
SUPERCONDUCTIVITY AND 
LOCALIZATION 

Michael V. SADOVSKII 

Institute for Electrophysics, Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia 

ELSEMER 

AMSTERDAM - LAUSANNE - NEW YORK - OXFORD - SHANNON - TOKYO 



PHYSICS REPORTS 

ELSEVIER Physics Reports 282 (1997) 225-348 

Superconductivity and localization 

Michael V. Sadovskii 

Institute for Electrophysics, Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia 

Received January 1996; editor: A.A. Maradudin 

Contents 

1. Introduction 228 
2. Anderson localization and metal-insulator 

transition in disordered systems 230 
2.1. Basic concepts of localization 230 
2.2. Elementary scaling theory of localization 234 
2.3. Self-consistent theory of localization 238 

2.4. Phase transition analogy and scaling for 
correlators 252 

2.5. Interaction effects and Anderson transition 256 
3. Superconductivity and localization: statistical 

mean-field approach 266 
3.1. 
3.2. 
3.3. 

3.4. 

BCS model and Anderson theorem 

T, degradation 
Ginzburg-Landau theory and Anderson 
transition 
Fluctuation conductivity near the 
Anderson transition 

266 
270 

282 

298 

3.5. Superconductivity in an Anderson 
insulator at T = 0 

4. Statistical fluctuations of the superconducting 
order parameter 
4.1. Statistical critical region 
4.2. Superconducting transition at strong 

disorder 
5. Superconductivity in strongly disordered 

metals: experiment 
5.1. Traditional superconductors 
5.2. High-T, superconductors 

6. Conclusions 

Appendix A. Spectral densities and criterion for 
localization 

Appendix B. Linearized gap equation in 
disordered system 

Appendix C. Localization and d-wave pairing 
References 

301 

303 
303 

307 

313 
314 
319 
331 

332 

335 
338 
341 

Abstract 

We present a review of theoretical and experimental works on the problem of mutual interplay of Anderson 
localization and superconductivity in strongly disordered systems. Superconductivity occurs close to the metal-insulator 
transition in some disordered systems such as amorphous metals, superconducting compounds disordered by fast 
neutron irradiation, etc. High-temperature superconductors are especially interesting from this point of view. Only bulk 
systems are considered in this review. The superconductor-insulator transition in purely two-dimensional disordered 
systems is not discussed. 

We start with a brief discussion of the modern aspects of localization theory including the basic concept of scaling, 
self-consistent theory and interaction effects. After that we analyze disorder effects on Cooper pairing and superconduct- 
ing transition temperature as well as the Ginzburg-Landau equations for superconductors which are close to those for 
the Anderson transition. A necessary generalization of the usual theory of “dirty” superconductors is formulated which 
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allows to analyze anomalies of the main superconducting properties close to the disorder-induced metal-insulator 
transition. Under very rigid conditions superconductivity may persist even in the localized phase (Anderson insulator). 

Strong disordering leads to considerable reduction of superconducting transition temperature T, and to important 
anomalies in the behavior of the upper critical field Hc2. Fluctuation effects are also discussed. In the vicinity of the 
Anderson transition, inhomogeneous superconductivity appears due to statistical fluctuations of the local density of 
states. 

We briefly discuss a number of experiments demonstrating superconductivity close to the Anderson transition both in 
traditional and high-T, superconductors. In traditional systems superconductivity is in most cases destroyed before the 
metal-insulator transition. In the case of high-T, superconductors a number of anomalies show that superconductivity is 
apparently conserved in the localized phase before it is suppressed by a strong enough disorder. 

PACS: 74.; 72.15.Rn 

Keywords: Superconductivity; Localization phenomena 
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1. Introduction 

The concept of electron localization [l] is basic for the understanding of electron properties of 
disordered systems [2,3]. In recent years a number of review papers have appeared, extensively 
discussing this problem [4-71. According to this concept introduction of sufficiently strong 
disorder into a metallic system leads to spatial localization of electronic states near the Fermi level 
and thus to a transition to dielectric state (Anderson transition). After this transition DC conduct- 
ivity (at zero temperature, T = 0) vanishes, despite the finite value of electronic density of states at 
the Fermi level (at least in one-electron approximation). 

At the same time it is well known that even the smallest attraction of electrons close to the Fermi 
level leads to formation of Cooper pairs and the system becomes superconducting at sufficiently 
low temperatures [8,9]. It is known that the introduction of disorder which does not break the 
time-reversal invariance (normal, nonmagnetic impurities, etc.) does not seriously influence the 
superconducting transition temperature T, and superconductivity in general (Anderson theorem) 
[lo-13). 

Thus a problem appears of the mutual interplay of these two possible electronic transitions in 
a disordered system which leads to quite different (even opposite) ground states (insulator or 
superconductor). This problem is very important both from theoretical and experimental points of 
view. Actually, superconducting properties of many compounds depend strongly on structural 
disorder. In this respect we can mention amorphous systems (metallic glasses) and superconductors 
disordered by different forms of irradiation by high-energy particles (fast neutrons, electrons, 
heavy-ions, etc.). It appears that in many of these systems superconductivity is realized when the 
system in normal state is quite close to the metal-insulator transition induced by disorder. In this 
case many anomalies of superconducting properties appear which cannot be satisfactorily ex- 
plained within the standard theory of “dirty” superconductors [S-13]. These include rather strong 
dependence of T, on disorder in apparent contradiction with Anderson’s theorem, as well as some 
unusual behavior of the upper critical field HcZ. 

The discovery of high-temperature superconductivity in metallic oxides [14,15] has lead to the 
entirely new opportunities in the studies of strong disorder effects in superconductors. Very soon it 
had been established that high-T, superconductors are quite sensitive to structural disordering 
which leads to a rather fast destruction of superconductivity and metal-insulator transition. 
However, the high values of initial T,, as well as a small size of Cooper pairs and the quasi-two- 
dimensional nature of electronic states in these systems are very appropriate for studies of the 
mutual interplay of localization and superconductivity [ 161. It may be stated with some confidence 
that in these systems superconductivity can be observed even in the region of localization 
(Anderson insulator). 

This review is mainly concerned with theoretical aspects of localization and superconductivity 
close to the Anderson transition. However, we shall pay some attention to experiments demon- 
strating the importance of localization phenomena for the correct analysis of superconductivity in 
strongly disordered systems. Special emphasis will be on the experiments with high-T, supercon- 
ductors. We shall limit our discussion to three-dimensional and quasi-two-dimensional (in case of 
HTSC) systems, practically excluding any discussion of purely two-dimensional systems, which are 
quite special both in respect to localization and superconductivity. In this case we refer the reader 
to recent reviews [17-191 which are specifically concerned with the two-dimensional case. 
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I must stress that the material presented in this review is concerned mainly with the personal 
interests of its author and I apologize to those people whose important contributions in this field 
would not be discussed in detail or even would be missed because of the lack of space. 

The usual theory of “dirty superconductors” [9-131 is a cornerstone in our understanding of 
superconducting properties of disordered metals. It is based on the following main statements: 

1. As impurity concentration (disorder) grows, a transition takes place from the “pure” limit, 
when the electron mean-free path I is much larger than the superconducting coherence length &,: 
1 4 co = kuF/m10 to a “dirty” superconductor with lo $ 1 $ ti/p, (Here z)F, PF are the Fermi 
velocity and momentum, do is the zero temperature energy gap). Transition temperature 
T, changes only slightly, mainly due to small changes of Debye frequency cL)u and of the pairing 
constant A,, which are due to relatively small changes in the electronic density of states under 
disordering. Transition from the free electron motion to diffusive one does not change T, at all 
(Anderson’s theorem). These statements ignore any disorder dependence of microscopic pairing 
interaction, which is assumed to be some constant as in the simplest BCS model. 

2. Superconducting coherence length 5 (at T = 0) determining the spatial scale of the supercon- 
ducting order-parameter (the size of a Cooper pair) diminishes with 1 so that 5 x & in the limit 
of h/p, 4 1 < (0. 

3. As t diminishes the critical region near T, where thermodynamic fluctuations are important 
widens and is of the order of zGTc, where ZG - [TcN(EF)t3]p 2 is the so-called Ginzburg’s 
parameter (N(E,) is the electronic density of states at the Fermi level EF). For “pure” superconduc- 
tors rG - (Tc/EF)4 < 1 and as 1 drops rd grows and 5 drops. However, in the limit of 1 B h/pF the 
value of rd still remains very small. 

Theory of “dirty” superconductors is the basis of our understanding of superconducting 
properties of many disordered alloys. However, the main results of this theory must be modified for 
the mean-free path values 1 of the order of inverse Fermi momentum /i/p, (i.e. of the order of 
interatomic distance). In three-dimensional systems the growth of disorder leads to destruction of 
diffusive motion of electrons and transition from extended to localized states at critical disorder 
determined by I, z h/p,, i.e. to transition to Anderson insulator. This metal-insulator transition is 
reflected in a continuous drop to zero of the static metallic conductivity (at T = 0) as I --f I,. For 
1 9 1, conductivity is determined by the usual Drude formula go - 1, while for I + 1, it drops as 
c - (1 - 1,)“, where v is some critical exponent. Transition from diffusion to localization is realized 
at the conductivity scale of the order of the so-called “minimal metallic conductivity” 
gc z (e2pF/n3ti2) z (2-5) x lo2 R-‘cm-‘. The usual theory of “dirty” superconductors does not 
consider localization effects and is valid for conductivities in the interval (EF/Tc)a, 9 CJ 9 (T,. 

At present the following results are well established for superconductors close to localization 
transition (i.e. fl < gc): 

1. Assuming independence of the density of states at the Fermi level N(EF) and of the pairing 
constant LP from the value of the mean-free path 1 (disorder) we can show that T, drops as disorder 
grows due to respective growth of Coulomb pseudopotential p*. This effect is due to the growth of 
retardation effects of Coulomb interaction within the Cooper pair as diffusion coefficient drops 
close to the Anderson transition [20]. T, degradation starts even for cr 3 crc and becomes fast for 
CT < (T, [21,22]. The growth of spin fluctuations and changes in the density of states due to 
interaction effects may also lead to the drop of T,, though these mechanisms were not analyzed in 
detail up to now. 
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2. Close to the Anderson transition the usual expression for superconducting coherence length 

for a “dirty” limit 5 = m should be replaced by 5 z (<01z)L’3 and it remains finite even below the 
Anderson transition (i.e. in insulating phase) [21-251, signalling the possibility of superconductiv- 
ity in Anderson insulator. Obviously, these results are valid only in the case of finite 7’, close to 
Anderson transition, which is possible only if very rigid conditions are satisfied. 

3. The growth of disorder as the system moves to the Anderson transition leads to the growth of 
different kinds of fluctuations of the superconducting order-parameter both of thermodynamic 
nature and due to fluctuations of electronic characteristics of the system. 

In our review we shall present an extensive discussion of these and some of the other problems 
concerning the interplay of superconductivity and localization. However, first of all we shall briefly 
describe the main principles of the modern theory of electron localization and physics of 
metal-insulator transition in disordered systems, which will be necessary for a clear understanding 
of the main problem under discussion. After that we shall give rather detailed presentation of the 
theoretical problem of superconductivity close to the Anderson transition. Finally, we shall 
describe the present experimental situation. We shall briefly describe some of the experiments with 
traditional superconductors, but our main emphasis will be on high-T, oxides. We shall concen- 
trate on the experiments with high-temperature-superconductors disordered by fast neutron 
irradiation. We consider this as one of the best methods to introduce disorder in a controlled 
fashion without any chemical (composition) changes. In this sense our review of experiments is also 
far from being complete, but we hope that it is full enough to claim that high-T, systems are 
especially good for testing some of the main theoretical ideas, expressed throughout this review. 
Also we believe that better understanding of their properties under disordering may be important 
for the development of the general theory of high-temperature superconductivity. The preliminary 
version of this review has been published in Ref. [26]. 

2. Anderson localization and metal-insulator transition in disordered systems 

2.1. Basic concepts of localization 

In recent years a number of review papers have appeared dealing with basic aspects of Anderson 
localization [4-7,27-291. Here we shall recall the main points of this theory and introduce the 
accepted terminology. 

