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Introduction.

Electronic theory of disordered systems is far at present
from the state of relative completeness and cleareness typical
for the theory of crystalline solids /1/. slost of it qualita-
tive results are based on the concept of electron localization
in a random field /2/ and the existence of the so called mobi=
lity edges (i.e. critical energies where a transition from
localized to extended states takes place). The understanding
of the nature of electronic states and transport properties
near the mobility edge is the main and still unsolved problem
of the theory.

There are two in some sence complementary approaches to this
problem. The first is based upon Anderson theory /3-5/ of loca-
lization, when the statistical convergence properties of a per-
turbation series (the most probable one-electron Green func-
tion) are investigated. In this approach it is possible to de-
fine a localization criterion (the position of mobility edges

in a band) and also the spatial behavior of localized wave
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functions /4,6/ near the mobility edége. At the saue time :‘|.1:"!g'1

ig difficult to define electronic density of states and, mOre
importantly, it seems impossible %o calculate conductivity. The
second traditional approach, pased on a famous work by Edwards
/1/, considers the Green functions averaged upon the randon
configurations of scattering centers or the appropriate random
rields /7-11/. This formalism is gquite natural for the calcu-
latien of different physical gquantities such as density of sta-
tes or conductivity, put it was of very 1imited success in the
studies of the mobility edge region /10,11/.

Recently there were sSomeé attempts /6,12,13/ %o understand the
pehavior of electrons near +he mobility edge gtarting from cer-
tain analogles of the problem with a well known gituation in
the critical region of the second—-order phase transitions /14/.
using @& formal equivalence (or rather correspondence) of the
problem of an electron in a random field and the problem of
phase transition with & zero-component order parameter. This
last problem was succesfully applied for the solution of the
excluded volume problem in the theory of polymer configurations
/15,16/. 1In Ref. /6/ within a framework of Anderson theory
/3,4/ it was shown that the spatial pehavior of electronic wave
functions can pe described by characteristic scaling formulae
with critical exponents depending only upon the space dimen-
sionality and the number of components (n = 0) of the relevant
order parameter. In particular, the correlation length of a
phase transition /15,16/ defines the pehavior of the localiza-
tion length /6/. The papers by Toulouse /12/ and Thouless /13/

are concerned with the second (Edwards) approach in the theory
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of disordered systems. Thouless, in particular, was able to make
an analytic continuation of an exact solution of one-dimensional
phase transition theory with n = O and obtained the known exact
results for an electron in one-dimensional random field./13/.

It was found that the phase transition itself has nothing to do

with the localization problem.

I. Anderson model. Scaling at the mobility edge.

Following Anderson we consider an electron propagating in a
regular lattice with random energy levels at different lattice
sites. The electron become localized for a great enough ratio
of the amplitude of random.fluctuation of energy levels W and
the amplitude V of electronic transitions from site to site.
Our main interest is to study the electronic states near the
eritical ratio (W/V),. We follow the approach of Ref. /4,6/.

Consider Anderson Hamiltonian:

H = ¥, ©B.a'a, -« 2, V..ala. (1.1)
3 93 SEETER

-* - s s
Here a; » 8; are electronic creation and destruction operators

at the i-th site, Ej are random energy levels, distributed

according to:

1 1
7 |B|<zv
P (Ej) = ; (-2
0 ; lEjl7§W
The amplitude V.. is defined to be constant V for nearest

1)
neighbours in the lattice.

13,
The character of electronic states is defined by the Green 3

Gij(E) = <Ri Rj> (1.3)

i.e. the amplitude of an electronic transition (electron with

function:

NS -
E-H

energy equal to E) from site j to site i. For this Green
function a renormalized perturbation series in V is construc-

ted /3,4/. Then we have:

G-ij(E) = Fij(E) ij(E) (1.4)

where the series for Fij(E} is of the form:

B E) = o V.. +

ij( ) B - Ei 'lkg(E) 1]

q 1
-+ T . e V. ————————— V : ¥ seee
1;:3 E = By= Agl(E) o El"A:JL(E) A
(1.5)
and
Gjj(E) = 1 (1.6)

