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Preface

At the end of the fifties and in early sixties of the last century there was a
kind of “revolution” in the theory of condensed matter (at that time called
mostly the theory of solid state and quantum liquids) which was due to
the use of methods, developed a decade earlier in quantum field theory,
mainly the method of Feynman diagrams. Since that time diagrammatic
methods became the foundation of this section of theoretical physics, and
the knowledge of these is absolutely necessary for any professional working
in this field.

A number of good books are devoted to rather detailed exposition of the
general aspects of these methods, such as the introduction of diagrammatic
formalism for different types of interactions [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)]. Of course,
most of these books contain also discussion of some specific applications of
these methods to concrete physical problems. At the same time, up to now
there are almost no books, where the reader can find the detailed descrip-
tion of calculations and methodical “know how” for specific problems, at
the beginner level (like graduate or postgraduate students)1. During the
last decades a great number of problems were solved (or analyzed) using
Feynman diagram technique and the results are scattered in the numerous
original papers, reviews and books.

The aim of these lectures is precisely the demonstration of the power
of diagram technique as applied to the solution of different problems of
condensed matter theory, most of which a long time ago became a kind

1The author knows only one such attempt [Levitov L.S., Shitov A.V. (2003)], which
remained unpublished for a long time, and finally was published only in Russian. A
comprehensive review of the applications of field theory methods to different problems
of solid state theory and the theory of quantum liquids is contained in [Mahan G.D.
(1981)], but it is in fact a review for a professional, not a textbook.
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of “gold reserve” of this theory, while different concepts and methodical
developments constitute a part of a working “folklore” of modern theorists.
Our choice of problems is based both on their importance and personal in-
terests of the author. Some of these problems are not “finally” solved up to
now, so that further development of the results of almost any section of this
book may be the starting point of a serious theoretical study. Actually, we
limit ourselves only to the selected problems of electronic theory of solids,
dropping any discussion of Bose – liquids, most problems of the theory of
magnetism, as well as the theory of critical phenomena, where diagram-
matic methods are also quite important. It should be clearly understood
that the material discussed in every chapter of this book can be a part of
a separate lecture course, and we do not pretend to give a self – contained
review of any of these parts of the modern theory.

It is obvious, that the application of quantum field theory methods to
the theory of condensed matter is not limited to diagrammatic methods
only. In particular, there was a great temptation to pay some attention
to the functional integrals or renormalization group. But finally a deci-
sion was made to limit discussion only to diagrammatic approaches and
problems, which can be solved within more or less standard perturbation
theory, dropping almost all modern aspects of the theory of strongly corre-
lated systems. This was due to a wish to make these lectures more or less
“compact”, as well as to demonstrate the “richness” of results, which can
be obtained on this way.

To understand these lectures it is necessary to know the basic notions of
Feynman diagram technique, approximately within the limits of chapters
II and III of the notorious “AGD” book [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], where anybody can find a presentation, which
remains unsurpassed up to now2.

The author is grateful to Dr. K.K. Phua of World Scientific for the
invitation to publish an English version of this book. This edition contains
some additions and small changes in comparison with an original Russian
version.

M.V. Sadovskii, Ekaterinburg, 2005

2In fact the material presented in this book is used by the author as a second part of
the lecture course, taught at the Ural State University in Ekaterinburg. The first part
of this course is actually based on these chapters of “AGD”.
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Chapter 1

Introduction

The concept of quasiparticles is of major importance in the theory of con-
densed matter. This concept can be rigorously justified within the Green’s
function formalism, which a long time ago became the main working tool
of all modern approaches to many particle systems. The method of Green’s
functions allows to formulate criteria for the existence of quasiparticles in
specific models of interacting particles, as well as constitutes the universal
method of practical calculations of arbitrary physical properties of many
particle systems with the account of different types of interactions. This
method originated in quantum field theory, where quite effective and con-
venient approach, based on the use of Feynman diagrams appeared for the
first time. The following transfer of these methods to the theory of many
particle systems, in fact, lead to the formulation of the modern theory of
condensed matter [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)].

In this lecture course we do not present step by step derivation of the
Green’s function formalism itself, our aim is to teach how to use this method
for solution of concrete physical problems. It is assumed that the basic
principles of construction of Feynman diagrams for different types of inter-
actions are already known, both for the case of zero temperature T = 0,
as well as for finite temperatures (Matsubara formalism) [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)]. The structure of the course is
clear from the Contents. Separate chapters are devoted to the analysis
of different types of interactions, which are studied within the electronic
theory of the solid state, and also to a number of major electronic insta-
bilities (phase transitions). At first, in each chapter we formulate the rules
of diagram technique, appropriate for the interaction under study, then we
analyze different problems, in most cases presenting all the details of cal-

1
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culations, or at least giving all the information necessary to reproduce the
results. Practically everywhere in these lectures we tried to adhere to the
rules and major notations used in “AGD” book [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)], though due to rather “informal” style of
our presentation, we can not guarantee the absence of some “randomness”
in notations between different sections. In fact, each chapter can be used as
the introduction to the problems of the appropriate part of the solid state
theory. In this sense the chapters can be read independently of each other,
but it should be noted that all the problems under discussion has much
in common and are, in fact, deeply connected to each other. Bibliography
is in no sense complete, we quote only the sources, from which we have
taken the material used in our presentation, limiting ourselves mainly to
textbooks or reviews. Accordingly, there are practically no references to
original papers and no discussion of priorities, in most important cases we
just quote the name of the author (with an approximate year, when the
result was obtained). Some of the material of these lectures is based on
personal exercises by the author, no specific references are given in most of
such cases.

The main idea of diagrammatic approach in the theory of condensed
matter reduces in fact to the summation of an infinite series of Feynman
diagrams for the single – particle or many – particle (in most cases two –
particle) Green’s functions (and (or) appropriate vertex parts, describing
multi – particle interactions). Usually it is possible to perform a certain par-
tial summation of some classes (types) of diagrams of perturbation series,
which are “dominating” over some physical parameter (e.g. dimensionless
coupling constant, density of particles, or some other combination of para-
meters, characteristic for the problem under discussion). In most cases, such
dominating classes of diagrams were determined already during the initial
stages of the development of diagrammatic approaches to different kinds
of interactions [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)], and we shall consider a number of
such typical cases and physical results obtained. In some (very) rare cases
and for (mostly) oversimplified model cases, it is possible to perform a
complete summation of all Feynman diagrams. These cases (problems) are
much less known, but mostly are quite important and instructive. We shall
consider a number of such problems, both to illustrate technical aspects
and also to analyze nontrivial conclusions, such as the “destruction” of the
concept of quasiparticles itself, which being quite useful certainly has its
limits. Here we shall move closer to most modern aspects of the theory.
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Practically everywhere in these lectures we use the natural units with
� = c = 1, “restoring” � and c only in some final expressions and estimates.
Boltzmann’s constant is always taken as kB = 1.

1.1 Quasiparticles and Green’s functions.

Though we shall not be presenting any systematic derivation of diagram-
matic approach to many – particle systems, let us start with some short
introduction of some elementary concepts and definitions, just for coher-
ence of presentation and to remind a reader basic physical ideas behind the
application of Green’s functions in condensed matter theory .

Consider first the case of temperature T = 0, i.e. the system at its
ground state. Let us start from the elementary problem of a single quantum
particle moving in some time – independent external potential (or field),
and described by the usual (time – dependent) Schroedinger equation with
appropriate Hamiltonian H :

i
∂ψ(r, t)
∂t

−Hψ(r, t) = 0 (1.1)

Instead of solving this equation directly (with some initial condition for
the wave – function) we introduce the Schroedinger – like equation for
the Green’s function G(r, t; r′, t′), depending on two values of time and
coordinate:

i
∂G

∂t
−HG = iδ(r − r′)δ(t− t′) (1.2)

with initial condition G(r, t+ 0; r′, t) = δ(r − r′). Physically, Green’s func-
tion represents the probability amplitude for a particle transition from (ini-
tial) point r′ at the moment of time t′ to the some point r at the moment
t. Squared modulus of this amplitude gives the probability of such transi-
tion. This is easily checked expressing ψ-function at the moment t+ τ via
ψ-function at the moment t as:

ψ(r, t+ τ) =
∫
dr′G(r, t+ τ ; r′t)ψ(r′, t) (1.3)

It is easily seen that this expression for ψ(r, t+τ) satisfies the Schroedinger
equation (1.1), and for τ → 0 it coincides with ψ(r, t) due to the initial
condition G(r, t+ 0; r′, t) = δ(r − r′). Obviously, we have to assume G = 0
for τ < 0 to guarantee causality.
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Let us now introduce some set of eigenfunctions of the stationary
Schroedinger equation:

Hϕλ(r) = ελϕλ(r) (1.4)

Depending on the problem at hand, the quantum numbers λ can have differ-
ent physical meaning. If our problem (Hamiltonian) is translation invariant
λ→ p, e.g. the momentum of a free particle, for the system in an external
magnetic field λ represents the set of Landau quantum numbers, for a par-
ticle moving in some arbitrary (or random) potential, these may be some
(in general unknown to us) quantum numbers of the states diagonalizing
the Hamiltonian.

Consider the simple case of a particle moving in some potential:

H =
p2

2m
+ V (r) (1.5)

Any solution of the Schroedinger equation (1.1) can be expanded using the
complete system of eigenfunctions of (1.4):

ψ(r, t) =
∑

λ

cλ(t)ϕλ(r) (1.6)

Then we can write (1.3) as an equation for the coefficients of this expansion:

cλ(t+ τ) =
∑
λ′
Gλλ′ (τ)cλ′ (t) (1.7)

and obtain:

Gλλ′ (τ) =
∫
d3rd3r′G(r, r′τ)ϕ�

λ(r)ϕλ′ (r′) (1.8)

– the Green’s function in the representation of quantum numbers λ. As ϕλ

is an exact stationary state of the (time – independent) Hamiltonian H ,
there are no transitions to another states, so that cλ(t + τ) = e−iελτ cλ(t),
i.e.

Gλλ′ (τ) = Gλ(τ)δλλ′ = e−iελτθ(τ) (1.9)

where θ(τ) = 1 for τ ≥ 0 and θ(τ) = 0 for τ < 0. Consider now the Fourier
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transform1:

Gλ(ε) =
1
i

∫ ∞

−∞
dτeiετGλ(τ) (1.10)

Gλ(τ) = i

∫ ∞

−∞

dε

2π
e−iετGλ(ε) (1.11)

Then, after elementary integration we get:

Gλ(ε) =
1

ε− ελ + iδ
, δ → +0 (1.12)

The sign of δ → 0 is chosen to guarantee Gλ(τ) = 0 for τ < 0. In fact we
have:

Gλ(τ) = i

∫ ∞

−∞

dε

2π
e−iετ

ε− ελ + iδ

=
{
e−iελτ for τ > 0
0 for τ < 0

(1.13)

To convince yourself note, that the integrand here has a pole at ε = ελ− iδ.
Then for τ > 0 we can close the integration contour in the lower half –
plane of complex variable ε (as the factor e−iετ guarantees the exponential
damping of the integrand at the semicircle at infinity in the lower half –
plane), then the pole of the integrand is inside the contour of integration
and using Cauchy theorem we obtain the result given in Eq. (1.13). For
τ < 0, to guarantee the zero contribution from the semicircle, we have to
close integration contour in the upper half – plane of ε. Then there is no
pole inside the contour and the integral reduces to zero.

In a mixed (r, ε) representation we obtain:

G(r, r′, ε) =
∑
λ,λ′

Gλλ′ (ε)ϕλ(r)ϕ�
λ′ (r′) =

=
∑

λ

ϕλ(r)ϕ�
λ(r′)

ε− ελ + iδ
(1.14)

Here the sum over λ includes summation over all bound states and integra-
tion over the continuous part of the spectrum. We can see that G(r, r′, ε)

1Note the additional factor i which we introduced in (1.10), (1.11) and below in
(1.19) which guarantees correspondence with standard notations of “AGD”. Usually this
factor is just added in the definition of Green’s function [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)].
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possesses poles at the values of ε equal to ελ, i.e. at the energies of bound
states, and the cut (continuum of the poles) on the part of the real axis of
ε, corresponding to the continuous part of the spectrum.

Consider now the many – particle system. Let us limit discussion only
to the case of (many) Fermions. Similar analysis can be given for the
system of Bose particles, but we skip it referring the reader to the general
courses [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963); Lifshits
E.M., Pitaevskii L.P. (1980)]. Consider first the case of non – interacting
Fermions (Fermi – gas). Elementary excitations in this case are pairs of
excited particles (above the Fermi surface) and holes (below the Fermi
surface).

Let us determine Green’s function for a particle excitation Gλλ′ (τ),
i.e. the transition amplitude of a particle from some state λ to a state λ′

(for the case of non – interacting Fermions). We have to take into account
limitations due to Pauli principle, i.e. exclude transitions to occupied states.
This can be achieved by an additional factor (1 − nλ) in the definition of
the Green’s function, where

nλ =
{

1 for ελ ≤ εF

0 for ελ > εF
(1.15)

is just the particle number in a state λ (Fermi distribution for T = 0). Thus
we obtain:

G+
λλ′ (τ) = (1 − nλ)δλλ′

{
e−iελτ for τ > 0
0 for τ < 0

(1.16)

Let us now find similar expression for holes. As the number of available
states for holes at the state λ is just nλ, we get:

G−
λλ′ (τ) = nλδλλ′

{
eiελτ for τ > 0
0 for τ < 0

(1.17)

where we have taken into account also that the hole energy (with respect
to the Fermi level) is opposite in sign to the particle energy.

It is convenient to introduce Green’s function Gλ(τ), defined both for
τ > 0 and τ < 0:

Gλ(τ) =
{
G+

λ (τ) for τ > 0
−G−

λ (−τ) for τ < 0
(1.18)
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Fourier transform of this function is easily calculated as:

Gλ(ε) = −i(1 − nλ)
∫ ∞

0

dτe−iελτ+iετ + inλ

∫ 0

−∞
dτeiελτ+iετ =

=
1 − nλ

ε− ελ + iδ
+

nλ

ε− ελ − iδ
(1.19)

where it is necessary to introduce δ → +0 to guarantee convergence. It is
convenient to rewrite this expression as:

Gλ(ε) =
1

ε− ελ + iδsignελ
=

=

{
1

ε−ελ+iδ for ελ > εF
1

ε−ελ−iδ for ελ < εF
(1.20)

where we have introduced sign – function: sign(x) = 1 for x > 0 and
sign(x) = −1 for x < 0. Note that the Fourier transform of this Green’s
function has a pole at ε equal to a particle (hole) energy.

Consider now the system of interacting Fermions. Single – particle
Green’s function in a system of interacting Fermions can be defined as:

G+(rt; r′t′)t>t′ =< 0|ψ̂(rt)ψ̂+(r′t′)|0 > (1.21)

where |0 > is an exact ground state (“vacuum”) of our system, corre-
sponding to the filled Fermi – sphere, ψ̂(rt) is second quantized operator of
a Fermi field in Heisenberg representation [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:

ψ̂(rt) = eiHtψ̂(r)e−iHt (1.22)

with H – the Hamiltonian of our many – particle (interacting) system. Op-
erator ψ̂(r) can be expressed in a standard way via annihilation operators
aλ of a particle in λ – states (while ψ̂+ is similarly expressed via creation
operators a+

λ ):

ψ̂(r) =
∑

λ

aλϕλ(r) (1.23)

Eq. (1.21) obviously gives us the transition amplitude for a particle prop-
agating from (r′t′) to (rt).

Similar expression can be written for propagating hole:

G−(rt; r′t′)t>t′ =< 0|ψ̂+(rt)ψ̂(r′t′)|0 > (1.24)
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where it is taken into account that annihilation of a particle in a given point
is equivalent to creation of a hole.

Both expressions (1.21) and (1.24) are defined for t > t′. It is convenient
to can write down a single expression, which for t > t′ describes propagating
particle, while for t < t′ – propagating hole (similarly to Eq. (1.18)):

G(rt; r′t′) =
{
G+(rt; r′t′) for t > t′

−G−(r′t′; rt) for t < t′
(1.25)

Another way to write this is2:

G(x, x′) =< 0|T ψ̂(x)ψ̂+(x′)|0 > (1.26)

where we have denoted x = (rt), and the symbol of T -ordering means that
all the operators standing to the right of T are placed in order over time
arguments, with those corresponding to later moments standing to the left
from those corresponding to earlier times, with the account of a sign change
due to permutations of Fermion operators (necessary to place operators in
the “right” order in time arguments). Formal definition of T -ordering taken
from the quantum field theory is given by:

T {F1(t1)F2(t2)} =
{
F1(t1)F2(t2) for t1 > t2
−F2(t2)F1(t1) for t1 < t2

(1.27)

for Fermion operators and

T {B1(t1)B2(t2)} =
{
B1(t1)B2(t2) for t1 > t2
B2(t2)B1(t1) for t1 < t2

(1.28)

for Boson operators. Green’s function defined by Eq. (1.26) is usually
called Feynman or causal (T -ordered)3.

2Standard definition of “AGD” differs by an additional factor of −i, which we have
taken into account in Fourier transforms above.

3Note that this definition does not coincide with that of the so called two – time
Green’s function introduced bu Bogoliubov and Tyablikov and used in the theory of lin-
ear response [Zubarev D.N. (1974)], even if we go there to the limit of zero temperature.
The advantage of introducing Feynman’s functions is in the availability of diagram tech-
nique, giving the universal method to calculate these Green’s functions via perturbation
theory. There is no (convenient) diagram technique for Green’s functions of Bogoliubov
and Tyablikov. There are a number of exact relations and methods, allowing to ex-
press the Green’s functions of linear response theory via Feynman’s functions for T = 0
and appropriate generalizations for the case of finite temperatures (Matsubara formal-
ism) which we shall use below [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
Lifshits E.M., Pitaevskii L.P. (1980)].
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If we deal with an infinite homogeneous (translation invariant) system
we have G(rt; r′t′) = G(r − r′, t−t′) and it is convenient to perform Fourier
transformation both in t− t′ and r− r′:

G(pτ) =
∫
d3rG(rτ)e−ipr (1.29)

where

G(pτ) =
{
< 0|ape−iHτa+

p |0 > eiE0τ τ > 0
− < 0|a+

p e
iHτap|0 > e−iE0τ τ < 0

(1.30)

where E0 is the ground state energy (in our case just equal to Fermi energy
EF ).

Quasiparticles can be a viable concept if the single – particle Green’s
function of a system under consideration can be expressed as (τ > 0):

G(pτ) ≈ Ze−iξ(p)τ−γ(p)τ + ... and γ(p) � ξ(p) (1.31)

where ξ(p) = ε(p) −EF , i.e. it contains a contribution of the form similar
to that of the Green’s function of the free (non – interacting) Fermi gas.
Eq. (1.31) means the presence (with amplitude Z in the ground state |0 >)
of a wave – packet, corresponding to a quasiparticle with energy ξ(p) and
damping γ(p). We have to require that γ(p) � ξ(p), i.e. the weakness of
damping to make quasiparticles “well defined”4. In a similar way, for τ < 0
we can define the Green’s function for a quasihole. Finally, in a system with
well defined quasiparticles the Fourier transform of the Green’s function
(1.26) can be written as:

G(pε) = Z

{
1 − np

ε− ξ(p) + iγ(p)
+

np

ε− ξ(p) − iγ(p)

}
+Greg(pε) =

=
Z

ε− ξ(p) + iγ(p)sign(p− pF )
+Greg(pε) (1.32)

We see that the poles of this expression define the quasiparticle spectrum
and damping. This is a general property of Green’s functions, allowing
to determine the quasiparticle spectrum in many – particle system. The
value of Greg in (1.32) is determined by the contribution of many – particle
excitations, and in most cases is of no special importance. However, in
systems with strong correlations (interactions) we may meet with situation,
when there is actually no quasiparticle poles in the Green’s function, so that

4This condition, as we shall see below, is satisfied in Landau theory of Fermi liquids,
where close to the Fermi surface we have: ξ(p) ≈ vF (|p−pF |), while γ(p) ∼ (|p|−pF )2

(vF is Fermi velocity).
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there is no single – particle excitations at all and everything is actually
determined by Greg, making the studies of the properties of such systems
much more complicated.

Why do we need Green’s functions at all? First they give us the general
method to study the spectrum of excitations in many – particle (interacting)
systems. It happens also, that the knowledge of Green’s functions allows to
calculate ground state (T = 0) averages of arbitrary physical characteristics
of many – particle systems. Let us consider simple examples. Using the
introduced single – particle Green’s function we may calculate the ground
state averages of operators which can be written as a sum of single – par-
ticle contributions (one – particle operators) [Bogoliubov N.N. (1991a);
Sadovskii M.V. (2003a)]:

Â =
∑

i

Âi(xi,pi) (1.33)

where xi represents e.g. both spatial and spin variables, while pi are the
momenta (operators!) of separate particles of our system. Typical examples
are:

n(r) =
∑

i

δ(r − ri) (1.34)

– operator of the particle density at the point r,

j(r) =
e

m

∑
i

piδ(r − ri) (1.35)

– current density at r etc.
Operator Â in second quantized form can be written as:

Â =
∫
dxψ+(x)A(x,p)ψ(x) (1.36)

Consider Green’s function (1.25), (1.26) at t = t′ − 0:

G(x, x′, τ)|τ→−0 = − < 0|ψ+(x′)ψ(x)|0 > (1.37)

Then the average value of Â in the ground state can be written as:

< A >=
∫
dxA(x,p)G(x, x′ , τ = −0)|x=x′ = −SpAG|τ=−0 (1.38)
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Thus, the value of G|τ=−0 up to a sign coincides with single – particle
density matrix at T = 0:

ρ(x′, x) =< 0|ψ+(x′)ψ(x)|0 >= −G|τ=−0 (1.39)

To determine the average values of two – particle operators:

B̂ =
∑
ik

Bik(xipi;xkpk) (1.40)

we have to calculate two – particle Green’s function, defined usually as:

G2(1, 2; 3, 4) =< 0|Tψ(1)ψ(2)ψ+(3)ψ+(4)|0 > (1.41)

etc. Thus, the problem of finding the average values of multi – particle op-
erators, requires the knowledge of appropriate density matrices [Bogoliubov
N.N. (1991a)], which can be expressed via corresponding multi – particle
Green’s functions.

1.2 Diagram technique. Dyson equation.

Feynman diagrams give an elegant graphical representation of arbitrary
contributions to perturbation series for Green’s functions. The standard
way to obtain specific diagram rules for a given interacting system reduces
to the study of (scattering) S-matrix perturbation expansion and the use
of the Wick’s theorem [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963); Lifshits E.M., Pitaevskii L.P. (1980)]. Typical graphic elements of
any diagram technique are Green’s functions lines and interaction vertices,
which are combined into Feynman diagrams of a certain “topology”, de-
pending on the nature of interaction under consideration. Below we shall
formulate these rules explicitly [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii I.E. (1963)] for different kinds of interactions, which will be studied in
these lectures.

Wonderful aspect of Feynman diagram technique is the possibility to
perform graphical summation of infinite (sub)series of diagrams. Consider
the simplest (and actually most important!) example of such summa-
tion, leading to the derivation of the so called Dyson’s equation [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963); Lifshits E.M., Pitaevskii L.P.
(1980)]. Let us denote an exact Green’s function by a “fat” (or “dressed”
line), and a free – particle Green’s function via “thin” line. Full transition
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amplitude (Green’s function) of a transition from point 2 to point 1 is ob-
viously equal to the sum of all possible transition amplitudes, appearing at
all orders of perturbation theory, i.e. to the sum of all possible Feynman
diagrams for the Green’s function. Let us classify diagrams in the following
way. First of all separate the only graph (line), corresponding to the prop-
agation of a free particle. The remaining diagrams has the following form:
up to some point the particle is propagating freely, then some scattering
occurs, resulting in creation and annihilation of a number of particles and
holes (or the particle is just scattered by the other particles, belonging to
the Fermi “sea”, below the Fermi level), then again we have a freely prop-
agating particle, then scattering processes (interactions) are repeated etc.
Let us denote as Σ the sum of all diagrams, which can not be separated
in two parts by cutting a single Fermion line, this “block” Σ is called the
irreducible self – energy of a particle (Fermion). Now we can easily con-
vince ourselves that the full Green’s function is determined by the Dyson
equation, graphically shown in Fig. 1.1. In analytic form it is an integral
equation:

Fig. 1.1 Diagrammatic derivation of the Dyson equation.

G(1, 2) = G0(1, 2) +
∫
dτ3dτ4G0(1, 3)Σ(3, 4)G(4, 2) (1.42)

Iterating this equation we obtain the full perturbation series for the Green’s
function. After Fourier transformation Dyson equation is reduced to the
algebraic one:

G(pε) = G0(pε) +G0(pε)Σ(pε)G(pε), (1.43)

which is easily solved:

G(pε) =
1

ε− ε(p) − Σ(pε)
(1.44)



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 13

where we have taken into account the explicit form of G0(pε). It is clear
that the self – energy Σ(pε) represents in a compact form all changes in a
particle motion as a result of its interaction with other particles of a system.
In general case, self – energy is complex, i.e. consists of real and imaginary
parts (that is the reason why in (1.44) we have dropped an infinitesimal
imaginary term of the free particle iδsign(ε−εF )). Solving Dyson equation
in some approximation (or, in rare cases, exactly) allows us to analyze the
energy (excitation) spectrum of many – particle interacting systems.

1.3 Green’s functions at finite temperatures.

Green’s functions formalism is almost directly generalized for the case of
finite temperatures T [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]. To remind the reader the essence of this (Matsubara) formalism
we again restrict ourselves mainly to the case of Fermions. So called ther-
modynamic (or Matsubara) Green’s function is defined as:

G(p, τ2 − τ1) = −i < Tτap(τ2)a+
p (τ1) > (1.45)

where we use “interaction” representation for operators in the following
form:

ap(τ) = e(H−µN)τape
−(H−µN)τ (1.46)

where Matsubara “time” 0 < τ1, τ2 < β = 1
T and µ is the chemical po-

tential, while angular brackets denote the averaging over grand canonical
Gibbs ensemble, which is conveniently written as:

< A >=
SpρA

Spρ
where ρ = e−β(H−µN) (1.47)

with Z = Spρ.
The reason why Matsubara Greeen’s functions G can be expanded in (al-

most) the same diagrammatic expansion, as quantum mechanical Green’s
functions G in the case of T = 0, is as follows. We have seen that
diagrammatic expansion for G directly follows from the time dependent
Schroedinger equation. Statistical operator ρ, written as in (1.47), satisfies
the so called Bloch equation:

∂ρ

∂β
= −(H − µN)ρ (1.48)
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as is easily checked just by differentiation. There is direct correspondence
between Schroedinger equation (1.1) and Bloch equation (1.48):

ψ ↔ ρ H ↔ H − µN it↔ β (1.49)

Thus, after the simple substitution of

H → H − µN it→ τ (1.50)

in the expressions of the previous section, we can obtain Matsubara Green’s
function formalism for G of almost the same form as in the case of T = 0
for quantum mechanical G. Substitution H → H − µN leads only to the
appropriate change of the single particle energy by µ:

H0 − µN =
∑
p

(ε(p) − µ)a+
p ap (1.51)

Though Matsubara Green’s functions G depend on “imaginary time” τ 5, we
may always return to the real time via substitution (in final expressions)
τ → it, or, strictly speaking, via analytical continuation of Matsubara
expressions from imaginary to real time axis.

Above we have already noted that the values of τ1 and τ2 in (1.45)
are limited to the interval from 0 to β. Accordingly, to perform Fourier
transformation over τ we have to introduce G periodically continued on the
interval from −∞ to ∞. Then we can write down the Fourier expansion
as:

G(pτ) =
1
β

∞∑
n=−∞

e−iωnτG(pωn) (1.52)

where summation is over discrete (Matsubara) frequencies ωn = πnT .
Then:

G(pωn) =
1
2

∫ β

−β

dτeiωnτG(pτ) (1.53)

“Time” difference τ = τ2−τ1 belongs to the interval (−β, β), as both τ1 and
τ2 vary on the interval (0, β). The function G(pτ) periodically reproduces
itself on intervals (−β, β), (β, 3β), (3β, 5β), ..., (−3β,−β), .... For the system

5The value τ was taken real, but Green’s function G can be obtained from G by a
substitution it→ τ , so that in thermodynamic formalism we are dealing with a transition
to t = −iτ , i.e. “imaginary time”.
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consisting of Fermions, the even values of n drop out from the series for
G(pτ) due to “antiperiodic” boundary condition:

G(p, τ) = −G(p, τ + β) for τ < 0 (1.54)

Validity of this expression is checked using the property of the trace:
SpAB = SpBA. For τ ′ − τ > 0 we have:

G(p, τ − τ ′) =
i

Z
Spe−β(H−µN)a+

p (τ ′)ap(τ) =

=
i

Z
Spap(τ)e−β(H−µN)a+

p (τ ′)e =

=
i

Z
Spe−β(H−µN)eβ(H−µN)ap(τ)e−β(H−µN)a+

p (τ ′) =

=
i

Z
Spe−β(H−µN)ap(τ + β)a+

p (τ ′)

(1.55)

or

G(p, τ − τ ′) = −G(p, τ − τ ′ + β) (1.56)

which for τ ′ = 0 gives us (1.54). The minus sign appears here due to
anticommutation of Fermi operators. Substituting (1.54) into (1.52) we
see, that all contributions with even n are just zero. Thus for the Fermion
case we are always dealing with the odd Matsubara frequencies:

ωn =
(2n+ 1)π

β
= (2n+ 1)πT (1.57)

For Bosons, in a similar way, only contributions from even Matsubara fre-
quencies

ωn =
2nπ
β

= 2nπT (1.58)

survive in the Fourier series for the Green’s function.
Returning to Eqs. (1.16), (1.17) and (1.18) for Green’s functions of

the free particles at T = 0, we can easily write down the free – particle
Matsubara Green’s function as:

G0(p, τ2 − τ1) = −i{θ(τ2 − τ1)(1− n(p))− θ(τ1 − τ2)n(p)}e−(ε(p)−µ)(τ2−τ1)

(1.59)
where n(p) = [eβ(ε(p)−µ)+1]−1 is the Fermi distribution for finite T . Thus,
the step functions entering the definition of G0 at T = 0 are smeared
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by finite temperatures, leading to the simultaneous appearance of both
particles and holes in a state with a given p.

Substituting (1.59) into (1.53) we find6:

G0(pωn) =
i

iωn − ε(p) + µ
, ωn = (2n+ 1)πT (1.60)

With only the major change to discrete frequencies, Matsubara diagram
technique at finite T is practically identical with quantum mechanical di-
agram technique at T = 0. The full Green’s function is determined from
Dyson equation:

G(pωn) =
i

iωn − ε(p) + µ− Σ(pωn)
, ωn = (2n+ 1)πT (1.61)

Let us stress, however, that Matsubara Green’s functions do not have the
meaning of any kind of “transition amplitudes” (propagators) of the quan-
tum (field) theory.

Calculating Matsubara Green’s functions we can, in principle, find any
thermodynamic characteristic of any many – particle system at equilibrium.
Description of general non – equilibrium processes can be based on the more
general formalism of Keldysh Green’s functions [Lifshits E.M., Pitaevskii
L.P. (1980)] and appropriate diagram technique. However, this formalism
is outside the scope of our lectures.

6Here again we have an extra factor of i in comparison with standard notations of
“AGD”, which actually appeared in our Eq. (1.45).
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Chapter 2

Electron – Electron Interaction

2.1 Diagram rules.

Consider the system of interacting (nonrelativistic) Fermions. In the follow-
ing we speak mainly about electrons in a metal. Interaction Hamiltonian
can be written as:

Hint =
1
2

∫
dr1dr2ψ

+
α (r1)ψ+

β (r2)V (r1 − r2)ψβ(r2)ψα(r1) (2.1)

where V (r) – is the (static) interaction potential. ψ+
α (r), ψα(r) – creation

and annihilation operators of Fermions at the point r, α – spin index.
General rules of diagram technique to calculate interaction corrections

to single – particle Green’s function in momentum representation G(p) are
given in [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]. Let
us formulate the summary of these rules for the case of zero temperature
T = 0:

• Diagram of n–th order in interaction contains 2n vertices, 2n + 1
full (electronic) lines and n wave–like (interaction) lines. To all
lines we attribute definite 4–momenta, conserving at the interaction
vertices.

• Full line denotes Green’s function of a free electron (Fermion):

G0(p) =
δαβ

ε− ξ(p) + iδsignξ(p)
where δ → +0 (2.2)

where

ξ(p) =
p2

2m
− µ ≈ vF (|p| − pF ) (2.3)

17
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is the energy spectrum of free electrons, with energy calculated
from the Fermi level (chemical potential µ), pF and vF – are Fermi
momentum and velocity at the Fermi surface.

• Wave–like line denotes the Fourier transform of the potential U(q).
• We must integrate over n independent momenta and frequencies

(4–momenta).
• Final expression is multiplied by (i)n(2π)−4n(2s+1)F (−1)F , where
F – is the number of closed Fermionic loops and s – Fermion spin
(for electrons s = 1/2, so that we always have 2s+ 1 = 2).

For the case of finite temperatures, in Matsubara formalism [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)], diagram rules for calculation
of k–th order correction to G(εnp) are formulated as follows:

• Diagram of k–th order possesses 2k vertices, 2k + 1 full (elec-
tronic) lines and k wave–like (interaction) lines. To all lines we
attribute momenta and (Matsubara) frequencies, satisfying con-
servation laws in each vertex. Frequencies at Bose lines are al-
ways even (ωm = 2πmT ), while frequencies of Fermi lines are odd
(εn = (2n+ 1)πT ).

• We must integrate over all independent momenta and sum over
independent Matsubara frequencies.

• Each full line with momentum p and frequency εn denotes free
electron Green’s function in Matsubara representation:

G0(εnp) =
δαβ

iεn − ξ(p)
(2.4)

while each wave–like line with momentum q and frequency ωm

denotes V (q).
• Final expression is multiplied by (−1)k T k

(2π)3k (2s+1)F (−1)F , where
F again denotes the number of Fermion loops in a given diagram,
while s is Fermion (electron) spin.

2.2 Electron gas with Coulomb interaction.

If we try to perform direct calculations of interaction corrections to the
Green’s function of an electron in a normal metal using diagram rules given
above, we immediately discover that appropriate analytic expressions just
diverge due to the singularity of Coulomb interaction at small momentum
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transfers q:

V (q) =
4πe2

q2
(2.5)

reflecting the long – range nature of Coulomb interaction. This problem can
be solved performing summation of an infinite series of diagrams, describing
the screening of Coulomb potential by free electrons.

Let us introduce an effective interaction (“dressed” wave – like line)
defined by diagrams shown in Fig. 2.1, where polarization operator is de-
termined via the sum of diagrams, shown in Fig. 2.2. It is important to

Fig. 2.1 Diagrammatic definition of an effective interaction.

Fig. 2.2 Diagrams for irreducible polarization operator.

Fig. 2.3 An example of reducible diagram.

stress that an expansion shown on Fig. 2.2 contains no diagrams, which can
be “cut” through one interaction line, of the type shown in Fig. 2.3, defin-
ing irreducible polarization operator. Thus, an expansion shown in Fig. 2.1
is an analogue of Dyson equation. Analytically the effective interaction can



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

20 Book Title

be written as:

V(qω) = V (q) + V (q)Π(qω)V(qω) (2.6)

Effective interaction V(qω) is in general dependent on frequency ω, corre-
sponding to the account of retardation effects due to characteristic time of
electron response to instantaneous Coulomb interaction.

Solving Eq. (2.6) we obtain:

V(qω) =
V (q)

1 − V (q)Π(qω)
≡ V (q)
ε(qω)

(2.7)

where we introduced dielectric function (permeability):

ε(qω) = 1 − V (q)Π(qω) (2.8)

So called random phase approximation (RPA)1 corresponds to the simplest
approximation of polarization operator by the loop of two free – electron
Green’s functions, as shown by the diagram of Fig. 2.4(a))2:

Π0(qω) = −2i
∫

d4p

(2π)4
G0(p+ q)G0(p) (2.9)

Effective interaction is defined now by diagrams shown in Fig. 2.4(b).

Fig. 2.4 Random phase approximation (RPA) for polarization operator and effective
(screened) Coulomb interaction.

1This term has purely historic meaning.
2Note that in many books and papers the definition of Π(qω) is taken with different

sign (e.g. see [Schrieffer J.R. (1964)]), here we use notations of [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]
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Equation for the effective interaction can also be written in another form,
shown in Fig. 2.5(a), where we introduced reducible polarization operator
Π̃(qω), defined by diagrams of Fig. 2.5(b):

Fig. 2.5 Effective interaction expressed via reducible polarization operator Π̃.

V = V + V Π̃V (2.10)

From Fig. 2.5(b) it is clear that:

Π̃ =
Π0

1 − VΠ0
(2.11)

From (2.10) using (2.11) we get:

V = V (1 + Π̃V ) = V

(
1 +

Π0V

1 − VΠ0

)
=

=
V

1 − VΠ0
=
V

ε
(2.12)

which coincides with (2.7), with dielectric function taken in RPA approxi-
mation. Expression (2.11) defines full polarization of the systems.

Similarly we can obtain RPA expression for magnetic susceptibility. In
this case we have to analyze the response of a system to infinitesimal mag-
netic field, flipping electronic spin. Dropping technical details, we just note
that here it is sufficient to consider diagrams shown in Fig. 2.6 [Khomskii
D.I. (1999); Levitov L.S., Shitov A.V. (2003)]. If we consider popular model
with (point – like) Hubbard interaction U of electrons, i.e.

Hint =
∑

i

Uni↑ni↓, (2.13)
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Fig. 2.6 Diagrams for magnetic susceptibility. ± denote spin projections.

where ni↑ and ni↓ are operators of electronic density at a given lattice site
i with opposite spin projections, these diagrams are easily summed and we
obtain [Khomskii D.I. (1999)]:

χ(qω) =
χ0(qω)

1 + UΠ0(qω)
(2.14)

where χ0(qω) is proportional to Π0(qω) defined by (2.9):

χ0(qω) = −1
4
g2µ2

BΠ0(qω) Π0(qω) = − 4
g2µ2

B

χ0(qω) (2.15)

where µB is the Bohr magneton and g is so called g – factor (for free
electrons g = 2). Note the sign change in the denominator of (2.14) in
comparison with (2.8). This is due to the fact that during the derivation
of ε(qω) we have dealt with the response function of the density – density
type and summed electronic loops contributing extra factors of −1. Here,
calculating the linear response we sum “ladder” diagrams (cf. Fig. (2.6)),
while loops are prohibited due to spin conservation (lines of particles and
holes in Fig. (2.6) correspond to different spin projections). However, both
expressions for ε(qω) and χ(qω) are quite similar and defined, in fact, by
the same expression for Π0(qω) defined in (2.9).

2.3 Polarization operator of free electron gas at T = 0.

Let us start now with calculation of Π0(qω), defined by Eq. (2.9). Equiv-
alently we can write it as:

Π0(qω) = −2i
∫

d3p

(2π)3

∫ ∞

−∞

dε

2π
G0(ε+p+)G0(ε−p−) (2.16)

where ε± = ε± ω
2 , p± = p ± 1

2q. In the integral appearing here the main
contribution comes from the vicinity of the Fermi surface, thus for q � pF

we may write |p±| = p± 1
2q cos θ, with θ – an angle between vectors p and
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q, and take:

G0(ε±p±) =
1

ε± − ξ±(p) + iδsignξ±(p)
(2.17)

where

ξ±(p) = ξ(p±) = ξ(p) ± 1
2
vF q cos θ (2.18)

Integration over ε in (2.16) we can perform closing integration contour in
the upper half – plane of the complex variable ε and expanding the product
of two G0’s via simple fractions. The integral is different from zero only if
poles of both Green’s functions G0 are in different half – planes. Finally
we get: ∫ ∞

−∞

dε

(ε+ ω
2 − ξ+ + iδsignξ+)(ε− ω

2 − ξ− + iδsignξ−)
=

=
2πi(n(ξ−) − n(ξ+))

ω − vF q cos θ + iδ(signξ+ − signξ−)
(2.19)

where:

n(ξ) =
{

1 for ξ ≤ 0
0 for ξ > 0

(2.20)

is the Fermi distribution at T = 0. As we are interested in small q, the
difference n(ξ−) − n(ξ+) is non zero only in rather thin layer close to the
Fermi surface. Thus instead of performing full p – integration, we can just
integrate over the linearized spectrum ξ, using simple integration rule:∫

d3p

(2π)3
... ≈ νF

2

∫ ∞

−∞
dξ

∫ 1

−1

d(cos θ)... (2.21)

where

νF =
mpF

2π2�3
(2.22)

is the density of states at the Fermi level (for a single spin projection).
Depending on the sign of cos θ we have to consider two cases:

(1) cos θ > 0 – so that (2.19) is non zero for − vF q
2 cos θ < ξ < vF q

2 cos θ,
and n(ξ−) − n(ξ+) = 1;

(2) cos θ < 0 – in this case (2.19) is non zero for vF q
2 cos θ < ξ < − vF q

2 cos θ,
and we have n(ξ−) − n(ξ+) = −1.
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Now we have only to take the following integral over the angle θ:

Π0(qω) = νF

∫ 1

−1

d cos θ
vF q cos θ

ω − vF q cos θ + iδsignω
(2.23)

This integral is calculated directly using∫ 1

−1

xdx

x0 − x+ iδsignx0
= A+ iB (2.24)

A = −2 + x0 ln
∣∣∣∣x0 + 1
x0 − 1

∣∣∣∣ B =

⎧⎨
⎩

0 for |x0| > 1
−πx0 for 0 < x0 < 1
πx0 for − 1 < x0 < 0

Finally we get:

Π0(qω) = −2νF

{
1 − ω

2vF q
ln
∣∣∣∣ω + vF q

ω − vF q

∣∣∣∣+ iπ

2
|ω|
vF q

θ

(
1 − |ω|

vF q

)}
(2.25)

For ω = 0 we obtain:

Π0(qω = 0) = −2νF = −N(EF ) (2.26)

where we have introduced:

N(EF ) = 2νF =
mpF

π2�3
(2.27)

– the density of states at the Fermi level for both spin projections. For
ω 
 vF q we have:

Π0(qω) ≈ N(EF )
1
3
v2

F q
2

ω2

(
1 +

3
5
v2

F q
2

ω2

)
(2.28)

These expressions will be often used in the future.

2.4 Dielectric function of an electron gas.

Using (2.26) in (2.8) we obtain dielectric function describing the usual (De-
bye or Thomas – Fermi) screening:

ε(q, 0)|q→0 = 1 +
κ2

D

q2
(2.29)

where the inverse square of screening length is:

κ2
D = 4πe2N(EF ) =

4e2mpF

π
=

6πne2

EF
(2.30)
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where n = p3
F

3π2 is the density of electron gas. Then the Fourier transform
of effective interaction is:

V(q, 0) =
4πe2

q2 + κ2
D

(2.31)

In coordinate space this corresponds to the screened potential:

V(r) =
e2

r
e−κDr (2.32)

Using in (2.8) the asymptotic behavior given in (2.28), in the limit of q → 0
we get:

ε(ω) = 1 −
ω2

p

ω2
(2.33)

where for the square of plasma frequency we have the usual expression:

ω2
p =

4πne2

m
(2.34)

Taking into account the second term in (2.28), from the condition ε(qω) = 0
we obtain the spectrum of plasmons:

ω2(q) = ω2
p +

3
5
v2

F q
2 (2.35)

More accurate analysis, taking into account the imaginary part of polar-
ization operator, allows to study plasmon damping [Schrieffer J.R. (1964);
Nozieres P., Pines D. (1966)]. With the growth of q the spectrum (2.35)
enters the region of single – particle excitations (electron - hole pairs) as
shown in Fig. 2.7(a), where strong damping appears and plasmons cease
to exist as well defined collective excitations.

�

����

���
��

��

(a)

�������

����	
�������

�

	���	���

��� �

�� ���� ��

(b)

Fig. 2.7 (a) – dashed is the region of allowed values of the energy of electron - hole
pair excitations in the Fermi system, corresponding to the region of strong plasmon
damping. (b) – imaginary part of generalized density - density susceptibility in electron
- hole channel.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

26 Book Title

Energy of electron - hole excitation in the system of free electrons is:

ω0
pq = ξp+q − ξp =

(p + q)2

2m
− p2

2m
=

qp

m
+

q2

2m
(2.36)

The spectrum of these excitations with momentum q forms the continuum belonging to:

0 ≤ ω0
pq ≤ qpF

m
+

q2

2m
for q < 2pF

− qpF

m
+

q2

2m
≤ ω0

pq ≤ qpF

m
+

q2

2m
for q > 2pF (2.37)

This region is shown as dashed in Fig. 2.7(a). Below we shall show that the imaginary
part of polarization operator given by (2.25), for ω > 0 coincides (up to a sign) with
the imaginary part of density – density response function (generalized susceptibility), as
shown in Fig. 2.7(b).

It is clear that our calculations leading to (2.25) are valid only for small
ω and q. In fact, polarization operator can be found for arbitrary q and
ω (J.Lindhardt, 1954). Let us quote some of the results [Schrieffer J.R.
(1964)]. Static dielectric function is given by the following expression:

ε(q, 0) = 1 +
4me2pF

πq2
u

(
q

2pF

)
=

= 1 +
(

4
9π4

)1/3
rs
x2
u(x) = 1 + 0.66rs

(
pF

q

)2

u

(
q

2pF

)
(2.38)

where

u(x) =
1
2

{
1 +

1 − x2

2x
ln
∣∣∣∣1 + x

1 − x

∣∣∣∣
}

(2.39)

In (2.38) we have introduced the standard notations of the theory of electron gas,

where rs is determined by the relation:
4πr3

sa3
0

3
= 1

n
, where n is the density of electrons,

and a0 = �
2

me2 is the Bohr radius. We see that rs is just the mean distance between
electrons in units of Bohr radius.

Small parameter for perturbation theory in our model (RPA) is the ratio of charac-
teristic Coulomb (interaction) energy and Fermi energy:

VC

EF
∼ e2pF

p2F
m ∼ e2

�vF
∼ �

pF a0
∼ a

a0
∼ rs (2.40)

In real metals we have 1 < rs < 5, so that RPA is obviously rather bad approximation.
It works well for the case of highly compressed electron gas and is usually called “high
– density approximation”.

The plot of u(x) is shown in Fig. 2.8. For q → 0 we obviously again
get the simple result (2.29). It is important to discuss the region of q ∼
2pF . From (2.38) and (2.39) it is seen that the derivative ∂ε(q,0)

∂q → ∞
for q → 2pF . This leads to a number of anomalies of physical properties.
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Fig. 2.8 Plot of u(x). The derivative of this function is logarithmically divergent at
x = 1.

For example, the spatial dependence of the screened interaction potential
is not as simple as given by Eq. (2.32). In fact, asymptotic behavior of the
Fourier integral

∫
dqeiqrf(q) is determined by singularities of f(q) and its

derivatives, within integration interval. Consider the case of f(q) → ∞ at
q = q0, e.g. f(q) ∼ δ(q− q0). Then for f(r) we obviously get the oscillating
contribution ∼ eiq0r. Similarly, singularity of the derivative ∂ε

∂q at q = 2pF

leads to the appearance of long – range and oscillating contribution to
interaction potential:

V(r)|r→∞ ∼ cos(2pF r + φ)
r3

(2.41)

Then the screening charge around e.g. charged impurity in a metal also
oscillates according to (2.41) (Friedel oscillations).

Even more important is the similar effect in the theory of magnetic
interactions in metals. We have already noted that paramagnetic suscepti-
bility of electron gas in fact is determined by the same “polarization loop”
(cf. (2.15)). Then:

χ0(qω = 0) =
3g2µ2

Bn

8EF
u

(
q

2pF

)
(2.42)

Then the spin density s(r) on some distance r from the magnetic impurity
with spin Sa, determined as

s(r) =
J

g2µ2
B

∑
q

χ0(q)eiqrSa (2.43)

will also be oscillating function similar to (2.41). Here J determines contact
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exchange interaction of impurity with conduction electrons: −JSas. Now,
if we place another magnetic impurity Sb, it will interact with conduction
electrons in a similar way, and we obtain an effective exchange interaction of
two impurity spins via conduction electrons (Ruderman – Kittel – Kasuya
– Yosida). This so called RKKY interaction can be written as:

JRKKY (ra − rb) = − J2

g2µ2
B

∑
q

χ0(q)eiq(ra−rb) ∼ J2

EF

cos(2pF rab + φ)
r3ab

(2.44)
It is seen that this interaction oscillates as a function of the distance between
impurities rab = |ra − rb|. This oscillating nature of exchange interaction
of localized spins in metals leads to a number of important physical effects.
According to (2.44) in coordinate space appear regions with different signs
of exchange interaction (i.e. where interaction is either of ferromagnetic
or antiferromagnetic nature) leading to the formation of complicated mag-
netic structures, e.g. in metallic compounds with regular sublattices of rare
– earth elements (magnetic spirals or helicoidal structures) [Khomskii D.I.
(1999)]. In case of randomly placed magnetic impurities in non magnetic
metal, Eq. (2.44) produces random signs of exchange interaction between
spins at different sites, which leads to the formation of quite unusual mag-
netic state — spin glass [Ginzburg S.L. (1989)].

2.5 Electron self – energy, effective mass and damping of
quasiparticles.

Our final aim is to calculate single – particle Green’s function in a system
with Coulomb (or also some other) interaction. This Green’s function can
always be written in Dyson’s form:

G(pε) =
1

ε− εp − Σ(pε)
(2.45)

where self – energy Σ(pε) is taken in some approximation, obtained e.g.
via some partial summation of diagram series. What physical information
can be obtained in this way? We know that the Green’s function of free
electrons G0(pε) has a pole at εp = p2

2m − µ. Let us assume that in the
interacting system Green’s function also has a pole:

G(pε) ≈ 1
ε− ε̃p

(2.46)
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where ε̃p represents the spectrum of “renormalized” quasiparticles. Com-
paring with (2.45) we see, that the spectrum ε̃p is defined by the equation:

ε− εp −ReΣ(pε) = 0 or ε̃p − εp −ReΣ(pε̃p) = 0 (2.47)

where, just to simplify our calculations (and only for a time!), we have ne-
glected ImΣ, which (as we shall see later) determines quasiparticle damp-
ing. Let us expand (2.45) in the vicinity of the pole:

G(pε) =
1

ε− εp − Σ(pε)
=

1
ε− εp − Σ(pε̃p) − ∂Σ

∂ε |ε=ε̃p(ε− ε̃p)
(2.48)

Taking into account (2.47) we can rewrite (2.48) in the following form:

G(pε) =
1

ε− ε̃p − ∂Σ
∂ε |ε=ε̃p(ε− ε̃p)

=
1

1− ∂Σ
∂ε |ε=εp

ε− ε̃p
≡ Zp

ε− ε̃p
(2.49)

where we have introduced “residue” at the quasiparticle pole as:

Zp =
1

1 − ∂Σ
∂ε |ε=εp

(2.50)

Sometimes Zp is also called a factor of “wave function renormalization”.
From general grounds it is clear that Zp ≤ 1 and equality is only reached
for the ideal (free) Fermi gas. Spectral density corresponding to the Green’s
function (2.49) is given by:

A(pε) = Zpδ(ε− ε̃p) (2.51)

i.e. it is represented by δ – function peak at ε = ε̃p (quasiparticle energy)
as in the case of free electron gas. In fact, inequality Zp < 1 means that in a
system with interactions the quasiparticle contribution to A(pε) is slightly
suppressed due to appearance of an additional “multi particle” (incoher-
ent) contribution to the spectral density [Migdal A.B. (1967)], which we
just dropped in this simplified analysis. Neglecting quasiparticle damping
we obtain here the quasiparticle contribution to A(pε) in the form infinites-
imally narrow δ – function, finite damping (as we shall show below) leads
to the appearance of the finite width of this peak.

Suppose now that the spectrum of “renormalized” quasiparticles can be
described by an effective mass approximation:

ε̃p =
p2

2m∗ − µ (2.52)
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Then we easily get:

1
2m∗ =

∂ε̃p

∂(p2)
=

∂εp

∂(p2)
+
{

∂Σ
∂(p2)

+
∂Σ
∂ε̃p

∂ε̃p

∂(p2)

}
=

=
1

2m
+

∂Σ

2m∂
(

p2

2m

) +
∂Σ
∂ε

|ε=ε̃p

∂ε̃p

∂(p2)
(2.53)

or

1
m∗

(
1 − ∂Σ

∂ε
|ε=ε̃p

)
=

1
m

(
1 +

∂Σ
∂εp

)
(2.54)

so that

m∗

m
=

1 − ∂Σ
∂ε |ε=ε̃p

1 + ∂Σ
∂εp

=
1
Zp

1
1 + ∂Σ

∂εp

(2.55)

which gives us an important relation between “mass renormalization”
m∗/m and residue at the pole of the green’s function Zp. In the sim-
plest case, when the self – energy has no dependence on the momentum p

(or, equivalently, on ε̃p), this relation is especially simple:

m∗

m
=

1
Zp

(2.56)

so that the effective mass in a system with interactions is enhanced in
comparison with the case of an ideal gas.

General behavior of damping is connected with ImΣ and will be dis-
cussed later in detail. However, even from this simplified analysis, it is clear
that simple relations obtained above allow us to calculate effective parame-
ters of many particle system (quasiparticles) from some approximate form
of electron self – energy, obtained from specific diagrams of perturbation
theory.

As an example, consider again high density approximation for electronic
gas. Let us analyze simplest contributions to electron self – energy. In fact
we can just drop Hartree – like diagrams, as they cancel with similar contri-
butions due to electron interaction with spatially homogeneous positively
charged “ion background”, which is necessary to introduce to guarantee
charge neutrality. This becomes clear if we consider the sum of simplest
diagrams of this type shown in Fig. 2.9. In obvious notations we have:
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Fig. 2.9 Simplest Hartree – like diagrams describing electron – electron interaction and
similar interaction with positive “background” of ions (Green’s function of ions is shown
by dashed line).

2i
∫

dp′

(2π)4
V (0)G(p′) − 2i

∫
dp′

(2π)4
V (0)Gi(p′) =

= 2i
∫

dp′

(2π)3

∫
dε

2π
V (0)G(εp′) − 2i

∫
dp′

(2π)3

∫
dε

2π
V (0)Gi(εp′) =

= 2V (0)
[∫

dp
(2π)3

np −
∫

dp
(2π)3

ni
p

]
= 2V (0)(n− ni) = 0

(2.57)

so that we have total cancellation of these contributions (charge density of
electrons n is equal to charge density of ions (positive “background”) ni).

Thus in RPA approximation the problem is reduced to calculation of
self – energy diagram shown in Fig. 2.10, where “dressed” wave – like line
describes effectively screened Coulomb interaction of Fig. 2.4(b):

Fig. 2.10 Electron self – energy in RPA approximation.

Σ(p) = i

∫
d4q

(2π)4
V(q)G0(p+ q) (2.58)

Though both G0(p) and V(q) entering (2.58) are known exactly, integrations
here are very complicated and we just quote the final results (J.J.Quinn,
R.A.Ferrell, 1958) [Schrieffer J.R. (1964)]. Excitation energy of a quasipar-
ticle (measured from the Fermi energy EF ) in this approximation can be
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written as:

ε̃p = EF

{
p2

p2
F

− 0.166rs

[
p

pF
(ln rs + 0.203) + ln rs − 1.80

]}
− EF (2.59)

Quasiparticle damping in RPA is given by:

|γp| = EF (0.252r1/2
s )

(
p

pF
− 1
)2

(2.60)

and it is small for p → pF , in a sense that we can guarantee |ε̃p| 
 |γp|,
in full accordance with general conclusions of (phenomenological) Landau
theory of Fermi – liquids [Lifshits E.M., Pitaevskii L.P. (1980); Nozieres P.
(1964); Nozieres P., Pines D. (1966)]. This allows us to speak about well –
defined quasiparticles close to the Fermi surface. From (2.59) and (2.60) it
si clear that in RPA quasiparticles are well defined roughly for |ε̃p| < EF /5.
From (2.59) we can easily get the expression for the effective mass of an
electron as:

1
m∗ =

1
pF

∂ε̃p

∂p
|p=pF =

1
m

[1 − 0.083rs(ln rs + 0.203)] (2.61)

It is well known that electronic contribution to the specific heat is propor-
tional to m∗. Then, from (2.61) we immediately obtain (M. Gell-Mann,
1957): [Schrieffer J.R. (1964)]:

c

c0
= 1 + 0.083rs(ln rs + 0.203) (2.62)

where c0 is the specific heat of an ideal Fermi – gas.
Finally note, that all the results quoted are valid for an electronic gas

of high enough density, when rs � 1. In real metals we mostly have
1 < rs < 5, and you should be careful while using RPA for any estimates.

2.6 RKKY – oscillations.

Let us return to more detailed discussions of RKKY – oscillations [Levitov
L.S., Shitov A.V. (2003)]. Consider localized spin S surrounded by an
ideal Fermi gas of (conduction) electrons (e.g. magnetic impurity in a
normal metal) and interacting with local spin – density of these electrons
via contact (point – like) exchange interaction:

Hint = −J
∫
drSiδ(r)ψ+(r)σ̂iψ(r) (2.63)
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Assuming that exchange coupling J is small enough, we can find (first –
order) contribution to spin polarization of conduction electrons:

σi(r) =< ψ+(r)σ̂iψ(r) > (2.64)

at the distance |r| from localized spin (impurity) S.
Consider first the case of zero temperature T = 0. Let us write down

Green’s function of a free electron in coordinate representation. It is use-
ful (methodically) to make calculations in two ways. Start with angular
integration:

G(ε, r) =
∫ ∞

0

∫ π

0

dpp2 sin θdθ
2π2

eipr cos θ

ε− ξ(p) + iδsignε
=

=
1

2π2r

∫ ∞

0

dpp sin pr
ε− ξ(p) + iδsignε

(2.65)

First and simplest way to proceed is to change integration variable from p

to linearized (in the vicinity of the Fermi surface) spectrum ξ and perform
contour integration in the complex plain:

G(ε, r) ≈ 1
2π2r

∫ ∞

−∞

dξ

vF
pF

sin(pF + ξ/vF )r
ε− ξ + iδsignε

= − m

2πr
eir(signεpF +|ε|/vF )

(2.66)
We see that the Green’s function is oscillating with the period determined
by the Fermi wavelength λF = 2π�

pF
. The phase of these oscillations changes

sign at the Fermi level (for ε = 0) due to the effects of Fermi statistics.
Another way is to perform integration over p exactly. As the integrand

in (2.65) is even, we can make integration over the whole real axis of p,
dividing the result by two:

G(ε, r) =
1

4π2r

∫ ∞

−∞

dpp sin pr

ε− p2

2m + EF + iδsignε
(2.67)

Expanding the integrand here into simple fractions and performing integra-
tion we get:

G(ε, r) =
m

4π2r

∫ ∞

−∞
dp sin pr

[
1

κ− p
− 1
κ+ p

]
= − m

2πr
eisignεκr (2.68)

where κ =
√

2m(ε+ EF + iδsignε). Comparing this result with (2.66)
we can see, that simplified calculation using ξ – integration gives rather
good approximation of an exact result for |ε| � EF , i.e. in the immediate
vicinity of the Fermi surface.
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Let us return now to calculation of spin polarization (2.64), writing this
expression via an exact Green’s function (accounting for electron interac-
tions with localized spin):

σ̂i(r) = −i lim
t′→t+0r=r′

Spσ̂iG(rt; r′t′) (2.69)

Trace3 here is calculated over spin indices of σ̂i and G. Now, let us just
take first order expression for Green’s function correction due to interaction
(2.63):

G
(1)
αβ(ε, r, r′) = −σi

αβG0(εr)G0(ε,−r′)JSi (2.70)

Substituting (2.70) into (2.69) and using Spσiσj = 2δij we obtain:

σi(r) = 2iJSi

∫
dε

2π
G2

0(εr) (2.71)

which in fact coincides with (2.43) written above. Use now (2.66) and get
(for pF r 
 1):∫

dε

2π
G2

0(εr) =
1
2π

( m

2πr

)2
∫ ∞

0

dε
(
e

i2pF r+ 2iε
vF

r + e
−i2pF r+ 2iε

vF
r
)

=

= i
mpF

(2π)3
cos 2pF r

r3
(2.72)

Now for the spin density we immediately obtain slowly damping oscillations
with period π/pF :

σi(r) = −JSimpF

4π3

cos 2pF r

r3
(2.73)

More accurate expression for spin density at the point r can be obtained using exact
r–dependence of the Green’s function (2.68) and integrating its square in (2.71) over ε.
Then we get:

σi(r) = −JSi 2mp4F
π3

�
cos 2pF r

(2pF r)3
− sin 2pF r

(2pF r)4

�
(2.74)

In the limit of pF r � 1 Eq. (2.74) actually goes to (2.73), in accordance with our
“ideology” of ξ – integration. Note also that an exact Eq. (2.74) has only 1/r singularity
at small r of. Thus, as we perform integration over d3r no divergence of full polarization
appears. Approximate Eq. (2.73) is more singular for r → 0, but it is inappropriate at
small r as ξ – integration guarantees correct answer only at large distances.

Let us now consider the case of finite temperatures. Again, we start with
calculating free (Matsubara!) Green’s function in coordinate representation

3According to Russian and German literature tradition we always use Sp–notation
instead of English Tr.
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(similarly to the way we obtained (2.66)):

G(εnr) =
∫

d3p

(2π)3
eipr

iεn − ξ(p)
=
νF

pr

∫ ∞

−∞
dξ

sin
(
pF + ξ

vF

)
r

iεn − ξ
=

=
νF

2ipr

∫ ∞

−∞
dξ
ei(pF +ξ/vF )r − e−i(pF +ξ/vF )r

iεn − ξ
=

= − m

2πr
ei(pF +iεn/vF )rsignεn (2.75)

In the same way as above we can express spin density via an exact Green’s
function. All expressions differ now only by replacements of −i by −1 here
and there. Finally we get:

σi(r) = −2JSiT
∑
εn

G2
0(εn, r) (2.76)

and:

σi(r) = −2JSiT
( m

2πr

)2
{∑

εn>0

e2ipF r−2εnr/vF +
∑
εn<0

e−2ipF r+2εnr/vF

}

(2.77)
Sums over Matsubara frequencies are calculated in elementary way and we
obtain:

σi(r) = −JSi m
2T

2π2r2
cos 2pF r

sh 2πTr
vF

(2.78)

For T → 0 this expression goes to our previous result (2.73). The length
at which oscillations are damped is now equal to �vF

2πT (just look at the
argument of hyperbolic sine!). Thus, at finite temperatures RKKY oscil-
lations persist at the distances smaller than the “thermal” length given by
lT = �vF

T and are exponentially small for r > lT .

2.7 Linear response.

Calculation of the linear response of a many – particle system to some
external perturbation (field) is one of the central tasks of the theory of
condensed matter. Below we shall show how this problem is solved within
the formalism of Matsubara Green’s functions.

Let us return to the analysis of dielectric function. Strictly speaking,
the permeability defined by Eqs. (2.8), does not represent correct response
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function! In particular, it does not possess correct analytic properties as (cf.
(2.25)) it has singularities in Imω > 0 – halfplane, which breaks Kramers
– Kronig relations [Sadovskii M.V. (2003a)]. This is clear also from (2.19),
where, depending on the signs of ξ+ and ξ− the pole in ω may lay in the
upper halfplane, in lower halfplane, or on the real axis. This automatically
leads to the breaking of causality (Kramers – Kronig relations), which is
necessary for any correct response function [Sadovskii M.V. (2003a)]. The
reason for this behavior is that during our calculation of the polarization
“bubble” (at T = 0) we have used Feynman Green’s functions (on which
diagram technique at T = 0 is built), which lead to Π(−ω) = Π(ω), while
any generalized susceptibility (retarded response function) has to satisfy
χ(−ω) = χ∗(ω). So we need some special discussion, how to find a correct
response function?

The standard approach to deal with susceptibilities uses Matsubara di-
agram technique with analytic continuation of the final result from discrete
imaginary frequencies to the real one. This procedure gives the appro-
priate retarded susceptibility (Green’s function) [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]. How to perform such calculations in gen-
eral case we shall see later, but first we shall discuss a simple case of non –
interacting particles [Levitov L.S., Shitov A.V. (2003)]

Generalized susceptibility of some quantum operator A with respect to
another operator B is given by the famous Kubo expression [Sadovskii M.V.
(2003a); Zubarev D.N. (1974)]:

χAB(ω) = i

∫ ∞

0

dteiωt < [Â(t), B̂(0)] > (2.79)

Here we see the commutator (averaged over the ground state or Gibbs
ensemble) which originates form the appropriate retarded two – time
Green’s function of Bogoliubov and Tyablikov [Sadovskii M.V. (2003a);
Zubarev D.N. (1974)]4. In non – interacting case we can write second
quantized expressions for (single – particle) operators Â and B̂ using some
full system of eigenfunctions ψm with eigenenergies Em appropriate to our

4θ(t) – function, entering the definition of this Green’s function, leads to the appear-
ance in (2.79) of time integration from t = 0 to t = ∞.
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system5:

Â(t) =
∑
mk

Amkâ
+
mâke

−i(Ek−Em)t (2.80)

B̂(t) =
∑
mk

Bmkâ
+
mâke

−i(Ek−Em)t (2.81)

where Amk and Bmk are the matrix elements of operators, calculated using
eigenfunctions ψm and ψk, while â+

m, âk are appropriate Fermion creation
and annihilation operators for these eigenstates. Substituting these expres-
sions to < [Â(t), B̂(0)] > and calculating this commutator directly, using
Wick’s theorem [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)],
we get:

χAB(ω) =
∑
mk

AmkBkm
n(Em) − n(Ek)
Ek − Em − ω − iδ

(2.82)

where n(Ek) =< â+
k âk > reduces to the usual Fermi distribution.

In case when eigenstates of an electron are unknown (e.g. in case we
are considering the levels of an electron in a specific realization of the ran-
dom potential in a disordered system) it is useful to express susceptibil-
ity via Green’s function. Let us remind definitions of retarded and ad-
vanced Green’s functions GR(ε) and GA(ε). These functions are related to
the causal (Feynman) Green’s function as [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:

G(t, t′) =
{
GR(t, t′) t > t′

GA(t, t′) t < t′
(2.83)

After the Fourier transformation:

GR(A)(εp) =
1

ε− ξ(p) ± iδ
(2.84)

5For non – interacting particles such eigenfunctions and eigenstates always can be
found (at least in principle!) by solving the appropriate stationary Schroedinger equation
similar to (1.4). As was already noted, these states may be just plane – waves for an ideal
Fermi gas, Landau states for the same gas in an external magnetic field, or these may
be some exact (but unknown to us!) states of an electron in a random potential field (if
we are dealing with a disordered system). Note that notations here are slightly different
from those of the previous Chapter, where, in particular, we denoted eigenstates as ϕλ,
eigenergies ελ, etc.
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so that Feynman Green’s function contains contributions from both elec-
trons and holes (cf. Chapter I):

G(εp) = (1 − n(p))GR(εp) + n(p)GA(εp) =

=
1 − n(p)

ε− ξ(p) + iδ
+

n(p)
ε− ξ(p) − iδ

(2.85)

where

n(p) =
{

1 p ≤ pF

0 p > pF
(2.86)

is just Fermi distribution at T = 0.
To express susceptibility via GR(ε) and GA(ε), let us represent energy

denominator in (2.82) as an integral over an additional energy variable:

1
Ek − Em − ω − iδ

= − 1
2πi

∫ ∞

−∞
dε

1
(ε− ω − Em − iδ)(ε− Ek + iδ)

=

= − 1
2πi

∫ ∞

−∞
dεGA

m(ε− ω)GR
k (ε) (2.87)

Substituting this expression to (2.82), we obtain the general operator ex-
pression for susceptibility:

χAB(ω) =
1

2πi

∫ ∞

∞
dεSp([ĜR(ε)B̂, ĜA(ε− ω)Â]ρ̂) (2.88)

where ρ̂ is the density matrix (in diagonalizing representation we have
ρmk = n(Em)δmk). The main advantage of Eq. (2.88) in comparison with
(2.82) is its validity for an arbitrary representation, even when we do not
know exact eigenstates.

Up to now we have used Green’s function formalism for T = 0. For
T > 0 we have to use Matsubara technique. It may seem that to analyze
dynamics in real time t (necessary to calculate (2.79)) Matsubara formalism
is useless, as it deals with imaginary time τ . However, as we shall see now,
Matsubara technique allows rather simple approach to calculation of the
linear response.

Let us introduce Matsubara susceptibility as (ωm = 2πmT ):

χ
(M)
AB (ωm) =

1
2

∫ β

−β

dτ < Tτ Â(τ)B̂(0) > eiωmτ (2.89)

Now we can use the following spectacular theorem [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]:
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• Analytic continuation of χ(M)
AB (ωm) from the discrete set of points at

positive imaginary half – axis of frequency ω = iωn (n > 0) to the real
axis (Imω → +0) precisely gives us the retarded susceptibility χAB(ω).

This theorem allows us to determine χAB(ω) using χ
(M)
AB (ωm) calculated

using Matsubara diagram technique. In the absence of interactions, Mat-
subara susceptibility is given by a single “bubble” diagram (“polarization
operator”) with operators Â and B̂ standing at the vertices. In diagram
technique for T = 0 susceptibility and polarization operator possess differ-
ent analyticity properties (cf. above). However, according to just formu-
lated statement, to find the correct susceptibility it is sufficient to calculate
“polarization bubble” with Matsubara Green’s functions, and then just
continue it analytically to the real frequencies.

Let us now give a proof of our major statement (theorem). We have to
calculate Kubo susceptibility:

χAB(ω) = i

∫ ∞

0

dteiωt < [Â(t), B̂(0)] > (2.90)

where < ... >= Sp(e−βH ...)/Sp(e−βH) is the usual Gibbs average, Â(t) =
eitHÂe−itH – operator in Heisenberg representation. It is easily seen that
(2.90) can be written as:

χAB(ω) =
i

Z

∫ ∞

0

dteiωt
∑
mn

e−βEn

(
eiωnmt < n|Â|m >< m|B̂|n > −

−e−iωnmt < n|B̂|m >< m|Â|n >
)

(2.91)

where ωnm = En − Em, Z = Spe−βH, and n, m numerate exact energy
levels of many – particle interacting system. Changing m to n and vice
versa in the second term in the sum and integrating over t, we obtain:

χAB(ω) =
1
Z

∑
mn

e−βEn − e−βEm

ωnm − ω − iδ
< n|A|m >< m|B|n > (2.92)

Imaginary term iδ(δ → +0) appears here due to the factor of e−δt, which
has to be added into formally divergent integral over t to guarantee con-
vergence.

Now calculate in a similar way Matsubara response function:

χ
(M)
AB (ωm) =

1
2

∫ β

−β

dτeiωmτ < Tτ Â(τ)B̂(0) > (2.93)
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where Â(τ) = eτHÂe−τH. We have:

χ
(M)
AB (ωm) =

1
2Z

∫ β

0

dτeiωmτ
∑
mn

e−βEneωnmτ < n|A|m >< m|B|n > +

+
1

2Z

∫ 0

−β

dτeiωmτ
∑
mn

e−βEne−ωnmτ < n|B|m >< m|A|n > (2.94)

Again changing summation indices in the second sum, taking into account
ωmβ = 2πm, and performing integration over τ , we get:

χ
(M)
AB (ωm) =

1
Z

∑
mn

e−βEn − e−βEm

ωmn − iωm
< n|A|m >< m|B|n > (2.95)

Now everything is ready! Susceptibility χAB(ω) is an analytic function of ω
in the upper half – plane of complex frequency. This is a general property
of the Fourier transform of a function, which is different from zero only for
t > 0 (retarded response!) [Sadovskii M.V. (2003a)]. Now, such a function
can be analytically continued from the real axis to the positive imaginary
half – axis. Obviously, at points ωm = 2πmT this function just coincides
with χ(M)

AB , it is seen by direct comparison of (2.92) and (2.95). Suppose the
existence of an analytical continuation of χ(M)

AB from the positive imaginary
half – axis to the whole upper half – plane of complex ω. Then, this
analytically continued function have to coincide with χAB(ω), as according
to the well known theorem of the theory of complex variables, two functions
analytic in some region of the complex plane and coinciding on the infinite
subset of discrete points (possessing the limiting point at m → ∞) just
coincide in the whole complex plane.

Note that the case of T = 0 sometimes is also conveniently analyzed
within Matsubara formalism. In this case we have just to transform sum-
mation over Matsubara frequencies to integration over continuous (imagi-
nary) frequencies, as for T → 0 discrete points iωm “fill” all the imaginary
axis of complex plane of ω, so that T

∑
m ...→

∫
dω
2π .... During such calcu-

lations we do not have to care about the rules of overcircling the poles of
Green’s functions as the direction of integration is correct automatically.

Let us see how it works on a typical example of calculations of the
polarization operator of the free electron gas, i.e. of the dielectric function
(response function!) in RPA approximation. We have:

Π(M)(ωm,q) = 2T
∑

n

∫
d3p

(2π)3
G(εnp)G(εn + ωm,p + q) (2.96)
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First we perform summation over εn. Let us write down the sum as follows:

T
∑

n

1
iεn + iωm − ξ(p + q)

1
iεn − ξ(p)

=

= T
∑

n

1
iωm − ξ(p + q) + ξ(p)

(
1

iεn − ξ(p)
− 1
iεn + iωm − ξ(p + q)

)

(2.97)

In the second term we may change summation index from n → n−m, so
that ωm just disappears . In both contributions the real part of the sum
converges, while imaginary part is formally divergent. At the same time,
this imaginary part is odd over n and cancels during the summation over
n. Thus it is sufficient to calculate only the following sum:

S(ξ) = T
∑

n

ξ

ε2n + ξ2
(2.98)

It can be done using the identity6:

∞∑
n=−∞

1
(2n+ 1)2π2 + x2

=
1
2x
th
x

2
(2.100)

Then:

S(ξ) =
1
2
th

ξ

2T
=

1
2
− n(ξ) (2.101)

where n(ξ) = (e
ξ
T + 1)−1 is the Fermi distribution. Finally, we get the fol-

lowing expression, which is very useful in calculations of response functions
of the Fermi gas:

T
∑

n

1
(iεn + iωm − ξ(p + q))(iεn − ξ(p))

= − n(ξ(p + q)) − n(ξ(p))
iωm − ξ(p + q) + ξ(p)

(2.102)

6This result can be obtained as follows:

1

(2n+ 1)2π2 + x2
=

1

2x

�
1

x+ iπ(2n + 1)
+

1

x− iπ(2n+ 1)

�
=

=
1

2x

� ∞

0
dze−xz[e−iπ(2n+1)z + eiπ(2n+1)z ] (2.99)

Now just sum the progression under the integral.
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Using this identity in (2.96), we obtain:

Π(M)(ωmq) = −2
∫

d3p

(2π)3
n(ξ(p + q)) − n(ξ(p))
iωm − ξ(p + q) + ξ(p)

(2.103)

Consider now the limit of T = 0. In this case we have n(ξ) = θ(−ξ).
Changing, in the usual way, to integration over ξ we limit ourselves to
small q � pF . Then we have:

Π(M)(ωmq) = −2
∫

d3p

(2π)3
∂n

∂ξ(p)
vq

iωm − vq
= 2νF

∫
dΩ
4π

vF q
iωm − vF q

(2.104)
Performing angular integration as it was done in (2.23), we get:

Π(M)(ωmq) = −2νF

{
1 +

iωm

2vF q
ln
iωm − vF q

iωm + vF q

}
(2.105)

To perform analytic continuation of this expression to the real axis of fre-
quencies, we have only to make a substitution iωm → ω + iδ. Finally, we
obtain:

ΠR(ω + iδq) = −2νF

{
1 +

ω

2vF q
ln
ω − vF q + iδ

ω + vF q + iδ

}
(2.106)

which determines the dielectric function of electron gas in RPA approxima-
tion (as a response function with correct analytical properties).