In 1958 Anderson [l] showed for the first time that the wave function of a quantum particle in 
a random potential can qualitatively change its nature if randomness becomes large enough. 
Usually, when disorder is small, the particle (e.g. electron) is scattered randomly and the wave 
function changes at the scale of the order of mean free path 1. However, the wave function remains 
as extended plane-wave-like (Bloch wave-like) throughout the system. In the case of a strong 
enough disorder, the wave function becomes localized so that its amplitude (envelope) drops 
exponentially with distance from the center of localization yo: 

I+(r)1 - exp(lr - roll&,) , (2.1) 

where Rloc is the localization length. This situation is shown qualitatively in Fig. 1. The physical 
meaning of Anderson localization is relatively simple: coherent tunneling of electrons is possible 
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r 

Fig. 1. Electron wave function in a disordered system: (a) extended state, (b) localized state. 

Fig. 2. Electron density of states near the band edge in a disordered system. Dashed line is the region of localized states 
and E, the mobility edge. 

only between energy levels with the same energy (e.g. between equivalent sites in crystalline lattice). 
However, in case of strong randomness the states with the same energy are too far apart in space for 
tunneling to be effective. 

At small disorder, DC conductivity of a metal at T = 0 is determined by the Drude expression: 

o. = (ne2/m)r = (ne2/pr)l , (2.2) 

where r is the mean free time, n the electron density and e its charge. The usual kinetic theory can be 
applied if 

prllh % 1 or EFr/ZZ S 1 (2.3) 

which is a condition of weak scattering (disorder). From Eqs. (2.2) and (2.3), taking into account 
y1 = ps/(3n2 fi”), we can estimate the lower limit of conductivity for which the Drude approxima- 
tion is still valid: 

e2p, PF~ 
go== h B ( > e2pF 

31c2h2 . (2.4) 

The conductivity value: 

gc = e2p,/37c2i?2 (2.5) 

is usually called the “minimal metallic conductivity” [2,3]. As disorder grows the mean free path 
diminishes and becomes of the order of lattice spacing a, so that we reach pFl/h - 1, and the usual 
kinetic theory based upon Boltzmann equation becomes inapplicable. This was first noted by Ioffe 
and Rege [30], who observed that at such disorder the qualitative form of the wave function must 
change, transforming from extended to localized accompanied by a metal-insulator transition. 
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From Eq. (2.5) it is clear that this transition takes place at the conductivity scale of the order of 
gc - (2-5) x lo2 K1 cm-’ for typical h/p, - a - (223) x lo-* cm. 

The qualitative form of the energy spectrum near the band-edge of a disordered system is shown 
in Fig. 2. When the Fermi level lies in the high-energy region electronic states close to it are slightly 
distorted plane waves. As Fermi energy moves towards the band edge (or with the growth of 
disorder) the critical energy E, (mobility edge) separating extended and localized states crosses the 
Fermi level. If EF belongs to the region of localized states the system becomes insulating, 
conductivity is possible only for T > 0 or by exciting the carriers by an alternating electric field. 
The appearance of these hopping mechanisms of conductivity signals the Anderson transition 
c2,31. 

One of the main problems is the qualitative behavior of conductivity when the Fermi level 
EF crosses the mobility edge E, (at T = 0). While Mott assumed the discontinuous drop of 
conductivity from cc to zero [2,3] modern approach [4-6,291 based mainly on the scaling theory 
to localization [3 l] demonstrates a continuous transition. Experiments at low temperatures clearly 
confirm this type of behavior [6], and oc acts as a characteristic conductivity scale close to 
transition. Static conductivity of a metal at T = 0 close to Anderson transition within this 
approach is written as 

(2.6) 

where A is a numerical constant, d the space dimension, and crc z Ae2/(tiadP 2). Here we introduced 
the correlation length of scaling theory diverging at the transition 

(2.7) 

Critical exponent v determines this divergence. In the one-electron approximation and in the 
absence of magnetic scattering, 1 1 - 1 [6,7,29,32]. In the region of localized states (i.e. for EF < E,) 
tloc coincides with the localization length of electrons RIoc. In the metallic region, <ioc determines 
the effective size of a sample at which “ohmic” behavior appears, i.e. conductivity becomes 
independent of the sample size [6,33]. “Minimal metallic conductivity” cc determines, as we noted, 
the conductivity scale close to a transition. 

In the vicinity of Anderson transition, conductivity acquires an important frequency dependence 
[51,34]. For EF = E,, i.e. at the transition we have 

c(m) 8 oc(iwr)l” ~ 2)‘d (2.8) 

which is also valid close to the transition (from either side) for frequencies CD 9 co, - 
[NATO,]-‘. For d = 3 this is sometimes referred to as Gotze’s [35] law IZD”~, although this 
particular derivation was later acknowledged to be wrong [36]. 

The spatial dimension d = 2 is the so-called “lower critical dimensionality” [4-73. For d = 2 all 
electronic states are localized for infinitesimal disorder [31], and there is no Anderson transition. 

Quasi-two-dimensional systems are especially interesting, mainly because most of the high-T, 
oxides demonstrate strongly anisotropic electronic properties. Here we shall make the simplest 
estimates for such systems on the line of Ioffe-Regel approach. Consider a system made of 
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highly-conducting “planes” where the current carriers are “nearly free”, while the interplane 
tunneling is possible only due to some small transfer integral w 6 EF (EF is the Fermi energy of the 
two-dimensional gas within the plane). Conductivity within the plane is determined for small 
disorder as 

gIl = e2D,,N(&), (2.9) 

where D,, = 1$2/2, N(E,) = m/( nalh2), ai is the interplane spacing, which is noticeably larger than 
the interatomic distance within the plane. Interplane conductivity is given by 

ran = e2DLN(EF), (2.10) 

where DL = (w~~)~z/h~. The appropriate mean free paths are /,, = +r, 1, = WU~T/~?, Ioffe-Regel 
criterion for a quasi-two-dimensional system can be written as 

1, = walz/h - a, 

which is equivalent to wz/h - 1 ~ the condition of breaking 
planes. Elementary estimate shows that this corresponds to 

&G - t?2:&la - cc ) 

(2.11) 

of coherent tunneling between the 

(2.12) 

where a is the interatomic distance within the planes. In the isotropic case this reduces to Eq. (2.5). 
For a strongly anisotropic system, when gII 9 cI it is clear that Eq. (2.12) can be satisfied even for 
G,~ $ CJ~, because of small values of gI. Formally, for g1 -+ 0, the critical value of cl1 diverges, which 
reflects, at this elementary level, the tendency towards complete localization in the purely two- 
dimensional case. 

The important property of the energy spectrum in the region of localized states is its local 
discreteness. As we noted above, the physical meaning of localization itself leads to a picture of 
close energy levels being far apart in space, despite the continuous nature of the average density of 
states. Due to exponential decay of the localized wave functions it leads to the absence of tunneling 
[ 11. The energy spacing between levels of electrons localized within a sphere of radius of the order 
of R,,,(E) can be estimated [2, 31 as 

(SE, k [N(EF)Rf,,] -I . (2.13) 

As the metallic system moves toward the Anderson transition, i.e. as the mean free path drops to 
interatomic distances and conductivity becomes less than - lo3 G-l cm-‘, there appear the 
well-known anomalies like the negative temperature coefficient of resistivity [30,37]. These 
anomalies are apparently closely connected with the localization phenomena [6]. 

So far we discussed the Anderson transition, neglecting electron interactions. Its importance in 
the problem of metal-insulator transitions in disordered systems was known for a long time [2]. In 
recent years, there has been considerable progress in the general approach to the theory of “dirty” 
metals, based on the analysis of interference of impurity scattering and Coulomb interactions 
[38-401. Later, we shall review its implications for the general picture of Anderson transition. 
Apparently, the continuous nature of metal-insulator transition is not changed though interaction 
leads to a number of specific effects, e.g. in the behavior of the density of states at the Fermi level, as 
well as to the growth of magnetic (spin) fluctuations. Here we shall briefly describe the concept of 
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“soft” Coulomb gap appearing below the transition in the region of localized states [41-443. 
Coulomb interaction between localized electrons can be estimated as e2/&R,,,, and it is obviously 
important if lthis energy is comparable with the local level spacing [N(EF)R&-l (for three- 
dimensional system). As a result, a Coulomb pseudogap appears at the Fermi level with the width: 

AC % (&3/E3’2) [Iv(&)] li2 , (2.11) 

where e is the dielectric constant. We shall see later that close to the Anderson transition t: z 
47~ N(E,) R& and accordingly, 

A c z [IV(&) R:,,] - ’ z &, (2.15) 

so that in this case Coulomb effects are comparable with the effects of the discreteness of energy 
spectrum in the localized phase. At the moment there is no complete theory connecting the 
localization region with the metallic phase within the general approaches of interaction theory. 

2.2. Elementary scaling theory of localization 

The behavior of the electronic system close to the Anderson transition can be described by 
a scaling theory similar to that used in the theory of critical phenomena [45-471. The main 
physical idea of this approach is based upon a series of scale transformations from smaller to larger 
“cells” in coordinate space with the appropriate description of a system by transformed parameters 
of the initial Hamiltonian. These transformations usually constitute the renormalization group. In 
the theory of critical phenomena, this approach is usually motivated by the growth of correlation 
length of the order-parameter fluctuations near the critical point [45]. This is analogous to the 
growth of the localization length on approaching the mobility edge from the Anderson insulator. 

The accepted scaling approach to the localization problem was proposed by Abrahams et al. 
[31]. In this theory localization is described in terms of conductance g as a function of the sample 
size L. For a small disorder (p,&i B 1) the system is in a metallic state and conductivity 0 is 
determined by Eq. (2.2) and is independent of the sample size if this size is much larger than the 
mean free path, L 9 1. Conductance is determined in this case just by Ohm’s law and for 
a d-dimensional hypercube we have 

g(L) = 0LdP2 . (2.16) 

If electronic states near the Fermi level are localized, conductivity of an infinite system at T = 0 is 
zero and matrix elements for transitions between different electronic states drop exponentially on 
distances of the order of Rloc. Then it can be expected that for L % RI,,, the effective conductance 
becomes exponentially small: 

g(L) - exp(-L/L) . (2.17) 

Elementary scaling theory of localization assumes that in the general case the conductance of 
a hypercube of size L satisfies the simplest differential equation of a renormalization group: 

d ln &9/d ln L = B&(L)) . (2.18) 

The most important assumption here is the dependence of Pa(g) only on one variable g (one 
parameter scaling). Then the qualitative behavior of Pd can be analyzed in the simplest possible way 
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by interpolating between limiting forms given by Eqs. (2.16) and (2.17). For the metallic phase 
(large g), we get from Eqs. (2.16) and Eq. (2.18) 

lim /Id(g) --f d - 2 . 
Y-z 

(2.19) 

For insulator (y --P 0), it follows from Eqs. (2.18) and (2.17) that 

(2.20) 

Assuming the existence of two perturbation expansions over the “charge” g in the limits of weak 
and strong “couplings” we can write the corrections to Eqs. (2.20) and (2.19) in the following form: 

P&3 + 0) = ln(s/gJ(l + bg + $4 , (2.2 1) 

Bd(g~m)=d-2-(cc/g)+ . . . . a>o. (2.22) 

Following these assumptions and supposing now a monotonous and continuous form of fid(g), it is 
easy to plot it qualitatively for all g, as shown in Fig. 3. All the previous equations are written for 
dimensionless conductance, which is measured in natural units of e2/h z 2.5 x lop4 Sz- ’ cm- ‘. We 
see that fid(g) definitely has no zeros for d < 2. If expansion Eq. (2.22) is valid there is no zero for 
d = 2 also. For d > 2, function ljd must have a zero: Pd(gc) = 0. It is clear that gC - 1 and no form of 
perturbation theory is valid near that zero. The existence of a zero of pd( g) corresponds to existence 
of an unstable fixed point of Eq. (2.18). The state of a system is supposedly determined by disorder 
at microscopic distances of the order of interatomic spacing a, i.e. by go = g(L = a). Using go as an 
initial value and integrating Eq. (2.18) it is easy to find that for go > gC conductivity cL = g(L)L2-d 
tends for L --f zc to a constant (metallic) value. For g < gC in the limit of L --+ cc we get insulating 

Fig. 3. Qualitative form of p,,(g) for different d. Dashed line shows the behavior necessary to get discontinuous drop of 
conductivity at the mobility edge for d = 2. 
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behavior. Using for g - gC an approximation (shown with circles in Fig. 3) 

My) = (llv)ln(&,) 4 (llv)(g - MY, 3 

we obtain from Eq. (2.18) for go > yC the following behavior of conductivity for L + a: 

(2.23) 

(2.24) 

where A = const. and we have explicitly introduced the conductivity scale of the order of (T, 
(cf. Eq. (2.5)). We see that the existence of a fixed point leads to the existence of a mobility edge, and 
behavior of /Id(g) close to its zero determines the critical behavior at the Anderson transition. 
Under these assumptions conductivity continuously goes to zero for go + gC, and the value of 
oC = e2/(tiadp2 ) is the characteristic scale of conductivity at the metal-insulator transition. To get 
a discontinuous drop of conductivity at the mobility edge, pd(g) must be nonmonotonic as shown 
by the dashed line for d = 2 in Fig. 3. This behavior seems more or less unphysical. 