E-E, - Aj{E)

for the self-energies AJ(E). A;.‘(E), Aél(E) etc. the
analogous perturbation expansions can be constructed Vs Y 0
Note that in (1.5) the repeating indices are suppressed, so
that in the Nth order of perturbation theory the number of
different terms in a series (1.5) is defined by the number of
self-avoiding walks of N steps going from j to i. Ander-
son has shown /3/ that the localization criterion is just the
convergence condition of the series considered (convergence is

understood to be convergence in probability /3,5/).In the
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localized states region the series cunverges with a probability
equal to unity, and the convergence condition defines the cri-

tical ratio (W/V)c or the position of mobility edges in a band.
The most probable behavior of Green function in the middle of

the band (E = 0) is described by:

o0
6 B~ D Ry - (VWY Y /m,E) (1.7)
E=20 N=4
where ZN(Ri - Rj) is the number of self-avoiding walks of N
steps linking the sites i and J, q/is a slowly varying
(logarithmic) function of V/W and the connectivity constant K
of the lattice /3/. If we are going to consider localization at
some arbitrary energy E in the band, then we have to replace
2 V/W in (1.7) by 2N(E)V, where N(E) is the electronic den-
sity of states /4/.
The critical width of the random level distribution We (or
in general case the critical ratio (W/V)c) is defined by the

convergence condition /3/:
I = (2ev/W)K Y(v/W,,K) (1.8)

Anderson has used /4/ the ZN(R) found in the numerical expe-
riments. We shall use an analytic theory due to de Gennes and
des Cloizeaux /14,15,16/ based upon Wilson theory of critical
phenomena. The function ZN(R) in 4 - dimensional space is re-

presented by the inverse Laplaee transform:
€+100

Zy(R) = j’gﬁi exp (Ns) Gy(s,R) (1.9)

£-190

where GU(S,R) is an unrenormalized Green function of an Euéﬁ%ﬁ
dic field theory (Ginzburg-Landau theory of phase transitions)
with a Lagrangian:

n n
g 2 _ 2 2]5 1 2.2
L = 12 20 (VEP e al L L e, (T 8D
j=1 J:
(1.10)
where n 1is the number of components of the # - field, which
in the problem under consideration has to be equal to zero.
Dimensionless parameter s is linked with an unrenormalized
mass 8 = mga2 , where a 1is a characteristic length of the

order of a lattice constant. Phase transition corresponds /14/

to the renormalized mass going to zero with s —» 8,
s = a8,) (1.11)

where ~ is the correlation length critical exponent.
T, {19 % % Sg. The parameter 8, is linked with the lattice

connectivity constant /15-17/:

K = exp (sc) (1.12)
Using (1.9) in (1.7) we obtain: (R = Bty Rj)
c4i190
Sl NN YN
G, 70 5%y exp N(s - 8) Gy(s,R) (2v/M)'K YN v/m,x)
N=1 ¢ {co
c+ 100
aF
ds o - -~
i SQWi %ﬂbm) Z: exp m(s~¢c)¢mhde) =
i N=1
Ceo

= GU(an/Wc * Sy R) (1130
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-the principal result showing that the most probable spatial The above considerations are invalid in one-dimension /19/,
behavior of the one-electron Green function of the Anderson mo- because in the present model with V nonzero only for nearest
del in the region of localized states (W= Wc) is the same as neighbors, the renormalized perturbation series for the Green
that of the correlation function of the phase transition theory function consists of only two terms in one-dimension (one step
(1.10) with n=0 . W = W, is an exact analogue of the criti- to the left and one step to the right). The problem of lecaliza-
cal temperature. tion is reduced to the study of convergence properties of some

ontinued fraction /1 d the self-avoiding walks has nothin
For W 2 W, the Green function is exponential /14/: % v FADy e &

to do with it. From different considerations the same conclusion

Giqu exP( - IR /Rloc) i lR\E;’ Rloc (1.14) was reached by Thouless /13/.
where ¥
Rloé“f m'1 ~ a } el wc (1.15) 4 2. Electron in the system of random impurities.
W
c

Consider an electron in the field of randomly placed scattering

is the localization length. Within the framework of Wilson £ - centres. The Hamiltonian is of the forms

expansion (d = 4 -f) /14/ for n = 0 we obtain: ) 5 N
H (r,/Rj/) = - VD * Z: V(r - Rj) {(2:1)

s
Qn%{1 f%+ %2 £ & 1@ 0.592 for & =1 (1.16) ?