In fact, taking the real and imaginary parts of (2.106) and changing the
sign, we obtain the density – density response function as:

Reχ(ωq) = 2νF

{
1 +

ω

2vF q
ln
∣∣∣∣ω − vF q

ω + vF q

∣∣∣∣
}

(2.107)

Imχ(ωq) = πνF
ω

vF q
θ(vF q − |ω|) (2.108)

Opposite to the case of a similar expression (2.25) (which appeared via sum-
mation of Feynman diagrams for T = 0), this result satisfies all analyticity
requirements for response functions [Lifshits E.M., Pitaevskii L.P. (1980);
Sadovskii M.V. (2003a)]7. In particular, it satisfies the Kramers – Kronig
relation:

χ(ω) =
1
π

∫ ∞

−∞
dω′ Imχ(ω′)

ω′ − ω − iδ
(2.109)

7It is precisely Eq. (2.108), which is shown in Fig. 2.7 (b).
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Thus, dielectric permeability (response function) is defined as:

ε(qω) = 1 +
4πe2

q2
χ(qω) (2.110)

where χ(qω) is the retarded density – density response function [Nozieres P.,
Pines D. (1966)], which is obtained (up to a sign) via analytic continuation
of Matsubara polarization operator.

Dielectric function is directly connected with electric conductivity of a
system [Zubarev D.N. (1974)]:

σ(qω) =
iω

4π
(1 − ε(qω)) = − ie

2

q2
ωχ(qω) (2.111)

It can be seen as follows. The current density induced by an external electric field

E = −∇ϕ (where ϕ is the scalar potential) is given by:

j(qω) = σ(qω)E(qω) = −iσ(qω)qϕ(qω) (2.112)

Charge conservation is expressed via continuity equation:

e
∂

∂t
n(rt) + ∇j(rt) = 0 (2.113)

or, in Fourier components:

−iωeδn(qω) + iqj(qω) = 0 (2.114)

where δn is some deviation of the density from spatially homogeneous (equilibrium) value
n. This deviation is defined (in linear response theory) as [Nozieres P., Pines D. (1966)]:

δn(qω) = eχ(qω)ϕ(qω) (2.115)

Combining (2.112) – (2.115) we immediately obtain (2.111).

In experiment we usually deal with the limit of q → 0 (homogeneous
external field). Then the conductivity is defined as:

σ(ω) = − lim
q→0

ie2

q2
ωχ(qω) (2.116)

In the simplest case of free electron gas, to calculate the limit of q → 0 for
finite ω we use (2.28) and obtain (ω → ω + iδ, δ → +0):

σ(ω) = lim
q→0

ie2

q2
ω

2νF

3
v2

F q
2

ω2
=

p3
F

3π2m
i
e2

ω
=
ne2

m

i

ω + iδ
(2.117)

i.e. the usual Drude relation for conductivity of electron gas without any
scatterings (ideal conductor!). For the real part of conductivity we get:

Reσ(ω) =
ω

4π
Imε(ω) =

ne2

m
πδ(ω) (2.118)
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where we have used 1
ω+iδ = 1

ω − iπδ(ω). Phenomenologically, we may take
scattering into account replacing δ → γ = 1

τ , where γ is some scattering
rate and τ is the mean – free time.

2.8 Microscopic foundations of Landau – Silin theory of
Fermi – liquids.

In real metals with rs ∼ 2 − 3 electron interaction is not weak and we can
not limit ourselves by the sum of any specific diagram subseries (like in
RPA, which is valid for rs � 1). At the same time, phenomenological the-
ory of Fermi – liquids, introduced by Landau and Silin [Nozieres P., Pines
D. (1966)], is quite successful even in the case of Fermi – systems with
pretty strong interactions. Let us consider the basics of its microscopic
justification [Lifshits E.M., Pitaevskii L.P. (1980); Migdal A.B. (1967);
Nozieres P. (1964)].

In fact, Landau just assumed that the ground state of the Fermi – liquid
is qualitatively the same as that of a Fermi – gas, while the low energy
excitations can be described as quasiparticles, similar to particles and holes
in a Fermi – gas, despite the strong interactions present in a real system of
Fermions (like electrons in metals, atoms of He3, protons and neutrons in
an atomic nuclei etc.). The basic assumption here is that of an existence
of well defined Fermi surface with the Fermi momentum pF , define by the
usual “gaseous” relation:

n =
N

V
=

p3
F

3π2�3
(2.119)

relating it to the full particle density. This statement can be, in fact,
proven in any order of perturbation theory over interaction, using the
general properties of Green’s functions, and is known as Luttinger theo-
rem (J.M.Luttinger, 1960) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)]. This proof is rather
complicated and technical, we just drop it8. It should be clearly under-
stood that the ground state of a normal Fermi – liquid is not the only
possible ground state of the system of interacting Fermions. For exam-
ple we know, that the system may be in the superconducting (superfluid)
state, when Luttinger theorem does not apply and there is no Fermi sur-

8In Appendix A we give some general topological arguments, justifying the stabil-
ity of the Fermi surface towards adiabatic “switching on” of interparticle interactions
(G.E.Volovik, 1991).
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face in the usual sense — it is “closed” by the energy gap. Presently,
much attention is being paid to strongly correlated electronic systems with
many “scenarios” of the formation of non Fermi – liquid state. How-
ever, below we shall mainly concentrate on th analysis of microscopic
foundations of the theory of normal Fermi – liquids [Migdal A.B. (1967);
Nozieres P. (1964)].

Basic physical reason for an interacting system of Fermions to has much
in common with free Fermion case is due to restrictions introduced by Pauli
principle. As we shall see shortly, mainly Pauli “correlations” allow us to
observe well defined quasiparticle excitations close to the Fermi surface. In
an infinite and homogeneous system the Green’s function Gαβ(p) is diagonal
in spin indices and same for both9 spin projections (in the absence of an
external magnetic field or spontaneous magnetization), so we just drop all
these indices. Now introduce Fermion self – energy as usual and write down
the Dyson equation:

G−1(εp) = ε− p2

2m
+ µ− Σ(εp) (2.120)

What can be said for the “general” case of interacting system? Let us
estimate the contribution to the imaginary part of Σ from the process of
creation of three quasiparticles (see Fig. 2.11) — the simplest process
leading to the finite lifetime of a quasiparticle. This process reduces to
the excitation of another particle (e.g. electron) from below of the Fermi
surface, i.e. to the creation of an electron – hole pair. Then we have the
usual conservation laws:

Fig. 2.11 Creation of three quasiparticles in Fermi – liquid.

p1 + p2 = p3 + p4 ε1 + ε2 = ε3 + ε4 (2.121)
9We shall deal mostly with the case of spin s = 1/2.
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and in our case

|p1|, |p3|, |p4| ≥ pF , |p2| ≤ pF

ε1, ε2, ε4 ≥ 0, ε2 ≤ 0 (2.122)

Now it is clear that for the case of |p1| → pF , for all the other excitations
we also have |p2|, |p3|, |p4| → pF , while for ε1 → +0 leads also to εα(α =
2, 3, 4) → 0. When p1 is somewhere “above” pF , remaining values of (|pα|−
pF ) are of the same order as (|p1| − pF ). Then, the probability amplitude
for the process shown by the diagram of Fig. 2.11 is proportional to:

W =
1
τ
∼
∫
δ(ε1 + ε2 − ε3 − ε4)dp2dp3 (2.123)

It is clear, as the momentum p1 is fixed, while p4 = p1+p2−p3, so that we
have only two independent momenta for integration, as is written in (2.123).
As both p2 and p3 are close to pF , we have (|p2,3| − pF ) ∼ (|p1| − pF ).
Allowed values for the modules of p2 and p3 belong to the intervals: pF <

p3 < p1 + p2 − pF and 2pF − p1 < p2 < pF . The angle between p1 and p3

can be arbitrary, while an angle between p3 and p1 + p2 is determined by
energy conservation and integration over this angle “cancels” δ – function in
(2.123). Accordingly, the integration over dp2dp3 is done for p2 ≈ p3 ≈ pF

which leads to (2.123) being of the order of ∼ (|p1|−pF )2. Finally, we have
for the inverse lifetime of a electron (Fermion) with momentum p:

1
τ
∼ ImΣ ∼ (p− pF )2 ∼ ε2 (2.124)

We can easily convince ourselves that the statistical weight of the processes with larger
number of excited quasiparticles is proportional to higher powers of ε. For example,
ImΣ5 ∼ |ε3|ε [Migdal A.B. (1967)]. For finite temperatures, “smearing” of Fermi distri-
bution ∼ T leads to the appropriate contribution to damping due to thermally excited

quasiparticles ∼ T2

EF
. Then, taking (2.124) into account, we can write down the following

general estimate:
1

τ
= A

�
ε2

EF
+
T 2

EF

�
≈Max

�
ε2

EF
,
T 2

EF

�
(2.125)

where A ∼ const. Using the simple Drude – like expression for conductivity:

σ =
ne2

m
τ (2.126)

and taking τ−1 = A T2

EF
we obtain (use also (2.119)) the following estimate of resistivity:

R =
1

σ
∼ T 2m

EF p
3
F e

2
=

1

e2pF

�
T

EF

�2

(2.127)
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This gives characteristic temperature dependence of resistivity due to electron – electron

scattering R ∼ T 2 (L.D.Landau, I.Ya. Pomeranchuk, 1937). Typically in metals we have

pF ∼ �

a
(where a is interatomic spacing) and R ∼ �a

e2

�
T

EF

�2
∼ 10−3Ohm cm

�
T

EF

�2
,

which corresponds to a very small contribution to resistivity for most typical values

of T , which is usually completely “masked” by other scattering mechanisms (e.g. due

to phonons). Experimental observation of ∼ T 2 contribution to resistivity of metals is

possible in very pure samples and usually for temperatures T < 1K, when we can neglect

scattering of electrons by phonons. These simple findings are often forgotten in modern

literature.

Thus, close to the pole ε = ε(p) of the Green’s function (2.120) we
always have Reε(p) ≈ vF (p − pF ) 
 Imε(p) ∼ τ−1 ∼ (p − pF )2, which
corresponds to “well defined” quasiparticles close to the Fermi level. More
accurately (than was done deriving Eqs. (2.46) – (2.50)) we have to proceed
in the following way. In homogeneous and isotropic system (Fermi – liquid)
the value of ReΣ(εp) depends only on modulus of the momentum p = |p|.
Let us define the Fermi momentum pF for the interacting system by the
following relation:

p2
F

2m
+ Σ(pF , 0) = µ (2.128)

Expanding Σ(pε) in powers of p − pF and ε, we obtain the expression for
G(pε) valid close to the Fermi surface (ε→ 0, p→ pF ) as:

G−1(εp) ≈ ε− p2

2m
+ µ− Σ(pF , 0) −

(
∂Σ
∂p

)
F

(p− pF ) −
(
∂Σ
∂ε

)
F

ε+

+iα′|ε|ε =
[
1 −

(
∂Σ
∂ε

)
F

]
ε−

[
pF

m
+
(
∂Σ
∂p

)
F

]
(p− pF ) + iα′|ε|ε

(2.129)

where we have taken into account Eq. (2.124) and guaranteed the correct
sign change of the imaginary part of (Feynman) Green’s function at ε = 0.
Thus we find that the Green’s function for (presumably) arbitrary system
interacting Fermions can be written close to the Fermi surface as [Migdal
A.B. (1967)]:

G(εp) =
Z

ε− vF (p− pF ) + iα|ε|ε +Greg(εp) (2.130)

where Greg(εp) is some regular (non – singular) part with no poles close to
the Fermi surface (and due to multi – particle excitations of the systems
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[Migdal A.B. (1967)]). Here in (2.130) we have introduced the following
notations:

1
Z

= 1 −
(
∂Σ
∂ε

)
F

=
(
∂G−1

∂ε

)
F

(2.131)

for the residue at the pole of the Green’s function and

vF =

pF

m +
(

∂Σ
∂p

)
F(

∂G−1

∂ε

)
F

= −

(
∂G−1

∂p

)
F(

∂G−1

∂ε

)
F

; α = Zα′ (2.132)

for the velocity at the Fermi surface. Eq. (2.130) defines the general form
of the single – particle Green’s function in a system of interacting Fermions
(Fermi – liquid). It is easily seen that specific expressions, obtained above
within RPA, are precisely of this form.

Now we can easily show, that Eq. (2.130) directly leads to the existence
(at T = 0) of a discontinuity in particle distribution in momentum space
even in the case of interacting Fermions (A.B.Migdal, 1957). To see this we
have to calculate the difference of the values of particle distribution function
n(p) at both sides of the Fermi surface, i.e. the limit of n(pF + q)−n(pF −
q) for q → +0. Momentum distribution of particles in Green’s function
formalism is expressed as (cf. (1.34), (1.38)) [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:

n(p) = −i lim
t→−0

∫ ∞

−∞

dε

2π
e−iεtG(εp) (2.133)

Now use here (2.130). As Greg(εp) is regular, it is clear that its contribution
to the difference of integrals will tend to zero wit q → 0. Thus, it is sufficient
to analyze only the difference of integrals from the poles of the Green’s
function (2.130). Then we get:

n(pF − q) − n(pF + q) = −i
∫ ∞

−∞

dε

2π

{
Z

ε+ vF q − iδ
− Z

ε− vF q + iδ

}
(2.134)

where we have taken into account that close to the pole signε = sign(p−
pF ), and dropped the factor of e−iεt (with t → 0) due to convergence of
the integral. Closing the integration contour at infinity (no matter in the
lower or in the upper halfplane), we obtain:

n(pF − 0) − n(pF + 0) = Z (2.135)
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As we obviously have n(p) ≤ 1, it follows that:

0 < Z ≤ 1 (2.136)

and the limiting value of Z = 1 is reached only in the case of and ideal
Fermi – gas. Thus we see that the momentum distribution of particles in
the Fermi – liquid at T = 0 has (similarly to the case of Fermi – gas) a finite
discontinuity at the Fermi surface, as is qualitatively shown in Fig. 2.12.
Two major differences with the case of an ideal gas are that discontinuity

Fig. 2.12 Qualitative form of particle distribution function in the Fermi – liquid at
T = 0.

is less than unity, while distribution function n(p) itself is finite also in the
region of p > pF (particles are “pushed” to this region by interaction!).
In fact, the existence of discontinuity in particle distribution allows strict
definition of the Fermi surface in the system of interacting Fermions.

Spectral density A(pε) = −signε 1
π ImG(εp), corresponding to the

Green’s function (2.130) has a typical form of a smeared quasiparticle
(Lorentzian) peak at ε = εp (quasiparticle energy), on the smooth back-
ground due to multi – particle excitations, as shown in Fig. 2.13 (b), while
in an ideal gas of Fermions it reduces to δ – function, shown in Fig. 2.13
(a). Note, that spectral densities of electrons in interacting systems can,
in fact, be measured experimentally via photoemission with angular resolu-
tion (ARPES)10, which allows also to study the form of real Fermi surfaces,
even for very complicated compounds11. These measurements, performed

10J.C.Campuzano, M.R.Norman, M.Randeria. Photoemission in the High Tc Super-
conductors. ArXiv: cond-mat/0209476.

11A.Damascelli, D.H.Lu, Z.-X.Shen. From Mott insulator to overdoped superconduc-
tor: Evolution of the electronic structure of cuprates studied by ARPES. Rev. Mod.
Phys. 75, 473 (2003)
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in recent years, confirmed qualitative predictions of the theory of Fermi –
liquids for majority of “metallic” systems. Deviations from Fermi – liquid
behavior, observed in some systems are usually attributed to the effects of
strong correlations [Varma C.N., Nussinov Z., Wim van Saarloos (2002)].

Fig. 2.13 Spectral density in Fermi – gas (a) and in Fermi – liquid (b).

2.9 Interaction of quasiparticles in Fermi – liquid.

Interactions of quasiparticles in Fermi – liquid is described by the two –
particle Green’s function [Migdal A.B. (1967)]:

K =< Tψ(1)ψ(2)ψ+(3)ψ+(4) > (2.137)

which is determined by the sum of all diagrams, describing the propagation
of two particles from the points (1, 2) to (3, 4). First of all, we can separate
diagrams with no interactions between these two particles, but with all
possible interactions of each of the particles with the “background”, of the
type shown in Fig. 2.14. It is obvious that here we are dealing with two
independent sum of diagrams, each reducing to the full single – particle
Green’s function G. Accordingly, we have:

K0 = G(1, 3)G(2, 4) −G(1, 4)G(2, 3) (2.138)

Minus sign before the second (exchange) term here is due to the antisym-
metry of Fermions under permutations.

All the remaining diagrams for K describe interactions of the particles
with each other. Let us denote as V all the graphs of this type, which can
not be separated into two parts, connected by two electronic lines, as shown
in Fig. 2.15. Then for the two – particle Green’s function K we can write



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 51

Fig. 2.14 Independent propagation of two particles in Fermi – liquid.

Fig. 2.15 Diagrammatic definition of the block V . Crossed out are diagrams, which
can be cut by two particle lines.

down the following equation:

K = K0 −GGV K (2.139)

as the sum of all diagrams following after V again reduces to K. Of course,
Eq. (2.139) is in fact an integral equation and “operator” multiplication
of Green’s functions denote here (and in similar cases below) appropriate
integrations.

To describe interaction itself it is convenient to introduce the vertex
part (scattering amplitude) Γ defined by the following expression:

K −K0 = −GGΓGG (2.140)

This vertex Γ is represented by the sum of all diagrams, starting and ending
with interaction lines, it does not contain the lines of particles, entering or
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leaving the whole block (i.e. the “external” lines are just cut off). Substi-
tuting (2.140) into (2.139) we get:

K −K0 = −GGΓGG = −GGVK = −GGVK0 +GGV GGΓGG (2.141)

Introduce the obvious relation:

GGVK0 = GG(V − Ṽ )GG (2.142)

where Ṽ denotes V with exchange of outgoing external lines, Then from
(2.141), after the multiplication from the left and right by (GG)−1, we
obtain:

Γ = V − Ṽ − V GGΓ (2.143)

From the definitions of Γ and K it follows that:

Γ(1, 2; 3, 4) = −Γ(2, 1; 3, 4) = −Γ(1, 2; 4, 3) Γ(1, 2; 3, 4) = Γ(3, 4; 1, 2)
(2.144)

reflecting the antisymmetry of wave functions in the system of Fermions.
Eq. (2.143) for Γ can be obtained also directly from the equation for K.

Separating the block V , it is simple to obtain the diagrammatic equation,
shown in Fig. 2.16, which (after symmetrization) reduces to (2.143).

Fig. 2.16 Diagrammatic equation for the vertex Γ in the particle – particle channel.

To derive phenomenological equations of Fermi – liquid theory it is
convenient to rewrite equation for Γ in another form. Above we introduced
the block V , which could not be cut by two lines in the particle – particle
channel (called also irreducible vertex in this channel). We may act also
in another way and separate from all diagrams for the vertex Γ, those
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representing the block (vertex) U , irreducible in the particle – hole channel,
consisting of diagrams, which can not be separated in two parts connected
by two lines, representing a particle and a hole. Appropriate diagrams are
shown in Fig. 2.17. Then for Γ we can write diagrammatic equation, shown

Fig. 2.17 Diagrammatic definition of the block (irreducible vertex) U . Crossed out are
diagrams which can be cut by two lines of a particle and a hole.

in Fig. 2.18, or analytically:

Fig. 2.18 Diagrammatic equation for the vertex Γ in particle – hole channel.

Γ = U + UGGΓ (2.145)

In momentum representation, the difference of 4 - momenta, entering
Green’s functions G (and satisfying the conservation law p1 +p2 = p3 +p4),
is equal to the transferred momentum q = p1 − p3 = p4 − p2, which is equal
to the sum of momenta in the particle – hole channel and is the same in
each “crossection” in this channel. In equation shown in Fig. 2.16, the sum
of momenta entering into Γ, is equal to the full momentum of the system of
two particles q′ = p1 +p2 = p3 +p4, which is the same in each “crossection”
of particle – particle channel. Introduction of different blocks (irreducible
vertices), of the type we used above, becomes convenient in the case, when
such a block happens to be a smooth function of its variables (momenta),
as in such a case it can be replaced by some effective constant.
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Remarks on “parquet”.
In some cases it is convenient to introduce block (vertex) W , which can not be

cut by two lines (irreducible) both in particle – particle and particle – hole channels.
Then, besides Eqs. (2.16), (2.18) we have to write down also equations, establishing
connection of vertices U and V with vertex W , as shown in Fig. 2.19. Together with

Fig. 2.19 “Parquet” equations for the vertex parts.

equations, shown in Fig. 2.16 and Fig. 2.18, equations shown in Fig. 2.19 form a system
of the so called “parquet” equations. Here we understand that W should be taken in
symmetrized form, i.e. for Fermions we should take the difference Wαβγδ(p1, p2; p3, p4)−
Wα,β,δ,γ(p1, p2; p4, p3). In analytic form we have:

V − Ṽ = W + UGGΓ (2.146)

U = W − V GGΓ (2.147)

Using for Γ the equation shown in Fig. 2.18, we obtain from (2.146):

U + V − Ṽ = W + Γ (2.148)

The same result follows from (2.147) if we use for Γ the equation, shown in Fig. 2.16.
These equations allow us to express Γ via the irreducible vertex W . As a result we obtain
the following nonlinear (integral) equation:

Γ = W +
1

2
WGGΓ − 1

2
ΓGG(Γ +W )GGΓ (2.149)

Usually the irreducible vertex W , taken in momentum representation, is rather weakly
dependent on incoming and outgoing momenta, while the vertex U , according to (2.147),
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possess a significant dependence on the (small) sum of these momenta. Similarly, the
vertex V , according to (2.146), has an important dependence on (small) transferred
momentum q → 0.

Introduction of the block (irreducible vertex) U is useful to study the
properties of the full vertex Γ at small transferred momenta, while block
V (and the use of equations, shown in Fig. 2.16) is conveniently used in
case of small sum of incoming (outgoing) momenta (cf. below the analysis
of Cooper instability!).

In Landau theory of normal Fermi – liquid the equation, shown in Fig.
2.18, is of special significance. In general, the second term in the r.h.s. of
this equation contains integrations both in the vicinity and far away from
the Fermi surface. However, Landau has shown that at small momentum
transfers this equation may be transformed to another (“renormalized”)
equation for Γ with momenta close to the Fermi surface and with all inte-
grations performed also in the close vicinity of the Fermi surface (i.e. we
can obtain the closed equation for Γ at the Fermi surface).

Let us write down the equation, shown in Fig. 2.18, explicitly (in mo-
mentum representation):

Γ(p, p′, q) = U(p, p′, q)−i
∫

d4p′′

(2π)4
U(p, p′′, q)G

(
p′′ +

q

2

)
G
(
p′′ − q

2

)
Γ(p′′, p′, q)

(2.150)
where integration is supposed to include summation over the spin indices of
internal lines (which we just drop for the shortness of presentation). Here
we introduced the following notations:

Γ(p1, p2, p3, p4) = Γ(p, p′, q)(2π)4δ(p1 + p2 + p3 + p4)

U(p1, p2, p3, p4) = U(p, p′, q)(2π)4δ(p1 + p2 + p3 + p4) (2.151)

where incoming (p1, p2) and outgoing (p3, p4) 4-momenta are connected
with p and p′ as:

p1 = p+
q

2
p2 = p′ − q

2
p3 = p− q

2
p4 = p′ +

q

2
(2.152)

so that the transferred momentum is q = (q, ω) and we have a conservation
law: p1 + p2 = p3 + p4. In the first order of perturbation theory we have:

U(p, p′, q) =
∫
d(r1 − r2)e−iq(r1−r2)V (r1 − r2) (2.153)

where V (r1 − r2) is the potential of interparticle interaction.
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In Eq. (2.130) we have written down the general form of the single –
particle Green’s function in the Fermi – liquid:

G(p) =
Z

ε− ε(p) + iγ(ε)
+Greg(p) (2.154)

where ε(p) = vF (p− pF ),

Z−1 =
(
∂G−1

∂ε

)
F

; γ(ε) ∼ ε2signε (2.155)

When q → 0, the poles of both Green’s functions in (2.150) move to each
other and effectively we obtain a δ-like maximum close to the Fermi sur-
face. Accordingly, we can write down the following representation of this
product of Green’ functions (considered in a sense of the kernel of the in-
tegral equation) in Eq. (2.150) (all energies are calculated with respect to
ε = EF = 0):

G
(
p+

q

2

)
G
(
p− q

2

)
≈ Z2δ(ε)

∫ ∞

−∞
dεG0

(
p+

q

2

)
G0

(
p− q

2

)
+B(p, q)

(2.156)
where

G0(p) =
1

ε− ε(p) + iγsign(ε)
; γ → +0 (2.157)

is just a free Green’s function. The integral entering (2.156) was, in fact,
already calculated above in (2.19). Using the result of this calculation, we
have:

∫ ∞

−∞
dεG0

(
p+

q

2

)
G0

(
p− q

2

)
=

= −2πi
n (p + q/2) − n (p− q/2)

ω − ε (p + q/2) + ε (p− q/2) + iγsignω
(2.158)

where

n(p) =
{

1 for |p| ≤ pF

0 for |p| > pF
(2.159)
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From here we easily obtain (cf. (2.19), (2.23) etc.):

G0

(
p+

q

2

)
G0

(
p− q

2

)
q→0

=

= iZ2δ(ε)2π
qv

ω − qv + iγsignω

δ(|p| − pF )
pF

m∗ + B(p, q) ≡

≡ A+B

(2.160)

where v = ∂ε(p)/∂p = pF

m∗ p/p is quasiparticle velocity at the Fermi surface,
m∗ is an effective mass, and B(p, q) does not contain any singularities,
and up to the terms of the order of q2/p2

F and ω2/E2
F can be assumed

independent of q.
Returning to the analysis of the full vertex Γ, let us rewrite Eq. (2.145)

in the following form:

Γ = U + ΓGGU = U + Γ(A+B)U = U + U(A+B)Γ (2.161)

This equation can be obtained from diagrammatic representation for Γ, if
we sum diagrams in “inverse” order. Introduce now the scattering ampli-
tude Γω, defined by the equation:

Γω = U + UBΓω = U + ΓωBU (2.162)

It is easily seen that Γω can be defined as the following limit:

Γω = lim
ω→0, q

ω →0
Γ (2.163)

The order of limits here is very important, first we have to perform q → 0,
and only then put ω → 0 (L.D.Landau, 1958). In this case we have A in
(2.161) going to, which leads to Eq. (2.162).

Multiplying (2.161) from the left side by 1 + ΓωB, we get:

Γ = Γω + ΓωAΓ = Γω + ΓAΓω (2.164)

It can be checked directly:

(1 + ΓωB)Γ = (1 + ΓωB)U + (1 + ΓωB)U(A+B)Γ =

= Γω + Γω(A+B)Γ = Γω + ΓωAΓ + ΓωBΓ

The underlined terms cancel and we obtain (2.164).
The vertex part Γω depends on p2, (p′)2,pp′ and ε, ε′ (at the moment

we do not discuss spins!), but on the Fermi surface we have |p| = |p′| = pF ,
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ε = ε′ = 0, so that Γω depends only on the angle between vectors p and p′.
Vertex part Γ, taken at the Fermi surface, depends also on the transferred
momentum. Integrals in Eq. (2.164) are taken at the Fermi surface (due
the explicit form of A given in (2.160)), so that we take |p| = |p′| = pF

and ε = ε′ = 0 and obtain the closed equation determining Γ at the Fermi
surface (L.D.Landau, 1958).

During this derivation we assumed that the block U (irreducible vertex
in particle – hole channel) is non – singular as the transferred momentum
q → 0. Thus, strictly speaking, our analysis is invalid in the case of Coulomb
interaction between Fermions (e.g. for electrons in metals!), but can be
applied for Fermi – liquids with short – range interactions (e.g. for the
liquid He3). Necessary generalizations for the Coulomb case will be given
below.

Let us write down Eq. (2.164) explicitly for the limit of small q. Con-
sider first the simplified case, when Γω does not depend on the quasiparticle
spins. Then, summation over spin indices of internal lines (particle and
hole) leads just to an additional factor of 2 (for Fermions with spin 1/2).
Using the explicit form of A from (2.160), we obtain:

Γ(n,n′,q) = Γω(n,n′) +

+
Z2pFm

∗

π2

∫
Γω(n,n′

1)
qv1

ω − qv1 + iγ(ω)
Γ(n1,n′,q)

dΩ1

4π
(2.165)

where γ(ω) = γsignω, (γ → +0), n,n′,n1 are unity vectors for directions
of p,p′ and v1. Integration in (2.165) is performed over the angles of vector
v1.

Consider as an example the oversimplified case, when Γω(n,n′) is not
dependent on the angle between n and n′. Then Γ also does not depend
on this angle and is easily found from Eq. (2.165):

Γ(qω) =
Γω

1 − 1
2Φ0

∫ 1

−1
dx qvx

ω−qvx+iγ(ω)

(2.166)

where Φ0 = Z2Γω m∗pF

π2 . Here m∗pF

π2 is just the density of states at the
Fermi level.

Integral in (2.166) is calculated as was done above in (2.23) and (2.25),
so that we obtain:

Γ(qω) =
Γω

1 + Φ0

{
1 − ω

2qv ln
∣∣∣ω+qv
ω−qv

∣∣∣+ iπ |ω|
2qv θ(qv − |ω|)

} (2.167)
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In case of Coulomb interaction, for q → 0, in first approximation for U we
may take only a single diagram shown in Fig. 2.17), so that:

U =
4πe2

q2
≡ Vq (2.168)

as it diverges for q → 0. Assuming Z = 1 and dropping non – singular
contribution to GG, we get:

Γ(qω) =
Vq

1 + mpF

π2 Vq

[
1 − ω

2qv ln
∣∣∣ω+qv
ω−qv

∣∣∣+ iπ |ω|
2qv θ(qv − |ω|)

] (2.169)

For ω 
 vq this reduces to:

Γ(qω) =
4πe2

q2 − mpF

π2 4πe2 1
3

v2q2

ω2

=
Vq(

1 − ωp
2

ω2

) (2.170)

i.e. we obtain effective screening with ε(ω) = 1 − ω2
p

ω2 , where ω2
p = 4πne2

m

is the square of plasma frequency. For vq 
 ω we obtain the usual Debye
screening:

Γ(qω = 0) =
4πe2

q2 + κ2
D

(2.171)

where κ2
D = 4e2mpF

π . These expressions just coincide with those obtained
above within RPA.

As we already stressed above, our general analysis of the Fermi – liquid
approach assumed the absence of singularity of irreducible vertex part U
for q → 0, typical for Coulomb case. Thus, the correct account of Coulomb
interaction within the general theory of Fermi – liquids requires special
attention (V.P.Silin, 1957; P.Nozieres, J.M.Luttinger, 1962) [Nozieres P.
(1964); Nozieres P., Pines D. (1966)]. Consider an arbitrary diagram for
the vertex part Γ. Let us call a diagram the “proper” one [Nozieres P.
(1964)], if it contains no interaction lines with small momentum transfers q.
In the opposite case we shall call a diagram “improper”. Typical examples
are shown in Fig. 2.20. “Proper” diagrams give regular contributions for
q → 0. Let us denote as Γ̃ the sum of all “proper” diagrams for the vertex
part. This sum is obviously regular for q → 0. Then it is clear that an
arbitrary contribution to the full vertex has a structure, shown in Fig.
2.21. Thus we may write:

Γ = Γ̃ + T̃VT̃ (2.172)
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Fig. 2.20 Examples of “improper” (a) and “proper” (b) diagrams for the case of
Coulomb interaction.

Fig. 2.21 General structure of an arbitrary contribution to the full vertex for the case
of Coulomb interaction.

where diagrams for blocks V (screened interaction!) and T̃ are shown in
Fig. 2.22. Analytically (Fig. 2.22(a)):

V = Vq + VqΠ̃Vq + VqΠ̃VqΠ̃Vq + ... (2.173)
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where Π̃, as well as T̃ (Fig. 2.22(b)), does not contain “improper” diagrams.
It is clear that:

V =
Vq

1 − VqΠ̃
(2.174)

so that

Γ = Γ̃ +
T̃ Vq T̃

1 − VqΠ̃
(2.175)

Blocks Γ̃, T̃ , Π̃ possess well defined limits at q → 0 (of the type of Γω).
Thus all the general equation for scattering amplitudes (vertices) of the

Fig. 2.22 Diagrams for the effective (screened) interaction (a) and the definition of the
block T̃ (b).

general theory of Fermi – liquids, derived above, remain, in fact, valid for
“proper” vertices (amplitudes), so that in these equations we have only to
add “tildas”. Physically, this means that we split the full vertex Γ into
short – range part Γ̃ and the part, describing the self – consistent field
(appearing due to long – range forces) Γlong:

Γ = Γ̃ + Γlong (2.176)

as it is shown in Fig. 2.23. The value of Γlong is precisely equivalent to
the effective self – consistent field, introduced in Landau – Silin theory as
the scalar potential to be determined from the solution of Poisson equation
[Sadovskii M.V. (2003a); Nozieres P. (1964); Nozieres P., Pines D. (1966)].
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The “proper” vertex Γ̃ describes short – range correlation effects, and to

Fig. 2.23 Full interaction vertex in the theory of Fermi – liquids with Coulomb interac-
tion. The second term in the r.h.s. represents an effective self – consistent field (scalar
potential).

determine it in the Fermi – liquid with Coulomb interactions (e.g. electrons
in metals) we just write the same phenomenological equations as in the case
of short – range interactions (e.g. He3). These equations will be briefly
discussed below. In spatially homogeneous system, the contribution of Γlong

at q = 0 is just cancelled by the “compensating background” of positive
ions (necessary for charge neutrality). However, it becomes quite important
in kinetic equation of Landau – Silin theory, which describes collective
oscillations in metallic Fermi – liquid [Nozieres P., Pines D. (1966)].

From the previous discussion it is clear that the value of Z2Γω plays the
role of the scattering amplitude of Fermi – liquid quasiparticles. Note that
the value of Γω (for ω → 0) is real (Hermitian in spin indices). Physically Γω

represents the scattering amplitude of two particles (in Fermi – liquid) with
zero value of scattering angle (vq � EF ). Imaginary part for the forward
scattering amplitude can be expressed via the total scattering crosssection
(optical theorem of quantum scattering theory). However, this crossection
goes to zero as momenta of the particles tend to the Fermi momentum,
as in this case we have the phase space of the final states tending to zero.
Now for Γω we can introduce the standard phenomenological representation
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(L.D.Landau, 1958):

Z2Γωm
∗pF

π2
≡ f(pσ;p′σ′) = fs + (�σ�σ′)fa (2.177)

where both fs and fa depend only on the angle between p and p′ (both
belonging to the Fermi surface), so that we can introduce the following
expansion over Legendre polynomials:

fs,a(θ) =
π2

m∗pF

∞∑
l=0

F s,a
l Pl(cos θ) (2.178)

where F s,a are dimensionless parameters (Landau constants), describing
correlation effects (short – range Fermi – liquid interactions )12.

Solution of the integral equation (2.165) for Γ can also be sought in the
similar form:

Z2m
∗pF

π2
Γ = ϕ+ (�σ�σ′)ψ (2.179)

Then for ϕ and ψ we obtain the following equations:

ϕ(n,n′,q) = fs(n,n′) +

+
∫
fs(n,n1)

qv1

ω − qv1 + iγ(ω)
ϕ(n1,n′,q)

dΩ1

4π
(2.180)

ψ(n,n′,q) = fa(n,n′) +

+
∫
fa(n,n1)

qv1

ω − qv1 + iγ(ω)
ψ(n1,n′,q)

dΩ1

4π
(2.181)

If we are interested in collective excitations of the Fermi – liquid, we must
take into account that these are determined by the poles of the two –
particle Green’s function in particle – hole channel, which is determined by
the equation (2.140):

K = K0 −GGΓGG (2.182)

Here the term K0 possesses the pole, corresponding to the sum of energies
of two free particles, so that the poles of K, describing collective oscilla-
tions can be present only in Γ. Close to that pole we can just neglect
inhomogeneous term of (2.145) and write:

Γ = UGGΓ (2.183)
12Within phenomenological Landau approach these constants are to be determined

form the experiments.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

64 Book Title

Limiting ourselves to excitations with small q � pF and ω � EF , we may
use the renormalized equation for Γ:

Γ = Γω + ΓωAΓ (2.184)

solution of which can be sought in the form given by (2.179). Then the
acoustic type oscillations (zero sound) are possible in our system13, de-
scribed by ϕ, and spin waves, described by ψ. Consider in more details the
case of zero sound. From Eq. (2.180), close to the pole, we obtain:

ϕ(n,n′,q) =
∫
fs(n,n1)

qv1

ω − qv1 + iγ(ω)
ϕ(n1,n′,q)

dΩ1

4π
(2.185)

Now, close to the pole, describing collective oscillations with the spectrum
ωq, ϕ can be written as:

ϕ(n,n′) =
χ(n)χ(n′)
ω2 − ω2

q

2ωq (2.186)

This structure of the solution can be justified on general grounds [Migdal
A.B. (1967)], but for us it is sufficient to say, that we just are seeking the
solution of this form. Then, for χ(n) we obtain the following equation:

χ(n) =
∫
fs(n,n1)

qv1

ω − qv1 + iγ(ω)
χ(n1)

dΩ1

4π
(2.187)

Let us define the function:

ρ(n) =
vq

ω − vq + iγ(ω)
χ(n) (2.188)

Then it satisfies the following equation, which is easily obtained from
(2.187):

(ω − vq)ρ(n) = vq
∫
fs(n,n1)ρ(n1)

dΩ1

4π
(2.189)

which coincides with kinetic equation of phenomenological Landau theory
[Nozieres P., Pines D. (1966)], with ρ(n) being the non – equilibrium part
of the distribution function of quasiparticles.

Let us explain this point in more details. Some small change of dis-
tribution function of the Fermi – gas (quasiparticles of the Fermi – liquid,

13To simplify the problem, we are dealing here only with the Fermi – liquid with short
– range interactions. Physically, the zero sound corresponds not to the oscillations of the
density in the liquid, but to oscillations of the Fermi surface itself [Nozieres P., Pines D.
(1966)].
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in first approximation, form just such a gas) for small q and ω satisfy the
kinetic (transport) equation of the following form:

(ω − vq)δfq(p) = −q
∂f0
∂p

Vq(p) (2.190)

where f0 is the equilibrium (Fermi) distribution, while the self – consistent
field (potential) Vq(p) is connected with the change of distribution function
as14:

Vq(p) = 2
∫
U(p,p′)δfq(p′)

dp′

(2π)3
(2.191)

where U(p,p′) is interaction amplitude of the particles in momentum rep-
resentation. Using now:

∂f0
∂p

= − p
|p|δ(|p| − pF ) (2.192)

and rewriting the non – equilibrium part of distribution function as:

δfq(p) = δ(|p| − pF )ρ(n) (2.193)

we obtain:

(ω − vq)ρ(n) = vq
m∗pF

π2

∫
U(p,p1)ρ(n1)

dΩ1

4π
(2.194)

with |p1| = |p| = pF . Comparison with (2.189) yields:

U(p,p1) =
π2

m∗pF
fs(n,n1) = Z2Γω

s (p,p1) (2.195)

where Γω
s denotes the spinless part of the amplitude.

Consider the solution of (2.189) for the simplest case, when fs(n,n′) =
F0, i.e. is represented by a single constant. Then (2.189) reduces to:

ρ(n) =
vq

ω − vq
F0

∫
ρ(n1)

dΩ1

4π
(2.196)

Performing angular integration (as we have already done before), we obtain
the following equation:

− 1
F0

= 1 − ω

2vq
ln
∣∣∣∣ω + vq

ω − vq

∣∣∣∣+ iπ
|ω|
2vq

θ(vq − |ω|) (2.197)

14In Landau – Silin theory we have to add to Vq(p) the contribution from self –
consistent scalar potential, defining the electric field, and determined by appropriate
Poisson equation.
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Solution of this equation immediately gives the dispersion law for the zero
sound. Real frequencies (no damping!) is obtained for |ω| > vq. Denoting
ωq = svq we get:

1
F0

=
s

2
ln
s+ 1
s− 1

− 1, where s > 1 (2.198)

It is not difficult to see, that the r.h.s. here is positive, so that the zero
sound is possible only for F0 > 0. In limiting cases we have:

sF0→0 = 1 + 2e−
2

F0 sF0→∞ =
√
F0/3 (2.199)

Finally we just quote a number of basic relations of the standard theory of
Fermi – liquids [Nozieres P., Pines D. (1966)]. Using Halilean invariance it
can be shown that the effective mass m∗ is determined by a simple relation:

m∗

m
= 1 +

F s
1

3
(2.200)

Accordingly, the specific heat of Fermi – liquid (at T = 0) is given by:

c =
m∗

m
c0 (2.201)

where c0 is the specific heat of the Fermi – gas.
Magnetic susceptibility is given by:

χ =
m∗

m

1
1 + F a

0

χ0 (2.202)

where χ0 is the susceptibility of an ideal gas. Similarly, compressibility of
the Fermi – liquid is:

κ =
m∗

m

1
1 + F s

0

κ0 (2.203)

where κ0 is the compressibility of a gas.
Using these relations we can come to some general conclusions. For

example, from Eqs. (2.202) and (2.203) we immediately obtain conditions
for stability of the homogeneous Fermi – liquid:

1 + F a
0 > 0; 1 + F s

0 > 0 (2.204)

If we have 1+F s
0 < 0, then we get the negative compressibility (which may

mean that the system is unstable to some “structural” phase transition,
transforming the system to some new stable state!). The general stability
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analysis of the Fermi – liquid state (I.Ya.Pomeranchuk, 1957) gives the
following stability conditions (which must be satisfied for all values of l):

1 +
1

2l+ 1
F s,a

l > 0 (2.205)

For l = 1 inequality (2.205) guarantees the positiveness of m∗ as defined
by (2.200). From (2.202) we can see, that for the system, close to magnetic
instability, it is possible to have 1 + F a

0 � 1. The value of this parameter
can be determined experimentally from the measurements of susceptibility
and specific heat, determining the so called Wilson ratio:

RW =
π2χT

3µ2
Bc

=
1

1 + F a
0

(2.206)

2.10 Non – Fermi – liquid behavior.

Fermi – liquid is not the only possible ground state of many – electron
(Fermion) system. The system may become superconducting, magnetic
(antiferromagnetic) ordering or charge (spin) density waves (CDW(SDW))
are also possible. Some of these states may be dielectrics, resulting from
the initial metallic state via metal – insulator transitions. Some of these
possibilities will be discussed below. However, there is a general question
— if Landau Fermi – liquid is the only possible ground state of a normal
metal without any type of long – range order? This problem is actively
discussed in recent years, mainly due to the problems with an explana-
tion of the anomalies of electronic properties of the normal state of high –
temperature copper oxide superconductors (and also the so called “heavy
Fermion” compounds). Non – Fermi – liquid behavior is realized (as a rule!)
in one – dimensional models of interacting Fermions. Some of the examples
of such systems (models), such as basic Tomonaga – Luttinger model, will
be dealt with in the final part of our lectures. However, high – temperature
superconducting copper oxides belong to some border – crossing case of
two – dimensional (or, more precisely, quasi – two – dimensional) systems,
and the question about the proper ground state is still more or less open.
There is a number of “scenarios” of non – Fermi – liquid behavior of such
systems.

At the moment we shall briefly discuss only one such scenario – that
of the so called “marginal” Fermi – liquid [Varma C.N., Nussinov Z., Wim
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van Saarloos (2002)]. In this theory it is assumed15, that the polarization
operator of electronic system Π(qω) possess no significant dependence on
q, while the frequency dependence of its imaginary part has the following
form:

ImΠ(qω) =
{
−N(EF )ω

T for ω � T

−N(EF ) for T � ω � ωc
(2.207)

Here ωc is some cut – off frequency , and it is assumed that ωc � EF . Using
Kramers – Kronig dispersion relations, we can restore the appropriate form
of the real part of Π:

ReΠ(qω) ∼ N(EF ) ln
(ω
T

)
(2.208)

Now we can estimate the self – energy of an electron, determined by the
diagram shown in Fig. 2.24:

Fig. 2.24 Self – energy of an electron in “marginal” Fermi – liquid.

Σ ∼ λε

[
ln

x

ωc
+ i

π

2
signε

]
(2.209)

where x = Max(ε, T ), while λ is some dimensionless interaction constant.
Then, using (2.50), we immediately obtain:

Z =
1

1 − ∂ReΣ
∂ε

∼ 1

1 − λ ln
(

x
ωc

) (2.210)

Now we see that the residue at the pole of the Green’s functions goes to zero
at the Fermi surface itself, so that quasiparticles are just not defined there
at all! However, everywhere close to the Fermi surface we have more or
less “usual” quasiparticle contribution. Important difference with standard
Fermi – liquid behavior is that quasiparticle damping, determined by the
imaginary part of Σ (2.209), is linear in energy (with respect to the Fermi

15These assumptions qualitatively correspond to experimentally observed anomalous
behavior of copper oxide superconductors in the normal state.
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level): γ ∼ ε. This means that quasiparticles (close to the Fermi surface)
are just “marginally” defined (note that in Landau theory we have obtained
γ ∼ ε2, leading to well defined quasiparticles).

At present it is not clear what kind of the microscopic mechanism (in-
teraction) can lead to such anomalous behavior, though “marginal” Fermi
– liquid gives (phenomenologically) rather satisfactory description of basic
anomalies of electronic properties of copper oxides in the normal state and
this model is often used to fit experiments [Varma C.N., Nussinov Z., Wim
van Saarloos (2002)].

Note, that this problem is linked, in general, with the low dimensional-
ity of the systems under study. We already noted that in one – dimensional
(interacting) systems Landau theory just never “works”. Many theorists
believe that similar situation is typical for two – dimensional systems also.
The physical reason for non – Fermi liquid behavior is usually attributed to
strong correlations, which can not be described by Fermi – liquid phenom-
enology, as it assumes the qualitative picture of the ground state similar
to that of an ideal Fermi – gas. At the same time, a number of detailed
studies has shown that Fermi – liquid behavior is mostly conserved in two
– dimensional (quasi – two dimensional) case.
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Chapter 3

Electron – Phonon Interaction

3.1 Diagram rules.

Phonons are the quanta of lattice oscillations. Phonons can be either
acoustical or optical. The difference is that the frequency of acoustical
phonons goes to zero as the wave vector k → 0, while for optical phonons
it stays finite. Acoustical phonons are present in any crystal, representing,
in fact, Goldstone mode related to broken translation symmetry. Optical
phonons appear only in crystals with more than one atom in elementary
cell.

There are two standard (simplified!) models to describe phonon spectra
— that of Debye and Einstein. In Debye model the phonon spectrum is
assumed to be described by ω0(k) = ck (c – sound velocity) for all k < kD,
where kD a limiting (cut – off) wave vector of the order of inverse lattice
spacing. In Einstein model the phonon frequency is just independent of the
wave vector ω0(k) = Ω0 (for all values of k). Debye model gives simplified
description of acoustical phonons, while that of Einstein — the same for
the optical phonons.

As ions constituting the crystal lattice are charged particles, phonons
can interact with electrons. Lattice oscillations induce the deviations of the
electric field of ions from the average value dictated by charge neutrality.
The potential of this additional field is usually called deformation potential.
Due to the long – range nature of Coulomb forces electron – phonon inter-
action can be expected to be strongly non – local. However, as we have
seen above, electric field in metals is strongly screened, thus, in most cases,
electron – phonon interaction can be assumed local.

Relations of deformation potential to lattice distortion are different for
acoustical and optical phonons. For acoustical oscillations nearby lattice

71
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ions displacements are almost the same and electric field changes only
slightly, proportionally to these (relative) displacements, and the defor-
mation potential Ud−ac ∼ divu, where u(r) is atomic displacement. In
the case of optical phonons nearby atoms move in opposite directions, so
that Ud−op ∼ u(r). To describe electron – phonon interaction in a similar
way for bot types of phonons, an operator of phonon field is usually intro-
duced in the following (Hermitian!) form [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:

ϕ̂(rt) = i
∑
k

√
ω0(k)
2V

[
b̂ke

ikr−iω0(k)t − b̂+k e
−ikr+iω0(k)t

]
(3.1)

where b̂+k , b̂k are creation and annihilation operators of phonons, V – system
volume. Then ϕ(r) ∼ ∇u(r) for acoustical phonons and ϕ(r) ∼ u(r) for
the optical phonons. Accordingly, the Hamiltonian of electron – phonon
interaction is written as [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]:

Hint = g

∫
drψ̂+(r)ψ̂(r)ϕ̂(r) (3.2)

where g is the coupling constant. The Hamiltonian density in (3.2) just
proportional to the product of electron density and deformation potential.

Diagram rules for electrons and phonons look almost the same as for the
case of two – particle interaction [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii I.E. (1963)]. To calculate Green’s function at T = 0 these rules are
formulated as follows :

• Only diagrams of even order give non zero contributions. Diagram of
order 2n contains 3n + 1 internal (electron and phonon) lines and 2n
vertices, with 3n− 1− (2n− 1) = n independent integrations. All lines
are attributed with 4-momenta, conserving at the vertices.

• Electron is described by continuous line, denoting free Green’s function:

G0(p) =
δαβ

ε− ξ(p) + iδsignξ(p)
where δ → +0 (3.3)

where

ξ(p) =
p2

2m
− µ ≈ vF (|p| − pF ) (3.4)

is the energy spectrum of free electrons, calculated with respect to the
Fermi level (chemical potential µ), pF and vF are Fermi momentum
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and velocity.
• Dashed line denotes the phonon Green’s function:

D0(k) =
ω2

0(k)
ω2 − ω2

0(k) + iδ
where δ → +0 (3.5)

• Integration is done over n independent momenta and frequencies (4-
momenta).

• The result is multiplied by (g)2n(2π)−4n(i)n(2s+1)F (−1)F , where F is
the number of closed Fermion loops, and s is Fermion spin (for electrons
s = 1/2, so that, in fact, we always have 2s+ 1 = 2).

For T > 0 everything is quite similar:

• Each electronic (continuous) line with momentum p and Matsubara
frequency εn = (2n+ 1)πT corresponds to:

G0(εnp) =
δαβ

iεn − ξ(p)
(3.6)

• Each phonon (dashed) line with momentum k and frequency ωm =
2πmT corresponds to:

D0(k) = − ω2
0(k)

ω2
m + ω2

0(k)
(3.7)

• The result is multiplied by g2n(−1)n T n

(2π)3n (2s+ 1)F (−1)F , where F is
again the number of Fermion loops and s = 1/2 is electronic spin.

The form of phonon Green’s function in these rules corresponds to normalization of
the operator of phonon field used in (3.1) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)]1:

ϕ(k) =

�
ω0(k)

2
(bk + b+−k) (3.8)

Sometimes in the literature you cam meet with a different normalization [Schrieffer
J.R. (1964)]:

ϕ(k) = bk + b+−k (3.9)

Then the free phonon Green’s function takes the following form [Schrieffer J.R. (1964)]:

D0(kω) =
1

ω − ω0(k) + iδ
− 1

ω + ω0(k) − iδ
=

2ω0(k)

ω2 − ω2
0(k) + iδ

(3.10)

Accordingly, if we are using different normalizations, we have to take into account some
differences in the form of matrix elements of electron – phonon interaction, compensating
this difference in normalization, so that physical results are equivalent. This is important

1The reader is advised to convince himself that physically (3.1) and (3.8) are just
equivalent
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to remember, while comparing the results of different authors. If we use (3.9), interaction
Hamiltonian (3.2) can be written as [Schrieffer J.R. (1964)] (we take here V = 1 for
shortness):

Hint =
�
pk

ḡka
+
p+kap(bk + b+−k) (3.11)

However, if we use (3.8), then:

Hint = g
�
pk

�
ω0(k)

2
a+p+kap(bk + b+−k) (3.12)

which leads to the difference in the definition of electron – phonon coupling constant. In
particular, for the appropriate dimensionless constant we mainly use (following the tradi-
tion of Russian or rather “Soviet” literature) [Abrikosov A.A., Gorkov L.P., Dzyaloshin-
skii I.E. (1963)]:

ζ = g2νF (3.13)

Another common (“Western”) definition is:

λ =
2ḡ2kνF

ω0(k)
(3.14)

Direct comparison of (3.11) and (3.12) gives:

ḡk = g

�
ω0(k)

2
(3.15)

In our lectures we use notations of [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)].

Calculation of electron self – energy allows us to determine electron
spectrum “renormalization” due to electron – phonon interaction. To de-
termine the phonon spectrum we have to find the poles of phonon Green’s
function D(ωk). Similarly to the case of electron Green’s function G(Ep),
for phonon Green’s function we may also introduce the self – energy part
which, in fact, reduces to the polarization operator Π(ωk), with corrections
due to electron – phonon interaction, as shown in Fig. 3.1. Dyson equation

Fig. 3.1 Diagrams for phonon self – energy.

for phonon Green’s function can be written as:

D(ωk) = D0(ωk) +D0(ωk)g2Π(ωk)D(ωk) (3.16)
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with solution:

D−1(ωk) = D−1
0 (ωk) − g2Π(ωk) (3.17)

Phonon spectrum is defined from:

D−1
0 (ωk) = g2Π(ωk) (3.18)

If we introduce the dimensionless coupling constant for electron – phonon
interaction as ζ = g2νF (where νF = mpF

2π2�3 is the density of states at the
Fermi level for one spin projection), direct estimate gives ζ ∼ 1. Thus, it
may seem that electron – phonon coupling is always strong enough. How-
ever, as we shall see below, there is an additional small parameter in this
problem, allowing us to find a simple solution with no assumption of small-
ness of the coupling constant g. This is so called adiabaticity parameter
ωD

EF
∼
√

m
M � 1 (where ωD is Debye frequency, m – electron mass and

M – ion mass). Physically it means that due to a large mass, ions move
much slower than electrons. Accordingly, much faster electrons more or
less “follow” local ion configuration. As a result, as we shall show below,
electron – phonon interaction does not destroy Fermi – liquid behavior.

3.2 Electron self – energy.

Consider, following [Levitov L.S., Shitov A.V. (2003)], the simplest contri-
bution to self – energy of an electron, defined by the diagram shown in Fig.
3.2. In analytic form we have (for the case of acoustical phonons):

Fig. 3.2 Simplest contribution to electron self – energy due to electron – phonon inter-
action.

Σ(Ep) =
ig2

(2π)4

∫
dωd3k

E − ω − ξ(p − k) + iδsignξ(p− k)
c2k2

ω2 − c2k2 + iδ
(3.19)
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Here we have poles at ω1 = E − ξ(p − k) + iδsignξ(p− k) and ω2,3 =
±(ck−iδ), and we can close integration contour in such a way, that only one
of the poles of phonon Green’s function is inside. The integral over infinitely
far semi – circle is zero and after elementary calculations we obtain:

Σ(Ep) =
−g2
(2π)3

	�
ξp−k<0

d3k

E + ck − ξ(p − k) − iδ

c2k2

(−2)ck
−

−
�

ξp−k>0

d3k

E − ck − ξ(p− k) + iδ

c2k2

2ck



=

=
g2c

16π3

	�
ξp−k>0

kd3k

E − ck− ξ(p − k) + iδ
+

�
ξp−k<0

kd3k

E + ck − ξ(p − k) − iδ



=

=
g2c

16π3

	�
|p−k|>pF

kd3k

E − ck− vF (|p − k| − pF ) + iδ
+

+

�
|p−k|<pF

kd3k

E + ck − vF (|p− k| − pF ) − iδ



(3.20)

Let us denote as x the cosine of the angle between vectors k and p, then
we have p2

1 = |p − k|2 = p2 + k2 − 2pkx and d3k = 2πk2dkdx, so that
p1dp1 = −pkdx. Then (3.20) can be written as:

Σ(Ep) = − g2c

8π2p

{∫
p1>pF

k2dkdp1p1

E − ck − vF (p1 − pF ) + iδ
+

+
∫

p1<pF

k2dkdp1p1

E + ck − vF (p1 − pF ) − iδ

}
(3.21)

The main contribution to integrals here comes from the vicinity of the poles,
where we can put p1 ≈ p ≈ pF , as ωD � EF . Thus we can neglect the
difference between p1 and p, so that we have:

Σ(E) = − g2c

8π2

{∫
p1>pF

k2dkdp1

E − ck − vF (p1 − pF ) + iδ
+

+
∫

p1<pF

k2dkdp1

E + ck − vF (p1 − pF ) − iδ

}
(3.22)

Then for imaginary part of Σ(E) we get:

ImΣ(E) =
g2c

8π

{∫
p1>pF

δ(E − ck − vF (p1 − pF ))k2dkdp1−

−
∫

p1<pF

δ(E + ck − vF (p1 − pF ))k2dkdp1

}
(3.23)
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First term here (which is non zero for E > 0) gives the lifetime of an
electron, while the second one (non zero for E < 0) – the lifetime of a hole.
Let us consider now the limiting cases of E � ωD and E 
 ωD.

• The case of E � ωD

For E > 0 only the first term in (3.23) contributes, and we have to
integrate over k in the region of k < E/c, or p1 determined from the
argument of the δ-function, will become smaller than pF . Thus we have:

ImΣ(E) =
g2c

8π

∫
ck<E

1
vF
k2dk =

g2cE3

24πvF c3
(3.24)

Introducing dimensionless coupling constant of electron – phonon interac-
tion as ζ = g2νF , we get:

ImΣ(E) =
ζπE3

12p2
F c

2
(3.25)

For E < 0 only the second term in (3.23) contributes. Calculating the
integral we again obtain (3.25), due to particle – hole symmetry (valid for
E � EF ) and the imaginary part of ImΣ(E) is an odd function of E.

Now we can see that for E → 0 we have ImΣ(E) � E, so that electron
– phonon interaction does not destroy Fermi – liquid behavior, as due to E3-
dependence of damping, phonon contribution for E → 0 becomes negligible
in comparison to electron – electron scattering contribution to damping
discussed above, which is ∼ E2. At the same time, it is clear that this
statement is valid only for E → 0 (T → 0).

• The case of E 
 ωD

In this case, integration over p1 in (3.23) does not put any limitations
on k-integration, which is now performed up to k = kD. Calculation the
integral of the type of (3.24), we obtain:

ImΣ(E) =
g2

8πvF
c
k3

D

3
signE =

g2k3
Dmc

24πpF
signE (3.26)

Again, expressing the damping via dimensionless constant ζ, we get:

ImΣ(E) =
ζπk3

Dc

12p2
F

signE (3.27)

It is easily seen that in this limit ImΣ ∼ ζωD. Thus, even for ζ ∼ 1 the
phonon renormalization is small due to ωD � EF .
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Let us now consider ReΣ(E). From (3.22) we have:

ReΣ(E) = − g2c

8π2

	�
p1>pF

k2dkdp1

E − ck − vF (p1 − pF )
+

�
p1<pF

k2dkdp1

E + ck − vF (p1 − pF )



=

= − g2c

8π2

�
k<kD

dkk2I1(k) (3.28)

where

I1(k) =
∫

p1>pF

dp1

E − ck − vF (p1 − pF )
+
∫

p1<pF

dp1

E + ck − vF (p1 − pF )
(3.29)

Formally, the first integral here diverges, but this divergence is unphysical,
as for large differences between p1 and pF we have to take into account the
deviations from the linearized form electron spectrum we are using (and also
the finiteness of the bandwidth). Thus we may just cut – off integration
at p1 = p∗ ∼ pF . Exact value of this cut – off parameter is unimportant,
as does not influence the form of the spectrum, but only renormalizes the
chemical potential (contributing only to ReΣ(0)). Thus we obtain:

I1(k) =
1
vF

ln
∣∣∣∣ E + ck

E + ck + vF pF

∣∣∣∣+ 1
vF

ln
∣∣∣∣E − ck − vF (p∗ − pF )

E − ck

∣∣∣∣ (3.30)

Subtracting this constant renormalization of the chemical potential δµ =
Σ(0), we obtain:

Re(Σ(E) − Σ(0)) =
g2c

8π2

∫
dkk2 m

pF
ln
∣∣∣∣E − ck

E + ck

∣∣∣∣ (3.31)

Characteristic property of an electron self – energy due to electron – phonon
interaction is its independence of momentum p. This is due to the “slow-
ness” of phonons, compared to electrons, which leads to the local nature of
the processes of phonon emission and absorption by electrons. Let us again
analyze limiting cases of E � ωD and E 
 ωD.

• The case of E � ωD

In this case we may expand logarithm in (3.31), as E � ck. Then we have:

Re(Σ(E) − Σ(0)) = −2mg2E

8π2pF

∫ kD

0

dkk = −mg
2k2

D

8π2pF
E = −ζ

4
k2

D

p2
F

E ≡ −λE

(3.32)
where we have introduced renormalization constant λ = ζk2

D

4p2
F

∼ ζ.
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• The case of E 
 ωD

Now we have E 
 ck, so that again, after expanding logarithm in (3.31)
we get:

Re(Σ(E) − Σ(0)) = −mg
2c2

4π2pF

∫ kD

0

k3dk

E
= −mg

2c2k4
D

16π2pFE
= −ζc

2k4
D

8p2
FE

(3.33)

so that at E ∼ ωD the growth of ReΣ(E) with energy changes to decline.
Quasiparticle spectrum for the region of E � ωD is determined from

the equation:

E − ξ(p) = Re(Σ(E) − Σ(0)) (3.34)

where ξ(p) = p2

2m − µ. Then we immediately obtain:

E =
p2

2m∗ − EF EF =
p2

F

2m∗ (3.35)

where the effective mass is defined as:

m∗

m
= 1 +

ζk2
D

4p2
F

≡ 1 + λ (3.36)

Thus, λ is sometimes called mass renormalization factor. We see that due
to electron – phonon interaction an electron becomes “heavier”. Accord-
ingly grows the density of states at the Fermi level (∼ m∗) and electronic
contribution to specific heat.

Let us consider now behavior of electron self – energy at finite temper-
atures. It is useful also from technical point of view, as we shall be able
to study the general method to perform summation over the Matsubara
frequencies. So we have to calculate:

Σ(εp) = − g2T

(2π)3
∑
ε1

∫
d3p1G(ε1p1)D(ε− ε1,p − p1) (3.37)

where all frequencies are assumed to be Matsubara’s!
The general and convenient method to calculate Matsubara sums can

be formulated as follows [Schrieffer J.R. (1964)]. The idea is, of course,
to go from summation to integration. To be specific, let us start with
summation over odd (Fermion) frequencies iεn = i(2n + 1)πT . This sum
can be written in the form of the following contour integral in the complex
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plane of frequency ε:

T

∞∑
n=−∞

F (iεn) = − 1
2πi

∫
C

dε
F (ε)
eβε + 1

=
1

2πi

∫
C

dε
F (ε)

e−βε + 1
=

=
1

4πi

∫
C

dεF (ε)th
ε

2T
(3.38)

where the contour of integration C encircles the imaginary axis, as shown
in Fig. 3.3, assuming there is no singularities of F (ε) inside this contour.
Validity of (3.38) follows from Cauchy theorem, as eβε + 1 and e−βε + 1

Fig. 3.3 Integration contour used for summation over Matsubara frequencies.

(where β = 1
T , as usual) possess simple zeroes at ε = iεn, leading to the

poles of the integrand in (3.38) at the discrete set of points on the imaginary
axis. Similar poles appear if we use th ε

2T in the last term of (3.38).
To perform summation over even (Boson) frequencies iωm = i2πTm we

can use a similar identity:

T

∞∑
m=−∞

F (iωm) =
1

2πi

∫
C

dω
F (ω)
eβω − 1

= − 1
2πi

∫
C

dω
F (ω)

e−βω − 1
=

=
1

4πi

∫
C

dωF (ω)cth
ω

2T
(3.39)

where the poles of the integrand are at points iωm = i2πTm.
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As the next stage we can, usually, “stretch” integration contour C to
infinity. During this operation we have only to calculate contributions from
singularities of F (ε) or F (ω), which are encircled by the “stretched” contour
C. In most cases, the remaining integral over the circle of infinite radius is
just zero, due to the fast decrease of F (ε) and F (ω) at infinity.

Let us illustrate this method by explicit calculation of (3.37). We have
to calculate the following sum over frequencies:

S = T
∑
ε1

G(ε1p1)D(ε− ε1,p− p1) (3.40)

where summation is over Fermion frequencies iεn = i(2n + 1)πT . Thus,
we have to use (3.38). Consider, for definiteness, the case of ε > 0, i.e.
belonging to the upper halfplane2. Consider the function:

f(z) = G(z,p1)D(ε− z,p− p1)th
z

2T
(3.41)

which has poles at z = iεn = i(2n+ 1)πT and calculate the integral:

I =
∫

C

dzf(z) (3.42)

over the contour C, shown in Fig. 3.4, which encircles the straight lines
where Im(ε − ε1) = 0 and Imε1 = 0, corresponding to the cuts of exact
Green’s functions in (3.40)3. In the rest of the complex plane of frequency,
except these cuts, the function f(z) is analytic. Now the integral in (3.42)
can be calculated directly. The residue of f(z) at the pole at zn = i(2n+
1)πT is equal to:

Resz=znf(z) = 2TG(zn,p1)D(ε− zn,p− p1) (3.43)

so that integral in (3.42) reduces to I = 4πiS giving us the required sum
(3.40). On the other hand, we can consider the “stretched” integration
contour, shown in Fig. 3.5. Now our integral reduces to the integrals over
the straight lines, shown in Fig. 3.5, and going along the cuts, so that
the contribution from the different “sides” of each cut is determined by

2Remember that finally, in most cases, we want to make an analytic continuation
iεn → ε+ iδ!

3Analytic continuation from upper and lower halfplanes gives different Green’s func-
tions GR and GA [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)].
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Fig. 3.4 Integration contour used to sum over Matsubara frequencies in electron self –
energy.

appropriate discontinuities:

I =
∫ ∞

−∞
dε1

{
(GR(ε1p1) −GA(ε1p1))DA(ε− ε1,p− p1)th

ε1
2T

−

−GR(−ε1 + ε,p1)(DR(ε1,p − p1) −DA(ε1,p− p1))th
ε− ε1

2T

}
(3.44)

Taking into account ε = i(2n + 1)πT , we may write th ε−ε1
2T = −cth ε1

2T .
Also, we can use:

GR(εp) −GA(εp) = 2iImGR(εp) (3.45)

and dispersion relation [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E.
(1963)]:

GR(A)(εp) =
1
π

∫ ∞

−∞

ImGR(A)(ωp)
ω − ε∓ iδ

dω (3.46)
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Fig. 3.5 “Stretched” integration contour used for summation over Matsubara frequen-
cies in electron self – energy.

Substituting these relations into (3.44), we obtain:

Σ(εp) =
g2

(2π)4π

�
dε1dωd

3p1

�
ImGR(ε1p1)ImDR(ωp − p1)

ω − ε+ ε1 − iδ
th
ε1

2T
+

+
ImGR(ωp1)ImDR(ε1p − p1)

ω − ε+ ε1 − iδ
cth

ε1

2T

�
(3.47)

Exchanging integration variables ε1 and ω in the second term, we finally
obtain:

Σ(εp) =
g2

(2π)4π

�
dε1dωd

3p1
ImGR(ε1p1)ImDR(ωp − p1)

ω − ε+ ε1 − iδ

�
th
ε1

2T
+ cth

ω

2T

�
(3.48)

Here we have only integration over real ε1 and ω. After rather awkward
calculations which we drop, it can be shown [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], that for ε � T � ωD (after analytic continua-
tion iεn → ε+ iδ) Eq. (3.48) gives:

ImΣR(ε) ∼ ζ
T 3

c2p2
F

(3.49)
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so that, in fact, electron damping due to electron – phonon interaction for
ε� ωD and T � ωD can be written in unified form as (remember (3.25)):

ImΣR(ε) ∼ ζ
Max[T 3, ε3]

c2p2
F

(3.50)

For ε
 ωD it follows from (3.48) that:

ImΣR(ε) = const ∼ ωD (3.51)

From these expressions it is clear that the damping of quasiparticles (elec-
trons) becomes comparable to their energy for ε ∼ ωD. At the same time
it is clear that with the further growth of energy, damping again becomes
smaller than the quasiparticle energy. Thus, we have two regions, where
the notion of quasiparticles is meaningful: |ε| � ωD and |ε| 
 ωD. In both
regions the energy of electrons can be written as vF (p− pF ), but velocities
vF (effective masses) are different.

3.3 Migdal theorem.

Up to now we limited ourselves to the simplest contribution to electron self
– energy, shown in Fig. 3.2. It may seem that we have to add also numerous
diagrams with higher – order vertex corrections. But in fact we do not need
these (!), as in the case of electron – phonon interaction all these corrections
are small over the adiabaticity parameter ωD

EF
∼
√

m
M � 1. This statement

is usually referred to as Migdal theorem (A.B.Migdal, 1957). Let us show
the validity of this claim, making a simple estimate of the vertex correction,
shown by the diagram of Fig. 3.6. Let us write down an analytic expression,
corresponding to this diagram:

Γ(1) = −g3

∫
G(p1ε1)G(p1 + k, ε1 + ω)D(ε− ε1,p − p1)

d3p1dε1
(2π)4

(3.52)

Now make a crude estimate of this expression. Consider first the inte-
gral over ε1. Assuming that the characteristic momentum transfer due to
phonon exchange is of the order of kD ∼ pF , and taking into account that
D(ε−ε1) decreases quadratically for |ε−ε1| 
 ωD, we understand that the
main contribution to the integral comes from the region of |ε − ε1| ∼ ωD.
Then the integral over ε1 is of order of ωD, and we can write:
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Fig. 3.6 Simplest vertex correction due to electron – phonon interaction.

Γ(1) ∼ g3ωD

�
d3p1

(ε1 − ξ(p1) + iδsignξ(p1))(ε1 + ω − ξ(p1 + k) + iδsignξ(p1 + k))
(3.53)

Consider now the remaining integral over p1. Characteristic momentum
transfer here is also of the order kD ∼ pF . Thus we may estimate all
denominators to be of the order of ∼ EF , and

∫
d3p1 ∼ p3

F . Then we have:

Γ(1) ∼ g3ωD
p2

F

vF

EF

E2
F

∼ g3 p2
F

vFEF
ωD (3.54)

and the relative vertex correction is:

Γ(1)

g
∼ g2 p2

F

vFEF
ωD ∼ ζ

ωD

EF
∼ ζ

√
m

M
(3.55)

where we have used ωD

EF
∼
√

m
M . Electrons are much lighter than ions,

so this correction is practically negligible! Of course, our analysis is too
crude, e.g. it is invalid if ω ∼ vFk and ω � ωD, when the poles of Green’s
functions in (3.53) are close to each other and more refined considerations
are necessary. However, in most cases, the contribution from this region is
also small due to c� vF .

For better understanding of the situation, it is instructive to make esti-
mates of the vertex correction in the “mixed” momentum – time represen-
tation. This will allow us to show the importance of different time – scales.
First, let us introduce the appropriate free phonon and electron Green’s
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Fig. 3.7 Simplest correction to electron – phonon vertex in momentum – time repre-
sentation.

functions:

D(kt) =
∫
dω

2π
D(ωk)e−iωt = − ick

2
e−ick|t| (3.56)

G(pt) = −ie−iξ(p)t

{
θ(ξ(p)) for t > 0
−θ(−ξ(p)) for t < 0

(3.57)

Note that D(kt) is much more slowly changing function of t, than G(pt).
Now write the vertex correction shown in Fig. 3.7 in analytic form:

Γ(1) = −g3

∫
d3p1

(2π)3

∫
dtG(p1, t− t1)G(p1 + k, t2 − t)D(p − p1, t1 − t2)

(3.58)
For p1 ∼ pF characteristic time scale for the change of electron Green’s
function is ∼ E−1

F . Thus in (3.58) we may put |t1− t| ∼ |t2− t| ∼ |t1− t2| ∼
E−1

F . On such a time scale, phonon Green’s function practically does not
change at all and we may estimate its value putting t1 ≈ t2, so that it
is simply proportional to c|p− p1| ∼ ωD. These estimates immediately
lead to the appearance of the small (adiabaticity) parameter ωD

EF
. In other

words, electron quickly (during the time of the order of ∼ E−1
F ) absorbs

phonon, and “following” the phonon induced lattice deformation. During
this short time interval, electrons just are not able to induce any strong
changes in the local configuration of ions – this requires the time of the
order of ω−1

D . Electrons are moving adiabatically in slowly changing field
of heavy ions.
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Migdal theorem is very important, as it allows us to neglect numerous
diagrams, without assumption of smallness of electron – phonon coupling.

3.4 Self – energy and spectrum of phonons.

Return now to the analysis of Dyson equations for the phonon Green’s
function (3.16), (3.17) and (3.18), which determine the phonon spectrum
renormalization due to electron – phonon interaction in metals. Using the
simplest approximation for the polarization operator of electron gas, we
can write:

g2Π0(ωk) = − 2ig2

(2π)4

�
dEd3p

(E − ξ(p) + iδsignξ(p))(E + ω − ξ(p + k) + iδSignξ(p + k))
(3.59)

Above we have already calculated this polarization operator, obtaining Eq.
(2.25), so that we have:

g2Π0(ωk) = −g
2mpF

π2

{
1 − ω

2vFk
ln
∣∣∣∣ω + vFk

ω − vFk

∣∣∣∣+ iπ|ω|
2vFk

θ

(
1 − |ω|

vFk

)}
(3.60)

According to Eq. (3.17), the phonon Green’s function in the system with
electron – phonon interaction is determined by Dyson equation of the form:

D−1(ωk) = D−1
0 (ωk) − g2Π(ωk) (3.61)

Then, the phonon spectrum is determined by the equation D−1(ωk) = 0.
As sound velocity is much smaller than Fermi velocity of electrons, we may
safely assume that ω � vF k. Then, polarization operator, determining the
phonon self – energy, can be taken in static approximation (ω = 0) and we
can write:

g2Π0 ≈ −g
2mpF

π2
= −2ζ (3.62)

Then (3.61) reduces to:

D−1(ωk) = D−1
0 (ωk) − g2Π =

ω2 − c20k
2

c20k
2

+ 2ζ (3.63)

where c0 is “bare” sound velocity, while the renormalized phonon spectrum
is written as ω = ck, where the sound velocity is defined as:

c2 = c20(1 − 2ζ) (3.64)
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We see that electron – phonon interaction leads to the “softening” of the
lattice (decrease of phonon frequency)

It may seem that Eq. (3.64) leads to the instability of the lattice (ω2 < 0!) for ζ >
1/2. However, this instability is, in fact, unphysical. More elaborated analysis [Ginzburg
V.L., Kirzhnits D.A. (1982)] shows that we have to introduce physical (renormalized)
electron – phonon coupling constant λ, which can be expressed via ζ by the following
relation:

λ = ζ
ω2

0

ω2
=

ζ

1 − 2ζ
(3.65)

Then it is clear that λ ≈ ζ only for ζ � 1, while with the growth of ζ the coupling
constant λ just grows continuously, diverging only at “instability” point itself. Thus,
the condition of ζ < 1/2, in fact, does not lead to any limitation of the value of λ. Note
that the condition of ζ < 1/2, in some sense, is also unphysical, as in the framework
of the standard Fröchlich model of electron – phonon interaction we have no rigorous
way to define the “bare” coupling constant ζ, and experimentally “observable” is only
renormalized coupling λ. Using (3.65) we can write inverse relation:

ζ =
λ

1 + 2λ
(3.66)

so that for any λ > 0 we, in fact, have ζ < 1/2.
Physical meaning of “bare” parameters of the Frḧlich model, such as frequency

ω0(k) = c0k, is not clear at all, while the “real” spectrum of phonons ω(k) is determined
by Dyson equation with the account of electron – phonon coupling and Green’s function:

D(ωk) =
ω2

0(k)

ω2 − ω2(k) + iδ
(3.67)

Then the physical constant of electron – phonon interaction can be defined [Ginzburg
V.L., Kirzhnits D.A. (1982)] by the following integral expression:

λ = ζ

� 2pF

0

dkk

2p2F

ω2
0(k)

ω2(k)
(3.68)

If we neglect the relatively weak dependence of Π0 on k and use (3.62), Eq. (3.68)

immediately gives (3.65). It is believed that this coupling constant λ enters e.g. into

the famous expression for transition temperature in BCS theory of superconductivity

[Ginzburg V.L., Kirzhnits D.A. (1982)].