Integrating Eq. (2.18) with fid(g) from Eq. (2.23) with initial go < gC gives 

From this it is clear (cf. Eq. (2.7)) that 

R bc - alk0 - gc)l~cl~y 

(2.25) 

(2.26) 

and v is the critical exponent of the localization length. For d = 2 we have pd(g) < 0 in the whole 
interval of g, so that gL+ 7 -+ 0 for any initial value of g and there is no mobility edge and all states 
are localized. 

For d > 2, limiting ourselves by those terms of the perturbation expansion in gP1 shown in 
Eq. (2.22) we can solve /jd(gc) = 0 to find 

gc = al(d - 2) . (2.27) 

We can see that for d + 2 the mobility edge goes to infinity which corresponds to complete 
localization in the two-dimensional case. Now we have 

fid(g - Yc) = Cd - 2)(Yo - Yd/Yc 

and for the critical exponent of localization length we get (cf. Eq. (2.23)) 

(2.28) 

\I = l/(d - 2) . (2.29) 

which may be considered as the first term of the e-expansion near d = 2 (where c = d - 2), i.e. near 
the “lower critical dimension” for localization [31,82,48]. Note that the expansion of Eq. (2.22) can 
be reproduced in the framework of standard perturbation theory over impurity scattering [49,50]. 
For d = 3 this gives a = K3 (cf. Ref. [6]). 

Let us now define the correlation length of a localization transition as 

<lot - a I(g0 - ~~Jlgcl -” . (2.30) 
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For go < gc this length coincides with the localization length Rloc. It is easy to see that Eq. (2.24) 
can be written as [Sl] 

(2.3 1) 

It follows that for g > gc correlation length <ioc determines the behavior of conductivity close to the 
mobility edge, when this length becomes much larger than the interatomic distance and mean free 
path. 

Let us consider the three-dimensional case in more details. Integrating Eq. (2.18) with /3,(g) = 
1 - gc/y where gc = a gives g(L) = (h/e2)cLL = (h/e2)a + gc so that for a finite sample close to the 
mobility edge (<ioc $ 1) we obtain 

gL = CJ + (e2g,/U) , (2.32) 

where in correspondence with Eq. (2.31) 

e2 
lJ = Age h[,oc . 

(2.33) 

It follows that for L B tloc $ 1 conductivity (TV + g while for 1 4 L G clot conductivity gL and the 
appropriate diffusion coefficient, determined by Einstein relation CT = e’DN(&) are given by 

UL z e2g,/hL , (2.34) 

D L = [&/N(EF)I(l/hL) > (2.35) 

respectively, where N(&) is the electron density of states at the Fermi level. Thus, in this latest case, 
conductivity is not Ohmic, i.e. diffusion of electrons is “non-classical” [20,6]. From this discussion 
it is clear that the characteristic length & in the metallic region determines the scale at which 
conductivity becomes independent of the sample size. Close to the mobility edge when sioc + cc 
only the samples with growing sizes L B tloc can be considered as macroscopic. These consider- 
ations allow us to understand the physical meaning of the diverging length 5ioc of scaling theory in 
the metallic region [33]. Close to mobility, clot is considered as the only relevant length in the 
problem (with an exception of a sample size L) and the scaling hypothesis is equivalent to the 
assumption 

Y(L) =.fwh3c) > (2.36) 

where f(x) is some universal (for a given dimensionality d) function. In the metallic region, for 
L % tloc + 1 it is obvious that f(x) - xdM2 which reproduces Eq. (2.31). 

For finite frequencies o of an external electric field a new length appears in the system [34]: 

L,., = [D(w)/o]“~ , (2.37) 

where D(w) is the frequency dependent diffusion coefficient. L,,, is a length of electron diffusion 
during one cycle of an external field. Close to the mobility edge tloc is large and for L,,, < tloc, L and 
L,., become the relevant length scale. In general, for finite o localization transition is smeared, 
a sharp transition is realized only for L- ’ = L,; ’ = 0. Thus, for the finite frequency case the scaling 
hypothesis of Eq. (2.36) can be generalized as [34] 

AL, (fl) =.f(Lli”,,,, L,!1/5,0,) , (2.38) 
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where g denotes a real part of conductance. In the metallic phase, for L B tloc we have g - Ldp 2 so 
that 

(2.39) 

For small frequencies, when L,,, 4 5 loc, we can write down the universal function F(x) as F(x) z 
Ag, + BXd-2 which reproduces Eq. (2.31) and the small frequency corrections found earlier in [49]. 
For L,,, 4 tloc i.e. for high frequencies or close to the mobility edge, the relevant length is L,,, and the 
frequency dependent part of conductivity is dominating. In particular, at the mobility edge itself the 
length <ioC drops out and must cancel in Eq. (2.38) which leads to 

G(C0, EF = E,) - L;-d - [o/D(.o)]“‘- zb 1 . (2.40) 

On the other hand, according to Einstein relation we must have a(w) - D(U). Accordingly, from 
[w/D(w)]‘” ~ 2112 - D(o) we get at the mobility edge 

(T(cc), Er = E,) - D(0) - CL)+ ?’ [’ . (2.41) 

For d = 3 this leads [51,35] to a(o) - D(o) - w II3 The crossover between different types of . 

frequency dependence occurs for L,,, - tloc which determines the characteristic frequency [34]: 

(2.42) 

The ~0”’ - Z”d behavior is realized for CL) >> co,, while for co < cc), we get small corrections of the order 
of -CO+ 2)‘2 to Eq. (2.31). 

Finally, we must stress that for finite temperatures there appear inelastic scattering processes 
which destroy the phase correlations of wave functions at distances greater than a characteristic 

length of the order of L, = 6, where D is the diffusion coefficient due to elastic scattering 
processes considered above and z, is the “dephasing” time due to inelastic processes [39]. For 
T > 0 this length L,p effectively replaces the sample size L in all expressions of scaling theory when 
L $ L,, because on distances larger than L, all information on the nature of wave functions (e.g. 
whether they are localized or extended) is smeared out. Taking into account the usual low- 
temperature dependence like z,,, - TpP (where p is some integer, depending on the mechanism of 
inelastic scattering) this can lead to a nontrivial temperature dependence of conductivity, in 
particular, to the possibility of a negative temperature coefficient of resistivity of “dirty” metals [33] 
which are close to the localization transition. It is important to stress that similar expressions 
determine the temperature dependence of conductivity also for the localized phase until L, < I&. 
Only for L, > Rloc the localized nature of the wave functions reveals itself in the temperature 
dependence of conductivity and the transition to exponentially activated hopping behavior takes 
place, which becomes complete for T < [N(E,)R~,,] - ‘. 

2.3. Self-consistent theory of localization 

2.3.1. Isotropic systems 
It is obvious that the qualitative scaling picture of Anderson transition described in the previous 

section requires microscopic justification. At the same time, we need a practical method of explicit 
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calculations for any physical characteristic of the electronic system close to the mobility edge. Here 
we shall briefly describe the main principles of the so-called self-consistent theory of localization 
which while leaving aside some important points, leads to an effective scheme for analysis of the 
relevant physical characteristics important for us. This approach, first formulated by Gotze 
[52,35] was later further developed by Vollhardt and Wolfle and others [53-56,32,7]. 

Complete information concerning the Anderson transition and transport in a disordered system 
is contained in the two-particle Green’s function 

@F(Eoq) = -&(GR(p+p’E + co)G*(p'p_E)) , (2.43) 

where p+ _ =p + qq, in most cases below E just coincides with the Fermi energy Er. Angular 
brackets denote averaging over disorder. Graphically this Green’s function is shown in Fig. 4. It is 
well known that this Green’s function is determined by the Bethe-Salpeter equation also shown 
graphically in Fig. 4 [57,58,53]: 

@;;(Eqw) = GR(E + cop+)G*(Ep-) -& 6(p -p’) + 1 U$(qo)@;$(Eqco) 
i P” I 

, (2.44) 

where GRsA(Ep) is the averaged retarded (advanced) one-electron Green’s function, while the 
irreducible vertex part U~pr(qco) is determined by the sum of all diagrams which cannot be cut over 
two electron lines (cf. Fig. 4). 

E*~P+ EWp: 

E-p+ E+w; PC p: 

--J-q =T +--y-- +x+... 
EpP- Ep: pTjpl 

(Cl 

Fig. 4. Graphical representation of (a) a two-electron Green’s function @$(Eqol), (b) the equation for the full vertex part 
T$(qw), (c) typical diagrams for the irreducible vertex U$(q; w); (d) the Bethe-Salpeter equation. Dashed line denotes 
interaction U,@ -p’) = pi V(p -$)I*, where p is the density of scatterers and V(p -p’) the Fourier transform of 
a single scatterer potential. 
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In fact, the two-particle Green’s function of Eq. (2.43) contains some extra information and for 
the complete description of Anderson transition it is sufficient to know the two-particle Green’s 
function summed over pp’ [53]: 

@iA = - & 1 (GR(p +p’+ E + u)GA(plp_E)) . 
PP’ 

(2.45) 

Using the Bethe-Salpeter equation, Eq. (2.44), and exact Ward identities we can obtain a closed 
equation for @“(qco) [53,32,7], and for small (I) and q the solution of this equation has a typical 
diffusion-pole form 

@:A(qco) = -N(E) 
1 

(0 + iDE(qw)q2 ’ 
(2.46) 

where N(E) is the electron density of states at energy E and the generalized diffusion coefficient 
DE(qco) is expressed through the so-called relaxation kernel ME(qco): 

1 D,(qo)=i2EP=--.--___ VS i 

dm M&a) d M&a) ’ 
(2.47) 

where OF is the Fermi velocity of an electron. The retarded density-density response function at 
small o and q is given by 

xR(qco) = co@;A(qm) + N(E) + O(w,q’) 

or from Eq. (2.46) 

(2.48) 

xR(qw) = N(E) 1DE(qco)q2 
LC) + iDE(qo)q2 

(2.49) 

For the relaxation kernel ME(qu) (or for the generalized diffusion coefficient) a self-consistency 
equation can be derived, which is actually the main equation of the theory [53,29,32]. The central 
point in this derivation is some approximation for the irreducible vertex part UL.(qw) in the 
Bethe-Salpeter equation. The approximation of Vollhardt and Wolfle is based upon the use for 
U&,(qco) of the sum of “maximally-crossed” graphs shown in Fig. 5. This series is easily summed 
and we get the so-called “Cooperon” [49,53]: 

U$(qco) = 
2ypv2 

D,(p +P’)~ + io ’ 

E+o 

T 
* 

,‘I \ 
+ . . . 

_, .I _‘. 

(2.50) 

Fig. 5. “Maximally-crossed” diagrams for the irreducible vertex part of Bethe-Salpeter equation (“Cooperon”). 
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where 

Do = E/mdy = v:~/d (2.51) 

is the classical (bare) diffusion coefficient determining the Drude conductivity (Eq. (2.2)). For point 
scatterers randomly distributed with spatial density p (I’ is the scattering amplitude) we have 

y = l/22 = npV2N(EF). (2.52) 

These “maximally crossed” diagrams lead to the following quantum correction to the diffusion 
coefficient: 

-=-11 . l Wmo) 

Do nN(E) ,k, < /+, --IO + Dok2 . 
(2.53) 

Appropriate correction to the relaxation kernel can be expressed via the correction to diffusion 
coefficient as 

2EF &D(u) 
6ME(u) = -i - - = ME(~) 

dm Do 
-___ 6D(o). 