where V(r - Hj) is the potential of the scatterer placed at Rj'
in excellent agreement with Anderson's V= 0.6 /4/ obtained . , .
m is the electron mass, N is the number of scatterers. The

from numerical analysis of self-avoiding walks. For W = W_:

¢ spatial distribution function of the scatterers is of the form:
G, .~ R l =82 %) 1.1 =
where:
2 {’ 17 k wheregP is the volume of the system. In the following we all-
= 1+ X 0.032 ¢ = 14 ;
nz 4 6 33 3 or L= 1 (1.18) ways consider an averaged Green function /7,8,10,11/. It can be
The smallness of 7] leads to impossibility in the present mo- represented vy the following path-integral /20,21/:

del of power law localization proposed by Thouless /14/, who
used numerically determined values of critical exponents in the

preexponential factor of ZN(R), which apparently are very poor.



98 r(t)=r
G(r - r',t) = f Dz exp{lm jd’t +2(7) -

r(o)=r"* ¢

+9 de [exp (-1 jd'c V(r(T)- R)) -1]} (2.3)

Consider the limit @22, V= Q5 jvvae» const.
Placing the energy zero at the mean scattering potential we ob-

tain /10,11/:

r(t)=r
G(r - r',t) = j (”D r (7) exp{ in /(dt r2('t -
r(o)=r"*
t
-3 fax fa"r: W () - r('C’))] (2.4)
where
w(r(T,) - r(%;)) = V(dRV(r(T]) - R)V(r(G)-R) (2.5)

which is equivalent /11/ to the study of an electron in a

Gaussian random field:

G(r - r',t) = <G(rr',t {jzf} )>¢’ (2.6)

where
r(t)=r t
G(rr',t {ﬁ} y = r (t) exp{i%- J'd't'x"z('t) =
r{o)=r"' £ @
- EE aTF[ r (’t}]} (2.7)

is the Green function of an electron in the field @ (r) and
averaging in (2.6) is taken upon the distribution of ¥ (r) of

the form:

P(g(r)) = N exp{- 2—?€ jar Jdr' g (r) W (r-r') ,\J(r')} (2.8)

where 499
dr" W(r - r“)w"1{r“ -r') = (!z; -7r') (2.8)
e use the "white-noise" correlator /8/:
W(r - r') = V& C{?r -r') (2.9)

corresponding to Cf:function scattering potential. Green func-
tion (2.4) is defined by the well-known Edwards diagramm series
/1/s where only diagrams with two interaction lines entering the
"crogs" are present (see Fig. I(e-d)), corresponding to Gaussian
statistics of the random field (2.8). The diagrams of the type
Fig. I(d) are absent. ln the momentum representation two inter-
action lines with a "ecross" correspond to §:V2.
Making in (2.4) an analytic continuation on imaginary time

t— ifg , thus going to a description of thermodynamical pro-

perties of the system, we cbtain:

r(p)=r £
G(r -r',p) = CI)'r(s) exp{ - % JAS #2(s)
) 0
r(o)—rﬁ
2
*i‘z’— Jd 2 d (x( (s1)- r(s,))} (2.10)

The path-integral of this iype describes the thermodynamics of

s a polymer chain with an attractive interaction between the mono-

mers (10,11/. Following the method used by de Gennes and des
Cloizeaux in the theory of polymers with repulsion (excluded
volume problem) /15,16/, within the framework of perturbation
theory it is easy to demonstrate that the Grean function

G(r - r', ﬁ) or G(p,‘b) in the momentum representation is defi-

ned by the inverse Laplace transform:
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ct+1%
T
G¢(p,B) =4( %?i exp (XP) & (pT) (2.11)
C-ic0
where &(p ) is the Green function of the field theory with

Lagrangian (compare (1.10)):

n n
2
L(x) = %ZI {%_7 (vap® et )1 o v2(jg1 af) (2.12)
J=

Here n is again the number of components of @ , which is
supposed to be equal to zero. This condition excludes (at the
end of the calculation) "extra" diagrams with closed loops, pro-
portional to n, which %re absent for the electron in a random
field. (see Pig.2(c-e)). The diagrams of the type Fig. 2(a,b)
are retainéd.