To find phonon damping we have to take into account the imaginary
part of polarization operator (3.60):

g2ImΠ0(ωk) = −πζ |ω|
kvF

(3.69)

Substituting this into Dyson equation for the phonon Green’s function and
seeking the solution for the spectrum as ω = ck + iγ, we find:

γ =
π

2
ζ
c2

vF
k =

π

2
ζ
c

vF
ω (3.70)
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Though damping is proportional to frequency, it is in fact small in compar-
ison with Reω due to smallness of c/vF ∼

√
m/M .

In usual liquids and gases sound damping is of the order of:

γ ∼ ηω2

ρc3
(3.71)

where η is the viscosity of the medium and ρ its density. Thus we may say that in

electron – phonon system the effective viscosity of electron gas grows with the decrease

of frequency: η(ω) ∼ ω−1. Physically the effective viscosity here is due to high density

of electron – hole excitations with energy ω < ck, which are excited by phonons.

In the previous chapter we have noted, that at q = 2pF polarization op-
erator Π0(q0) has the logarithmic singularity in its derivative ∂Π0(q0)

∂q |q=2pF .
This singularity becomes more strong in two – dimensional system (d = 2)
and, especially strong, for one – dimensional case (d = 1), when we have log-
arithmic singularity in polarization potential Π0(q0) itself (A.M. Afanas’ev,
Yu.M. Kagan, 1962):

Π0(q0) ∼ ln |q − 2pF | (3.72)

Qualitative behavior of Π0(q0) fro different dimensionalities is shown in
Fig. 3.8. The presence of these singularities leads to important anomalies
of physical properties. The essence of the previous discussion was that the

Fig. 3.8 Qualitative behavior of static polarization operator (as a function of q) for the
free electron gas in different space dimensionalities.

phonon Green’s function, with the account of electron – phonon interaction,
is given by:

D(ωq) =
1

D−1
0 (ωq) − g2Π0(ωq)

=
ω2

0(q)
ω2 − ω2

0(q) − g2ω2
0(q)Π0(ωq)

(3.73)
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so that the phonon spectrum is:

ω2(q) = ω2
0(q)[1 + g2Π0(ωq)] (3.74)

Then it is clear that due to Π0(q0) → −∞ at q = 2pF (for d = 1) the
frequency of a phonon with q = 2pF becomes imaginary (ω2 < 0), for any
(even infinitesimally small) value of the coupling constant g. This signifies
an instability of the system, leading to the appearance of spontaneous static
deformation of the lattice (superstructure) with the wave vector Q = 2pF

(i.e. with period L = 2π
Q ). This is so called Peierls instability, which

will be discussed in detail in the last chapter4. Even for d = 3, when
we have singularity only in the derivative of polarization operator, there
appears an anomaly in the phonon spectrum at q = 2pF (W.Kohn, 1959)
(so called Kohn anomaly, for d = 1 it is sometimes called the “giant”
Kohn anomaly). These anomalies are directly observed in phonon spectra
of metals in experiments with inelastic neutron scattering.

Up to now we have dealt only with isotropic electron spectrum of the
type of ε(p) = p2

2m∗ . In real materials this spectrum may be anisotropic,
and Fermi surfaces are not spheres (d = 3) or circles (d = 2). In general,
the topology of the Fermi surface can be rather complicated. Especially
interesting is the case, when flat parts (sometimes called “patches”) appear
on the Fermi surface. For example, for d = 2 and simple square lattice, the
tight binding electron spectrum (with the account of only nearest neighbor
transfers) takes the form:

ε(p) − µ = −2t(cospxa+ cos pya) − µ (3.75)

where t is transfer integral between nearest neighbors. Curves of constant
energy inside the Brillouin zone, corresponding to this spectrum for differ-
ent values of chemical potential µ (electron concentration), are shown in
Fig. 3.9. In particular case of µ = 0 (half – filled band, one electron per lat-
tice site) we have the Fermi surface in the form of the plane square. Direct
calculation show, that in this case Π0(q0) for q →

(
π
a ,

π
a

)
possess a singu-

larity of “one – dimensional” type: Π0(q0) ∼ ln |q − Q|, where Q =
(

π
a ,

π
a

)
,

which naturally leads to the “giant” Kohn anomaly of the phonon spectrum
and structural transition of the Peierls type (period doubling).

In general case, a special property of the Fermi surface is needed for the
appearance of such “giant” anomalies, which is called “nesting”. Nesting

4For d = 1 such instability leads to the appearance of the gap in an energy spectrum
of electrons at ±pF , i.e. to the metal – insulator transition.
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Fig. 3.9 Curves of constant energy in the Brillouin zone of the square lattice, corre-
sponding to the simple tight – binding spectrum with only nearest neighbors transfers.

property of the Fermi surface means that certain parts of the Fermi surface
are congruent (completely coincide with each other) after the translation
by some specific vector Q in momentum space (vector of nesting). For
the square Fermi surface of the tight – binding spectrum at half – filling
Q =

(
π
a ,

π
a

)
, but other, more general, situations are also possible. Mathe-

matically it is expressed by the following property of electronic spectrum:

ε(p + Q) − µ = −ε(p) + µ (3.76)

which is usually called the nesting condition. We can see that the spectrum
given by Eq. (3.75) satisfies this condition for µ = 0 (half – filled band)
and Q =

(
π
a ,

π
a

)
. Similarly, this condition is satisfied for the tight – binding

spectrum for the simple cubic lattice (d = 3), analogous to (3.75):

ε(p) − µ = −2t(cospxa+ cos pya+ cos pza) − µ (3.77)

for µ = 0 and Q =
(

π
a ,

π
a ,

π
a

)
. Fermi surface in this case possess nesting

property, though there are no “flat” parts.
In all cases with nesting, calculation of polarization operator shows the

divergence at q = Q, leading to the appearance of the giant Kohn anom-
aly in phonon spectrum and lattice instability (structural phase transition,
leading to static superstructure with wave vector Q.)
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3.5 Plasma model.

Let us consider now the simplest “plasma” model of a metal, where both
phonons and electron phonon interactions appear self – consistently [Schri-
effer J.R. (1964); Ginzburg V.L., Kirzhnits D.A. (1982)]. Start with plasma
consisting of electrons and ions, interacting via (non – screened) Coulomb
forces. In first approximation, collective oscillations in this system are just
independent plasma oscillations of electrons and ions. We shall show how
the account of screening allows to introduce the “usual” phonons and obtain
the coherent description of electron – phonon interaction.

Let us write the Hamiltonian of electron – ion plasma as:

H =
∑
k

Eka
+
k ak +

∑
qλ

Ωqλ

(
b+qλbqλ +

1
2

)
+

+
∑
kk′λ

gkk′λa
+
k ak′

(
bk−k′λ + b+k′−kλ

)
+

+
1
2

∑
pkq

Vqa
+
p+qa

+
k−qakap (3.78)

where Vq = 4πe2

q2 and Ek is the energy of (Bloch) electron, define by the
solution of Schroedinger equation:{

k2

2m
+
∑

n

Vei(r − Rn) + UH(r)

}
ψk(r) = Ekψk(r) (3.79)

where Vei(r − Rn) is the potential of electron – ion interaction, UH(r) –
Hartree contribution from electron – electron interaction, Ωqλ – “bare”
frequencies of ion plasma oscillations.

In the simplest possible jellium model we assume ions to form a homo-
geneous structureless medium, so that:

Ω2
qλ =

4πn(Ze)2

M
(3.80)

where n is ion density, Z – ion charge, M – ion mass. In jellium model this
is the only (longitudinal) mode of ion oscillations5.

5In crystals there exist three branches of ion oscillations, which we number as λ =
1, 2, 3. Two branches are transverse, while the “bare” longitudinal branch represents the
optical plasma oscillations. There is a general sum rule:

�
λ

Ω2
qλ =

4πn(Ze)2

M
(3.81)
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The “bare” electron – phonon coupling gkk′λ is defined as:

gkk′λ = −
(

n

MΩ2
kλ

)1/2

< k′|∇iVei|k > eqλ, (q = k − k′) (3.82)

where eqλ is polarization vector of “bare” phonons. It can be easily seen
that in the simplest jellium type model the “bare” electron – phonon cou-
pling is g2

kk′λ possess Coulomb type singularity:

g2
kk′λ ∼ 1

(k − k′)2
(3.83)

Now we have to make renormalizations, accounting for screening and reg-
ularizing such singularities. For Coulomb interaction between electrons we
can just use the RPA expression:

V(qω) =
4πe2

q2εe(qω)
(3.84)

where

εe(qω) = 1 − 4πe2

q2
Π0(qω) (3.85)

is the dielectric function of free electrons, corresponding to diagrams shown
in Fig. 2.4(b). In a similar way, as shown by diagrams of Fig. 3.10, we
may describe the screening of electron – phonon vertex:

Fig. 3.10 Screening of electron – phonon vertex.

g̃(q, λ) = g + gVqΠ0 + gVqΠ0VqΠ0 + ... =
g(q, λ)
εe(qω)

(3.86)
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To define the “physical” phonon spectrum we can write Dyson equation,
shown in Fig. 3.11:

Fig. 3.11 Dyson equation for phonon Green’s function in generalized jellium model.

D−1(qλ, ω) = D−1
0 (qλ, ω) − g2Π0(qω) − g2Π0(qω)VqΠ0(qω) − ... =

= D−1
0 (qλ, ω) − g2(q, λ)

Vq

(
1

εe(qω)
− 1
)
(3.87)

where

D0(qλ, ω) =
Ω2

qλ

ω2 − Ω2
qλ + iδ

(3.88)

Then, from (3.85), (3.87) and (3.88) we immediately obtain:

D(qλ, ω) =
Ω2

qλ

ω2 − g2(q,λ)Ω2
qλ

Vqεe(q0) − Ω2
qλ

[
1 − g2(q,λ)

Vq

]
+ iδ

(3.89)

Here we neglected frequency dependence of εe(qω), as this is unimportant
for small ω of the order of phonon frequencies.

For a simple jellium model from (3.80) and (3.82) we can easily obtain
the following identity :

g2(q, λ)
Vq

= 1 (3.90)
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In this case (3.89) reduces to:

D(qλ, ω) =
Ω2

qλ

ω2 − Ω2
qλ

εe(q0) + iδ
(3.91)

The poles of this expression define the frequencies of renormalized (“phys-
ical”) phonons (D.Bohm, T.Staver, 1950):

ω2(qλ) =
Ω2

qλ

εe(q0)
≈

Ω2
qλ

1 + κ2
D

q2

=
mZ

3M
v2

F q
2 (3.92)

where we have used (2.29) and (2.30), with electron density equal to
Zn (charge neutrality!). Now we see that renormalized phonons in jel-
lium model acquire the acoustical dispersion with sound velocity c =(

mZ
3M

)1/2
vF . This result can also be obtained in a more general case, when

the potential Vei(q) differs from purely Coulomb form, as for small q the
charge neutrality condition still requires Vei(q) to be equal to Ze2/q2.

In this model we can also determine the full (effective) interelectron
interaction, which is necessary e.g. for calculations of superconducting
properties of metals. This interaction can be described by diagrams shown
in Fig. 3.12 and is given by:

Veff (qω) =
4πe2

q2εe(qω)
+
g2(q, λ)
εe(q0)

Ω2
qλ

ω − ω2(qλ)
(3.93)

where ω2(qλ) is the spectrum of renormalized phonons, following from
(3.87):

ω2(q, λ) = Ω2
qλ

{
1 − g2(q, λ)

Vq

(
1 − 1

εe(q0)

)}
(3.94)

In jellium model Veff (qω) reduces to:

Fig. 3.12 Effective interaction between electrons in metals.

Veff (qω) =
4πe2

q2εeff (qω)
(3.95)
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where εeff (qω) is full dielectric function:

εeff (qω) = εe(qω) −
Ω2

qλ

ω2
(3.96)

which includes both electron and ion contributions. In more general (than
jellium) case, interelectron interaction also reduces to (3.95), but with
εeff (qω) given by:

εeff (qω) = εe(qω) − g2(q, λ)
Vq

Ω2
qλ

ω2 − Ω2
qλ

[
1 − g2(q,λ)

Vq

] (3.97)

Stability of the lattice requires ω2(qλ) > 0, so that from (3.94) we get:

1 +
g2(qλ)
Vq

1 − εe(q0)
εe(q0)

> 0 (3.98)

These expressions allow to determine conditions, when this effective inter-
action may become attractive, in particular for q ∼ 2pF , which is necessary
for the appearance of superconductivity [Ginzburg V.L., Kirzhnits D.A.
(1982)]. Of course, in real metals we need something more, e.g. we have to
overcome somehow limitations due to our use of RPA.

Eq. (3.94) determining the phonon spectrum can be written in more general form:

ω2(qλ) = Ω2
qλ

�
1 + g2(q, λ)χ(q, ω(qλ))

�
(3.99)

where we have introduced the generalized susceptibility of electronic subsystem, ex-
pressed via appropriate dielectric function as:

χe(qω) =
1

Vq

�
1

εe(qω)
− 1

�
(3.100)

Here we also take into account the ω - dependence, neglected above in the adiabatic
approximation. Calculations of non – adiabatic corrections should be done solving Eq.
(3.99). It is not difficult to convince oneself, that due to small velocities of ions (compared
to Fermi velocity of electrons), the account of frequency dependence of χe(qω) will lead

to small change of phonon frequencies of the order of ∼



m
M

.

It is clear now, that the “softening” of the frequencies of real phonons as well as
lattice instability can be expressed via the changes of effective inter – ion interaction,
which is in turn connected with the change of static dielectric function of electrons. This
situation is typical for quasi – one – dimensional conductors (and also in the case of
nesting for d = 2, 3), when, as noted above, both polarization operator and εe(qω) at
T = 0 possess logarithmic singularity and diverge at q = 2pF . In this case, both phonon
frequency and Fourier – component of inter – ion interaction at q = 2pF may become
zero.
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3.6 Phonons and fluctuations.

Let us consider, following [Levitov L.S., Shitov A.V. (2003)], correlation
function of atomic displacements:

CT (r) =
∑
αβ

< uα(r)uβ(0) > (3.101)

and study its asymptotic behavior at large distances r → ∞. Correlation
function (3.101) can be expressed via the Matsubara Green’s function of
phonons. We only have to take into account that the standard phonon
Green’s function [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]
defines, in fact, the correlator of gradients of atomic displacements, which
allows convenient introduction of electron – phonon interaction Hamil-
tonian. Green’s function of atomic displacements can be obtained by divid-
ing the standard phonon Green’s function by ρω2

k (where ρ is the density
of continuous medium of ions) and changing the sign6. Then we obtain:

CT (r) =
T

ρ

∑
m

∫
ddk

(2π)d

eikr

ω2
m + ω2

k

(3.102)

where ωk is the phonon spectrum, which we assume here to be acoustic.
Summation over (even) Matsubara frequencies in (3.102) can be done using
the identity:

∞∑
m=−∞

1
m2 + a2

=
π

a
cthπa (3.103)

Then we get:

CT (r) =
1
2ρ

∫
ddk

(2π)d

1
ωk
cth

ωk

2T
eikr (3.104)

From these expression we can separate contributions of thermal and quan-
tum (zero – point, T = 0) fluctuations (displacements) using the formula:

1
2
cth

ω

2T
=

1
2

+ nB(ω) (3.105)

6It is immediately seen if we compare Eqs. (7.9), (7.10) and (7.13) of [Abrikosov
A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

98 Book Title

where nB(ω) = 1

e
ω
T −1

is Bose distribution. Obviously, we have nB → 0 for

T → 0, so that the appropriate contribution defines thermal fluctuations7.
Thus, we can write two contributions to our correlator:

C0(r) = CT=0(r) =
1
2ρ

∫
ddk

(2π)d

eikr

ωk
(3.106)

∆C(r, T ) =
1
ρ

∫
ddk

(2π)d

nB(ωk)
ωk

eikr (3.107)

We are interested in the behavior of these functions for r → ∞. Leading
contributions to this asymptotics of ∆C(r, T ) came only from very small
k ∼ 1

r , corresponding to ωk � T . Thus we can approximate Bose distribu-
tion here as nB(ωk) ≈ T

ωk
and write:

∆C(r, T ) ≈ T

ρ

∫
ddk

(2π)d

eikr

ω2
k

(3.108)

It is clear that this expression directly follows from equipartition law of
classical statistics [Sadovskii M.V. (2003a)].

Calculate now these correlators for different spatial dimensionalities.
Consider first quantum correlations described by C0(r).

For d = 3 we have:

C
(3)
0 (r) =

4π
(2π)3ρ

∫ ∞

0

dkk2

ck

sin kr
kr

∼ 1
4π2ρcr2

(3.109)

where we have to cut – off divergence at the upper limit at k ∼ 1
r , as for

larger values of k integrand oscillations just compensate each other.
For d = 2:

C
(2)
0 (r) =

1
4πρc

∫ 2π

0

dθ

2π

∫ ∞

0

dkeikr cos θ =
1

4πρc

∫ ∞

0

dkJ0(kr) =
1

4πρcr
(3.110)

where J0(r) is appropriate Bessel function.
Finally, for d = 1 we obtain:

C
(1)
0 (r) =

1
4πρc

∫ ∞

−∞

dk

|k|e
ikr =

1
2πρc

∫ ∞

0

dk

k
cos kr =

1
2πρc

ln
L

r
(3.111)

7Note, that all these expressions can be derived without the use of Matsubara func-
tions, just performing Gibbs averaging of operators of atomic displacements.
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In the last integration (similarly to (3.109)) we again have to cut – off upper
limit logarithmic divergence at k ∼ 1

r , and at k ∼ 1
L for lower limit (L is

the size of the system).
Consider now thermal fluctuations – ∆C(r, T ).
For d = 3 we have:

∆C(3)
T (r) =

T

2π2ρc2r

∫ ∞

0

dk

k
sin kr =

T

4πρc2r
(3.112)

For d = 2:

∆C(2)
T (r) =

T

(2π)2ρc2

∫ 2π

0

dθ

∫ ∞

0

dk

k
eikr cos θ (3.113)

This integral also diverges and we have to introduce a cut – off, similarly
to the case of C1(r). Then we get:

∆C(2)
T (r) =

T

2πρc2
ln
L

r
(3.114)

For d = 1, in a similar way we obtain:

∆C(1)
T (r) =

T

πρc2

∫ ∞

0

dk

k2
cos kr = ConstL (3.115)

Our calculations are summarized in Table 3.1.

Table 3.1. Asymptotic (r → ∞) behavior of correlation functions.

d C0(r) ∆CT (r)
3 ∼ 1

r2 ∼ T
r

2 ∼ 1
r ∼ T ln L

r

1 ∼ ln L
r ∼ TL

These results allow us to study the problem of possible destruction of the
long – range (crystalline here!) order by quantum and thermal fluctuations
(atomic displacements). We only have to look at the asymptotic behavior
of C(r) for r → ∞. If we have C(r) → 0, long – range order (crystalline
lattice) survives, as even rather large initial displacement u(0) of an atom
from its average position does not lead to a strong change of u(r), at some
far away position. However, if C(r) → ∞, this means that the long – range
order is destroyed. This situation is typical for quantum fluctuations for
d = 1, and for thermal fluctuations for d = 1, 2!
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Chapter 4

Electrons in Disordered Systems

4.1 Diagram technique for “impurity” scattering.

Consider an electron moving in a random potential field, created by Ni

scatterers (“impurities”), which are randomly placed in space with some
fixed density (concentration) ρi = Ni

V , where V is the system volume. Total
potential (random field!), created by these impurities is given by:

V (r) =
Ni∑
j=1

v(r − Rj) (4.1)

where v(r − Rj) is the potential of a single scatterer, situated at the (ran-
dom!) point Rj . Absolutely random distribution of scatterers corresponds
to the following distribution function in coordinate space:

P{Rj} = V −Ni (4.2)

For some given configuration of scatterers, electronic Green’s function sat-
isfies the following equation:
⎧⎨
⎩i� ∂∂t +

�
2

2m
∇2 −

Ni∑
j=1

v(r − Rj)

⎫⎬
⎭G(rr′t{Rj}) = δ(r − r′)δ(t) (4.3)

and is functionally dependent on all Rj . Usually, in the theory of disordered
systems it is assumed [Lifshits I.M., Gredeskul S.A., Pastur L.A. (1988)],
that (experimentally measurable) physical characteristics of a system are
determined as averages over the ensemble of samples with all possible con-
figurations of “impurities” (impurity averaging). Thus, we shall be mainly

101
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interested in studying of the averaged Green’s function, defined as:

G(r − r′, t) =< G(rr′t) >=
1
V Ni

∫
...

∫ Ni∏
j=1

dRjG(rr′t{Rj}) (4.4)

Assuming the scattering potential to be weak enough, we may develop
perturbation theory, writing down the second – quantized Hamiltonian for
electron interaction with (random) field (4.1) as:

Hint =
∫
drψ+(r)V (r)ψ(r) (4.5)

This perturbation theory (over “external” field [Abrikosov A.A., Gorkov
L.P., Dzyaloshinskii I.E. (1963)]) is very simple, and appropriate expansion
for the Green’s function (4.3) has the well known form:

G(1, 1′) = G0(1, 1′) +
∫
d2G0(1, 2)V (2)G0(2, 1′) +

+
∫
d2d3G0(1, 2)V (2)G0(2, 3)V (3)G0(3, 1′) + ... (4.6)

where 1 = (r, t), 1′ = (r′, t′) etc. Graphically this expansion is shown in Fig.
4.1. But we are interested in the averaged Green’s function < G(rr′t) >,

Fig. 4.1 Electron scattering by fixed configuration of scatterers.

defined in (4.4). Then, in the process of averaging of the series given by
(4.6) over the distribution function (4.2), we need to calculate the following
averages:

< V (2) >, < V (2)V (3) >, < V (2)V (3)V (4) >, ... (4.7)

For random impurities (the random field (4.1) distributed according to
(4.2)) all these averages can be calculated explicitly. First of all we intro-
duce the Fourier representation:

V (r) =
∑
p

∑
j

v(p)eip(r−Rj) (4.8)
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where v(p) is the Fourier transform of the potential of a single scatterer,
v(−p) = v∗(p). For simplicity, we mostly assume this potential to be point
– like, so that v(p) = v = const. This limitation is actually not very
important.

Using (4.8), we reduce our task of calculating the averages of the type
of (4.7) to calculations of:

Ms(p1,p2, ...,ps) =< ρ(p1)ρ(p2)...ρ(ps) >≡

≡
〈∑

l1

∑
l2

...
∑
ls

exp(−i
∑

j

pjRlj )

〉
(4.9)

It is convenient to consider slightly different (actually more general and
“realistic”) version of our model. Let Ni scatterers (impurities) be distrib-
uted randomly over N sites of a regular (e.g. simple cubic) lattice. Then,
instead of (dimensional) volume density ρi, introduced above, we can intro-
duce dimensionless concentration of impurities ρ = Ni

N , which may change
in the interval between 0 and 1. Then, the averaging of the arbitrary sum
over the impurity positions is obviously calculated as:

〈∑
li

...

〉
→ Ni

N

∑
l

... = ρ

∫
dRl

a3
... = ρi

∫
dRl... (4.10)

where the second sum is already done over all sites of the lattice, and a

denotes the lattice spacing. Here we also have taken into account that
the dimensional (volume) density of scatterers ρi = Ni

V = Ni

Na3 = ρa−3.
Transition to the “continuous” model, discussed above, is obtained as the
limit of a→ 0, so that the fixed value of ρ corresponds to the limit of ρi →
∞. At the same time, if we fix ρi, the limit of a→ 0 gives ρ = ρia

3 → 0. If
we put (as is done very often) the system volume V = 1, we have N = a−3,
and the difference in definitions of concentrations just vanish. Thus, in the
future discussion we shall use the single notation of ρ.

The following calculations are more or less simple, we need only to
separate accurately the special cases, when summation (impurity) indices
in (4.9) coincide. Then, direct calculations (for the lattice model) show:

M1(p) =

〈∑
l

exp(−ipRl)

〉
= ρ

∫
dRe−ipR = (2π)3ρδ(p) (4.11)
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M2(p1,p2) =

〈∑
l

exp[−i(p1 + p2)Rl] +
∑
l �=m

exp[−(p1Rl + p2Rm)]

〉
=

= (2π)3ρδ(p1 + p2) + ρ2[(2π)3δ(p1)(2π)3δ(p2) − (2π)3δ(p1 + p2)] =

= (2π)6ρ2δ(p1)δ(p2) + (2π)3(ρ− ρ2)δ(p1 + p2) ≡
≡< ρ(p1) >c< ρ(p2) >c + < ρ(p1)ρ(p2)) >c

(4.12)

where, by definition, we have introduced cumulant averages < ... >c
1.

Similarly we get:

M3(p1,p2,p3) =< ρ(p1) >c< ρ(p2) >c< ρ(p3) >c +

+ < ρ(p1) >c< ρ(p2)ρ(p3) >c + < ρ(p2) >c< ρ(p1)ρ(p3) >c +

+ < ρ(p3) >c< ρ(p1)ρ(p2) >c + < ρ(p1)ρ(p2)ρ(p3) >c (4.14)

Finally, after the averaging of an expansion in (4.6) we obtain the following
elements of the new (averaged) perturbation series:

v < ρ(p1) >c= (2π)3ρvδ(p1) (a) (4.15)

v2 < ρ(p1)ρ(p2) >c= (2π)3(ρ− ρ2)v2δ(p1 + p2) (b) (4.16)

v3 < ρ(p1)ρ(p2)ρ(p3) >c= (2π)3v3(ρ− 3ρ2 + 2ρ3)δ(p1 + p2 + p3) (c)
(4.17)

v4 < ρ(p1)ρ(p2)ρ(p3)ρ(p4) >c= (2π)3v4(ρ− 7ρ2 + 12ρ3 − 6ρ4) ×
×δ(p1 + p2 + p3 + p4) (d)

(4.18)

which can be represented diagrammatically as shown in Figs. 4.2 (a-d).
Cumulants of higher orders are even more awkward.

1Formal correspondence between the average moments and cumulants is given by:

�
exp

�
j

αjρ(pj)

�
= exp

�
exp

�
��

j

αjρ(pj)

�
� − 1

�
c

(4.13)
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Fig. 4.2 Diagrams representing different cumulants in the averaged perturbation series.

4.2 Single – electron Green’s function.

The main conclusion of the previous discussion is that diagrammatic ex-
pansion for the single – electron Green’s function, averaged over random
configurations of scatterers (impurities), can be represented by diagrams
shown in Fig. 4.3. Sometimes it is said that interaction lines (denoting in-

Fig. 4.3 Diagrammatic expansion for the averaged Green’s function of an electron in a
random field of impurities.

teraction with impurities) are grouped into “bunches” attached to “crosses”
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(impurity diagram technique (S.F.Edwards, 1958)).
For small concentration of impurities (ρ → 0) (or in the “continuous”

model) we may limit ourselves to terms linear in ρ. Then, assuming also
the smallness of the potential (v → 0), we may consider only contributions
from (4.15), (4.16), or, accordingly, diagrams (cumulants), shown in Fig.
4.2 (a,b). Note that the contribution of (4.15) is trivial and reduces to a
constant, which only changes the origin of the energy axis by ρv (or, equiv-
alently, just renormalizes the chemical potential)2. The second cumulant
(Fig. 4.2 (b)) reduces now to (2π)3ρv2δ(p1 + p2). Then, the expansion for
the averaged Green’s function reduces to the sum of diagrams, shown in
Fig. 4.4. This case corresponds to the simplest “Wick – like” factorization
of random field correlators (4.7):

< V (1)V (2) > �= 0

< V (1) >= 0 < V (1)V (2)V (3) >= 0

– etc., for all odd products,

< V (1)V (2)V (3)V (4) >=< V (1)V (2) >< V (3)V (4) > +

+ < V (1)V (4) >< V (2)V (3) >

– etc., for all even products. (4.19)

From mathematical (statistical) point of view this means that we are dealing
with the Gaussian random field3.

For the problem under consideration the “two – point” correlator of the
random field in coordinate space has the following form:

< V (r1)V (r2) >= (2π)3ρv2

∫
ddp1

(2π)3
eip1r1

∫
ddp2

(2π)3
eip2r2δ(p1 + p2) =

= ρv2

∫
ddp1

(2π)3
eip1(r1−r2) = ρv2δ(r1 − r2)

(4.20)

Thus, it is usually said, that here we are dealing with the problem of an
electron moving in the Gaussian random field with “white – noise” corre-

2Thus, we may just put < V (2) >= 0 in (4.7) and calculate energies with respect to
the average level of the random field. In fact, if we limit ourselves to the self – energy
given by diagram of Fig. 4.2 (a), we obtain Σ = ρv(0) = ρ

�
drv(r) and, accordingly, the

Green’s function is: G(εnp) = 1
iεn−ξ(p)−ρv(0)

, which proves our statement.
3It can be shown that the same result follows from the sum of all perturbation series

for the “continuous” model of impurity distribution in the formal limit of ρi → ∞,
v2 → 0, with ρiv2 → const!
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Fig. 4.4 Diagrammatic expansion of the averaged Green’s function in the Gaussian
random field.

lation.
Expansion shown in Fig. 4.3 can be written in the form of Dyson equa-

tion:

G(1, 1′) = G0(1, 1′) +
∫
d2d3G0(1, 2)Σ(2, 3)G(3, 1′) (4.21)

or in momentum space (Matsubara technique)4:

G(pεn) = G0(pεn) +G0(pεn)Σ(pεn)G(pεn) (4.22)

where the self – energy part Σ(1, 2) is given by diagrams, shown in Fig. 4.5.
Consider the contribution of the first diagram of Fig. 4.5, corresponding,

Fig. 4.5 Diagrams for electron self – energy in a random field.

as we shall see shortly, to the first – order Born approximation for impurity
4The averaged Green’s function < G(rr′εn) >= G(r − r′εn) depends only on |r − r′|

– the averaging “restores” translational invariance.
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scattering (1BA) (v(−p) = v∗(p)):

Σ1BA(εnp) = ρ
∑
q

|v(q)|2 1
iεn − ξ(p − q)

= ρ
∑
p′

|v(p − p′)|2 1
iεn − ξ(p′)

(4.23)
where, as usual, ξ(p) = εp − µ ≈ vF (|p| − pF ).

In metals we have typically EF ∼ 7eV ∼ 80000K, and in most cases we
are interested in studying electrons close enough to the Fermi level EF ≈ µ.
For example, at temperatures T < 800K we have T

EF
< 10−2. Thus, we

only need to know Σ1BA(εnp) for |p| ∼ pF and5 |iεn → ε+ isign(εn)δ| �
EF . From the previous analysis of screening, it is clear that the impurity
potential is also screened, so that in fact v(p − p′) is rather smooth function
on the interval of 0 < |p − p′| < 2pF . These facts will help us in calculations
to follow.

We have:

Σ1BA(p, ε+ isign(εn)δ) = ρ
∑
p′

|v(p − p′)|2 1
ε− ξ(p′) + isign(εn)δ

=

= ρ
∑
p′

|v(p − p′)|2
{

ε− ξ(p′)
(ε− ξ(p′))2 + δ2

− isign(εn)πδ(ε− ξ(p′))
}

(4.24)

As |v(p − p′)|2 changes rather slowly and we are interested in |ε− ξ(p′)| �
EF ≈ µ, we have qualitative picture shown in Fig. 4.6. Due to the fact that

ε−ξ(p′)
(ε−ξ(p′))2+δ2 is an odd function of ε − ξ(p′), we have ReΣ1BA(pεn) ≈ 06.
The (4.24) is reduced to purely imaginary contribution:

Σ1BA(pε) = −iπsign(εn)
∑
p′
ρ|v(p − p′)|2δ(ε− ξ(p′)) ≈ −i εn

|εn|
1

2τp
≡

≡ −i εn

|εn|
γp (4.25)

5Note that finally we have to perform analytic continuation to the real axis from the
upper halfplane, where εn > 0, i.e. iεn → ε + iδ, or from the lower halfplane, where
εn < 0, i.e. iεn → ε− iδ.

6Strictly speaking, the integral over p′ in the first term of (4.24) can be split in two:
one over p′, which are for from pF , and the other, over p′ close to pF . The limits in the
second integral can be taken symmetric in p′ − pF , leading to the integral being zero (if
we neglect the deviations from v(p − p′) – behavior of the spectrum close to pF ). The
first integral gives just a real constant, which again can be included into renormalized
chemical potential.
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Fig. 4.6 (a) – comparison of ρ|v(p)|2 and
ε−εp+µ

(ε−εp+µ)2+δ2 , entering ReΣ1BA(pε). (b) –

comparison of ρ|v(p)|2 and δ
(ε−εp+µ)2+δ2 , entering ImΣ1BA(pε).

where, putting ε ≈ ξ(p) (close to the pole!), we have introduced

1
τp

= 2γp = 2π
∑
p′
ρ|v(p − p′)|2δ(ξ(p) − ξ(p′)) (4.26)

– the scattering rate of electrons due to impurities, calculated in Born
approximation (Fermi “golden rule”).

If, for simplicity, from the very beginning we introduce point – like
impurity potential v(p) = v, and linearized spectrum for electrons close to
the Fermi surface, all calculations become much simpler and we immediately
obtain:

Σ1BA(pεn) = ρv2
∑
p′

1
iεn − ξ(p′)

≈ −ρv2νF

∫ ∞

−∞
dξ
iεn + ξ

ε2n + ξ2
=

= −iρv2νF arctg
ξ

εn

∣∣∣∣
∞

−∞

εn

|εn|
= −i εn

|εn|
πρv2νF (4.27)

which, in fact, coincides with (4.25), and

γp = πρv2νF (4.28)

is a constant, determined by the impurity potential and electron density of
states at the Fermi level.

Finally, in this approximation, the averaged single – electron Green’s
function can be written as:

G1BA(pεn) =
1

iεn − ξ(p) + iγpsignεn
(4.29)
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which, after the continuation iεn → z, gives:

G1BA(pz) =

{
1

z−ξ(p)+iγp
Imz > 0

1
z−ξ(p)−iγp

Imz < 0
(4.30)

which for z → ε ± iδ (where δ → +0) defines GR(A)(pε). According to
general analyticity properties [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)], G1BA(pz) possess a cut along the real axis of z.

After an elementary Fourier transformation, we obtain:

GR(pt) =
∫

dε

2π
e−i(ε+iδ)t

ε− ξ(p) + iγp
= −iθ(t)e−iξ(p)te−γpt (4.31)

and similarly:

GR(rε) =
∫

d3p

(2π)3
eipr

ε− ξ(p) + iγp
= −πνF

pF r
eipF re−r/2lp (4.32)

where lp = vF τp
7. Thus, γp = 1

2τp
determines “damping” of the averaged

Green’s function both in time and space (on the length lp, similar to the
mean free path).

Spectral density, corresponding to (4.30), has the form of a simple
Lorentzian with the width γp:

A(pε) = − 1
π
ImGR(pε) =

1
π

γp

(ε− ξ(p))2 + γ2
p

(4.34)

which naturally transforms to A(pε) = δ(ε− ξ(p)) for the gas of free elec-
trons for γp → 0.

Let us analyze now the role of neglected diagrams and possible gener-
alizations.

We can introduce the “full” Born approximation, which is exact in the lowest order
in impurity concentration ρ, and taking into account the multiple – scattering of an
electron by a single impurity. Appropriate diagrams for the self – energy are shown in
Fig. 4.7 (a). Analytically:

ΣF BA(pεn) = tpp(εn) (4.35)

7We can write (4.32) as (use p− pF = ξ/vF ):

GR(rε) =
νF

pF r

� ∞

−∞
dξ

sin pr

ε− ξ + i
2τp

=

=
νF

2ipF r

� ∞

−∞
dξ

exp(ipF r + i ξ
vF
r) − exp(−ipF r − i ξ

vF
r)

ε− ξ + i
2τp

= −πνF

pF r
eipF re

− r
2vF τp

(4.33)
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which reduces to the diagonal element of the scattering matrix tpp′ , which is determined
by the equation, shown diagrammatically in Fig. 4.7 (b), or analytically:

tpp′ (εn) = ρv(0)δpp′ +
�
p′′

v(p − p′′)G0(p′′)tp′′p(εn) (4.36)

Here again we have great simplifications for electrons close to the Fermi surface. The
real part of the diagonal element of t-matrix tpp(iεn) is practically constant for |p| ∼ pF

and can be included in µ. Then we only have to analyze Imtpp(iεn). Using the optical
theorem of quantum theory of scattering8

Imtpp = Im
�
p′

t+
pp′G0(p′)tp′p (4.38)

we have:

ImΣF BA(pεn) = Imtpp(εn) = Im
�
p′

|tpp′ |2

iεn − ξ(p′)
=

= −signεnπ
�
p′

|tpp′ |2δ(ε− ξ(p′)) (4.39)

where in the last equality iεn → ε+ iδsignεn. Eq. (4.39) coincides with (4.25), where
we substitute ρ|v(p − p′)|2 by |tpp′ |2:

ΣF BA(pεn) = −isignεn
1

2τp
= −isignεnγp (4.40)

where
1

τp
= 2γp = 2π

�
p′

|tpp′ |2δ(ξ(p) − ξ(p′)) (4.41)

If in Eq. (4.26) we replace ρ|v(p − p′)|2 by |tpp′ |2, we get precisely this result. In this
sense, we may limit ourselves by the second diagram of Fig. 4.7 (a) only, as was done
above, but assume that v(p − p′) is just the matrix element of the single – impurity
scattering matrix.

Now let us consider the self – consistent Born approximation, which is achieved by
“dressing” internal electronic lines in self – energy diagrams, as shown in Fig. 4.7 (c).
Analytically:

ΣSCBA(pεn) = ρv(0)δpp +
�
p′

v(p − p′)G(p′εn)tp′p (4.42)

where the difference with (4.36) is in replacement of Green’s function G0 by:

G(pεn) =
1

iεn − ξ(p) − Σ(pεn)
(4.43)

8From (4.36) we have: t = v + vG0t, v+ = v, v = −t+G+
0 v + t+ t = v + (t+G0t−

t+G+
0 vG0t), so that due to Hermiticity of v and t+G+

0 vG0t, we get:

Imtpp = Im < p|t+G0t|p >= Im
�
p′

t+
pp′G0tp′p (4.37)

which reduces to (4.38).
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Fig. 4.7 (a) – diagrams for the self – energy, accounting for the multiple scattering by
a single impurity. (b) – equation for t – matrix. (c) – diagrams for self – energy in self –
consistent approximation, accounting for multiple scattering.

so that, in fact, we obtain self – consistency procedure, determining self – energy part
(Green’s function).

After that, we can repeat our arguments. Using the weak energy dependence of tpp

for |p| ≈ pF and ε� EF , and assuming weak enough scattering, so that |ΣSCBA| � EF ,
we again obtain the result of the type of (4.39). Again only ImΣ is relevant, as ReΣ can
be “hidden” in the chemical potential µ. Finally we get:

ImΣSCBA(pεn) = Imtpp = Im
�
p′

|tpp′ |2

iεn − ξ(p′) − iImΣSCBA(p′εn)
≈

≈ −sign(εn − ImΣSCBA)π
�
p′

|tpp′ |2δ(ε− ξ(p′))

(4.44)

where the approximate equality is valid for small ImΣSCBA. For self – consistency it is
sufficient to take ImΣSCBA(iεn) ∼ −sign(εn), which is checked by direct substitution.
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The difference between the Born approximation discussed above and its self – consistent
variant appears only in the case of strong enough scattering, when δ – function in (4.44) is
replaced by Lorentzian of the finite width, which in the model with point – like scattering
(cf. (4.27)) changes nothing at all.

Finally we again get the well known result:

ΣSCBA(pεn) = −isign(εn)
1

2τp
= −isign(εn)γp (4.45)

where τp and γp are defined as in (4.41), or (4.28) for the case of point – like impurities9.

In diagram expansion for the Green’s function our approximation corre-
sponds to the account of only “non – crossing” diagrams, shown in Fig. 4.4,
without intersections of interaction lines. Why and under what conditions
we can neglect “crossing” diagrams? Let us compare two diagrams, shown
in Fig. 4.8. Calculating the contribution of the diagram of Fig. 4.8 (a) we

Fig. 4.8 Diagram without intersections of interaction lines (a) and “crossing” diagram
(b). Shown also are corresponding regions of integration in momentum space.

note, that integration momenta p1 and p2 can take any values in the spher-
ical layer of the width ∆k ∼ 1/l, so that this contribution is proportional
to the appropriate phase space volume of the order of Ωa ≈ (4πp2

F �∆k)2.
In the case of diagram shown in Fig. 4.8 (b) the same limitations apply to
p1 and p2, but in addition we have to satisfy |p + p2 −p1| ≈ pF . For fixed
p2, the change of p1 is limited to the region of intersection of its layer and
the appropriate layer for p + p2 −p1, as shown by doubly dashed region in
Fig. 4.8 (b). The phase space of the “ring”, formed by intersection of two
spherical layers, is of the order of Ωb ≈ (4πp2

F �∆k)(2πpF �
2∆k2). Then

9If we consider the band of the finite width, νF denotes the density of states at the
Fermi level, with the account of scattering effects.
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we understand that the ratio of the contributions of “crossing” and “non
– crossing” diagrams is of the order of Ωb

Ωa
∼ �∆k

pF
= �

pF l � 1 (“weak” dis-
order corresponds to large enough mean free path, i.e. pF l/� 
 1). Thus,
the dimensionless “small parameter” of our perturbation theory is given by

�

pF l � 1, which is equivalent to �

EF τp
� 1. Taking into account pF ∼ �/a

(where a is interatomic spacing), we see that the smallness of this parame-
ter corresponds to the condition l 
 a, so that the mean free path must be
significantly larger than interatomic spacing (lattice constant). In fact, this
is the usual condition of applicability of kinetic (Boltzmann – like) equation
of the standard transport theory.

4.3 Keldysh model.

Condition of pF l/� 
 1(l 
 a) allows us to limit ourselves to the subseries
of “dominating” diagrams (diagrams without intersections of interaction
lines) of Feynman perturbation series. In majority of problems solved by
diagram technique we act precisely in this way, i.e. we are looking (using
some physical criteria) for some infinite subseries of diagrams, which we are
able to sum. From “mathematical” point of view it is not very well defined
procedure. Neglected diagrams (though small over some physical parame-
ter) also constitute an infinite subseries of the full perturbation expansion
and their contribution, strictly speaking, remains unknown. In some (very
rare!) cases we can actually sum the whole Feynman series and obtain an
exact solution of the problem. Unfortunately, it is usually possible only
for some oversimplified models. However, conclusions, obtained via the
analysis of such model may be very instructive.

As an example of such a model, we shall consider an electron, moving
in Gaussian random field (when perturbation series is given by diagrams,
shown in Fig. 4.4) with special form of pair correlator, defined in momen-
tum representation as W 2(q) = (2π)3W 2δ(q). In this case, the momentum
transferred by each interaction line is equal to zero. In coordinate space
this gives the pair correlator for the random field of the form:

< V (r)V (r′) >=
∫

d3q

(2π)3
eiq(r−r′)(2π)3W 2δ(q) = W 2 (4.46)

corresponding to the case of “infinite range” correlations of the random field
V (r). It is the case just opposite to the “white noise” correlator (4.20)10.

10In general case, correlator < V (r)V (r′) > can be characterized by some correlation



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 115

In this model we can easily sum the whole Feynman series (L.V.Keldysh,
1965). Let us return to the series for non averaged Green’s function, shown
in Fig. 4.1. After we perform averaging over the Gaussian random field,
interaction lines, corresponding to external field, are joined “pairwise” in
all possible combinations, and we obtain diagrammatic expansion shown in
Fig. 4.4. Accordingly, in the n-th order over the correlator of Gaussian field,
in each term of the expansion for the averaged Green’s function we have 2n
vertices, joined pairwise by interaction lines (all diagrams in this order are
obtained if we perform all possible pairwise connections of 2n vertices by
interaction lines in 2n-th order term of the expansion shown in Fig. 4.1).
If each interaction line transfers zero momentum to the electron, it is easily
seen that all diagrams in the given order of perturbation theory (including
those with “crossing” interaction lines!) give just equal contributions. Then,
the complete perturbation series is written as:

G(εp) = G0(εp)

{
1 +

∞∑
n=1

AnW
2nG2n

0 (εp)

}
(4.47)

where An is the total number of diagrams in the n-th order of this series (in
2n-th order in interaction amplitude W ). The contribution of the arbitrary
diagram is equal to:

W 2nG2n+1
0 (εp) (4.48)

which corresponds to 2n vertices (factor of W 2n), connected pairwise by
dashed (interaction) lines, and also the product of 2n + 1 free electron
Green’s functions. The factor of An is directly determined by combinatorics
— this is just the number of possible ways, in which we can join pairwise
2n vertices by dashed (interaction) lines. It is easily seen that:

An = (2n− 1)!! (4.49)

There are 2n vertices and 2n+ 1 electronic lines in each diagram. Take an
arbitrary vertex. It can be joined in 2n − 1 ways with each of remaining
2n − 1 vertices. After that we have 2n − 2 “unjoined” vertices at our
disposal. Again, take one. It can be joined with the others in 2n− 3 ways.
Then, there remain 2n−4 “unjoined”. Any of these can be joined with the
remaining in 2n − 5 ways, etc. The total number of ways we can join 2n

length ξ of fluctuations of the random field. “White noise” corresponds to the limit of
ξ → 0, in the model under consideration we have ξ → ∞
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vertices in the given order is equal to (2n−1)(2n−3)(2n−5)... = (2n−1)!!,
which gives us (4.49).

Now we may use rather well known integral representation11:

(2n− 1)!! =
1√
2π

∫ ∞

−∞
dtt2ne−

t2
2 (4.54)

Then (4.47) reduces to:

G(εp) = G0(εp)

{
1 +

∞∑
n=1

1√
2π

∫ ∞

−∞
dtt2ne−

t2
2 W 2nG0(εp)2n

}
=

=
1√
2π

∫ ∞

−∞
dte−

t2
2 G0(εp)

{
1 +

∞∑
n=1

t2nW 2nG2n
0 (εp)

}
=

=
1√
2π

∫ ∞

−∞
dte−

t2
2 G0(εp)

{
1 +

t2G2
0(εp)W 2

1 − t2G2
0(εp)W 2

}
(4.55)

where during the calculations we have changed the order of summation and
integration, and summed the simple progression12. After the elementary
transformations we have:

G(εp) =
1√
2π

∫ ∞

−∞
dte−

t2
2 G0(εp)

1
1 − t2W 2G2

0(εp)
=

=
1√
2π

∫ ∞

−∞
dte−

t2
2 G0(εp)

1
2

{
1

1 − tWG0(εp)
+

1
1 + tWG0(εp)

}
(4.56)

11By definition: (2n)!! = 2.4.6...(2n) = 2nn!. Similarly:

(2n− 1)!! = 1.3.5...(2n− 1) = 2n 1
√
π

Γ

�
n+

1

2

�
(4.50)

Using the integral representation of Γ-function:

Γ(z) =

� ∞

0
dxxz−1e−x (4.51)

it is easy to obtain quite useful relation:

n! = Γ(n+ 1) =

� ∞

0
dxxne−x (4.52)

and also

Γ

�
n+

1

2

�
=

� ∞

0
dxxn−1/2e−x =

� ∞

0
dxx

2n−1
2 e−x (4.53)

which, after the substitution x→ t2/2 and with the account of (4.50), gives (4.54).
12This approach in mathematics is called Borel summation.
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so that finally we get:

GR(εp) =
1√
2π

∫ ∞

−∞
dte−

t2
2

G0(εp)
1 − tWG0(εp)

=

=
1√
2π

∫ ∞

−∞
dte−

t2
2

1
ε− εp − tW + iδ

(4.57)

where we have used the explicit form of GR
0 (εp) = 1

ε−εp+iδ
13. In the fol-

lowing we take εp = p2

2m . Introducing tW = V we rewrite (4.57) in a more
descriptive form:

GR(εp) =
1√

2πW

∫ ∞

−∞
dV e−

V 2

2W2
1

ε− p2

2m − V + iδ
(4.60)

The physical meaning of this result is obvious — we have an electron, mov-
ing in spatially homogeneous random field V , with Gaussian distribution
of the width W . The averaged Green’s function describes an ensemble of
“samples”, with field V being constant along each “sample”, but having
random values in different “samples” (elements of am ensemble).

Let us give another derivation of this elegant result (L.V.Keldysh, 1965,
A.L.Efros, 1970). Consider Dyson equation:

G−1(εp) = ε− p2

2m
− Σ(εp) (4.61)

where the self – energy part can be represented by the diagram shown in
Fig. 4.9 (a). In analytic form we have:

Σ(εp) =
∫

d3q

(2π)3
Γ(p,p− q,q)G(εp − q)W 2(q) (4.62)

Here Γ(p,p − q,q) is an exact vertex – part,
defined by diagrams shown in Fig. 4.9 (b)14 Taking into account

13Define the function of complex variable z:

Ψ(z) =
1√
2π

� ∞

−∞
dte−

t2
2

1

z − t
(4.58)

Then (4.57) can be written as:

G(εp) =
1

W
Ψ

�
1

WG0(εp)

�
(4.59)

14Note that both electronic “legs” of this vertex correspond to retarded or advanced
Green’s function GR(A), depending on which of them is obtained from Eq. (4.61). It is
precisely because of this fact we can use Ward identity (4.64) to find Γ(p,p, 0).
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Fig. 4.9 Diagrams for an exact self – energy part of an electron in Gaussian random
field (a) and for the vertex – part, determining this self – energy (b).

W 2(q) = (2π)3W 2δ(q), equations (4.61) and (4.62) are reduced to:

ε− p2

2m
−G−1(εp) = W 2G(εp)Γ(p,p, 0) (4.63)

The vertex – part Γ(p,p, 0) satisfies the following Ward identity:

Γ(p,p, 0) =
dG−1(εp)

dε
(4.64)

which is easily derived by direct differentiation of diagrammatic series for
self – energy Σ(εp). Then, from (4.63) we obtain the differential equation,
determining the Green’s function:

W 2 dG

dx
+Gx− 1 = 0 (4.65)

where we introduced x = ε− p2

2m +iδ. Solving Eq. (4.65) with the boundary
condition G(x) = 1

x for x→ ∞ immediately leads to (4.60).
The main result given by Eq. (4.60) and obtained by an exact summa-

tion of the whole Feynman series (4.47) is rather instructive. For example,
the spectral density, corresponding to (4.60), has the form:

A(εp) =
1
π

1√
2πW

∫ ∞

−∞
dV e−

V 2

2W2 δ

(
ε− p2

2m
− V

)
=

=
1

π
√

2πW
exp

(
−

(ε− p2

2m )2

2W 2

)
(4.66)

i.e. is given by wide Gaussian peak. Note also, that Eq. (4.60) does not
reduce to something similar to Eq. (4.30), i.e. to the Green’s function with
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smeared “quasiparticle” pole, it does not possess poles at all.
From Eqs. (4.60) and (4.66) we can easily calculate the density of

(electronic) states:

N(ε) = − 2
π

∫
d3p

(2π)3
ImGR(εp) = 2

∫
d3p

(2π)3
A(εp) =

=
2√

2πW

∫ ∞

−∞
dV e−

V 2

2W2

∫
d3p

(2π)3
δ

(
ε− p2

2m
− V

)
(4.67)

where we have added 2 to account for two spin projections. Accordingly:

N(ε) =
23/4m3/2W 1/2

π2�3
G0

(
ε√
2W

)
(4.68)

where the dimensionless function G0(x) is defined as:

G0(x) =
1√
π

∫ x

−∞
dye−y2

(x − y)1/2 (4.69)

and shown in Fig. 4.10. For ε > 0 and ε
W we have:

Fig. 4.10 Dimensionless function G(x), determining the density of states in Keldysh
model.

N(ε) = N0(ε) −
(2m)3/2W 2

16π2�3ε3/2
(4.70)

where the second term represents a small correction to the density of states
of free electrons (dashed line in Fig. 4.10):

N0(ε) =
(2m)3/2

2π2�3

√
ε (4.71)
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Most important result following from an exact solution is the appearance
of the “tail” of the density of states in the region of ε < 0. For ε < 0 and
|ε| 
W we obtain Gaussian asymptotic behavior for the “tail”:

N(ε) =
21/4m3/2

√
W

4π2�3

(√
2W
ε

)3/2

exp
(
− ε2

2W 2

)
(4.72)

Formation of the “tail” in the density of states within the band gap is the
general result of electronic theory of disordered systems [Lifshits I.M., Gre-
deskul S.A., Pastur L.A. (1988)]. Of course, the specific energy dependence
of the “tail” is not universal and depends on the model of the random field
(disorder).

In particular, the “tail” of the density of states appears also in the “white noise”
model, discussed above. It can be shown that in this model (for three–dimensional case,
d = 3) at ε < 0 [Lifshits I.M., Gredeskul S.A., Pastur L.A. (1988)]:

N(ε) ∼ exp

	
−const |ε|

1/2
�
3

m3/2ρv2



(4.73)

for |ε| � Esc ∼ m3(ρv2)/�6, which corresponds to |ε| � γ(ε), where γ(ε) =

πρv2N0(ε) ∼ ρv2 m3/2

�3
√
ε.

For the model of Gaussian random field with correlator, characterized by some finite
correlation length ξ, there appear characteristic energy regions shown in Fig. 4.11.
For the spatial dimensions d < 4 the energy Esc, determining the size of the “strong
coupling” region (following from γ(ε) ∼ ε) is defined as (M.V.Sadovskii, 1977):

Esc =
m

d
4−d

�2d
(ρv2)

2
4−d (4.74)

Besides that, one more characteristic energy scale appears in this problem:

E0 ∼ �
2

mξ2
(4.75)

The energy dependence of the “tail” in the density of states in the region of Esc � |ε| �
E0 is determined by the following expression, directly generalizing (4.73) (M.V.Sadovskii,
1979):

N(ε) ∼ exp

	
−Ad

|ε|2−
d
2 �

d

ρv2



= exp

	
−Ad

� |ε|
Esc

�2− d
2



(4.76)

where Ad = const, depending only on d. In the region of |ε| � E0 the “tail” asymptotics
becomes Gaussian:

N(ε) ∼ exp

�
− ξd

ρV 2
E2

�
(4.77)

which is the same as (4.72).
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Fig. 4.11 Characteristic energy regions in the problem of an electron in the random
field.

4.4 Conductivity and two – particle Green’s function.

Let us return to the problem of an electron in the field of random impurities
(Gaussian random field with “white noise” correlation). The major task is
to formulate the general method to calculate conductivity of such a system.
We have already seen above that to calculate conductivity we need to know
the density – density response function χ(qω). Then we can use (2.111)
and (2.116). We also convinced ourselves, that (up to a sign) this response
function may be obtained via analytic continuation (iωm → ω + iδ) of
Matsubara polarization operator Π(iωmq) of an electron gas:

σ(ω) = − lim
q→0

ie2

q2
ωχ(qω) = lim

q→0

ie2

q2
ωΠ(qiωm → ω + iδ) (4.78)

We consider free (noninteracting with each other) electrons in the field of
random impurities15. From the general quantum mechanical point of view
we are dealing with single – particle problem. For such an electron there
always exist some (in general unknown!) exact eigenfunctions and eigenen-
ergies in the potential field, determined by the given (fixed) configuration
of impurities16:

Hϕn(r) = εnϕn(r) (4.79)

15General discussion of the approach proposed below can also be found in [Sadovskii
M.V. (2000); Altshuler B.L., Aronov A.G. (1985)].

16The averaging procedure discussed above leads to formally “multi – particle” struc-
ture of perturbation theory, but the averaged Green’s function are no longer Green’s
functions (propagators) of any quantum mechanical problem. They give only the effec-
tive picture averaged over the statistical ensemble of “samples” with all possible config-
urations of scatterers (impurities).



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

122 Book Title

where

H =
∫
drψ+(r)

{
−∇2

2m
+
∑

i

v(r − Ri)

}
ψ(r) (4.80)

Accordingly, we can introduce (non averaged!) retarded and advanced
Green’s functions of the Schroedinger equation (4.79) as:

GR,A(rr′, ε) =
∑

n

ϕn(r)ϕ∗
n(r′)

ε− εn ± iδ
(4.81)

or, after the Fourier transformation over each of the coordinates:

GR,A(pp′, ε) =
∑

n

ϕn(p)ϕ∗
n(p′)

ε− εn ± iδ
(4.82)

Expanding electron operators over exact eigenfunctions:

ψ(r) =
∑

n

anϕn(r) ψ+(r) =
∑

n

a+
nϕ

∗
n(r) (4.83)

we define the density operator as:

ρ(r) = ψ+(r)ψ(r) =
∑
mn

ϕ∗
n(r)ϕm(r)a+

n am (4.84)

Then the density – density response function can be calculated using the
general scheme, described above in (2.82) – (2.88), so that for T = 0 we
get:

χ(rr′, ω) = i

∫ ∞

0

dtei(ω+iδ)t < 0|[ρ(r, t), ρ(r′, 0)]|0 >=

= 2
∑
mn

ϕ∗
n(r)ϕm(r)ϕ∗

m(r′)ϕn(r′)
n(εm) − n(εn)
ω + εn − εm + iδ

(4.85)

where the averaging is performed over the ground state, and the factor of 2
accounts for both spin projections. Eq. (4.85) gives an explicit expression
for (2.82). In fact, we are interested in averaged (over impurity configura-
tions) response function χ(r − r′, ω) =< χ(rr′, ω) >, or its spatial Fourier
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– transform:

χ(qω) = 2
∑
pp′

∑
nm

〈
ϕm(p+)ϕ∗

m(p′
+)ϕn(p′

−)ϕ∗
n(p−)

n(εm) − n(εn)
ω + εn − εm + iδ

〉
=

= 2
∑
pp′

∫ ∞

−∞

dε

2πi
{
[n(ε+ ω) − n(ε)] < GR(p+p′

+, ε+ ω)GA(p′
−p−, ε) > +

+n(ε) < GR(p+p′
+, ε+ ω)GR(p′

−p+, ε) > −
−n(ε+ ω) < GA(p+p′

+, ε+ ω)GA(p′
−p−, ε) >

}
(4.86)

where the second expression is directly checked using (4.82), and we intro-
duced p± = p± 1

2q. Eq. (4.86) can be rewritten as:

χ(qω) = −
∫ ∞

−∞
dε{[n(ε+ ω) − n(ε)]ΦRA(εωq) + n(ε)ΦRR(εωq) −

−n(ε+ ω)ΦAA(εωq)}
(4.87)

where we have introduced:

ΦRA(εωq) = − 1
2πi

2
∑
pp′

< GR(p+p′
+, ε+ ω)GA(p′

−p−, ε) > (4.88)

and similar expressions for ΦRR and ΦAA. Note that we included here a
factor of 2 due to spin.

Previous discussion was concerned with the case of T = 0. For T �= 0
similar expressions are obtained after analytic continuation of appropriate
Matsubara functions.

Using the rules of “impurity” diagram technique, we can obtain Mat-
subara polarization operator as shown in Fig. 4.12 (a). Analytically:

Π(qωm) = 2T
∑

n

∑
p

G(pεn)G(p + qεn + ωm)T (p,p + q, εn, εn + ωm)

(4.89)
where equations for vertices Γ and T are shown graphically in Fig. 4.12
(b),(c). the sum over frequencies in (4.89) can be calculated using the
general approach, described above in connection with (3.40) – (3.44). The
presence in (4.89) of the pair of Green’s functions (with frequencies, differing
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Fig. 4.12 Diagrammatic expansion for polarization operator in impure system (a) and
appropriate vertices Γ (b) and T (c).

by iωm) leads to the appearance of two cuts in their product17 in the
complex plane of frequency — one along z = ε, and the other along z =
ε− iωm. Then, using Eq. (3.38) we may write the sum in (4.89) as:

S(iωm) = T
∑

n

f(iεn, iεn + iωm) = −
∫

C

dz

2πi
n(z)f(z, z + iωm) (4.90)

where f(z, z + iωm) = G(z)G(z + iωm)T (z, z + iωm) (we drop momenta
arguments for shortness!), and n(z) is the Fermi distribution. The contour
of integration C is shown in Fig. 4.13. Rewriting (4.90) via integrals over
four horizontal lines of C (integrals over infinitely far away arcs vanish!),

17Remember, that Green’s function G(pz) possess a cut in the complex plane of fre-
quency z along the line defined by Imz = 0.
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Fig. 4.13 Integration contour used in calculation of the sum over Matsubara frequencies.

we obtain:

S(iωm) = −
∫ ∞

−∞

dε

2πi
n(ε)[f(ε+ iδ, ε+ iωm) − f(ε− iδ, ε+ iωm)] −

−
∫ ∞

−∞

dε

2πi
n(ε− iωm)[f(ε− iωm, ε+ iδ) − f(ε− iωm, ε− iδ)]

(4.91)

After the substitution ωm → ω + iδ, we get:

S(ω) = −
∫ ∞

−∞

dε

2πi
n(ε)[fRR(ε, ε+ ω) − fRA(ε, ε+ ω) +

+fRA(ε− ω, ε) − fAA(ε− ω, ε)] (4.92)

where notations of the type fRA(ε, ε′) correspond to f(ε− iδ, ε+ iδ), etc.
The shift of the summation variable ε→ ε+ ω in the last two terms gives:

S(ω) =
∫ ∞

−∞

dε

2πi
[n(ε) − n(ε+ ω)]fRA(ε, ε+ ω) −

−
∫ ∞

−∞

dε

2πi
[n(ε)fRR(ε, ε+ ω) − n(ε+ ω)fAA(ε, ε+ ω)] (4.93)
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This, in fact, coincides with (4.87), if we introduce:

ΦRA(εωq) =
1

2πi
fRA(ε, ε+ ω) =

− 1
2πi

2
∑
p

GR(ε+ ωp + q)GA(εp)T (p,p + q, ε, ε+ ω) (4.94)

which is just another form of (4.88), where everything is expressed via
averaged Green’s functions GR(ε+ωp + q) and GA(εp), and the averaged
vertex T (p,p + q, ε, ε + ω). As all calculations were made in Matsubara
technique, Fermi functions in (4.93) are taken at T > 0. Thus, we have:

χ(qω) = −Π(qiωm → ω + iδ) = −
∫ ∞

−∞
dε
{
[n(ε+ ω) − n(ε)]ΦRA(εωq) +

+ n(ε)ΦRR(εωq) − n(ε+ ω)ΦAA(εωq)
}

(4.95)

which equivalent to (4.87), as expected!
Let us return to Eq. (4.88). Using GA(pp′, ε) = [GR(p′p, ε)]∗, we

obtain ΦRR(ε00) = −[ΦAA(ε00)]∗. Then, we easily see that:

ΦRR(ε00) =
1

2πi
2
∑
pp′

∂

∂ε
< GR(pp′, ε) > (4.96)

where < GR,A(pp′, ε) >≡ GR,A(pε)δ(p − p′) and

GR,A(pε) =
1

ε− p2

2m + µ− ΣR,A(pε)
(4.97)

is the retarded (advanced) Green’s function, determined by “impurity” di-
agram technique18. It is not difficult to check the following identity:∫ ∞

−∞
dεn(ε)Im

{
−2πiΦRR(ε00)

}
= πN(EF ) (4.98)

which is obtained by direct substitution of (4.96) into (4.98) and partial
integration, using the definition of the density of states:

N(ε) = − 2
π

∑
p

ImGR(pε) (4.99)

18Using Matsubara technique we obtain R or A functions via analytic continuation
iεn → ε± iδ
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For T � EF we have19: (
−∂n(ε)

∂ε

)
≈ δ(ε) (4.100)

and accordingly:

n(ε+ ω) − n(ε) = −ωδ(ε) (4.101)

Then, from (4.87) or (4.95), using (4.98), and for small q � pF and ω � EF ,
we have:

χ(qω) = ωΦRA(qω) +N(EF ) (4.102)

where we have introduced the notation:

ΦRA(qω) = ΦRA(qωε = 0) (4.103)

For q = 0 the density – density response function must be zero for arbitrary
values of ω. This is a general property [Nozieres P., Pines D. (1966)], which
is clear e.g from comparison of (2.114) and (2.115). Then, from (4.102) we
obtain:

ΦRA(0ω) = −N(EF )
ω

(4.104)

which, in fact, is directly related to Ward identity, connected with charge
conservation. Then we can rewrite (4.102) as:

χ(qω) = ω
{
ΦRA(qω) − ΦRA(0ω)

}
(4.105)

and general relation for conductivity (2.111) reduces to:

σ(ω) = − lim
q→0

ie2
ω2

q2
{
ΦRA(qω) − ΦRA(0ω)

}
(4.106)

This expression (D. Vollhardt, P. Wölfle, 1980) is quite convenient for direct
calculations, as we can effectively calculate two – particle Green’s function
(loop) ΦRA(qω) using “impurity” diagram technique.

Often to study conductivity diagrammatically another approach is used,
based on the calculation of the response to an external vector – potential.

19Remember, that for us EF is an origin of energy scale, so that in all expressions here
formally we have EF = 0.
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The general expression for conductivity tensor is then given by20:

σµν(qω) =
1
iω

{Φµν(qω + iδ) − Φµν(q0 + iδ)} (4.107)

where

Φµν(qiωm) = T

∫ β

0

dτ

∫ β

0

dτ ′eiωm(τ−τ ′) < TτJµ(qτ)Jν (−q, τ ′) > (4.108)

and J(p) is the Fourier transform of the (so called “paramagnetic”) current
operator:

J(q) = − ie

2m

∫
dre−iqr

[
ψ+(r)∇ψ(r) −∇ψ+(r)ψ(r)

]
(4.109)

Schematic derivation of these expressions is as follows. Consider the re-
sponse of a system to an external vector – potential, leading to the following
perturbation term in the Hamiltonian:

Hext = −J(r)A(rt) (4.110)

and take A(rt) in the form of a plane – wave:

A(rt) = A(qω)eiqr−iωt (4.111)

so that the appropriate electric field is given by:

E(rt) = −∂A(rt)
∂t

= iωA(qω)eiqr−iωt (4.112)

Then, according to the general Kubo formalism [Sadovskii M.V. (2003a)],
we obtain (“paramagnetic”) response as:

Jµ(qω) = χp
µν(qω)Aν(qω) =

χp
µν(qω)
iω

iωAν(qω) =
χp

µν(qω)
iω

Eν(qω)

(4.113)
where

χp
µν(qω) = i

∫ ∞

0

dteiωt < [Jµ(qt), Jν(−q0)] > (4.114)

From the general discussion of the connection between linear response and
Matsubara formalism given above, it is clear that χp

µν(qω) = Φµν(qω+ iδ),
i.e. it can be obtained via analytic continuation of (4.108).

20Obviously, in isotropic system and in the absence of an external magnetic field we
have σµν = σδµν
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The full electric current in the presence of an external vector – potential
is given by:

Jtot = J − ne2

m
A (4.115)

where the second term represents “diamagnetic” current, appearing because
of electron velocity having now the form: v = 1

m (p − eA). On the other
hand, for ω = 0 (static vector – potential (magnetic field)) an electric
current in the system (normal metal) is just absent, so that “diamagnetic”
part of (4.115) practically cancels “paramagnetic” one21. Then we have:

χµν(q0) = Φµν(q0) =
ne2

m
δµν (4.116)

and we immediately obtain the general expression (4.107) for conductivity.
In fact, Eq. (4.116), similarly to (4.104), is also some version of the Wars
identity.

Now it is clear that the diagonal element of conductivity tensor at q = 0
can be written as:

σxx(ω) =
1
iω

{Φxx(ω + iδ) − Φxx(0 + iδ)} (4.117)

where, similarly to (4.89), we can write:

Φxx(iωm) = −2eT
∑

n

∑
p

px

m
Jx(p,p,εn, εn + ωm)G(εnp)G(εn + ωmp)

(4.118)
Here we have introduced the “current” vertex:

Jµ(p,p, εn, εn + ωm) ≡ e

m
pµΞ(p, εn, εn + ωm) (4.119)

which can be defined diagrammatically as shown in Fig. 4.12 (c), where
the “bare” vertex is given by e

mpµ.
Accordingly, rewriting (4.118) as:

Φxx(iωm) = −2e2T
∑

n

∑
p

p2
x

m2
Ξ(p, εn, εn + ωm)G(εnp)G(εn + ωmp)

(4.120)

21Up to a small contribution due to Landau diamagnetism! More detailed discussion
of this situation will be given below in the Chapter on superconductivity.
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and performing summation over n and analytic continuation iωm → ω+ iδ

as it was done above, we obtain the following expression for static conduc-
tivity (ω → 0):

σxx =
e2

2π

∑
p

p2
x

m2
Ξ(p)GR(p, 0)GA(p, 0) (4.121)

where we have introduced the static limit Ξ(p) = Ξ(p, 0 − iδ, 0 + iδ).
Let us give also, just for reference and without derivation, the general expression for

non – diagonal (Hall) conductivity in the presence of the weak external magnetic field
H (H.Fukuyama, H.Ebisawa, Y.Wada, 1969):

σxy =
eH

m

e2

4πi

�
p

px

m
Ξ2(p)

�
GR(p, 0)

∂

∂px
GA(p0) − ∂

∂px
GR(p, 0)GA(p, 0)

�
(4.122)

which gives us diagrammatic method to calculate the Hall effect.

4.5 Bethe – Salpeter equation, “diffuson” and “Cooperon”.

Thus, according to (4.105), to calculate the density – density response func-
tion χ(qω) and conductivity of a system (4.106), we have to find the way
to calculate22:

ΦRA(ωq) = − 1
2πi

2
∑
pp′

< GR(p+p′
+, E + ω)GA(p′

−p−, E) > (4.123)

which, in turn, is defined via two – particle Green’s function:

ΦRA
pp′(Eωq) = − 1

2πi
< GR(p+p′

+, E + ω)GA(p′
−p−, E) > (4.124)

which is determined by diagrams, shown in Fig. 4.14 (a). It is convenient
to introduce the vertex function Γpp′(qω), defined by23:

ΦRA
pp′(Eωq) = − 1

2πi
GR(p+E + ω)GA(p−E) {δpp′+

+Γpp′(qω)GR(p′
+E + ω)GA(p′

−E)
}

(4.125)

and diagrams of Fig. 4.14 (b).
Now it is convenient to classify diagrams for the vertex as reducible

(i.e. those which can be “cut” over two R and A lines) and irreducible
in “R − A–channel” (or “particle – hole” channel). For example, in Fig.

22In the following, we always assume µ = EF ≡ E, T = 0
23Here and below we mainly follow [Sadovskii M.V. (2000)] and [Altshuler B.L., Aronov

A.G. (1985)].
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Fig. 4.14 Diagrams for two – particle Green’s function (a) and vertex part Γpp′ (qω) (b).
Upper electron line corresponds to retarded Green’s function GR(p+E+ω) (“particle”),
while lower to advanced GA(p−E) (“hole”).

4.14, the second and the fifth diagrams are reducible, while the rest are
irreducible. Then it is clear that the full vertex Γpp′(qω) is described by
Bethe – Salpeter integral equation, shown diagrammatically in Fig. 4.15,
or analytically:

Γpp′(qω) = Upp′(qω) +
∑
p′′

Upp′′(qω)GR(E + ωp′′
+)GA(Ep′′

−)Γp′′p′(qω)

(4.126)
where Upp′(qω) denotes the sum of all diagrams, irreducible in R − A –
channel, of the type shown in Fig. 4.15 (b).

In the simplest approximation, we can take for Upp′(qω) only the first
diagram from the r.h.s. of Fig. 4.15 (b), i.e. just put:

U0(p − p′) = ρ|v(p− p′)|2 U0 = ρv2 (4.127)

where the second equality is valid for point – like impurities. Then Eq.
(4.126) takes the form, shown diagrammatically in Fig. 4.16 (a). Its solu-
tion can be written as:

Γ0
pp′(qω) =

U0

1 − U0

∑
pG

R(E + ωp+)GA(Ep−)
(4.128)
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Fig. 4.15 Bethe – Salpeter equation for the vertex part Γpp′ (qω) (a) and diagrams of
the lowest orders for irreducible (in R−A – channel) vertex Upp′(qω) (b).

which defines Γpp′(qω) via the sum of “ladder” diagrams, shown in Fig.
4.16 (b).

Fig. 4.16 Bethe – Salpeter equation for the vertex part Γpp′ (qω) in “ladder” approxi-
mation (a) and appropriate diagrams of lowest orders (b).

Now let us perform explicit calculations for the case of arbitrary spatial
dimensionality d. Basic element, determining (4.128), can be written as:

Id(qω) =
∑
p

GR(E + ωp+)GA(Ep−) =

=
∫

ddp

(2π)d
GR

(
E + ωp +

q
2

)
GA
(
Ep− q

2

)
=

=
∫

ddp

(2π)d
GR(E + ωp− q)GA(Ep) =

=
∫

ddp

(2π)d

1
E + ω − ξ(p) + vF q cos θ + iγ

1
E − ξ(p) − iγ

(4.129)
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where we have taken the averaged Green’s functions in simplest approxima-

tion (4.29), (4.30). Here vF =
√

2E
m is electron velocity at the Fermi level,

while damping (for point–like impurities) γ = πρv2ν(E) = πU0ν(E), where
ν(E) is density of states at the Fermi level E in d – dimensional space and
for a single spin direction.