D(a) 
(2.54) 

Considering the usual Drude metal as the zeroth approximation we get 

GM,(u) = -(Mo/Do)SD(co) . (2.55) 

The central point of the self-consistent theory of localization [52] reduces to the replacement of the 
Drude diffusion coefficient Do in the diffusion pole of Eq. (2.53) by the generalized one D(u). Using 
this relation in Eq. (2.55) we obtain the main equation of the self-consistent theory of localization 
determining the relaxation kernel M(Oo) (for q = 0) [53,32]: 

o + (2E/dm;(k2/ME(u)) 
(2.56) 

or the equivalent equation for the generalized diffusion coefficient itself: 

Do -=l+-- 
DE(~) 

lc l 
nN(E) Ikl <k, -io + DE(u)k2 ’ 

(2.57) 

Cut-off in momentum space in Eqs. (2.53), (2.56), (2.57) is determined by the limit of applicability of 
diffusion-pole approximation of Eq. (2.46) or Eq. (2.50) [7]: 

k o z Min{p,,I-‘} . (2.58) 

Close to the mobility edge, PF - I-‘. Note that from here on we are generally using natural units 
with Planck constant h = 1; however, in some of the final expressions we shall write h explicitly. 

Conductivity can be expressed as [53,32] 

G(W) = (ne2/m)[i/(co + M&o))] + e2D,(o)N(E) for w + 0 , (2.59) 

where we have used n/N(E) = 2E/d. It is clear that for the metallic phase ME(co -+ 0) = i/zE, where 
rE is the generalized mean free time. Far from the Anderson transition (for weak disorder) rE z z 
from Eqs. (2.52) and (2.59) reduces to the standard Drude expression. 
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If the frequency behavior of relaxation kernel leads to the existence of a limit lim, _+O co M,(qco) 
a singular contribution appears in Eq. (2.46) for w --t 0 [35,7]: 

@ERA@4 N(E) 1 N(E) 1 

= -cc) 1 - (2E/md)(q2/coME(qco)) x - - 0 1 +R:,,q2’ 
(2.60) 

where we have defined 

R:,,(E) = -(2EW) !rr, (IlaM&)) . (2.61) 

According to the general criterion of localization [59,7] (cf. Appendix A) this behavior corresponds 
to the region of localized states. Using Eq. (A.16) we immediately obtain from Eq. (2.60) the 
singular contribution to Gorkov-Berezinskii spectral density (cf. Eqs. (A.8), (A.9)): 

Qw,+$!$ = (1IWE))Im @EA(qW) = A&)&o) , (2.62) 

where 

A,(q) = l/(1 + R&(E)q2) -+ 1 - Ri,(E)q2 for 4 -+ 0 . (2.63) 

From the above expression and from Eq. (A.1 1) we can see that R,,,(E) as defined in Eq. (2.61) is 
actually the localization length. It is useful to define a characteristic frequency [53]: 

cog(E) = - lim cam, > 0 (2.64) 
(0 40 

so that 

R,,,(E) = Ji2Elmd)(Wo(E)) . (2.65) 

Thus, the localization transition is signalled by the divergence of the relaxation kernel for o + 0 
[53], so that two characteristic types of its behavior for q = 0 and w + 0 appear: 

(2.66) 

The frequency w,(E) is in some crude sense analogous to the order parameter in the usual theory of 
phase transitions. It appears in the localized phase signalling about the Anderson transition. 

From Eq. (A. 16), for o + 0 and q = 0, neglecting the nonsingular contribution from Im @iR(qco) 
we can get an explicit expression for the Berezinskii-Gorkov spectral density which is valid for 
small o and q [60,7]: 

i 

1 &q2 

cm+d$ = 
i co2 + (DEq2)2 

(Metal) , 

&(q)G4 + 1 
DEq2 

n co2 + [w:(E)zE + DEq212 
(Insulator) , 

(2.67) 
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where we have introduced the renormalized diffusion coefficient, determined by relaxation time rE: 

2E 1 
DE =-ZE =-v&E. 

dm d 
(2.68) 

Substituting Eq. (2.66) into the equation (Eq. (2.56)) for self-consistency we can obtain equations for 
rE and o,(E) [54,55,7] and thus determine all the relevant characteristics of the system. For d > 2, 
Eqs. (2.56) and (2.57) do really describe a metal-insulator transition [54,55,7,29]. For d = 2 all the 
electronic states are localized [53]. 

Below we present some of the results of this analysis which will be important for the following. 
For 2 < d < 4 a correlation length similar to that of Eqs. (2.7) and (2.30) appears: 

&,,(E) - ; 7 -’ 
I I’ 

for E - E, , 
c 

where v = l/(d - 2). The position of the mobility edge is determined by the condition: 

E d 

Y E=E, = n(d - 2) 

(2.69) 

(2.70) 

which follows if we assume the cut-off k. = pF in Eqs. (2.56) and (2.57). Static conductivity in the 
metallic phase (E > E,) is given by (cf. Eq. (2.31)) 

(2.71) 

where co = (ne”/m)z is the usual Drude conductivity. In particular, for d = 3 

(2.72) 

in complete accordance with IoffeRegel criterion, and 

(2.73) 

Critical exponent v = 1. The mean free path which follows from Eq. (2.72) corresponds to Drude 
conductivity: 

2 

Q,=ne5 
e2pF 

m E = E, E=&=7CJh2 

which is equivalent to the elementary estimate of Eq. (2.5). 
Eq. (2.73) can also be rewritten as [22] 

(2.74) 

(2.75) 
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where the Drude conductivity go is now the measure of disorder. It is obvious that for small 
disorder (large mean free path) co 9 gC, Eq. (2.75) reduces to G z go. As disorder grows (mean free 
path drops) conductivity CJ -+ 0 for go + gC. 

In the dielectric phase (E < E,) we have [i,,(E) = R,,,(E) and finite co:(E) from Eq. (2.64) which 
tends to zero as E -+ E, from below. This frequency determines the dielectric function of the 
insulating phase [7]: 

2 
WP 

&(WdO) = 1 f- = 
E _ E -2a 

w?(E) 
1 + I&$,,(E) - _Ec 

I I 

, 
c 

(2.76) 

where wi = 4nne2/m is the square of the plasma frequency, ~6 = 4xe2N(E) is the square of the 
inverse screening length of a metal. 

Thus the main results of the self-consistent theory of localization coincide with the main 
predictions of elementary scaling theory of localization. Vollhardt and Wolfle have shown [54,32] 
that equations of this theory and especially the main differential equation of renormalization group 
Eq. (2.18) for conductance may be explicitly derived from self-consistency equations (Eqs. (2.56) 
and (2.57)) reformulated for a finite system by introduction of low-momentum cut-off at k - l/L, 
where L is the system size. 

The results considered up to now are valid for w 3 0. Self-consistent theory of localization allows 
to study the frequency dependence of conductivity (generalized diffusion coefficient) [32]. At finite 
frequency the main Eq. (2.57) for the generalized diffusion coefficient for d = 3 can be rewritten as 
C36,32] 

(2.77) 

which can be solved explicitly. For the level of accuracy we are aiming, this solution may be written 
as 

i 
D E> (0 Q WC, E 2 E, (Metal) , 

, w $0, (Metal and insulator) , (2.78) 

I DE 
-iw 

-io + (3D,/t$)w$(E) ’ 
CfJ d WC, E -=c E, (Insulator) , 

where (cf. Eq. (2.42)): 

- 2YcPFL1 -d - 
1 

WC 
NJ+%, ’ 

(2.79) 

Here the renormalized diffusion coefficient 

(2.80) 
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At the mobility edge itself tr,,(E = E,) = co, so that aL), = 0 and we get the cori3-behavior (cf. 
Eq. (2.41)): 

DE(~) = DO( - io/2y)‘13 . (2.8 1) 

Note that w, is in fact determined by DE(a,) - DE - D0(o,/2y) 113 The meaning of the limit CD -+ 0 . 

used above (cf. e.g. Eq. (2.66)) is just that cu 4 0,. In particular, the expression Eq. (2.67) for the 
Gorkov-Berezinskii spectral density is valid only for o 6 0,. For o, I o I 2y, using Eq. (2.81) in 
Eq. (2.46) we get from Eq. (A.16): 

c12/3wU3 2 

a2 + c(2/304/3q2 ;a4,302,3q4 ’ 
(2.82) 

where CI = D0vF/2y = Dal - [N(E)]-‘, where the last estimate is for 1 - pF ‘. Eq. (2.82) is valid 
also at the mobility edge itself where o, = 0. Obviously, the correct estimate can be obtained from 
Eq. (2.67) by a simple replacement DE -+ D,,(o/y) ‘I3 It should be noted that the self-consistent . 
theory approach to the frequency dependence of conductivity is clearly approximate. For example, 
it is unable to reproduce the correct Re g(o) - o2 ln4 o depen dence for o --+ 0 in the insulating 
state [3]. This is apparently related to its inability to take the correct account of the locally discrete 
nature of energy levels in Anderson insulators (cf. below). However, this is unimportant for our 
purposes while the general nature of frequency dependence at the mobility edge is apparently 
correctly reproduced. 

In the following analysis we will also need a correlator of local densities of states defined in 
Eq. (A.3). This correlator can be expressed via the two-particle Green’s function as in Eq. (A.15). 
For small Q and 4 and far from the Anderson transition (weak disorder), neglecting the nonsingular 
contribution from the second term of Eq. (A.15) we can estimate the most important contribution 
to that correlator from the diagram shown in Fig. 6 [62]. The same contribution comes from the 
diagram which differs from that in Fig. 6 by the direction of electron lines in one of the loops. 
Direct calculation gives 

cm+w>gH -y(PV2)“Re[ddQ ’ 
1 

-io + DoQ2 -io + Do(Q + q)2 

1 1 1 
hl - Re D$/’ (_io + D0q2)2-d/2 ’ 

N(E) 
(2.83) 

Fig. 6. Two equivalent forms of the diagram for the correlator of local density of states. Wavy lines denote the diffusion 
propagator, i.e. the sum of ladder diagrams. 
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A similar result for this correlator for some special model was first obtained by Oppermann and 
Wegner [63]. From Eq. (2.83) for d = 3 we find 

(PEPE+~,J# - &“,2 o2 4f);&2)2 

112 

+ [cl,2 + (DOq2)2] - 1’2 . 

0 
(2.84) 

It is obvious that for the estimates close to the mobility edge we can in the spirit of self-consistent 
theory of localization replace Do in Eqs. (2.83) and (2.84) by the generalized diffusion coefficient 
D(m). In particular, for a system at the mobility edge (w, = O)D, + Do(o/y)‘13 in Eq. (2.84). 

Surely, the self-consistent theory of localization is not free from some difficulties. Apparently the 
main problem is an uncontrollable nature of the self-consistency procedure itself. These are 
discussed in Refs. [7,29] in more detail. Here we shall concentrate only on some problems relevant 
for the future discussion. From the definition of the generalized diffusion coefficient in Eq. (2.47) it 
is clear that it may be a function of both o and q, i.e. it can also possess spatial dispersion. 
Self-consistent theory of localization deals only with the limit of DE(q + 00). At present it is not 
clear whether we can in any way introduce spatial dispersion into the equations of self-consistent 
theory. Using scaling considerations the q dependence of D,(qw -+ 0) can be estimated as follows 
[6,101]. We have seen above that for the system of finite size of L 4 tloc elementary scaling theory 
of localization predicts the L-dependent diffusion coefficient DE z (gc/N(E))/Ld-” (cf. Eq. (2.35) 
for d = 3). From simple dimensional considerations we can try the replacement L + q-l and get 

DE(co --, Oq) z 
DE for 4boc Q 1 , 
aq d-2 for qLC %- 1 , 

(2.85) 

where cc - g,/N(E) - Dal and E - E,, lP ’ - pF. Obviously, an attempt to incorporate such 
q-dependence into the equations of self-consistent theory of localization (like Eqs. (2.56) and (2.57)) 
will radically change its structure. At the same time the L-dependence like DE - a/Lde2 (for 
L < clot) can be directly derived from Eq. (2.57) as equations of elementary scaling theory are 
derived from it [54,32,29]. Thus the foundations for simple replacements like L -+ q-l in Eq. (2.85) 
are not completely clear. More detailed analysis of the wave number dependence of the diffusion 
coefficient leading to Eq. (2.85) was given by Abrahams and Lee [65] within the scaling approach. 
However, the complete solution of this problem is apparently still absent. In a recent paper [66] it 
was shown that Eq. (2.85) actually contradicts the general localization criterion of Berezinskii and 
Gorkov, from which it follows directly that at the localization transition the static diffusion 
coefficient D(c0 = 0, q) vanishes for all q simultaneously. The detailed analysis performed in Ref. 
[66] demonstrates the absence of any significant spatial dispersion of the diffusion coefficient on 
thescaleofq - t-‘, while its presence on the scale of q - PF is irrelevant for the critical behavior of 
the system close to the Anderson transition. In fact, in Ref. [66] it is claimed that the exact critical 
behavior at the mobility edge coincides with that predicted by the self-consistent theory of 
localization. 

