA & Shlyapnikov, 2010, Nature Physics, to be published
cond-mat 0910.4534

1. No interaction 3. 7=  disgrder
disorder s
A g E
For any % @
temperature =
5 and any
§ § dfini:ie .
- isorde o=
- o disorder g3
localization & =
<3z
& a
2. No disorder T
® >
Normal fluid T > |




Density of States V(&) in one dimension

No disorder ( ) \/ m
. V\E )=
Quadratic spectrum 222
1 : 27°h°e
2m

J - singularity



Density of States V(&) in one dimension

0
i\ Inthe presence

of disorder the
Quadratic spectrum singularity is

smeared
Ae)=
271°h%e

V(E) Tv(g)

No disorder




Density of States V(&) in one dimension

Lifshitz tail:
exponentially
small Density
of States




Weak disorder - random potential U(X)

Random potential U(X):
V(E) Amplitude U,
T Correlation length o

hz

Short range disorder: U, <<

l

Localization length {>>0

Mo

E




Characteristic scales:

All states are localized
Localization length:






Finite density Bose-gas with repulsion
Density 1N

Two more energy scales

Temperature of quantum degeneracy T; =

hn®
m

Interaction energy per particle 110

k=E, /ng Characterizes the

Two strength of disorder

dimensionless

arameters b Characterizes the
P s ng/ Ty interaction strength

Strong disorder x>>1
Weak interaction y <<1



Dimensionless temperature t=T/ng

Critical temperature T, t. =t (x,7)
Critical disorder K. =K, (t, 7/)

Phase transition line on the {,x -
nlane



Finite temperature
k=E,/ng phase transition in 1D LS

_——'_._'_._._-

Insulator

1/ Jy

t=T/ng




Transition temperature: JESHEIY

i).3)= k). [1) jjEcoenm
transition ‘k> % QLJML‘ |>



Transition temperature: JESHEIY

i)5) = k0.1 oo
transition ‘k>% OO JMLW
b =ere, =6 B
Mij,kl matrix element Decay of a state ‘|>

A typical mismatch
N, typical # of channels

M typical matrix element

>>A(T)/N,(T) extended analog of

. >>W
<< A(T)/N,(T) localized W

M (T)



RTINS I T >> T, <> t>>

Bose-gas is not degenerated;
occupation numbers either O or 1

\
F___"_'_'_'_:'_!tg_‘_'_'_*__'*_____ M~g /g> F---'_-_-i_-:_-ﬁf'ﬁf; ______ B
W ahebabntutnl,_abutnberinte B I / bbbt

Matrix element of the transition

M ~g/c(s=T)~(gE.)/(c.T)

should be compar'ed wi1'h the minimal energy
mlsma'rch vng 2-|-

E2
lizat
s:zz.:\zﬁ ﬁ B et

channels




Intermediate temperatures: 7/—]/2 e e

1.T«<T, = ty<«li

2. Bose-gas is degenerated. occupation numbers
either >>1.

3. Typical energies |4|=T%/T,, u is the chemical

potential. Correct as long as multiple R
\u\ >>ng,E, = t\/; >>1 occupatior P

<<T

4. Characteristic energies ¢ ~‘:“‘ >>ng, E

We are still dealing
with the high energy



Intermediate temperatures: PaEIP IS P S
‘ILI‘:TZ/Td >>ng, E. T<<Td

Bose-gas is degenerated; typical energies ~

1|>>T — occupation numbers >>1— matrix
elements are enhanced

g T
I—‘—-'—.—-.-————I MN, ~ — - - ---—+
B W S g(8)8> "-'.'t!:'t_h-lv—l--l-l"l
-4 B B0 - -aveT ® e

K (t)ect?y¥ |y <<ty <<l



Low temperatures: [ ana
Bosons occupy onl?l
ow

xk=E,/ng>>1— ‘ﬂ‘ << E, — small fraction of
) W €nergy states & < U

() (G.E.)J"
5. R E,
\:>
£




Low temperatures: [ ana
Bosons occupy onlr
ow

xk=E,/ng>>1— ‘ﬂ‘ << E, — small fraction of
) e ENergy states & < U




Low temperatures: [ an& Occupation

_ 12
K@= E*/ng >>1 —_ “Iakesu nl (K‘)/g* =y >>1

Distance
(k)= g*\/; >>
9y S

—I(x) >
2 ol &

Strong
| (K) >Z S« = insulator

K=K, Insulator — Superfluid transition in

l(x) <<, = a chain of “Josephson junctions”




Low temperatures: [ ana

Strong

e E*/ng >>1 = insulator

= Kk, ~1for t<<y 2
T =0 transition x, ~1

k=E.[ng

Insulator




i)

——
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| I |




Disordered interacting bosons in two dimensions

Superfiuid

Fluid

Temperature

-




Disordered interacting bosons in two dimensions

Justification:
1.

2.

4 Disorder __’

- ——

Fluid

Superfiuid

Tempe rature

-

At T=0 normal state is unstable with respect to either
insulator or superfluid.

At finite temperature in the vicinity of the critical
disorder the insulator can be thought of as a collection
of "“lakes”, which are disconnected from each other.
The typical size of such a “lake” diverges. This means
that the excitations in the insulator state are localized
but the localization length can be arbitrary large.
Accordingly the many -body delocalization is unavoidable

at an arbitrary low but finite T.



4. Speculations



>

S‘(— insulator—-f«—— metal o> O >
= o 50 S. = (Vé’d )‘1 localization

_‘g’ Many body d spacing

< | | localization! A< 1 interaction

S strength

Drude metal
G

temperature T)

Bad metal

Q: What happens in the classical limitf; — O?

Speculations: 1.No transitionT, — 0
2 .Bad metal still exists

Reason: Arnold diffusion



Arnold diffusion

7N\ |2‘ ¢
[/ \\. \".
. X V %0
.1, a
Each point in the space of the Finite motion?

integrals of motion corresponds
to a torus and vice versa

d _ 2 All classical trajectories
T correspond to a finite motion

d 2 Most of the trajectories
> correspond to a finite motion

However small fraction of the
trajectories goes infinitely far



Arnold diffusion

1. Most of the tori survive - KAM

2. Classical trajectories do not cross each
other

space # of dimensions

real space d

phase space 20

energy shell 2d-1

tori d

d=2 = den.shell _dtori =1 d=2 = den.shell _dtori =1
Each torus A torus does not have
has "“inside” “inside” and “outside” as

and “outside” a ring in >2 dimensions



Speculations:

1. Arnold diffusion < > Nonergodic (bad)
metal

2. Appearance of the transition (finite T, ) -
quantum localization of the Arnold diffusion



Conclusions

Anderson Localization provides a relevant language
for description of a wide class of physical
phenomena - far beyond conventional Metal to
Insulator transitions.

Transition between integrability and chaos in
quantum systems

Interacting quantum particles + strong disorder.
Three types of behavior:

ordinary ergodic metal

"bad” nonergodic metal

“true” insulator

A closed system without a bath can relaxation to a
micr'olcanonical distribution only if it is an ergodic
meta