Integrals over the polar angle θ in d dimensions, are calculated using the following
rules:

�
ddp

(2π)d
f(p, θ) =

1

(2π)d

� ∞

0
dppd−1Ωd−1

� π

0
dθ sind−2 θf(p, θ) =

=
Ωd

(2π)d

� ∞

0
dppd−1 Ωd−1

Ωd

� π

0
dθ sind−2 θf(p, θ) ≈

≈ ν(E)

� ∞

−∞
dξ

Ωd−1

Ωd

� π

0
dθ sind−2 θf(ξ, θ) (4.130)

where Ωd = 2πd/2

Γ(d/2)
is the surface of the sphere with radius unity in d – dimensional

space.

For small ω and q we can write24:

1
E + ω − ξ(p) ± vF q cos θ + iγ

≈

≈ 1
E − ξ(p) + iγ

− ω ± vF q cos θ
(E − ξ(p) + iγ)2

+
(ω ± vF q cos θ)2

(E − ξ(p) + iγ)3
+ · · ·(4.131)

so that:

Id(qω) ≈ ν(E)
∫ ∞

−∞
dξ

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ
1

E − ξ − iγ
×

×
{

1
E − ξ + iγ

− ω + vF q cos θ
(E − ξ + iγ)2

+
(ω + vF q cos θ)2

(E − ξ + iγ)3
+ · · ·

}
(4.132)

Integrals over ξ are elementary (calculate residues!), so that:

Id(qω) ≈ ν(E)
Ωd−1

Ωd
2πi

� π

0
dθ sind−2 θ

�
1

2iγ
− ω + vF q cos θ

(2iγ)2
+

(ω + vF q cos θ)2

(2iγ)3
+ · · ·

�
=

=
π

γ
ν(E)

Ωd−1

Ωd

� π

0
dθ sind−2 θ

	�
1 +

iω

2γ
− ω2

4γ2

�
+

�
ivF q

2γ
− vF qω

2γ2

�
cos θ −

v2F q
2

4γ2
cos2 θ




(4.133)

24In the following it will become clear, that we are speaking about ω � γ and vF q � γ
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Now θ integrations give:

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ = 1 (4.134)

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ cos θ = 0 (4.135)

Ωd−1

Ωd

∫ π

0

dθ sind−2 θ cos2 θ =
1
d

(4.136)

Then, taking into account π
γ ν(E) = U0 and γ = 1

2τ , we finally obtain the
denominator of (4.128) as:

1 − U0Id(qω) = − iω

2γ
+

ω2

4γ2
+D0

q2

2γ
≈ −iωτ +D0τq

2 (4.137)

1 − U0I
∗
d (qω) ≈ iωτ +D0τq

2 (4.138)

where

D0 =
1
d
v2

F τ =
1
d

2E
m
τ =

1
d

E

mγ
(4.139)

is the usual Drude diffusion coefficient in d dimensions. Accordingly, from
(4.128) we obtain the following typical (and very important!) expression
for the vertex with diffusion pole:

Γ0
pp′(qω) =

U0τ
−1

−iω +D0q2
=

2U0γ

−iω +D0q2
(4.140)

or the so called diffuson25.
It is very important to note, that in the case of time – reversal symmetry,

the full vertex Γp,p′(q, ω) possesses the following general property:

Γp,p′(q, ω) = Γ 1
2 (p−p′+q), 1

2 (p′−p+q)(p + p′, ω) (4.141)

To prove this, consider the general vertex part shown in Fig. 4.17 (a). Here
we performed the “ordering” of momenta: on the lower electronic line the
numbers attributed to momenta are even, while on the upper – odd. The
smaller number corresponds to incoming line, while the larger – to outgoing.
We have the general conservation law:

p1 + p2 = p3 + p4 = p + p′ (4.142)
25Note that the cancellation of contributions independent of ω and q in the denomina-

tor of (4.128), leading to the appearance of diffusion pole in (4.140), follows, in general,
from particle conservation (Ward identity)(S.V.Maleev, B.P.Toperverg, 1975).



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 135

so that

q = p1 − p4 = p3 − p2 p =
1
2
(p1 + p4) p′ =

1
2
(p2 + p3) (4.143)

In the case of time – reversal symmetry the single – particle eigenstates p

Fig. 4.17 The general vertex part (a) and the vertex obtained from it by reversal of
one of electronic lines (b). First diagram (b) is obtained by a simple “unwrapping” of
diagram (a), and obviously it is the same as (a). The second diagram (b) is obtained
from the first one by the reversal of the direction of the lower electronic line, which is
possible in the case of time – reversal symmetry.

and −p are just equivalent! Then we can reverse the direction of e.g. lower
(“hole” – like) line of the diagram, changing the sign of its momentum.
Then the diagram of Fig. 4.17 (a) is transformed into the second diagram
of Fig. 4.17 (b), and Eqs. (4.142) and (4.143) are transformed to:

p1 + p2 = p3 + p4 = q (4.144)

and

p + p′ = p1 − p4 = p3 − p2,
1
2
(p1 + p4) =

1
2
(p − p′ + q),

1
2
(p2 + p3) =

1
2
(p′ − p + q) (4.145)

Thus, the reversal of the direction of lower electronic line of the diagram of
Fig. 4.17 (a), acceptable in the case of t → −t symmetry, is equivalent to
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the following change of variables of the vertex:

q → p + p′ p → 1
2
(p − p′ + q) p′ → 1

2
(p′ − p + q) (4.146)

which reduces to (4.141).
Let us apply this procedure to diffuson (4.140) and diagrams of Fig.

4.16 (b). We can see that the reversal of the lower electronic line on these
diagrams leads to the “ladder” in “particle – particle” channel, or, equiva-
lently, to “maximally crossed” diagrams in “particle – hole” channel (first
introduced by Langer and Neal (J.S.Langer, T.Neal, 1966)), as shown in
Fig. 4.18. Analytical expression for the sum of these diagrams is easily

Fig. 4.18 “Cooperon” — reversal of electron line in diffuson gives “ladder” in “particle
– particle” channel, or to “maximally – crossed” diagrams in “particle – hole” channel.

obtained by the simple change of variables (4.146) in the expression for
diffuson (4.140)26:

UC
pp′(qω) =

2γU0

−iω +D0(p + p′)2
; p ≈ −p′ (4.147)

Due to the obvious analogy with diagrams, appearing during the analy-
sis of Cooper instability in the theory of superconductivity (cf. Ch. 4),
this sum and the result of summation (4.147) is usually called “Cooperon”
(L.P.Gorkov, A.I.Larkin, D.E.Khmelnitskii, 1979). The necessity of p ≈
−p′ directly follows from the criteria of applicability of diffusion approx-
imation (smallness of q and ω in (4.140)) and corresponds, in the case
of Cooperon, to the scattering of particles with almost opposite momenta
(nearly “backward” scattering).

Now note, that diagrams of Fig. 4.18 are in fact irreducible in RA –
channel (“particle – hole”). Thus, we can use Eq. (4.147) as an irreducible

26Of course, the same result can be obtained by direct diagram summation!
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vertex Upp′(qω) in Bethe – Salpeter equation (4.126), shown diagrammati-
cally in Fig. 4.15. In this way we, of course, obtain much more complicated
approximation, than those given by (4.127), which takes into account, as
will be shown below, quantum (localization) corrections to electron propa-
gation in the field of random impurities (and also to conductivity).

Returning to our general analysis, let us use (4.126) in (4.125) and write
down Bethe – Salpeter equation for the two – particle Green’s function in
the following form:

ΦRA
pp′(qω) = GR(E + ωp+)GA(Ep−)

{
− 1

2πi
δ(p− p′)+

+
∑
p′
Upp′′(qω)ΦRA

p′′p′(qω)

⎫⎬
⎭ (4.148)

which is shown diagrammatically in Fig. 4.19. The product of two Green’s

Fig. 4.19 Bethe – Salpeter equation for the two – particle Green’s function.
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functions entering this equation can be rewritten as:

GR
(
E + ωp +

q
2

)
GA

(
Ep − q

2

)
=

=
1

(E + ω − ξ(p+) − ΣR(E + ω,p+)) (E + ξ(p−) − ΣA(E,p−))
=

=
{

1
E − ξ(p−) − ΣA(E,p−)

− 1
E + ω − ξ(p+) − ΣR(E + ω,p+)

}
×

× 1
ω + (ξ(p−) − ξ(p+)) − ΣR + ΣA

=

= − ∆Gp

ω + (ξ(p−) − ξ(p+)) − ΣR + ΣA
≡ − GR −GA

(GR)−1 − (GA)−1

(4.149)

where ∆Gp = GR(Ep−)−GA(E+ωp+). Then, taking into account (4.149)
and ξ(p−) − ξ(p+) ≈ − 1

mpq, we can rewrite (4.148) as:

{
ω − 1

m
pq − ΣR(E + ωp+) + ΣA(Ep−)

}
ΦRA

pp′(qω) =

= ∆Gp

⎧⎨
⎩ 1

2πi
δ(p − p′) −

∑
p′′

Upp′′ΦRA
p′′p′(qω)

⎫⎬
⎭ (4.150)

Sometimes Eq. (4.150) is called the generalized kinetic (transport) equa-
tion.

Let us now introduce (without a complete proof) an important Ward
identity, which gives an exact relation between the self – energy and ir-
reducible vertex part for our impurity scattering problem (D.Vollhardt,
P.Wölfle, 1980):

ΣR(E + ωp+) − ΣA(Ep−) =
∑
p′
Upp′(qω)∆Gp′ (4.151)

This identity can be used as an important check of self – consistency of
different diagrammatic approximations. It will also be used during the
derivation of general equations of self – consistent theory of localization.

We shall give here only an idea of the proof of the Ward identity (4.151). In fact,
this identity follows from the simple fact, that all diagrams for the irreducible vertex
Upp′ (qω) can be obtained by “cutting” (internal) electronic line in all diagrams for the
self – energy in all possible ways. Consider as an example the typical diagram of the
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second order for the self – energy Σ
(2)
p , shown in Fig. 4.20 (a). Direct calculations give:

∆Σ
(2)
p = Σ

R(2)
p+ − Σ

A(2)
p− =

=
�
p1p2

U(p1)U(p2)
�
GR

p+−p1
GR

p+−p1−p2
GR

p+−p2
−GA

p−−p1
GA

p−−p1−p2
GA

p−−p2

�
=

=
�
p1p2

U(p1)U(p2)
�
GR

p+−p1
GR

p+−p1−p2
∆Gp−p2 +GR

p+−p1
∆GR

p−p1−p2
GA

p−−p2
+

+ ∆Gp−p1G
A
p−−p1−p2

GA
p−−p2

�
=

=
�
p1p2

�
U(p1)U(p − p′)GR

p+−p1
GR

p′
+−p

1
− U(p1)U(p − p′ − p1)GR

p+−p1
GA

p′
−+p

1
+

+ U(p − p′)U(p2)GA
p′
−−p

2
GA

p−−p2

�
∆Gp′ =

�
p′

U
(2)
pp′ (qω)∆Gp′

(4.152)

Now we can convince ourselves that an expression for U
(2)
pp′ (qω) (defined by the figure

bracket in an expression before the last formula) is given by diagrams, shown in Fig.
4.20 (b), which are obtained by all possible “cuts” of internal electronic lines in Σ(2)(p)
(and by the reversal of one of those remaining uncut). The generalization of this analysis
to the case of an arbitrary diagram of higher order gives us the complete proof of the
Ward identity given in (4.151).

Fig. 4.20 Typical diagram of the second order for electron self – energy (a) and corre-
sponding diagrams for the irreducible vertex Upp′ (qω) in the Ward identity (b).
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4.6 Quantum corrections, self – consistent theory of local-
ization and Anderson transition.

4.6.1 Quantum corrections to conductivity.

Information contained in two – particle Green’s function (4.124) is, in some
sense, excessive. To calculate conductivity we need only to know (4.123),
i.e. two – particle Green’s function summed over the momenta p and p′.
From (4.150) we can directly obtain an approximate system of equations
determining this function. Let us sum over p and p′ both sides of Eq.
(4.150) using also the Ward identity (4.151). Then we immediately get:

ωΦRA(ωq) − vF qΦRA
1 (ωq) = −N(E) (4.153)

where we have introduced

ΦRA
1 (ωq) = 2

∑
pp′

(p̂q̂)ΦRA
pp′(ωq) (4.154)

Here p̂ and q̂ are the unit vectors along the directions of p and q, |p| ≈
|p′| ≈ pF , vF = pF

m =
√

2E
m , while N(E) is the density of states at the

Fermi level for both spin projections:

N(E) = 2ν(E) = − 2
π

∑
p

ImGR(Ep) = − lim
ω→0,q→0

2
2πi

∑
p

∆Gp (4.155)

The appearance of the spin factor of 2 here is due to its presence in our
definitions (4.88), (4.154). In the r.h.s. of (4.153) we can limit ourselves
to the limit used in (4.155) because N(E) is practically constant on the
energy interval of ω � E, vF q � E.

But now we have a new function ΦRA
1 (ωq) defined by (4.154). For this

function we also derive an equation using (4.150). Let us multiply (4.150)
by (p̂q̂), sum both sides of the equation over p and p′, use the Ward identity
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(4.151) and also the following approximate representation27:

∑
p′

ΦRA
pp′(ωq) ≈ − ∆Gp

2πiν(E)

∑
p′p′′

{1 + d(p̂q̂)(p̂′′q̂)}ΦRA
p′′p′(ωq) (4.161)

we obtain :

[ω +M(qω)] ΦRA
1 (ωq) − 1

d
vF qΦRA(ωq) = 0 (4.162)

where we have introduced the so called relaxation kernel:

M(qω) = 2iγ +
id

2πν(E)

∑
pp′

(p̂q̂)∆GpUpp′(qω)∆Gp′(p̂′q̂) (4.163)

with γ = πρv2ν(E) the usual Born frequency of impurity scattering. Now
Eqs. (4.153) and (4.162) form the closed system, allowing us to express two
– particle function ΦRA(qω) via M(qω), which, in turn, is expressed via
the irreducible vertex part Upp′(qω) with the help of Eq. (4.163).

27Note that (4.161) reduces to the first two terms of the following expansion over
Legendre polynomials:

�
p′

ΦRA
pp′ =

∞�
l=0

Pl(cos θpq)Φl
p ≈ Φ0

p + cos θpqΦ1
p + · (4.156)

where θpq is an angle between vectors p and q. Assuming Φ0
p ∼ Φ1

p ∼ ∆Gp, we can
write:

Φ0
p = −[2πiν(E)]−1∆Gp

�
p′p′′

ΦRA
p′′p′ (ωq) (4.157)

Φ1
p = −[2πiν(E)]−1∆Gp

�
p′p′′

(p′′q̂)

pF
Φp′′p′ (ωq) (4.158)

which was, in fact, done in (4.161). For ω → 0, q → 0, with the account of (4.155) and
|p| ≈ |p′| ≈ pF , we have:

�
pp′

ΦRA
pp′ = − 1

2πiν(E)

�
p

∆Gp

�
p′p′′

ΦRA
p′′p′ =

�
p′p′′

ΦRA
p′′p′ (4.159)

�
pp′

(pq̂)ΦRA
pp′ = − d

2πiν(E)

�
p

∆Gp
(pq̂)2

p2F

�
p′p′′

(p′′q̂)ΦRA
p′′p′ =

�
p′p′′

(p′′q̂)ΦRA
p′′p′

(4.160)
where d is the number of space dimensions.
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4.6.1.1 Technical details:

Let us present the detailed derivation of Eqs. (4.162) and (4.163). Multiplying both
sides of (4.150) by pq̂

m
and performing the summation over p and p′ we obtain:

�
pp′

pq̂

m

�
���ω − pq

m
− ΣR(E + ω,p+) + ΣA(Ep−)� �� �

−�p′′ Upp′′ (qω)∆Gp′′

�
���ΦRA

pp′ (qω) =

=
�
pp′

pq̂

m
∆Gp

1

2πi
δ(p − p′) −

�
pp′

pq̂

m
∆Gp

�
p′′

Upp′′ΦRA
p′′p′ (qω) (4.164)

where the difference of self – energies in the l.h.s. is rewritten with the use of the Ward
identity (4.151). Then we get:

ω
�
pp′

pq̂

m
ΦRA

pp′ (qω) −
�
pp′

(pq̂)2

m2� �� �
1
d

p2

m2 = 2E
dm

ΦRA
pp′ (qω) −

�
pp′

(pq̂)

m

�
p′′

Upp′′∆Gp′′ΦRA
pp′ (qω) =

=
�
p

pq̂

m

∆Gp

2πi� �� �
Zero after the angular integration!

−
�
pp′

pq̂

m
∆Gp

�
p′′

Upp′′ΦRA
p′′p′(qω)

(4.165)

which gives:

ω
�
pp′

pq̂

m
ΦRA

pp′ (qω) +
�
pp′

pq̂

m
∆Gp

�
p′′

Upp′′ΦRA
p′′p′ (qω)

� �� �
(I)

=

=
�
pp′

pq̂

m

�
p′′

Upp′′∆Gp′′ΦRA
pp′ (qω)

� �� �
(II)

+q
2E

dm

�
pp′

ΦRA
pp′ (qω) (4.166)
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Let us consider the contributions (I) and (II) separately. Using (4.161) we have:

(I) =
�
pp′′

pq̂

m
∆GpUpp′′

�
p′

ΦRA
pp′ =

= −
�
pp′′

pq̂

m
∆GpUpp′′

∆Gp′′

2πiν(E)

�
p′p′′′

�
1 + d(p′′q̂)(p′′′q̂)/p2F

 
ΦRA

p′′′p′ =

=
i

2πν(E)

�
pp′′

pq̂

m
∆GpUpp′′∆Gp′′

�
p′p′′′

ΦRA
p′′′p

� �� �
(III)

+

+
id

2πν(E)p2F

�
pp′′

(pq̂)∆GpUpp′′∆Gp′′ (p′′q̂)
�

p′p′′′

p′′′q̂
m

ΦRA
p′′′p′

(4.167)

Similarly:

(II) =
�
p

pq̂

m

�
p′′

Upp′′∆Gp′′
�
p′

ΦRA
pp′ =

= −
�
p

pq̂

m

�
p′′

Upp′′∆Gp′′
∆Gp

2πiν(E)

�
p′p′′′

�
1 + d(pq̂)(p′′′q̂)/p2F

�
ΦRA

p′′′p′ =

= (III) +
id

2πν(E)

�
p

(pq̂)2

p2F� �� �
1/d

∆Gp

�
p′′

Upp′′∆Gp′′
�

p′p′′′

p′′′q̂
m

ΦRA
p′′′p′ =

= (III) +
�
p′′

Upp′′∆Gp′′
�

p′p′′′

p′′′q̂
m

ΦRA
p′′′p′ = (III) − 2iγ

�
pp′

pq

m
ΦRA

pp′

(4.168)

where to obtain the last equality we again used the Ward identity (4.151) and rewritten
the difference of self – energies using the simplest approximation (4.25) as ΣA − ΣR =
2iImΣA = 2iγ. Then from (4.167) and (4.168) we obtain:

(I) − (II) = 2iγ
�
pp′

pq̂

m
ΦRA

pp′ +

+
id

2πν(E)p2F

�
pp′′

(pq̂)∆GpUpp′′∆Gp′′ (p′′q̂)
�
pp′

pq̂

m
ΦRA

pp′ =

= M(qω)
�
pp′

pq̂

m
ΦRA

pp′ (4.169)

where M(qω) is defined in (4.163). As a result Eq. (4.166) reduces to (4.162), completing
our derivation.

In principle, all these manipulations are “almost exact”. Most serious limitation
of our analysis is the use of the simplest approximation for the self – energy (4.25)
in (4.168). If we do not use this simplification, we obtain more general (compared to
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(4.163)) expression for the relaxation kernel:

M(qω) =
1

2πiν(E)

�
p

∆Gp

!
ΣR(E + ωp+) − ΣA(Ep−)

"
+

+
id

2πν(E)p2F

�
pp′

(pq̂)∆GpUpp′∆Gp′(p′q̂) (4.170)

Next everything depends on the approximation we use for the irreducible vertex Upp′ ,
but explicit results, up to now, are only obtained using the approximate expressions
given above and valid, strictly speaking, in the limit of weak enough disorder: γ � E.
However, as we shall see below, some kind of self – consistency procedure allows to
overcome these limitations.

Solving now the system of equations (4.153), (4.162) we get:

ΦRA(qω) = −N(E)
ω +M(qω)

ω2 + ωM(qω) − 1
dv

2
F q

2
(4.171)

Using (4.102) we immediately obtain the density – density response function
in the following form:

χ(qω) = ωΦRA(qω) +N(EF ) = vF qΦRA
1 (qω) =

= −N(E)
1
dv

2
F q

2

ω2 + ωM(qω) − 1
dv

2
F q

2
(4.172)

For small ω, neglecting ω2 in the denominator of (4.171) or (4.172), we can
write:

ΦRA(qω) = −N(E)
1

ω + iDE(qω)q2
(4.173)

χ(qω) = N(E)
iDE(qω)q2

ω + iDE(qω)q2
(4.174)

where we have introduced, by definition, the generalized diffusion coeffi-
cient:

DE(qω) = i
2E
dm

1
M(qω)

=
v2

F

d

i

M(qω)
(4.175)

which is directly expressed via the relaxation kernel.
Using the general expression (4.106) for conductivity, we obtain:

σ(ω) =
ne2

m

i

ω +M(0ω)
→ e2DE(00)N(E) ω → 0 (4.176)

where we have used n
N(E) = 2E

d (n is electron density).
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Thus, all important characteristics of the system are, in fact, expressed
via the relaxation kernel (4.163). The question is in what approximation
we can calculate it! If we take Upp′(qω) in (4.163) in the simplest possible
approximation (4.127), Eq. (4.163) in the limit of small disorder (precisely
when this approximation is valid!) reduces to28:

M(00) =
i

τtr
= 2πiρ

∑
p′
δ

(
E − p′2

2m

)
|v(p − p′)|2(1 − p̂p̂′) (4.177)

i.e. the usual expression for the transport relaxation time τtr due to impu-
rity scattering in metals, determining the value of the residual resistivity
(remember that here E = EF and p̂p̂′ = cos θpp′)) and (4.176) gives the
standard Drude expression:

σ =
ne2

m
τtr (4.178)

for ω = 0, or

σ(ω) =
ne2

m

τtr
1 − iωτtr

(4.179)

for the finite frequencies of external field.
Let us now take Upp′(qω) as given by Cooperon (4.147). Then it is clear

that the presence of diffusion pole can, in general case, lead to divergence
of relaxation kernel M(0ω) for ω → 0, as in this limit:

∫
dk

kd−1

ω + iD0k2
∼
{

1√
ω

d = 1
lnω d = 2

(4.180)

This (“infrared”) divergence appears for d ≤ 229. Thus, besides the usual
Drude contribution (finite for ω → 0), we can get the singular (in the
“infrared” limit of ω → 0) contribution to M(0ω), which leads to important
physical effects (such as Anderson localization). Our next task is to perform
an accurate separation and analysis of such contributions.

28In ∆Gp we just take here the limit of γ → 0.
29For d ≥ 2 in (4.180) we have to introduce the cut – off at the upper limit for k ∼

l−1 ∼ v−1
F γ (which is connected with the applicability limit of diffusion approximation

(cf. footnote after (4.131)).
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Substituting (4.147) into (4.163) we have (q → 0, ω → 0):

M(0ω) = 2iγ − 2id

πν(E)p2F

�
pp′

(pq̂)ImGR(Ep)Upp′ (0ω)ImGR(Ep′)(p′q̂) =

= 2iγ +
4dU0γ

πν(E)p2F

�
pp′

(pq̂)ImGR(Ep)
1

ω + iD0(p + p′)2
ImGR(Ep′)(p′q̂)

(4.181)

After the variable change k = p + p′; p′ = k− p we rewrite (4.181) as:

M(0ω) = 2iγ +
4dU0γ

πν(E)p2F

�
pk

(pq̂)ImGR(Ep)
1

ω + iD0k2
ImGR(Ep − k)(kq̂) −

− 4dU0γ

πν(E)p2F

�
pk

(pq̂)2� �� �
1
d

p2
F

ImGR(Ep)
1

ω + iD0k2
ImGR(Ep− k) (4.182)

Note that the second term here is finite for ω → 0 (we can say that it just
“renormalize” 2iγ), and in the third the singular at ω → 0 contribution
appears from the zeroth – order term in the expansion of the integrand
over k → 0 (then integral of the type of (4.180) appears). So finally we
write:

M(0ω) ≈ 2iγ − 4U2
0

∑
p

(ImGR(Ep))2
∑
k

1
ω + iD0k2

(4.183)

Now take into account that in our approximation:

∑
p

(ImGR(Ep))2 ≈ ν(E)
∫ ∞

−∞
dξ

γ2

[(E − ξ)2 + γ2]2
=

π

2γ
ν(E) (4.184)

so that:

2U0

∑
p

(ImGR(Ep))2 = πU0ν(E)γ−1 = 1 (4.185)

Accordingly, (4.183) reduces to:

M(0ω) = 2iγ − 2U0

∑
k

1
ω + iD0k2

(4.186)

Consider now in details the case of two – dimensional system (d = 2).
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We have to calculate the integral:

I =
�
k

1

ω + iD0k2
=

Ω2

(2π)2

� Λ

0
dkk

1

ω + iD0k2
=

1

2π

� Λ

0
dkk

1

ω + iD0k2
=

=
1

4π

� Λ2

0
dx

1

ω + iD0x
=

1

4πiD0

� Λ2

0

1

x+ ω
iD0

=
1

4πiD0

� Λ2

0
dx
x+ i ω

D0

x2 + ω2

D2
0

(4.187)

Now we see that:

ReI =
1

4πD0

ω

D0

� Λ2

0
dx

1

x2 + ω2

D2
0

→ 0 ω → 0 (4.188)

due to convergence of the integral. On the other hand:

ImI = − 1

4πD0

� Λ2

0
dx

x

x2 + ω2

D2
0

(4.189)

giving the logarithmic divergence for ω → 0:

ImI = − 1

8πD0

� Λ4

0
dz

1

z + ω2

D2
0

= − 1

8πD0
ln

�
1 +

D2
0Λ4

ω2

�
(4.190)

Accordingly, for ω → 0 we have:

ImI ≈ − 1

8πD0
ln
D2

0Λ4

ω2
= − 1

4πD0
ln
D0Λ2

ω
=

= − 1

4πD0
ln

1

ωτ
= −m

2

1

2πEτ
ln

1

ωτ
(4.191)

where we have chosen the cut – off Λ such that30:

D0Λ
2 ∼ 1

τ
= 2γ (4.192)

which gives:

Λ ∼
�

2m

E

1

τ
= 2

�
2m

E
γ ∼ l−1 (4.193)

where l = vF τ is the mean – free path, or

vF Λ ∼ 1

τ
= 2γ (4.194)

with the account of vF =



2E
m

and D0 = Eτ
m

for d = 2. Then we obtain:

−2U0I ≈ imU0
1

2πEτ
ln

1

ωτ
(4.195)

For d = 2 ν(E) = m
2π

, so that mU0 = m
2πν(E)τ

= 1
τ
.

30Later we shall discuss this choice in detail!
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Finally (4.186) reduces to:

M(0ω) =
i

τ
+
i

τ

1
2πEτ

ln
1
ωτ

(4.196)

Using this expression in (4.175), we find the generalized diffusion coefficient
of two – dimensional system as:

D(ω) = D0
i

τ

1
M(ω)

=
D0

1 + 1
2πEτ ln 1

ωτ

≈

≈ D0

{
1 − 1

2πEτ
ln

1
ωτ

}
(4.197)

where in the last equality we have taken into account the fact that all our
procedures are valid only in the limit of weak disorder, when 2πEτ 
 1.
The second term in (4.197) describes quantum corrections to diffusion
(conductivity) in two – dimensional system of electrons and impurities
(L.P.Gorkov, A.I.Larkin, D.E.Khmelnitskii, 1979). As the sign of this cor-
rection (in this simple case of potential scattering) is negative (diminishing
diffusion coefficient compared to its classical Drude value D0), this phe-
nomenon is often called “weak localization”31.

All the previous analysis was performed for the case of T = 0. For
finite temperatures, inelastic scattering of electrons becomes important,
leading to “phase decoherence” of wave functions, with characteristic time
τφ = AT−p (the power p depends on the type of inelastic scattering). Thus,
the expression (4.197) is changed to:

D(ω) = D0

⎧⎨
⎩1 − 1

2πEτ
ln

1

Max
[
ω, 1

τφ

]
τ

⎫⎬
⎭ (4.198)

In particular, for ω = 0 we obtain the static conductivity in the following
form:

σ = σ0

{
1 − 1

2πEτ
ln
τφ
τ

}
= σ0

{
1 − p

2πEτ
ln
T0

T

}
(4.199)

31If we formally consider in (4.197) the limit of ω → 0, the logarithmic divergence leads
to quantum correction becoming of the order and greater than the classical contribution,
signifying the possibility of static conductivity of the system at T = 0 becoming zero
(metal – insulator or Anderson transition). Of course, in this case we are already outside
the limits of applicability of our expressions and special analysis is needed, which will
be given later.
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where T0 is some temperature (energy) scale. Using n
N(E) = 2π n

m = E

(which is valid for d = 2), we obtain σ0 = ne2

m τ = e2

2πEτ , so that (4.199)
can be rewritten as:

σ =
e2

2π
Eτ

{
1 − 1

2πEτ
ln
τφ
τ

}
(4.200)

Note that e2

2π = e2

2π�
= e2

h defines the quantum scale of conductivity: e2

�
=

2.5 · 10−4Ohm−1.
Logarithmic temperature dependence of the type of (4.199), (4.200) is

experimentally observed for low enough temperatures practically in all two
– dimensional metallic systems (such as thin films, two – dimensional elec-
tron gas in MOSFETs, etc.) [Alshuler B.L., Aronov A.G., Khmelnitskii
D.E., Larkin A.I. (1982); Lee P.A., Ramakrishnan T.V. (1985)].

4.6.1.2 “Poor man” interpretation of quantum corrections.

Let us consider now the physical meaning of quantum corrections to conductivity
(A.I.Larkin, D.E.Khmelnitskii, 1980). Consider (for the moment!) the case of weak
disorder with mean – free path l � �

pF
or (� = 1) pF l � 1, Eτ � 1. Starting with

the usual “metallic” regime of conductivity, we are looking for small corrections due to
“weak localization”:

σ = σ0 + δσ; |δσ| � σ0 (4.201)

The usual Drude conductivity (the result of the standard transport theory), as we have

just seen, is given by σ0 ∼ e2

�2Eτ . In this (classic) theory the different acts of scattering
by impurities are considered as independent (uncorrelated). Electrons are moving by
(classical) diffusion, so that for the particle which at the moment t = 0 is at the point
r0, the probability to arrive at some moment t > 0 at the point r is given by the solution
of diffusion equation, which for space of d dimensions is given by:

P (rt) =
e
− |r−r0|2

4D0t

(4πD0t)d/2
(4.202)

where the classical diffusion coefficient D0 = v2F τ/d. This probability is essentially non
– zero within the volume Vdiff , which is defined by |r − r0|2 � 4D0t, when:

P (rt) ∼ 1

Vdiff
=

1

(D0t)d/2
(4.203)

This is all just a classical picture. Consider now quantum propagation of an electron
described by Feynman trajectories [Sadovskii M.V. (2003b)] going from some point A
to point B, as shown in Fig. 4.21 (a). Due to Heisenberg indeterminacy principle each
trajectory can be, in fact, represented by a “tube” with finite width of the order of:

λF =
�

mvF
(4.204)
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Fig. 4.21 Feynman trajectories of an electron propagating from the point A to point B
(a) and an example of self – intersecting trajectory (b).

Then, the effective crossection of this “tube” is of the order of λd−1
F . In the classical

limit we have � → 0 and λF = 0. In case of weak disorder λF /l = �

pF l
� 1 and our

“tubes” are thin enough. Let the temperature be low, so that acts of inelastic scattering,
characterized by τφ are rare enough and τφ � τ .

Probability of A → B transition according to Feynman is given by:

W =

#####�
i

Ai

#####
2

=
�

i

|Ai|2 +
�
i�=j

AiA
∗
j (4.205)

where Ai is the transition amplitude of A→ B transition along the i-th trajectory. The
usual Boltzmann transport theory naturally neglects quantum interference contribution
in (4.205). In most cases this is well justified — the trajectories (paths) have different
lengths and amplitudes Ai have different (essentially random!) phases. However, there
is one special case, that is when points A and B just coincide, i.e. the case of self
– intersecting paths of the type shown in Fig. 4.21 (b)32. Such a closed path may
be traversed in both (opposite) directions 1 and 2. Now, as paths 1 and 2 coincide, the
phases of amplitudes A1 and A2 are coherent and the second term in (4.205) gives a finite
contribution! Appropriate classical transition probability in the case of A1 = A2 = A
is Wcl = 2|A|2 (the first term in (4.205)), but in quantum case we have an additional
contribution due to interference (second term in (4.205)), so that:

Wqm = 2|A|2 +A∗
1A2 + A1A

∗
2 = 4|A|2 (4.206)

and

Wqm = 2Wcl (4.207)

Thus, the probability of return for the quantum particle is twice that of the classical
particle — quantum diffusion is “slower” than classical33. This leads to the suppression

32The case of backward scattering, leading to return to the initial point.
33This is due to the wave – like nature of particles in quantum mechanics. All these

conclusions are also valid and well known for the classical waves. In particular this leads
to the enhancement of the usual echo in the forest!
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of conductivity σ and tendency to localization!.
Let us estimate now the value of δσ/σ0. From the previous discussion it is clear that

the sign of δσ/σ0 is negative and the change of conductivity is proportional to probability
of the self – intersecting trajectory appearance (in the process of diffusion). Consider
the path (“tube” with the crossection λd−1

F ) in d – dimensional space. During the time
interval dt an electron passes a distance of the order of dl = vF dt and the corresponding
volume of the “tube” is dV = vF dtλ

d−1
F . On the other hand, the maximal available

volume for diffusing particle is Vdiff (4.203). Then, the probability for an electron to
find itself inside the closed tube can be roughly estimated to be determined by the ratio
of these volumes:

W =

� τin

τ

dV

Vdiff
= vF λ

d−1
F

� τφ

τ

dt

(D0t)d/2
(4.208)

The lower limit of integration here is determined by the applicability of diffusion ap-
proximation, while the upper – by the limit of applicability of the picture of coherent

quantum propagation. Remembering that σ0 ∼ e2

�2Eτ , we obtain the simple estimate:

δσ

σ0
∼ �

Eτ

$%%%&
%%%'

�
τφ

τ

�1/2
d = 1

ln
�

τφ

τ

�
d = 2�

τφ

τ

�−1/2
d = 3

(4.209)

If 1
τφ

∼ T p, we have from (4.209):

δσ

σ0
∼ �

Eτ

$&
'
T−p/2 d = 1

p ln T0
T

d = 2

T p/2 d = 3

(4.210)

Above we have used the equality A1 = A2 assuming the equivalence of electronic states
with momenta p and −p, i.e. time reversal invariance (t → −t). This is valid in the
absence of an external magnetic field and magnetic impurities34. In the presence of
external magnetic field H these transition amplitudes acquire phases of opposite sign:

A1 → A1e
iϕ A2 → A2e

−iϕ (4.211)

with

ϕ =
e

�c

(
dlA =

2πφ

hc/e
(4.212)

where φ = HS is magnetic flux through the crossection S of the closed path (trajectory).
As our electron moves by diffusion, we have S ∼ D0t, so that φ ∼ HD0t. As a result,
instead of (4.206), we obtain the probability of return as:

WH = 2|A|2
�

1 + cos

�
2π

φ

φ0

��
(4.213)

where φ0 = ch
2e

is magnetic flux quantum appearing in the theory of superconductivity
[Sadovskii M.V. (2003a)] and corresponding to electric charge 2e! Charge doubling ap-
pears here due to the interference of contributions of a pair of electrons with p and −p

34Very clear discussion of time reversal invariance and its absence for the systems in
an external magnetic field or containing magnetic impurities can be found in Ch. VIII
of [De Gennes P.G. (1966)].
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(similarly, to the case of superconductivity, where the Cooper pair is formed by electrons
with opposite momenta). For H = 0 we obviously obtain WH=0 = 4|A|2. Now, we can
conclude that external magnetic field leads to the effect of negative magnetoresistance
given by:

∆σ(H) = δσ(H) − δσ(0) ∼WH −WH=0 ∼

∼ vF λ
d−1
F

� τφ

τ

dt

(D0t)d/2

�
1 − cos

�
2π

φ

φ0

��
> 0 (4.214)

and connected with suppression of quantum (localization) corrections by an external

magnetic field. It is clear that ∆σ(H) is a function of
HDoτφ

φ0
. “Critical” magnetic

field, leading to almost complete suppression of localization corrections, is determined

from
HcD0τφ

φ0
∼ 1, which gives (for typical values of D0 and τφ) Hc ∼ 100 ÷ 500Gs.

This effect of negative magnetoresistance in weak magnetic fields is widely observed in
disordered systems and gives a practical method for investigation of quantum corrections
and characteristic time τφ [Alshuler B.L., Aronov A.G., Khmelnitskii D.E., Larkin A.I.
(1982); Lee P.A., Ramakrishnan T.V. (1985)]35.

4.6.2 Self — Consistent Theory of Localization.

Let us return to general discussion. Below we shall present some self –
consistent approach, which apparently allows to analyze the case of strong
enough disorder. Consider again Eq. (4.186). The basic idea of self – con-
sistent theory of localization (W.Götze, 1979, D.Vollhardt, P.Wölfle, 1980)
is to substitute the classical diffusion coefficient D0 in the denominator of
Eq. (4.186) by the generalized diffusion coefficient (4.175), which is ex-
pressed via the relaxation kernel in its turn determined by Eq. (4.186). As
a result we obtain the following self – consistency equation determining the
relaxation kernel M(0ω)36:

M(ω) = 2iγ

⎧⎨
⎩1 +

1
πν(E)

∑
|k|<k0

i

ω − 2E
dm

k2

M(ω)

⎫⎬
⎭ (4.215)

or equivalent (due to (4.175)) equation for the generalized diffusion coeffi-
cient:

D0

DE(ω)
= 1 +

1
πν(E)

∑
|k|<k0

1
−iω +DE(ω)k2

(4.216)

35Note that this effect is completely different from the classical magnetoresistance

where
∆σ(H)

σ0
∼ −(ωHτ)

2, with ωH = eH
mc

. The value of classical magnetoresistance for

magnetic fields studied here is orders of magnitude smaller than (4.214) and have the
opposite sign!

36Note that here we neglect the possible spatial dispersion: M(qω) → M(0ω),
DE(qω) → DE(0ω).
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The choice of cut – off momentum k0 will be discussed later37.
Before we go to the detailed analysis of solutions of Eqs. (4.215) and

(4.216), let us see what can be said from “general considerations”. Consider
again expression (4.173) for ΦRA(qω). We are expecting that M(ω) may
be singular for ω → 0. Assume that the existence of the following limit:

R2
loc(E) = − 2E

dm
lim
ω→0

1
ωM(ω)

(4.217)

defining characteristic length Rloc. Then the following singular contribution
appears in (4.173)38 (for simplicity we also assume that q → 0):

ΦRA(qω) = −N(E)
ω

1
1 +R2

locq
2

(4.218)

In this case it is convenient to introduce also the characteristic frequency
ω0(E):

ω2
0(E) = − lim

ω→0
ωM(ω) =

2E
dm

1
R2

loc(E)
> 0 (4.219)

so that

Rloc(E) =

√
2E
dm

1
ω0(E)

(4.220)

The length Rloc has the meaning of localization radius (length) of electronic
states in the field of random potential of impurities [Sadovskii M.V. (2000)].
If these limits exist electronic states at the Fermi level E are localized and
our system becomes the Anderson insulator. Localization of electrons in
disordered systems or Anderson transition is one of the basic concepts of the
modern theory of disordered systems [Mott N.F. (1974)]. Below we shall
see that the self – consistent theory localization gives rather satisfactory
description of this transition.

37Surely, the proposed self – consistency scheme introduces into our theory some “un-
controllable” elements, which is typical for many other “self – consistent” approxima-
tions. In fact, there exists more rigorous derivation of Eqs. (4.215), (4.216) (D.Vollhardt,
P.Wölfle, 1982), based upon the general diagrammatic analysis and the drop of “less sin-
gular” (for ω → 0) contributions, but we shall not discuss it here. As a matter of fact, the
fruitfulness of self – consistent approach is justified mainly by physical results obtained

below.
38The presence of such contribution in ΦRA(qω) corresponds to the general criterion

of electron localization in the random field of impurities, i.e. to (Anderson) transition
to insulating state [Sadovskii M.V. (2000)].
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Appearance of localized states (Anderson insulator) is related here to the
existence of the limit in (4.217), i.e. with the existence of finite frequency
ω0(E), defined in (4.219). In another words, it corresponds to the appear-
ance of divergent contribution to relaxation kernel: ReM(0ω) = −ω2

0(E)
ω for

ω → 0. Then, the relaxation kernel (at q → 0 and ω → 0) can be written
as:

M(0ω) =

{
i

τE
(metal)

i
τE

− ω2
0(E)
ω (Anderson insulator)

(4.221)

The problem is whether such solutions of Eq. (4.215) really exist?
Returning to discussion of the cut – off momentum in Eqs. (4.215) and

(4.216) we note that from Eq. (4.163) and the simple estimate (for the
case of weak disorder!) ∆Gp ∼ ImGR(Ep) ∼ δ

(
E − p2

2m

)
, it is clear that

the modulus of the sum of momenta k = p + p′ in Upp′(qω) can change
from 0 to 2pF . At the same time, our expression for Upp′(qω) given by
(4.147) (“Cooperon”) is valid only for |p + p′| ≤ l−1 (criterion of validity
of diffusion approximation). Then it is clear that the cut – off momentum
in (4.215) and (4.216) can be estimated as:

k0 ∼Min{pF , l
−1} (4.222)

In fact, the Anderson transition takes place for the mean–free path given
by the simple estimate pF l ∼ 1 (so called Ioffe – Regel criterion) [Mott N.F.
(1974)], so that we may write:

k0 = x0pF = x0

√
2mE (4.223)

where x0 = const ∼ 1 ÷ 2.
Let us now turn to the solution of self – consistency equation (4.215)

(A.V.Myasnikov, M.V.Sadovskii, 1982). Introduce the dimensionless inte-
gration variable y = k

x0
√

2mE
and rewrite Eq. (4.215) as:

M(ω) = 2iγ + dλxd−2
0 M(ω)

∫ 1

0

dydd−1 1
y2 − dω

4x2
0E2M(ω)

(4.224)

where λ is (dimensionless) perturbation theory parameter:

λ =
1

2πEτ
=

γ

πE
=
(m

2π

)d/2 E
d
2−2

Γ
(

d
2

) ρv2 (4.225)
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and we have taken into account γ = πρv2ν(E) and the form of the density
of states of free electrons in d – dimensional space:

ν(E) =
(m

2π

)d/2 E
d
2−1

Γ
(

d
2

) (4.226)

4.6.2.1 Metallic phase.

Putting in (4.224) ω = 0 and considering the metallic regime of (4.221),
when ReM(ω = 0) = 0 and ImM(ω = 0) = 1/τE, we immediately obtain
from (4.224):

τE =
1
2γ

{
1 − d

d− 2
λxd−2

0

}
(4.227)

Then, from (4.176) we get the metallic conductivity in the following form:

σ =
ne2

m

1
2γ

{
1 −

(
Ec

E

) 4−d
2
}

; 2 < d < 4 (4.228)

where

Ec =

{
d

d− 2
xd−2

0

Γ
(

d
2

) (2π)−
d
2

} 2
4−d

Esc (4.229)

and we introduced characteristic energy:

Esc = m
d

4−d (ρv2)
2

4−d (4.230)

which already appeared in (4.74) and defines the width of “strong coupling”
(strong scattering) region on the energy axis for an electron in the random
field of impurities. In fact it follows from the simplest estimate of γ ∼
ρv2ν(E) ∼ E (with the account of (4.226)), which corresponds to Ioffe –
Regel criterion (and limit of validity of our perturbation theory!)39. It is
easily seen that energy Ec ∼ Esc (4.229) plays the role of mobility edge
[Mott N.F. (1974)]. In fact, for E > Ec we obtain from (4.228):

σ ≈ ne2

m

1
2γ(Ec)

(
4 − d

2

)(
E − Ec

Ec

)
∼ E − Ec

Ec
(4.231)

39Already from these simple estimates we can see the special role of space dimensional-
ities d = 2 and d = 4, which has the meaning of “lower” and “upper” critical dimensions
for Anderson transition.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

156 Book Title

so that static conductivity of the system at T = 0 tends to zero as Fermi
energy E → Ec. This corresponds to Anderson metal – insulator transition
(Anderson localization).

Let us present explicit results for d = 3. For definiteness we just put
x0 = 1 and obtain:

Ec =
9

2π4
m3(ρv2)2 (4.232)

In terms of dimensionless perturbation theory parameter λ given by (4.225)
this corresponds to the critical value λc = d−2

d x2−d
0 = 1/3 or

E

γ(E)

∣∣∣∣
E=Ec

=
3
π

pF l =
3
π

(4.233)

where l = vF

2γ is the mean – free path in Born approximation, which can
be used as a measure of disorder. Then (4.233) corresponds to the usual
formulation of Ioffe – Regel rule: the mean – free path in a metal can not
be shorter than typical interatomic spacing [Mott N.F. (1974)]. With the
further growth of disorder the system becomes Anderson insulator. Drude
conductivity, corresponding to “critical” mean – free path given by (4.233)
is:

σc =
ne2

m

1
2γ(Ec)

=
e2pF

3π2�2

(
pF l

�

)∣∣∣∣
E=Ec

=
e2pF

π3�2
(4.234)

where we used n = p3
F

3π2�3 and “restored” �. Due to pF ∼ �

a , where a

is interatomic spacing, the value of σc (4.234) is of the order of Mott’s
“minimal metallic conductivity”:

σmm ≈ 1
π3

e2

�a
(4.235)

which for a ∼ 3Å gives σmm ∼ 2 · 102Ohm−1cm−1.
Writing (4.227) as

τE =
1
2γ

{
1 − 3

πE
γ

}
=

1
2γ

{
1 − γ(E)

γ(Ec)

}
(4.236)

we can rewrite (4.228) in the following form:

σ = σ0

{
1 − σc

σ0

}
= σ0 − σc (4.237)
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where Drude conductivity σ0 = ne2

m
1
2γ enters as the measure of disorder.

For weak disorder (large mean – free path) σ0 
 σc and from (4.237) follows
the usual result: σ ≈ σ0. As disorder grows (mean – free path diminishes)
σ → 0 as σ0 → σc ≈ σmm. Then we see that σmm determines characteris-
tic conductivity scale for the continuous (in contradiction with early ideas
of Mott [Mott N.F. (1974)]) metal – insulator transition induced by disor-
der. It is rather surprising that these simple expressions are experimentally
confirmed in many real systems [Sadovskii M.V. (2000)].

From our estimates it is clear that for d = 3 the mobility edge Ec belongs to the
“strong coupling” region of the width of the order of Esc = m3(ρv2)2 (M.V.Sadovskii,
1977) around the origin on the energy axis, where the perturbation theory parameter
λ ∼ 1 and, strictly speaking, we have to take into account all diagrams of perturbation
theory. On the other hand, for d → 2 it can be seen from (4.229) that Ec → ∞, in
accordance with the picture of all states being localized at infinitesimally small disorder
for d = 2 (P.W.Anderson, E.Abrahams, D.C.Licciardello, D.J.Thouless, 1979).

The fact that mobility edge belongs to the “strong coupling” region is the major
difficulty of the theory of electron localization in disordered systems. That is why this
theory is still uncompleted and we need the development of some new (non perturbative)
approaches40 .

4.6.2.2 Anderson insulator.

Consider now the region of localized state E < Ec (Anderson insulator).
Let us look for the solution of Eq. (4.215) in the form given by the second
expression in (4.221). From the real part of Eq. (4.215), for ω → 0 we find
the following equation determining ω2

0(E):

1 = dλxd−2
0

∫ 1

0

dyyd−1 1

y2 + dω2
0(E)

4x2
0E2

(4.238)

Similarly, from the imaginary part of (4.215), for ω → 0, we obtain the
following equation for τE in localization region:

1 − 2γτE = dλxd−2
0

∫ 1

0

dyyd+1 1[
y2 + dω2

0(E)

4x2
0E2

]2 (4.239)

40More details on these problems can be found in original reviews: M.V.Sadovskii.
Physics Uspekhi 24, 96 (1981), I.M.Suslov. Physics Uspekhi 41, 441 (1998).
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Using (for ω2
0 → 0) the simple estimate of the integral41 in (4.238) we get:

1 ≈ dλxd−2
0

1∫
�

dω2
0(E)

4x2
0E2

�1/2

dyyd−3 =

=

⎧⎪⎨
⎪⎩
dλxd−2

0
1

d−2

{
1 −

(
dω2

0(E)

4x2
0E2

) d−2
2
}

(2 < d < 4)

λ ln 2x2
0E2

ω2
0(E)

(d = 2)
(4.240)

and from (4.229) it follows that:

ω2
0(E) =

⎧⎪⎨
⎪⎩

4
dx

2
0E

2

{
1 −

(
E
Ec

) 4−d
2
} 2

d−2

(2 < d < 4)

2x2
0E

2 exp
(
− 1

λ

)
(d = 2)

(4.241)

The position of mobility edge on the energy axis is naturally determined
by the condition ω2

0(Ec) = 0. For d = 2 we have ω2
0(E) > 0 for arbitrary

E, which corresponds to the picture of localization of all electronic states
for any, even weakest possible, disorder (P.W.Anderson, E.Abrahams,
D.C.Licciardello, D.J.Thouless, 1979). Note, however, that for weak disor-
der (λ� 1) ω2

0(E) is exponentially small, which really corresponds to weak
localization.

Using “representation of unity” given by Eq. (4.238) in (4.239), we
express τE via ω2

0(E) as:

2γτE = dλxd−2
0

dω2
0(E)

4x2
0E

2

∫ 1

0

dy
yd−1[

y2 + dω2
0(E)

4x2
0E2

]2 ≈

≈ dλxd−2
0

1
d− 4

{
dω2

0(E)
4x2

0E
2

−
(
dω2

0(E)
4x2

0E
2

) d−2
2
}

(d < 4) (4.242)

so that for ω2
0(E) → 0 (close to the mobility edge) we have:

2γτE =

⎧⎪⎨
⎪⎩

d
4−dλx

d−2
0

(
dω2

0(E)

4x2
0E2

) d−2
2

(2 < d < 4)

λ
[
1 − ω2

0(E)

2x2
0E2

]
(d = 2)

(4.243)

41Of course, this integral can be calculated exactly, but this will only lead to rather
insignificant change of some constants in final results.
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From (4.220) and (4.241) we find localization radius42:

Rloc(E) =
1

x0

√
2mE

{
1 −

(
E

Ec

) 4−d
2
}− 1

d−2

∼ 1
pF

∣∣∣∣E − Ec

Ec

∣∣∣∣
−ν

; E ≤ Ec

(4.245)
where the critical exponent (index) ν:

ν =
1

d− 2
(4.246)

Introduce now characteristic correlation (localization) length (coinciding
with Rloc for E ≤ Ec, i.e. in insulating phase), defining it as:

ξloc(E) =
1

x0

√
2mE

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 −

(
E
Ec

) 4−d
2
]− 1

d−2

; E ≤ Ec[
1 −

(
Ec

E

) 4−d
2

]− 1
d−2

; E > Ec

(4.247)

ξloc(E) ∼ 1
pF

∣∣∣∣E − Ec

Ec

∣∣∣∣
−ν

; E ∼ Ec

(4.248)

Now this length is also defined for E > Ec, i.e. in metallic phase. Then we
can rewrite conductivity (4.228) in metallic phase as:

σ =
ne2

m

1
2γ

(x0pF ξloc)2−d =
σ0

(x0pF ξloc)d−2
∼ (E − Ec)(d−2)ν (4.249)

obtaining the so called Wegner scaling law for conductivity (F.Wegner,
1976) with critical index:

s = (d− 2)ν (4.250)

In particular, for d = 3 (assuming x0 = 1) we have:

σ =
σ0

pF ξloc(E)
∼ (E − Ec); E > Ec (4.251)

and the critical index of conductivity s = 1. Precisely this type of behavior
is observed experimentally in the vicinity of metal – insulator transition

42Similarly, for d = 2 we get

Rloc(E) =
1

x0

√
2mE

exp

�
πE

mρv2

�
(4.244)

so that localization radius is exponentially large in case of weak disorder.
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induced by disorder in a number of real systems [Sadovskii M.V. (2000)].
However, in some systems another behavior is observed, corresponding to
the critical exponent s ≈ 1/2. Usually, this discrepancy is attributed to the
role of electron – electron interactions, which were neglected in the above
analysis. Thus the question of critical behavior of conductivity close to
disorder induced metal – insulator transition is, in fact, still open43.

Note that all the previous expressions are written in analogy to scaling relations of
modern theory of (thermodynamic) critical phenomena for the second order phase tran-
sitions [Sadovskii M.V. (2003a)] and correspond to the concept of scaling at the mobility
edge (P.W.Anderson, E.Abrahams, D.C.Licciardello, D.J.Thouless, 1979). Let us stress
(to avoid possible misunderstanding) that Anderson (metal – insulator) transition is in
no sense (thermodynamic) phase transition of either order and its description is much
more complicated (and, in fact, incomplete). In particular, up to now there is no com-
monly accepted definition of any order parameter, characterizing this transition. As we
already mentioned, the difficulties of theoretical description of this transition (even in
one – particle approximation, neglecting interactions) are connected with the fact that
the mobility edge position at the energy axis belongs to the “strong coupling” region
(which is, by the way, quite analogous to the Ginzburg critical region of the usual theory
of critical phenomena (M.V.Sadovskii, 1977)), where (in contrast to the theory of critical
phenomena!) we have to take into account all diagrams of Feynman perturbation series
or use essentially non – perturbative methods44. It is important to stress, that in the
standard theory of critical phenomena interaction of order – parameter fluctuations in
the critical region becomes weak, at least in the space of d = 4 − ε dimensions. But for
the Anderson transition we meet quite opposite situation!

Another example of the behavior of physical characteristics at the An-
derson transition is dielectric permeability (in the phase of Anderson insu-
lator). From general definition (2.110) we have:

ε(qω) = 1 +
4πe2

q2
χ(qω) (4.252)

where χ(qω) is the retarded density – density response function. Then,
using (4.173), (4.174) and (4.221), (4.245), we immediately obtain:

ε(0ω → 0) = 1 +
ω2

p

ω2
0(E)

= 1 + κ2
DR

2
loc(E) ∼

∣∣∣∣E − Ec

Ec

∣∣∣∣
−2ν

(4.253)

where ω2
p = 4πne2

m is the square of the plasma frequency and κ2
D =

4πe2N(E) is the inverse square of the (Debye) screening length in a metal.
43This problem is complicated also by the fact that most of the modern numerical

simulations of the Anderson transition for non – interacting electrons give the value of
conductivity exponent s ∼ 1.5.

44Due to this, we should not be very serious with respect to the explicit relations for
critical exponents for the Anderson transition obtained above. At the same time, the
continuous nature of this transition for d = 3 is rather well established, both theoretically
and experimentally (in contradiction with early ideas of Mott [Mott N.F. (1974)]).
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From Eq. (4.253) we can see that the static dielectric permeability di-
verges at the mobility edge as the system approaches the insulator – metal
transition (from within the Anderson insulator). This is also the observable
effect, which can be used to determine the critical exponent ν of localization
length.

4.6.2.3 Frequency dispersion of the generalized diffusion coeffi-
cient.

Results obtained above are valid for ω → 0. It is, of course, possible to perform
a complete analysis of frequency dependence of the generalized diffusion coefficient
(D.Vollhardt, P.Wölfle, 1982). We shall give here only a short summary of appropri-
ate results. Eq. (4.216) for the generalized diffusion coefficient can be written in the
following form, similar to (4.224):

DE(ω)

D0
= 1 − dλ

d− 2
xd−2
0 + dλxd−2

0

�
− iωD0

2γDE(ω)

� � 1

0
dy

yd−3

y3 − iωD0
2γDE (ω)

(4.254)

Under the condition of
### ω
2γ

D0
DE(ω)

### � 1, the upper limit of integration in (4.254) can be

replaced by infinity, so that we obtain the following algebraic equation for DE(ω):

DE(ω)

D0
= 1 − λ

λc
+ pd

λ

λc

�
− iω

2γ

D0

DE(ω)

�d−2
2

(4.255)

where λc = d−2
d
x2−d
0 is the “critical” value of dimensionless parameter λ at the transition

point and pd = Γ
�

d
2

�
Γ
�
2 − d

2

�
. From (4.255) it follows that DE(ω) (and conductivity

σ(ω)) satisfy the following scaling relation:

DE(ω)

D0
=
σ(ω)

σ0
=

�
− iω

2γ

� d−2
d

Fd

�
ω

ωc

�
(4.256)

where for ω � ωc we have:

Fd

�
ω

ωc

�
∼

�
− iω

ωc

� 2
d

; λ > λc (insulator) (4.257)

Fd

�
ω

ωc

�
∼

�
− iω

ωc

� 2−d
d

; λ < λc (metal) (4.258)

while for ω � ωc:

Fd

�
ω

ωc

�
∼ const (4.259)

Characteristic frequency ωc is defined as:

ωc ≈ 2γ

####1 − λ

λc

####
d

d−2
∼ 2γ[pF ξloc(E)]−d (4.260)

Inequality used to reduce Eq. (4.254) to (4.255) is satisfied for ωc � 2γ, which is
definitely valid close to the mobility edge.
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For d = 3 Eq. (4.255) becomes:

DE(ω)

D0
= 1 − λ

λc
+
π

2

λ

λc

�
− iω

2γ

D0

DE(ω)

�1/2

; λc =
1

3x0
(4.261)

and can be solved explicitly. With sufficient (for many applications) accuracy the gen-
eralized diffusion coefficient can be written as [Sadovskii M.V. (2000)]45:

DE(ω) =

$%%%&
%%%'
DE ; (ω � ωc, E ≥ Ec) (metal)

D0

�
− iω

2γ

�1/3
; (ω � ωc) (both metal and insulator)

DE
−iω

−iω+
3DE
v2

F

ω2
0(E)

; (ω � ωc, E < Ec) (insulator)
(4.262)

where DE = D0
pF ξloc(E)

. At the mobility edge itself we have ξloc(E = Ec) = ∞, so that

ωc = 0, and we obtain the so called ω1/3 – law (W.Götze, 1981):

DE(ω) = D0

�
− iω

2γ

�1/3

(4.263)

The frequency ωc is in fact determined from DE(ωc) ∼ DE ∼ D0

�
ωc
2γ

�1/3
. The limit of

ω → 0 often used above should be understood in the sense of ω � ωc. Finally, note that
for ω � 2γ equations of self – consistent theory of localization describe the transition to

the usual Drude – like behavior: DE(ω) ≈ D0

!
1 − iω

2γ

"−1
.

4.7 “Triangular” vertex.

Existence of diffusion pole (4.140) in “four – leg” vertex Γpp′(qω) and in
two – particle Green’s functions in general (cf. e.g. (4.173)) leads to the
appearance of similar contributions in other “blocks” of our diagram tech-
nique46. In particular, it is useful to analyze the “triangular” vertex, defined
by diagrams shown in Fig. 4.12 (c). In general case, it is defined by the
integral equation shown diagrammatically in Fig. 4.22 (a). Though in the
following we shall mainly consider the case of weak disorder, when we can
restrict ourselves by the use of U0(p − p′) = ρv2 (“ladder” approximation),
at first we shall present rather general analysis, allowing the generalization
in the spirit of self – consistent theory of localization. Returning to the
general definition of the two – particle Green’s function, shown diagram-
matically in Fig. 4.14 (a), or analytically in (4.125), we can immediately

45For d = 2 and very small frequencies ω � λ−1e−
1
λ γ (λ� 1), self – consistent theory

of localization gives σ(ω) = ne2

m
γ
λ
e

2
λ ω2

2(x0E)4
→ 0, for ω → 0. For λ−2e−

1
λ γ � ω � λ2γ

we obtain for D(ω) the dependence of the type of (4.197).
46The same statement is valid concerning the appearance of “Cooperon” – type con-

tributions related to (4.147).
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Fig. 4.22 Integral equation for “triangular” vertex (a) and different combinations of
(R) and (A) electronic lines (b), (c), (d).

write down the following expression for “triangular” vertex T RA
p+p−(qω) via

ΦRA
pp′(qω)47:

T RA
p+p−(qω)GR(E + ωp+)GA(Ep−) = −2πi

∫
ddp′

(2π)d
ΦRA

pp′(qω) (4.264)

or

T RA
p+p−(qω) = − 2πi

GR(E + ωp+)GA(Ep−)

∫
ddp′

(2π)d
ΦRA

pp′(qω) (4.265)

Using now (4.161), we can rewrite (4.265) as:

T RA
p+p−(qω) =

1
ν(E)

∆Gp

GR(E + ωp+)GA(Ep−)
×

×
∫

ddp′

(2π)d

∫
ddp′′

(2π)d

{
1 +

d

p2
F

(pq̂)(p′′q̂)
}

ΦRA
p′′p′(qω) =

=
1

ν(E)
∆Gp

GR(E + ωp+)GA(Ep−)
{
ΦRA(qω) + d(p̂q̂)ΦRA

1 (qω)
}
(4.266)

where we have used also (4.88) and (4.154). Using equations (4.153) and
(4.162) for ΦRA(qω) and ΦRA

1 (qω) we have obtained (4.171) and (4.172),
47For definiteness we assume the upper electron line in Fig. 4.22 (a) to be retarded.
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so that, in particular, we have:

ΦRA
1 (qω) =

1
vF q

χ(qω) (4.267)

Then:

d(p̂q̂)ΦRA
1 (qω) = (pq)

d

pF vF q2
χ(qω) (4.268)

so that after the use of (4.149):

∆Gp

GR(E + ωp+)GA(Ep−)
= −

{
ω − 1

m
(pq) − ΣR(p+E + ω) + ΣA(p−E)

}
(4.269)

and (4.266) is rewritten as:

T RA
p+p− (qω) =

1

ν(E)

�
−ω +

1

m
(pq) + ΣR(p+E + ω) − ΣA(p−E)

�
×

×
	

ΦRA(qω) +
1

m
(pq)

d

v2F q
2
χ(qω)



=

= −
�
−ω +

1

m
(pq) + ΣR(p+E + ω) − ΣA(p−E)

�
ω +M(qω) + 1

m
(pq)

ω2 + ωM(qω) − 1
d
v2F q

2
=

=

�
ω − 1

m
(pq) + 2iγ

�
ω +M(qω) + 1

m
(pq)

ω2 + ωM(qω) − 1
d
v2F q

2

(4.270)

where we have used also (4.171) and (4.172), as well as, at the end, the
simplest approximation for self – energies. As a result, in the limit of
ω → 0 and q → 0, introducing again the generalized diffusion coefficient
(4.175), we obtain the following simple form of “triangular” vertex in RA

– channel and shown in Fig. 4.22 (b):

T RA(qω) ≈ 2γ
−iω +DE(qω)q2

(4.271)

Of course, in the “ladder” approximation (weak disorder!), when we use
(4.127), expression of the type of (4.271) (with the replacement DE(qω) →
D0) is directly obtained from the equation shown in Fig. 4.22 (a) after
elementary calculations. More complicated derivation given above allows
generalization to the case of strong disorder (pF l ∼ 1), when for DE(qω) we
may use expressions derived within self – consistent theory of localization.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 165

Similarly, we can show that the “triangular” vertex in AR – channel,
shown in Fig. 4.22 (), is given by:

T AR(qω) ≈ 2γ
iω +DE(qω)q2

(4.272)

while for vertices in RR and AA channels, shown in Fig. 4.22 (d) we have:

T RR(qω) = T AA(qω) = 1 (4.273)

so that diffusion pole here is absent.
In Matsubara formalism the general form of “triangular” vertex is now

also quite clear48:

T (qωmεn) = θ(εn)θ(εn + ωm) + θ(−εn)θ(−εn − ωm) +

+2γ
{
θ(εn)θ(−εn − ωm)

−ωm +D0q2
+
θ(−εn)θ(εn + ωm)

ωm +D0q2

}
(4.274)

where we have only written expressions with D0 = 1
dvF τ = v2

F

2dγ , as in the
rest of this chapter we shall be interested only in the case of weak disorder
(pF l 
 1).

4.8 The role of electron – electron interaction.

In real disordered metals we deal, of course, with electrons interacting via
Coulomb repulsion. The task of joint account of both disorder (impurity
scattering) and interaction effects is very difficult problem, which is not
finally solved up to now [Altshuler B.L., Aronov A.G. (1985); Lee P.A.,
Ramakrishnan T.V. (1985)]. Below we limit ourselves only to the analysis of
some simple examples of interactions effects in disordered systems, mainly
concerning the density of states close to the Fermi level.

Consider the simplest interaction correction to single – electron Green’s
function shown diagrammatically in Fig. 4.23 (a). Here the wave – like line
corresponds to electron – electron interaction, while “triangular” vertices
describe renormalization of this interaction due to the multiple scattering
of electrons by impurities.

48We have taken into account that G(εn > 0p) is continued to GR(Ep), G(εn < 0p)
to GA(Ep), iωm → ω ± iδ for m > 0 and m < 0 etc.
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Fig. 4.23 Simplest correction to the single – particle Green’s function due to electron
– electron interactions in disordered metal.

First we shall make calculations for T = 0. Analytic expression for the
Green’s function correction in this case has the following form49:

δG(Ep) = iG2(Ep)
∫

ddq

(2π)d

∫ ∞

−∞

dω

2π
V (q)T 2(qω)G(E + ωp + q) (4.275)

where V (q) is the Fourier transform of interaction potential. Appropriate
correction to the density states is given by:

δN(E) = −N(EF )
π

Im

∫ ∞

−∞
dξ

∫
ddq

(2π)d

∫
dω

2π
V (q)T 2(qω) ×

× i

E − ω − ξ(p + q) + iγsign(E − ω)

(
1

E − ξ + iγsignE

)2

(4.276)

For E > 0 the integral over ξ is different from zero if sign(E − ω) < 0, i.e.
for ω > E. Accordingly we have:

δN(E)
N(EF )

≈ − 1
π
Im i

∫ ∞

−∞
dξ(p)

∫
ddq

(2π)d

∫ ∞

E

dω

2π
V (q)[T RA(qω)]2 ×

×GA(E − ωp + q)[GR(Ep)]2 (4.277)

which corresponds to diagram shown in Fig. 4.23 (b). Here we already
can use explicit expression for the vertex given by (4.271). Substituting to
(4.277) standard expressions for GA(Ep) and GR(Ep) (dependence of GA

49Note that in the following E denotes not the Fermi energy (as above), but the energy
calculated with respect to the Fermi energy, which will be denoted now as EF .
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on ω and q can be neglected in the limit of ω � γ and vF q � γ), we obtain:

δN(E)
N(EF )

= − 1
π
Im i

∫
ddq

(2π)d

∫ ∞

E

dω

2π
V (q) × [T RA(qω)]2 ×

×
∫ ∞

−∞
dξ

1
E − ξ − iγ

1
(E − ξ + iγ)2

=

= − 1
2γ2

Im

∫
ddq

(2π)d

∫ ∞

E

dω

2π
[T RA(qω)]2V (q) (4.278)

which, after the use of (4.271), finally gives for T = 0:

δN(E)
N(EF )

= − 1
π
Im

∫
ddq

(2π)d

∫ ∞

E

dω
1

(−iω +D0q2)2
V (q) (4.279)

Strictly speaking we also have to introduce here the cut – off for ω – in-
tegration at ω ∼ 1/τ to guarantee the validity of diffusion approximation,
but this is unnecessary, due to fast convergence of the integral at infinity.

Surely, the same result can be obtained also from Matsubara formalism
in the limit of T → 0. Let us see how it can be done. Since we are seeking
the density of states correction, define:

δN(εn) = − 2
π

∫
ddp

(2π)d
δG(εnp) (4.280)

which in accordance with Fig. 4.23 (a), reduces to:

δN(εn) =
2
π

∫
ddq

(2π)d
T
∑

n

V (q)T 2(qωm)
∫

ddp

(2π)d
G2(εnp)G(εn+ωmp + q)

(4.281)
Let us first calculate the integral over p, where for vF q � γ we can com-
pletely neglect dependence on q:

∫
ddp

(2π)d
G2(εnp)G(εn + ωmp + q) ≈

∫
ddp

(2π)d
G2(εnp)G(εn + ωmp) ≈

≈ ν(EF )
∫ ∞

−∞
dξ

1
(iεn − ξ + iγsignεn)2

1
iεn + iωm − ξ + iγsign(εn + ωm)

=

= 2πiν(EF )
{
θ(εn)θ(−εn − ωm)

(2iγ − iωm)2
− θ(εn + ωm)θ(−εn)

(2iγ + iωm)2

}
≈

≈ −iν(EF )2πτ2{θ(εn)θ(−εn − ωm) − θ(εn + ωm)θ(−εn)}
(4.282)
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Here the integral over ξ was calculated in a standard way via residues (it
is different from zero on for different signs of εn and εn + ωm), and in the
final expression we have used |ωmτ | � 1.

Consider for definiteness εn > 0. Then only first pair of θ – functions
in (4.282) contributes: εn > 0, εn + ωm < 0, which gives ωm < −εn. Then
(4.281) reduces to:

δN(εn) = −2iTN(EF )τ2
−εn∑

ωm=−∞

∫
ddq

(2π)d
V (q)T 2(qωm) =

= −2iTN(EF )
−εn∑

ωm=−∞

∫
ddq

(2π)d

V (q)
(−ωm +D0q2)2

(4.283)

For T → 0 we replace iωm → ω + iδ, i.e. ωm → −i(ω + iδ), iεn → E + iδ

and, accordingly, iT
∑

m · · · →
∫

dω
2π · · · , so that in this limit we get:

δN(E)
N(EF )

= −2Im
∫ −E

−∞

dω

2π

∫
ddq

(2π)d
V (q)

1
(iω +D0q2)2

=

= −2Im
∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

1
(−iω +D0q2)2

(4.284)

which obviously coincides with Eq. (4.279), obtained via diagram technique
for T = 0.

The rest is elementary. We have:

δN(E)
N(EF )

= −2Im
∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

(iω +D0q
2)2

[ω2 + (D0q2)2]2
=

= −2
∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

2D0q
2ω

[ω2 + (D0q2)2]2
=

= 2
∫ ∞

E

dω

2π

∫
ddq

(2π)d
V (q)

d

dω

Doq
2

ω2 + (D0q2)2
(4.285)

so that finally we get:

δN(E)
N(EF )

= − 1
π

∫
ddq

(2π)d
V (q)

D0q
2

E2 + (D0q2)2
(4.286)

Let us estimate this correction to the density of states for the case of point
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– like electron – electron interaction V (q) = V0. Then we have:

δN(E)
N(EF )

= −V0

π
Sd

∫ p0

0

dqqd−1 D0q
2

E2 + (D0q2)2
=

= −V0

π
Sd

1

D
d/2
0

∫ Ẽ1/2

0

dx
xd+1

E2 + x4
≈ −V0

π
Sd

1

D
d/2
0

∫ Ẽ1/2

E1/2
dxxd−3

(4.287)

where we have introduced the upper limit cut – off p0 ∼ l−1, which corre-
sponds to Ẽ = D0p

2
0, and Sd = Ωd/(2π)d = 2−(d−1)π− d

2 /Γ
(

d
2

)
. The last

equality gives in (4.287) gives the simple estimate of the integral. Of course,
it can be calculated exactly, but this estimate is valid up to insignificant
constants of the order of unity. Finally we obtain the following correction
to the density of states close to the Fermi level (A.G.Aronov, B.L.Altshuler,
1979):

δN(E)
N(EF )

=
V0

π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

D
d/2
0
Sd

1
d−2

{
|E| d−2

2 − Ẽ
d−2
2

}
(d > 2)

1
D0
S2 ln |E|

Ẽ
(d = 2)

1

D
1/2
0

{
1

Ẽ1/2 − 1
|E|1/2

}
(d = 1)

(4.288)

In particular, for d = 3 this gives the famous Aronov – Altshuler “sea gull”
form of the density of states around the Fermi level:

δN(E)
N(EF )

∼
√
|E|

D
3/2
0

(4.289)

which is shown in Fig. 4.24. It is remarkable, that precisely this be-
havior obtained for the density of states in many tunneling experiments
in disordered metals [Altshuler B.L., Aronov A.G. (1985)]. With the

Fig. 4.24 Typical form of interaction correction to the density of states in a disordered
metal.
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growth of disorder diffusion coefficient D0 is suppressed, so that this
anomaly in the density of states grows. What happens close to the
metal – insulator transition (when pF l ∼ 1) is at present unclear, the
complete theory of this transition with the account of electron – elec-
tron interactions is still absent [Altshuler B.L., Aronov A.G. (1985);
Lee P.A., Ramakrishnan T.V. (1985)]. The majority opinion is that this
Altshuler – Aronov anomaly smoothly transforms to the so called “Coulomb
gap” of Efros and Shklovskii, which forms in the density of states deeply
in localized phase [Shklovskii B.I., Efros A.L. (1984)]. In principle, the be-
havior of this type is derived in simple generalizations of the above theory
in the spirit of the self – consistent theory of localization [Sadovskii M.V.
(2000)], but we shall not discuss these complicated (unsolved) problems
here.

Instead we shall generalize our analysis for the more realistic case of
Coulomb (long – range) interaction, when we have to take into account the
effects of dynamic screening. Also we shall consider the finite temperature
effects, making calculations in Matsubara technique. Now the wave – like
line of the diagram in Fig. 4.23 (a) represents the screened interaction.
Returning to (4.281) we rewrite this expression similarly to (4.283):

δN(εn) = −2iN(EF )τ2T
�
m

�
ddq

(2π)d
V(qωm)T 2(qωm) ×

×{θ(εn)θ(−εn − ωm) − θ(−εn)θ(εn + ωm)} =

= −2iN(EF )T
�
m

�
ddq

(2π)d
V(qωm)

�
θ(εn)θ(−εn − ωm)

[−ωm +D0q2]2
− θ(−εn)θ(εn + ωm)

[ωm +D0q2]2

�
(4.290)

which for εn > 0 reduces to an expression similar to (4.283):

δN(εn) = −2iTN(EF )
−εn∑

ωm=−∞

∫
ddq

(2π)d

V(qωm)
(−ωm +D0q2)2

(4.291)

Here (cf. (2.7), (2.8)):

V(qωm) =
4πe2

q2ε(qωm)
(4.292)

ε(qωm) = 1 − 4πe2

q2
Π(qωm) (4.293)
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where the polarization operator, with the account of impurity scattering,
is determined by diagrams of Fig. 4.12 (a), and analytically by (4.89):

Π(qωm) = 2T
∑

n

∫
ddp

(2π)d
G(pεn)G(p + qεn + ωm)T (qωm) (4.294)

Using again (4.282), (4.274) and assuming, for example, ωm < 0, we obtain:

ΠRA(qωm) = T
∑

0<εn<−ωm

2πN(EF )
−ωm +D0q2

= N(EF )
−ωm

−ωm +D0q2
(4.295)

The case of ωm > 0 is calculated in a similar way, so that:

ΠRA(qωm) = N(EF )
{
ωmθ(ωm)
ωm +D0q2

+
−ωmθ(−ωm)
−ωm +D0q2

}
(4.296)

Now we have to find also the contribution from RR and AA – channels,
when, according to (4.274):

T (qωmεn) = θ(εn)θ(εn + ωm) + θ(−εn)θ(−εn − ωm) (4.297)

As diffusion pole is absent here, we may just put ωm = 0, q = 0 and write:

ΠRR(00) + ΠAA(00) = 2T
∑

n

∑
p

G2(εn) = −N(EF ) (4.298)

In slightly more details:

ΠRR(00) + ΠAA(00) = 2T
�
n

�
ddp

(2π)d

1

(iεn − ξ(p) + iγsignεn)2
=

= T
�
n

N(EF )

� ∞

−∞
dξ

∂

∂ξ

1

iεn − ξ + iγsignεn
≈

≈ N(EF )
�
n

� ∞

−∞
dξ

∂

∂ξ

1

iεn − ξ
= N(EF )

� ∞

−∞
dξ

�
−∂n(ξ)

∂ξ

�
= −N(EF ) (4.299)

where n(ξ) is Fermi distribution.