Finally, we would like to stress that the self-consistent theory of localization cannot be applied 
“deep” inside the localization region. Its derivation is based on a kind of extrapolation of “metallic” 
expressions and it does not take into account local discreteness of the energy spectrum in the region 
of localized states as discussed in the previous section. This is reflected in the form of the 
one-particle Green’s function used in the self-consistent theory [53,32,29,7]. It does not describe 



M. K SadovskiijPhysics Reports 282 (1997) 225-348 241 

the effects of local level repulsion, though it does not contradict it [67]. Thus the self-consistent 
theory of localization can be applied within the localized region only until local energy spacing 
given by Eq. (2.13) is much smaller than the other relevant energies of the problem under 
consideration. In fact, this always leads to a condition of sufficiently large localization length Rloc, 
i.e. the system must be in some sense close to the mobility edge. 

2.3.2. Quasi-two-dimensional systems 

Self-consistent theory of localization for quasi-two-dimensional systems was first analyzed by 
Prigodin and Firsov [68]. The electronic spectrum of a quasi-two-dimensional system can be 
modeled by nearly-free electrons within highly conducting planes and tight binding approximation 
for interplane electron transfer: 

E(p) - EF = uF(I&I - PF) - wdPl) . (2.86) 

Here w is the interplane transfer integral and cp(pl) = cosp,al, where -rc/al I pI I TX/U,_. Then 
the equations of self-consistent theory of localization for the anisotropic generalized diffusion 
coefficient take the following form [68]: 

1 
Dj(0) = Dp - ____ 

s 

d3q Dj(w) - 
nN(EF) (2~)~ -iW + Dll(4qf + D&4(1 - (Pkd) ’ 

(2.87) 

where j = /I, I, and Df = $~/2, 0: = (wal)2z are inplane and interplane bare Drude diffusion 
coefficients, z is the mean free time due to elastic scattering (disorder). This approach is in complete 
correspondence with the analysis of Wolfle and Bhatt [69] who has shown that the effects of 
anisotropy can be completely absorbed into the anisotropic diffusion coefficient. It can be seen that 
the initial anisotropy of the diffusion coefficient does not change as disorder grows up to the 
Anderson transition and in fact we have only to find one unknown ratio 

d(o) = Dj(O)/Dp = .j(U)/C,P 

which is determined by the algebraic equation following from Eq. (2.87): 

(2.88) 

d(o) = 1 - & In 
2 

F [-iwz/d(o)] + (WZ)~ + [(-ioz/d(w))(-io/d(o) + 2~~2~)]“~ ’ (2’89) 

Due to a quasi-two-dimensional nature of the system there is no complete localization for any 
degree of disorder which is typical for a purely two-dimensional system. However, the tendency for 
a system to become localized at lower disorder than in the isotropic case is clearly seen. All states at 
the Fermi level become localized only for w < wC, where 

W, = $7~‘eXp(-R&T) . (2.90) 

Thus the condition for localization is actually more stringent than given by the simplest Ioffe-Regel 
type estimate as in Eq. (2.11). For fixed w the mobility edge appears at 

EF = E, = (l/xz)ln(fi/wz) . (2.9 1) 
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Thus in the case of strong anisotropy when wz < 1 localization can in principle take place even in 
the case of EF $ r-i , i.e. at relatively weak disorder. These estimates are in qualitative accordance 
with Eq. (2.11), which is valid in the case of relatively strong disorder EF7 - 1. 

In the metallic phase close to the Anderson transition, 

aj = o~(EF - E,)/Ec . (2.92) 

For w + 0 we have E, + ,cxz which reflects complete localization in two dimensions. We can also 
define in-plane Drude conductivity at EF = E, as a kind of a “minimal metallic conductivity” in this 
case as a characteristic conductivity scale at the transition: 

cr; = e2N(EF)Df(EF = E,) = -$ $ In 
1 

(2.93) 

where we have used N(Er) = m /( TCU,~~), m is the in-plane effective mass, and the last equality is 
valid for EFz/h - 1, i.e. for a case of sufficiently strong disorder. For the time being we again use 
ti explicitly. From these estimates it is clear that in-plane “minimal conductivity” is logarithmically 
enhanced in comparison with the usual estimates (cf. Eq. (2.5)). This logarithmic enhancement 
grows as the interplane overlap of the electronic wave functions diminishes. Accordingly, in case 
of small overlap (wz/h Q 1) this conductivity scale may be significantly larger than (3-5) x 
lo2 !X’ cm-’ which is characteristic for isotropic systems. Thus, in the quasi-two-dimensional 
case, Anderson transition may take place at relatively high values of inplane conductivity. For 
a typical estimate in a high-T, system we can take something like EF/w > 10 so that the value of 
U; may exceed 103K1cm-‘. Obviously, these estimates are in qualitative accordance with 
elementary estimates based upon the Ioffe-Regel criterion of Eqs. (2.11) and (2.12). Similar 
conclusions can be deduced from the analysis presented in Ref. [70] where it was shown by 
a different method that in the case of the anisotropic Anderson model the growth of anisotropy 
leads to a significant drop of a critical disorder necessary to localize all the states in a conduction 
band. 

Now let us quote some results for the frequency dependence of the generalized diffusion 
coefficient in the quasi-two-dimensional case which follow from the solution of Eq. (2.89) [68]. 
shall limit ourselves only to the results valid close to the mobility edge in metallic phase: 

We 

d(o) z { (2rcErwr2)-213(-i~r)113 , LU, 4 w < co2~ , (2.94) 

I l- & ln(l/-ioz) , w%<w<z-1, 
F 

where 

w, z [~JTE,w~~]~(~/T)~(E~ - E,)/Ec13 . (2.95) 

From these expressions we can see the crossover from the cr) “3-behavior typical for isotropic 
three-dimensional systems to a logarithmic dependence on frequency which is characteristic of 
two-dimensional systems. 
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2.3.3. Self-consistent theory of localization in a magnetic field 
An early version of the self-consistent theory of localization as proposed by Vollhardt and Wolfle 

was essentially based upon the time-reversal invariance [53,32]. This property is obviously absent 
in the presence of an external magnetic field. In this case in addition to Eq. (2.45) we have to 
consider the two-particle Green’s function in the particle-particle (Cooper) channel: 

Y,“*(q,o) = -A c (GR(p+,p’+,E + o)G*(-pl, -p_,E) 
P+P- 

(2.96) 

which for small LO and q again has a diffusion-pole form like that of Eq. (2.46), but with a difleerent 

diffusion coefficient. Appropriate generalization of the self-consistent theory of localization was 
proposed by Yoshioka et al. [71]. This theory is based on the following system of coupled 
equations for relaxation kernels Mj(q,o), corresponding to the diffusion coefficients in the par- 
ticle-hole and particle-particle channels: 

Jq; - 4mw”(n + l/2) 

s dq= 1 

2n: 0 - (D0/zM2)[qZ + 4mcoH(n + l/2)] ’ 
0 

(2.97) 

MZ=2iy l---- 
1 

11 l 
XN(E) 141 < 40 I 0 - D0q2/(rM1) . 

(2.98) 

Here oH = eH/mc is the cyclotron frequency, LH = (c/eH)“2 is the magnetic length and No = 
&/4moH. These equations form the basis of the self-consistent theory of localization in the absence 
of time-reversal invariance and were extensively studied in Refs. [71-751. Alternative formulations 
of self-consistent theory in a magnetic field were given in Refs. [76-801. All these approaches lead 
to qualitatively similar results. Here we shall concentrate on formulations given in Ref. [75]. 

Let us introduce the dimensionless parameter A = y/7cE as a measure of disorder and the 
generalized diffusion coefficients in diffusion and Cooper channels D1 and D2 defined as in 
Eq. (2.47) with M replaced by Mi and M2, respectively. We shall use dimensionless dj = Dj/‘Do 
(j = 1,2) in the following. 

We are mainly interested in the diffusion coefficient in the Cooper channel, which as we shall see 
defines the upper critical field of a superconductor. Both this coefficient as well as the usual one are 
determined by the following equations which follow from Eqs. (2.97) and (2.98) after the use of 
Poisson summation over Landau levels in the first equation which allows one to separate the usual 
diffusion coefficient independent of magnetic field and the field-dependent part: 

J1 = (1 + (3/1- 6, - d,)/dJ’ ) d2 = (1 + (33, - 6,)/d,)-l , (2.99) 

where 

Sj = (~/~TcJ_)~‘~ ( - ia/E) 1/2 d; “’ (2.100) 

and 

42 = -31 f (-1)P 
1 

s s 

JI-T 
dx2 

cos(2xpx,2/c2) 

p=t 0 0 dy y2 + x + 3/2x1( -iw/E)/(d,xz) ’ 
(2.101) 
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where c = (2wH/E)“‘. In the following we have to solve Eqs. (2.99) for the case of small 6j and AZ. 
Limiting ourselves to terms linear in 6i, d2 and AZ we obtain 

dl/dz = 1 + A,/(1 + 31) . (2.102) 

Using Eq. (2.102) in Eqs. (2.99) we get an equation for the diffusion coefficient in the Cooper 
channel: 

dz = 1 - 31 + & + [31/(1 + 3J)]A2 . (2.103) 

Introducing Al which differs from A2 by the replacement of dz by dl we can also write down the 
approximate equation for the usual diffusion coefficient: 

dl = 1 - 3h + 6i + [l/(1 + 3A)]A1 . (2.104) 

In the absence of the magnetic field (A, = AZ = 0) Eqs. (2.103) and (2.104) are the same and lead to 
standard results of self-consistent theory quoted above. Eq. (2.103) can be written as 

(2.105) 

where + corresponds to metallic, and - to insulating phases, while the characteristic frequency 

o, = (11 - 3Al/($rcn))“E (2.106) 

can be considered as a measure of disorder and separate regions with different frequency depend- 
ence of the diffusion coefficient. 

Neglecting in Eq. (2.101) terms oscillating with the magnetic field (these oscillations are connec- 
ted with the sharp cut-off in the momentum space used above and disappear for smooth cut-off) we 

get 

A2 = -(~wJE)~‘~ 1 (2.107) 

where 

This gives 

i W(~~J,/E)“~ , IKI + 1 > 

AZ = \&((-i~/E)2--&--3’2(2~H/E)2 , 11~1 $ 1 , 

(2.108) 

(2.109) 

where W = -I,“= 1 (- 1)p/p112 z 0.603. 
Solutions of Eq. (2.105) for different limiting cases can be found in Ref. [75]. Comparison of Eq. 

(2.104) and Eq. (2.103) shows that the usual diffusion coefficient D1 is given by the same expressions 
as D2 with the replacement of the coefficient 3J_/(l + 32) before the field-dependent correction by 
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l/(1 + 3a). Here we only quote the results for D2 in case of w,/E < (w~/E)~‘~, valid close to the 
transition in the absence of magnetic field: 

(2.111) 

where o,* = (W/2)3(20,/E)3’2E. 
Note that for high frequencies larger than co,* the correction term becomes quadratic in field 

which differs from the usual square root behavior at low frequencies. 
It is easy to see that in the absence of the external magnetic field these equations reduce to the 

usual self-consistency equation as derived by Vollhardt and Wolfle with a single relaxation kernel. 
Let us finally quote some results for the purely two-dimensional case [Sl]. Self-consistent 

equations for the diffusion coefficients take now the following form: 

Do -_=I+- 
02 

vz l 
EN(E) l4l -cyo QJ + DI q2 ’ 

Do 
-_=l+- 

DI 
lc l 

nN(E) Ikl < q, w + D2k2 ’ 

(2.112) 

where k2 = 4mwH(n + $), and we assume that w here is the imaginary (Matsubara) frequency, 
which simplifies the analysis. Actually, only the dependence on the Matsubara’s frequencies are 
important for further applications to superconductivity. 

Introduce again the dimensionless diffusion coefficients dl = Dl/Do, d2 = D2/Do, so that Eqs. 
(2.112) are rewritten as 

1 
-=l+$ln(l+d,&), 
& 

1 

-=’ +&:on+f+(0,4:0 dl D If 0 )(1/d )’ 2 

(2.113) 

where No = 1/8mcoHDoz is the number of Landau levels below the cut-off. We assume that the 
magnetic field is low enough, so that No 9 1, i.e. 

H -4 cPoJDoz . (2.114) 

With accuracy sufficient for further use we can write down the following solution for the 
diffusion coefficient in the Cooper channel: 

For weak magnetic field moH 4 Ae- l/*/r 

1 
d2 = 

for co % e-‘/“/22 , 

2oze”” for 0 < eelin/ , 

and we can neglect the magnetic field influence upon diffusion. 