It can also be easily seen that the Fourier-transformed retar-
ded electron Green function GR(p,E) (where E = E « idJ) can be
obtained from G(p,T) of (2.12) via the direct analytic con-
tinuation T~ E.

Note the "wrong" sign of the coupling constant in (2.12), cor-

'responding to the attractive interaction of the "g-particles".
This fact /6/ is responsible for the drastic difference of the
problem under consideration from that of critical phenomena.

In Ref. /28/ this essential point was unfortunately missed and
the results claimed are apparently wrong. It is well known that
such problem of a field theory is unstable in the sence of ab-

sence of the ground state /22/. The physical meaning of this

phenomenon is discussed below.
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3. Weak coupling approximation. "Parquet" solution.

It is well known that in four-dimensional space (d = 4) the
problem defined by (2.12) may be solved in the "parquet" appro-
Ximation in case of repulsive interaction /23/. "Parquet" is the
dominating sequence of diagrams also for d = 4 -£ . In the case
of attractive interaction it is also valid, because selection of
leading diagrams does not depend upon the sign of a coupling
constant.

It is easy to check, that the series of "parquet" diagrams for
the theory (2.12) is an expansion in powers of & parameters us
where:

1

1 =
B Max a [42 mT, pil e ¥

(3.1)

o l[ 1 S T
€ Max aﬁtdz ot , pﬁ?
2 &
_ mh” a8 2
P e

Here u 1is the dimensionless coupling constant, py are the
external momenta of a given diagram, a is the constant of ele-
mentary length (diverging integrals cutoff), the minimal length
scale in the problem. In the following, everywhere there it is
possible we are meaning the limit of a—» 0,

In our analysis the behavior of four-point vertex part (s)
with all external momenta of the same order of magnitude is of

prime importance /23/. "Parquet" approximation gives /23/:

i ——— (3.3)

1T -us




Q§E€h vertex behavior corresponds to the asymtotic fpreedom in
the theory (2.12). The pole at 8, = u ' correspond to the

breakdown of the perturbation theory in the region 8 E>Uf1-

In the renormalization group formalism it corresponds to the

growth of the invariant charge of the theory for s-% ut,

which is an evidence of the perturbation theory breskdown /24/.
Let us look for the physical consegquencies of the existence

of the pole in (3.3). Introduce:

+1%0

T xp
ZP = Jdd‘r G(r - r,(_l-) = j g_Tri e g(—%— ¢ (pt) (3.4)

C-i00
which is the partition function for the polymer chain /10/.
Going from Zp to Z(t) via the analytic continuation ﬁ‘* it, we

obtain the electronic density of states:

N(E) = ;_T{‘ jdt exp (iEt) Z(t) (3.9)
- 00
Define:
d D a(pr)
dl%e] = gd D (3.6)
e (2m)¢8 T

which is a specific heat in the theory of critical phenomena.

/23/. Graphically it is shown in Fig. 3. Using the Ward identity:

Da(pr) =g (s) 62 (s) (3.7)
2T
we find (see also /23/): S
m2 2
o T ot d (3.8)
c(s) . !tg (t)

where

S
J (s) = exp{ 2 (at Rt)l (3.9)
o

203

In the present problem (n = 0) we have:

2
6(s) = - B— (1-(1-us'? (3.10)
Tu

Using the differentiation rule for the Laplace transformation,

from(3.10) we obtain:

C+CD<’
1 ar  Tf W ad
e =@ Jam e ﬁfg;)ﬁﬂm)
C-100
"% “-j“*’g_ o (v (3.11)
€ 2nii :
(-yoo

Then, using (3.10), (3.1) (for Py = 0):

€100
2 L
- i T el E .“/2v1/2
% __nrgu ® j g-ni e EE‘ = (=) ] -1.3 (3.12)
(-1e0
Here ¢ D E_  , ; 24
E__ = u
sc o Gas ( 3 ) (Ba13)

Expanding the integrand in (3.12) and performing the Laplace
transformation, analytic @ontinuation [B-—ay it and finally the

Fourier transformation (3.5) we have:

&,
ne - Z—sf 1 e () .
T Pz F(%) P \Eg
(3.14)
~¥

P(ic)i’(z e>( sc) }

1

ool 1 B\
— E
8 T(E) plz=E) E,,

for E>Es- For £-50

c

2 a6 B a &
N el L S (E D s« JefB -
el v () ) 26 )

(3 15)
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This series is easily summed:

(3.16)

1
=
—~
&)
—

N(E)

where

y2- £/2 g1 - &2

N,(E) = (2m (3.17)

(4Tr)2
is the free-electron density of states in 4 = 4 - E .
The above results can also be derived by the direct analytic
continuation U— - E in (3.6) - (3.10).