As a result, to (4.296) we have to add −N(EF ){θ(ωm) + θ(−ωm)}, so
that the final expression for polarization operator of a metal with impurities
is:

Π(qωm) = −N(EF )D0q
2

{
θ(ωm)

ωm +D0q2
+

θ(−ωm)
−ωm +D0q2

}
(4.300)

From here, using (4.293), we immediately get:

ε(qωm) = 1 +
D0κ

2
D

ωm +D0q2
θ(ωm) +

D0κ
2
D

−ωm +D0q2
θ(−ωm) (4.301)
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where κ2
D = 4πe2N(EF ) is the inverse square of screening length. For

ωm = 0 from (4.301) we obtain the usual result50:

ε(q0) = 1 +
κ2

D

q2
(4.302)

for the static screening of Coulomb interaction. In general case Eq. (4.301)
determines the dielectric function (permeability) of a metal with impurities
in the limit of |ωmτ | � 1 and ql � 1.

As a result, for small ωm and q we obtain the effective interelectron
interaction (4.292) in the following form:

V(qωm) =
4πe2

q2 − 4πe2Π(qωm)
≈

≈ 4πe2(−ωm +D0q
2)

4πe2N(EF )D0q2
=

−ωm +D0q
2

N(EF )D0q2
(4.303)

where, for definiteness, we have assumed ωm < 0. It is interesting to note,
that in this approximation dependence on electric charge e2 just cancelled
out51.

As a result, dynamically screened Coulomb interaction (4.291) reduces
to:

δN(εn > 0) ≈ −2iT
−εn∑

ωm=−∞

1
D0

∫
ddq

(2π)d

q−2

−ωm +D0q2
(4.304)

For point – like interaction the similar expression, following from (4.283),
has the form:

δN(εn > 0) ≈ −2iN(EF )T
−εn∑

ωm=−∞

∫
ddq

(2π)d

V0

[−ωm +D0q2]2
(4.305)

Let us make explicit calculations for the case of d = 3. We have:

δN(εn > 0) = − iT
π2

−εn∑
ωm=−∞

1
D0

∫ p0

0

dq

D0q2 − ωm
(Coulomb) (4.306)

50Take into account the definition: θ(ωm) =

�
1 m ≥ 0
0 m < 0

.

51This result is not universal and e2 dependence reappears in more refined approxi-
mations.
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δN(εn > 0) = − iT
π2
g

−εn∑
ωm=−∞

∫ p0

0

dqq2

[D0q2 − ωm]2
(point–like) (4.307)

where g = N(EF )V0 is dimensionless coupling constant for the case of point
– like potential.

After the variable change x2 = D0q
2, these expressions are rewritten as:

δN(εn > 0) = − iT

π2D
3/2
0

−εn∑
ωm=−∞

Φ(ωm) (4.308)

where

Φ(ωm) =

{∫ x0

0
dx

x2−ωm
(Coulomb)

g
∫ x0

0
x2dx

(x2−ωm)2 (point–like)
(4.309)

Now we have to calculate the sum over Matsubara (Bose) frequencies:∑−εn

ωm=−∞ Φ(ωm) =
∑−n

m=−∞ Φ(ωm). Using ωm = 2πmT and εn =
(2n + 1)πT , we write this sum as the following integral over the contour,
shown in Fig. 4.25:

T

−n∑
m=−∞

Φ(iωm) =
∮

dz

2πi
nB(z)Φ(z) =

∫ −iεn−∞

−iεn+∞

dz

2πi
nB(z)Φ(z) =

= −
∫ ∞

−∞

dz

2πi
nB(z − iεn)Φ(z − iεn) =

∫ ∞

−∞

dz

2πi
n(z)Φ(z − iεn)

(4.310)

where nB(z) = 1

e
z
T −1

is Bose and n(z) = 1

e
z
T +1

is Fermi distribution. All
this “works” if Φ(z) does not possess singularities for Im z < −εn and
vanishes (sufficiently fast!) for |z| → ∞. Then, for Coulomb case we can
write:

Φ(z) =
∫ ∞

0

dx

x2 + iz
(4.311)

while for point – like interaction:

Φ(z) = g

∫ ∞

0

dxx2

(x2 + iz)2
(4.312)

This function vanishes at |z| → ∞ too slow, but this gives (as we shall
see in a moment) only some infinite constant irrelevant for us (in difference
with (4.309) here we write integrals without the upper limit cut – off!).
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Fig. 4.25 Integration contour used in calculations of the sum over Matsubara frequen-
cies.

Making in (4.310) continuation iεn → E + iδ (for εn > 0) and calculating
the imaginary part ImΦ(z) = −ImΦ(−z), we get:∫ ∞

−∞
dzn(z)ImΦ(z) =

1
2

∫ ∞

−∞
dz[n(z + E) − n(−z + E)]ImΦ(z) =

=
∫ ∞

0

dz[n(z + E) − n(−z + E)]ImΦ(z)

(4.313)

The the density of states correction is given by:

δN(E) = − 1

2π3D
3/2
0

∫ ∞

0

dz[n(z + E) + n(z − E) − 1]ImΦ(z) (4.314)

where we have used −n(−z) = 1 + n(z), which allowed us to separate the
last term in square brackets, which gives divergent contribution (to be cut
– off!) independent of E, and thus irrelevant to us.

For the Coulomb case we have:

ImΦ(z) = −Im
∫ ∞

0

dx
x2 − iz

(x2 + iz)(x2 − iz)
= z

∫ ∞

0

dx

x4 + z2
=

=
1√
z

∫ ∞

0

dx

x4 + 1
=

π

2
√

2z
(4.315)
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Then using (4.315) in (4.314) (dropping the irrelevant contribution of the
last term, depending on the cut – off) we get:

δN(E) = − 1

25/2π2D
3/2
0

∫ ∞

0

dω
1√
ω

[n(ω + E) + n(ω − E)] (4.316)

or, after the partial integration:

δN(E) =
T 1/2

23/2π2D
3/2
0

ϕ

(
E

2T

)
(4.317)

where

ϕ(x) =
1√
2

∫ ∞

0

dyy1/2

{
1

ch2(x− y)
+

1
ch2(x+ y)

}
(4.318)

These expressions describe the “sea gull” behavior of the density of states
at finite temperatures. Note the asymptotic dependences:

ϕ(x) =
{√

π(1 −
√

2)ζ(1/2) ≈ 1.07 x→ 0√
2x x
 1

(4.319)

Thus, for Coulomb case (for T → 0) we also have:

δN(E) ∼
√
|E|

D
3/2
0

(4.320)

which is similar to (4.289) obtained for the case of short – range interaction.
These corrections to the density of states can be illustrated by the following heuristic

estimates. Consider interactions of an electron in some quantum state n with energy E
with some other electron from the Fermi surface. The relative correction to the wave
function of our electron can be estimated in the first order of perturbation theory as:

δϕn

ϕn
∼

� ∞

0
dtHint(t) (4.321)

where t = 0 is the moment, when interaction is switched on, and Hint(t) is interaction
Hamiltonian (in interaction representation). During the time interval t our electron
diffuses in disordered metal within the volume of the order of ∼ (D0t)d/2. Then the
matrix element of the interaction due to short – range interaction can be estimated as
V0(D0t)−d/2. Accordingly we have:

δϕn

ϕn
∼ V0

� tmax

tmin

dt(D0t)
−d/2 ∼ V0

D
d/2
0

�
t
1− d

2
min − t

1− d
2

max

�
(4.322)

Here tmin is naturally defined by the limit of validity of diffusion approximation:

(D0tmin)1/2 ∼ l, which gives tmin ∼ (D0l−2)−1 ∼ Ẽ−1. The time tmax is deter-
mined as some t ≥ |E|−1, as at these times the matrix element is effectively suppressed

by fast (time) oscillations of wave functions. Then, assuming δN(E)
N(EF )

∼ δϕn
ϕn

from (4.322)

we immediately obtain (4.288).
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All this is not the end, but only the start of an unfinished story about
the role of electron – electron interactions in disordered systems. Above
we limited our analysis to the study of only single lowest order (so called
“Fock”) process, described by the diagram of Fig. 4.23. There are many
other contributions (diagrams), which are to be accounted for even in the
limit of weak disorder pF l 
 1. Important corrections (qualitatively similar
to quantum corrections considered above) appear not only in the density of
states, but also in conductivity. The interested reader can find the detailed
discussion of these problems in original reviews [Altshuler B.L., Aronov
A.G. (1985); Alshuler B.L., Aronov A.G., Khmelnitskii D.E., Larkin A.I.
(1982); Lee P.A., Ramakrishnan T.V. (1985)]. Even more complicated is the
problem of the role of interaction effects in the region of strong disorder,
when pF l ∼ 1, especially in the vicinity of metal – insulator transition
induced by disorder. Despite the significant progress achieved in many
theoretical studies, we are still rather far from complete understanding of
this region [Sadovskii M.V. (2000)].



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Chapter 5

Superconductivity

5.1 Cooper instability.

Consider scattering of two – electrons due to phonon exchange, shown in
Fig. 5.1. Dashed line here corresponds to:

g2D(ε3 − ε1;p3 − p1) = g2
ω2

p3−p1

(ε3 − ε1)2 − ω2
p3−p1

(5.1)

If we consider interacting electrons with small sum of momenta, so that

Fig. 5.1 Elementary process of electron – electron interaction due to phonon exchange.

p3+p1 ∼ 0 (nearly opposite momenta!), the transferred momentum p3−p1

is not small and its absolute value ∼ 2pF . At the same time, for electrons,
which are close to the Fermi surface, we have ε3 ∼ ε1 ∼ 0. Then (5.1) in
fact reduces to:

g2D(ε3 − ε1;p3 − p1) = −g2 < 0 (5.2)

177
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which corresponds to the appearance of electron – electron attraction.
This leads to the general idea that electrons in metals with opposite mo-
menta and spins (Pauli principle!) attract each other due to phonon
exchange, which is of basic importance to BCS approach to super-
conductivity [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
De Gennes P.G. (1966); Schrieffer J.R. (1964)]. In the simplest approach
using BCS model Hamiltonian the real interaction due to phonon exchange
is replaced by an effective point – like attraction, which is different from
zero only for electrons from the layer of the width of ∼ 2ωD around the
Fermi surface [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963);
De Gennes P.G. (1966); Schrieffer J.R. (1964)].

Cooper instability of the normal metallic phase due to this attraction
can be analyzed if we consider “ladder” diagrams, describing interaction
of two quasiparticles (electrons) close to the Fermi surface, shown in Fig.
5.2 (a), where the wave – like line denotes this attractive interaction1. The

Fig. 5.2 “Ladder” in Cooper channel (a) and integral equation for the appropriate
vertex – part (b).

sum of this series (without external “tails”) is given by the vertex Γ, which
is determined by the integral equation shown in Fig. 5.2 (b) and has the

1We assume the following choice of external 4-momenta: p1 = p + q; p2 = −p; p3 =
p′ + q; p4 = −p′, so that q is the small sum of (incoming) 4-momenta.
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following (analytic) form:

Γ(p3p4; p1p2) =< p3p4|Γ|p1p2 >=< p′ + q,−p′|Γ|p+ q,−p >= V (p− p′) +

+i
∫

d4p′′

(2π)4
V (p′ − p′′)G0(p′′ + q)G0(−p′′) < p′′ + q,−p′′|Γ|p+ q,−p >

(5.3)

We can check the validity of Eq. (5.3) by iterations — as a result we just
have the “ladder” series. In BCS model interaction “potential” V (p − p′)
is taken in the following form:

V (p− p′) → V (p, p′) = λwpwp′ (5.4)

where

wp =
{

1 |ξp| < ωD

0 |ξp| > ωD
(5.5)

From the simplest estimate given above for electron – phonon exchange we
can take λ = −g2. Now Eq. (5.3) is easily solved:

Γ(p3p4; p1p2) =< p′+q,−p′|Γ|p+q,−p >=
λwp′+qwp+q

1 − iλ
� d4p

(2π)4
w2

p+qG0(p + q)G0(−p)
(5.6)

which is checked by direct substitution into Eq. (5.3). Consider the integral
entering this expression:

iλ

�
d4p

(2π)4
w2

p+qG0(p + q)G0(−p) = iλ

�
d4p

(2π)4
w2

pG0(p)G0(q − p) =

= iλ

�
d3p

(2π)3

�
dε

2π
w2

p

1

ε− ξ(p) + iδsignξ(p)

1

ω0 − ε− ξ(q − p) + iδsignξ(q − p)

(5.7)

where q = [ω0,q] = [ε1 + ε2;p1 + p2]. Performing elementary contour
integration, we get:∫

dε

2π
1

ε− ξ(p) + iδsignξ(p)
1

ω0 − ε− ξ(q − p) + iδsignξ(q− p)
=

=

{
−i 1

ω0−ξ(p)−ξ(q−p)+iδ for ξ(p) > 0; ξ(q − p) > 0
i 1

ω0−ξ(p)−ξ(q−p)−iδ for ξ(p) < 0; ξ(q − p) < 0
(5.8)

Substituting this into (5.7), changing integration variable to ξ = ξ(p), with
the account of factor w2

p cutting – off this integration at Debye frequency
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ωD, we obtain:

iλ

∫
d4p

(2π)4
w2

pG0(p)G0(q − p) ≈

≈ −λmpF

2π2

∫ ωD

0

dξ

∫ 1

0

dx

{
1

ω0 + 2ξ + vF qx− iδ
+

1
2ξ + vF qx− ω0 − iδ

}
(5.9)

where we have used ξ(q − p) ≈ ξ(p) − vF q cos θ and introduced x = cos θ.
The remaining integrations are elementary and we get:

iλ

∫
d4p

(2π)4
w2

pG0(p)G0(q − p) ≈

≈ −λmpF

2π2

{
1 +

1
2

ln
2ωD − iδ

ω0 + vF q − iδ
+

1
2

ln
2ωD − iδ

−ω0 + vF q − iδ
+

+
ω0

2vF q

(
ln

ω0 − iδ

ω0 + vF q − iδ
+ ln

vF q − ω0 − iδ

−ω0 − iδ

)}
(5.10)

The main (dominating) contribution to this expression at small (in com-
parison to ωD) ω0 and vF q is of the following form:

−λmpF

2π2
ln

ωD

Max[2ω0; vF q]
(5.11)

i.e. we obtain large logarithmic factor (logarithmic divergence as limiting
behavior). Finally, for the vertex part (5.6) of interest to us we get:

Γ(p3p4; p1p2) =< p′ + q,−p′|Γ|p+ q,−p >≡ Γ(q)wp′+qwp+q (5.12)

where (for ω0 > vF q)2

Γ(q) = λ

�
1 + λ

mpF

2π2

�
ln e

####2ωD

ω0

#### +
iπ

2
+

1

2
ln

#### ω2
0

ω2
0 − vF q2

#### +
ω0

2vF q
ln

####ω0 − vF q

ω0 + vF q

####
��−1

(5.15)

2Here we are using the well known relation:

ln z = ln |z| + i arg z (5.13)

where

arg z = arg(x+ iy) =

$&
'
arctg y

x
for x > 0

π + arctg y
x

for x < 0; y > 0

−π + arctg y
x

for x < 0; y < 0

(5.14)
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Let us analyze now the properties of the vertex part (5.15). For simplicity,
consider first the case of q = 0. For real and positive ω0 we have:

Γ(ω0) =
λ

1 + λmpF

2π2

[
ln
∣∣∣2ωD

ω0

∣∣∣+ iπ
2

] (5.16)

Consider now Γ(ω0) as the function of a complex variable ω0, defining it
as an analytical continuation of (5.16) to the upper half – plane, where
Imω0 > 0. Then, putting in Eq. (5.16) ω0 = |ω0|eiϕ, we get:

Γ(ω0) =
λ

1 + λmpF

2π2

[
ln
∣∣∣ 2ωD

ω0

∣∣∣+ iπ
2 − iϕ

] (5.17)

If interaction of electrons is attractive, i.e. λ < 0 (5.17) has a pole, defined
by the equation3:

1 + λ
mpF

2π2

[
ln
∣∣∣∣2ωD

ω0

∣∣∣∣− i
(π

2
− ϕ

)]
= 0 (5.18)

giving ϕ = π
2 and 1+λmpF

2π2

[
ln
∣∣∣ 2ωD

ω0

∣∣∣] = 0. In other words, the pole appears
at imaginary frequency, ω0 = iω̃, where:

ω̃ = 2ωD exp
(
− 2π2

mpF |λ|

)
(5.19)

Close to the pole Γ(ω0) has the following form:

Γ(ω0) ≈ − 2π2

mpF

iω̃

ω0 − iω̃
(5.20)

This corresponds to Cooper instability — the pole in the vertex part in
the upper half – plane of frequency formally signifies the appearance of
an unstable collective mode with exponentially growing (in time) ampli-
tude: e−iω0t ∼ e−iiω̃t ∼ eω̃t! This leads to instability of the system and
reconstruction of its ground state and spectra of excitations.

3In case of repulsion λ > 0 and there is nothing interesting. In this case Eq. (5.17) just
gives the sum of all “ladder” corrections to the “bare” interaction λ. The large logarithm
leads only to the effective suppression of this repulsion and there is no “pathology” at
all.
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For non zero values of vF q Eq. (5.15) may be rewritten (for ω0 > vF q)
as:

Γ(q, ω0) = λ

{
1 + λ

mpF

2π2

[
ln e

∣∣∣∣2ωD

ω0

∣∣∣∣+ iπ

2
− iϕ

−1
2

ln
(

1 − v2
F q

2

ω2
0

)
+

ω0

2vF q
ln
(
ω0 − vF q

ω0 + vF q

)]}−1

(5.21)

so that after the continuation to the half–plane of Imω0 > 0 and the use
of definition of ω̃ given in (5.19), we find:

Γ(q, ω0) = − 2π2

mpF

{
ln
ω0

iω̃
− 1 +

1
2

ln
(

1 − v2
F q

2

ω2
0

)
− ω0

2vF q
ln
(
ω0 − vF q

ω0 + vF q

)}−1

(5.22)
For small vF q � ω̃ we have:

Γ(q, ω0) ≈ − 2π2

mpF

iω̃

ω0 − iω̃ + i
v2

F q2

6ω̃

(5.23)

Then we find the pole position as a function of q:

ω0 = iω̃

(
1 − v2

F q
2

6ω̃2

)
(5.24)

so that the absolute value of ω0 diminishes with the growth of q. For some
vF qmax the pole position ω0 goes to zero, and for larger values of vF q the
pole in Γ is just absent. As q gives the sum of the momenta of two electrons,
this result means that the tendency to pairing is stronger for electrons with
nearly opposite momenta.

Cooper “ladder” contributes to electron self – energy via diagrams
shown in Fig. 5.3 (a). Naturally, the existence of the pole in the “lad-
der” leads to singularity in Σ(p) and in the vertex part, shown in Fig. 5.3
(b).

Let us stress once again that these results signify the instability of the
usual (normal) ground state (T = 0) of Fermi – gas due to attractive in-
teraction. The physical meaning of this instability reduces to the ability of
particles (with almost zero momentum of their center of inertia) to form
bound pairs, i.e. some kind of Bose particles, which may “condense” in
the ground state. The temperature, corresponding to the appearance of
this instability, defines the temperature of superconducting transition. To
understand this more deeply, let us analyze the same problem within Mat-
subara formalism.
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Fig. 5.3 Corrections to electron self – energy due to scattering in Cooper channel (a)
and diagrams for appropriate vertex part (b).

If we neglect scattering of bound pairs on each other, the ideal Bose –
gas of Cooper pairs is formed and Matsubara Green’s function of this gas
can be written as:

G(q, ωm) =
1

iωm − q2

2m∗ + µ
(5.25)

where ωm = 2πmT , q is the momentum of the bound pair, m∗ – its mass,
which is equal to two masses of an electron. For ωm = 0 (5.25) reduces
to [µ − q2/2m∗]−1. At the temperature of Bose condensation T = T0 this
function diverges for q = 0, so that T0 is determined from the equation for
µ = 0, in accordance with the standard analysis of Bose – condensation
[Sadovskii M.V. (2003a)].

If we take into account the internal structure of Cooper pair, the ana-
logue of (5.25) is the two –particle Fermion Green’s function. At the tran-
sition point its analytic behavior have to be similar to that of Bose – gas
Green’s function, in the sense of its dependence on ω0m = (ε1 + ε2)n and
q = p1 + p2 (corresponding to the center of inertia of a pair). Single –
Fermion Green’s functions do not have these singularities and we have to
consider the appropriate vertex – part Γ(qω0), which is given by the same
“ladder” diagrams as above, but written in Matsubara formalism. The
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difference is that instead of Eq. (5.7) we have to consider:

I = −λT
∑

n

∫
d3p

(2π)3
wp

2 1
iεn − ξ(p)

1
iω0m − iεn − ξ(q − p)

(5.26)

where ω0m = 2πm0T (where m0 is an integer). We shall not calculate
(5.26) for arbitrary ω0m and q, because it is clear that (as in Bose – gas)
the pole in Γ(qω0) appears first for ω0 = q = 0. Thus it is sufficient to
analyze only this case and we have to calculate:

I =
λ

(2π)3
T
∑

n

∫
d3pw2

p

1
iεn − ξ(p)

1
iεn + ξ(p)

≈

≈ −λmpF

2π2

∫ ωD

−ωD

dξT
∑

n

1
ε2n + ξ2

= −λmpF

2π2

∫ ωD

0

dξ

ξ
th

ξ

2T
(5.27)

where the sum over frequencies was calculated using (2.100). After partial
integration we get:

I = −λmpF

2π2

(
ln
ωD

2T
−
∫ ∞

0

dx
lnx
ch2x

)
(5.28)

where in the remaining integral we replaced the upper limit x = ωD

2T by
infinity, due to fast convergence and T � ωD (of interest to us). Now this
integral is equal to ln π

4γ , where ln γ = C = 0.577... (Euler constant), so
that γ ≈ 1.78 and 2γ

π ≈ 1.14. Finally we get:

Γ(0, 0) =
λ

1 + λmpF

2π2 ln 2γωD

πT

(5.29)

For λ < 0 we again get a pole, close to which we have:

Γ(0, 0) = − 2π2

mpF

Tc

T − Tc
(5.30)

where temperature of superconducting transition Tc is defined by BCS ex-
pression (J.Bardeen, L.Cooper, J.Schrieffer, 1957):

Tc =
2γ
π
ωD exp

(
− 2π2

|λ|mpF

)
=

2γ
π
ωD exp

(
− 1
|λ|νF

)
(5.31)

Note that here enters the density of states at the Fermi level νF for the
single spin projection. The value of |λ|νF determines dimensionless coupling
constant of pairing interaction. It is important to stress that dependence
on this constant in (5.31) is nonanalytic and this expression can not be
expanded in powers of λ for λ→ 0!
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The frequency ω̃ introduced in Eq. (5.19) and characterizing instability
of the system at T = 0 is directly connected with Tc:

ω̃ =
π

γ
Tc (5.32)

5.2 Gorkov equations.

From the previous results it is clear that special analysis is required for the
temperature region T < Tc [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963); Lifshits E.M., Pitaevskii L.P. (1980)]. We shall consider the
simplified model of the Fermi – gas with point – like attraction described
by the Hamiltonian:

H = H0 +Hint =

=
∑

α

∫
drψ+

α (r)
[
− 1

2m
∇2 − µ

]
ψα(r) +

λ

2

∑
αβ

∫
drψ+

α (r)ψ+
β (r)ψβ(r)ψα(r)

(5.33)

Formally this corresponds to interaction potential V (r − r′) = λδ(r − r′),
but during calculations of integrals and sums we shall take into account
the limitation of the type given by Eqs. (5.4), (5.5), to mimic electron –
phonon nature of this attraction in real metals.

In Heisenberg representation we can write down the standard equations
of motion for electronic operators:

i
∂

∂t
ψα(x) = [ψα, H ] (5.34)

Commutator in the right hand side is calculated directly using commutation
relations for operators ψα(x):

ψα(r, t)ψ+
β (r′, t) + ψ+

β (r′, t)ψα(r, t) = δαβδ(r − r′) (5.35)

ψα(r, t)ψβ(r′, t) + ψβ(r′, t)ψα(r, t) = 0

ψ+
α (r, t)ψ+

β (r′, t) + ψ+
β (r′, t)ψ+

α (r, t) = 0 (5.36)

Calculating commutators of operators with separate terms of the Hamil-
tonian (5.33) we get:

[ψα(x), H0] = −
(
∇2

2m
+ µ

)
ψα(x) (5.37)
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[ψα(x), Hint] = −λ
∑

β

ψ+
β (x)ψβ(x)ψα(x) (5.38)

[ψ+
α (x), H0] =

(
∇2

2m
+ µ

)
ψ+

α (x) (5.39)

[ψ+
α (x), Hint] = λ

∑
β

ψ+
α (x)ψ+

β (x)ψβ(x) (5.40)

so that explicitly equations of motion are:

i
∂ψα

∂t
= −

(
∇2

2m
+ µ

)
ψα − λψ+

γ ψγψα (5.41)

i
∂ψ+

α

∂t
=
(
∇2

2m
+ µ

)
ψ+

α + λψ+
αψ

+
γ ψγ (5.42)

where we implicitly assume summation over repeating Greek (spin) indices.
Our qualitative picture of the ground state of a superconductor assumes

that at T = 0 we are dealing with condensate of Cooper pairs with enormous
(macroscopic) number of particles. Physically, it is obvious that this state
does not change at all if we change the number of pairs in the condensate
by one4. Mathematically this is expressed by the appearance of non zero
(in the limit of number of particles N → ∞) values of matrix elements of
the following form:

lim
N→∞

< m,N |ψβ(x2)ψα(x1)|m,N + 2 >=

lim
N→∞

< m,N + 2|ψ+
α (x1)ψ+

β (x2)|m,N >∗ �= 0 (5.43)

Here ψβ(x2)ψα(x1) is the operator of annihilation of two electrons, while
similarly ψ+

α (x1)ψ+
β (x2) is the pair creation operator. In the following, for

shortness, we drop the symbol of limit and diagonal matrix index, enumer-
ating “the same” states of the system with different number of particles.

Thus, superconducting transition is characterized by spontaneous break-
ing of gauge symmetry5, corresponding to particle number (or charge!) con-

4Note the obvious analogy of this assumption with similar hypothesis in Bogoliubov’s
theory of weakly interacting Bose – gas [Sadovskii M.V. (2003a)].

5The concept of spontaneous symmetry breaking plays the central role in the modern
theory of second order phase transitions [Mattuck R.D. (1968)]. The ground state of
“condensed” phase, appearing at temperatures below the transition point Tc, always
possess the symmetry, which is lower than the symmetry of the Hamiltonian, describing
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servation – electron pairs may “disappear” in condensate, or “appear” from
condensate, without change of the macroscopic state of the system (for
N → ∞!).

Thus, besides the usual (normal) Green’s function:

iGαβ(x1, x2) =< N |Tψα(x1)ψ+
β (x2)|N > (5.44)

it is necessary to introduce the so called anomalous Green’s functions6:

iFαβ(x1, x2) =< N |Tψα(x1)ψβ(x2)|N + 2 > (5.45)

iF+
αβ(x1, x2) =< N + 2|Tψ+

α (x1)ψ+
β (x2)|N > (5.46)

Anomalous Green’s functions Fαβ and F+
αβ satisfy the following general

symmetry properties, which follow directly from commutation relations for
electron operators:

Fαβ(x1, x2) = −Fβα(x2, x1) F+
αβ(x1, x2) = −F+

βα(x2, x1) (5.47)

In the following we consider only (spin) singlet Cooper pairing, which is realized in
majority of known metallic superconductors7. Let us separate spin dependence using
the following representation:

Fαβ = AαβF F+
αβ = BαβF

+ (5.48)

Due to Pauli principle < ψα(x)ψα(x) >= 0, so that Fαα = F+
αα = 0. Accordingly

Aαα = Bαα = 0 and matrices A and B can be written as:

A =

�
0 a1
a2 0

�
B =

�
0 b1
b2 0

�
(5.49)

For singlet pairing F (r − r′) = F (r′ − r) and from (5.47) it follows that Aαβ = −Aβα

and Bαβ = −Bβα, so that8:

A =

�
0 a
−a 0

�
B =

�
0 b
−b 0

�
(5.50)

and from (F+
αβ)∗ = −Fαβ we get B∗ = −A, so that also b∗ = −a. Accordingly:

A = a

�
0 1
−1 0

�
B = −a∗

�
0 1
−1 0

�
(5.51)

this phase transition [Sadovskii M.V. (2003a)]
6Note the close connection of the appearance of anomalous Green’s functions with

Bogoliubov’s ideology of quasi - averages [Sadovskii M.V. (2003a); Mattuck R.D. (1968);
Bogoliubov N.N. (1991b)].

7Triplet pairing is observed in superfluid phases of He3 and in some metallic com-
pounds, e.g. in Sr2RuO4.

8For triplet pairing the coordinate part of anomalous Green’s function is antisymmet-
ric, while spin part is symmetric.
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Then the spin dependence of anomalous Green’s functions reduces to
unit antisymmetric spinor of the second rank:

gαβ =
(

0 1
−1 0

)
= iσy

αβ (ĝ2)αβ = −δαβ (5.52)

where σy =
(

0 −i
i 0

)
. Thus we can write anomalous Green’s functions as:

Fαβ(x1, x2) = gαβF (x1, x2) F+
αβ(x1, x2) = gαβF

+(x1, x2) (5.53)

where in the r.h.s. we have functions symmetric over x1 and x2. Spin
dependence of the normal Green’s function Gαβ (for nonmagnetic system)
reduces to Gαβ = δαβG. In homogeneous and stationary system Green’s
functions G, F , F+ depend only on the differences of coordinates and mo-
ments of time.

Let us introduce anomalous functions at coinciding points:

Ξ(x) = iF (x, x) Ξ∗(x) = −iF+(x, x) (5.54)

which sometimes are called condensate wave – functions of Cooper pairs.
In stationary and spatially homogeneous system Ξ(x) reduces to a constant
and with the appropriate choice of phases of ψ – operators this constant
may be made real.

Let us now find these Green’s functions in our model of Fermi – gas
with attraction, defined by the Hamiltonian (5.33). Equations of motion
for operators ψ and ψ+ were given above in Eqs. (5.41) and (5.42). Now
we have9:

∂

∂t1
Gαβ = −i

〈
T
∂ψα(x1)
∂t1

ψ+
β (x2)

〉
− iδαβδ(r1 − r2)δ(t1 − t2) (5.56)

so that substituting here (5.41) we obtain the equation of motion for the
normal Green’s function:(

i
∂

∂t
+

∇2

2m
+ µ

)
Gαβ(x− x′) − iλ < N |Tψ+

γ (x)ψγ(x)ψα(x)ψ+
β (x′)|N >=

= δαβδ(x − x′) (5.57)
9To obtain the second term in (5.56) we have to remember that Gαβ is discontinuous

at t1 = t2:

Gαβ |t1=t2+0 −Gαβ |t1=t2−0 = −i < ψα(t1, r1)ψ+(t1, r2) + ψ+
β (t1, r2)ψα(t1, r1) >=

= −iδαβδ(r1 − r2) (5.55)
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Here the diagonal matrix element of the product of four ψ – operators can
be (approximately) expanded a’la Wick theorem via all “pairings”, i.e. into
the sum of matrix elements of products of pairs of operators:

< N |Tψ+
γ (x)ψγ(x)ψα(x)ψ+

β (x′)|N >

≈ Gγγ(0)Gαβ(x− x′) −Gαγ(0)Gγβ(x− x′) +

+ < N |Tψγ(x)ψα(x)|N + 2 >< N + 2|Tψ+
γ (x)ψ+

β (x′)|N > (5.58)

The terms of the type of GG are not very interesting to us, as they just lead
to some irrelevant renormalization of the energy spectrum of the normal
state. Thus, in the following we consider only the contributions of the last
terms in (5.58), containing the matrix elements of transitions changing the
number of particles N ↔ N + 2, so that10:

< N |Tψ+
γ (x)ψγ(x)ψα(x)ψ+

β (x′)|N >→
→< N |Tψγ(x)ψα(x)|N + 2 >< N + 2|Tψ+

γ (x)ψ+
β (x′)|N >=

= −Fγα(x, x)F+
γβ(x, x′) = −δαβF (0)F+(x− x′) (5.59)

where we have taken into account (5.45), (5.46) and (5.52), (5.53). Using
(5.59) Eq. (5.57) can be reduced to:(

i
∂

∂t
+

∇2

2m
+ µ

)
G(x) + λΞF+(x) = δ(x) (5.60)

where we have changed x− x′ by x, and denoted a constant iF (0) as Ξ.
But now we have to write down an equation of motion also for the anom-

alous Green’s function F+(x)! To do this, calculate first the derivative:

i
∂

∂t1
F+

αβ(x− x′) =
〈
N + 2

∣∣∣∣T ∂ψ+
α (x)
∂t1

ψ+
β (x′)

∣∣∣∣N
〉

(5.61)

Note that term with δ – function, of the type of the second term in (5.56),
does not appear here as Fαβ(x−x′) (opposite to Gαβ(x−x′)) is continuous
at t = t′ (due to anticommutation of ψ+

α (t, r) and ψ+
β (t, r′)). Substitut-

ing (5.41) into (5.61) and separating condensate contribution, similarly to
(5.59), we obtain the equation:(

i
∂

∂t
− ∇2

2m
− µ

)
F+(x) + λΞ∗G(x) = 0 (5.62)

10In the normal system of fermions (without condensate these matrix elements are, of
course, zero. But here, these anomalous contributions lead to qualitatively new results.
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Thus we obtain the closed system of equations (5.60) and (5.62), determin-
ing the Green’s functions of a superconductor (L.P.Gorkov, 1958).

In the momentum representation Gorkov equations can be written as(
p = (ε,p), ξ(p) = p2

2m − µ
)
:

(ε− ξ(p))G(p) + λΞF+(p) = 1 (5.63)

(ε+ ξ(p))F+(p) + λΞ∗G(p) = 0 (5.64)

Substituting F+ from the second equation into the first we immediately
find:

(ε2 − ξ2(p) − |∆|2)G(p) = ε+ ξ(p) (5.65)

where we have introduced notation:

∆ = λΞ (5.66)

Below we shall see that this quantity will play the role of the energy gap in
the spectrum of elementary excitations of a superconductor and simultane-
ously that of the order parameter for superconducting transition.

Formal solution of (5.65) is:

G(p) =
ε+ ξ(p)
ε2 − ε2(p)

=
u2

p

ε− ε(p)
+

v2
p

ε+ ε(p)
(5.67)

where

ε(p) =
√
ξ2(p) + |∆|2 (5.68)

is the spectrum of elementary excitations of BCS theory (with energy
gap 2|∆|), while up and vp are the well known Bogoliubov’s coefficients
[Sadovskii M.V. (2003a)]:

u2
p

v2
p

}
=

1
2

(
1 ± ξ(p)√

ξ2(p) + |∆|2

)
(5.69)

Note that in Eq. (5.67) the imaginary part of G remains undetermined. It
obviously contains contribution of the type of δ(ε ± ε(p)) which vanishes
after multiplication by (ε2 − ε2(p)) in (5.65). According to general proper-
ties of analyticity [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]
the sign of the imaginary part of the Green’s function should be opposite
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to the sign of ε. Thus, in terms with positive and negative frequencies this
variable should be changed to ε± iδ, so that

G(εp) =
u2

p

ε− ε(p) + iδ
+

v2
p

ε+ ε(p) − iδ
=

ε+ ξ(p)
(ε− ε(p) + iδ)(ε+ ε(p) − iδ)

(5.70)
Now from (5.64) we find also the anomalous function F+:

F+(εp) = − λΞ∗

(ε− ε(p) + iδ)(ε+ ε(p) − iδ)
= − ∆∗

(ε− ε(p) + iδ)(ε+ ε(p) − iδ)
(5.71)

At the same time, by definition, we have:

iΞ∗ = F+(x = 0) =
∫ ∞

−∞

dε

2π

∫
d3p

(2π)3
F+(εp) (5.72)

Substituting here (5.71) we perform integration over ε closing the contour
in the upper halfplane, so that integral is expressed via the residue at the
pole at ε = ε(p). As a result, after division by Ξ∗, we get:

1 = − λ

2(2π)3

∫
d3p

1√
ξ2(p) + ∆2

(5.73)

— the gap equation of BCS theory. Remember that we consider λ < 0,
also we now write ∆ already without the sign of modulus as now we can
consider the gap to be real. The divergence of integral in (5.73) is cut –
off, as usual in BCS approach, due to the fact that only electrons from the
layer of the width of 2ωD around the Fermi level attract each other (cf.
(5.4), (5.5)). Then we get:

|λ|
2(2π)3

∫
dp

4πp2√
ξ2(p) + ∆2

→ |λ|p2
F

4π2vF

∫ ωD

−ωD

dξ√
ξ2 + ∆2

=
|λ|mpF

2π2
ln

2ωD

∆
(5.74)

so that (5.73) reduces to:

1 = |λ|mpF

2π2
ln

2ωD

∆
(5.75)

which gives the standard result of BCS theory:

∆0 = 2ωDe
− 2π2

|λ|mpF = 2ωDe
− 1

|λ|νF (5.76)

Comparing with (5.31), we have:

∆0 =
π

γ
Tc (5.77)
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It is instructive to calculate the density of electronic states of a supercon-
ductor. Using the general definition of the density of states given in (4.99)
and (5.67), (5.70), we obtain:

N(ε) = − 2
π
νF

∫ ∞

−∞
dξImGR(ε, ξ) =

= − 2
π
νF signεIm

∫ ∞

−∞
dξ

ε+ ξ

ε2 − ξ2 − ∆2
=

2
π
|ε|Im

∫ ∞

−∞
dξ

1
ξ2 + ∆2 − ε2

=

= 2νF |ε|Im
1√

∆2 − ε2

(5.78)

where we have taken into account that for T = 0 ImGR(εp) =
signεImG(εp) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)].
Introducing the density of states of free electrons at the Fermi level (for
both spin projections) N(EF ) = 2νF , we have:

N(ε)
N(EF )

=

{ |ε|√
ε2−∆2 for |ε| > ∆

0 for |ε| < ∆
(5.79)

This is the famous result of BCS theory. Density of states is zero within
the gap, i.e. in the energy region of the width of 2∆ around the Fermi
level. For ε = ±∆ there are square root divergences, while for |ε| → ∞ the
density of states tends asymptotically to its free value N(EF ).

Gorkov equations may be expressed diagrammatically as shown in Fig.
5.4, where zig – zag line denotes the “coherent” (condensate!) field of the
order parameter ∆, while for the anomalous Green’s function we use the
standard notation with opposite arrows11 In analytic form these diagrams
correspond to the following system of equations12:

G(p) =
1

ε− ξ(p)
− 1
ε− ξ(p)

∆F+(p) (5.80)

F+(p) = − 1
ε+ ξ(p)

∆∗G(p) (5.81)

which is equivalent to (5.63), (5.64).
11Interaction with ∆, shown in this diagrams, can be interpreted as “annihilation” of

electron pairs into condensate or their “creation” from the condensate.
12For brevity we drop here infinitesimally small imaginary terms in the denominators

of Green’s functions of free electrons.
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Fig. 5.4 Diagrammatic representation of Gorkov equations.

Using (5.66) and equation conjugate to (5.72), we can write:

∆ = λΞ = iλ

∫ ∞

−∞

dε

2π

∫
d3p

(2π)3
F (εp) (5.82)

which can be diagrammatically expressed as shown in Fig. 5.5 (a). Then the
diagrams of Fig. 5.4 lead to graphical representation of Gorkov equations
shown in Fig. 5.5 (b)13.

Fig. 5.5 Self – energy part due to pairing interaction built on the anomalous Green’s
function (a) and another form of diagrammatic representation of Gorkov equations (b).

Often it is convenient to use matrix form of Gorkov equations, introduced first by

Nambu. Let us define, along with G, F+ and F (i.e. (5.44), (5.45) and Green’s function

13Note that here as above we just neglect the pairing interaction contribution to the
self – energy built on the normal Green’s function.
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conjugated to (5.45)), an additional anomalous function:

iG̃αβ(x1, x2) =< N |Tψ+
α (x1)ψβ(x2)|N > (5.83)

which enters the system of equations, similar to (5.80), (5.81):

G̃(p) =
1

ε+ ξ(p)
− 1

ε+ ξ(p)
∆∗F (p) (5.84)

F (p) = − 1

ε− ξ(p)
∆G̃(p) (5.85)

Then we can define the matrix Green’s function as:

Ĝ(p) =

�
G(p) F (p)

F+(p) G̃(p)

�
(5.86)

and write both pairs of Gorkov equations ((5.80), (5.81) and (5.84), (5.85)) as a single
matrix equation: �

ε1̂ − σ̂zξ(p) +
1

2

)
∆σ̂+ + ∆∗σ̂−

*�
Ĝ(p) = 1̂ (5.87)

where we have introduced the standard Pauli matrices σ̂x, σ̂y , σ̂z and their linear
combinations σ̂± = σ̂x ± iσ̂y .

It is easily checked that

iĜ(x1, x2) =< Tψ̂(x1)ψ̂+(x2) > (5.88)

where

ψ̂(x1) =

+
ψα(x1)

ψ+
β (x1)

,
ψ̂+(x2) = (ψ+

α (x2), ψβ(x2)) (5.89)

are the so called Nambu spinors.

In the presence of an external electromagnetic field Green’s functions
depend not only on difference of coordinates. Electromagnetic field can be
easily introduced into Gorkov equations written as (5.60), (5.62). This is
done by the usual substitution of covariant derivatives:

∇ψ → (∇− ieA)ψ ∇ψ+ → (∇ + ieA)ψ+ (5.90)

where A is an external vector potential14. Then equations for G and F+

take the form:{
i
∂

∂t
+

1
2m

(∇− ieA)2 + µ

}
G(x, x′) + iλF (x, x)F+(x, x′) = δ(x− x′)

(5.91){
i
∂

∂t
− 1

2m
(∇ + ieA)2 − µ

}
F+(x, x′) + iλF−(x, x)G(x, x′) = 0 (5.92)

14We assume the use of the gauge with zero scalar potential φ = 0.
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Under the gauge transformation:

A → A + ∇ϕ (5.93)

Green’s functions G, F and F+ are transformed as:

G(x, x′) → G(x, x′)eie[ϕ(r)−ϕ(r′)] (5.94)

F (x, x′) → F (x, x′)e+ie[ϕ(r)+ϕ(r′)] (5.95)

F+(x, x′) → F+(x, x′)e−ie[ϕ(r)+ϕ(r′)] (5.96)

as charged electron operators (fields) are transformed according to:

ψ(x) → ψeieϕ(r) ψ+(x) → ψ+e−ieϕ(r) (5.97)

Then the gap functions ∆(x) ∼ |λ|F (x, x) or ∆∗(x) ∼ |λ|F+(x, x), which
in external field are, in general, functions of x, are transformed as:

F (x, x) → F (x, x)e2ieϕ(r) F+(x, x) → F+(x, x)e−2ieϕ(r) (5.98)

which, in accordance with general ideology of gauge theories [Sadovskii
M.V. (2003b)], means that the order parameter of a superconductor (“gap”)
∆ is a charged field with electric charge 2e, i.e. the double charge of an
electron (Cooper pair condensate)!

Let us consider now the case of finite temperatures. In Matsubara
formalism, along with “normal” Green’s function of an electron, in super-
conducting state we have to introduce also the “anomalous” function:

Fαβ(τ1, r1; τ2, r2) = Sp
{
e

Ω+µN−H
T Tτ (ψα(τ1r1)ψβ(τ2r2))

}
(5.99)

F+
αβ(τ1, r1; τ2, r2) = Sp

{
e

Ω+µN−H
T Tτ (ψ̄α(τ1r1)ψ̄β(τ2r2))

}
(5.100)

where

ψα(τr) = eτ(H−µN)ψα(r)e−τ(H−µN) ψ̄β(τr) = eτ(H−µN)ψ+
β (r)e−τ(H−µN)

(5.101)
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where averaging in (5.99) and (5.100) is performed over the grand canoni-
cal ensemble (Ω is the appropriate thermodynamic potential), Tτ is “time
ordering” operator over imaginary (Matsubara) time15.

Spin dependence of these functions is separated (similarly to (5.53)) 16

as:

Fαβ = gαβF F+
αβ = −gαβF

+ (5.103)

Similarly to G, both functions F and F+ depend on the difference τ =
τ1 − τ2 and satisfy “antiperiodicity” condition:

F (τ) = −F
(
τ +

1
T

)
F+(τ) = −F+

(
τ +

1
T

)
(5.104)

so that Fourier series expansions of these functions over τ contain only odd
Matsubara frequencies εn = πT (2n+1). Matsubara ψ – operators at τ = 0
coincide with Heisenberg operators at t = 0, and comparing the definitions
(5.99), (5.100) with (5.45), (5.46) and (5.54), we find:

F (0, r; 0, r) = Ξ(r) F+(0, r; 0, r) = Ξ∗(r) (5.105)

and thus defined Ξ can be considered as the condensate “wave function”,
averaged over the Gibbs ensemble.

Equations of “motion” for Matsubara Green’s functions of a supercon-
ductor G, F , F+ are derived similarly to the derivation of (5.60), (5.62),
only instead of differentiating by time t we have to calculate derivatives
over τ and substituting in (5.34) it→ τ . Then we obtain:(

− ∂

∂τ
+

∇2

2m
+ µ

)
G(τ, r; τ ′, r′) + λΞF+(τ, r; τ ′, r′) = δ(τ − τ ′)δ(r − r′)

(5.106)(
∂

∂τ
+

∇2

2m
+ µ

)
F+(τ, r; τ ′, r′) − λΞ∗G(τ, r; τ ′, r′) = 0 (5.107)

After Fourier transformation these equations take the form:

(iεn − ξ(p))G(εnp) + ∆F+(εnp) = 1 (5.108)
15For normal Green’s function we use the standard definition [Abrikosov A.A., Gorkov

L.P., Dzyaloshinskii I.E. (1963)]:

Gαβ(τ1, r1; τ2, r2) = −Sp
�
e

Ω+µN−H
T Tτ (ψα(τ1r1)ψ̄β(τ2r2))

�
(5.102)

16The sign difference in comparison to (5.53) is connected here with the absence of
the factor of i in definitions of (5.99), (5.100), which is present in T = 0 formalism.
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−(iεn + ξ(p))F+(εnp) − ∆∗G(εnp) = 0 (5.109)

where we have introduced:

∆ = λΞ = λF (0r; 0r) ∆∗ = λΞ∗ = λF+(0r; 0r) (5.110)

Solution of Eqs. (5.108), (5.109) is:

G(εnp) = − iεn + ξ(p)
ε2n + ξ2(p) + |∆|2 = − iεn + ξ(p)

ε2n + ε2(p)
(5.111)

F+(εnp) =
∆∗

ε2n + ξ2(p) + |∆|2 =
∆∗

ε2n + ε2(p)
(5.112)

where ε(p) is again given by (5.68):

ε(p) =
√
ξ2(p) + |∆|2 (5.113)

In contrast to the case of T = 0 everything here is well defined and we do
not need any additional clarifications, based on analytical properties.

The gap equation can be found from:

Ξ∗ = F+(τ = 0, r = 0) = T

∞∑
n=−∞

∫
d3p

(2π)3
F+(εnp) (5.114)

which, after the substitution of (5.112), gives:

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ε2n + ξ2(p) + |∆|2 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ε2n + ε2(p)
(5.115)

Summation over frequencies is again performed using (2.100), which gives
gap equation of BCS theory for the case of finite temperatures:

1 =
|λ|
2

∫
d3p

(2π)3
1√

ξ2(p) + ∆2(T )
th

√
ξ2(p) + ∆2(T )

2T
(5.116)

The properties of this equation are well known [Lifshits E.M., Pitaevskii
L.P. (1980); Schrieffer J.R. (1964); Sadovskii M.V. (2003a); De Gennes P.G.
(1966)] and we shall not analyze (5.116) in details, noting only that it gives
the famous temperature dependence of the gap ∆(T ) of BCS theory. In
particular, the gap becomes zero for T ≥ Tc, which is defined by (5.31).
This can be seen directly, as for ∆ = 0 Eq. (5.116) reduces to:

1 =
|λ|mpF

2π2

∫ ωD

0

dξ

ξ
th

ξ

2T
(5.117)
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which, in fact, coincides with equation, determining the pole position in
Cooper “ladder” (5.30). For T = 0 (5.116) reduces to (5.73), so that we
again obtain (5.76), (5.77) and ∆0 = π

γ Tc.
Gorkov equations (5.108) and (5.109) can be rewritten as:

G(εnp) =
1

iεn − ξ(p)
− 1
iεn − ξ(p)

∆F+(εnp) (5.118)

F+(εnp) =
1

−iεn − ξ(−p)
∆∗G(εnp) = − 1

iεn + ξ(p)
∆∗G(εnp) (5.119)

which is similar to (5.80), (5.81) and can be represented diagrammatically
as shown in Fig. 5.4, with p = (εn,p). Iterating (i.e. substituting many
times (5.119) into (5.118)), we obtain for the normal Green’s function per-
turbation theory expansion in powers of ∆:

G(εnp) =
1

iεn − ξ(p)
+

1
iεn − ξ(p)

|∆|2
(iε+ ξ(p))(iε − ξ(p))

+

+
1

iεn − ξ(p)
|∆|4

(iεn + ξ(p))2(iεn − ξ(p))2
+ · · · =

=
iεn + ξ(p)

(iεn)2 − ξ2(p) − |∆|2 (5.120)

shown diagrammatically in Fig. 5.6 (a). Summation of this series obviously
gives (5.111). Similarly, we can substitute Eq. (5.118) into (5.119) and
“generate” diagrammatic series for F+(εnp), shown in Fig. 5.6 (b), where
in every term we have an odd number of interaction lines with “field” ∆, and
which gives (5.112). Note, that in the series for anomalous Green’s function
the zeroth – order term is just absent — there is no “free” anomalous
Green’s function at all17. Note also that the anomalous Green’s function
F+ explicitly depends on the phase of the “field” (order parameter) ∆.

Similarly to (5.82), expressions (5.110) and (5.114) for the gap can be
written as:

∆ = λΞ = λT

∞∑
n=−∞

∫
d3p

(2π)3
F (εnp) (5.121)

which can be represented by the diagram shown in Fig. 5.5 (a), so that
Gorkov equations take the form shown graphically in Fig. 5.5 (b).

17It appears if we introduce an infinitesimally weak Bogoliubov’s “source” of Cooper
pairs, which is introduced in the concept of quasi – averages [Sadovskii M.V. (2003a);
Bogoliubov N.N. (1991b)], and is equivalent to infinitesimal field ∆.
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Fig. 5.6 Diagrammatic expansion of the normal (a) and anomalous (b) Green’s func-
tions in powers of ∆.

Of course, it is possible to construct more realistic theory of superconductivity, based
not on the oversimplified BCS – Gorkov pairing interaction (5.33), but on more physical
electron – phonon interaction, described by Fröchlich Hamiltonian. This theory is built
on the system of equations for normal and anomalous Green’s functions of a supercon-
ductor, shown graphically in Fig. 5.7 and called Eliashberg equations (G.M.Eliashberg,
1960). The structure of these equations is clear without additional comments.

Fig. 5.7 Diagrammatic representation of Eliashberg equations. Dashed line denotes
phonon Green’s function.

Of course, solution of these integral equations, with the account of details of realistic
phonon spectrum, is rather difficult task. However, a significant progress was achieved
here (W.L.McMillan, 1968) and the theory of traditional superconductors, based on
electron – phonon pairing is an example of very successful application of Green’s func-
tion formalism. Nice presentation of the analysis, based on the solution of Eliashberg
equations, as well as results obtained can be found in [Vonsovsky S.V., Izyumov Yu.A.,
Kurmaev E.Z. (1977)].
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In Matsubara formalism we also can use Nambu matrices, when in addition to (5.99),
(5.100) and (5.102) we introduce:

G̃αβ(τ1, r1; τ2, r2) = −Sp
�
e

Ω+µN−H
T Tτ (ψ̄α(τ1r1)ψβ(τ2r2))

�
(5.122)

and define the matrix Green’s function:

Ĝ(εnp) =

�
G(εnp) −F (εnp)

−F+(εnp) G̃(εnp)

�
(5.123)

which satisfies the following equation:�
iεn1̂ − σ̂zξ(p) − 1

2

)
∆σ̂+ + ∆∗σ̂−

*�
Ĝ(p) = 1̂ (5.124)

which contains (5.108), (5.109) and similar equations for G̃ and F :

(iεn − ξ(p))F (εnp) + ∆G̃(εnp) = 0 (5.125)

(iεn + ξ(p))G̃(εnp) + ∆∗F (εnp) = 1 (5.126)

Matrix Green’s function (5.123) can be written as (x = (τ, r)):

Ĝ(x1, x2) =

�
− < Tψα(x1)ψ̄β(x2) > − < Tψα(x1)ψβ(x2) >
− < Tψ̄α(x1)ψ̄β(x2) > − < Tψ̄α(x1)ψβ(x2) >

�
= − < Tψ̂(x1)ψ̂

+(x2) >

(5.127)
where angular brackets denote averaging over the Gibbs ensemble, while Nambu spinors
are defined as:

ψ̂(x1) =

�
ψα(x1)
ψ̄β(x1)

�
ψ̂+(x2) = (ψ̄α(x2), ψβ(x2)) (5.128)

The appearance of matrix Green’s functions of the Nambu type, which contain “anom-
alous” functions, is typical in systems with spontaneous symmetry breaking (phase tran-
sitions of second order) [Mattuck R.D. (1968)]. This formalism is convenient as now we
can draw Feynman diagrams as in the “normal” state, with particle lines corresponding
to matrix Green’s functions, so that in fact we obtain systems of equations for “normal”
and “anomalous” Green’s functions.

5.3 Superconductivity in disordered metals.

Consider a superconductor with impurities with potential (or, more pre-
cisely its Fourier transform) v(p), randomly distributed in space (with den-
sity ρ). In principle, this problem can be analyzed similarly to the case of
impurities in a normal metal. However, superconductor is different as here
we have both “normal” and “anomalous” Green’s functions and we have to
write down the system of equations for both functions, averaged over ran-
dom configurations of impurities. “Impurity” diagram technique has the
usual form, only diagrams are now built on Green’s functions G and F+.
However, there is one delicate point — introduction of impurities leads, in
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general, to impurity dependence of the energy gap (order parameter) ∆(r),
∆∗(r). This may much complicate the diagram technique, as corrections
to ∆ will be determined by an integral equation (as ∆(r) = λF (x, x)).
Thus, it is usually assumed that superconducting order parameter (gap) is
self – averaging (non random): < ∆(r) >= ∆(0) (where angular brackets
denote averaging over impurities), < ∆2(r) > − < ∆(r) >2= 0, so that all
corrections due to impurity scattering vanish. This assumption18 will be
confirmed by the final result, when we shall see that all quantities of the
type of F (x, x) are not changed by (nonmagnetic) impurities. Thus, the
diagram technique for impurity scattering is usual — dashed line with a
cross denotes ρv2(q), and the frequency of electronic line does not change
in the interaction vertex. All estimates allowing us to neglect diagrams
with intersecting interaction lines are valid here as in the normal metal.
Equations for the averaged Green’s functions G(p) and F+(p) are shown
graphically in Fig. 5.8, which is clear without additional justifications.

Fig. 5.8 Gorkov equations for superconductor with impurities.

Using the explicit form of Green’s function of the “clean” superconduc-
tor G(0) and F+(0), which we found above, we can reduce Gorkov equa-
tions for impure superconductor to the following (relatively simple) form
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]19:

(iεn − ξ(p) − Ḡε)G(p) − (∆ + F̄ε)F+(p) = 1 (5.130)

18In fact it can be justified in the limit of weak disorder when pF l � 1, EF τ � 1.
19For ρv(p)2 → 0 Eqs. (5.130), (5.131) reduce to (5.108) and (5.109). We only have

to take into account that, in accordance with notations of [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], instead of (5.110) and (5.121), we define here:

∆ = |λ|F (x,x) ∆∗ = |λ|F+(x, x) (5.129)

which leads to some difference of signs in comparison to (5.108) and (5.109)).
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−(iεn + ξ(p) − Ḡ−ε)F+(p) + (∆∗ + F̄+
ε )G(p) = 0 (5.131)

where:

Ḡε = ρ

∫
d3p′

(2π)3
|v(p − p′)|2G(p′) (5.132)

F̄+
ε = ρ

∫
d3p′

(2π)3
|v(p − p′)|2F+(p′) (5.133)

where we again use the notation p = (p, εn).
Solution of this system takes the following form (below we shall see that

Ḡε = −Ḡ−ε):

G(p) = − iεn − Ḡε + ξ(p)
−(iεn − Ḡε)2 + ξ2(p) + |∆ + F+

ε |2
(5.134)

F+(p) = − ∆ + F̄+
ε

−(iεn − Ḡε)2 + ξ2(p) + |∆ + F+
ε |2

(5.135)

Substitution of these expressions to (5.132) and (5.133) gives two equations
determining Ḡε and F̄+

ε . As before (for impurity scattering in normal met-
als), self – energy part of Ḡε contains a constant, which may be considered
as an additive contribution to the chemical potential. This is independent
of temperature and originates mainly from integration d3p′ far from the
Fermi surface. Thus, this contribution is, in fact, the same as in the normal
metal:

δµ ≈ ρ

∫
d3p′

(2π)3
|v(p − p′)|2 1

ξ(p′)
(5.136)

Then, in Eqs. (5.132) and (5.133) we can limit ourselves to integration over
the linearized spectrum (close to the Fermi surface), so that (5.130) and
(5.131) are rewritten as:

(iε̃n − ξ(p))G(p) − ∆̃F+(p) = 1 (5.137)

(iε̃n + ξ(p))F+(p) − ∆̃∗G(p) = 0 (5.138)

where

iε̃n = iεn − Ḡε = iεn + ρv2νF

∫ ∞

−∞
dξ

iε̃n + ξ

−(iε̃n)2 + ξ2 + ∆̃2
(5.139)



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 203

∆̃ = ∆ + F̄ε = ∆ + ρv2νF

∫ ∞

−∞
dξ

∆̃
−(iε̃n)2 + ξ2 + ∆̃2

(5.140)

where we are already considering point – like impurities. Note that contri-
bution of the second term under the integral in (5.139) is zero (as integrand
is odd), so that:

− Ḡε

iεn
=
F̄ε

∆
(5.141)

Now we can write:

∆̃ = ∆ + F̄ε = ∆ηε (5.142)

iε̃n = iεn − Ḡε = iεnηε (5.143)

where ηε is defined (cf. (5.139) (5.140)) by the equation:

ηε = 1 +
ηε

2πτ

∫ ∞

−∞

dξ

ξ2 + (ε2n + ∆2)η2
ε

= 1 +
ηε

2πτ
π

ηε

√
ε2n + ∆2

(5.144)

where we have taken into account that ρv2νF = 1
2πτ . Finally, we obtain:

ηε = 1 +
1

2τ
√
ε2n + ∆2

(5.145)

Thus, Green’s functions G(p) and F+(p) of a superconductor averaged over
random configurations of impurities are obtained from appropriate Gorkov’s
functions of the “clean” superconductor (5.111) and (5.112) via the simple
substitution:

{εn, ∆} → {εnηε, ∆ηε} (5.146)

Then, repeating calculations leading to Eqs. (5.114), (5.115) and (5.116),
we can convince ourselves that ηε just drops out the equation for supercon-
ducting gap ∆(T ) after the change of integration variable ξ → ξ/η, which
changes nothing. Let us see it in details. The replacement (5.146) in (5.114)
and (5.115) gives the gap equation in the following form:

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ηε

ε2nη
2
ε + ξ2(p) + |∆|2η2

ε

≈

≈ |λ|νFT
∞∑

n=−∞

∫ ωD

−ωD

dξ
ηε

ε2nη
2
ε + ξ2 + |∆|2η2

ε

(5.147)
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Equation for Tc can be obtained by putting ∆ = 0 in (5.147):

1 =
|λ|T
(2π)3

∞∑
n=−∞

∫
d3p

ηε

ε2nη
2
ε + ξ2

≈ |λ|νFT
∞∑

n=−∞

∫ ωD

−ωD

dξ
ηε

ε2nη
2
ε + ξ2

(5.148)
where

ηε = 1 +
1

2|εn|τ
(5.149)

Now let us add ± 1
ε2

n+ξ2 to the integrand in (5.148), and again use (2.100)
to rewrite equation for Tc as:

1 = |λ|νF

∫ ωD

−ωD

dξ

2ξ
th

ξ

2Tc
+

+|λ|νF

∞∑
n=−∞

∫ ωD

−ωD

dξ

{
ηε

ε2nη
2
ε + ξ2

− 1
ε2n + ξ2

}
(5.150)

In the second integral here (due to the fast convergence) we may put
ωD → ∞. Then, after the change of integration variable ξ → ξ/ηε in
the first term of the integral it is precisely cancelled by the second one! As
a result Eq. (5.150) reduces to Eq. (5.117), which defines Tc of the “clean”
superconductor (5.31).

Similarly we can analyze also the “full” equation (5.147), determining
∆(T ) of the impure superconductor. It is easily seen that it also reduces
to Eq. (5.116) for the “clean” case.

Thus, both Tc and ∆(T ) of a superconductor with “normal” (non-
magnetic) impurities do not depend on the presence of impurities at all
(A.A.Abrikosov, L.P.Gorkov, 1959)20. We obtained this result in the limit
of weak disorder, when pF l 
 1, EF τ 
 1, and we can neglect the contri-
bution of diagrams with intersecting impurity interaction lines. In fact, this
statement has even more wide region of validity [Sadovskii M.V. (2000)],
if we assume the self – averaging nature of superconducting order parame-
ter (gap). These results are in rather good agreement with experimentally
known relative stability of superconducting state in many metals to the
introduction of more or less small amount of nonmagnetic impurities (dis-
ordering).

Of course, due to the oversimplified nature of BCS model, these results are only
approximate. In fact, disordering leads e.g. to the growth of effective repulsion

20Sometimes this is called “Anderson theorem” as he also obtained this result by
different method [De Gennes P.G. (1966)]
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(due to the growth of the so called Coulomb pseudopotential [Sadovskii M.V. (2003a);
De Gennes P.G. (1966)]) of electrons forming the Cooper pair and appropriate lower-
ing of Tc [Sadovskii M.V. (2000)]. “Anderson theorem” is also invalid within the BCS
model, when we consider superconductors with gap anisotropy at the Fermi surface (e.g.
for systems with Cooper pairs with higher orbital moments, like the case of d – wave
pairing in copper oxide high – temperature superconductors). In such cases, disordering
usually strongly suppresses superconductivity [Sadovskii M.V. (2000)]. Spectacular ex-
ample of superconductivity suppression by disordering is the case of magnetic (paramag-
netic) impurities (i.e. impurities with “free” (uncompensated) spin S) (A.A.Abrikosov,
L.P.Gorkov, 1960). Let us consider this problem briefly.

If superconductor contains paramagnetic impurities, potential of electron interaction
with impurity contains an exchange term:

V (r) = v(r) + J(r)(S · s) (5.151)

where J(r) is appropriate exchange integral, S – impurity spin, s = 1
2
σ – spin of con-

duction electron. In this case, in diagrams of impurity scattering in Gorkov equations,
shown in Fig. 5.8, we have to take into account the spin structure of G and F+. Above
we have seen that Gαβ = Gδαβ , Fαβ = gαβF , F+

αβ = −gαβF
+, where gαβ = iσy

αβ (cf.

(5.52)). Then it happens that contributions of the second term in (5.151) into self –
energies of Fig. 5.8 due to impurity scattering, built on normal and anomalous Green’s
functions, are of different sign21. Then, instead of the same renormalization of iεn and
∆ of the type given in (5.142), (5.143) and (5.145), we obtain equations:

iε̃n = iεn +
iε̃n

2τ1



ε̃2n + ∆̃2

(5.152)

∆̃ = ∆ +
∆̃

2τ2



ε̃2n + ∆̃2

(5.153)

where
1

τ1
= 2πρνF

�
v2 +

1

4
S(S + 1)J2

�
(5.154)

1

τ2
= 2πρνF

�
v2 − 1

4
S(S + 1)J2

�
(5.155)

where we have assumed the point – like nature for both impurity potential and exchange
integral, and also averaged over the orientations of impurity spins, writing < S2 >=
1
3
S(S + 1). Besides, we have taken into account that for electron spin s2 = 1

4
σ2 = 3

4
.

The difference of (5.154) and (5.155) reduces to:

1

τ1
− 1

τ2
=

2

τs
i.e.

1

τs
=
π

2
πρJ2νFS(S + 1) (5.156)

and defines the scattering rate (including spin – flip processes) due to exchange poten-
tial. Though, in fact, we always have inequality 1

τs
� 1

τ
, where 1

τ
is scattering rate due

to potential scattering, it is 1
τs

which is the relevant parameter for superconductivity.

Complete analysis22 of the gap equation, derived from (5.134), (5.135) or (5.137), (5.138)

21This follows from σαγδγδσδβ = σαδσδβ = σ2δαβ and σαγgγδσδβ = −σ2gαβ , where
σ2 = 3.

22Details of calculations for a similar problem will be given in the next Chapter.
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with the use of (5.152), (5.153), leads to the following conclusions. Scattering by mag-
netic impurities leads to the strong suppression of superconducting critical temperature,
described by the notorious Abrikosov – Gorkov equation:

ln
Tc0

Tc
= ψ

�
1

2
+

1

2πTcτs

�
− ψ

�
1

2

�
(5.157)

where Tc0 is transition temperature in the absence of impurities, while

ψ(z) =
Γ′(z)
Γ(z)

= − lnγ − 1

z
+

∞�
n=1

�
1

n
− 1

n+ z

�
(5.158)

is the logarithmic derivative of the Γ – function (digamma function), ln γ = C = 0.577...
is Euler constant. Characteristic form of dependence of Tc on the rate of exchange
scattering, following from (5.157), is shown in Fig. 5.9. There exists the critical scattering

Fig. 5.9 Dependence of superconducting critical temperature on the scattering rate due
to magnetic impurities and the region of “gapless” superconductivity.

rate (determining the critical concentration of magnetic impurities):

1

τc
s

=
πTc0

2γ
=

∆0

2
∆0 =

π

γ
Tc0 (5.159)

When this critical value is reached (e.g. with the growth of the concentration of magnetic
impurities) superconductivity vanishes (Tc becomes zero). For weak exchange scattering
(small impurity concentration) τs → ∞, and from (5.157) we get:

Tc ≈ Tc0 − π

4τs
(5.160)

so that we have a small suppression of Tc. Note that dependence of Tc on concentration
of magnetic impurities, determined by (5.157), is directly confirmed experimentally.

Another remarkable property of the model with magnetic impurities is the existence
on the “phase diagram” shown in Fig. 5.9 of a narrow region of the so called “gapless”
superconductivity. It follows from the detailed calculations based on Eqs. (5.137),
(5.138) and (5.152), (5.153), that in this region both Tc and the order parameter ∆
remain finite (∆ becomes zero at T = Tc), while the energy gap in the spectrum of
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elementary excitations (or, more precisely, in the density of states) is absent. The thing
is that in the presence of (magnetic) impurities the order parameter ∆ does not coincide
with the gap in the spectrum and the scattering by impurities “smears” this gap (leads
to the overlapping “tail” formation within the gap), leading to characteristic form of the
density of states with “pseudogap”, (different from that of BCS theory, which was given
in (5.79)), and shown qualitatively in Fig. 5.10. Superconducting response of the system
in this unusual state persists.

Fig. 5.10 Density of electronic states in “gapless” superconductor.

Why superconducting state is stable towards introduction of normal
impurities, but unstable towards magnetic impurities? The reason is very
simple — the usual (potential) scattering acts on both electrons of the
Cooper pair in the “same way” and the pair survives, while magnetic scat-
tering acts on the opposite spins of electrons in the pair differently. For
singlet pairing (the only pairing we consider here) this scattering leads to
depairing of electrons or destruction of Cooper pairing.

5.4 Ginzburg – Landau expansion.

It is well known how important is the phenomenological approach to su-
perconductivity, proposed by Ginzburg and Landau (1950), and based
on the expansion of free energy in powers of the order parameter, al-
lowing to describe main properties of superconductors close to super-
conducting transition temperature [Lifshits E.M., Pitaevskii L.P. (1980);
Sadovskii M.V. (2003a); De Gennes P.G. (1966)]. Let us show, how this
expansion can be derived from microscopic BCS theory. It was first done by
Gorkov (1959), but below we shall use slightly different approach [Sadovskii
M.V. (2000)].

In fact, it is sufficient to analyze the case of electrons in a normal metal
(T > Tc), propagating in a random “field” of thermodynamic fluctuations23

23We assume that these fluctuations are static and “smooth” enough in space.
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of superconducting order parameter, which we describe by a single Fourier
component, ∆q, characterized by some fixed (small) wave vector q. Then
we can write down the following Hamiltonian for electron interaction with
these fluctuations24:

Hint =
∑
p

{
∆qa

+
p+
a+
−p− + ∆∗

qa−p−ap+

}
(5.161)

where, as usual, we use the notation p+ = p± 1
2q.

Let us now calculate the correction to thermodynamic potential (free
energy) due to (5.161). According to [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)], correction to thermodynamic potential due to
any interaction is expressed via the average value of (Matsubara) S – ma-
trix:

∆F = −T ln < S > (5.162)

where angular brackets denote Gibbs average, while

S = Tτ exp

{
−
∫ 1

T

0

dτHint(τ)

}
(5.163)

Then it is given by the loop expansion over connected diagrams:

∆F = −T {< S >c −1} (5.164)

Diagrams for < S >c −1 are closed loops which are drawn according to
the rules of diagram technique (for the given interaction), with additional
factor of 1

n attributed to each diagram of n-th order of perturbation theory
(for topologically non equivalent diagrams) [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)].

In the absence of an external magnetic field25 Ginzburg – Landau (GL)
expansion for the difference of free energies of superconducting an normal
states is usually written as [De Gennes P.G. (1966)]:

Fs − Fn = A|∆(r)|2 +
B

2
|∆(r)|4 + C|∇∆(r)|2 (5.166)

24This Hamiltonian can also be interpreted as describing electron interaction with
random “source” of Cooper pairs.

25Taking into account that our “field” ∆ is charged, and the charge is 2e (5.98), inter-
action with an external magnetic field can be introduced via the standard replacement:

∇ → ∇∓ 2ieA (5.165)

for ∆ and ∆∗ respectively, where A is the vector – potential of external field.
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Introducing Fourier expansion:

∆(r) =
∑
q

∆qe
iqr (5.167)

and restricting analysis to a single Fourier component, we can write (5.166)
as:

Fs − Fn = A|∆q|2 +
B

2
|∆q|4 + Cq2|∆q|2 (5.168)

Now the task of microscopic theory is reduced to calculation of GL co-
efficients A, B C. From general considerations we can only say that
A ∼ T − Tc [Lifshits E.M., Pitaevskii L.P. (1980); Sadovskii M.V. (2003a);
De Gennes P.G. (1966)].

The knowledge of GL coefficients allows us to find the main charac-
teristics of a superconductor at temperatures close to Tc [Lifshits E.M.,
Pitaevskii L.P. (1980); Sadovskii M.V. (2003a); De Gennes P.G. (1966)]. In
particular, the coherence length ξ(T ), which determines characteristic scale
of inhomogeneities of the order parameter ∆, i.e., in fact, the typical size
of the Cooper pair, is given by:

ξ2(T ) = −C
A

(5.169)

Penetration depth of an external magnetic field is expressed via GL coeffi-
cients and electric charge e as:

λ2
L(T ) = − c2

32πe2
B

AC
(5.170)

where we have “restored” the velocity of light c. Dimensionless parameter
of Ginzburg and Landau is given by:

κ =
λL(T )
ξ(T )

=
c

4eC

√
B

2π
(5.171)

Close to Tc the upper critical magnetic field Hc2 is determined by:

Hc2 =
φ0

2πξ2(T )
= −φ0

2π
A

C
(5.172)

where φ0 = π�c/|e| is magnetic flux quantum [Lifshits E.M., Pitaevskii
L.P. (1980); Sadovskii M.V. (2003a)]. At last, specific heat discontinuity at
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superconducting transition is given by:

cs − cn =
Tc

B

(
A

T − Tc

)2

(5.173)

Up to terms of fourth order in ∆q we have:

< S >c −1 =
1
2!

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2 < Tτ (Hint(τ1)Hint(τ2)) >c +

+
1
4!

∫ 1/T

0

dτ1...

∫ 1/T

0

dτ4 < Tτ (Hint(τ1)...Hint(τ4)) >c

(5.174)

Consider now the second order correction to free energy (5.164):

∆F2 = −T
2

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2 < Tτ (Hint(τ1)Hint(τ2)) >c (5.175)

To calculate this correction, we can use Wick theorem, allowing to reduce
the average of the products of Fermi operators to the products of averages
of pairs of operators26 a and a+. Then, from (5.175), after appropriate
calculations, we obtain:

∆F2 = −T
2

∫ 1/T

0

dτ1

∫ 1/T

0

dτ2∆∗
q∆q

{∑
p

G(p+, τ1 − τ2)G(−p−, τ1 − τ2)+

+
∑
p

G(p+, τ2 − τ1)G(−p−, τ2 − τ1)

}
=

= −T
∫ 1/T

0

dτ1

∫ 1/T

0

dτ2|∆q|2
∑
p

G(p+, τ1 − τ2)G(−p−, τ1 − τ2)

(5.176)

where

G(p, τ1 − τ2) = − < Tτap(τ1)a+
p (τ2) > (5.177)

is the Green’s function of a free electron in (p, τ) representation. Expand-
ing this Green’s function into Fourier series over τ and calculating “time”

26We do need to consider here any anomalous averages, as we analyze the normal
metal at T > Tc, where some random “source” of fluctuating Cooper pairs (5.161) is
“operational”.
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integrals, we get:

∆F2 = −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn) (5.178)

where

G(pεn) =
1

iεn − ξ(p)
, εn = (2n+ 1)πT (5.179)

is the standard form of Matsubara Green’s function of free electron.
Similarly, for the fourth order correction, we have:

∆F4 = −T 1
4!

