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We consider the model of superconducting pairing with the energy gap function which is odd over k − kF . In
this case superconductivity is possible even in the presence of an arbitrarily large point-like repulsion between
electrons. We discuss mainly a model pairing interaction for which the BCS equations can be solved exactly,
allowing the complete analysis of the interplay of the usual (“even”) and “odd” pairing. “Odd” pairing dominates
for strong enough repulsion and pairing interactions. We show that the normal impurities (disorder) lead to
very strong degradation of the “odd” pairing, which is even more rapid than in case of magnetic impurities in
traditional superconductors.

In a recent paper Mila and Abrahams proposed
an interesting model, which allows the existence
of superconducting pairing even in the case of in-
finitely strong point-like repulsion between elec-
trons[1]. Naturally this model is of great inter-
est as a basis for a possible mechanism of high-
temperature superconductivity in metallic oxides.
The model is based upon the demonstration of
the existence of nontrivial solution of BCS-like
gap equation:
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with the gap function ∆(ξ) = −∆(−ξ) (i.e. odd
in k − kF , ξ = vF (k − kF )) in case of the
presence in V (ξ, ξ′) of an attractive interaction
−V2(ξ, ξ

′) < 0 (which is non-zero for |ξ|, |ξ′| < ωc

and |ξ−ξ′| < ωc) despite the existence of a strong
(infinite) point-like repulsion V1(ξ, ξ

′) = U > 0
(for |ξ|, |ξ′| < EF ). In case of the odd gap function
∆(ξ) the repulsive interaction in Eq. (1) drops
out, while the attractive part V2(ξ, ξ

′) may pro-
duce pairing with unusual properties (gap func-
tion is zero at the Fermi surface, which leads to
the gapless superconductivity).
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If the normal (nonmagnetic) impurities are
present the equations for normal and anoma-
lous Green’s functions take the usual form[2],
with renormalized frequency and the gap func-
tion given by:
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Here ω = (2n + 1)πT , γ = πcV 2

0
N(0)—is the

scattering rate due to point-like impurities with
potential V0, chaotically distributed in space with
concentration c. The integral term in Eq. (3) van-
ishes due to the odd nature of ∆(ξ) and the gap
renormalization is absent. This fact explains the
strong impurity suppression of the “odd” pairing.

Close to the transition temperature Tc Eqs. (2)
and (3) may be linearized over ∆(ξ), and after
the standard calculations we obtain the following
linear gap equation, which determines Tc:
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In the following we shall use the model interac-
tion:
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Figure 1. Tc dependence on the scattering rate γ
for the different values of pairing constant g: 1—
g = 1.22; 2—1.24; 3—1.30; 4—1.5; 5—2.0; 6—5.0,
7—10.0.

The main attractive property of this choice is that
it allows the reduction of the integral gap equa-
tion to a simple transcendental equation which
can be easily solved. The main qualitative results
obtained below do not depend on the choice of
the model potential.

The Tc-equation reduces now to:
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In the “pure” limit of (γ → 0) pairing exists for
g > gc = 1.213. In Fig. 1 we show the dependence
of Tc on γ for a number of characteristic values
of the pairing constant g. It is clearly seen that
normal impurities strongly suppress the “odd”
pairing. Superconductivity vanishes for γ ∼ Tc0

and this suppression is even stronger than in case
of magnetic impurities in traditional supercon-
ductors[3]. This is reflected in particular by the
disappearance of superconductivity region on the
“phase diagramm” in Fig. 1 for g → gc and the
absence of the universal behavior which is char-
acteristic for the case of magnetic impurities.

The critical scattering rate γc, corresponding to

Tc(γ → γc) → 0, is determined by the following
equation:
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which for the model interaction of Eq. (6) reduces
to:
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It is easily shown that for g � gc we have the uni-
versal result: γc/Tc0 = 4/π ≈ 1.273. It is also not
difficult to see that this result as well as the de-
pendence of Tc on γ for g � gc do not depend at
all on the choice of the model potential V2(ξ, ξ

′).
This behavior is clearly seen in Fig. 1.

For the model potential:
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which was extensively used in[1], the critical cou-
pling constant gc is apparently zero and our nu-
merical data for Tc(γ) show no qualitative change
in this dependence in comparison with the data
presented above.

It is well known that high-Tc state in cuprates
is very sensitive to the structural disordering[4],
and is destroyed close to the metal-insulator tran-
sition induced by disordering i.e. for γ ∼ EF , but
not for γ ∼ Tc0 � EF . This fact makes the model
of an “odd” pairing rather improbable candidate
for the explanation of high-Tc superconductivity
in cuprates.

REFERENCES

[1] Mila F., Abrahams E. Phys. Rev. Lett. 67,
2379 (1991)

[2] Abrikosov A.A., Gorkov L.P. Zh. Eksp. Teor.
Fiz. 35, 1158 (1958); 36, 319 (1959)

[3] Abrikosov A.A., Gorkov L.P. Zh. Eksp. Teor.
Fiz. 39, 1781 (1960)

[4] Aleksashin B.A. et al. Zh. Eksp. Teor. Fiz.
95, 678 (1989)