(2.115) 
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For larger fields oH B ieP l/l/r 

i 1 for LL) $ e-““/22 , 

d2 = l/Rln(l/2az) 

i 

for e-‘!‘z’nQ/2r < 0 Q e-1’k/2r , 

2wz;lln Qe”“““Q for (*, Q ep’ ;‘lnQ/2r , 

(2.116) 

where Q = 7cy1/roH, y % 1.781. 
Here we neglect the magnetic field corrections small in comparison to the d2 value in the absence 

of the magnetic field given by Eq. (2.115). 

2.4. Phase transition analogy and scaling jbr correlators 

Scaling description of a system close to the Anderson transition can be developed also on the 
basis of some analogies with usual phase transitions [4,7,6]. Most successful in this respect is an 
approach initially proposed by Wegner [82-841. 

Let us consider Eqs. (2.67) and (2.83) which define basic electronic correlators (spectral densities) 
in a disordered system. For the metallic region we can write: 

(2.117) 

(2.118) 

Wegner has noted [83,63] that these expressions are in some sense similar to analogous expres- 
sions for the transverse and longitudinal susceptibilities of a ferromagnet [47]: 

(2.119) 

1 
Xll(4) - (H + psq2)2-d/2 ’ 

(2.120) 

where M is the magnetization, H the external magnetic field and ps is the spin-stiffness coefficient. 
Comparing Eqs. (2.117) with Eq. (2.119) and Eq. (2.118) with Eq. (2.120) we can write down 
a correspondence between electron diffusion in a random system and a ferromagnet as given in 
Table 1. 

Now we can use the main ideas of the scaling approach in the theory of critical phenomena 
[45-47,851 and formulate similar expressions for the electronic system close to the Anderson 
transition. As was noted above, scaling theory is based upon an assumption that a singular 
behavior of the physical parameters of a system close to a phase transition appears due to large 
scale (long wave-length) fluctuations of the order-parameter (e.g. magnetization) close to the critical 
temperature T,. Scaling hypothesis claims that singular dependence on T - T, reflect the diver- 
gence of the correlation length of these fluctuations 5 and this length is the only relevant 
length-scale in the critical region. Scaling approach is based upon an idea of scale transformations 
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Table 1 
Anderson transition and ferromagnet close to Curie point T, 

Localization Ferromagnet 

E - E, T - T, 

KF XI 
KH Xl 

- ito H 

N(E) M 

DE PC 
510, c 

and dimensional analysis. Under the scale transformation, the spatial interval Ax changes to Ax’, 
according to 

Ax -+ Ax’ = s-‘Ax . (2.121) 

Accordingly, for the wave vector: 

q+q’=sq * (2.122) 

Scaling dimension [SS] of a physical quantity A is equal to R if under scale transformations defined 
by Eqs. (2.121) and (2.122) we get 

A -+ A’ = As” . (2.123) 

Scaling dimensions for the main characteristics of a ferromagnet are given in terms of standard 
critical exponents [SS] in Table 2. 

Correlation length of the theory of critical phenomena behaves like 

5 - IT - T,I-‘. (2.124) 

The knowledge of scaling dimension of a given physical quantity allows to determine its depend- 
ence on t, i.e. on T - T,. For example, magnetization M behaves according to Table 2 as 

M _ ~-1’%-2+‘?) _ IT _ T,(“, (2.125) 

where the critical exponent of magnetization equals 

p = +I@- 2 + ?/) . 

Magnetic susceptibility is given by 

(2.126) 

x(q> T - Tc) = 5* -“g(&) , (2.127) 

where g(x) is some universal function, such that g(0) - const., g(x + co) - x -‘2--rf). From 
Eq. (2.127) we get the standard results: 

~(0,T-Tc)~~2~‘lg(0)-~T-Tc~-;‘, (2.128) 
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Table 2 
Scaling dimensions in the theory of critical phenomena 

5 (-I M H 

-1 +1 1/2(d - 2 + r/l 1/2(d + 2 - r/I 

where y = (2 - q)v is the susceptibility exponent. Analogously, 

x(q,T= Tc)-q-2+‘v (2.129) 

Here q is sometimes called Fisher’s exponent. 
It is easy to see that Eq. (2.127) is equivalent to the scaling relation (H-dependence is taken from 

Table 2) 

x(sq, s -15, S1!2(d + 2 -‘I),) = s-Q -‘1’x(q, 5, H) . (2.130) 

It is convenient to make the transformation 1 T - T,I + bl T - T,I so that 5 + b -“t which is 
equivalent to the choice of s = b”. Then Eq. (2.130) transforms to 

X(b’q, b -‘5, br([l+ 2 -V);2H) = /,, -;‘x(q, s’, H) . (2.131) 

Finally, note that close to Curie point the spin-stiffness coefficient pS satisfies the so-called 
Josephson relation [47]: 

PS - 1 T - T, l’d ~ 2’1 (2.132) 

and tends to zero as T + T, from within the condensed phase. 
Consider now the analogy formulated in Table 1. Density of states N(E) is nonsingular at the 

mobility edge [27,7]. Then considering N(E) as an analog of magnetization M we have to assume 
B = 0, i.e. at the localization transition 

q=2-d (2.133) 

and the “order-parameter” N(E) is nonsingular at the transition E = E,. Accordingly, we have 
y = dv. Josephson relation Eq. (2.132) now takes the form 

DE- 
IE _ E, l(d ~ 2)v , (2.134) 

i.e. it is in fact is equivalent to Wegner’s relation for conductivity given by Eq. (2.31). Correlation 
length exponent v remains unknown. 

For electronic correlators of Eqs. (2.117) and (2.118) we obtain from Eq. (2.13 1) scaling relations 
C83,841 

KF,H(bl’q, b”“o, b(E - E,)) = b -dXF,H(q, co, E - E,) . (2.135) 

Taking v = l/(d - 2) from Eq. (2.29) for d = 3 and E = E, (i.e. at the mobility edge itself) we get 
from Eq. (2.135): 

&,H(bq> b30) = b- 3KF,&u) (2.136) 
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which is equivalent to 

(2.137) 

where FF.H( x IS some universal function and we introduced the characteristic length ) . 

L,,, = [oN(E)] - 1’3 . (2.138) 

Note that the same scaling dependence follows, e.g. for K,(qw) from Eq. (2.83) or Eq. (2.84) after 
a simple replacement of D,, by a diffusion coefficient given by 

D, = E,(qo) = L; ’ fW+,) > (2.139) 

where S(x + 0) -+ 1 and f(x + ~0) + x. In particular, in the limit of qL,,, -+ 0 we get F(x) = 
(1 + .X4)-1’4 and the replacement Do -+ Do (o/y) 1’3 mentioned in connection with Eq. (2.84) is valid. 
On the other hand, from Eq. (2.133) it follows that at co = 0 we get from Eq. (2.129) 

K(q,w = 0,E = E,) - q-d 

which is equivalent to Eq. (2.67) if we take DE = E,(~ = 0,q) = ccqd-2 (cf. Eq. (2.85)). 

(2.140) 

Microscopic justification for this scaling hypothesis can be provided with one or other variant of 
the field-theory approach based upon nonlinear o-model [82-841. There exist several alternative 
schemes of “mapping” of the problem of an electron in a random field onto field-theoretic 
formalism of nonlinear o-models [86,88-921. The main physical justification of this approach is to 
represent an effective Hamiltonian of an electronic system in a form similar to the analogous 
Hamiltonian of the Heisenberg ferromagnet below Curie point: 

.?Y = $(~M@x,)~ - HM ; M2 = const (2.141) 

As a result, an effective Hamiltonian for an electron in a random field in terms of interacting modes 
responsible for the critical behavior close to mobility edge appears. Following Ref. [88] we can 
introduce an “order-parameter” as a 2n x 2n matrix 0 (n-integer). Every matrix element of 0 can be 
represented as 

(2.142) 

where Dij = DJ$ and dij = -A]:, i.e. they are elements of Hermitian and antisymmetric matrices, 
respectively. Analogously, M2 = const. in a ferromagnet. o-matrix must satisfy the condition: 

Q’ = 1; Tro=O. (2.143) 

The effective Hamiltonian for diffusion modes takes the following form [82,83]: 

.Y? = D0Tr(-iV&2 - iwTrA0 . (2.144) 

Here /i is the diagonal matrix with the first n elements equal to 1 and the remaining y1 are - 1. 
Correlation function of D-elements corresponds to diffusion, while that of d-elements to Cooperon. 
Parameter n should be put equal to zero at the end of calculations in the spirit of the famous 
“replica trick” in the theory of disordered systems [85,4]. 
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This formalism is useful also for the analysis of different kinds of external perturbations, such as 
external magnetic field, magnetic impurities, spin-orbital scattering etc. [SS]. Standard methods of 
renormalization group using perturbation theory over ( pFI)- ’ < 1 reproduces all the main results 
of elementary scaling theory of localization, including the qualitative form of the p-function as in 
Fig. 3. However, the formalism of the o-model approach is quite complicated and practically does 
not allow to get explicit expressions for the physical characteristics of the system, especially in the 
localized phase. 

Many problems of fundamental nature still remain unresolved. Most important are questions 
concerning the role of nonperturbative contributions close to the mobility edge [4,7,92-941. Note, 
especially, the strong criticism about one-parameter scaling in Refs. [93-941. Among the several 
results obtained within the o-model approach we wish to mention an important paper by Lerner 
[95], where a distribution function for the local density of states in a system close to the Anderson 
transition was determined and shown to be essentially non-Gaussian. 

For our future analysis it is important to stress that in most cases the results of the o-model 
approach practically coincide with the predictions of the self-consistent theory of localization 
which also neglects all nonperturbative effects, except those determined by some infinite resumma- 
tion of diagrams. It must be stressed that self-consistent theory is based upon some uncontrollable 
ad hoc assumptions and in this respect it is not as well justified as the o-model approach. However, 
this simple theory as we have seen above allows practical calculation of any interesting character- 
istic of an electronic system close to the mobility edge including the localized phase. 

2.5. Interaction efects and Anderson transition 

The main unresolved problem of the theory of metal-insulator transition in disordered systems 
is the role of electron-electron interactions. The importance of interactions for this problem is 
known for a long time [2]. In recent years the decisive importance of interactions was revealed in 
the theory of “dirty metals” [38-401, as well as in the concept of the Coulomb gap at the Fermi 
level of strongly localized electrons [41-441. We have already briefly discussed the Coulomb gap. It 
appears for strongly localized states. In case of “dirty metals”, the diffusive nature of electronic 
transport leads to special interference effects between the Coulomb interaction and disorder 
scattering [38,40]. Most important is an appearance of some kind of a precursor to the Coulomb 
gap already in the metallic state. It is connected with simple exchange correction to the electron 
self-energy (cf. Fig. 7) which leads to the following cusp-like correction to one-particle density of 
states in case of the screened Coulomb interaction in three-dimensional systems [38]: 

(2.145) 

where Do is the usual Drude diffusion coefficient. In the two-dimensional case this correction is 
logarithmic [96,40]. General belief is that this cusp somehow transforms into the Coulomb gap as 
the system moves from metal to insulator. However, up to now there is no complete solution for 
this problem. 

An early attempt to describe electron-electron interactions in Anderson insulators in a Fermi- 
liquid-like scheme is discussed in Ref. [97]. Simple generalization of the theory of “dirty metals” 
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[38-401 along the lines of self-consistent theory of localization was proposed in Refs. [98,60,7]. 
However, the most general approach to this problem was introduced by McMillan [993 who 
proposed to describe the metal-insulator transition in a disordered system by a scaling scheme 
similar in spirit to the elementary scaling theory of localization of noninteracting electrons 
discussed above. He formulated a simple system of coupled differential equations of the renormaliz- 
ation group for two effective “charges”: dimensionless conductance g and single-particle density of 
states N(E). Later it was realized that this simple scheme cannot be correct because it assumed for 
conductivity a relation like Eq. (2.59) with the density of states while the correct Einstein relation 
for the interacting system contains electron compressibility dn/d[ ([ is chemical potential) 
[loo-102], which is not renormalized close to the metal-insulator transition as opposed to density 
of states. The most comprehensive approach to a scaling description of the metal-insulator 
transition in disordered systems was formulated by Finkelstein [102-1051. Unfortunately, more or 
less explicit solutions were only obtained neglecting the scattering and interaction processes in the 
Cooper channel which are mainly responsible, as we have seen above, for localization itself. Some 
attempts in this direction were undertaken only in Ref. [104]. This approach is still under very 
active discussion [107-1151 and demonstrates the fundamental importance of interactions. How- 
ever, the problem is still unresolved and most of these works consider only the metallic side of 
transition with no serious attempts to analyze the insulating state. 