12|∆q|4
∫ 1/T

0

dτ1...

∫ 1/T

0

dτ4G(p, τ1 − τ3)G(−p, τ1 − τ4) ×

×G(p, τ2 − τ4)G(−p, τ2 − τ3)

(5.180)

where in Green’s function we put q = 0, neglecting the contribution of
spatial inhomogeneities to fourth order term of GL – expansion . Then,
after some calculations, similar to those just done for the second order
contribution, we obtain:

∆F4 =
T

2
|∆q|4

∑
p

∑
n

G(p, εn)G(−p,−εn)G(p, εn)G(−p,−εn) (5.181)

Finally, the correction to free energy, up to fourth order in ∆q, is given by:

∆F ≈ −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn) +

+
T

2
|∆q|4

∑
p

∑
n

G(p, εn)2G(−p,−εn)2 (5.182)

Now GL – expansion for the difference of free energies of a superconductor
and normal metal will be is obtained from (5.182), if we rewrite it in such
a form, that the coefficient before |∆q|2 at q = 0 will be zero at T = Tc

and negative for T < Tc. This type of behavior is easily guaranteed, if we
subtract from the r.h.s. of (5.182) the value of ∆F2 (5.178), taken with the
coefficient before |∆q|2 calculated at T = Tc and q = 0. Then, the GL –
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expansion is written as:

Fs − Fn = −|∆q|2T
∑
p

∑
n

G(p+, εn)G(−p−,−εn) +

+|∆q|2Tc

∑
p

∑
n

G(p, εn)G(−p,−εn)|T=Tc +

+
Tc

2
|∆q|4

∑
p

∑
n

G(p, εn)2G(−p,−εn)2|T=Tc (5.183)

Here we have taken into account that the coefficient B before |∆q|4 is finite
at T = Tc, so that calculating it (besides neglecting the q – dependence)
we can safely put T = Tc. With the account of BCS equation for Tc, taken
in the form given in (5.115) with ∆ = 0, we see that the second term in
(5.183) reduces just to 1

|λ| |∆q|2, so that GL – expansion can be rewritten
in more compact form:

Fs − Fn =
1
|λ| |∆q|2 − |∆q|2T

∑
p

∑
n

G(p+, εn)G(−p−,−εn) +

+
Tc

2
|∆q|4

∑
p

∑
n

G(p, εn)2G(−p,−εn)2|T=Tc

(5.184)

Graphically Eqs. (5.183), (5.184) can be represented by diagrams, shown in
Fig. 5.11. Subtraction of the second diagram here precisely guarantees cor-
rect behavior of the coefficient A, so that it goes through zero and changes
sign at T = Tc.

Let us now start with explicit calculations of GL – coefficients. From
(5.183) we write the coefficient A as:

A = −T
∑
p

∑
n

G(pεn)G(−p,−εn) + Tc

∑
p

∑
n

G(pεn)G(−p,−εn)|T=Tc =

= −TνF

∫ ∞

−∞
dξ
∑

n

1
ε2n + ξ2

+ TcνF

∫ ∞

−∞
dξ
∑

n

1
ε2n + ξ2

∣∣∣∣∣
T=Tc

=

= −νF

∫ ∞

−∞

dξ

ξ

[
th

ξ

2T
− th

ξ

2Tc

]
(5.185)
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Fig. 5.11 Diagrammatic representation of Ginzburg – Landau expansion.

For T ≈ Tc we have 1
ξ th

ξ
2T ≈ 1

ξ th
ξ

2Tc
+ Tc−T

2T 2
c

1

ch2 ξ
2Tc

, so that:

A = −νF
Tc − T

4T 2
c

∫ ∞

−∞
dξ

1
ch2 ξ

2Tc

= νF
T − Tc

Tc
(5.186)

To calculate the coefficient C we have to expand the product of Green’s
functions in the first term of (5.183) in powers of q:

G(p+, εn)G(−p− ,−εn) ≈ 1

ε2n + ξ2(p)
− (qp)2

4m2(ε2n + ξ2(p))2
− iεn(qp)

m(ε2n + ξ2(p))2
−

− ξ(p)q2

4m2(ε2n + ξ2(p))2
− ε2n − ξ2(p)

2m2(ε2n + ξ2(p))3
(qp)2

(5.187)

so that

−Tc

�
p

�
n

G(p+εn)G(−p−,−εn) ≈ −Tc

�
p

�
n

�
1

ε2n + ξ2(p)
− (qp)2

3ε2n − ξ2(p)

4m2(ε2n + ξ2(p))3

�
(5.188)
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and we get the expression for C as:

C = TcνF
1
d

∑
n

∫ ∞

−∞
dξ
( p

2m

)2 3εn − ξ2

(ε2n + ξ2(p))3
(5.189)

where d is the spatial dimensionality. Due to fast convergence of the integral
in (5.189) the main contribution here comes from the immediate vicinity of
the Fermi level and we can put p ≈ pF = mvF . Then finally:

C = TcνF
v2

F

4d

∑
n

π

|εn|3
= νF

7ζ(3)
16π2d

v2
F

T 2
c

≡ νF ξ
2
0 (5.190)

where we have defined the coherence length ξ0 [De Gennes P.G. (1966)] as:

ξ20 =
7ζ(3)
16π2d

v2
F

T 2
c

(5.191)

and ζ(3) ≈ 1.202... (ζ(x) – ζ is Riemann zeta – function). In these expres-
sions we again introduced:

νF =
{ mpF

2π2 d = 3
m
2π d = 2

(5.192)

– density of states of electrons at the Fermi level for a single spin projection.
At last, the value of the coefficient B is immediately obtained from the

diagram with four ∆ – “tails”, shown in Fig. 5.11:

B = Tc

∑
p

∑
n

G2(εnp)G2(−εn,−p) = νFTc

∑
n

∫ ∞

−∞
dξ

1
(ε2n + ξ2(p))2

=

= νFTc

∑
n

π

2|εn|3
= νF

7ζ(3)
8π2T 2

c

(5.193)

Expressions (5.186), (5.190) and (5.193) give the standard expressions for
GL coefficients, obtained by Gorkov (1959) for “clean” superconductors.
The use of these in Eqs. (5.169) — (5.173) gives the well known expressions
of BCS theory for temperatures close to Tc. Thus we obtain the complete
microscopic justification of Ginzburg – Landau theory within BCS model.
At the same time, it should be noted that GL approach is much more
convenient (and simpler) than the complete microscopic theory.

Now we can proceed with further generalizations. Consider e.g. the so
called “dirty” superconductors with nonmagnetic impurities. GL expansion
for this case is obtained by direct generalization of our previous analysis. We
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only have to take into account scattering by impurities, as we have already
done several times. It is not difficult to convince yourself that the proper
generalization of GL expansion is described by diagrams shown in Fig. 5.12,
where we have introduced “triangular” vertices (which we analyzed in the
previous Chapter), taking into account impurity scattering, and all electron
lines are assumed to be “dressed” by impurities27:

Fig. 5.12 Diagrammatic representation of Ginzburg – Landau expansion for a super-
conductor with impurities.

G(εnp) =
1

iεn − ξ(p) + iγ εn

|εn|
, γ =

1
2τ

= πρv2νF (5.194)

and, as usual, we consider the case of point – like impurities.
An important difference from the analysis given in previous Chapter is

that now we have to consider the Cooper channel and loops in Fig. 5.12
(a) are defined (in notations similar to that of the previous Chapter, and

27In the standard approximation without intersecting impurity lines, valid in the limit
of weak disorder, when pF l � 1, EF τ � 1.
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in Matsubara technique) as:

Ψ(qωmεn) = − 1
2πi

∑
pp′

< G(p+p′
+,−εn + ωm)G(−p′

−,−p−,−εn) >

(5.195)
which is shown in Fig. 5.13 (for the case of interest to us with ωm = 2εn).
Then from an expansion shown in Fig. 5.12 it is not difficult to obtain the

Fig. 5.13 Diagrammatic representation of Ψ(qωm = 2εn) for impure system.

following general expressions for GL coefficients A and C28:

A =
1
|λ| + 2πiT

∑
n

Ψ(q = 0, ωm = 2εn) (5.196)

C = iπT
∑

n

∂2

∂q2
Ψ(q, ωm = 2εn)|q=0,T=Tc (5.197)

Our analysis is simplified in the case of time – reversal invariance (i.e. in
the absence of an external magnetic filed or magnetic impurities), when we
can just reverse one of electronic lines (as was already done in the previous
Chapter) in the loops in Figs. 5.12, 5.13 and convince ourselves that

Ψ(qωmεn) = Φ(qωmεn) (5.198)

where Φ(qωmεn) is the obvious Matsubara formalism generalization of the
two – particle Green’s function (loop), which was analyzed in details in the
previous Chapter (cf. (4.88), (4.274)). Thus, in fact we do not need any
calculations at all! GL coefficients are determined from Φ(qωm = 2εn), the
form of which is easily “guessed”, returning to the appropriate results given

28Dropping details of calculations we just note that coefficient B in a superconductor
with impurities, determined by diagram of Fig. 5.12 (b), is again given by Eq. (5.193),
i.e. is the same as for the “clean” case [Sadovskii M.V. (2000)]. Thus, below we only
analyze the coefficients A and C.
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in the previous Chapter29:

Φ(qωm) = − νF

i|ωm| + iD0q2
(5.199)

where D0 = 1
dv

2
F τ = 1

d
EF

mγ is Drude diffusion coefficient, until we discuss
the case of weak enough disorder (pF l 
 1, EF τ 
 1) and can use the
“ladder” approximation for the vertex part Γ of impurity scattering30.

Using (5.199) and (5.198) in (5.196), we find:

A =
1
|λ| − 2νF

n∗∑
n≥0

1
2n+ 1

=
1
|λ| − νF ln

2γ
π

ωD

T
=

= νF ln
T

Tc
≈ νF

T − Tc

Tc
(5.200)

where we have introduced the cut – off (of logarithmically divergent) sum
over n at n∗ = ωD

2πT . Here we obtained a standard result of BCS theory

for Tc = 2γ
π ωD exp

(
− 1

|λ|νF

)
, so that transition temperature does not de-

pend on impurity concentration, in complete accordance with the analysis
given in the previous section (Anderson “theorem”). Formally, impurity
contribution “drops out” with D0, as in (5.196) we have to take q = 0.

In contrast, for the coefficient C, from (5.197) we obtain:

C = −iπTνF

∑
n

∂2

∂q2
1

2i|εn| + iD0q2

∣∣∣∣
q=0

=

= πTνFD0

∑
n

1
2ε2n

=
νFD0

πT

∑
n≥0

1
(2n+ 1)2

=
π

8T
νFD0 (5.201)

Writing (5.201) as:

C ≡ νF ξ
2 =

π

8Tc
D0 =

π

8Tc

1
3
v2

F τ =
π

24
vF

Tc
vF τ =

π

24
vF

Tc
l = 0.13

vF

Tc
l

(5.202)
where l = vF τ is the mean free path, and taking into account the definition
(5.191) for the “clean” case, i.e. ξ0 = 0.18 vF

Tc
, we immediately get the main

result of the theory of “dirty” superconductors for the coherence length

29Note, that we are obviously dealing with single spin projection here!
30In reality, Eq. (5.199) “works” also in the framework of self – consistent theory of

localization [Sadovskii M.V. (2000)], with the only replacement of of Drude diffusion
coefficient D0 by the generalized diffusion coefficient D(|ωm|).
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(L.P.Gorkov, 1959):

ξ2 ≈ ξ0l ξ ≈
√
ξ0l (5.203)

Thus, the effective size of Cooper pairs in “dirty limit”, when l � ξ0, is
suppressed in comparison with the “clean” case. Then, according to (5.172),
this means that disordering (introduction of impurities), while leaving Tc

untouched, may lead to a significant growth of the upper critical field Hc2,
which may be useful for the practical applications31!

Using (5.202), (5.203) in (5.172) we may obtain the remarkable Gorkov’s
relation, connecting the temperature derivative (slope of the temperature
dependence) of the upper critical field Hc2 (close to Tc) with conductivity
of the system σ = ne2

m τ = 2e2νFD0 and the density of states at the Fermi
level νF :

− σ

νF

(
dHc2

dT

)
Tc

=
8e2

π2�
φ0 (5.204)

where φ0 = πc�

e is magnetic flux quantum. In the r.h.s. of Eq. (5.204)
we have only fundamental constants, while in the l.h.s. can be determined
experimentally. Disorder (concentration of impurities) growth, in general,
does not change density of states νF significantly, while (residual) resis-
tivity grows linearly with impurity concentration (i.e. conductivity is sup-
pressed)32. Then from (5.204) it follows that the slope of the upper critical
fieldHc2 (close to Tc) grows linearly with disorder (impurity concentration).
This is confirmed by many experiments on traditional superconductors.

Up to now in our analysis of “dirty” superconductors we were dealing with weak
enough disorder. As in traditional superconductors the typical values of coherence length
ξ0 ∼ vF

Tc
are orders of magnitude larger than interatomic spacing a, there is no prob-

lem with reaching the “dirty” limit l � ξ0 at relatively large mean free paths l � a
(corresponding to weak disorder in the sense of satisfying the inequality pF l � 1). An
interesting question is what happens to the usual “dirty” limit results with further de-
crease of the mean free path (growth of disorder) up to l ∼ a, when, as we have seen in
the previous Chapter, Anderson metal – insulator transition takes place [Sadovskii M.V.
(2000)]. In fact we understand, that in this limit an expression for the two – particle
Green’s function of the type of Eq. (5.199) is conserved, but Drude diffusion coefficient
has to be replaced by the generalized one D0 → D(|ωm|), which is determined (for Mat-
subara frequencies) by an equation of self – consistent theory of localization of the type

31Of course, we oversimplify the real situation. As we already noted above, Tc may
be strongly dependent on disordering [Sadovskii M.V. (2000)].

32For low enough temperatures, of interest to us in traditional superconductors, we
can limit ourselves with discussion of residual resistivity only.
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of (4.255), which (for d = 3) takes the form [Sadovskii M.V. (2000)]:

DE(ωm)

D0
= 1 − λ

λc
+
π

2

λ

λc

�
D0

DE(ωm)

ωm

2γ

�1/2

(5.205)

where all notations are the same as in the previous Chapter33. Similarly to (4.262) and
with sufficient (for our purposes) accuracy solution of (5.205) can be written as:

DE(ωm) ≈ Max

	
DE

ωm

ωm + 3DEω
2
0(E)/v2F

; D0

�
ωm

2γ

�1/3



(5.206)

where DE = D0
pF ξloc(E)

is the renormalized diffusion coefficient (which drops to zero at

the mobility edge), ω0 is characteristic frequency define in (4.219).
Then we see that GL coefficients A and B are again given by (5.200) and (5.193),

while the coefficient C is significantly changed. Calculating it for the vicinity of Ander-
son transition we have to take into account an important frequency dependence of the
generalized diffusion coefficient (4.263), defined (in Matsubara formalism) by the second
expression under the brackets in (5.206).

In metallic region, not very close to the mobility edge, we have DE(ωm) = DE , and
coefficient C is determined as:

C = −iπTνF

�
εn

∂2

∂q2
1

2i|εn| + iDEq2

####
q=0

=

= πTνFDE

�
εn

1

2ε2n
=
νFDE

πT

�
n≥0

1

(2n+ 1)2
=

π

8T
νFDE

(5.207)

In insulating region, also not very close to the mobility edge, according to (5.206)):

DE(ωm) = DE
ωm

ωm + 3DEω
2
0/v

2
F

(5.208)

and we obtain (Rloc is localization radius, defined by (4.219)):

C =
π

2
TνF

�
εn

1

ε2n
DE(2|εn|)

=
νFDE

2πT

�
n

1

(2n+ 1)2 + (2n + 1)3DEω
2
0/2πTv

2
F

=
νF v

2
F

3ω2
0

-
ψ

+
1

2
+

3DEω
2
0

4πTv2F

,
− ψ

�
1

2

�.

= νFR
2
loc

-
ψ

+
1

2
+

DE

4πTR2
loc

,
− ψ

�
1

2

�.

≈ νFR
2
loc ln

1.78DE

πTR2
loc

(5.209)

where the approximate equality is valid until DER
−2
loc � 4πT .

33In particular, for shortness, we use here E instead of EF .
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In the immediate vicinity of the mobility edge, both in metallic and insulating re-
gions, we can write (cf. (5.206)):

DE(ωm) ≈ D0(ωmτ)
1/3 ≈ (D0l)

2/3ω
1/3
m (5.210)

so that

C =
π

2
TνF

�
εn

1

ε2n
DE(2|εn|) ∼ (D0l)

2/3TνF

�
εn

1

|εn|5/3
∼

∼
�
D0l

T

�2/3

νF

�
n≥0

1

(2n+ 1)5/3
∼

∼ ζ

�
5

3

�
νF

�
D0l

T

�2/3

(5.211)

Expression (5.211) is dominating, in comparison to (5.207), in the region where:

DE/Tc ≈ D0l/ξlocTc ≤ D
2/3
0 (l/Tc)

2/3 (5.212)

Finally we obtain the following behavior of coefficient C on the way from “dirty” metal
to Anderson insulator (L.N.Bulaevskii, M.V.Sadovskii, 1984):

C ≡ νF ξ
2 ≈ νF

$%%&
%%'

π
8Tc

DE for ξloc(E) < (ξ0l2)1/3 for E > Ec�
D0l
Tc

�2/3
≈ (ξ0l2)2/3 for ξloc(E) > (ξ0l2)1/3 E ∼ Ec

R2
loc(E)ln 1.78DE

πTcR2
loc

(E)
for Rloc(E) < (ξ0l2)1/3 E < Ec

(5.213)
where ξ0 = 0.18vF /Tc as usual, l is Drude mean free path.

As Fermi level moves towards the mobility edge Ec in metallic phase, correlation
length of localization theory (4.248) ξloc grows, so that coefficient C at first diminishes

along with generalized diffusion coefficient DE , i.e. with suppression of conductivity of
the system in normal state. However, in the vicinity of the Anderson transition, while
σ → 0, further suppression of coefficient C stops and it remains finite even for E < Ec,
i.e. in the insulating phase. With further lowering of E within localization region (or
with the growth of Ec with disorder) coefficient C is determined by localization length
Rloc, which is diminishing as E moves deeper into localization region.

The finiteness of GL coefficient C in the vicinity of Anderson transition means that in
this region the superconducting (Meissner) response of the system persists. Accordingly,
in principle, at temperatures T < Tc the system may transform from Anderson insulator
to superconducting state (L.N.Bulaevskii, M.V.Sadovskii, 1984). Of course, analysis
based upon the GL expansion and the simplest BCS – like model of superconducting
pairing is not sufficient for a complete proof of such an exotic behavior of strongly
disordered system. Note that all considerations were based on the concept of Tc being
independent of disorder (Anderson “theorem”). We have noted above that this statement
is valid in strongly disordered system (up to the Anderson transition) if we neglect
disorder influence on pairing interaction itself. In real systems, the growth of disorder
leads to the appropriate growth of effective Coulomb repulsion of electrons forming the
Cooper pair [Sadovskii M.V. (2000)]. Thus, for more or less typical values of parameters,
characterizing a superconductor, transition temperature Tc is completely suppressed long
before the Anderson transition. However, under very restrictive conditions (e.g. if the
initial value of Tc, when no disorder is present, is high enough) we may hope to find
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the finite values of Tc even in the immediate vicinity of Anderson transition (or even in
insulating phase) [Sadovskii M.V. (2000)]. Unfortunately, in these lectures there is no
time and place for further discussion of these interesting possibilities. Further details, as
well as discussion of experimental situation can be found in [Sadovskii M.V. (2000)].

It is convenient to rewrite (5.213) using the relation between conductivity and gen-
eralized diffusion coefficient (e.g. (4.176)) and expressions (4.234) and (4.237). Then,
using the definition of characteristic length ξ, from (5.213) we can easily obtain the
following expression for temperature dependent coherence length ξ(T ) [De Gennes P.G.
(1966)] of disordered superconductor:

ξ2(T ) =
Tc

Tc − T

	
ξ0l

σ
σ+σc

σ > σ� (E > Ec)

(ξ0l2)2/3 σ < σ� (E ∼ Ec)
(5.214)

where in accordance with (4.234) σc = e2pF /(π
3
�
2), while characteristic conductivity

scale σ� is defined as:

σ� ≈ σc(pF ξ0)
−1/3 ≈ σc

�
Tc

E

�1/3

(5.215)

Thus, in the region of very small conductivity σ < σ� the scale of coherence length
ξ(T ) is determined not by ξ ∼

√
ξ0l, as in the usual theory of “dirty” superconductors,

but by the new characteristic length ξ ∼ (ξ0l2)1/3 ∼ (ξ0/p2F )1/3, which gives an esti-
mate of the Cooper pair size in a superconductor in the vicinity of Anderson transition
(L.N.Bulaevskii, M.V.Sadovskii, 1984).

The density of superconducting electrons ns in GL theory can be defined as [De
Gennes P.G. (1966)]:

ns(T ) = 8mC∆2(T ) = 8mC(−A)/B (5.216)

Close to the Anderson transition this can be estimated as:

ns ∼ mN(E)ξ2∆2 ∼ mpF (ξ0/p
2
F )2/3∆2 ∼ n(T

1/2
c /E2

F )2/3(Tc − T ) (5.217)

where n ∼ p3F is the total electron density. If we take here T ∼ 0.5 Tc, we get the simple
estimate:

ns ∼ n

�
Tc

EF

�4/3

(5.218)

which, by the order of magnitude, is valid up to T = 0. Thus we can see that only a small
fraction of electrons in strongly disordered superconductor remains superconducting.
However, it confirms possibility of superconductivity in the vicinity of Anderson metal
– insulator transition.

The value of conductivity σ�, defined by (5.215), determines the typical scale of con-
ductivity, below which localization effects are significant for superconducting properties.
While σc is of the order of Mott’s “minimal metallic conductivity” [Mott N.F. (1974)],
the value of σ� is even smaller. However, for a superconductor with small enough Cooper
pairs (which is typical for strong coupling and high – temperature superconductors) σ�

is more or less of the order of σc. Experimentally this can be determined as conductiv-
ity scale at which, with further growth of disorder, appear significant deviations from
predictions of traditional theory of “dirty” superconductors.

Direct information on the value of coherence length ξ2(T ) can be obtained from the
measurements of the upper critical field (5.172). In particular, it is easy to convince one-
self, that the use of (5.213) and (5.214) leads to the following generalization of Gorkov’s
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relation (5.204) (L.N.Bulaevskii, M.V.Sadovskii, 1984):

− σ

νF

�
dHc2

dT

�
Tc

≈
	

8e2

π2�
φ0 σ > σ�

φ0
σ

νF (ξ0l2)2/3Tc
≈ φ0

σ
[νF Tc]1/3 σ < σ� (5.219)

We see that for σ < σ�, i.e. close to the Anderson metal – insulator transition, the
standard relation (5.204) becomes invalid and (assuming weak dependence of νF and Tc

on disorder) the usual growth of the derivative (dHc2/dT )Tc (the slope ofHc2(T ) – curve)
with the growth of disorder “saturates”, and this slope becomes more or less independent
of conductivity of the system in the normal state. Qualitatively, this behavior of the slope
of the upper critical field is observed in a number of strongly disordered superconductors
[Sadovskii M.V. (2000)].

5.5 Superconductors in electromagnetic field.

In this section we shall consider the microscopic theory of electromagnetic
response of superconductors, with the aim to understand important differ-
ences from the case of normal metals.

Let us start with a general formulation of the problem [Schrieffer J.R.
(1964)]. Consider a superconductor in a weak external electromagnetic
field, described by vector and scalar potentials A(rt) and ϕ(rt), which can
be combined in a single 4-vector (x = (r, t)):

Aµ(x) =
{
Ai(x) for µ = i = 1, 2, 3
cϕ(x) for µ = 0

(5.220)

where we again “restored” the velocity of light c. In the first order in Aµ

the interaction of electrons with electromagnetic field is given by:

Hp = −1
c

∫
d3rjp

µ(x)Aµ(x) = −1
c

∫
d3r[jp(x)A(x) − ρe(x)cϕ(x)] (5.221)

This is the interaction Hamiltonian with “paramagnetic” 4-vector of current
density, which has the form:

jp
µ(x) =

{
jp(x) = e

2m i{ψ+(x)∇ψ(x) − [∇ψ+(x)]ψ(x)}, µ = i = 1, 2, 3
ρe(x) = −eψ+(x)ψ(x) = −ρ(x), µ = 0

(5.222)
The total current density jµ(x) in the presence of a vector – potential A
is, as we have already noted above, the sum of paramagnetic and “diamag-
netic” contributions:

jµ(x) = jp
µ(x) + jd

µ(x) (5.223)
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where the density of diamagnetic current is given by:

jd
µ(x) =

{
e

mcρe(x)A(x) for µ = i = 1, 2, 3
0 for µ = 0

(5.224)

Then the total interaction of electrons with an external electromagnetic
field can be written as:

Hint = Hp +Hd (5.225)

where diamagnetic part of interaction is determined as:

Hd = − e

2mc2

∫
d3rρe(x)A2(x) (5.226)

Now we can use interaction representation with Hint (assuming that Aµ →
0 for t → −∞), which defines the following change of the system ground
state in time [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)]:

|Φ(t) >= T exp
{
−i
∫ t

−∞
dt′Hint(t′)

}
|0 >≡ U(t,−∞)|0 > (5.227)

Then the value of current density in the state |Φ(t) > is given by:

Jµ(x) =< Φ(t)|jµ(rt)|Φ(t) >=< 0|U+(t,−∞)jµ(rt)U(t,−∞)|0 > (5.228)

We are interested in first order in Aµ contributions to Jµ(x), so that after
direct calculations we obtain:

Jµ(x) =
e

mc
< 0|ρe(x)|0 > Aµ(x)[1−δµ0]−i < 0|[jp

µ(rt),
∫ ∞

−∞
dt′Hint(t′)]|0 >

(5.229)
All terms of the zeroth order in Jµ(x) vanish, except < j0(x) > – the
average charge density, which is of no interest to us and can be dropped.
Using (5.221) — (5.226) we find that the linear response of the system Jµ

to the external potential Aµ is nonlocal and expressed via integral kernel
Kµν :

Jµ(x) = − c

4π

∫
Kµν(rt; r′t′)Aν(r′t′)d3r′dt′ (5.230)

where time integration is done over the whole time axis, while the kernel is
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given by:

Kµν(x, x′) = −4πi
c2

< 0|[jp
µ(x), jp

ν (x′)]|0 > θ(t− t′) −

− 4πe
mc2

< 0|ρe(x)|0 > δ(x− x′)δµν [1 − δν0] (5.231)

If our system is translationally invariant, the kernel Kµν depends only on
the difference of coordinates and it is convenient to use Fourier representa-
tion:

Kµν(q, t− t′) =
∫
Kµν(x, x′)e−iq(r−r′)d3rd3r′ =

= −4πi
c2

< 0|[jp
µ(qt), jp

ν (−qt′)]|0 > θ(t− t′) +
4πne2

mc2
δ(t− t′)δµν(1 − δν0)

(5.232)

where n is the total electron density. As the second term in (5.232) (diamag-
netic response) is known exactly, we have to calculate only paramagnetic
contribution (first term):

Rµν(qt) = −i < 0|[jp
µ(qt), jp

ν (−q0)]|0 > θ(t) (5.233)

This can be found with the help of T – ordered Green’s function of the
following form34:

Pµν(qt) = −i < 0|T jp
µ(qt)jp

ν (−q0)|0 > (5.234)

Comparing spectral representations for time Fourier transforms of (5.233)
and (5.234) [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)], it
is not difficult to convince yourself, that the real parts of Rµν and Pµν

coincide, while imaginary parts differ by sign for ω < 0:

RePµν(qω) = ReRµν(qω) (5.235)

ImPµν(qω) = signωImRµν(qω) (5.236)

which gives us the required expression for Rµν via Pµν . As Kµν contains
only system parameters in the absence of an external vector – potential Aµ,
operators jµ and jp

µ just coincide and in the following we drop the index p.

34Similar Green’s function was used by us (in Matsubara technique) in (4.108).
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Finally, the response of the system to an external vector – potential
Aµ(q) = [A(q), cϕ(q)] (where q = [q, ω]) takes the form:

Jµ(q) = − c

4π
Kµν(q)Aν(q) = − c

4π

[
3∑

i=1

Kµi(q)Ai(q) −Kµ0(q)cϕ(q)

]

(5.237)
where:

Kµν(q) =
4π
c2
Rµν(q) +

1
λ2

L

δµν [1 − δν0] (5.238)

and we defined λ2
L = mc2

4πne2 – the square of London penetration depth at
T = 0. Two terms in (5.238) reflect contributions of paramagnetic and
diamagnetic currents.

Introduce now the following shortened notation:

Qαβ(q) = − c

4π
Kαβ(q) (5.239)

Consider first an ideal Fermi – gas (normal metal) [Levitov L.S., Shitov
A.V. (2003)]. Let us determine the response (current density j) to spatially
inhomogeneous static vector – potential35 A. In momentum representation,
the linear relation between j and A can be written as:

jq = Q̂(q)Aq (5.240)

In the previous Chapter we have already noted that the static vector –
potential does not lead to the appearance of electric current in a normal
metal (or ideal Fermi – gas) in the long wavelength limit. This means that
Q̂(q = 0) = 0, so that at q = 0 diamagnetic and paramagnetic contributions
to (5.238) completely compensate each other. At the same time, in the limit
of q → 0, and for ω = 0, the response contains a small contribution due to
Landau diamagnetism. Consider this in more details. Calculations will be
done for the case of finite temperatures, using Matsubara formalism. From
the analysis made in the previous Chapter concerning (4.108) — (4.120),
after the obvious change of notations, it becomes clear that for an ideal
Fermi – gas the paramagnetic contribution to the response kernel36 can be

35We assume the gauge choice: divA = 0, ϕ = 0
36For an impure metal everything can be done in a similar way, but we have to take

into account the finite damping in denominators of Green’s functions due to impurity
scattering. Vertex corrections due to impurity scattering in “current” vertices just vanish
due to angular integrations (in the model with point – like impurities).
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written as:

Qp
αβ(q = 0) = − lim

τ→0
2
e2

m2c
T
∑

n

eiεnτ

∫
pαpβ

(iεn − ξ(p))(iεn − ξ(p))
d3p

(2π)3

(5.241)
Now use the obvious relation, valid for the free electron Green’s function:

pG2
0(εnp) = m∇pG0(εnp) (5.242)

and write (5.241) as:

Qp
αβ(0) = − e2

mc
2T
∑

n

∫
pα∇pβ

G0(εnp)
d3p

(2π3)
(5.243)

Integration over d3p can be done in parts, so that ∇pβ
acts on pα, and

leading to:

Qp
αβ(0) =

e2

mc
δαβ2T

∑
n

∫
G0(εnp)

d3p

(2π)3
=
ne2

mc
δαβ (5.244)

which totally compensates diamagnetic part of (5.238).
Consider now the case of q �= 0. Expansion of Q̂(q) in powers of q

starts from the second order: Q(q) = aq2 + O(q4), which is easily checked
by an expansion of diagram shown in Fig. 5.14. Then we can write:

j = Q̂A = −a∇2A (5.245)

On the other hand, as we know from electrodynamics, the current may be
related to magnetization of the system as:

j = c rotM = c rotχ0B = χ0c rot rotA (5.246)

so that using rot rotA = grad divA−∇2A and gauge condition divA = 0
we may write:

j = −χ0c∇2A (5.247)

where χ0 is the magnetic susceptibility of electron gas. Then, comparing
(5.245) with (5.247), we find: χ0 = a

c , where coefficient a can be calculated
from the diagram shown in Fig. 5.14. In fact, from this diagram we have:

Qxx = − lim
τ→0

2
e2

c
T
∑

n

eiεnτ

∫
vx(p + q)vx(p)

(iεn − ξ(p + q))(iεn − ξ(p))
d3p

(2π)3

(5.248)
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Fig. 5.14 Diagram determining the response of an ideal Fermi – gas to an external
vector – potential.

where vx(p + q) = ∂ξ(p + q)/∂px and vx(p) = ∂ξ(p)/∂px are appropriate
velocity projections. Let us assume that the wave vector q is directed
along z – axis. In contrast to spin susceptibility, orbital susceptibility is
determined not only by electrons from the vicinity of the Fermi surface,
but by all electrons inside it, as Landau quantization influence all electrons
with E < EF , and the finite value of susceptibility χ0 appears due to the
difference between the usual integral over continuous spectrum and the
sum over quantized Landau levels. Let us limit ourselves to the case of free
electrons, when ξ(p) = p2

2m − EF . Expand Qxx in powers of q = qz and
take into account vx(p + q) = vx(p) = px/m, so that:

Qxx = − lim
τ→0

e2q2

c
T
∑

n

eiεnτ

∫
v2

x

iεn − ξ(p)
∂2

∂p2
z

1
iεn − ξ(p)

d3p

(2π)3
(5.249)

Now:

∂2

∂p2
z

1
iεn − ξ(p)

=
1
m

1
(iεn − ξ(p))2

+ 2
p2

z

m2

1
(iεn − ξ(p))3

and we immediately obtain:

χ0 = − lim
τ→0

e2

c2
T
∑

n

eiεnτ

∫ {
1
m

v2
x

(iεn − ξ(p))3
+ 2

v2
xv

2
z

(iεn − ξ(p))4

}
d3p

(2π)3

(5.250)
Angular averaging gives < v2

x >= v2/3 and < v2
xv

2
z >= v4/15, and after

the double partial integration in the first term of (5.250):∫ ∞

0

p4

(iεn + EF − p2/2m)3
dp =

3m2

2

∫ ∞

0

dp

iεn + EF − p2/2m
(5.251)

and after triple partial integration in the second term,∫ ∞

0

dp
p6

(iεn + EF − p2/2m)4
= −5m3

2

∫ ∞

0

dp

iεn + EF − p2/2m
(5.252)
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Then, summation over n in (5.250) gives just the Fermi distribution
[Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E. (1963)] and from the first
term in (5.250) we get − e2pF

4π2mc2 , while form the second we have + e2pF

6π2mc2

so that the sum of these contributions gives the final result:

χ0 = − e2

12π2mc2

∫ ∞

0

dpn(ξ(p)) = − e2pF

12π2mc2
(5.253)

which is the usual diamagnetic susceptibility of free electron gas [Sadovskii
M.V. (2003a)]. If we remember a similar result for Pauli (spin) susceptibil-
ity:

χp = 2µ2
BνF =

e2

4m2c2
mpF

π2
(5.254)

we obtain the well known result for total susceptibility [Sadovskii M.V.
(2003a)]:

χ0 = −1
3
χp (5.255)

Let us return now to superconductors and calculate again the response
to static vector – potential. We shall see that in contrast to the normal
metal (free Fermi – gas), there will be no complete compensation of para-
magnetic and diamagnetic contributions in this case. Thus, even if we take
q = 0 in (5.240), we get the finite response, which is written as:

j(r) = −nse
2

mc
A(r) (5.256)

and which is called London equation — basic equation of electrodynam-
ics of superconductors. Here ns represents (by definition) the density of
superconducting (superfluid) electrons. Eq. (5.256), “obviously” breaks
gauge invariance. The physical reason for the absence of total compen-
sation of diamagnetic and paramagnetic contributions in response kernel
Q(0) is precisely due to the fact (already noted above), that gauge in-
variance (charge conservation) in superconductors is spontaneously broken.
This is the symmetry (of the ground state!) which is lowered when the
system goes superconducting. In a normal metal the zero value of Q(0) is
guaranteed by the validity of the Ward identity, which is directly related
to charge conservation and gauge invariance [Sadovskii M.V. (2003b)]. It
is not so (simple) for superconductors, and special care is needed to “re-
store” gauge invariance of electromagnetic response absent in a simple BCS
– approach.
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Now, let us directly calculate Q(0) for a superconductor. Diamagnetic
contribution is obviously the same as before and can be written as:

Q
(2)
αβ(0) = −ne

2

mc
δαβ (5.257)

But in calculations of paramagnetic contribution, in contrast to the case of
the normal metal, we have to take into account contributions to Q(0) both
form normal and anomalous Green’s functions. Paramagnetic contribution
Q

(1)
αβ(ω,q) is again obtained (for finite temperatures, in Matsubara formal-

ism) by averaging the product of two current operators and is given by the
following expression (σ, σ′ are spin indices):

Q
(1)
αβ(ωm,q) =

1
2c

∑
σσ′

∫ β

−β

eiωmτ

∫
d3reiqr ×

× < Tτψ
+
σ (rτ)ĵαψσ(rτ)ψ+

σ′ (00)ĵβψσ′ (00) > (5.258)

where ĵ = −i e
m∇r. Now we have to consider all the pairing of ψ – operators,

taking into account both normal and anomalous averages. Then we obtain:

< Tτψ
+
σ (rτ)ĵαψσ(rτ)ψ+

σ′ (00)ĵβψσ′(00) >= −ĵαGσσ′ (rτ)ĵβGσ′σ(−r,−τ) −
−ĵαF+

σσ′ (rτ)ĵβFσ′σ(−r,−τ)
(5.259)

so that Qαβ(ωmq) takes the form:

Q
(1)
αβ(ωm,q) =

1
2c

∑
σσ′

∫ β

−β

eiωmτ

∫
d3reiqr{2ĵαG(rτ)ĵβG(−r,−τ) +

+2ĵαF (rτ)ĵβF ∗(−r,−τ)}
(5.260)

Note that the signs of loops containing G and F are here the same37.
Rewriting (5.260) in momentum representation we have:

Qαβ(ωm,q) = −2
e2

c
T
∑

n

∫
d3p

(2π)3
vα

(
p − q

2

)
vβ

(
p +

q
2

)
×

×
{
G
(
εnp − q

2

)
G
(
εn + ωmp +

q
2

)
+ F

(
εnp− q

2

)
F ∗
(
εn + ωmp +

q
2

)}
(5.261)

37In the next Chapter we shall see that situation is opposite for loops with scalar (not
vector or “current”) vertices.
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Then, for ωm = 0, q = 0 we have:

Q(1)
αα(0) = − 2e2

3m2c
T
∑

n

∫
d3p

(2π)3
p2{G2(εnp) + |F (εnp)|2} (5.262)

Combining (5.257) and (5.262) together, using the definition of ns, follow-
ing from (5.256), and also the explicit form of Gorkov’s functions (5.111),
(5.112), we obtain:

n− ns = −2νF p
2
F

3m
T
∑

n

∫ ∞

−∞
dξ

∆2 + ξ2 − ε2n
(ε2n + ξ2 + ∆2)2

(5.263)

This expression is not fully satisfactory. Total electron density is deter-
mined by all electronic states, including those far from the Fermi surface.
Thus, the usual integration over the linearized spectrum ξ, used in Eq.
(5.263), is not, strictly speaking, justified. At the same time it is clear that
density of superconducting electrons ns is determined by the close vicinity
of the Fermi surface, as only there an important transformation of elec-
tronic spectrum takes place in BCS theory. Deep inside the Fermi sphere
(i.e. for ξ ∼ EF ) nothing happens at all. Thus, the correct procedure is to
subtract from (5.263) the same expression for the normal metal, i.e. with
∆ = 0. Then the contribution of deep states just drops out. This will also
guarantee the obvious requirement of ns being zero for ∆ → 0. Finally we
obtain:

ns = −2νFp
2
F

3m
T
∑

n

∫ ∞

−∞
dξ

[
ξ2 − ε2n

(ξ2 + ε2n)2
− ∆2 + ξ2 − ε2n

(ε2n + ξ2 + ∆2)2

]
(5.264)

Now we can perform ξ – integrations using the standard integrals:∫ ∞

−∞

dx

(x2 + a2)2
=

π

2a3
,

∫ ∞

−∞

dxx2

(x2 + a2)2
=

π

2a
(5.265)

Then we obtain:

ns =
2νFp

2
F

3m
T
∑

n

π∆2

(ε2n + ∆2)3/2
(5.266)

Let us analyze now the different limiting cases.

• The case of T → 0. Here we can replace summation by integration and
obtain:

ns =
2νF p

2
F

3m
π∆2

2π

∫ ∞

−∞

dε

(ε2 + ∆2)3/2
=

2νF p
2
F

3m
=

p2
F

3π2
= n (5.267)
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We see that at T = 0 superfluid density is equal to total density of
electrons, as it should be in translationally invariant system.

• The case of T → Tc. Now we can neglect ∆2 in the denominator of
(5.266). The remaining sum over frequencies is already known to us, it
is expressed via ζ – functions, and we obtain:

ns

n
=

7ζ(3)∆2

4π2T 2
c

= 2
(

1 − T

Tc

)
(5.268)

so that for T → Tc superfluid density goes to zero.

Impurity scattering suppresses superfluid density ns, but it remains finite.
To understand it in more details, we calculate Q(0) for an impure system. It
is sufficient to calculate the loop diagrams, built upon the impurity averaged
Gorkov’s functions, which are obtained from those of the “clean” supercon-
ductor, given by (5.111) and (5.112), via the replacement (5.146). Vertex
corrections (diagrams with impurity lines connecting different Green’s func-
tions in the loop) can be dropped, as they vanish due to angular integration
(vector nature of vertices, describing interaction with external electromag-
netic field). Thus, an expression for ns can be immediately written as (cf.
(5.263)):

n− ns

n
= −T

∫ ∞

−∞

ξ2 + ∆̃2 − ε̃2n
(ξ2 + ∆̃2 + ε̃2n)2

(5.269)

where ε̃n and ∆̃ were defined in (5.145), (5.146). Let us again subtract
from this expression its value with ∆ = 0 and in the absence of impurities,
to exclude contribution of deep levels under the Fermi sphere. Then, after
the integration over ξ, we obtain the following generalization of (5.266):

ns

n
= πT

∑
n

∆̃2

(ε̃2n + ∆̃2)3/2
(5.270)

or, with the account of (5.145), (5.146):

ns

n
= πT

∑
n

∆2

(ε2n + ∆2)3/2

(
1 + 1

2τ
√

ε2
n+∆2

) (5.271)

For small impurity concentration, when ∆0τ 
 1, this expression reduces
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to (5.266), while in the “dirty” limit, when ∆0τ � 1, it gives:

ns

n
= 2πτT

∑
n

∆2

(ε2n + ∆2)2
= πτ∆th

∆
2T

(5.272)

Thus in a “dirty” superconductor, even for T → 0, we have:

ns(T → 0)
n

= πτ∆0 � 1 (5.273)

i.e. only a small fraction of electrons is superconducting.
Let us continue the general discussion after the return to our initial nota-

tions (5.230) — (5.238) and putting c = 1 for shortness. In isotropic system,
electromagnetic response kernel reduces to Kµν = Kδµν . The previous dis-
cussion can be summarized as follows. To obtain superconducting response
it is necessary (and sufficient) to satisfy the following requirements38:

lim
q→0

lim
ω→0

K(qω) = lim
ω→0

lim
q→0

K(qω) = K(0, 0) �= 0 (5.276)

where, according to (5.266), we have:

K(0, 0) =
1
λ2

L

ns

n
=

4πnse
2

m
=

1
λ2

L

2πT
∑

n

∆2

(ε2n + ∆2)3/2
(5.277)

with λ2
L = mc2

4πne2 – the usual definition of the square of London penetration
depth at zero temperature T = 0.

From (5.230) we get:

Jµ(qω) = − 1
4π
Kµν(qω)Aν

qω (5.278)

38There are two contributions to Kµν(qω): paramagnetic one Kp
µν and diamagnetic

Kd
µν . Diamagnetic contribution is proportional to the total density of electrons and

is the same as in the normal state. In normal state the total current induced by static
vector – potential is negligible (and determines only the the small contribution of Landau
diamagnetism). Thus, with high accuracy we have: Kn

µν(q0) = Knp
µν (q0) + Kd

µν ≈ 0,

Knp
µν (q0) ≈ −Kd

µν (exact equality holds for q → 0). Then the current density in a
superconductor is given by:

Jµ(qω) = − 1

4π
{Ksp

µν(qω) −Knp
µν (q0)}Aν

qω (5.274)

Thus, as noted above, we have only to calculate paramagnetic response. The difference
of current densities in superconducting and normal states can be written as:

Js
µ(qω) − Jn

µ (qω) = {Ks
µν(qω) −Kn

µν(q0)}Aν
qω =

= {Ksp
µν(qω) −Knp

µν (qω)}Aν
qω (5.275)
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so that, taking into account the definition of electric field:

E = −∂A
∂t

Eqω = iωAqω (5.279)

we can introduce conductivity as:

σµν(qω) = − 1
4πiω

Kµν(qω) σ(qω) = − 1
4πiω

K(qω) (5.280)

where the second equality is valid for isotropic case. In most cases we are
interested in the limit q → 0 (response to homogeneous field), which is
assumed in what follows.

It is convenient to write:

σ(ω) = σs(ω) + σexc(ω) (5.281)

where

σs(ω) = −K(0)
4πiω

(5.282)

is conductivity of superconducting condensate, while

σexc(ω) = − 1
4π

K(ω) −K(0)
iω

(5.283)

is conductivity due to single – particle excitations. We see that (5.282),
with the use of (5.277), is reduced to:

σs(ω) =
nse

2

m

i

ω + iδ
, δ → +0 (5.284)

so that:

Reσs(ω) =
nse

2

m
πδ(ω) (5.285)

which corresponds to dissipationless contribution of condensate into con-
ductivity (i.e. to superconductivity itself).

Let us consider now in detail σexc(ω), i.e. conductivity due to single –
particle excitations in superconductor, which, in particular, determines the
absorption of electromagnetic energy by a superconductor at finite frequen-
cies (optical properties of a superconductor). In fact, we have to return to
(5.260), (5.261) and repeat all calculation for the case of a finite frequency
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of external field iωm → ω + iδ and q → 0. We have:

Qαα(ωm,q) = −2
e2

3m2
T
∑

n

∫
d3p

(2π)3
(
p +

q
2

)2

×

×
{
G
(
εnp − q

2

)
G
(
εn + ωmp +

q
2

)
+ F

(
εnp− q

2

)
F ∗
(
εn + ωmp +

q
2

)}
(5.286)

Now substitute here explicit expressions for Gorkov’s functions, perform
summation over frequencies and introduce integration over the linearized
spectrum ξp ≡ ξ(p) in the vicinity of the Fermi surface, where p ≈ pF and
can be taken out of integral. These calculations are rather cumbersome and
we just skip them39. Finally, after the usual continuation iωm → ω + iδ,
we get:

Qαα(ωm,q) = − 2e2

3m2
νF p

2
F

� ∞

−∞
dξp

�
εpεp+q + ξpξp+q + ∆2

εpεp+q

�
{n(εp) − n(εp+q)} ×

×
�

1

εp − εp+q + ω + iδ
+

1

εp − εp+q − ω − iδ

�
+

+
2e2

3m2
νF p

2
F

� ∞

−∞
dξp

�
εpεp+q − ξpξp+q − ∆2

εpεp+q

�
{1 − n(εp) − n(εp+q)} ×

×
�

1

εp + εp+q + ω + iδ
+

1

εp + εp+q − ω − iδ

�
(5.287)

where we have introduced the usual notation εp =
√
ξ2p + ∆2 for electron

spectrum in BCS model (5.68), n(εp) is Fermi distribution with this spec-
trum. In the limit of T → 0 only the second term contributes, as n(εp) → 0
for T → 0 due to the gap in BCS spectrum. At the same time we are
interested in the limit of q → 0, when actually goes to zero numerator (so
called coherence factor) of the expression, standing in the first brackets of
this term. Thus we obtain zero, and all conductivity, in fact, is reduced to
(5.282), (5.284). In particular, the real part of conductivity is concentrated
in δ – function contribution at zero frequency (5.285), with ns = n, i.e. all
electrons contribute to this dissipationless motion of condensate.

To understand what has happened remember, that we are analyzing the response at
finite frequency of a superconductor without impurity (or any other) scattering, leading
to current dissipation. The velocity of i-th electron in an external field is determined as:

39In the next Chapter we shall perform similar calculations (for another problem) in
all details.
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mvi = pi − e
c
A(ri). Then the total current is equal to:

J = e
�

i

< vi >=
e

m

�
i

< pi > − e2

mc

�
i

A(ri) (5.288)

The first term here is proportional to the applied electric field E(rt) = Eeiqr−iωt, so
that:

J(rt) = σ(ω)E(rt) − e2

mc
nA(rt) (5.289)

where in writing the second term we assumed the homogeneity of the system. With

the account of E = − 1
c

∂A(rt)
∂t

, we have A = ic
ω

E. Then London equation (5.256) with

ns = n (at T = 0) directly follows from (5.289), if σ(ω) = 0. It is precisely what was
obtained in (5.287).

Thus, consistent analysis of conductivity in a superconductor should
be done with the account of e.g. impurity scattering (S.B.Nam, 1967).
These calculations are also very cumbersome, and we shall use instead
much simplified arguments, which give correct answer in the “dirty” limit
[Mahan G.D. (1981)]. Let us use the definition of conductivity (cf. (5.280),
(5.239)) in the following form:

σ(ω) = lim
q→0

Q(qω)
iω

, Reσ(ω) =
1
ω
ImQ(0ω) (5.290)

and consider the imaginary part of (5.287) for ω > 0. Besides, let us take
into account that in “dirty” superconductor momenta p and p + q are not
well defined quantum number for an electron. Then we may assume that in
this limit both ξp and ξp+q in Eq. (5.287) can be considered as independent
variables, so that we can write:

Reσ(ω) =
C0

ω

∫ ∞

−∞
dξp

∫ ∞

−∞
dξ′pδ(ω − εp − εp′)

εpεp′ − ξpξp′ − ∆2

εpεp′
=

=
C0

ω

∫ ∞

∆

dε

∫ ∞

∆

dε′N(ε)N(ε′)δ(ω − ε− ε′)
(

1 − ∆2

εε′

)
(5.291)

where in the last equality we have changed integration variable from ξ to
BCS spectrum (5.68) ε and, accordingly, introduced BCS density of states,
defined by Eq. (5.79). In Eq. (5.291 we also introduced a constant C0,
which will be determined from matching with conductivity of a normal
metal (when ∆ → 0). From (5.291), performing δ – function integration,
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we obtain:

Reσ(ω) =
C0

ω
θ(ω − 2∆)

∫ ω−∆

∆

dεN(ε)N(ω − ε)
{

1 − ∆2

ε(ω − ε)

}
=

=
C0

ω
θ(ω − 2∆)

∫ ω−∆

∆

dε
ε(ω − ε) − ∆2

(ε2 − ∆2)1/2[(ω − ε)2 − ∆2]1/2

(5.292)

Introducing new integration variable x via 2ε = ω + x(ω − 2∆), we have:

Reσ(ω) =
1
2
C0

ω
θ(ω − 2∆)(ω − 2∆)

∫ 1

−1

dx
1 − αx2

[(1 − x2)(1 − α2x2)]1/2
(5.293)

where α = ω−2∆
ω+2∆ . The integral in (5.293) is expressed via elliptic functions

as:

Reσ(ω) =
C0

ω
[(ω + 2∆)E(α) − 4∆K(α)]θ(ω − 2∆) (5.294)

In the normal state (∆ = 0) electromagnetic absorption is determined by C0

(which is seen from (5.291), calculated for ∆ = 0). Accordingly, the ratio
of optical conductivities in a superconductor and normal metal is defined
as:

Reσs(ω)
Reσn(ω)

≡ σ1s(ω)
σ1n(ω)

=
1
ω

[(ω + 2∆)E(α) − 4∆K(α)]θ(ω − 2∆) (5.295)

This is the so called Mattis – Bardeen formula (D.Mattis, J.Bardeen, 1958),
which gives beautiful agreement with experiment, as you can see in Fig.
5.15.

In a wide interval of frequencies of an external electromagnetic field the qualita-
tive behavior of the real part of conductivity (optical absorption) in superconductors is
given in Fig. 5.16, where we show the results of more detailed calculations of optical
conductivity in BCS model, with the account of impurity scattering with fixed value of
γ = 1

2τ
= ∆. In the normal phase (for T ≥ Tc) conductivity dependence on frequency

is given by the usual Drude expression (4.179) with mean free time, determined (e.g.
for low enough temperatures) by impurity scattering. This gives characteristic behavior
shown in Fig. 5.16 by full curve. After the superconducting transition, a δ(ω) – con-
tribution appears in conductivity (5.285), which is due to superconducting response of
Cooper pairs condensate, while the finite absorption appearing at ω > 2∆ corresponds
to excitation of single electrons through BCS gap. At T = 0 these electrons are created
by external field “breaking” of Cooper pairs (in accordance with the physical meaning
of ∆ as a binding energy of an electron in Cooper pair). Conductivity of an arbitrary
system has to satisfy the following exact sum rule [Nozieres P., Pines D. (1966)]:

� ∞

0
dωReσ(ω) =

πne2

2m
=
ω2

p

8
(5.296)
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Fig. 5.15 Real part of optical conductivity of lead in superconducting state at T =
2K. Shown are experimental data for different samples and theoretical curve (full line)
(L.Palmer, M.Tinkham, 1968).

where ω2
p = 4πne2

m
is the square of plasma frequency. For superconductors this sum

rule means that the dashed area below Drude conductivity curve of a normal metal in
Fig. 5.16, after the superconducting transition is transformed into the amplitude of δ –
function contribution in (5.285), while the remaining area under conductivity curve at
ω > 2∆ guarantees the validity of the sum rule (5.296) together with this contribution
of superconducting condensate.

This relatively simple analysis based on BCS model leads to the correct
results for the response of a superconductor to the transverse electromag-
netic field, but it leads to wrong results if applied to calculations of the
response to a longitudinal field40. This is deeply connected with gauge
non invariant expressions for response functions obtained above and spon-
taneous breaking of gauge invariance by BCS ground state. The physical
reason for the difficulty with consistent description of longitudinal response
is due to the fact, that longitudinal gauge (gradient) transformations are
directly connected with collective excitations (of electron density) in super-
conductors. In the model with only short – range interactions these excita-
tions correspond to the so called Bogoliubov sound, which is the Goldstone
mode, appearing due to spontaneous breaking of gauge invariance. The
account of long – range Coulomb interactions leads to transformation of
Bogoliubov sound into the usual plasma oscillations. Gauge invariant for-
mulation of electromagnetic response of superconductors can be obtained
if we generalize BCS scheme by inclusion of these collective excitations
[Schrieffer J.R. (1964)].

40We always assumed above the transverse gauge divA = 0, φ = 0!
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Fig. 5.16 Real part of optical conductivity in normal and superconducting states with
the account of finite impurity scattering rate Γ = 1

τ
= 2∆.
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Chapter 6

Electronic Instabilities and Phase
Transitions

6.1 Phonon spectrum instability.

Let us consider renormalization of phonon spectrum due to electron –
phonon interaction in one – dimensional metal. We shall use the general
approach, described by Eqs. (3.16), (3.18) and (3.74). It will be shown,
that this renormalization leads to phonon spectrum instability, which we
already mentioned shortly in the Chapter on electron – phonon interaction.
Now we shall discuss this instability in more details.

For d = 1 polarization operator of the free electron gas at T = 0 is
defined by the following expression:

Π(kω) = −2i
∫

dp

2π

∫
dε

2π
G0(εp)G0(ε+ ωp+ k) (6.1)

where the factor of 2 is due to spin. Calculating the integral over ε as was
already done previously, we obtain:

Π(kω) =
1
π

∫
dp

n(ξp) − n(ξp+k)
ω − ξp+k + ξp + iδ(signξp+k − signξp)

(6.2)

where we again introduced the notation ξp ≡ ξ(p) = p2

2m − µ. Non zero
contributions to integral in (6.2) come from two regions:

(1) ξp > 0, ξp+k < 0
(2) ξp < 0, ξp+k > 0

in all other cases we have n(ξp)− n(ξp+k) = 0. To be specific, consider the
case of k > 0. Then these regions correspond to:

(1) −pF − k < p < −pF

(2) pF − k < p < pF

239
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These inequalities determine also the correct sign of ±iδ – contribution in
the denominator of (6.2). Then (6.2) can be rewritten as:

Π(kω) = − 1
π

∫ −pF

−pF −k

dp

ω − k2

2m − pk
m − iδ

+
1
π

∫ pF

pF −k

dp

ω − k2

2m − pk
m + iδ

=

=
m

πk
ln

⎡
⎣
(

k2

2m − kpF

m − ω + iδ
)

(
k2

2m + kpF

m + ω − iδ
)
(

k2

2m − kpF

m + ω + iδ
)

(
k2

2m + kpF

m − ω − iδ
)
⎤
⎦

(6.3)

Consider the behavior of Π(kω) for ω = 0 and close to k = 2pF . Define
k = 2pF + q (i.e. q = k − 2pF , |q| � 2pF ). Then:

Π(k = 2pF + q, ω = 0) = − m

πpF
ln

4pF

|q| = − m

πpF
ln

4pF

|k − 2pF |
(6.4)

In fact, we have mentioned this result previously in (3.72), in our prelimi-
nary discussion of the “giant” Kohn anomaly.

Consider now renormalization of phonon spectrum. Let us write down
the phonon Green’s function as (cf. (3.18) and (3.74)):

D−1(kω) = D−1
0 (ωk) − g2Π(kω) (6.5)

Close to k = 2pF , using (6.4)1, we have:

ω2 − ω2
2pF

ω2
2pF

+
mg2

πpF
ln

4pF

|k − 2pF |
= 0 (6.6)

or

ω2 = ω2
2pF

{
1 − mg2

πpF
ln

4pF

|k − 2pF |

}
(6.7)

Now we can see that for k, close enough to 2pF , the second term over-
comes the first one, so that phonon frequency becomes imaginary (ω2 < 0).
Suppression of phonon frequency at k ∼ 2pF is usually called the appear-
ance of the “soft” mode (lattice “softening”), as shown in Fig. 6.1, and
respective instability of the phonon spectrum leads to spontaneous defor-
mation of the lattice. This means (as we shall see below) that formation of
(atomic) density modulation with the period 2π

2pF
= π

pF
becomes thermody-

namically advantageous, leading to the appearance of static density wave
∼ Reei2pF x ∼ cos(2pFx + φ). This is called Peierls structural transition.

1Strictly speaking we should have used here Π(ω, k ≈ 2pF ) at ω 
= 0, but neglect of
this frequency dependence does not change qualitative conclusions.
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Atomic displacements in this density wave directly lead to modulation of
electronic charge density: ρ(x) = ρ0 + ρ1 cos(2pFx+ φ), or to formation of
the so called charge density wave (CDW). This is illustrated in Fig. 6.2.

Fig. 6.1 Phonon “soft” phonon mode due to “giant” Kohn anomaly.

Fig. 6.2 Atomic displacements in one – dimensional chain leading to new period and
appearance of charge density wave (CDW) due to Peierls transition. The case of period
doubling.

In fact, the instability of phonon spectrum appears at some finite tem-
perature T = Tp0, when the square of the frequency ω2(k = 2pF ) becomes
zero for the first time. To understand it in more details we consider the
case of T �= 0. As usual we shall use Matsubara technique. For phonon
Green’s function we again write down the Dyson equation:

D−1(kωm) = D−1
0 (ωmk) − g2Π(ωmk) (6.8)

where

D0(kωm) =
ω2

k

(iωm)2 − ω2
k

, ωm = 2πmT (6.9)
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Polarization operator is given by:

Π(kωm) = 2T
∑

n

∫
dp

2π
G0(εnp)G0(εn − ωm, p− k) (6.10)

We are interested in the region of k ∼ 2pF , so that we introduce:

k = 2pF + q, |q| � 2pF (6.11)

As everything of interest to us is determined by electrons from relatively
narrow vicinity of the Fermi level, in future estimates we use the linearized
spectrum of electrons, shown in Fig. 6.3. Then we have:

Fig. 6.3 Linearized (close to the Fermi level) spectrum of electrons in one – dimensional
metal. Fermi “sphere” is represented by a straight line, electronic states with momenta
from dashed region (−pF , pF ) are filled. Fermi “surface” consists of two points ±pF .

ξp−k = −ξp + vF q for p ∼ +pF

ξp+k = −ξp + vF q for p ∼ −pF (6.12)

In fact, this is valid for any form of electronic spectrum in one – dimensional
metal close to two “ends” of the Fermi line (Fermi “points”). Accordingly,
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we write the polarization operator as:

Π(qωm) = TN(EF )
∑

n

∫ ∞

−∞

dξp
2πi

2πi
1

iεn − ξp

1
i(εn − ωm) + ξp − vF q

=

= −2πTN(EF )
∑

n

θ[εn(εn − ωm)]
signεn

2εn − ωm + ivF q

(6.13)

where spin degeneracy is included in N(EF ). Here, the factor of θ[εn(εn −
ωm)] guarantees signεn = sign(εn−ωm), which, in turn, places the poles in
ξp into different halfplanes of appropriate complex variable, and guarantees
non zero value of integral over ξp, which is trivially calculated using Cauchy
theorem.

Multiplying both numerator and denominator by signεn = sign(εn −
ωm), we obtain:

Π(qωm) = −2πTN(EF )
∑

n

θ[εn(εn − ωm)]
|εn| + |εn − ωm| + ivF q signεn

=

= −2πTN(EF )
∑

n

θ[εn(εn − ωm)]
|2εn − ωm| + ivF q signεn

(6.14)

where we have taken into account |εn| = εnsignεn; |εn − ωm| = (εn −
ωm)signεn; |2εn − ωm| > 0. Then:

Π(qωm) = −2πTN(EF )
∑
n≥0

1
2εn + ωm + ivF q

−

−2πTN(EF )
∑
n≥0

1
2εn + ωm − ivF q

(6.15)

The sums entering here are formally divergent and we have to introduce a
cut – off, remembering that electron – phonon interaction (coupling “con-
stant” g) is effectively suppressed for frequencies ∼ EF , i.e. of the or-
der of conduction band width2. Thus we have to perform summation
up to εn ∼ EF ! Then, adding and subtracting to the sums in (6.15)

2Do not mix it with pairing interaction in superconductors, which, as we have seen
above, is cut – off at frequencies ∼ ωD.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

244 Book Title

2πTN(EF )
∑N∗

n≥0
1

2εn
, with N∗ =

[
EF

2πT

]
, we can write:

Π(ωmq) = −4πTN(EF )
N∗∑
n≥0

1
2εn

−2πTN(EF )
∞∑

n=0

[
1

2εn + ωm + ivF q
− 1

2εn

]
−

−2πTN(EF )
∞∑

n=0

[
1

2εn + ωm − ivF q
− 1

2εn

]
(6.16)

where in convergent sums we can already take the infinite upper limit.
Using now3:

4πTN(EF )
N∗∑
n≥0

1
2εn

= N(EF ) ln
2γEF

πT
, (6.17)

we get:

Π(qωm) = −N(EF ) ln
2γEF

πT
−

−1
2
N(EF )

∞∑
n=0

[
1

n+ 1
2 + ωm

4πT + ivF q
4πT

− 1
n+ 1

2

]
−

−1
2
N(EF )

∞∑
n=0

[
1

n+ 1
2 + ωm

4πT − ivF q
4πT

− 1
n+ 1

2

]
(6.18)

Using now the definition of ψ(x) – function:

ψ(x) = −C −
∞∑

n=0

[
1

n+ x
− 1
n+ 1

]
(6.19)

where C = ln γ = 0.577..., we can write down the final expression for

3We use here: 2
/N

n=0
1

2n+1
= ln(4γN).
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polarization operator as:

Π(qωm) = −N(EF ) ln
2γEF

πT
+

1
2
N(EF )

[
ψ

(
1
2

+
ωm

4πT
+
ivF q

4πT

)
+

+ ψ

(
1
2

+
ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1
2

)]
=

= −N(EF ) ln
EF

2πT
+

1
2
N(EF )

[
ψ

(
1
2

+
ωm

4πT
+
ivF q

4πT

)
+

+ ψ

(
1
2

+
ωm

4πT
− ivF q

4πT

)]
(6.20)

where we also used ψ
(

1
2

)
= − ln 4γ.

Let us define dimensionless coupling constant for electron – phonon
interaction as4:

λ = g2N(EF ) (6.21)

Then the equation for phonon Green’s function (6.8) is rewritten as:

ω2
2pF

D−1(qωm) = (iωm)2 − ω2
2pF

{
1 − λ ln

EF

2πT
+

+
λ

2

[
ψ

(
1
2

+
ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1
2

+
ωm

4πT
− ivF q

4πT

)]}
=

= (iωm)2 − ω2
2pF

{
1 − λ ln

2γEF

πT
+

+
λ

2

[
ψ

(
1
2

+
ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1
2

+
ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1
2

)]}
(6.22)

Then we define the phase transition temperature Tp0, as temperature at
which the frequency of phonons with k = 2pF (i.e. q = 0) becomes zero.
Putting in (6.22) q = 0 and ωm = 0, we obtain the equation:

D−1(0, 0) = 1 − λ ln
2γEF

πTp0
= 0 (6.23)

which gives BCS – like expression for the transition temperature (at which

4It should not be mixed with dimensional constant λ of pairing interaction used in
the previous Chapter!



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

246 Book Title

the crystal lattice becomes unstable):

Tp0 =
2γ
π
EF e

− 1
λ (6.24)

Writing (6.23) as:

1 − λ ln
EF

2πTp0
+ λψ

(
1
2

)
= 0 (6.25)

and subtracting this expression from the r.h.s. of (6.22), we obtain:

ω2
2pF

D−1(ωmq) = (iωm)2 − ω2
2pF

λ

{
ln

T

Tp0
+

+
1
2

[
ψ

(
1
2

+
ωm

4πT
+
ivF q

4πT

)
+ ψ

(
1
2

+
ωm

4πT
− ivF q

4πT

)
− 2ψ

(
1
2

)]}
(6.26)

To find dispersion relation for the soft mode we have to perform her the usual analytic
continuation iωm → ω and use the expansion of ψ – function (which is easily obtained
from (6.19)):

ψ

�
1

2
− iω

4πT
± ivF q

4πT

�
≈ −C −

∞�
n=0

�
1

n+ 1/2
− 1

n+ 1

�
+

+
∞�

n=0

1

(n+ 1/2)2

�
− iω

4πT
± i

vF q

4πT

�
−

−
∞�

n=0

1

(n+ 1/2)3

�
− iω

4πT
± i

vF q

4πT

�2

=

= ψ(1/2) +
π

8

�
− iω
T

± ivF q

�
+ 7ζ(3)

-
ω2

16π2T 2
+

v2F q
2

16π2T 2
∓ ωvF q

8π2T 2

.
(6.27)

Then we obtain the equation for the soft mode dispersion (spectrum):

ω2
2pF

D−1(qω) = ω2−ω2
2pF

λ

{
ln

T

Tp0
− iπ

8T
ω +

7ζ(3)
16π2

v2
F

T 2
q2 +

7ζ(3)
16π2T 2

ω2

}
= 0

(6.28)
Considering T ∼ Tp0 and introducing characteristic “coherence” length:
ξ0(T ) :

ξ20(T ) =
7ζ(3)
16π2

v2
F

T 2
(6.29)

we rewrite (6.28) in the following form (D.Allender, J.Bray, J.Bardeen,
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1974; B.Patton, L.Sham, 1974):

ω2 − ω2
2pF

λ

{
T − Tp0

Tp0
− iπ

8T
ω + ξ20(T )q2 +

7ζ(3)ω2

16π2T 2

}
= 0 (6.30)

Neglecting damping (as a first approximation), we obtain the dispersion of
the soft mode as:

ω2 ≈ λω2
2pF

{
T − Tp0

Tp0
+ ξ20(T )q2

}
(6.31)

This demonstrates the qualitative picture described above: for T → Tp0

(in the region of T > Tp0) we observe suppression (softening) of phonon
frequency for k ∼ 2pF , so that at T = Tp0 frequency square at k = 2pF

is zero and becomes negative in the region of T < Tp0 (corresponding to
lattice instability).

Returning to (6.26), let us write:

D(qωm = 0) = − 1
λ

1
T−Tp0

Tp0
+ 7ζ(3)

16π2
v2

F

T 2
p0
q2

= − 1
λ

1
T−Tp0

Tp0
+ ξ20(Tp0)q2

(6.32)

As noted above in connection with (3.101), (3.102), correlation function of
atomic displacements differs from Green’s function only by sign and the
factor of (ρω2

2pF
)−1 (where ρ is the density of the medium), so that:

C(q) =
∫
dxeiqx < u(x)u(0) >=

Tp0

λρω2
2pF

1
T−Tp0

Tp0
+ ξ20(Tp0)q2

(6.33)

where the factor of T = Tp0 appeared due to “summation” over Matsubara
frequencies (cf. (3.102)), where we have left only the term with ωm = 0,
which corresponds to high temperatures (most strongly fluctuating contri-
bution, corresponding to classic limit). Shortly speaking, we write:

C(q) =
A

(T − Tp0) +Bq2
for A =

T 2
p0

λρω2
2pF

, B = Tp0ξ
2
0(Tp0)

(6.34)
Then in coordinate representation we have:

C(x) =
∫ ∞

−∞

dq

2π
C(q)e−iqx =

A

π

∫ ∞

0

dq
cos qx

T − Tp0 +Bq2
=

=
A

2
√
B(T − Tp0)

exp
{
− |x|
ξ(T )

}
(6.35)
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where

ξ2(T ) = ξ20(Tp0)
Tp0

T − Tp0
(6.36)

It is not difficult to understand that we, in fact, obtained just the usual
“mean – field” description of second – order phase transition, taking place
at T = Tp0, and (6.34), (6.35), (6.36) correspond to the picture of non
interacting fluctuations of atomic displacements at T ∼ Tp0, described by
Ornstein — Zernike correlator [Sadovskii M.V. (2003a)].

The previous discussion illustrates the general microscopic method of investigation
of second – order phase transitions with the help of diagram technique. First we have to
study fluctuations of the order parameter in harmonic (“Gaussian”) approximation. In
the case just discussed, the order parameter is, in fact, the Fourier component of atomic
displacements, corresponding to wave – vector k = 2pF . If phase transition really hap-
pens, there must appear the temperature, at which the system becomes “soft” enough
and static (ωm = 0) correlation function (in momentum representation) diverges. This
condition defines the transition temperature in “mean field” approach. Then we have
to consider long wave fluctuations of the order parameter and their interactions in the
vicinity of critical temperature. To do this we have to surpass (quadratic) Gaussian
approximation. In the model under discussion we have to take into account “anhar-
monicities” due to electron – phonon interaction, e.g. diagrams for free energy with
four external “tails” of order parameter fluctuations (to be considered below). Finally
this will lead to Ginzburg – Landau type of free energy expansion, which is used to
study thermodynamics of the transition. This scheme was already realized above for
superconductivity.

In fact, for one – dimensional systems our analysis is oversimplified. We have already
seen (cf. discussion around (3.111) and (3.115)), that for d = 1 phase transition (long –
range order) of the “mean field” type is impossible. In the following we shall return to
discussion of this problem and demonstrate, that in the temperature region T ∼ Tp0 well
developed fluctuations of short – range order appear in the system, while stabilization of
the true long – range order takes place only after we take into account three – dimensional
interactions in a system of one – dimensional atomic chains (i.e. in three – dimensional
anisotropic crystal).

Consider now one – dimensional metallic chain with random impurities.
In this case polarization operator is determined by diagrams, shown in Fig.
6.4, and can be written analytically as:

Π(ωmk) = 2T
∑

n

∫
dp

2π
G(εnp)G(εn − ωmp− k)T (εn, ωm, k) (6.37)

where

G(εnξp) =
1

iε̃n − ξp
, ε̃n = εn

[
1 +

1
2τ |εn|

]
,

1
2τ

= πρv2νF (6.38)

and “triangular” vertex in “ladder” approximation of Fig. 6.4 (b) is deter-
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Fig. 6.4 Polarization operator for impure system (a) and appropriate “triangular” ver-
tex (b).

mined by the equation:

T (εn, εn−m, q) = 1 − 1
2πτ

∫ ∞

−∞
dξp

T (εn, εn−m, q)
(ξp − iε̃n)(ξp − vF q + iε̃n−m)

(6.39)

where, as usual, we changed integration over dp to that over dξp, introduced
the notation εn−m = εn − ωm and taken into account that ρv2νF = 1

2πτ .
Then we immediately obtain:

T −1(εn, εn−m, q) = 1 +
1
τ
θ(εnεn−m)

εn

|εn|
1

ε̃n + ε̃n−m + ivF q
(6.40)

To simplify calculations we assume that impurity lines in the “ladder”
shown in Fig. 6.4 (b) do not scatter electrons from one end of the Fermi
line to the other. In general case in (6.40) we have to write symmetrized
sum of terms with ±q.
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As a result, polarization operator is written as5:

Π(qωm) = TN(EF )
∑

n

∫
dξp

T (εn, εn−m, q)
(iε̃n − ξp)(iε̃n−m + ξp − vF q)

=

= −2πTN(EF )
∑

n

θ(εnεn−m)
εn

|εn|
1

ε̃n + ε̃n−m + ivF q
×

×
{

1 +
1
τ
θ(εnεn−m)

εn

|εn|
1

ε̃n + ε̃n−m + ivF q

}−1

(6.41)

which reduces to:

Π(qωm) = −2πTN(EF )
∑

n

θ[εn(εn − ωm)]
signεn

2εn − ωm + ivF q + 2
τ signεn

(6.42)
Further transformations can be done similarly to those done before, during
the transition from (6.13) to (6.22), so that we obtain:

Π(qωm) = −2πTN(EF )
∑

n

1
|2εn − ωm| + 2

τ − ivF qsignεn

=

= −2πTN(EF )
∑
n>0

1
2εn + ωm + 2

τ − ivF q
−

−2πTN(EF )
∑
n>0

1
2εn + ωm + 2

τ + ivF q
=

= N(EF ) ln
2γEF

πT
+

1
2
N(EF )

{
ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

+
ivF q

4πT

)
+

+ ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

− ivF q

4πT

)
− 2ψ

(
1
2

)}
(6.43)

5In contrast to similar calculations in previous Chapters, here it is more convenient
to perform ξp – integration first.
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Then we get the following equation for phonon Green’s function:

ω2
2pF

D−1(qωm) = (iωm)2 − ω2
2pF

{
1 − λ ln

2γEF

πT
+

+
λ

2

[
ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

+
ivF q

4πT

)
+

+ ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

− ivF q

4πT

)
− 2ψ

(
1
2

)]}
=

= (iωm)2 − ω2
2pF

λ

{
ln

T

Tp0
+

+
1
2

[
ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

+
ivF q

4πT

)
+

+ ψ

(
1
2

+
ωm

4πT
+

1
2πTτ

− ivF q

4πT

)
− 2ψ

(
1
2

)]}
(6.44)

Then, similarly to (6.23), i.e. from the condition D−1(0, 0) = 0, we obtain
the equation, determining temperature Tp of Peierls transition in a system
with impurities (L.N.Bulaevskii, M.V.Sadovskii, 1974):

ln
Tp

Tp0
+ ψ

(
1
2

+
1

2πTpτ

)
− ψ

(
1
2

)
= 0 (6.45)

which is formally identical to Eq.(5.157), discussed above and determin-
ing the critical temperature of a superconductor with magnetic impurities.
Thus, normal (nonmagnetic) impurities (disordering) strongly suppress the
temperature of Peierls structural transition.