Thus the "parquet" approximation leads to an unphysical singu-

larity in the density of states at E = E (see Figed, curve

sc’
a), corresponding to the pole in the vertex (3.3). Broken line
in Fig.4 displays the free-electron density of states. Esc )
(3.13) is just the width of the Ginzburg critical region of our
theory /25/, that is the energy at which all diagrams become
relevant. This form of Eso was recently conjectured by Toulouse
/12/. In the region E 3> E,, the density of states can be ex-
pandel in powers of (ESC/E)£/2 (3.15), (3.14) which is just
the perturbation series for u<<1. "Parquet" approximation
(weak coupling) is correct only for E>> E . and breaks for
Ef\'Esc due to the growth of the corresponding invariant charge
of the theory. In the theory of critical phenomena the invariant
charge is small (repulsion) also in the critical region, i.e.
perturbation tneory is valid., Here the situation is quite ana-
logous to the Kondo problem /26/ where an unphysical singula-
rity also appears in the parquet approximation, at the energies

(temperatures) where the perturbation theory breaks down.

205
4. Strong coupling approximation and "crossover".
In the theory of disordered systems exists the well-known self-
consistent field theory of Zittartz-Langer and Edwards /8,10,11/
(or the method of "optimal" fluctuation due to Lifshitz /9/)
which enables to find the far asymptotics of the tail of the
density of states, due to localized electrons. To compare it
with perturbation theory we generalize the relevant results to

=4"6-

— In the self-consistent field theory /8-10/ it is assumed that
an electron in localized state region is bound in an effective
potential well of linear dimension ®, and the far asymptotics

of the tail of the density of states is determined by the lowest
level in this well. Then for the density of states in d-dimen-

sional space we have /10/:

N(E)

2 2!
ALES eVt
T f dt exp{ -1t L—-——Z—E - s8d

=&l:r_§w_23 & EXP{— 2 ;vz [ om R E] } ten

The size of the well (localization length) Ro is determined by

the minimization of the exponent:

2
g Fage } )
R - E = 0 4.2
dR { om RE ( )
giving:
2 m(-E) -1/2
R, = 5 (4.3)
(4-a)m

80 that the density of states for d = 4 — £ is of the forms



006 _ £
/2
N(E) ~ exp ( }fa (tel/E )" ) (4.4)

for B L 0, (see Fig.4, curve b). This expression is valid for
[E[>>ESC, where B, is again defined by (3.93)s In (2.4) we
have dropped the breexponential factor which cannot be accurate
in this approximation. The bresence of an infinite tail is con-
nected with the Gaussian nature of the randonm field in which
very deep fluctuations are present. That is apparently the rea-
son for the absence of the ground state in the field theory
(2.12). It is obvious that there is no fundamental problem here
(it is not so in relativistic field theory /22/1). (4.4) can be
expanded in powers of ( E /Esc) Bz which can be interpreted as
&n expansion in powers of an inverse cupling constant u_1.
Thus in the region E~ 0, i.e. around the mobility edge,
there is a region of the width 2Esc’ outside which the density
of states can be described either by the Perturbation theory in
powers of u (weak coupling region E>> E o)y or by the "per-
turbation" theory in powers of y~! (strong coupling region

|E[>7Eg,).



We see that the problem under consideration is similar to the
Kondo problem and is characterized by the "crossover" from the
weak coupling regime for u<X1 towards the strong coupling

regime.

#/——4. Analogy with the solution of the Xondo problem /27/
allows one to suppose that such a crossover is'continuoua (s

shewn—by—the—dotted—line—in fig. 5). Then the density of states

is apparenfly free of any singularity in the crossover region.
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