Below we consider only some qualitative results of this approach, following mainly Refs. [108,109]. 
Fermi liquid theory survives the introduction of disorder [119], although with some important 
corrections [38,40], and is actually valid up to the metal-insulator transition [102,103, 108,109]. 

In the absence of translation invariance there is no momentum conservation and we have to use 
some unknown exact eigenstate 4,,(r) representation for electrons in a random field to characterize 
quasi-particles with energies E,. (cf. Ref. [ 1201). The free energy as a functional of the quasi-particle 
distribution function q(c,,,r) (s-spin variable) is written as is usual in the Fermi liquid theory: 

W&,.,r)) = 1s (2.146) 
s. 1’ 

drn,(a,,r)(s,, - i) + !j c jddrsN~(r)~N.(r)i,.,, , 
\\’ 

where N, = I,, n,(c,.r) is the total density per spin andf;,s, =fS + .ss’fa is the quasi-particle interac- 
tion function. The angular dependence of the,f-function in the dirty case can be neglected, because 
n&r) is assumed to describe electrons on distances larger than the mean free path where only 
s-wave scattering is important and the Fermi-liquid interaction becomes point-like. In an external 
spin dependent field V, the quasi-particle distribution function obeys a kinetic equation: 

in,-DV2n,+(an,/ai:)(-DV2) 1 =O, (2.147) 

where D is the quasi-particle diffusion coefficient. Eq. (2.147) is obtained from the usual Fermi- 
liquid kinetic equation [120] by replacing oFa/& by -D V2 which reflects a crossover from 
ballistic to diffusive transport in disordered systems. Solving Eq. (2.147) for density-density and 
spin-spin response functions one gets [102,103,107] 

x,&/m) = (dnldi)D,q2/(D,q2 - io) , (2.148) 

x&4 = x~sq2/(~sq2 - id, (2.149) 



258 M. V. Sadovskii/Physics Reports 282 (1997) 225-348 

where dn/d[ = N&)/(1 + J’s,), x = N(&)&/(l + F;) (,u~ is Bohr’s magneton) and 

D, = D(l + F;) , 

D, = D(l + &) . 

Landau parameters F;” are defined by 

(2.150) 

(2.151) 

N(E,)f” = Fs, , N(E,)f” = F; , (2.152) 

where N(Er) is the quasi-particle density of states at the Fermi level (for both spin directions). If we 
neglect Fermi-liquid renormalization effects Eq. (2.148) reduces to Eq. (2.49). Conductivity is given 
now by G = e’D(dn/dc). 

As the system moves towards the metal-insulator transition Hubbard-like interaction of elec- 
trons close to a given impurity site becomes more and more important. It is known for a long time 
[2,7] that this interaction leads to the appearance of a band of single-occupied states just below the 
Fermi level of a system on the dielectric side of the Anderson transition. These states actually 
simulate paramagnetic centers and lead to Curie-like contribution (diverging as temperature 
T, + 0) [2,7]. Thus on the metallic side of transition static magnetic susceptibility x is expected to 
diverge since it is infinite (at T = 0) on the insulating side. At the same time, dn/d[ remains finite. 
Therefore, DJD, = (dn/d[)/X goes to zero, i.e. spin d@usion is much slower than charge difision 
close to the metal-insulator transition. This fact was first noted in Ref. [104] where it was assumed 
that it leads to a possibility of local magnetic effects appearing in the metallic phase before 
a transition. It is interesting to note that the slowing down of spin diffusion due to interactions was 
actually discovered long before [106] it appeared in the context of the interaction picture of the 
metal-insulator transition. This idea was further elaborated in Refs. [112-1141, where extensive 
discussion of this magnetic transition was given. There is an interesting problem why these 
localized moments are not quenched by the Kondo effect. This can apparently be explained by the 
local fluctuations of Kondo temperature due to fluctuations of local density of states induced by 
disorder [ 1161. The resulting distribution of Kondo temperatures is shown to be singular enough 
to induce diverging magnetic susceptibility as T ---f 0. 

The idea of paramagnetic moments appearing already in the metallic phase apparently can much 
simplify the analysis of the metal-insulator transition and allow its description by equations of 
elementary scaling theory of localization [ 117,118,40]. In the general case, electron interactions in 
the diffusion channel can be classified by the total spin of an electron and hole j [40]. It can be 
shown that all interaction corrections with j = 0 do not depend on the electron-electron coupling 
constant (charge) and are universal [40]. If paramagnetic scattering is operating in the system it 
dumps scattering processes in the Cooper (localization) channel [121] as well as interaction 
processes in the diffusion channel withj = 1 [40]. In this case, only interaction processes withj = 0 
determine corrections to the classical (Drude) conductivity. Due to the universal nature of these 
corrections (independence of electronic charge) their structure actually coincides with that of 
localization corrections (Cooperon) [117,118]. This means that renormalization group has only 
one effective “charge” - dimensionless conductance g. In this case, the differential equation for the 
conductance of a finite system is again given by Eq. (2.18) with the same asymptotic forms of&(g). 
This approach is valid for systems with linear size L < LT = J’)iD:T. This length LT replaces in the 
theory of interacting electrons the characteristic length of phase coherence L, of the noninteracting 
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theory. The appearance of this new length is due to the fact that the characteristic time of the 
interaction processes [40] is -h/T. We must stress that these arguments are probably oversimpli- 
fied as Refs. [102-104,107] have demonstrated the relevance of interaction in the sense of 
appearance of additional coupling constants (“charges”). Also it is in no way clear that local 
moments appearing within this approach are acting just as the usual paramagnetic scatterers. 
However, the simple scheme following from Refs. [117,11 S] seems to be too attractive on physical 
grounds just to be neglected. 

As in the noninteracting case for d = 3, Eq. (2.18) again possess an unstable fixed point 
responsible for the existence of the mobility edge and absence of minimal metallic conductivity at 
the metal-insulator transition. However, in this case there are no special reasons to believe that the 
critical exponent v of the localization correlation length cioc will coincide with its value from the 
noninteracting theory. At finite temperatures, as in the usual scaling picture, conductivity for d = 3 
is given by [117,118,40] 

(2.153) 

As the system approaches the insulating phase, clot + co. For <ioc < LT we havef(&/LT) = A + 
B(&Oc/L,,), where A and B are some numerical constants. Thus, in this region, conductivity 

corrections are proportional to fi [38]. In case of gloc 9 LT, i.e. very close to transition: 

(TZ C(e2/hL,) = C(e2/h)J@i , (2.154) 

where again C - 1. Using the Einstein relation [loo] r~ = e2D(dn/d[) we immediately obtain 

D = (C2’3/ti)T1’3(dn/di)-2’3 (2.155) 

and 

r~ = C2j3(e2/k)(T dn/dc)‘13 (2.156) 

which is valid for LT < lloc, where LT = [C/(T dn/dc)]1’3. 
In the case of a system in an alternating electric field with frequency w B T/k the relevant length 

becomes L,, = [D/o] ‘I2 as in Eq. (2.37). Accordingly, for L,, < tloc instead of Eq. (2.156) we get 

a(o) z (e2/h)(o dn/d[)“3 (2.157) 

which is analogous to Eqs. (2.41) and (2.81). However, we must note that this result cannot be 
considered very reliable since the dynamical critical exponent in the general case is an independent 
one [ 103,104]. 

The metal-insulator transition can be viewed as a gradual breakdown of the Fermi liquid state 
[109]. As we approach the transition, different Fermi-liquid parameters, such as D, IV(&), x, etc. 
change continuously and at a critical point some of these may either diverge or go to zero. This 
behavior is related to the divergence of the correlation length cioc characterized by a critical 
exponent v. On the insulating side of the transition this length can also be interpreted as the scale 
inside which a Fermi liquid description of the system still holds. 

At present, we are in need of some kind of new approach to the theory of interacting electrons in 
disordered systems which probably may be formulated along the lines of the self-consistent theory 
of localization. The attempt is to provide an effective formalism to calculate the basic physical 



260 M. V. SadovskiijPhysics Reports 282 (1997) 225-348 

properties of the system in an interpolating scheme from metallic to insulating state. Below, we 
briefly describe an attempt to construct such a self-consistent approach [122]. 

The basic idea in equal footing (additive) is the treatment of both localization and interaction 
corrections to the current relaxation kernel defining the generalized diffusion coefficient in 
Eq. (2.47). As a zeroth approximation we take the Drude metal and consider the simplest 
localization and interaction corrections, so that the relaxation kernel takes the following form: 

M(U) = MO + &h/l(U) ) (2.158) 

where 04(o) = &U,(w) + &M,(w) = -(M,/D,)(GDr(o) + SO,(o)). Here the localization correc- 
tion to the diffusion coefficient Dr(o) is defined by the usual sum of “maximally crossed” diagrams 
which yields 

W4 1 -=- 
DO 

c .I n&(G) lq,<fi,, -10 + Doq* ’ 
(2.159) 

while the Coulomb correction D,(w) is given by 

8D, (0) 80(w) ----= 
Do 2e2&(&)Do 

=$D, 
1 K, 

s s 
dQ ddq 

2 

~No &I 0, (2x)" (-i(Q + UI) + D(s2 + Yo)4*)(-iQ + D(O)q')* ' 

(2.160) 

where p = No(E,)uo is the dimensionless point-like interaction with No(EF) now denoting the 
single-spin density of states at the Fermi level for the noninteracting case. The lowest order 
interaction corrections are shown in Fig. 7. Conductivity correction 6~ due to interactions was 

(a) 

Fig. 7. Lowest order interaction corrections: (a) Simplest Fock correction for self-energy in exact eigenstate representa- 
tion. (b) Equivalent diagram in momentum representation. (c) “Triangular” vertex defining diffusion renormalization. 
U ~ irreducible impurity scattering vertex, r - full impurity scattering vertex, and wavy line denotes interelectron 
interaction. 

Fig. 8. Lowest order interaction corrections to conductivity. 
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defined by the lowest-order diagrams shown in Fig. 8 which were for the first time analyzed in Ref. 
[123], neglecting localization corrections. It was shown in Ref. [123] that the total contribution of 
diagrams (a)-(c) is actually zero and conductivity correction reduces to that determined by 
diagrams (d) and (e). Here we neglect also the so-called Hartree corrections to conductivity 
[40,123-J, which is valid in the limit of 2kF/rcD 9 1, where xn is the inverse screening length. This 
inequality, strictly speaking, is valid for systems with low electronic density, which are most 
interesting for experimental studies of disorder induced metal-insulator transitions. Also, if we 
remember the divergence of the screening length at the metal-insulator transition, we can guess 
that this approximation becomes better as we approach the transition. The point-like interaction 
model used above has to be understood only in this sense. 

Self-consistency procedure is reduced to the replacement of Do by the generalized diffusion 
coefficient in the denominators of all the diffusion forms. As a result, we obtain the following 
integral equation for the generalized diffusion equation: 

Do -=1+ 
1 

s 

ddq 1 

D(o) rtN,(E,) (27C)d -io + D(w)q* 

-$Do 
1 a3 

s s 
dQ ddq 

2 

EN0 @F) tr, (2rc)d (-i(s2 + cu) + D(B + L)q*)(-iQ + D(Q)q’)* . 

(2.161) 

This equation forms the basis of the proposed self-consistent approach. In the absence of 
interactions (p = 0) it obviously reduces to the usual self-consistent theory of localization. Let us 
transform it to dimensionless imaginary Matsubara frequencies which is the only case we need 
for further applications to the superconducting state: -iw/Dokt + cc), -iS2/Doki + Q, and also 
introduce the dimensionless diffusion coefficient d(m) = D(o)/Do. In these notations integral 
equation (2.161) takes the following form: 

1 1 1 

d(o) = l+ d(o) 
-dllx!-* 

s 

dyyd-’ 

0 Y2 + (old(o)) 

8 

s 

‘x. 
+ ptxg-* 

dQ 

<I> d(o + W*(Q) s 

1 dyyd+’ 

0 (y’ + (0 + Q)/d(o + Q))(J)* + Q/d(Q))* ’ 

(2.162) 

where ;1= y/xEF = 1/2nEFr is the usual disorder parameter. In the following we shall limit 
ourselves only to the case of spatial dimension d = 3. The diffusion coefficient of the usual 
self-consistent theory of localization (2.78) in these notations reduces to 

i 

M = 1 - 31x0 Z 
EF - E, 

E, ’ 
CO 4 LO, , a > 0 (Metal) , 

d(w) = (Metal and insulator) , (2.163) 

((42)3nx,)* 
a2 0 = (510cko)2a , o 4 w, , a < 0 (Insulator) , 
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where o, = ) a( 3/( (7~/2)3kx,)~ and [ioc is the localization length and x0 the dimensionless cutoff. Let 
us introduce K(U) = o/d(~) and analyze Eq. (2.162) assuming that K(o), K(Q) and K(u + a) < 1. 
Expanding the right-hand side of Eq. (2.162) over these small parameters we obtain 

$j= 

7t 3Jxo I_-- 2 d(o) K”2(Q4 

i 

1 

+ 2$x() 
dSZ K”2(SZ) + 2K”2(CL) + a) 

(2.164) 
(!, d(c.c, + O)@(Q) (K”2(52) + K112(CL) + 52))2 . 