6.2 Peierls dielectric.

As we already noted, Peierls instability of phonon spectrum leads to the
appearance of spontaneous deformation of the lattice (chain) with the wave
vector Q = 2pF . Let us now consider the description of “condensed” phase,
which exists at temperatures T < Tp0. Hamiltonian of our system can be
written in the following form:

H =
∑

p

ξpa
+
p ap +

∑
l

ωkb
+
k bk +

∑
pk

gka
+
p+kap(bk + b+−k) (6.46)
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where we have defined coupling constant as:

gk = g

√
ωk

2
(6.47)

as we are using notations of [Abrikosov A.A., Gorkov L.P., Dzyaloshinskii
I.E. (1963)].

Formation of the Peierls superstructure is described by introduction of
the following anomalous average [Bogoliubov N.N. (1991b)], which breaks
translational symmetry of initial lattice:

∆ = g2pF < b2pF + b+−2pF
> �= 0 (6.48)

where angular brackets denote thermodynamic average. Appearance of
such anomalous average can be interpreted as Bose — condensation of
phonons into a state with (quasi) momentum Q = 2pF . In coordinate
representation (6.48) describes potential field of Peierls deformation:

V (x) = ∆ei2pF x + ∆∗e−i2pF x = 2|∆| cos(2pFx+ φ) (6.49)

where |∆| is the modulus, while φ – the phase of appropriate order para-
meter: ∆ = |∆|eiφ.

To find the spectrum of an electron moving in the field defined by (6.49)
we have, in fact, to solve the usual problem of electron motion in one – di-
mensional periodic field. This is well known from any course on solid state
theory. Let us show how this can be done within Green’s functions formal-
ism. For generality, consider electron motion in periodic field characterized
by an arbitrary wave vector Q:

V (x) = ∆eiQx + ∆∗e−iQx = 2|∆| cos(Qx+ φ) (6.50)

Then, limiting ourselves to first order in V , we can describe everything by
the system of equations for Green’s functions of Gorkov type, shown dia-
grammatically in Fig. 6.5. For T = 0 we can write this system analytically
as:

G(εp) = G0(εp) +G0(εp)∆F (εp) (6.51)

F (εp) = G0(εp−Q)∆∗G(εp) (6.52)

where normal and anomalous Green’s functions (in momentum – coordinate
representation) are defined as:

G(tp) = −i < Tap(t)a+
p (0) > (6.53)
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Fig. 6.5 Diagrammatic representation of “Gorkov equations” for an electron moving in

periodic field.

F (tp) = −i < Tap(t)a+
p−Q(0) > (6.54)

Anomalous Green’s function F (6.54) describes here an elementary Umklapp
scattering process p − Q → p, which appears in periodic field (6.50). The
system of equations (6.51), (6.52) is easily rewritten as:

(ε− ξp)G(εp) − ∆F (εp) = 1 (6.55)

(ε− ξp−Q)F (εp) − ∆∗G(εp) = 0 (6.56)

which gives the following solutions:

G(εp) =
ε− ξp−Q

(ε− ξp)(ε− ξp−Q) − |∆|2 (6.57)

F (εp) =
∆∗

(ε− ξp)(ε− ξp−Q) − |∆|2 (6.58)

Zero of denominators (pole) is determined here by an equation:

(ε− ξp)(ε− ξp−Q) − |∆|2 = 0 (6.59)

which gives the standard result for the spectrum of “new” quasiparticles:

ε1,2(p) =
1
2
(ξp +ξp−Q)±

√
1
4
(ξp − ξp−Q)2 + |∆|2, ξp =

p2

2m
−µ (6.60)

i.e. the usual “band” spectrum in “two – wave” approximation [Ziman J.M.
(1972)], which is shown in Fig. 6.6. Naturally, all our analysis is symmetric
with respect to Q→ −Q.
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Fig. 6.6 Electron spectrum in periodic potential field, characterized by wave – vector
Q (“two – wave” approximation).

For Q = 2pF Fermi level µ is precisely in the middle of the band gap of
the width 2∆, so that our system is dielectric. For one – dimensional case
free electron spectrum always satisfies “nesting” condition:

ξp−Q = ξp−2pF = −ξp (6.61)

which is easily seen from Fig. 6.7. Then, the spectrum (6.60) reduces to
BCS – like:

ε1,2(p) = ±
√
ξ2p + |∆|2 (6.62)

and ξp can be taken in a linearized form (close to Fermi level).

Fig. 6.7 Graphic illustration of validity of “nesting” property for one – dimensional
spectrum of free electrons: K = Q = 2pF .
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Often we have to deal with electronic spectrum in tight – binding approximation
[Ziman J.M. (1972)]. For example, in a model with transfer integral J being nonzero
only for nearest neighbors (in a chain), we have the spectrum:

εp = −2J cos pa, ξp = εp − µ = −2J cos pa (6.63)

where a is lattice constant (distance between nearest atoms in the chain), and the second
equality is valid for half – filled band (one conduction electron per atom), when pF = π

2a
,

and Fermi level is exactly in the middle of the band (EF = 2J , if the origin of the energy
scale is at the “bottom” of the band, but EF = µ = 0, if it is placed at the Fermi level).
In this case Q = 2pF = π

a
, which corresponds to Peierls transition with period doubling

(lattice dimerization). Here we again have “nesting” condition valid:

ξp−Q = −ξp, εp−π
a

= −εp (6.64)

The form of the spectrum after Peierls transition for this case is shown in Fig. 6.8.

This is a typical example of commensurate Peierls transition, when the period of Peierls
superstructure and initial period of the chain form a rational relation (e.g. the new period
is equal to rational number of initial periods). The case of free electron spectrum in the

Fig. 6.8 Electron spectrum in Peierls dielectric in tight – binding approximation, the
case of period doubling.

chain (Fig. 6.7) is a good model for incommensurate Peierls transition, when the period
of the new superstructure is unrelated to the period of initial chain (incommensurate
with it). In particular, this is due to Fermi momentum in this case being determined
only by electron concentration, unrelated to the period of initial lattice. In the following
we shall deal only with this last case.

Let us rewrite the system of equations (6.51), (6.52) in Matsubara tech-
nique:

G(εnp) = G0(εnp) +G0(εnp)∆F (εnp) (6.65)

F (εnp) = G0(εnp−Q)∆∗G(εnp) (6.66)
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or (if “nesting” condition is valid):

G(εnp) =
1

iεn − ξp
+

1
iεn − ξp

∆F (εnp) (6.67)

F (εnp) =
1

iεn + ξp
∆∗G(εnp) (6.68)

which may be rewritten also as:

(iεn − ξp)G(εnp) − ∆F (εnp) = 1 (6.69)

(iεn + ξp)F (εn) − ∆∗G(εnp) = 0 (6.70)

which (almost!) coincides with (5.108) and (5.109). Solution of this system
is:

G(εnp) =
iεn + ξp

(iεn)2 − ξ2p − |∆|2 (6.71)

F (εnp) =
∆∗

(iεn)2 − ξ2p − |∆|2 (6.72)

which again is almost the same as (5.111) and (5.112). There is only some
difference in signs of (5.112) and (6.72).

As in superconductivity theory, for Peierls dielectric we can introduce matrix Green’s
function:

Ĝ−1(εnp) =

�
iεn + ξp −∆∗

−∆ iεn − ξp

�
(6.73)

or (F− ≡ F )

Ĝ(εnp) =

�
G F−

F+ G̃

�
=

�
G++ G+−
G−+ G−−

�
(6.74)

where notations ± correspond to “ends” of Fermi line (Fermi “points”) (±pF ) and to
obvious electron transitions in our system. Often we speak just about ± (“right” or
“left”) electrons. In addition to (6.69) and (6.70) here we also have the obvious equations:

(iεn + ξp)G̃(εnp) − ∆∗F (εnp) = 1 (6.75)

(iεn − ξp)F+(εn) − ∆G̃(εnp) = 0 (6.76)

From (6.71), after analytic continuation iεn → ε + iδ, we can easily
(similarly to (5.78)) calculate the density of electronic states close to Fermi
level, which takes the same form (5.79) as in BCS theory:

N(ε)
N(EF )

=

{ |ε|√
ε2−|∆2| for |ε| > |∆|

0 for |ε| < |∆|
(6.77)
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Characteristic form of the density of states is shown in Fig. 6.9. Despite
almost complete coincidence of all expressions, obtained here, with those of
BCS theory, from previous discussion it is quite clear that energy gap |∆|
is now of dielectric nature.

Fig. 6.9 BCS – like density of electronic states in Peierls insulator.

Up to now we have done only a first part of our task — we still have to
write down equations for self – consistent determination of ∆, which was
introduced above “by hand”. As ∆ is determined by the anomalous average
(6.48), we shall write down (Matsubara) equations of motion for operators
bQ and b+Q perform Gibbs averaging. With the help of Hamiltonian (6.46),
in a standard way, we get:(
− ∂

∂τ
− ωQ

)
< b±Q(τ) >= −gQ

∑
p

< a+
p∓Qap >= −gQ

∑
p

F∓(pτ = −0)

(6.78)(
− ∂

∂τ
+ ωQ

)
< b+±Q(τ) >= gQ

∑
p

< a+
p±Qap >= −gQ

∑
p

F±(pτ = −0)

(6.79)
From these expressions we see that “phonon” anomalous average (6.48)
are proportional to “electronic” anomalous averages < a+

p±Qap >
6. Thus,

sometimes it is said that we are dealing here with electron – hole pairing.
6It is clear now that charge density wave (CDW) appears in a system, as its order

parameter is < a+p±Qap >. For the Fourier component of charge density we have (Q =
2pF ):

< ρq >= ρ0δ(q) + ρ1δ(q ±Q), ρ1 ∼
�

p

< a+p±Qap > (6.80)

which gives < ρ(x) >= ρ0 + ρ1 cos(2pF x+ φ).
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After Fourier transformation over Matsubara “time”, the system of
equations (6.78), (6.79) reduces to:

(iωm − ωQ) < b±Q >ωm= −gQ

∑
p

∑
n

F∓(pεn) (6.81)

(iωm + ωQ) < b+±Q >ωm= gQ

∑
p

∑
n

F±(pεn) (6.82)

From these equations we obtain:

< bQ + b+−Q >ωm= − gQ

ω2
m + ω2

Q

2ωQT
∑

p

∑
n

F−(εnp) (6.83)

For ωm = 0 (Bose – condensate!) we have:

< bQ + b+−Q >ωm=0= −λωQ

gQ

∫
dξpT

∑
n

F−(εnp) (6.84)

where, as usual, we have changed variables from p to ξp integration and
taken into account definition (6.21). Then, from (6.48) and (6.84) we get:

∆ = gQ < bQ + b+−Q >ωm=0= − λ

ωQ

∫ EF

−EF

dξpT
∑

n

F−(εnp) (6.85)

where we have introduced the cut – off in divergent integral at energies of
the order of ±EF , similar to frequency summation cut – off discussed above.
Substituting here (6.72) and performing standard calculations, similar to
those made above in case of superconducting transition, we obtain BCS –
type gap equation for ∆:

1 = λ

∫ EF

0

dξ
1√

ξ2 + ∆2(T )
th

√
ξ2 + ∆2(T )

2T
(6.86)

From this equation it follows immediately, that the temperature of Peierls
transition and the value of the gap at T = 0 are determined by standard
relations:

Tp0 =
2γ
π
EF e

− 1
λ , ∆0 =

π

γ
Tp0 (6.87)

In particular, the value of transition temperature Tp0 naturally coincides
with (6.24), obtained from our analysis of instability of the “normal” phase.
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6.3 Peierls dielectric with impurities.

It is instructive to analyze the condensed phase of Peierls insulator with
the account of scattering by non magnetic impurities (disorder)7. Acting
in a standard way and in obvious notations, we write down the system of
Gorkov equations with impurity scattering (for the case of weak disorder,
pF l 
 1), shown diagrammatically in Fig. 6.10 (cf. Fig. 5.8 and the
following discussion for superconductors):

Fig. 6.10 Gorkov equations for Peierls dielectric with impurity scattering.

G(εnp) = G0(εnp) +G0(εnp)Σ(εnpp)G(εnp) +G0(εnp)∆F (εnp) +

+G0(εnp)Σ(εnpp−Q)F (εnp)

(6.88)

F (εnp) = G0(εnp−Q)Σ(εnp−Qp−Q)F (εnp) +G0(εnp−Q)∆∗G(εnp) +

+G0(εnp−Q)Σ(εnp−Qp)G(εnp)

(6.89)

Solution of this system, with the account of “nesting” condition ξp−Q = −ξp
(forQ = 2pF ), has the following form (cf. (5.137), (5.138), (5.139), (5.140)):

G(εnp) = [iε̃n + ξp]Det−1 (6.90)

F (εnp) = ∆̃∗Det−1 (6.91)
7It also gives us an opportunity to perform in detail all calculations, which are prac-

tically the same as dropped above in our discussion of superconductors with magnetic
impurities.
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where

iε̃n = iεn − Σ(εnpp) ≡ iεn − Σn(εn) (6.92)

∆̃n = ∆ + Σ(εnp−Qp) ≡ ∆ + Σa(εn) (6.93)

Det = (iε̃n)2 − ξ2p − |∆̃n|2 (6.94)

and, similarly to the case of superconductors, here we also have:

Σn(εn) = ρv2νF

∫ ∞

−∞
dξpG(εnξp) = −Γ

2
iε̃n√

ε̃2n + |∆̃n|2
(6.95)

Σa(εn) = ρv2νF

∫ ∞

−∞
dξpF (εnξp) = −Γ

2
∆̃n√

ε̃2n + |∆̃n|2
(6.96)

where Γ = 1
τ = 2πρv2νF . Then from (6.92) – (6.96) we have:

iε̃n = iεn +
Γ
2

iε̃n√
ε̃2n + |∆̃n|2

(6.97)

∆̃n = ∆n − Γ
2

∆̃n√
ε̃2n + |∆̃n|2

(6.98)

Note the opposite signs in (6.97) and (6.98), making this result different
from (5.142), (5.143), (5.145) and similar to (5.152), (5.153) (the case of
magnetic impurities in superconductors). This follows directly from differ-
ence between (6.71), (6.72) and (5.111), (5.112), already noted above.

Introducing

un =
ε̃n

∆̃n

(6.99)

from (6.97) and (6.98) we find:

εn

∆
= un

{
1 − Γ

∆
1√

u2
n + 1

}
(6.100)
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This equation determines un as a function of εn/∆ and Γ/∆. Knowing un,
we can find:

ε̃n = εn +
1
2
Γ

un√
u2

n + 1
(6.101)

∆̃n = ∆ +
1
2
Γ

1√
u2

n + 1
(6.102)

Similarly to (6.85), order parameter (gap function) ∆ is determined now
by the equation:

∆ = −λT
∑

n

∫
dξpF

+(εnξp) (6.103)

or

1 = −λT
∑

n

∫
dξp

∆̃n

∆

(iεn)2 − ξ2p − |∆̃n|2
(6.104)

We deliberately drop limits of integration here! Let us now subtract in both
r.h.s. and l.h.s. of this equation an expression, standing in the r.h.s. for
∆ → 0 and in the absence of impurities. Then we obtain:

1 + λT
∑

n

∫ ∞

−∞
dξp

1
(iεn)2 − ξ2p

=

= −λT
∑

n

∫ ∞

−∞
dξp

{
∆̃n

∆

(iεn)2 − ξ2p − |∆̃n|2
− 1

(iεn)2 − ξ2p

}
(6.105)

Now we can take infinite limits of integration, due to fast convergence of
all integrals!

Performing elementary integrations, we get:

1 − λT
∑

n

π

|εn|
= 1 − λ ln

2γEF

πT
= λ ln

Tp0

T
=

= −λT
∑

n

⎧⎨
⎩

∆̃n

∆√
ε̃2n + |∆̃n|2

− 1
|εn|

⎫⎬
⎭ (6.106)

where in the sum over n in l.h.s. we introduced cut – off at |εn| ∼ EF ,
as was done before in (6.16), while in r.h.s. we can sum over all n up to
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infinity. As a result, using (6.99), we immediately obtain:

ln
Tp0

T
= πT

∑
n

{
1

|εn|
− ∆−1√

1 + u2
n

}
(6.107)

where un is determined from Eq. (6.100). For ∆ → 0, from (6.100) we
have:

un∆ → εn + Γ
εn

|εn|
(6.108)

so that

un = ∆−1(εn + Γsignεn) (6.109)

Then √
1 + u2

n → |un| =
1
∆

[|εn| + Γ] (6.110)

and from (6.107) we obtain the following equation for transition tempera-
ture:

ln
Tp0

Tp
= 2πTp

∑
n≥0

{
1
εn

− 1
εn + Γ

}
(6.111)

which, with the use of (6.19), reduce again to already known to us Eqs.
(5.157), (6.45):

ln
Tp0

Tp
= ψ

(
1
2

+
Γ

2πTp

)
− ψ

(
1
2

)
(6.112)

For small Γ, similarly to (5.160), we have:

Tp ≈ Tp0 −
π

4
Γ = Tp0 −

π

4τ
(6.113)

For the critical disorder Γc, at which Tp vanishes, we obtain:

Γc =
1
τc

=
π

2γ
Tp0 =

∆00

2
(6.114)

where ∆00 denotes the gap at T = 0 and in the absence of impurities (6.87).
Consider now the case of T = 0. Introduce notations:

∆0 = ∆(T = 0; Γ), ∆00 = ∆(T = 0; Γ = 0) (6.115)
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For T → 0 in equations, discussed above, we have to make the obvious
change: T

∑
n ...→

∫
dε
2π .... In particular, Eq. (6.104) reduces to:

1 = −λ
∫

dε

2π

∫
dξp

∆̃ε

∆

ε̃2ε − ξ2p − |∆̃ε|2
(6.116)

where ε̃ε and ∆̃ε are determined by analytic continuation of (6.97) – (6.107):

ε̃ε = ε+
Γ
2

u√
1 − u2

(6.117)

∆̃ε = ∆0 −
Γ
2

1√
1 − u2

(6.118)

ε

∆0
= u

{
1 − Γ

∆
1√

1 − u2

}
(6.119)

Subtracting from both r.h.s. and l.h.s. of (6.116) an expression, standing
at the r.h.s., but taken with ∆̃ε → ∆0 and ε̃→ ε, we obtain (taking infinite
integration limits in fast converging integrals):

1 + λ

∫ ∞

0

dξp√
ξ2p + ∆2

0

= 1 + λ ln
2EF

∆0
= −λ ln

∆00

∆0
=

= −λ
∫ ∞

−∞

dε

2π

∫ ∞

−∞

{
∆̃ε

∆0

ε̃2 − ξ2p − ∆̃2
ε

− 1
ε2 − ξ2p − ∆2

0

}
=

=
λ

2

∫ ∞

−∞
dε

⎧⎨
⎩

∆̃ε

∆0√
∆̃2

ε − ε̃2
− 1√

∆2
0 − ε2

⎫⎬
⎭ (6.120)

so that for the gap function at T = 0 we have the following equation:

ln
∆0

∆00
=
∫ ∞

0

dε

{
∆−1

0√
1 − u2

− 1√
∆2

0 − ε2

}
=

=
∫ ∞

0

dx

{
1√

1 − u2(x)
− 1√

1 − x2

}
(6.121)

In the first integral in (6.121) we change integration over x to that over u,
which is defined in (6.119). Then, taking into account x = ∞ ↔ u∞ = ∞,
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x = 0 ↔ u0 = 0 for Γ
∆0

≤ 1, and x = 0 ↔ u0 =
√

Γ2

∆2
0
− 1 from Γ

∆0
> 1,

after calculating elementary integrals, we get:

ln
∆0

∆00
=

⎧⎨
⎩

−π
4

Γ
∆0
, Γ

∆0
≤ 1

− 1
2arctg

(
Γ2

∆2
0

)−1/2

+ ∆0
Γ

(
Γ2

∆2
0

)1/2

− ln
[

Γ
∆0

+
(

Γ2

∆2
0

)1/2
]
, Γ

∆0
≥ 1

(6.122)
Then, it follows that ∆ = 0 for Γ > Γc = ∆00/2 = πTp0/2γ (cf. (6.114)).

Electronic density of states is given by:

N(ε)
N(EF )

= − 1
π

∫ ∞

−∞
dξpIm

ε̃ε + ξp

ε̃2ε − ξ2p − ∆̃2
ε

=

= Im
ε̃ε√

∆̃2
ε − ε̃2ε

= Im
u√

1 − u2
(6.123)

where u = u
(

ε
∆0
, Γ

∆0

)
is determined from (6.119). It is clear that density of

states (6.123) is non zero for |u| > 1. Energy gap in the spectrum is defined
as the region of ε, where (6.123) is equal to zero. Then, from (6.123) it can
be seen, that half – width of the gap is defined as Maxε = εg, for which

(6.119) still has a real solution for u
(

ε
∆0

)
with |u| < 1. Thus defined value

of εg depends on the ratio Γ
∆0

. For Γ = 0 we obviously have εg = ∆00.

Maximizing the r.h.s. of (6.119), we find ug

(
Γ

∆0

)
= u

(
Γ

∆0
,

εg

∆0

)
:

Max u

[
1 − Γ

∆0

1√
1 − u2

]
≡MaxF(u) = Max

ε

∆0
=

εg

∆0
(6.124)

From F ′(ug) = 0 we obtain:

1 − Γ
∆0

1√
1 − u2

g

−
u2

g

(1 − ug)3/2

Γ
∆0

= 0 (6.125)

so that

(1 − u2
g)

3/2 =
Γ
∆0

, u2
g < 1 (6.126)

and:

ug =

√
1 −

(
Γ
∆0

)2/3

(6.127)
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Substituting (6.127) into (6.119), we find finally:

εg = ∆0

{
1 −

(
Γ
∆0

)2/3
}3/2

(6.128)

Thus we have εg = 0 for Γ
∆0

≥ 1, when density of states becomes “gap-
less”, despite the fact that order parameter ∆0 �= 0. Appropriate region of
parameters (at T = 0) is determined by an inequality:

∆0 ≤ Γ ≤ ∆00

2
(6.129)

For Γ = ∆0 from (6.122) it follows that ∆0 = exp
(
−π

4

)
∆00, so that ap-

propriate Γ = 2 exp
(
−π

4

)
Γc ≈ 0.91Γc, which defines rather narrow gapless

region on the phase diagram8.

6.4 Ginzburg – Landau expansion for Peierls transition.

For temperatures T > Tp0 we can expand free – energy of the system,
undergoing Peierls transition, in powers of the order – parameter:

∆Q = gQ < bQ + b+Q >, Q ∼ 2pF (6.130)

which is quite similar to GL – expansion in superconductors.
From the very beginning, we shall work in static approximation, taking

ωm = 0. Our aim is to obtain microscopic derivation of coefficients in an
expansion for the difference of free – energies of “condensed” and “normal”
phases, which is written as:

F (∆Q; T ) − F (0; T ) = a(Q)|∆Q|2 + b|∆Q|4 + · · · (6.131)

The form of expansion (6.131) directly follows from general Landau theory
of second order phase transitions [Sadovskii M.V. (2003a)].

Contributions due to (6.130) appear from the phonon part of Hamil-
tonian (6.46):

Hph =
∑
Q

ωQb
+
QbQ (6.132)

8All the results obtained here are directly related also to the problem of magnetic
impurities in superconductors, discussed in the previous Chapter. Historically, first these
were obtained during the analysis of precisely this problem of superconductivity theory
(A.A.Abrikosov, L.P.Gorkov, 1960).
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and its electron – phonon interaction part:

Hint =
∑
pQ

∆Qa
+
p+Qap (6.133)

Restricting ourselves to a contribution of a single mode with fixed Q, we
have:

< Hph >= ωQ < b+QbQ + b+−Qb−Q >= ωQ
|∆Q|2
2g2

Q

=
N(EF )
λ

|∆Q|2 (6.134)

Then, using the standard loop expansion of free – energy [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)] in powers of Hint, we immediately
obtain an expansion shown in Fig. 6.11. It is clear that diagram shown in

Fig. 6.11 Diagrammatic representation of Ginzburg – Landau expansion for Peierls
transition.

Fig. 6.11 (a) defines the term a(Q)|∆Q|2, while that of Fig. 6.11 (b) gives
b|∆Q|4. During the calculations we have to remember [Abrikosov A.A.,
Gorkov L.P., Dzyaloshinskii I.E. (1963)], that contribution of diagram in
Fig. 6.11 (a) has to be multiplied by an extra factor of 1/2, and that of
Fig. 6.11 (b) by 1/4 accordingly. Besides, during calculation of the loops,
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we have to take into account contributions of both Fermi “points”, giving
an extra factor of 2.

In fact, all calculations, leading to a(Q)|∆|2 – contribution, were already
performed in (6.10) – (6.32). Thus we can immediately write (taking into
account Q = 2pF + q, ωm = 0 and ξp−2pF = −ξp):

1
2
[Fig. 6.11 (a)] = −T

∑
n

∫
dp

2π
G0(εnξp)G0(εn, −ξp + vF q) =

= N(EF )
{
− ln

2γEF

πT
+

1
2

[
ψ

(
1
2

+
ivF q

4πT

)
+ ψ

(
1
2
− ivF q

4πT

)
− 2ψ

(
1
2

)]}
(6.135)

Then we have:

a(q) = N(EF )
{

1
λ
− ln

2γEF

πT
+

1
2

[
ψ

(
1
2

+
ivF q

4πT

)
+ ψ

(
1
2
− ivF q

4πT

)
−

−2ψ
(

1
2

)]}
(6.136)

During calculations of b – coefficient, we neglect its dependence on q, so
that we have:

b =
1
4
[Fig. 6.11 (b)] =

1
2
T
∑

n

∫
dp

2π
G2

0(εnξp)G2
0(εn, −ξp) (6.137)

or

b =
1
2
TN(EF )

∫
dξp
2πi

2πi
∑

n

1
(iεn − ξp)2

1
(iεn + ξp)2

=

= −TN(EF )2πi
∑

n

signεn

(2iεn)3
==

N(EF )
16π2T 2

∞∑
n=0

1
(n+ 1/2)3

=
7ζ(3)

16π2T 2
N(EF )

(6.138)

Let us return to the analysis of a(q), defined by (6.136). Making expansion
in powers of q (as during the derivation of (6.28)), we obtain:

a(q) = N(EF )
{

ln
T

Tp0
+

1
2
ψ

(
1
2

+
ivF q

4πT

)
+

1
2
ψ

(
1
2
− ivF q

4πT

)
− ψ

(
1
2

)}
≈

≈ N(EF )
{
T − Tp0

Tp0
+

7ζ(3)
16π2T 2

v2
F q

2

}
=

= N(EF )
{
T − Tp0

Tp0
+ ξ20(T )q2

}
(6.139)
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where we used also (6.29), defining the “coherence length”.
Finally, Ginzburg – Landau expansion for Peierls transition is written

as:

F (∆Q; T )− F (0; T ) = N(EF )
T − Tp0

Tp0
|∆Q|2 +

+N(EF )ξ20(Tp0)|∆Q|2(Q− 2pF )2 +
7ζ(3)

16π2T 2
N(EF )|∆Q|4

(6.140)

By the way, from this expression it is clear that correlation length, intro-
duced above in (6.36), is in fact the correlation length of fluctuations of the
order – parameter at T ∼ Tp0 in Gaussian approximation.

In the presence of random impurities, all calculation for a(q) are quite similar to

those done during the derivation of (6.43) (it is sufficient to consider only the case of
ωm = 0). As a result, we get:

a(q) = N(EF )

�
ln

T

Tp0
+

1

2
ψ

�
1

2
+

1

2πTτ
+
ivF q

4πT

�
+

1

2
ψ

�
1

2
+

1

2πTτ
− ivF q

4πT

�
− ψ

�
1

2

��
(6.141)

For vF q � 4πT we have:

a(q) ≈ N(EF )

�
T − Tp

Tp
+

B

16π2T 2
v2F q

2

�
(6.142)

where Tp is determined by the well known equation (6.45)

ln
Tp

Tp0
+ ψ

�
1

2
+

1

2πTpτ

�
− ψ

�
1

2

�
= 0 (6.143)

The constant B in (6.142) is determined as:

B =
∞�

n=0

1)
n+ 1

2
+ 1

2πTτ

*3 = −1

2
ψ(2)

�
1

2
+

1

2πTτ

�
(6.144)

Accordingly, in the impure case we have the following asymptotic expressions for “co-
herence length”:

ξ20(T ) = −
v2F

32π2T 2
ψ(2)

�
1

2
+

1

2πTτ

�
≈

≈
	

7ζ(3)v2
F

16π2T2 for 1
τ
� 4πT

v2F τ
2 for 1

τ
� 4πT

(6.145)

Naturally, we everywhere assume that τ > τc = γ
πTp0

= 2∆−1
00 . As to GL – coefficient b

in the system with impurities, its calculation is to cumbersome and we drop it.
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6.5 Charge and spin density waves in multi – dimensional
systems. Excitonic insulator.

A natural question may arise — why we are dealing in so much details
with Peierls transition? We analyzed the one – dimensional problem, and
we actually learned above that long – range order (phase transition) is,
strictly speaking, broken by fluctuations and impossible in such a system.
In this sense, our approach, based on mean – field description of this phase
transition seems to be unjustified. However, in reality, Peierls transition
is experimentally observed in a number of quasi – one – dimensional sys-
tems, where even small interaction of electrons (or order parameters) on
neighboring “chains” of atoms (effects of three – dimensionality) leads to
stabilization of this transition9.

What is more important for us at the moment, is the fact, that theo-
retical scheme, described in detail above, is almost completely valid for the
description of structural and magnetic phase transitions in two – dimen-
sional and three – dimensional systems, possessing the “nesting” property of
an energy spectrum (Fermi surface, or parts of it) [Khomskii D.I. (1999)].
Similar description is also applicable to a model of so called “excitonic
insulator” — one of the basic models in the theory of metal – insulator
transitions. The thing is, that in the case, when electronic spectrum ε(p)
satisfies “nesting” condition:

ε(p + Q) = −ε(p) (6.146)

where Q is some (nesting) vector in reciprocal space, response functions
of appropriate multi – dimensional system (i.e. polarization operator, loop
diagram, etc.) are described by practically the same expressions, as in
one – dimensional case. Accordingly, such systems become unstable to
formation of charge density (CDW) waves (deformation of the lattice) with
wave – vector Q, if electron – phonon interaction is a dominating one. If
dominating interaction is electron – electron one (repulsion), as a rule, in
such systems the similar instability occurs in “spin – channel”, leading to
the formation of spin – density wave (SDW).

Condition (6.146) is valid on the whole Fermi surface, for example, in
the case of tight – binding spectrum with transfer integral J , different from

9Discussion of some early experiments and theoretical studies can be found in a nice
review paper by L.N.Bulaevskii, Physics Uspekhi 115, 263 (1975).
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zero only between nearest neighbors in the square lattice:

ε(p) = −2J(cospxa+ cos pya) (6.147)

Eq. (6.146) in this case is satisfied for Q = (π/a, π/a) (a is lattice spacing),
and the Fermi surface, for the case of half – filled band (one conduction
electron per atom), is just a square, shown in Fig. 6.12 (a). We see that
after the “translation” by vector Q the opposing sides of this Fermi surface
just coincide, which leads to the appearance of logarithmic singularities of
“one – dimensional” type in response functions, and Fermi surface becomes
completely “closed” by dielectric gap.

Another possibility is that after the translation by vector Q only finite
parts (“patches”) of the Fermi surface coincide, as it is shown in Fig. 6.12
(b). Then the energy spectrum can also become unstable, but dielectric gap
is “opened” only on these parts of the Fermi surface, while the remaining
parts remain “metallic”. Such situation is realized in some “layered” – com-
pounds of transition metals(e.g.NbSe2, T aS2 etc.) [White R.M., Geballe
T.H. (1979)]. In some of these systems (e.g. in T−TaS2) we observe almost
complete metal – insulator transition (due to strong “nesting”), so that the
energy gap almost completely “closes” the Fermi surface. In other systems
(e.g. in H − NbSe2) Fermi surface is only partially “closed”, so that the
system remains metallic due to “open” parts. However, CDW transition
is signalled in anomalies of temperature dependence of resistivity, and in
some thermodynamic characteristics (e.g. in specific heat).

Fig. 6.12 “Nesting” property of Fermi surface in two – dimensional system: (a) – half
– filled band in tight – binding approximation with Q = (π/a, π/a), (b) – general case.

Similar in many respects is a remarkable model of “excitonic insulator”
(L.V.Keldysh, Yu.V.Kopaev, 1964). This model is based on the model of
electronic spectrum, shown in Fig. 6.13. Here we have overlapping bands
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of electron and holes. Such a band structure (with small band overlap) is
typical for so called semi – metals. From Fig. 6.13 it is seen that in both
cases, shown as (a) and (b), Fermi surface consists of electron and hole
“pockets” and we have “nesting” condition of the following form:

ε1(p) = −ε2(p) for spectrum (a) (6.148)

ε1(p) = −ε2(p + Q) for spectrum (b) (6.149)

Thus, we have instability of the spectrum at zero wave – vector in case (a),
or at finite vector Q in case (b), which is due to formation of electron – hole
pairs, induced by natural attraction of electrons and holes (as for the usual
Wannier – Mott excitons), and their “Bose – condensation”(sometimes it is
called Bose – condensation of “excitons”). Qualitatively, situation here is
very similar to Cooper pairing in superconductors, the major difference, of
course, is that electron – hole pairs are electrically neutral (non charged),
but in the spectrum we again obtain an energy gap at the Fermi level, which
is formed due to this phase transition, as it is shown (for case (a)) in Fig.
6.14. As a result, the system becomes “excitonic” insulator. In the case

Fig. 6.13 Electronic spectrum of initial semi – metal in the model of an excitonic
insulator: (a) – directly overlapping bands, (b) – indirect overlap with extrema of electron
and hole bands at different points of the Brillouin zone, connected by vector Q.

of instability at the finite wave – vector Q, determined by band structure
of the type shown in Fig. 6.13 (b), a charge density wave (CDW) or a spin
density wave (SDW) forms in a system.

Mathematical analysis of this model is very similar to that of BCS and
even more to our analysis of Peierls transition. Thus, we limit ourselves to
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Fig. 6.14 Electronic spectrum of excitonic insulator in the model with direct overlap of
electron and hole bands.

only schematic discussion10. For definiteness, let us discuss the case of the
spectrum, shown in Fig. 6.13 (a), when both spectra of electrons and holes
are very simple:

ε1,2(p) = ±
(

p2

2m1,2
− p2

F

2m1,2

)
(6.150)

Excitonic instability is determined (similarly to Cooper instability) by the
sum of ladder diagrams in particle – hole channel, shown in Fig. 6.15 (a).
All calculations are practically the same as those done during the derivation
of (5.15) – (5.17), and we obtain the vertex, defined by integral equation of
Fig. 6.15 (b), expression analogous to (5.17):

Γ(q = 0, ω) =
λ

1 + λ
(
ln
∣∣2ωc

ω

∣∣− iπ
2

) (6.151)

Here ωc ∼ EF is the cut – off frequency for logarithmic divergence, q and
ω are sums of momenta and energies of e− h pair. Dimensionless coupling
constant λ < 0 (attraction!). For the case of screened Coulomb e − h –
interaction, it can be shown that:

λ =
me2

2πpF
ln
κ2

D

2p2
F

(6.152)

10Detailed analysis of excitonic instability can be found in a review paper by
Yu.V.Kopaev, P.N.Lebedev Physical Institute Proceedings 86, 3 (1975) and in [Ginzburg
V.L., Kirzhnits D.A. (1982)]
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Fig. 6.15 Vertex part describing “excitonic” instability: (a) – ladder approximation for
particle – hole interaction, (b) – integral equation for vertex part.

Attraction in particle – hole channel leads to the appearance of the pole of
(6.151) at imaginary frequency ω = iΩ, where (cf. (5.19)):

Ω = 2ωce
− 1

|λ| (6.153)

indicating instability of the system towards pairing of electrons and holes
(i.e. formation of “excitons”) from different bands, close to overlapping e
and h Fermi surfaces.

To find the excitation spectrum in “condensed” phase, we have to act
as in BCS theory, or in the case of Peierls transition. Let us write down an
interaction Hamiltonian for particles from different bands as:

Hint =
∑
ppq′

V (q)a+
1σ(p + q)a+

2σ′ (p′ − q)a2σ′ (p′)a1σ(p) (6.154)

where we have explicitly written band and spin indices. Separating “most
highly divergent” contributions to the scattering amplitude (vertex part),
corresponding to scattering of electrons from band 1 on holes from band 2,
we can transform this Hamiltonian to quadratic form, introducing appro-
priate anomalous averages:

Hint ∼ a+
1σ(p′)a+

2σ′ (p)a2σ′(p′)a1σ(p) →< a+
2σ′(p)a1σ(p) > a+

1σ(p′)a2σ′ (p′)
(6.155)

Then it can be diagonalized by Bogoliubov u−v transformation, similarly to
the case of BCS theory [Sadovskii M.V. (2003a)]. But instead, we can also
write down appropriate Gorkov equations for Green’s functions for both
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bands G1(εp) and G2(εp), introducing again anomalous Green’s functions
F and F+, “mixing” particles from different bands:

F (r1t1; r2t2) = −i < Tψ2(r2t2)ψ+
1 (r1t1) > (6.156)

F+(r1t1; r2t2) = −i < Tψ1(r1t1)ψ+
2 (r2t2) > (6.157)

Then we can write down equations of motion, e.g. for G1, and leave in the
“r.h.s.” only contributions of the type of (6.155). Similarly we can deal
with F . Finally, we obtain Gorkov equations:

(ε− ε1(p))G1(εp) − ∆F (εp) = 1 (6.158)

(ε− ε2(p))F (εp) − ∆∗G1(εp) = 0 (6.159)

where

∆(p) = i

∫
dp′dε
(2π)4

V (p− p′)F (p′ε) (6.160)

Solution of Eqs. (6.158), (6.159) is:

G1(εp) =
ε− ε2(p)

ε2 − (ε1(p) + ε2(p))ε+ ε1(p)ε2(p) − |∆(p)|2 (6.161)

F (εp) =
∆∗(p)

ε2 − (ε1(p) + ε2(p))ε+ ε1(p)ε2(p) − |∆(p)|2 (6.162)

and we immediately obtain excitation spectrum:

E1,2(p) =
1
2
[ε1(p) + ε2(p)] ±

√
1
4
[ε1(p) − ε2(p)]2 + |∆(p)|2 (6.163)

Solution of the gap equation gives (as in BCS theory) ∆ = Ω, where Ω is
defined in (6.153).

Thus we obtain insulating spectrum, shown in Fig. 6.14, and mechanism
of its formation, introduced above, is considered as one of most important
mechanisms of metal – insulator transitions. What are the basic properties
of excitonic insulator? Naively, we have direct analogy with BCS super-
conductor — a Bose condensate of neutral electron – hole pairs forms in
the ground state. So it was thought initially that such an insulator may
possess anomalous properties due to possible superfluidity of e − h pairs
(which may signal itself e.g. in “super thermal conduction”). However,
special studies has shown, that apparently no “superfluidity” is realized in
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this model, and we are dealing with more or less “usual” insulator. Un-
fortunately, experimentally, the state of excitonic insulator is observed in
rather rare cases. This is apparently due to the fact, that exact “nesting”
properties of the type of (6.148), (6.149), with complete matching of elec-
tron and hole Fermi surfaces, are difficult to obtain (in three – dimensional
systems), while deviations from these conditions suppress excitonic insta-
bility. Besides, similarly to the case of Peierls transition, normal impurities
(disorder) also destroy excitonic phase. However, excitonic instability is
considered as a microscopic reason for the formation of different types of
charge and spin ordering in a number of real systems.

Up to now we considered attractive interaction. However, even in the
case of repulsive interaction, systems with “nesting” properties of Fermi
surfaces may acquire instabilities in “spin channel”, leading not to CDW,
but to SDW transition (A.W.Overhauser, 1965). To understand this, let us
return to Eqs. (2.14), (2.15) for magnetic susceptibility in a system with
Hubbard interaction:

χ(qω) =
χ0(qω)

1 + UΠ0(qω)
=

χ0(qω)
1 − 4U

g2µ2
B
χ0(qω)

(6.164)

Let us remind that, in accordance with our definitions Π0(q0) < 0, and due
to g = 2 we can write χ0 = −µ2

BΠ0.
In one – dimensional, and also in higher – dimensional systems with

“nesting”, magnetic susceptibility χ0 ∼ Π0(q) possesses logarithmic singu-
larity at q = Q, where Q is vector of “nesting”. Accordingly, in case of
repulsion (U > 0), total susceptibility (6.164) has a pole (divergence), of
the same type as in charge channel (dielectric permeability, charge response
function) in case of attraction (excitonic instability). In this case, instabil-
ity signals a tendency to magnetic ordering — formation of SDW with the
wave vector Q. Instability appears again even for the case of arbitrarily
weak repulsion U . Of course, in case of incomplete “nesting” (or even in
its absence) this instability may require strong enough repulsion, so that
we satisfy inequality:

U |Π0(Q, 0)| > 1 (6.165)

This condition also applies to the theory of itinerant ferromagnetism, when
Q = 0. Then we have Π0(q → 0, 0) = −N(EF ), so that (6.165) reduces to:

UN(EF ) > 1 (6.166)
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giving the well known Stoner criterion of ferromagnetic instability.
Formal analysis here is again similar to that used in our discussion of

Peierls transition. For simplicity, let us again consider one – dimensional
case and Hubbard interaction U

∑
i ni↑ni↓. In momentum representation

Hubbard Hamiltonian can be written as (L is the length of a system):

H =
∑
kσ

(εk − µ)a+
kσakσ +

U

L

∑
kk′q

a+
k↑ak+q↑a+

k′↓ak′−q↓ (6.167)

Spin density at the point x is defined as:

Sz(x) =
1
2
[c+↑ (x)c↑(x) − c+↓ (x)c↓(x)] =

=
1

2L

∑
kk′

[c+k↑ck′↑ − c+k↓ck′↓]e−i(k−k′)x (6.168)

As susceptibility (6.164) is divergent (in this case at q = 2pF ), let us leave
in (6.168) only terms with k − k′ = ±2pF . Then we have11:

Sz(x) =
1

2L

∑
k

[< c+k↑ck+2pF ↑ > − < c+k↓ck+2pF ↓ >]ei2pF x + c.c. (6.169)

Defining:

< S >= |S|eiφ =
1
L

∑
k

[< c+k↑ck+2pF ↑ > − < c+k↓ck+2pF ↓ >] (6.170)

and introducing appropriate anomalous averages into Hamiltonian (6.167)
(with only terms with q = ±2pF left), we obtain:

H =
∑
kσ

{εka
+
kσakσ + (∆a+

k+2pF σakσ + h.c.)} (6.171)

where (N is the number of atoms in our chain)

∆ =
U

N
< Sz >=

U

N

1
2
Re(< S > ei2pF x) =

U

N
|S| cos(2pFx+ φ) (6.172)

All these relations are quite similar to Eqs. (6.46) – (6.50), and the structure
of solutions is absolutely clear. In particular, electronic spectrum in such
system takes the form:

Ek = µ±
√

(εk − µ)2 + |∆|2 (6.173)
11Term with k′ = k − 2pF becomes complex conjugate to the first term in (6.169),

after the change of summation index k → k + 2pF .
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and is the same as shown in Fig. 6.6.
Magnetic structure (SDW), appearing in the system, can be represented

by two static waves of electrons with spins ↑ and ↓, being in antiphase, so
that charge density remains homogeneous, while spin density oscillates with
period 2π/2pF (order parameter (6.172)). This is called sinusoidal SDW.
In principle, another types of solutions are possible, e.g. so called helicoidal
SDW, where the modulus of spin remains constant along the chain direction,
while its direction rotates in orthogonal plane, as shown in Fig. 6.16:

< Sx >= |S| cos(2pFx+ φ), < Sy >= |S| sin(2pFx+ φ) (6.174)

Usually, such structure has slightly lower energy.

Fig. 6.16 “Helicoidal” spin density wave.

Of course, thermodynamics of these transitions can also be analyzed in
a standard way, In mean – field we obtain critical temperature, at which
SDW vanishes and the gap in electronic spectrum disappears. Appropriate
expressions are very similar to those obtained in BCS theory, or in the
theory of Peierls transition. In particular, for transition temperature we
usually obtain something similar to (6.24), with dimensionless coupling
constant λ = UN(EF ).

Analogous treatment can be used for higher – dimensional systems with
“nesting”. Experimentally SDW of this type were observed in a number of
quasi – one – dimensional organic compounds. But probably most notorious
is SDW transition in chromium. Magnetism of Cr is explained by this type
of a model (or more precisely, in its two – band analogue, of the type
of excitonic insulator), as in Cr we have the Fermi surface consisting of
electron and hole “pockets”, possessing “nesting” property.

Another useful model (with possible practical applications) deals with
two – dimensional electrons on a square lattice in a tight – binding approx-
imation (6.147), with only nearest neighbor transfers. We already noted
that in case of half – filled band, Fermi surface of such system is repre-
sented by the square, shown in Fig. 6.12 (a), so that we have complete
“nesting” with vector Q = (π/a, π/a). Accordingly, in the case of repul-
sion we shall obtain here SDW with Q = (π/a, π/a), which will “close” the
whole Fermi surface by the energy gap ∆, so that the system will become
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dielectric. At the same time, it is easy to understand that SDW with such
wave vector corresponds to the “usual” (two sublattice) antiferromagnet
(with “checkerboard” ordering of oppositely directed spins on the square
lattice). One example of such a system is well known, that is the insulating
state of La2CuO4, where spins of Cu order precisely in the same way in
CuO2 plane. This system is especially interesting as small doping by holes
makes it a typical high – temperature superconductor. Thus, the models
of the type discussed above, may be of use here.

6.6 Pseudogap.

6.6.1 Fluctuations of Peierls short – range order.

Return again to one – dimensional system with Peierls CDW. As we noted
several times before, in purely one – dimensional case long – range order
(at finite temperatures) is impossible. So let us discuss qualitatively, what
happens in the temperature region T < Tp0, if we take into account fluctu-
ations, destroying long – range order. Write down one – dimensional GL –
expansion (6.140) as:

F (∆Q; T ) − F (0; T ) = a(T )|∆Q|2 + c(T )(Q− 2pF )2|∆Q|2 + b(T )|∆Q|4
(6.175)

where coefficients a(T ), c(T ) are:

a(T ) = N(EF )
T − Tp0

Tp0
, Tp0 =

2γ
π
EF e

− 1
λ (6.176)

c(T ) = N(EF )ξ20(T ), ξ20(T ) =
7ζ(3)v2

F

16π2T 2
(6.177)

while for coefficient b(T ) we can write the following interpolation formula
(P.A.Lee, T.M.Rice, P.W.Anderson, 1973):

b(T ) =
{
b0 + (b1 − b0)

T

Tp0

}
N(EF )
T 2

p0

, b0 =
γ2

2π2
, b1 =

7ζ(3)
16π2

(6.178)
Then, GL – expansion (6.175), which was formally obtained for the region
of T ∼ Tp0, can be applied also for qualitative analysis of low – temperature
region. In particular, for T → 0 we get:

F (∆ ∼ ∆0) ≈ −1
2
N(EF )∆2

0 + 2N(EF )(|∆| − ∆0)2 + · · · (6.179)
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where ∆0 = π
γ Tp0 = 2EF e

− 1
λ coincides with the gap function at T = 0,

obtained in mean – field approximation. For the temperature dependence
of the order parameter, in a standard way [Sadovskii M.V. (2003a)] we
obtain:

∆(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 for T > Tp0(
− a

2b

)1/2 =
(

N(EF )
2b

)1/2 (
Tp0−T

Tp0

)1/2

for T ≤ Tp0

∆0 = π
γ Tp0 for T � Tp0

(6.180)
Thus, GL – expansion (6.175) – (6.178) qualitatively reproduces results of
mean – field approximation (microscopic theory) in the whole temperature
interval. But this approximation, as is well known, does not take into
account fluctuations of the order – parameter, which, in fact, just destroy
long – range order in one – dimensional systems.

In principle, fluctuations of the order parameter {∆Q} may be arbitrary.
However, the probability of a given fluctuation ∆Q is given by [Sadovskii
M.V. (2003a)]:

P(∆Q) ∼ exp
{
− 1
T

[F (∆Q, T ) − F (0, T )]
}

(6.181)

Then, the statistical sum over all fluctuations is described by the functional
integral [Sadovskii M.V. (2003b)] of the following form:

Z =
∫
{δ∆Q} exp

{
− 1
T

[F (∆Q, T ) − F (0, T )]
}

(6.182)

Accordingly, the free energy of the system as a whole is given by F =
−T lnZ.

One – dimensional model of GL type (6.175) allows practically exact
treatment (D.J.Scalapino, M.Sears, R.A.Ferrell, 1972). We shall not deal
with this problem, but only quote most important qualitative results. The
absence of long – range order is equivalent to vanishing value of thermody-
namic average of the order – parameter:

< ∆Q >=
1
Z

∫
{δ∆Q}∆Q exp

{
− 1
T

[F (∆Q, T )− F (0, T )]
}

= 0 (6.183)

However, mean – square fluctuation of the order parameter is obviously
non zero: < |∆Q|2 > �= 0. Accordingly, two – point correlation function of
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fluctuations of the order parameter, in our model, is given by:

< ∆(x)∆(x′) >= 2 < |∆|2 > exp
{
−|x− x′|

ξ(T )

}
cos 2pF (x − x′) (6.184)

Behavior of parameters, determining (6.184), is shown12 in Figs. 6.17, 6.18,
where t = T

Tp0
, and the value of ∆t defines the width of the “Ginzburg”

critical region [Sadovskii M.V. (2003a)], which in this model is given by:

∆t =
∆T
Tp0

=
(
bTp0

a′2ξ0

)2/3

∼
(
N(EF )
T 2

p0

Tp0

vF

1
N(EF )

)2/3

∼
(

1
N(EF )vF

)2/3

∼ 1

(6.185)
where a′ is defined by a(T ) = a′(t − 1), and in the last estimate we used
N(EF ) = 1

πvF
. Note that the width of Ginzburg critical region of the order

of unity, in fact, corresponds to the absence of true phase transition (long
– range order).

Fig. 6.17 Temperature behavior of mean – square fluctuation of the order parameter
in one – dimensional GL model. Shown are cases of real and complex order parameters.
Dashed line — mean – filed approximation for the square of the order parameter.

Basic qualitative conclusions, following from results shown in Figs. 6.17,
6.18, are as follows. Crudely we may estimate < |∆|2 >∼ ∆(T ) ∼ Tp0 in

rather wide temperature region. Correlation length ξ(T ) ∼ ξ0

√
Tp0

T−Tp0
for

12Peierls transition with incommensurate CDW is described by complex order para-
meter, while that with commensurate CDW — by the real one.
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Fig. 6.18 Temperature behavior of inverse correlation length in one – dimensional GL
model. Shown are cases of real and complex order parameters. Dashed line — mean –
field approximation.

T 
 Tp0, but ξ(T ) → ∞ only for T → 0. At the same time, for tem-
peratures T < Tp0, correlation length becomes very large — in our system
appear rather large regions of short – range order, where we can speak
about the existence of (fluctuating) Peierls CDW with the wave vector of
the order of Q ∼ 2pF .

Real systems, where Peierls transition is observed experimentally, are
always quasi – one – dimensional, with one – dimensional chains coupled by
weak inter – chain interactions, which lead to stabilization of Peierls long
– range order at some finite transition temperature. Interchain coupling
may be due to electron tunnelling between chains, i.e. due to, in fact, three
– dimensional (though strongly anisotropic) nature of electronic spectrum.
Also of importance may be “direct” interaction of order – parameters on the
nearby chains. For example, we may remember, that Peierls CDW creates
real modulation of electronic charge density along the chain:

ρ(x) = ne
∆
λEF

cos(Qx+ φ) (6.186)

which, in turn, creates electrostatic potential around the chain, given by:

ϕ(r⊥, x) = 2ne
∆
λEF

cos(Qx+ φ)K0(Qr⊥) (6.187)

where K0(r) is Bessel function of imaginary argument (exponentially small
for large distances). Thus, we obtain electrostatic interaction energy of
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CDW’s (per chain length) of the following form:

U = U0

∑
n

∑
<m>

cos(φn − φm) (6.188)

where the second sum is taken over the nearest neighbors (chains) of the
chain n. We conclude that there is an energy gain in case of CDW’s on
the neighboring chains being in antiphase, as shown in Fig. 6.19. Thus we

Fig. 6.19 CDW antiphase ordering on neighboring chains due to electrostatic interchain
interaction.

obtain three – dimensional ordering and a real phase transition. Qualita-
tively, the temperature of such transition is determined by almost obvious
condition U0ξ(T ) ∼ T , which gives the following equation for the critical
temperature:

1 ∼ 1
Tc
U0ξ(Tc) (6.189)

As temperature T lowers, the value of ξ(T ), as we have seen in purely one
– dimensional model, grows (ξ(T ) → ∞ for T → 0), so that solution of Eq.
(6.189) exists even for arbitrarily small U0. In real life everything depends
on parameters. It can be that Tc ∼ Tp0, or it may be that Tc � Tp0. Thus,
in quasi – one – dimensional systems we may have wide enough temperature
region, where Tc � T � Tp0, and long – range order is absent, though well
developed fluctuations of short – range order exist and are characterized by
correlation function of the type of (6.184). For high enough temperatures
T ∼ Tp0 these fluctuations may be considered as Gaussian, for T � Tp0

this is obviously wrong. Correlation length of these fluctuations is of order
of ξ(T ) and may significantly greater than interatomic spacing.

Let us consider the problem of three – dimensional ordering in the system of inter-
acting order parameters on the nearby chains in more details. For such a system (with
chains enumerated by indices i, j), from purely phenomenological point of view we can
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write the following GL – expansion:

F{∆i} =

�
dx

ξ0

$&
'�

i

-
a|∆i(x)|2 + b|∆i(x)|4 + c

####d∆i

dx

####2
.

+
1

2

�
<ij>

λij∆i(x)∆j(x)

01
2

(6.190)
where we assume only nearest neighbor (chains) interaction.

The average value of the order parameter can be written as:

< ∆i >=

= Z−1

�
{δ∆}∆i(x) exp

$&
'− 1

T

�
dx′

ξ0

�
��

i

Fi(∆i(x
′)) +

1

2

�
ij

λij∆i(x
′)∆j(x

′)

�
�
01
2 →

→ Z−1

�
{δ∆}∆i(x) exp

$&
'− 1

T

�
dx′

ξ0

�
��

i

Fi(∆i(x
′)) +

�
ij

λij∆i(x
′) < ∆j >

�
�
01
2

(6.191)

where in the second line we have made “mean – field” approximation over the interchain
coupling. For T → Tc we have < ∆i >→ 0, then we can write:

< ∆i >≈

≈ Z−1
�

{δ∆}∆i(x) exp

	
− 1

T

�
dx′

ξ0

�
i

Fi


$&
'1 +

1

T

�
dx′

ξ0

�
ij

∆i(x
′) < ∆j >

01
2 =

=
1

T

�
dx′

ξ0

�
j

λij < ∆i(x)∆i(x
′) >< ∆j > (6.192)

so that critical temperature Tc is determined by the equation:

1 =
λ

T

�
dx′

ξ0
< ∆i(x)∆i(x

′) >, λ =
�
<j>

λij (6.193)

and, using

< ∆i(x)∆i(x
′) >=< ∆2 > exp

�
−|x− x′|ξ−1(T )

�
(6.194)

we get equation similar to (6.189):

1 =
λ

T
< ∆2 >

ξ(T )

ξ0
(6.195)

and the same conclusions as above.

6.6.2 Electron in a random field of fluctuations.

Consider an electron propagating in a random field of fluctuations ∆(x),
which we assume to be Gaussian. Then we can use the usual “impurity”
diagram technique, associating with interaction (scattering) lines correla-
tion function of order parameter (6.184). In momentum representation we
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associate with interaction line the Fourier – transform of (6.184):

S(Q) = 2∆2

{
κ

(Q− 2pF )2 + κ2
+

κ

(Q+ 2pF )2 + κ2

}
(6.196)

where κ = ξ−1(T ), and < |∆|2 > is denoted (for shortness) as ∆2. In the
following we shall first consider much oversimplified, but quite instructive,
variant of this model, corresponding to the limit of ξ → ∞ (κ → 0), i.e.
the asymptotics of very large correlation lengths of short – range order
fluctuations13. This problem can be solved exactly, and we can sum all
Feynman diagrams of perturbation theory for “interaction” (6.196), which
in the limit of ξ → ∞ (κ→ 0) becomes14:

S(Q) = 2π∆2{δ(Q− 2pF ) + δ(Q+ 2pF )} (6.197)

Consider the simplest contribution to electron self – energy, described by the
diagram shown in Fig. 6.20, which we write in Matsubara representation:

Fig. 6.20 Simplest diagram for electron self – energy. Wave – like line denotes correlator
S(Q).

Σ(εnp) =
∫
dQ

2π
S(Q)

1
iεn − ξp−Q

≈ 2∆2

∫ ∞

−∞

dx

2π
κ

x2 + κ2

1
iεn + ξp − vFx

=

= 2∆2

∫ ∞

−∞

dx

2π
κ

(x− iκ)(x+ iκ)
1

iεn + ξp − vFx
=

=
∆2

iεn + ξp + ivFκ

(6.198)

13To avoid misunderstanding, note that this limit does not correspond to the appear-
ance of long – range order! Electron is propagating in the Gaussian random field with
specific pair correlator, not in periodic system. In details this will be seen from the
analysis which follows.

14Note the obvious analogy of this model with that of Keldysh, discussed above.



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 285

where, for definiteness we assume p ∼ +pF , εn > 0 and defined the new
integration variable x via Q = 2pF + x (it is helpful to look once again at
Fig. 6.3!).

The limit of ξ(T ) → ∞ (κ → 0) should be understood as the require-
ment of:

vFκ = vF ξ
−1 � Max{2πT, ξp} (6.199)

or

vFκ = vF ξ
−1 � 2πT, ξ(T ) 
 |p− pF |−1 (6.200)

Then (6.198) gives just:

Σ(εnp) ≈
∆2

iεn + ξp
(6.201)

Now, for “interaction” of the form of (6.197) there is no problem to write
down the contribution of an arbitrary diagram for Green’s function correc-
tion in any order, e.g. of the type shown in Fig. 6.21. In such a diagram
of the n – th order in S(Q) we have 2n vertices, connected by interac-
tion lines in any possible combinations. These lines either “bring” or “take
away” momenta Q = 2pF

15. As a result, in the analytic expression for the
contribution of such a diagram we have a sequence of alternating Green’s
functions like 1

iεn−ξp
(n times) and 1

iεn+ξp
(also n times), plus one more

(at the start of the sequence) 1
iεn−ξp

16. In addition we have the factor of
∆2n. Finally, we see that contributions of all diagrams in a given order just
coincide and the total contribution of this order can be obtained by multi-
plication by the total number of these diagrams, which is easily calculated
from combinatorics — it is equal to n!. In fact, wee have 2n points (ver-
tices), with “incoming” or “outgoing” interaction lines. Of these, n points

15These processes have to alternate with each other, so that electron does not “leave”
far from the Fermi level (Fermi points ±pF ) in Fig. 6.3 or Fig. 6.7 (in opposite case large
energies appear in denominators of Green’s functions in higher orders). This requirement
is absent in the case of commensurate fluctuations, e.g. like period doubling, when we
work with the spectrum shown in Fig. 6.8 and “bringing” or “taking away” any number
of momenta Q = (π/a, π/a) leave an electron close to the Fermi level. Accordingly, in
this special case a different combinatorics of interaction lines (similar to that in Keldysh
model) appears. We drop this special case for shortness of our presentation.

16Obviously, just in the same way we may solve for the case of arbitrary fixed scattering
vector Q, when we have alternating 1

iεn−ξp
and 1

iεn−ξp−Q
. Here we take Q = 2pF only

for compactness of our expressions and because of the physics of Peierls transition.
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are connected with “outgoing” line, which in any of n! ways may “enter”
into the remaining “open” n vertices. Use now the identity17:

∞∑
n=0

n!zn =
∞∑

n=0

∫ ∞

0

dζe−ζ(ζz)n =
∫ ∞

0

dζe−ζ 1
1 − ζz

(6.202)

Then we easily sum the whole series for Green’s function and obtain an

Fig. 6.21 Diagram of an arbitrary order for the single – electron Green’s function.

exact solution of our problem (M.V.Sadovskii, 1974)18:

G(εlp) =
∞∑

n=0

∆2nn!
(iεl − ξp)n(iεl + ξp)n(iεl − ξp)

≡
∞∑

n=0

n!zn(εl, ξp)G0(εlξp) =

=
∫ ∞

0

dζe−ζ iεl + ξp
(iεl)2 − ξ2p − ζ∆2

≡< Gζ∆2(εlξp) >, εl = (2l+ 1)πT

(6.203)

where we have used the notation:

z(εl, ξp) = ∆2G0(εl, ξp)G0(εl,−ξp) (6.204)

and we obtained the “normal” Green’s function of the Peierls dielectric:

G∆2(εlp) =
iεl + ξp

(iεl)2 − ξ2p − ∆2
(6.205)

“averaged” according to:

< ... >ζ=
∫ ∞

0

dζe−ζ ... (6.206)

It is easy to understand (formal proof is given in Appendix B), that (6.203)
represent the Green’s function of an electron, which is propagating in an

17As already noted above, in mathematics this procedure is called Borel summation.
18Let us stress once again the major difference of this problem from that of an electron,

propagating in coherent periodic field, analyzed above in connection with (6.57), (6.58).
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external periodic field of the form 2W cos(2pFx + φ), with amplitude W
“fluctuating” according to so called Rayleigh distribution19:

P(W ) =
2W
∆2

e−
W2

∆2 (6.207)

while the phase φ is homogeneously distributed over the interval from 0 to
2π.

Performing analytic continuation iεl → ε ± iδ, from (6.203) we obtain
for ε > 0:

ImGR,A(εξp) = ∓π(ε+ ξp)
∫ ∞

0

dζe−ζδ(ε2 − ξ2p − ζ∆2) =

= ∓ π

∆2
(ε+ ξp)θ(ε2 − ξ2p)e−

ε2−ξ2
p

∆2 (6.208)

so that spectral density

A(εξp) = − 1
π
ImGR(εξp) (6.209)

acquires “non Fermi – liquid” form, shown in Fig. 6.22.

Fig. 6.22 Spectral density in the model of the pseudogap state: (1)—ξp = 0; (2)—
ξp = 0.1∆; (3)—ξp = 0.5∆.

19This distribution is widely used in statistical radiophysics: S.M.Rytov. Introduction
to statistical radiophysics. Part I. “Nauka”, Moscow, 1976.
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Fig. 6.23 Density of states with pseudogap.

Let us write for completeness also the analytic expressions for ReGR,A(εξp):

ReGR,A(εξp) =

$%%%&
%%%'

ε+ξp

∆2 e
− ε2−ξ2

p

∆2 Ei

�
ε2−ξ2

p

∆2

�
for ε2 − ξ2p ≥ 0

ε+ξp

∆2 e
|ε2−ξ2

p|
∆2 Ei

�
− |ε2−ξ2

p|
∆2

�
for ε2 − ξ2p < 0

(6.210)

where Ei(x) and Ei(x) are integral exponential functions. Let us stress, that our Green’s
function (6.203) does nor possess poles in the vicinity of the Fermi level and, in this sense,
does not describe the spectrum of any “elementary excitations” (quasiparticles), once
again demonstrating “non – Fermi liquid” behavior.

Electron density of states of is now given by:

N(ε)
N0(EF )

=
∣∣∣ ε
∆

∣∣∣ ∫ ε2

∆2

0

dζ
e−ζ√
ε2

∆2 − ζ
= 2

∣∣∣ ε
∆

∣∣∣ exp
(
− ε2

∆2

)
Erfi

( ε
∆

)
=

=

{
1 for |ε| → ∞
2ε2

∆2 for |ε| → 0
(6.211)

where N0(EF ) is the density of states of free electrons at the Fermi level,
while Erfi(x) =

∫ x

0
dxex2

is probability integral of an imaginary argument.
Characteristic form of this density of states is shown in Fig. 6.23 and
demonstrates the presence of “soft” pseudogap in the vicinity of the Fermi
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level. In fact, it is just the density of states of Peierls dielectric (6.77),
shown above in Fig. 6.9, averaged over the gap fluctuations, determined by
Rayleigh distribution (6.207).

Generalization of these results for the case of finite correlation lengths ξ(T ) (or finite
κ) is much more difficult (M.V.Sadovskii, 1979). First of all, we have to learn how to
calculate the contribution of an arbitrary diagram in any order. Unfortunately, this
problem can not be solved exactly, as integrations become more and more cumbersome.
However, we can formulate some very effective (as we shall see below) approximate
Ansatz, allowing to write down an explicit expression for any diagram in any order. On
Fig. 6.24 we show all essential diagrams of third order. Assume we are working with

Fig. 6.24 All relevant diagrams of third order.

linearized spectrum of Fig. 6.3, and scattering vector Q < pF , so that scattering takes
place only within one branch (“right” or “left”) of the spectrum. In this case we can
calculate the contribution of any diagram of the type shown in Fig. 6.24, as it happens
that we can guarantee, that only non zero contributions to integrals come from the poles
of the Lorentzian S(Q) (6.196), like in (6.198). This is due to the fact, that electron
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velocity does not change sign, while we remain within a single branch of the spectrum.
For example, after elementary calculations we find that the contribution of Fig. 6.24 (d)
is given by:

∆6 1

iεn − ξp

1

iεn − ξp−Q + ivF κ

1

iεn − ξp + 2ivF κ

1

iεn − ξp−Q + 3ivF κ
×

× 1

iεn − ξp + 2ivF κ

1

iεn − ξp−Q + ivF κ

1

iεn − ξp

(6.212)

Assume now, that ξp and ξp−Q in (6.212) represent the real spectrum of an electron,
which is, of course, a continuous function of momenta p. Then we can safely continue
(6.212) to any value of Q, including Q = 2pF . In this case, instead of (6.212) we
immediately obtain (remember “nesting” condition (6.61)!):

∆6 1

iεn − ξp

1

iεn + ξp + ivF κ

1

iεn − ξp + 2ivF κ

1

iεn + ξp + 3ivF κ
×

× 1

iεn − ξp + 2ivF κ

1

iεn + ξp + ivF κ

1

iεn − ξp

(6.213)

This is the essence of our Ansatz! In fact, it is exact in the limit of ξ → ∞ (or κ → 0),
as is obvious from the direct comparison with the above discussion of this case. Thus,
for Q = 2pF we actually take into account backward scattering (from one branch of the
spectrum to the other) by Q exactly, the only approximation made concerns the account
of small (at large ξ or small κ) “deviations” from scattering vector Q = 2pF .

Now we can easily see, that contributions of all the other diagrams (calculated in
the way just described) are entirely analogous: the numbers over the electron lines in
Fig. 6.24 indicate how many times ivF κ occurs in the corresponding denominator. We

note that the contribution of the diagram with crossing interaction lines in Fig. 6.24 (d)
is equal to that of diagram without crossings, shown in Fig. 6.24 (e). We stress that
simplicity of the expressions for the contributions of the various diagrams is due entirely
to our Ansatz, but we shall see that this is, apparently, a very good approximation.

In fourth order there are 4! = 24 relevant diagrams, all of the irreducible diagrams
for self – energy are shown in Fig. 6.25. The corresponding contributions are now easily
found and are analogous in form to those obtained in third order, with the use of the
numbers over electron lines is as in Fig. 6.24. Furthermore, again there are quite a
number of equalities among the diagrams: (a)=(b)=(c)=(d); (e)=(f)=(g)=(h); (i)=(j);
(k)=(l).

The general rules for writing out the expression corresponding to an arbitrary dia-
gram are now clear. The contribution of any diagram is determined by the arrangement
of initial and final vertices (in Fig. 6.25 they are marked with letters i and f). In each
electron line following a vertex of type i a term ivF κ is added in the denominator, and
in an electron line following a vertex of type f , such a term is subtracted.

Thus, it is clear that the contribution of any diagram is determined by the arrange-
ment of initial and final vertices. Furthermore any diagram with intersecting interaction
lines can be uniquely represented by a diagram without any intersections. The recipe
for the construction of the corresponding diagram without intersections (for a given
arrangement of i and f vertices) is: Counting from the left, the first final vertex must be
connected with an interaction line to the nearest initial vertex on its left, and so on for
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Fig. 6.25 All irreducible diagrams for self – energy in fourth order.

the remaining vertices not so far connected with interaction lines. Thus, for example, the
diagrams of Fig. 6.25 (b), (c), (d) reduce to the form of Fig. 6.25 (a), the diagrams of
Fig. 6.25 (e), (f) reduce to the form of Fig. 6.25 (g), and so on. For a fixed distribution
of initial vertices, the final vertices can be chosen only from the points of opposite parity
(as we limit ourselves to incommensurate case only). The numbers put on electron lines
in Figs. 6.24 and 6.25 can be transferred to the vertices, by assigning to a vertex the
number of terms ivF κ in the denominator corresponding to the line proceeding after that
vertex. The general rule is: To an initial vertex is assigned the number Nn = Nn−1 + 1,
where Nn−1 is the number assigned to the nearest vertex on the left. To a final vertex
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is assigned the number Nn − 1. Also N0 = 0, and n is the order number of a vertex.
Let us define:

v(k) =

� k+1
2

for odd k
k
2

for even k.
(6.214)

Then it can be verified that the number of irreducible self – energy diagrams which
are equal to a given diagram without intersections of interaction lines is equal to the
product of the factors of v(Nn) for all initial vertices of that diagram (P.V.Elyuitin,
1977)20 . Accordingly, we can conduct all further discussion in terms of diagrams without
intersections of interaction lines by applying to all initial vertices the appropriate factors
v(Nn).

Any diagram for an irreducible self – energy, when restructured according to the
rules that have been formulated above, contains an all – surrounding interaction line, i.e.
reduces to the form, shown in Fig. 6.26 (a). This allows us to derive recursion equations

Fig. 6.26 Representation of general irreducible self – energy via diagrams without in-
tersecting interaction lines.

determining the irreducible self – energy, which includes all diagrams of Feynman series.
By definition of irreducible self – energy part, we write Dyson equation for the Green’s
function as:

G−1(εn, ξp) = G−1
0 (εn, ξp) − Σ1(εn, ξp) (6.215)

20The only change for commensurate case is that we define v(k) = k, for any k.
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where

Σ1(εn, ξp) =
∆2

(iεn + ξp − ivF κ)2
Ξ1(εn, ξp) = ∆2G2

0(εn,−ξp − ivF κ)Ξ1(εn, ξp) (6.216)

and for Ξ1(εn, ξp) we have an expansion shown in Fig. 6.26 (b) in terms of diagrams
without intersecting interaction lines, with factors v(Nn) attributed to vertices. This
expansion can be expressed in the standard way in terms of the corresponding irreducible
diagrams:

Ξ1(εn, ξp) = G−2
0 (εn,−ξp − ivF κ){G−1

0 (εn,−ξp − ivF κ) − Σ2(εn, ξp)}−1 (6.217)

where G0(εn, ξp) denotes the free electron Green’s function, and Σ2(εn, ξp) can be ex-
pressed as a sum of irreducible diagrams shown in Fig. 6.26 (c):

Σ2(εn, ξp) = ∆2v(2)G2
0(εn, ξp − 2ivF κ)Ξ2(εn, ξp) (6.218)

Ξ2(εn, ξp) = G−2
0 (εn, ξp − 2ivF κ){G−1

0 (εn, ξp − 2ivF κ) − Σ3(εn, ξp)}−1 (6.219)

and so on. We have finally:

Σk(εn, ξp) = ∆2v(k)G2
0(εn, (−1)kξp − ikvF κ)Ξk(εn, ξp) (6.220)

Ξk(εn, ξp) = G−2
0 (εn, (−1)ξp − ikvF κ){G−1

0 (εn, (−1)kξp − ikvF κ) − Σk+1(εn, ξp)}−1

(6.221)
so that the fundamental recursion relation for self – energy takes the form
(M.V.Sadovskii, 1979):

Σk(εn, ξp) =
∆2v(k)

G−1
0 (εn, (−1)kξp − ikvFκ) − Σk+1(εn, ξp)

(6.222)

Similarly we can write the recursion formula for the Green’s function itself:

Gk(εn, ξp) = {iεn − (−1)kξp + ikvFκ− ∆2v(k + 1)Gk+1(εn, ξp)}−1 (6.223)

with physical Green’s function being determined as G(εn, ξp) ≡ Gk=0(εn, ξp), which
represents the sum of all Feynman series for our problem. Actually, these recursion
relations yield the representation of the single – electron Green’s function in the form of
the following continuous fraction:

G(εn, ξp) =

=
1

iεn − ξp − ∆2

iεn + ξp + ivF κ− ∆2

iεn − ξp + 2ivF κ− 2∆2

iεn + ξp + 3ivF κ− ...

(6.224)

Symbolically, this recursion relation can be represented by Dyson – like equation shown
diagrammatically in Fig. 6.27.
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Fig. 6.27 Dyson – like representation of recursion relation for Green’s function.

For κ = 0 we can use continuous fraction representation of the incomplete Γ –
function:

Γ(α, x) =

� ∞

x
dte−ttα−1 =

xα

x+ 1−α
1+ 1

x+ 2−α
1+...

(6.225)

and the relation Γ(0, x) = −Ei(−x) to verify that (6.224), after the usual analytic
continuation iεn → ε+ iδ, reduces to (6.210), (6.208), thus reproducing our exact result
(6.203), etc.

From the fundamental recursion relation (6.222), after analytic continuation iεn →
ε+ iδ, we obtain similar relations for real and imaginary parts of self – energy:

ReΣk(ε, ξp) =
∆2v(k)[ε− (−1)kξp −ReΣk+1(ε, ξp)]

[ε− (−1)kξp − ReΣk+1(ε, ξp)]2 + [kvFκ− ImΣk+1(ε, ξp)]2
(6.226)

ImΣk(ε, ξp) =
−∆2v(k)[kvF κ− ImΣk+1(ε, ξp)]

[ε− (−1)kξp − ReΣk+1(ε, ξp)]2 + [kvF κ− ImΣk+1(ε, ξp)]2
(6.227)

Next we can use these relations for numerical calculations — start with some large
enough (to guarantee convergence) value of k and e.g. ReΣk+1 = ImΣk+1 = 0, and
perform calculations down to k = 1. In fact, convergence is pretty fast, and calculations
take only seconds on any modern PC.

Let us start from spectral density:

A(ε, ξp) = − 1

π
ImGR(ε, ξp) =

ImΣ1(ε, ξp)

[ε− ξp −ReΣ1(ε, ξp)]2 + [ImΣ1(ε, ξp)]2
(6.228)

Results of our calculations are shown in Fig. 6.28 for different values of dimensionless
parameter Γ = vF κ/∆ = vF ξ

−1/∆. As we know, in the case of well defined quasiparti-
cles the spectral density is given by δ(ε− ξp) or similar narrow peak around the value of
quasiparticle energy ξp. However, our results show that at small values of Γ, i.e. for large
correlation lengths ξ � vF /∆, our solution contains no contributions of quasiparticle
type. Quite opposite, our spectral density shows rather wide double peak (pseudogap)
structure due to strong renormalization by short – range order fluctuations (in the limit
of ξ → ∞ (κ → 0) it reduces to that shown in Fig. 6.22), transforming continuously to
a single peak, as we move far from the Fermi level (for large ε, ξp � ∆). The second
peak in spectral density is usually attributed to the so called “shadow band”. Similarly,
at fairly large values of Γ (short correlation lengths ξ � vF /∆), we also obtain a quasi
– free single peak behavior at ε ∼ ξp, corresponding to weakly damped quasiparticles.

The physical reason for the free – like behavior ar small ξ (large κ) is clear. In the
limit of ξ = κ−1 → 0 our effective interaction (6.196) with fluctuations becomes short –
ranged, but is not reduced to the common “white noise” limit. Although all momenta
in the integral (for self – energy) over Q become important, the scattering amplitude
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Fig. 6.28 The surfaces of spectral density A(ε, ξp) for: (a) — Γ = 0.1; (b) — Γ = 0.5;
(c) — Γ = 1.0; (d) — Γ = 5.0. All energies are in units of ∆.

itself becomes ∼ ∆2/κ, so that scattering rate, estimated (via Fermi “golden rule”) as
2πN0(EF )∆2/κ = ∆2/vF κ = ∆/Γ → 0, as κ → ∞ (where we used N0(EF ) = 1/2πvF

for electron density of states at the Fermi level for one-dimensional case). Correspond-
ingly, in the limit of κ → ∞ electrons become effectively “free” (as they do also if we
move far from the Fermi level).

Now let us calculate density of states:

N(ε)

N0(EF )
=

� ∞

−∞
dξpA(ε, ξp) (6.229)

Results for different value of Γ = vF κ/∆ = vF ξ
−1/∆ are shown in Fig. 6.29 with full

curves. We see that for finite κ = ξ−1 density of states now is finite at the Fermi level
(cf. Fig. 6.23). Pseudogap is gradually smeared (or “filled”) by additional scattering
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due to finiteness of correlation length21 and completely vanishes for vF κ � ∆.

Fig. 6.29 Density of states with pseudogap for different values of Γ = vF κ/∆. Full lines
— our approximation. Dashed lines — results of exact numerical simulation (L.Bartosch,
P.Kopietz, 1999).

Dashed curves in Fig. 6.29 show the results of exact numerical simulation of the
density of states for our (one – dimensional) problem, obtained by “crude force”, i.e. via
direct solution of Schroedinger equation for many configurations of Gaussian random
field (with correlator (6.196)) subsequent averaging (L.Bartosch, P.Kopietz, 1999). We
can clearly see that our approximation (based on the Ansatz (6.213) for contribution of
higher – order diagrams) is in fact very good quantitatively, probably except the close
vicinity of the Fermi level (center of the pseudogap)22 (cf. (6.199), (6.200)). Obviously,
our method has many advantages in comparison with “direct” numerical approaches,
it is much less time – consuming, and also it can be generalized to more complicated
situations, e.g. to the study of pseudogaps in two – dimensions (very important in high
– temperature copper oxide superconductors)23 .

21Physically, we are dealing now with an electron, propagating in the system of random
one – dimensional “clusters” of length ∼ ξ, with “periodic” field 2W cos(Qx + φ) with
Q ∼ 2pF within each of the “clusters” and random amplitude W , distributed “almost”
according to (6.207).

22In case of commensurate fluctuations similar comparison shows, that our Ansatz is
less accurate — it misses the formation of so called Dyson singularity in the center of
the pseudogap (L.Bartosch, P.Kopietz, 1999).

23We refer the reader for further discussion and references to our review paper:
M.V.Sadovskii. Physics Uspekhi 44, 515 (2001).
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6.6.3 Electromagnetic response.

Remarkable property of the model under consideration is the availability of
an exact (in the limit of correlation length ξ → ∞) solution (i.e. our ability
to sum all diagrams) also for the response function, describing reaction to
an external electromagnetic field (polarization operator) (M.V.Sadovskii,
1974).

First of all, let us write down some general relations in zero – temper-
ature technique (T = 0). Apply to our system a small perturbing external
vector – potential:

δHint = − e

mc

∫
d3rψ+(r)p · δA(rt)ψ(r) (6.230)

where δA(rt) = δAqωe
iqr−iωt. Appropriate variation of the single – elec-

tron Green’s function can be written as [Abrikosov A.A., Gorkov L.P.,
Dzyaloshinskii I.E. (1963)]:

δG(εp) = −G(εp)
e

mc
(p · δAqω)G(ε+ ωp + q) + iG(εp)G(ε+ ωp + q) ×

×
∫

d3p′

(2π)3

∫
dε′

2π
Γ(εp, ε′p′;qω)G(ε′p′)

e

mc
(p′ · δAqω)G(ε′ + ωp′ + q)

(6.231)

or

δG(εp) = G(εp)J(εp; ε+ ωp + q)G(ε+ ωp + q)δAqω (6.232)

which is shown diagrammatically in Fig. 6.30. From here, by the way, it is

Fig. 6.30 Variation of Green’s function due to a small external electromagnetic field.
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clear that for the free – electron Green’s function:

δG0(εp) = −G0(εp)
e

mc
pG0(ε+ ωp + q)δAqω ≡

≡ G0(εp)J0(p;p + q)G0(ε+ ωp + q)δAqω (6.233)

where

J0(p;p + q) = − e

mc
p (6.234)

is the “current” vertex for the free particle. The full vertex is defined from
(6.232) as:

J(p;p + q) = −δG
−1(εp)
δAqω

(6.235)

Quite similar expressions appear also for the case of response to an external
scalar potential:

δHint = e

∫
d3rψ+(r)δϕ(rt)ψ(r) (6.236)

where δϕ(rt) = δϕqωe
iqr−iωt. In particular, similarly to (6.231) we have:

δG(εp) = G(εp)eδϕqωG(ε+ ωp + q) − iG(εp)G(ε+ ωp + q) ×

×
∫

d3p′

(2π)3

∫
dε′

2π
Γ(εp, ε′p′;qω)G(ε′p′)eδϕqωG(ε′ + ωp′ + q)

(6.237)

or

δG(εp) = G(εp)J0(εp; ε+ ωp + q)G(ε+ ωp + q)δϕqω (6.238)

where we have defined “scalar” vertex J0(p; p+ q):

J0(p; p+ q) = −δG
−1(εp)
δϕqω

(6.239)

Diagrammatically (6.238) is again expressed by Fig. 6.30. Analogously to
(6.233):

δG0(εp) = G0(εp)G0(ε+ ωp + q)eδϕqω ≡
≡ G0(εp)J0

0 (p;p + q)G0(ε+ ωp + q)δϕqω (6.240)

where J0
0 (p; p+ q) = e is the “free” vertex.
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It is convenient to introduce a general definition of the vertex:

Jµ(p; p+ q) = −δG
−1(εp)

δAµ(qω)
(6.241)

where Aµ(qω) = {ϕqω,Aqω}, so that the “free” vertex is:

Jµ
0 (p; p+ q) =

{
− e

mcp µ = 1, 2, 3
e µ = 0

(6.242)

or

δG0(εp)
δAµ(qω)

= G0(εp)Jµ
0 (p; p+ q)G0(ε+ ωp + q) (6.243)

while for the “full” Green’s function:

δG(εp)
δAµ(qω)

= G(εp)Jµ(p; p+ q)G(ε+ ωp + q) (6.244)

Now it is time to start! Let us consider our model in the asymptotic limit
of large correlation lengths ξ → ∞. From previous discussion it is clear,
that an arbitrary diagram, describing response to an external field, can
be obtained from the arbitrary diagram for the single – electron Green’s
function (of the type shown in Fig. 6.21) by “insertion” of the line of
external field into any of electron lines of this diagram, as it is shown in
Fig. 6.31 (and we have to do all possible insertions!). Performing such

Fig. 6.31 Diagram of an arbitrary order for the vertex correction, describing interaction
with external electromagnetic field.

“differentiation” of the whole series (6.203)24, we obtain (m – number of
24In fact, we are explicitly calculating functional derivative of the whole perturbation

series for the single – particle Green’s function and “generating” all diagrams for the
appropriate vertex part.
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the “block” z, to which we insert the line of Aµ(qω)):

δG(εp)

δAµ(qω)
=

� ∞�
n=1

n�
m=1

(ζz(εp))m−1ζ
δz

δAµ(qω)
(ζz(ε+ ωp + q))n−mG0(ε+ ωp + q)+

+
∞�

n=0

(ζz(εp))n δG0(εp)

δAµ(qω)

�
ζ

(6.245)

Here δG0(εp)
δAµ(qω) is defined by (6.243), and derivative of the “block” z(εp) is

determined by Fig. 6.32 and is equal to:

Fig. 6.32 Diagrams for functional derivative of “block” z(εp).

δz(εp)

δAµ(qω)
= ∆2G0(εp)Jµ

0 (p;p + q)G0(ε+ ωp + q)G0(ε+ ωp − Q + q) +

+∆2G0(εp)G0(εp − Q)Jµ
0 (p − Q;p − Q + q)G0(ε+ ωp − Q + q) =

= G0(εp)Jµ
0 (p;p + q)z(ε+ ωp + q) + z(εp)Jµ

0 (p − q;p − Q + q)G0(ε+ ωp − Q + q)

(6.246)

Substituting (6.246) into (6.245), and taking into account (6.243), we ob-
tain:

δG(εp)

δAµ(qω)
=

� ∞�
n=1

n�
m=1

(ζz(εp))m−1(ζz(ε + ωp + q))n−m+1
G0(εp)Jµ

0 (p; p + q)G0(ε + ωp + q)

� �� �
I

+

+
∞�

n=1

n�
m=1

(ζz(εp))m(ζz(ε + ωp + q))n−mG0(ε + ωp − Q + q)Jµ
0 (p − Q;p − Q + q)G0(ε + ωp + q)

� �� �
II

+
∞�

n=0
(ζz(εp))nG0(εp)Jµ

0 (p; p + q)G0(ε + ωp + q)

� �� �
III

�

ζ

(6.247)
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The first and third terms of this expression together give:

< I + III >ζ=

�
J

µ
0 (p; p + q)G0(εp)G0(ε + ωp + q)

��
	

∞�
n=0

ζ
n

z(εp)+

+
∞�

n=1

n�
m=1

ζm−1zm−1(εp)ζn−m+1zn−m+1(ε + ωp + q)


�
�
�

ζ

= (m − 1 → m)

= J
µ
0 (p; p + q)G0(εp)G0(ε + ωp + q)

� ∞�
n=0

n�
m=0

ζ
m

z
m(εp)ζn−m

z
n−m(ε + ωp + q)

�
ζ

=

=

�
J

µ
0 (p; p + q)G0(εp)G0(ε + ωp + q)

∞�
n=0

ζnzn(εp)
∞�

m=0
ζmzm(ε + ωp + q)

�
ζ

(6.248)

where we have used the standard rule for multiplication of series:
(
∑∞

n=0 an) (
∑∞

m=0 bm) =
∑∞

n=0

∑n
m=0 anbn−m.

Then, using (6.203), we get:

< I + III >ζ= Jµ
0 (p;p + q) < Gζ∆2(εp)Gζ∆2(ε+ ωp + q) >ζ (6.249)

where

G∆2(εp) =
ε+ ξp

ε2 − ξ2p − ∆2
(ε→ ε± iδ) (6.250)

is the normal Green’s function of Peierls dielectric.
Analogous calculations for the second term in (6.247) give:

< II >ζ= Jµ
0 (p − Q;p − Q + q)G0(ε+ ωp − Q + q)G0(ε+ ωp + q) ×

×
� ∞�

n=1

n�
m=1

ζmzm(εp)ζn−mzn−m(ε+ ωp + q)

�
ζ

=

= Jµ
0 (p − Q;p− Q + q)

� ∞�
n=1

n�
m=1

ζmzm(εp)ζn−mzn−m+1(ε+ ωp + q)
1

ζ∆2

�
ζ

=

= Jµ
0 (p − Q;p − Q + q)

�
1

ζ∆2

∞�
n=1

ζnzn(εp)
∞�

m=1

ζmzm(ε+ ωp + q)

�
ζ

=

= Jµ
0 (p − Q;p − Q + q) < Fζ∆2 (εp)F+

ζ∆2 (ε+ ωp + q) >ζ

(6.251)

where appeared “ζ – average” of the product of two anomalous Green’s
functions of Peierls dielectric:

F+
∆2(ε) =

∆
ε2 − ξ2p − ∆2

(ε→ ε± iδ) (6.252)

despite the obvious absence of Peierls long – range order in the
problem we are discussing! Here we used (

∑∞
n=1 an) (

∑∞
m=1 bm) =
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∑∞
n=1

∑n
m=1 anbn−m+1 and summed progressions in the term before the

last one in (6.251).
Thus, finally we obtain:

δG(εp)
δAµ(qω)

= G(εp)JµG(ε+ ωp + q) =

=
∫ ∞

0

dζe−ζ
{
Gζ∆2(εp)Jµ

0 (p;p + q)Gζ∆2(ε+ ωp + q) +

+Fζ∆2(εp)Jµ
0 (p − Q;p− Q + q)F+

ζ∆2(ε+ ωp + q)
}

(6.253)

which can be expressed by diagrams shown in Fig. 6.33. Let us stress

Fig. 6.33 Diagrammatic representation of functional derivative of G(εp).

that this result was obtained by summation of all diagrams of perturbation
theory for the vertex part. This answer is “almost obvious”, if we remem-
ber the nature of the random field, scattering an electron in our problem
(cf. remarks after Eq. (6.206)) — we have to obtain Peierls “dielectric”
response, averaged over gap fluctuations.

Now, the appropriate polarization operator (which we write down in
Matsubara technique) is:

Π(qωm) =
∫ ∞

0

dζe−ζ2T
∑

n

∫ ∞

−∞

dp

2π
{
Gζ∆2(εnp)Gζ∆2(εn + ωmp + q) +

+Fζ∆2(εnp)F+
ζ∆2(εn + ωmp + q)

}
=< Πζ∆2(qωm) >ζ

(6.254)

which is represented by diagrams shown in Fig. 6.34. We see that under the
averaging procedure over gap fluctuations we have here just the polarization
operator of Peierls dielectric. Accordingly, the structure of our (exact!)
solution for electromagnetic response is clear — we have to calculate the
response of Peierls insulator (with fixed gap in the spectrum) and then
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Fig. 6.34 Polarization operator for the model of pseudogap state.

average over gap fluctuations (with Rayleigh distribution (6.207)). Thus,
during calculations which follow we, in fact, are analyzing two physical
problems — that of Peierls dielectric response to electromagnetic field, and
that of the response in exactly solvable model of the pseudogap state.

Let us now perform detailed calculations of Π∆2(qωm) — polarization
operator of Peierls insulator with fixed gap. Substituting into the rele-
vant expression (directly following from (6.254) both normal and anomalous
Green’s functions of Peierls insulator25:

G∆2(εnp) =
u2

p

iεn − Ep
+

v2
p

iεn + Ep
(6.255)

F+
∆2(εnp) =

∆
(iεn − Ep)(iεn + Ep)

(6.256)

where

u2
p =

1
2

{
1 +

ξp
Ep

}
, v2

p =
1
2

{
1 − ξp

Ep

}
(6.257)

with Ep =
√
ξ2p + ∆2, we write the sum over Fermion frequencies via the

contour integral (3.38) and obtain:

Π∆2(qωm) = −2

� ∞

−∞
dp

2πi

�
C

dε

2π
n(ε)

	
u2

pu
2
p+q

(ε−Ep)(ε+ iωm − Ep+q)
+

+
v2pv

2
p+q

(ε+ Ep)(ε+ iωm +Ep+q)
+

u2
pv

2
p+q

(ε− Ep)(ε+ iωm +Ep+q)
+

+
v2pu

2
p+q

(ε+ Ep)(ε+ iωm − Ep+q)
+

∆2

(ε+ Ep)(ε−Ep)(ε+ iωm − Ep+q)(ε+ iωm + Ep+q)




(6.258)

25In the following we may assume ∆ to be real.
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where integration contour C is shown in Fig. 6.35 (a). This contour may

Fig. 6.35 Integration contours used during the calculation of the sum over frequencies
in polarization operator.

be deformed as shown in Fig. 6.35 (b), and then “stretched” to infinity.
Then our integral is determined by contributions of four poles ε = ±Ep

and ε = ±Ep+q. Calculating appropriate residues and using the property
of Fermi function: n(ε + iωm) = n(ε), where ωm = 2πmT , as well as
n(−ε) = 1 − n(ε), changing integration variable from p to ξp (taking into
account both “ends” of the Fermi surface (line), giving an additional factor
of 2), we obtain:

Π∆2(qωm) =

= 2N0(EF )

� ∞

−∞
dξp

1

Ep − Ep+q + iωm
[n(Ep) − n(Ep+q)]

�
u2

pu
2
p+q +

∆2

4EpEp+q

�
+

+2N0(EF )

� ∞

−∞
dξp

1

Ep −Ep+q − iωm
[n(Ep) − n(Ep+q)]

�
v2pv

2
p+q +

∆2

4EpEp+q

�
+

+2N0(EF )

� ∞

−∞
dξp

1

Ep +Ep+q + iωm
[n(Ep) + n(Ep+q) − 1]

�
u2

pv
2
p+q − ∆2

4EpEp+q

�
+

+2N0(EF )

� ∞

−∞
dξp

1

Ep +Ep+q − iωm
[n(Ep) + n(Ep+q) − 1]

�
v2pu

2
p+q − ∆2

4EpEp+q

�
(6.259)

where N0(EF ) is free – electron density of states at the Fermi level (for
both spin projections). Now use:
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u2
pu

2
p+q =

1

4

�
1 +

ξpξp+q

EpEp+q
+
ξp

Ep
+
ξp+q

Ep+q

�
, v2pv

2
p+q =

1

4

�
1 +

ξpξp+q

EpEp+q
− ξp

Ep
− ξp+q

Ep+q

�

u2
pv

2
p+q =

1

4

�
1 − ξpξp+q

EpEp+q
+
ξp

Ep
− ξp+q

Ep+q

�
, v2pu

2
p+q =

1

4

�
1 − ξpξp+q

EpEp+q
− ξp

Ep
+
ξp+q

Ep+q

�
(6.260)

Terms linear over ξp and ξp+q drop after the integration due to odd parity
of the integrand.

After the analytic continuation iωm → ω + iδ we finally get 26:

Π∆2(qω) =

=
1
2
N0(EF )

∫ ∞

−∞
dξp

{
EpEp+q + ξpξp+q + ∆2

EpEp+q

}
[n(Ep) − n(Ep+q)] ×

×
{

1
Ep − Ep+q + ω + iδ

+
1

Ep − Ep+q − ω − iδ

}
−

−1
2
N0(EF )

∫ ∞

−∞

{
EpEp+q − ξpξp+q − ∆2

EpEp+q

}
[1 − n(Ep) − n(Ep+q)] ×

×
{

1
Ep + Ep+q + ω + iδ

+
1

Ep + Ep+q − ω − iδ

}
(6.261)

This is the general expression for polarization operator of Peierls dielectric
with fixed gap ∆2. For ∆2 → 0 the second term in (6.261) goes to zero,
while the first one reduces to the usual (retarded) polarization operator of
electron gas. On the other hand, for T → 0, but ∆2 �= 0, the first term in

26Similar calculations for a superconductor give the same results, differing only by
the sign before ∆2 in the numerator of the integrand, which is due to antisymmetry
of Gorkov’s function Fαβ over spin indices (5.53). Thus, in the expression for polar-
ization operator of a superconductor, in comparison to (6.254), we have a change of
FF+ → −FF+. This expression determines e.g. ultrasound absorption in superconduc-
tors [Mahan G.D. (1981)], but it is insufficient for calculations of conductivity σ(ω) via
Eq. (2.111). To obtain correct expression for polarization operator (and also for dielec-
tric permeability) of a superconductor we have to take into account also contributions
from collective excitations (R.Prange, 1963). In FF+ – loop with “current” vertices for
a superconductor this change of signs is compensated by the change of the relative sign
of these vertices, as Gorkov’s F – functions describe ±p → ∓p transitions. As a result,
we obtain combination of signs written above in (5.261).
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(6.261) becomes zero, so that for polarization operator at T = 0 we get:

Π∆2(qω) = −1
2
N0(EF )

∫ ∞

−∞
dξp

{
EpEp+q − ξpξp+q − ∆2

EpEp+q

}
×

×
{

1
Ep + Ep+q + ω + iδ

1
Ep + Ep+q − ω − iδ

}
(6.262)

Performing the simple expansions27 in powers of q, in the limit of vF q � ∆
we obtain:

Π∆2(qω) = −1
2
N0(EF )v2

F q
2

∫ ∞

0

dξp

{
1

2Ep + ω + iδ
+

1
2Ep − ω − iδ

}
∆2

E4
p

(6.263)
Then:

ReΠ∆2(qω) = −1
2
N0(EF )v2

F q
2

∫ ∞

0

dξp

{
1

2Ep + ω
+

1
2Ep − ω

}
∆2

E4
p

(6.264)

ImΠ∆2(qω) =
π

2
N0(EF )v2

F q
2

∫ ∞

0

dξp
∆2

E4
p

{δ(2Ep + ω) − δ(2Ep − ω)}

(6.265)
Let us calculate now dielectric permeability and conductivity. Using the
standard definition (2.8), we have:

Reε∆2(qω) = 1 − 4πe2

q2
ReΠ∆2(qω) (6.266)

Imε∆2(qω) = −4πe2

q2
ImΠ∆2(qω) (6.267)

Then from (6.264) and (6.265) we obtain:

Reε∆2(qω) = 1 +
ω2

p

4

∫ ∞

0

dξp
1

E2
p − ω2

4

∆2

E3
p

(6.268)

27For p ∼ +pF and q > 0, we have: ξp+q ≈ ξp + vF q,

Ep+q =


ξ2p+q + ∆2 ≈ Ep + vF q

ξp

Ep
+ 1

2
v2F q

2 ∆2

E3
p

Accordingly:
ξpξp+q ≈ ξ2p + vF qξp

EpEp+q ≈ E2
p + vF qξp + 1

2
v2F q

2 ∆2

E2
p

so that:
EpEp+q − ξpξp+q − ∆2 ≈ 1

2
v2F q

2 ∆2

ξ2
p+∆2 .
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Imε∆2(qω) =
π

4
ω2

p

∫ ∞

0

dξp
∆2

(ξ2p + ∆2)2
{δ(2Ep − ω) − δ(2Ep + ω)}

(6.269)
where we have introduced:

ω2
p = vFκ

2
D, κ2

D = 8πe2N0(EF ) (6.270)

— squares of plasma frequency and inverse of screening length28.
For ω = 0 (6.262) reduces to:

Π∆2(q0) = −2N0(EF )
∫ ∞

0

dξp
EpEp+q − ξpξp+q − ∆2

EpEp+q

1
Ep + Ep+q

(6.271)

For vF q � ∆ from this expression (or from (6.264)) we obtain:

Π∆2(q0) = −1
2
N0(EF )v2

F q
2

∫ ∞

0

dξp
∆2

E5
p

= −1
3
N0(EF )

v2
F q

2

∆2
(6.272)

which gives (use also (6.270)):

ε∆2(q0) = 1 +
4πe2N0(EF )v2

F

3∆2
= 1 +

ω2
p

6∆2
(6.273)

— the static dielectric permeability of Peierls insulator.
For vF q 
 ∆ from (6.261), dropping the details of calculations, we

obtain:

Π∆2(q0) = 2N0(EF ) =
κ2

D

4πe2
(6.274)

so that:

ε(q0) = 1 +
κ2

D

q2
(6.275)

where we again took into account (6.270). Eq. (6.275) obviously cor-
responds to Debye screening in a metal — for vF q 
 ∆ Peierls gap is
insignificant!

28For d = 1 we have n = 2pF
π

, pF = π
2
n, and v2F κ

2
D = 8πe2v2F

1
πvF

= 4e2vF =

4e2 pF
m

= 4πne2

m
, which coincides with the usual definition of plasma frequency. If we are

dealing with three – dimensional system, consisting of one – dimensional chains of atoms,
our expressions for polarization operator has to be multiplied by the number of chain
per unit square of specimen crossection, i.e. by 1/a2, where a is the lattice constant
of two – dimensional (for simplicity square) lattice, which is formed by chains in the
orthogonal plane. Then all expressions remain valid, only n denotes electron density in
three – dimensional system.
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Returning to the case of ω �= 0 and vF q � ∆, we can write (6.264) as:

Reε∆2 = 1 +
ω2

p

4

∫ ∞

0

dξp
∆2

(ξ2p + ∆2)3/2

1
ξ2p + ∆2 − ω2

4

(6.276)

For ω → 0 (ω � 2∆) it naturally leads to (6.273), while for ω 
 2∆ we
obtain the usual plasma limit:

Reε∆2(ω 
 2∆) = 1 −
ω2

p

ω2
(6.277)

The full expression (6.276) describes continuous crossover from (6.273) to
(6.277), taking place at ω ∼ 2∆. In more details we can proceed as follows.
Using in (6.276) the variable change ξp = ∆sh(z), after simple transforma-
tions and taking (tabular) integrals, we obtain:

Reε∆2(ω) = 1 −
ω2

p

ω2

$%&
%'1 +

2∆

ω

1

1 − ω2

4∆2

�
�arctg

3
4

5
4∆2

ω2
− 1

6
7 − π

2

�
�
0%1
%2 , ω2 < 4∆2

(6.278)

Reε∆2(ω) = 1 −
ω2

p

ω2

$%&
%'1 − 2∆

ω

1

ω2

4∆2 − 1

�
�arcth

3
4

5
1 − 4∆2

ω2

6
7− 1

�
�
0%1
%2 , ω2 > 4∆2

(6.279)

which gives us the quoted asymptotic behavior.
Consider now Imε∆2(ω). Eq. (6.269) is written as:

Imε∆2(ω) =
π

4
ω2

p

� ∞

0
dξp

∆2

(ξ2p + ∆2)2

�
δ
�
2


ξ2p + ∆2 − ω

�
− δ

�
2


ξ2p + ∆2 + ω

��
(6.280)

Calculating integral with the use of well known expressions δ(ax) = 1
aδ(x)

and
∫∞

y
dxδ(x − a) = θ(a− y), we get:

Imε∆2(ω) = π∆
ω2

p

ω3

θ(|ω| − 2∆)√
ω2

4∆2 − 1
(6.281)

Then, for the real part of conductivity we obtain:

Reσ∆2(ω) =
ω

4π
Imε∆2(ω) =

⎧⎨
⎩

ne2

mω
π�

ω2
4∆2 −1

∆
ω for |ω| > 2∆

0 for |ω| < 2∆
(6.282)

The frequency dependence given by (6.282) is shown in Fig. 6.36. We
see that electromagnetic absorption takes place via quasiparticle excitation
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Fig. 6.36 Frequency dependence of the real part of conductivity in Peierls dielectric.

through Peierls gap 2∆, i.e. different from zero only for ω > 2∆. This is
typical insulating (semiconductor) behavior.

For ω 
 2∆ we have:

Imε∆2(ω) ≈ 2π
(

∆
ω

)2 (ωp

ω

)2

, Reσ∆2(ω) ≈ ne2

mω
2π
(

∆
ω

)2

(6.283)

In our model of the pseudogap state (with asymptotically large cor-
relation length of Gaussian short – range order fluctuations ξ → ∞) all
these expressions have to be averaged over fluctuations of ∆, distributed
according to (6.206) or (6.207). Thus, from (6.281) and (6.282) we obtain:

Imε(ω) = π∆
ω2

p

ω3

∫ ω2

4∆2

0

dζe−ζ ζ√
ω2

4∆2 − ζ
(6.284)

Reσ(ω) =
ω2

p

4
∆
ω2

∫ ω2

4∆2

0

dζe−ζ ζ√
ω2

4∆2 − ζ
(6.285)

Characteristic behavior following from these expressions is shown in Figs.
6.37, 6.38. Analytically, from (6.284) and (6.285) it is easy to show that
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Fig. 6.37 Frequency dependence of imaginary part of dielectric permeability in the

model of pseudogap state. The values of Imε(ω) are given in units of
ω2

p

∆2 .

for ω � 2∆ the following asymptotic behavior is valid29:

Imε(ω) ≈ π

6
ω2

p

∆2
, Reσ(ω) ≈ 1

24

(ωp

∆

)2

ω → 0 for ω → 0 (6.286)

Of course, we can perform numerical calculations of Reε(ω) using expres-
sions following from (6.279), (6.278) with further averaging (6.206):

Reε∆2(ω) = 1−
ω2

p

ω2

� ∞

0
dζe−ζ

$&
'1 +

4ζ∆2

ω

18
4ζ∆2 − ω2

�
�arctg

3
4

5
4ζ∆2

ω2
− 1

6
7− π

2

�
�
01
2

(6.287)

for ω2 < 4∆2, and

Reε∆2(ω) = 1−
ω2

p

ω2

� ∞

0
dζe−ζ

$&
'1 − 4ζ∆2

ω

18
ω2 − 4ζ∆2

�
�arcth

3
4

5
1 − 4ζ∆2

ω2

6
7 − 1

�
�
01
2

(6.288)

for ω2 > 4∆2. However, it is much simpler to use, instead of (6.279) and

29This immediately follows with the account of asymptotic behavior of the integral for
a→ 0:

� a
0 dxe−x x√

a−x
→

� a
0 dx x√

a−x
= 4

3
a3/2.
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Fig. 6.38 Frequency dependence of the real part of conductivity in the pseudogap state.

Conductivity is given in units of
ω2

p

4π∆
.

(6.278), a simplest interpolation:

Reε∆2(ω) = 1 −
ω2

p

ω2 − 6∆2
(6.289)

which correctly reproduces the limiting behavior for ω � 2∆ and ω 
 2∆.
Then we get:

Reε(ω) = 1 − ω2
p

∫ ∞

0

dζe−ζ 1
ω2 − 6ζ∆2

= 1 −
ω2

p

6∆2
e−

ω2

6∆2Ei

(
ω2

6∆2

)
(6.290)

Direct numerical calculations show, that (6.287), (6.288) and (6.290) give
(quantitatively) very close results, as is seen from Fig. 6.39. Using the
asymptotic behavior:

Ei(x) =
{

ex

x for x
 1
C + lnx+ ... for x→ 0, C = ln γ

(6.291)

we can find from (6.290):

Reε(ω) → 1 −
ω2

p

ω2
for ω 
 2∆ (6.292)



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

312 Book Title

Fig. 6.39 Real part of dielectric permeability as a function of frequency. (1) – de-
pendence obtained by numerical calculations from exact expressions, (2) – dependence

obtained from interpolation formula. Dielectric permeability is given in units of
ω2

p

∆2 .

Reε(ω) ≈ 1 −
ω2

p

6∆2
ln γ

ω2

6∆2
(6.293)

Logarithmic divergence of Reε(ω) at small frequencies demonstrates inter-
mediate (between metallic and insulating) behavior, characteristic of our
(oversimplified!) model of the pseudogap state.

In a similar way we can analyze q – dependence of dielectric permeability
in the static limit of ω = 0. Let us write down again a simple interpolation,
connecting the limiting cases of (6.272) and (6.274):

Π∆2(q0) = −2N0(EF )
v2

F q
2

v2
F q

2 + 6∆2
(6.294)

so that

ε∆2(q0) = 1 +
κ2

D

q2 + 6∆2

v2
F

(6.295)

interpolating between (6.273) and (6.275). Then in our model of the pseudo-



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 313

gap state:

ε(q0) =
∫ ∞

0

dζe−ζ
q2 + κ2

D + 6ζ∆2

v2
F

q2 + 6ζ∆2

v2
F

= 1 − v2
Fκ

2
D

6∆2
e

v2
F q2

6∆2 Ei

(
−v

2
F q

2

6∆2

)
(6.296)

This behavior is shown in Fig. 6.40, from which we again can see a close
agreement of our interpolation with the results of numerical calculations,
using exact expressions (which we drop for brevity). For vF q 
 ∆ we can

Fig. 6.40 Dielectric permeability as a function of wave vector. (1) – dependence ob-
tained from exact expressions, (2) – dependence obtain from interpolation. Dielectric

permeability is given in units of
ω2

p

∆2 .

use asymptotic behavior for x 
 1: Ei(−x) → − e−x

x . Then, as expected,
we obtain:

ε(q0) = 1 +
κ2

D

q2
(6.297)

i.e. “metallic” (Debye) behavior. However, for vF q � ∆, using asymptotics
Ei(−x) ≈ ln γx (x→ 0), we get:

ε(q0) ≈ 1 − v2
Fκ

2
D

6∆2
ln γ

v2
F q

2

6∆2
(6.298)

With such behavior of ε(q0) in the limit of small q, effective Coulomb in-
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teraction acquires the following form:

V(q) =
4πẽ2(q)
q2

(6.299)

where

ẽ2(q) =
e2

1 − v2
F κ2

D

6∆2 ln γ v2
F q2

6∆2

→ 0 for q → 0 (6.300)

which is analogous to the well known “zero – charge” behavior in quantum
electrodynamics [Sadovskii M.V. (2003b)]. Thus, gap fluctuations in the
spectrum of our model lead to complete charge screening, though of very
peculiar form. Again we observe intermediate behavior, which is between
typical “metallic” one and “insulating”30.

The basic conclusion from our analysis of this simplified and rather
artificial model is rather important. Results of our exact solution (complete
summation of diagrammatic series) are quite different from what we can
obtain (or expect) by approximate methods, such as partial summation.
Unfortunately, complete summation is usually possible only in simplified
and unrealistic models.

Generalization of these results for the case of finite correlation lengths ξ (or finite κ)
can be done if we formulate recursion relation for the vertex part, describing electromag-
netic response, along the lines of our derivation of recursion relations for electron self –
energy (or single – electron Green’s function), described above.

Arbitrary diagram for the vertex part, as we have seen above, can be obtained by an
insertion of an external field line to the appropriate diagram for the self – energy. The
basic idea now is that in our model we can limit ourselves only to diagrams with non
– intersecting interaction lines with additional combinatorial factors v(k) at “initial”
interaction vertices. It is clear then that to calculate vertex corrections we have to
consider only diagrams of the type shown in Fig. 6.41. Then we immediately obtain
the system of recurrence equations for the vertex parts shown by diagrams of Fig. 6.42.
To find appropriate analytic expressions consider the simplest vertex correction shown
in Fig. 6.43 (a). Performing explicit calculations for T = 0 in RA – channel we find its

30Of course, these anomalies are mainly due to our artificial assumptions, used in
our model of the pseudogap state, and mostly disappear, when we go to more realistic
situation, e.g. take into account the finite values of correlation length of short – range
order.
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Fig. 6.41 General diagram for vertex correction.

Fig. 6.42 Recursion relations for vertex part.

contribution to be:

J (1)RA
1 (ε, ξp; ε+ ω, ξp+q) = ∆2

�
dQ

2π
GA

0 (ε, ξp−Q)GR
0 (ε+ ω, ξp−Q+q) =

= ∆2
�
GA

0 (ε,−ξp + ivF κ) −GR
0 (ε+ ω, ξp+q − ivF κ)

� 1

ω + vF q
=

= ∆2GA
0 (ε,−ξp + ivF κ)GR

0 (ε+ ω,−ξp+q − ivF κ)

�
1 +

2ivF κ

ω + vF q

�
(6.301)

where during the integral calculations we have used the following identity, valid for the
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Fig. 6.43 Simplest corrections for vertex part.

free – electron Green’s functions:

GA
0 (ε, ξp)GR

0 (ε+ ω, ξp+q) =
�
GA

0 (ε, ξp) −GR
0 (ε+ ω, ξp+q)

� 1

ω − vF q
(6.302)

“Dressing” the internal electronic lines by fluctuations we obtain the diagram shown in
Fig. 6.43 (b), so that using the identity:

GA(ε, ξp)GR(ε+ ω, ξp+q) =
�
GA(ε, ξp) −GR(ε+ ω, ξp+q)

�
×

× 1

ω − vF q − ΣR
1 (ε+ ω, ξp+q) + ΣA

1 (ε, ξp)
(6.303)

valid for exact Green’s functions (6.215), we can write the contribution of this diagram
as:

JRA
1 (ε, ξp; ε+ ω, ξp+q) = ∆2v(1)GA

1 (ε, ξp)GR
1 (ε+ ω, ξp+q) ×

×
	

1 +
2ivF κ

ω + vF q − ΣR
2 (ε+ ω, ξp+q) + ΣA

2 (ε, ξp)



JRA
1 (ε, ξp; ε+ ω, ξp+q) (6.304)

Here we have assumed that interaction line in the vertex correction of Fig. 6.43 (b)

“transforms” self – energies ΣR,A
1 of internal lines into ΣR,A

2 , in accordance with the
main idea of our Ansatz for the self – energy31. Now we can write down the similar

31One of the main motivations for this trick is that it guarantees the fulfillment of an
exact Ward identity (6.309).
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expression for the general diagram, shown in Fig. 6.43 (c):

JRA
k (ε, ξp; ε+ ω, ξp+q) = ∆2v(k)GA

k (ε, ξp)GR
k (ε+ ω, ξp+q) ×

×
	

1 +
2ivF κk

ω − (−1)kvF q − ΣR
k+1(ε+ ω, ξp+q) + ΣA

k+1(ε, ξp)



JRA

k (ε, ξp; ε+ ω, ξp+q)

(6.305)

Then we can write recurrence relation for the vertex part, shown diagrammatically
in Fig. 6.42, in the following form (M.V.Sadovskii, A.A.Timofeev, 1991):

JRA
k−1(ε, ξp; ε+ ω, ξp+q) = 1 + ∆2v(k)GA

k (ε, ξp)GR
k (ε+ ω, ξp+q) ×

×
	

1 +
2ivF κk

ω − (−1)kvF q − ΣR
k+1(ε+ ω, ξp+q) + ΣA

k+1(ε, ξp)



JRA

k (ε, ξp; ε+ ω, ξp+q)

(6.306)

where all self – energies and Green’s functions are determined from appropriately analyt-
ically continued recursion relations of the type of (6.222), (6.223). The “physical” vertex
JRA(ε, ξp; ε+ ω, ξp+q) is determined as JRA

k=0(ε, ξp; ε+ ω, ξp+q). Recurrence procedure
(6.306) takes into account all perturbation theory diagrams for the vertex part. In case
of RR and AA – type of vertices we have the same type of recursion procedure, with ob-
vious replacements GR ↔ GA and expression in large brackets in the r.h.s. replaced by
1. For κ → 0 (ξ → ∞) these procedures are equivalent to perturbation series studied
above, which was summed exactly in analytic form. Standard “ladder” approximation
corresponds in our scheme to the case of combinatorial factors in (6.306) v(k) = 1.

According to (2.116), (4.78) conductivity of our system can be expressed via retarded
density – density response function χ(q, ω) as:

σ(ω) = e2 lim
q→0

�
− iω
q2

�
χ(qω) (6.307)

To simplify numerical calculations it is tempting to use small ω expression (4.105):

χ(qω) = ω
�
ΦRA(qω) − ΦRA(0ω)

�
(6.308)

where two – particle Green’s function ΦRA(q, ω) was defined (4.103) (cf. general discus-
sion of Chapter IV and definitions (4.88), (4.94) etc.)32 . However, due to existence in our
problem of an additional energy scale ∆ � EF (the width of the pseudogap) the use of
(6.308) leads to certain (quantitative, not qualitative!) inaccuracy, especially notable in
the limit of small κ. Thus, it is much better to use complete (integral) representation for
χ(q, ω), given by (4.87), (4.95). This allows us to reproduce exact results for conductivity
obtained above in the limit of κ → 0 via recursion relations for the vertex part, used

32Direct numerical computations confirm that the recursion procedure (6.306) satisfies
an exact (in the limit of ω → 0) Ward identity (4.104):

ΦRA(0ω) = −N(EF )

ω
(6.309)

where N(EF ) is the density of states at the Fermi level, which can be independently
calculated via (6.226) – (6.229). Actually, this is probably the main argument for the
validity of an Ansatz used to derive Eqs. (6.304), (6.305) and (6.306).
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here. However, due to additional integration this procedure obviously leads to more time
– consuming numerical calculations. Below we present results of calculations using full
expression (4.95). Convergence of numerical procedure for the vertex part itself is rather
good (except the limit of very small frequencies and small κ = ξ−1), though conductivity
calculations are obviously much more time – consuming, than e.g. calculations of the
density of states.

Typical dependences of the real part of conductivity on frequency are shown in Fig.
6.44 (for the case of incommensurate short – range order fluctuations)33 . One can see

Fig. 6.44 Frequency dependence of the real part of conductivity in the case of incom-
mensurate pseudogap fluctuations for different values of Γ = vF κ/∆. Dotted curve –
Γ = 0. Dashed curve – results of the “ladder” approximation for Γ = 1.0. Conductivity

is given in units of
ω2

p

4π∆
.

the gradual growth of absorption within the pseudogap with decrease of the correlation

33I am grateful to Dr. E.Z.Kuchinskii for making full calculations of conductivity for
these lectures
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length ξ = κ−1. Most striking anomaly is the appearance of additional shallow maxi-
mum (or non monotonic behavior) in the frequency dependence of conductivity within
the pseudogap, which we attribute to Anderson localization of carriers, ever present in
one – dimensional system. Localization nature of this anomaly is directly confirmed by
comparison of “exact” (i.e. taking into account all diagrams) calculations with that of
“ladder” approximation, obtained by putting combinatorial factor v(k) = 1 in all rela-
tions. Typical dependence of conductivity, obtained in this approximation, is shown in
Fig. 6.44 by dashed curve. It is clearly seen that localization behavior is transformed
into narrow Drude – like “metallic” peak at small frequencies, with no signs of localiza-
tion behavior. It is quite natural, as we seen above in Chapter IV, that localization is
intimately related with diagrams with intersecting interaction lines, absent in “ladder”
approximation. Direct check shows that all our results for conductivity satisfy the exact
sum rule (5.296).

This approach can also be generalized to studies of conductivity in two – dimensional
models of pseudogap behavior, relevant to high – temperature superconductors34.

6.7 Tomonaga – Luttinger model and non Fermi – liquid
behavior.

Practically in all problems analyzed above, the starting point was Landau
Fermi – liquid and the single – particle Green’s function with a pole:

G(p) =
Z

ε− vF (p− pF ) + iδ
+ · · · (6.310)

where 0 < Z < 1 is some constant, determining the discontinuity of dis-
tribution function of particles at the Fermi surface p = pF . At the same
time, in the previous sections we have shown, that an exact solution of one
– dimensional problem leads to quite different form of the Green’s function,
which does not possess poles and is in no way similar to that assumed in
Fermi – liquid theory. In fact, this is rather general property of interact-
ing Fermions in one dimension — Fermi liquid behavior is always absent.
As probably most striking (and general) example, in this section we shall
briefly consider so called Tomonaga – Luttinger model (S.Tomonaga, 1950;
J.M.Luttinger, 1963).

This model describes a gas of Fermions with density n (Fermi momen-
tum pF = πn/2), mass m (Fermi velocity vF = pF /m) and interaction
potential λ(|x|), with Fourier components λ(k) being different from zero
only in very narrow interval of momenta |k| ≤ Λ � pF . The Hamiltonian

34More details can be found in reviews: M.V.Sadovskii. Physics Uspekhi 44, 515
(2001) and ArXiV: cond-mat/0408489.
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of this model is written as:

H =
∑

p

p2

2m
a+

p ap +
1
2

∑
pp′k

λ(k)a+
p a

+
p′ap′−kap+k (6.311)

Tomonaga has shown, that in case of very long – range interaction, i.e.
neglecting all contributions of the order of Λ/pF → 0, the spectrum of
(6.311) coincides with the spectrum of (free) Bosons, described by Boson
operators bk, b+k

35:

H =
∑

k

v(k)kb+k bk, v2(k) = v2
F +

2vF

π
λ(k) (6.312)

Below we shall prove this by diagram technique (I.E.Dzyaloshinskii,
A.I.Larkin, 1973). We shall also show that single – particle Green’s function
coincides with (6.310) in the region of |p − pF | 
 Λ, but has completely
different form close to the Fermi surface, i.e. for |p− pF | � Λ.

Having in mind one – dimensional system of free electrons with the
spectrum shown in Fig. 6.3, we shall calculate Green’s functions close to
the “right” and “left” Fermi points ±pF , denoting these G+(p) and G−(p)
(± – Fermions). For the gas of free particles:

G
(0)
+ =

1
ε− p+ pF + iδ

, G
(0)
− =

1
ε+ p+ pF + iδ

(6.313)

where, for brevity, we are using the units with vF = 1.
Particles from the vicinity of right or left Fermi point, can be considered

as different Fermions also in the interacting system, and even for |p−pF | 

pF , as in the limit of Λ/pF → 0 our interaction can not transform one sort
of particles into the other. This means that with the same accuracy, the
values of p − pF for “+”– particles and p + pF for “−” – particles may
change on the interval from −∞ to +∞.

First of all, we have to calculate effective interaction, which we denote
D(k) and express by wave – like line diagrammatically, as well as “triangu-
lar” vertex Γ(p, k). Due to our condition Λ/pF → 0, only momenta k � pF

are relevant in all vertices, thus both Fermion Green’s functions, entering
Γ belong to the same Fermi point (+pF or −pF ), so that we can intro-
duce Γ+(p, k) and Γ−(p, k). We shall consider a certain generalization of
Tomonaga – Luttinger model assuming different interactions of particles of

35In other words, there are no Fermion excitations at all, the spectrum consists only
of “sound – like” collective excitations.
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the same “sign” (+ or -) and of different “signs”, as is shown in Fig. 6.45.
Accordingly we introduce notations:

Fig. 6.45 Interactions of particles in Tomonaga – Luttinger models.

λ++ = λ−− = λ1; λ+− = λ2; D++ = D−−; D+− = D−+ (6.314)

Dyson equations for D has the form:

D++ = λ1 + λ1Π+D++ + λ2Π−D−+ (6.315)

D−+ = λ2 + λ2Π+D++ + λ1Π−D−+ (6.316)

Polarization operators entering here are given by diagrams shown in Fig.
6.46. Dyson equation for Green’s function G has the standard form:

Fig. 6.46 Polarization operators in Tomonaga – Luttinger model.

G−1
± = ε∓ p+ pF − Σ± (6.317)

where Σ+ and Σ− are shown in Fig. 6.47.
Usually, as we have seen on different examples above, vertex part Γ is

determined by an infinite series of diagrams and can be found only approx-
imately. However, in this model the problem can be solved exactly in the
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Fig. 6.47 Electron self – energies in Tomonaga – Luttinger model.

limit of Λ/pF → 0, using the Ward identity, connecting Γ and G and taking
the following simple form:

Γ+(p, k) =
G−1

+ (p) −G−1
+ (p− k)

ω − k
(6.318)

Γ−(p, k) =
G−1

− (p) −G−1
− (p− k)

ω + k
(6.319)

Here, as usual, we understand that k in Green’s functions and vertices
denote the pair (k, ω). Eqs. (6.318) and (6.319) can be derived directly,
analyzing diagrams of different orders and using the identity:

G
(0)
± (p)G(0)

± (p+ k) =
1

ω ∓ k

(
G

(0)
± (p) −G

(0)
± (p+ k)

)
(6.320)

following directly from (6.313). The thing is that interaction (wave – like
line) transfers (almost) zero momentum (≤ Λ) → 0. Then in all diagrams
for G or Σ we have the continuous line of particles of the “same sign”, carry-
ing an “external” momentum p, as can be seen analyzing typical diagrams
shown in Fig. 6.48. Thus, all diagrams for Γ can be obtained by arbitrary

Fig. 6.48 Examples of typical diagrams for electron self – energy in Tomonaga – Lut-
tinger model.

insertions of external interaction lines into diagrams for self – energy. This
is shown in Fig. 6.49, where we show diagrams for the vertex, obtained
from diagrams for self – energy, shown in Fig. 6.48. Using (6.320) at any
insertion point of this type we immediately obtain Ward identities (6.318),
(6.319).
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Fig. 6.49 Examples of diagrams for the vertex part in Tomonaga – Luttinger model.

It is quite important that in this model with very long – range inter-
action and “bare” Green’s functions (6.313) with linear spectrum we have
another remarkable property — all diagrams, containing closed loops with
more than two Fermion lines, are just zero. Or, more precisely, appropri-
ately symmetrized sum of such diagrams gives zero contribution. Thus, we
can drop contributions of the type shown in Fig. 6.50, so that really all
diagrams for the vertex are generated as shown in Fig. 6.49. The proof is

Fig. 6.50 Examples of diagrams for the vertex part in Tomonaga – Luttinger model
giving zero contribution.

based on the particle number conservation for ± – particles (separately) and
is similar to the case of quantum electrodynamics [Sadovskii M.V. (2003b)],
where such diagrams also drop out from Ward identity.
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Let us write down equations of motion for free operators of + – particles:

i
∂ψ+

∂t
+ i

∂ψ+

∂x
= 0 (6.321)

from which we have the particle number (charge) conservation law as:

∂ρ+

∂t
+
∂j+

∂x
= 0, ρ+ = j+ = ψ+

+ψ+ (6.322)

For − – particles similarly:

i
∂ψ−
∂t

+ i
∂ψ−
∂x

= 0 (6.323)

∂ρ−
∂t

+
∂j−
∂x

= 0, ρ− = −j+ = ψ+
−ψ− (6.324)

As an arbitrary closed loop represents the Fourier component of the ground state average
of the product of appropriate number of density operators < Tρ+(1)ρ+(2)...ρ+(n) >
(and similarly for − – particles), it follows from conservation laws (6.322), (6.324) that:

(ω1 − k1)(ω2 − k2)...(ωn − kn) < ρ+(k1)ρ+(k2)...ρ+(kn) >= 0 (6.325)

(ω1 + k1)(ω2 + k2)...(ωn + kn) < ρ−(k1)ρ−(k2)...ρ−(kn) >= 0 (6.326)

Then our statement concerning loops follows from (6.325), (6.326), if all momenta inte-
grals converge. It is easily seen that this is so for all loops, containing three and more
electron lines.

The loop containing two lines is proportional (for + – particles) to integral:�
d2p

1

ε− p+ pF + iδ

1

ε− ω − p+ k + pF + iδ
(6.327)

which formally diverges. Physically, the finite value of this integral is guaranteed by
square dependence of particle energy on momentum far from the Fermi surface (which
is neglected in our model). Technically this may be achieved if we first integrate over ε,
and only afterwards over p. Result of such integration is finite and proportional to k

ω−k
.

Now we can write down the closed system of equations for G and D,
expressing vertices Γ in Π and Σ, defined by Figs. 6.46, 6.47 via G using
(6.318), (6.319). In this way we obtain:

Π+(k) = − i

2π2

1
ω − k

∫
d2p [G+(p− k) −G+(p)] (6.328)

Π−(k) = − i

2π2

1
ω + k

∫
d2p [G−(p− k) −G−(p)] (6.329)

and equations for G± take the form:

(ε− p+ pF )G+(p) = 1 +
i

4π2

∫
d2k

D++(k)
ω − k

G+(p− k) (6.330)

(ε+ p+ pF )G+(p) = 1 +
i

4π2

∫
d2k

D−−(k)
ω + k

G−(p− k) (6.331)
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Let us now calculate Π+ and Π−. Introduce momentum cut – off A, so
that |p− pF | ≤ A� pF . Then:

Π+(k) = − i

2π2

1
ω − k

∫ pF +A

pF −A

dp

∫ ∞

−∞
dε [G+(p− k, ε− ω) −G+(p, ε)]

(6.332)
Contribution of the region of |p− pF | ≥ A can not be found from (6.328),
(6.329) as Ward identities (6.318), (6.319) are valid only close to Fermi
surface. We can convince ourselves that this contribution is zero if we
calculate it with “free electron” Green’s functions and vertices. Calculating
the integral over ε in (6.332) we have:

Π+(k) =
1

π(ω − k)

∫ pF +A

pF −A

dp [n+(p− k) − n+(p)] (6.333)

where we used the general expression for distribution function:

n+(p) = −i lim
t→−0

∫ ∞

−∞

dε

2π
e−iεtG+(εp) (6.334)

Now, the integral over p in (6.333) can be rewritten as:∫ pF +A

pF −A

dp... =
∫ pF −A

pF −A−k

dpn+(p) −
∫ pF +A

pF +A−k

dpn+(p) (6.335)

where, up to terms of the order of Λ/A → 0, we can take n+(p) = nF (p),
where nF is the usual Fermi – step function at T = 0. Thus we obtain:

Π+(k) =
k

π(ω − k)
(6.336)

Similarly we get:

Π−(k) = − k

π(ω + k)
(6.337)

Using (6.336), (6.337) in (6.315), (6.316) and solving these equations we
find:

D++(k) = (ω − k)
λ1(ω + k) + (λ2

1 − λ2
2)k/π

ω2 − u2k2 + iδ
(6.338)

where

u =
(

1 +
2λ1

π
+
λ2

1 − λ2
2

π2

)1/2

(6.339)
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Thus we have obtained collective (Boson) excitations with spectrum deter-
mined by the pole of (6.338). For λ1 = λ2 = λ these expressions, in fact,
give Tomonaga result (6.312) (remember that we use units with vF = 1).

To find the single – electron Green’s function we still have to solve the
linear integral equation (6.330) with D++, determined above. We shall not
do it in details, considering only some simplest cases and just quoting the
general results.

Let λ2 = 0, then particles on one (+) side of Fermi surface (line) do not
interact at all with particles on the other (−) side, so that D−+ = 0, and

D++(k) =
π(w − 1)(ω − k)
ω − wk + iδ

(6.340)

where

w = 1 +
λ1

π
(6.341)

Equation for G+ takes now the form:

(ε− p)G(p) = 1 +
i

4π

∫
d2kG(p− k)

w − 1
ω − wk + iδ

(6.342)

Here and below we drop index + at G+ and put the origin for p at +pF .
By direct substitution we can check that Eq.(6.342) is satisfied by:

G(p) = {(ε− p+ iδ)(ε− wp+ iδ)}−1/2 (6.343)

where the cut in the complex plane of ε is a line, connecting p − iδ and
wp − iδ (signδ = sign(p)). This Green’s function does not possess poles,
corresponding to single – particle excitations, but simple calculation using
(6.334) shows, that momentum distribution remains Fermi – like:

n(p) = nF (p) (6.344)

Then we can analyze the case of small λ1 and λ2, when u given by (6.339) is
of the order of unity (vF !). Analysis of (6.330), (6.338) and (6.339) shows,
that in this case electron Green’s function has the form:

G(p) = {(ε− p)(ε− up)}−1/2 exp
{
− λ2

2

4π2
ln

Λ
|p|

}
(6.345)

where

u = 1 +
λ1

π
+
λ2

1 − λ2
2

2π2
(6.346)
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Calculation of distribution function n(p) using (6.334) and (6.345) shows
that for λ2 �= 0 there is no discontinuity at p = 0 and we have the following
behavior instead (E.Lieb, D.Mattis, 1965):

n(p) =
1
2
− 1

2

(
|p|
Λ

) λ2
2

4π2

sign(p) (6.347)

Consider at last the physically “realistic” case of λ1 = λ2 = λ. Then we
have:

D++(k) =
λ(ω2 − k2)

ω2 − v2k2 + iδ
(6.348)

where

v =
(

1 +
2λ
π

)1/2

(6.349)

and for G we have an integral equation:

(ε− p)G(p) = 1 +
i

4π2

∫
d2kG(p− k)

λ(ω + k)
ω2 − v2k2 + iδ

(6.350)

This equation may be solved after transformation to time – coordinate
representation x, t. We shall not do that and only quote the result for
momentum distribution function n(p) close to Fermi point p = 0. For
small interaction, when λ→ 0, v → 1 we obtain (6.347) with λ1 = λ2 = λ.
This expression is conserved until interaction is not too strong:

n(p) =
1
2
− const|p|2αsign(p) (6.351)

where

α =
(v − 1)2

8v
, for α < 1/2 (6.352)

However, when α > 1/2, the leading term in the expansion of n(p) near the
Fermi point is linear:

n(p) =
1
2
− const · p (6.353)

In any case there is no discontinuity at the Fermi point!
Let us quote the results for asymptotic behavior of G(εp) in the region

of p ∼ ε� Λ. For α < 1/2:

G(ε ∼ p) ∼ 1
ε1−2α

(6.354)
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For α > 1/2:

G(ε ∼ p) ∼ A+Bε2α−1 (6.355)

For 3/2 > α > 1:

G(ε ∼ p) ∼ A+Bε+ Cε2α−1, etc. (6.356)

Thus, in Tomonaga – Luttinger model basic assumptions of Landau Fermi
– liquid theory are violated. Already for arbitrarily weak interaction sin-
gularity of Green’s function at Fermi surface is weaker than a simple pole
(cf. (6.354)), while for strong enough interaction Green’s function remains
finite at the Fermi point (cf. (6.354), (6.356)). In this case, Fermi point
manifests itself only in the derivatives of high enough order.

These anomalies are connected with a kind of “infrared catastrophe”
taking place in one – dimensional systems. Any particle from close vicinity
of one of the Fermi points can emit (satisfying all conservation laws) any
number of real particle – hole pairs, which also are in close vicinity of this
Fermi point. Mathematically this is expressed by the presence in perturba-
tion series for self – energy Σ(p) of singular contributions, containing poles
of higher orders, like:

λn

(ε− p)n−1
(6.357)

Consider e.g. an expression for Σ, corresponding to (6.343):

Σ(p) = ε− p− [(ε− p)(ε− p− λp/π)]1/2 (6.358)

Expanding it in powers of λ, we obtain:

Σ(p) =
λp

2π
+

λ2p2

8π2(ε− p)
+ · · · (6.359)

All terms of this expansion (besides the first one) has a structure given by
(6.357).

Conclusions from this study of Tomonaga – Luttinger model are very
important and instructive. In fact, most of these results are qualitatively
valid also for more general models of interactions in one dimension. Fermi –
liquid behavior is always absent, and we observe bosonization of spectrum of
elementary excitations. In this sense, one – dimensional systems present a
picture, alternative to that of Fermi – liquid. Usually it is called “Luttinger
– liquid”. In recent years major interest is attracted to situation, realizing
in two – dimensional case, where in case of strong correlations (typical for
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high – temperature copper oxide superconductors) scenario of “Luttinger
– liquid” behavior competes with that of traditional Fermi – liquid (or
“marginal” Fermi – liquid mentioned previously) [Varma C.N., Nussinov
Z., Wim van Saarloos (2002)].
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Appendix A

Fermi surface as topological object.

During our discussion of the basics of Fermi – liquid theory we assumed
that Fermi surface is conserved after adiabatic “switching” of arbitrary
strong interaction of Fermions. Below we present an elegant proof of this
assumption, based on topological arguments (G.E.Volovik, 1991).

In an ideal Fermi – gas the Fermi surface represents a natural border
dividing (in momentum space) the regions of occupied (n(p) = 1) and
unoccupied (n(p) = 0) states [Sadovskii M.V. (2003a)]. It is clear that in
such a gas the Fermi surface is a stable object — small changes of particle
energies only slightly deform the border between occupied and unoccupied
states, leading to small deformation of the Fermi surface.

If we “switch on” interaction between particles, distribution function
n(p) in the ground state (as we have seen above) is no more just 1 or 0.
However, the Fermi surface is conserved and is reflected in the singularity
(discontinuity) of n(p). Such stability of the Fermi surface follows from
certain topological property of Fermion Green’s function. Let us write
down this function in an ideal gas for a given momentum p and imaginary36

frequency z = ip0:

G(p0,p) =
1

ip0 − vF (p− pF )
(A.1)

It is obvious that this Green’s function still contains singularity at the
hypersurface (p0 = 0, p = pF ) in four – dimensional space of (p0, p),
where this function is undefined. This singularity is stable, i.e. it can not
be destroyed by small perturbations. The reason is, that the phase Φ of
Green’s function, considered as a complex number, i.e. G = |G|eiΦ, changes

36Imaginary frequency is introduced here to avoid the usual singularity at z = ξ(p),
and is not connected, in general, with Matsubara formalism.

331
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by 2π as we move around any contour C, encircling arbitrary element of
this (singular) hypersurface.

Fig. A.1 Fermi surface as topological object in momentum space. Above: in ideal Fermi
– gas, Fermi surface surrounds the sphere of occupied states with negative energy. Below:
Fermi surface is conserved after “switching on” interaction. The reason is that it is a
topologically stable object – the “vortex” in four – dimensional space of (p0,p).

To convince ourselves, let us drop one spatial dimension, so that Fermi
surface becomes a closed line in two – dimensional space of (px, py). Sin-
gularities of the Green’s function (A.1) then lie on a closed line in three –
dimensional space of (p0, px, py), shown in the lower part of Fig. A.1. The
phase of the Green’s function changes by 2π during each walk around the
arbitrary contour C, encircling an arbitrary element of this “vortex line”37

in three – dimensional space of (p0, px, py). Appropriate “circulation num-
ber” N1 = 1 can not change continuously and is stable towards adiabatic
“switching” of arbitrary interaction. Thus, singularity of the Green’s func-
tion and the presence of zero excitation energies in the system of Fermions
is also conserved.

In general case, Green’s function of a Fermion is a matrix with spin indices. In
periodic crystal it is characterized by an additional band index, etc. In such cases

37This is in direct analogy with topological stability of Abrikosov vortices in type II
superconductors, where the order parameter has the form of Ψ = |Ψ|eiΦ [De Gennes
P.G. (1966)].
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the notion of the phase of the Green’s function looses its meaning, though topological
properties, described above, survive. It can be shown that in such a general case we may
define a topological invariant, given by:

N1 = Sp

(
C

dl

2πi
G(p0,p)

∂G−1(p0,p)

∂l
(A.2)

where Green’s function is represented by appropriate matrix, while integral is taken
around an arbitrary contour C in the space of (p0,p), surrounding the hypersurface of
singularities in this space (as shown in lower part of Fig. A.1). In (A.2) Sp is taken over
spin, band and other (possible) indices.

In Landau Fermi – liquid the single – particle Green’s function, as we
know, takes the following form:

G(p0,p) =
Z

ip0 − vF (p− pF )
+ · · · (A.3)

The difference with the case of an ideal Fermi gas is that Fermi velocity
vF is no more simply pF/m, but is an additional “fundamental constant”
of the theory. It defines an effective mass of a quasiparticle m∗ = pF /vF .
The change of vF and of residue at the pole Z does not change the value
of topological invariant (A.2). This justifies Landau assumption of direct
correspondence between low energy quasiparticles in Fermi – liquid and
particles in an ideal Fermi – gas.

Thus (if there are no “infrared” singularities of the type appearing in
Tomonaga – Luttinger model), in isotropic Fermi – liquid the spectrum of
Fermion quasiparticles is described by universal dependence:

ε(p) → vF (|p| − pF ) (A.4)

with two “fundamental constants” vF and pF . Their values are determined
by “microscopic” interactions, but in Fermi – liquid they are just phenom-
enological constants.

Topological stability of the Fermi surface means that any continuous
change of the system does not change topological invariant. In particular,
such a change may be due to adiabatic “switching on” interactions between
particles and (or) adiabatic deformation of the Fermi surface. During such
adiabatic perturbations, energy levels of the system do not cross the Fermi
surface. The state without excited quasiparticles is transformed to another
such state, i.e. vacuum is transformed into another vacuum (ground state).
This leads to validity of Luttinger theorem, which is equivalent to the state-
ment that the volume of Fermi surface is an “adiabatic invariant” (if the
total number of particles does not change).
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For isotropic Fermi – liquid with spherical Fermi surface, Luttinger the-
orem reduces to the validity of usual (gas – like!) relation between particle
density and Fermi momentum:

n =
p3

F

3π2�3
(A.5)

Fermi surface characterized by topological invariant N1 exists for any space
dimensionality. In two – dimensions it is represented by the closed line in
two – dimensional momentum space, corresponding to “vortex loop” in
three – dimensional momentum – frequency space. In one dimensional
systems Fermi surface is represented by point – like “vortex”.

We have seen above that in one – dimensional system Green’s function
may have the form quite different from canonical Fermi – liquid like, given
by (A.3). In particular, for Tomonaga – Luttinger model it has no poles due
to “infrared” divergences. However, Fermi surface survives, as well as the
existence of excitations with arbitrary small energies, due to conservation
of topological invariant N1 = 1. We may see it if in explicit expressions for
Green’s function obtained above, like Eq. (6.345), we make transformation
ε → ip0. Then again we have singularity at (p0 = 0, p = 0). Thus,
the Fermi surface survives, despite basic assumptions of Landau theory are
broken.

Let us consider from this point of view our model of the pseudogap
state, in the exactly solvable limit of large correlation lengths (ξ → ∞).
We may rewrite (6.203) as:

G(p0, p) =
∫ ∞

0

dζe−ζ ip0 + ξp
(ip0)2 − ξ2p − ζ∆2

=

=
ip0 + ξp

∆2
exp

(
p2
0 + ξ2p
∆2

)
Ei

(
−
p2
0 + ξ2p
∆2

)
(A.6)

Then for p0 → 0 and ξp → 0 (i.e. p→ pF ), we have:

G(p0, p) ≈
ip0 + ξp

∆2
ln

(
γ
p2
0 + ξ2p
∆2

)
≡ Z(p0, ξp)

ip0 − ξp
(A.7)

where

Z(p0, ξp) = −
p2
0 + ξ2p
∆2

ln

(
γ
p2
0 + ξ2p
∆2

)
→ 0 for p0 → 0, ξp → 0 (A.8)
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Now the effect of the “residue” is so strong, that it transforms the pole in
the Green’s function to zero of the Green’s function. But the singularity
of the Green’s function at the Fermi surface is not destroyed: the zero is
also the singularity and it has the same topological invariant as pole38. So
in this sense our model is similar to some kind of Luttinger or “marginal”
Fermi – liquid with very strong renormalization of singularity at the Fermi
surface.

The difference with Landau Fermi – liquid in one – dimensional sys-
tems is clearly seen when we analyze real frequencies: quasiparticle poles
in Green’s function are absent, instead we have a cut in the complex plane
of frequency, so that single – particle excitations are not defined. However,
distribution function, as we have seen e.g. in (6.351), though not possessing
discontinuity itself, may still contain singular behavior in its derivatives.

38I am grateful to G.E.Volovik for the clarification of this point.
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Appendix B

Electron in a random field and
Feynman path integrals.

Returning to the problem of an electron propagating in a field of scatter-
ers randomly distributed in space, let us show how it is possible to obtain
formally exact expression for the averaged single – particle Green’s func-
tion via Feynman path integral [Sadovskii M.V. (2003b)], equivalent to the
sum of all diagrams of perturbation theory. For electron propagating in a
potential field (4.1), in time – coordinate representation we can write down
the Green’s function as a standard path integral of the following form (N
is total number of scatterers):

G(rr′; t) =
∫ r(t)=r

r(0)=r′
Dr(τ) exp

⎧⎨
⎩ i

�

∫ t

0

dτ

⎡
⎣mṙ2

2
−

N∑
j=1

v(r − Rj)

⎤
⎦
⎫⎬
⎭ (B.1)

where
∫ r(t)=r

r(0)=r′ Dr(τ) denotes Feynman – Wiener functional (path) integra-
tion [Sadovskii M.V. (2003b)], and r and r′ are final and initial points for
electron propagation during the time – interval t.

Consider general enough case, when we know N – particle distribution
functions [Sadovskii M.V. (2003a)] of scatterers FN (R1, ...,RN ). Then,
performing averaging of the part of (B.1), depending on scatterers, we ob-
tain:

337
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�
exp

$&
'− i

�

�
j

� t

0
dτv(r(τ) − Rj)

01
2

�
=

=
1

V N

�
dR1...

�
dRN exp

$&
'− i

�

�
j

� t

0
dτv(r(τ) − Rj)

01
2FN (R1, ...,RN ) =

= exp

$&
'

∞�
n=0

�
− i

�

�n 1

n!

� t

0
dτ1...

� t

0
dτn

��
i

v(r(τ1) − Ri)...
�

j

v(r(τn) − Rj)

�
c

01
2 ≡

≡ exp

	�
n

�
− i

�

�n

Kn



(B.2)

where < ... >c are cumulant averages, defined in (4.13), V is the volume of
the system. Then, the averaged Green’s function is given by:

< G(rr′; t) >=
∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

�

∫ t

0

dτ
mṙ2

2
+
∑

n

(
− i

�

)n

Kn

}

(B.3)
Limiting ourselves with n = 2 (n = 1 contribution gives trivial phase factor)
i.e. in Gaussian approximation for the statistics of the random filed, we get:

< G(rr′; t) >=

=
∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

�

∫ t

0

dτ
mṙ2

2
− 1

2�2

∫ t

0

dτ ′
∫ t

0

dτW [r(τ) − r′(τ ′)]
}

(B.4)

where

W (r − r′) =< V (r)V (r′) >c (B.5)

which for the case of randomly distributed (in space) “impurities” is deter-
mined via (4.12), (4.16) and reduces to “white noise” correlator (4.20).

As an example of application of Eq. (B.4), consider an electron propa-
gating in one – dimensional system with Gaussian random field with corre-
lator defined in (6.184), which was interest to us in the model of pseudogap
state (ξ – correlation length of short – range order fluctuations):

W (r − r′) = 2 < |∆|2 > exp
{
−|r − r′|

ξ

}
cos 2pF (r − r′) (B.6)
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Fourier – transform of this correlator is given by (6.196):

S(Q) = 2∆2

{
κ

(Q− 2pF )2 + κ2
+

κ

(Q+ 2pF )2 + κ2

}
(B.7)

where κ = ξ−1, and is represented by two Lorentzians of the width ∼ ξ−1,
centered at Q = ±K = ±2pF . Introducing the variable q (deviation from
the center of the peak) via Q = ±K + q, we can write:

� t

0
dτ

� t

0
dτ ′W [r(τ) − r′(τ ′)] =

�
dQ

2π
S(Q)

� t

0
dτ

� t

0
dτ ′eiQr(τ)e−iQr(τ ′) =

= ∆2

�
dq

π

κ

q2 + κ2

� t

0
dτ

� t

0
dτ ′eiKr(τ)eiqr(τ)e−iKr(τ ′)e−iqr(τ ′) +

+∆2

�
dq

π

κ

q2 + κ2

� t

0
dτ

� t

0
dτ ′e−iKr(τ)eiqr(τ)eiKr(τ ′)e−iqr(τ ′) =

= 2∆2

�
dq

π

κ

q2 + κ2

� t

0
dτ

� t

0
dτ ′eiqr(τ)e−iqr(τ ′) cosK[r(τ) − r(τ ′)] =

= 2∆2

�
dq

π

κ

q2 + κ2

� t

0
dτ

� t

0
dτ ′eiqr(τ)e−iqr(τ ′) �cosKr(τ) cosKr(τ ′) +

+ sinKr(τ) sinKr(τ ′)
�

(B.8)

Above we have considered the asymptotic behavior for large correlation
lengths ξ → ∞ (or κ→ 0). In this limit we have:

� t

0
dτ

� t

0
dτ ′W [r(τ) − r′(τ ′)] ≈ 2∆2

� t

0
dτ

� t

0
dτ ′

�
cosKr(τ) cosKr(τ ′) +

+ sinKr(τ) sinKr(τ ′)
�

= 2∆2

�� t

0
dτ cosKr(τ)

�2

+ 2∆2

�� t

0
dτ sinKr(τ)

�2

(B.9)

Then we easily obtain the following representation for nontrivial part of the
exponential in (B.4):

exp
{
− 1

2�2

∫ t

0

dτ

∫ t

0

dτ ′W [r(τ) − r(τ ′)]
}

=

= exp

{
−∆2

�2

[∫ t

0

cosKr(τ)
]2
}

exp

{
−∆2

�2

[∫ t

0

sinKr(τ)
]2
}

=

=
∫ ∞

−∞

dx√
π
e−x2+2ix ∆

�

� t
0 cos Kr(τ)

∫ ∞

−∞

dy√
π
e−y2+2iy ∆

�

� t
0 sin Kr(τ)

(B.10)

where in the last equality we have used the well known Hubbard –
Stratonovich trick. As a result, after the obvious changes of variables,
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we obtain the averaged Green’s function as:

< G(rr′; t) >=

� ∞

−∞

dVx√
π
e
− V 2

x
∆2

� ∞

−∞

dVy√
π
e
− V 2

y

∆2

� r(t)=r

r(0)=r′
Dr(τ) exp

i

�

�� t

0
dτ
mṙ2(τ)

2
−

− 2

� t

0
dτVx cosKr(τ) − 2

� t

0
dτVy sinKr(τ)

�
(B.11)

Transforming to polar coordinates in (Vx, Vy) plane, i.e. introducing W =√
V 2

x + V 2
y and φ = arctg

Vy

Vx
, we obtain:

< G(rr′; t) >=
∫ ∞

0

dW
2W
∆2

e−
W2

∆2

∫ 2π

0

dφ

2π
×

×
∫ r(t)=r

r(0)=r′
Dr(τ) exp

{
i

�

∫ t

0

dτ

[
mṙ2(τ)

2
− 2W cos(Kr(τ) + φ)

]}
=

=
∫ ∞

0

dWP{W}
∫ 2π

0

G2W cos(Kr+φ)(rr′; t)

(B.12)

where P(W ) is Rayleigh distribution (6.207), and G2W cos(Kr+φ)(rr′; t)
is the single – electron Green’s function in periodic field (potential)
2W cos(Kr + φ). If we make transformation to momentum space and find
the Green’s function in this field in the simplest (two – wave) approximation
[Ziman J.M. (1972)], we get (6.57), (6.60) and (in Matsubara technique, un-
der “nesting” conditions, valid for K = 2pF (6.71) (cf. Fig. 6.7)). Then it
is clear that (B.12) reduces to the result (6.203) obtained above by diagram
summation. Appropriate anomalous Green’s function (6.72) gives zero af-
ter we average over the phase in (B.12), which corresponds to the absence
of long – range order in our system. Thus, our simplified model of the
pseudogap state, analyzed in Chapter VI, is really equivalent to the model
of an electron propagating in potential field 2W cos(Kr+φ), with amplitude
W independent of coordinate and distributed according to Rayleigh, while
phase φ is distributed homogeneously on interval (0, 2π). The appearance
of Rayleigh distribution here is intimately connected with our assumption
of the Gaussian nature of the random field.

The use of asymptotics of ξ → ∞, i.e. neglecting the width of Lorentzian
peaks in S(Q), is obviously corresponding to neglect of large scale fluctua-
tions of our random field on distances of the order (or less than) ξ ∼ κ−1.
Physically it is clear that such fluctuations lead to additional scattering



May 3, 2007 8:19 WSPC/Book Trim Size for 9in x 6in Diagrammatics

Contents 341

with characteristic times of the order of τ ∼ ξ
vF

∼ (vFκ)−1 (cf. (6.198)).
It is clear that this scattering can be neglected for energies, satisfying the
inequality vFκ � ξp. It is also unimportant for vFκ � T . These con-
ditions were written above in (6.199). Our analysis of the problem with
finite values of κ confirms these qualitative expectations. The main effect
of additional large scale scattering is the “filling” of the pseudogap, which
completely disappears for vFκ ∼ ∆.
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