Consider the metallic phase and look for the solution for the diffusion coefficient d(w) in the 
following form: 

(2.165) 

Substituting (2.165) into Eq. (2.164) we find d and CL), and for the diffusion coefficient we obtain 

(2.166) 

where co, = 1~ - ~*)~/(:rr3~x~)~, c(* = cp, c z 0.89. 
Thus for the metallic phase we come to a very simple qualitative conclusion: Anderson transition 

persists and the conductivity exponent remains as v = 1. The transition itself has shifted to the 
region of weaker disorder IX = c(* = C,U - interaction facilitates transition to the insulating state. 
The frequency behavior of the diffusion coefficient in metallic phase is qualitatively similar to that 
in the usual self-consistent theory of localization (2.163). In the region of high frequencies o $ o, 
the behavior of diffusion coefficient remains unchanged after the introduction of interelectron 
interactions. 

Consider now the insulating phase. In the region of high frequencies w $ (I)~ the diffusion 
coefficient obviously possesses the frequency dependence like d(o) - u113. Assume that for small 
frequencies it is also some power of the frequency: 

(2.167) 

where 6 is some exponent to be determined. 
Substituting (2.167) into (2.164) and considering the case of CI < 0 (insulating phase of the usual 

self-consistent theory of localization) and (~1 $ x*, we get 
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where w, = la13/(+rr ~Ax,,)~, while co* z 0.1~ a2/($n: 3ix,,)’ = 0.1 ,~/(t,~~k,,)~ is some new charac- 
teristic frequency defined by the interactions. Note that w* + 0 as we approach the transition point 
when tloc + a. 

Thus, sufficiently deep inside the insulating phase when CI < 0 and la1 + CI* and for the frequen- 
cies w B co*, the diffusion coefficient remains the same as in the self-consistent theory of localiza- 
tion, i.e. at small frequencies it is linear over frequency, while for the higher frequencies it is -~i’~. 

The analysis of Eq. (2.164) shows that for the frequencies o 4 co* it is impossible to find the 
power-like dependence for d(o), i.e. the diffusion coefficient in the insulating phase apparently 
cannot be represented in the form of d(o) = d$(s)d, where 6 is some unknown exponent. Because 
of this we were unable to find any analytical treatment of Eq. (2.164) in the region of co Q w* within 
the insulating phase. 

Consider now the behavior of the system not very deep inside the insulating phase when 
CI - SI* < 0 while a > 0, that is when the system without interaction would be within the metallic 
phase. Let us assume that the frequency behavior of the diffusion coefficient for co < w, has the 
power-like form, i.e. the diffusion coefficient is defined by the expression (2.167). Substituting (2.167) 
into (2.164) we get 6 = 3. As a result, for the diffusion coefficient we get 

(2.169) 

where w, = lc( - a* I”/(irt 3iL~,,)~. Naturally, the exact solution for the diffusion coefficient should 
show a continuous change of frequency around o - co,. 

Thus, within the insulating phase close to transition point, where the system without interactions 
should have been metallic, the diffusion coefficient behaves as -~i/~ everywhere, though for the 
low frequency region the coefficient of o iI3 differs from that of the usual self-consistent theory of 
localization and explicitly depends upon the interaction constant. 

We have also performed the numerical analysis of the integral equation (2.162) for the wide 
region of frequencies, both for metallic (Fig. 9) and insulating phases (Fig. 10). Solution was 
achieved by a simple iteration procedure using the results of the usual self-consistent theory of 
localization as an initial approximation. Numerical data are in good correspondence with our 
analytical estimates. In the region of high frequencies, both for metallic and insulating phases, the 
frequency behavior of the diffusion coefficient is very close to that defined by the usual self- 
consistent theory of localization. In the region of small frequencies within the metallic phase 
diffusion coefficient d(m) diminishes as interaction grows. Dependence of the static generalized 
diffusion coefficient on disorder for p = 0.24 is shown as an inset in Fig. 9, and is practically linear. 
Metal-insulator transition in this case is observed at c( = a* = cp, where c z 0.5, which is also in 
good correspondence with our qualitative analysis. Within the insulating phase for the region of 
small frequencies (w < o*) we observe significant deviations from predictions of the usual self- 
consistent theory of localization. Diffusion coefficient is apparently nonanalytic in the frequency 
here and we clearly see the tendency to the formation of some kind of an effective gap for the 
frequencies CD 4 o*, with this “gap” closing as interactions are turned off. 

Our numerical analysis was performed in the Matsubara frequency region, which was used in 
writing down Eq. (2.162). Analytical continuation of our numerical data to the real frequencies was 
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Fig. 9. Dependence of the dimensionless generalized diffusion coefficient on dimensionless Matsubara frequency in 
metallic phase (a = OS), obtained by numerical solution for different values of ,u: (1) 0.24; (2) 0.6; (3) 0.95; dashed line ~ the 
usual self-consistent theory of localization, p = 0. Inset: dependence of the static diffusion coefficient (d = D(O)/&) on 
disorder for p = 0.24. 

0 

Fig. 10. Dependence of dimensionless generalized diffusion coefficient on dimensionless Matsubara frequency in the 
dielectric phase (Z = - OS), obtained by numerical solution for different values of k: (1) 0.12; (2) 0.6; (3) 1.2; dashed line 
_ the usual self-consistent theory of localization, p = 0. 

not attempted, but as we stressed above the Matsubara frequency behavior is sufficient for our 
studies of the superconducting state discussed below. 

In Ref. [122] we were also able to study the gradual evolution of the tunneling density of states 
from metallic to insulating region, demonstrating the continuous transformation of a cusp singu- 
larity of Eq. (2.145) in a metal into a kind of interaction induced pseudogap at the Fermi level in an 
insulator, which is in some respects similar to the Coulomb gap of Refs. [41-441. 

For high-T, superconductors, problems of interplay of localization and interactions become 
especially important because of the unusual nature of the normal state of these systems. In the 
absence of an accepted theory of this normal state we shall limit ourselves only to a few remarks on 
one specific model. The so-called “marginal” Fermi-liquid theory [124,125-J is a promising 
semi-phenomenological description of both normal and superconducting properties of these 
systems. We shall see that localization effects are apparently greatly enhanced in this case 
[126,127]. 

Basically, the idea of “marginal” Fermi-liquid is expressed by the following form of one-particle 
Green’s function [ 1241. 

(2.170) 

where & is the renormalized quasi-particle energy, yP - Max[a, T] is the anomalous (linear) 
decay-rate for these quasiparticles which is quite different from quadratic in E or T decay-rates of 
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the usual Fermi-liquid theory [120]. The concept of “marginality” arises due to the peculiar 
behavior of the quasi-particle residue: 

z,_ ’ = ln@,/ltpl) = W&/l4), (2.171) 

where 6, is the characteristic frequency scale of some kind of electronic excitations, which is the 
phenomenological parameter of the theory. From Eq. (2.171) it is clear that quasi-particle contri- 
bution to Green’s function Eq. (2.170) vanishes precisely at the Fermi level, while it exists close to it 
though with logarithmically reduced weight. Note that in the case of the usual Fermi-liquid Z, = 1 
[120]. 

For the disordered system we can estimate the impurity contribution to the scattering rate of 
quasi-particles as [ 1261 

7 =2pT/2ZPImC/12Cp + q,p)G(p + q&) z 2npV2Z2A2(q + O)N(E,) z ZA2yo , (2.172) 
P 

where /1 is the appropriate vertex-part renormalized by Fermi-liquid effects, p again is the impurity 
concentration, I/ the impurity potential and N(E,) = Z- ’ N,,(EF) is the renormalized density of 
states in the Fermi-liquid. Here N,(E,) is the density of states for noninteracting electrons at the 
Fermi level, y. is the scattering rate for the noninteracting case. To get the last relation in 
Eq. (2.172) a weak dependence of vertices and self-energy on momentum was assumed. Now we 
can use the Ward identity for A(q + 00 = 0) vertex of the disordered Fermi-liquid theory 
[ 119,108,109]: 

/l(q+Oo=O)=(l +F;)-*z-1, (2.173) 

where F& is Landau parameter introduced above. As a result, we can easily get a simple relation 
between the mean free paths of interacting and noninteracting quasi-particles [126,127]: 

I = (p&z*)y-l = (p&n)y(p/A2(q + 0) = lo(l + F;)2z2 . (2.174) 

Here m* = Z- ’ m is the effective mass of the quasi-particle. Assuming Fb z const. < 1 and using 
Eq. (2.171) we get at T = 0 

1 = 10/Cln(W14)12 . (2.175) 

Then from the usual Ioffe-Regel criterion for localization pF1 % 1 we obtain that all the quasi- 
particle states within a region of the order of 

Id = &w(-&) (2.176) 

around the Fermi-level in high-T, oxides are localized even for the case of weak impurity scattering 
p,E % 1. For realistic estimates of C& % 0.1-0.2 eV [124] and pF1 < 5 the width of this localized 
band may easily be of the order of hundreds of degrees Kelvin, while for PF I z 10 and C& z 1000 K 
we get I E, ) M 40 K. Obviously, this band grows with disorder as the mean free path lo drops. We can 
safely neglect this localization for T 9 1~~1, but for low enough temperatures localization effects 
become important and all states are localized in the ground state. 
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Of course, the formal divergence of the mean free path denominator in Eq. (2.175) is unphysical. 
Single-impurity scattering cannot overcome the so-called unitarity limit [126], so that we must 
always have 

12 p#Tp . (2.177) 

In a typical metal with PF - a-r this leads to 1 2 1/4rrpa2 and Ioffe-Regel criterion 1 I a can be 
easily satisfied for large impurity concentrations p - a- 3. Thus the singularity in Eq. (2.175) does 
not mean that localization can appear for arbitrarily low concentration of impurities. We can safely 
speak only about the significant enhancement of localization effects in marginal Fermi liquids. 
These ideas are still at this elementary level and we may quote only one paper attempting to put 
them on a more sound basis of scaling theory of the metal-insulator transition of interacting 
electrons [ 1281. 

3. Superconductivity and localization: statistical mean-field approach 

3.1. BCS model and Anderson theorem 

We shall start our analysis of superconductivity in strongly disordered systems within the 
framework of the simple BCS-model [S, 91 which assumes the existence of some kind of effective 
electron-electron attraction within the energy region of the order of 2(w) around the Fermi level. 
In the usual superconductors, (w) - on, where cL)n is the Debye frequency, because pairing is 
determined by electron-phonon mechanism; however, we shall use some effective (w) as an 
average frequency of some kind of Bose-like excitations responsible for pairing, e.g. in high-T, 
superconductors. At the moment, we shall not discuss the microscopic nature of this attraction 
which in general case is determined by the balance of attraction due to Boson-exchange and 
Coulomb repulsion. Here we just assume (as always is done in simple BCS-approach) that this 
effective attraction is described by some interaction constant y, which is considered just as 
a parameter. More detailed microscopic approach will be given in later sections. 

Nontrivial results concerning superconductivity in disordered systems were obtained very soon 
after the formulation of the BCS-theory [lo-131. The concept of a “dirty” superconductor 
described the experimentally very important case of the mean free path 1 short in comparison with 
the superconducting coherence length co - hF/Tc, i.e. the case when 

50 $ 1 9 h/p, . (3.1) 

Already in this case of the not so strongly disordered (in the sense of closeness to metal-insulator 
transition) system, Cooper pairing takes place not between electrons with opposite momenta and 
spins as in regular case, but between time-reversed exact eigenstates of electrons in a disordered 
system [ 13,9]. 

(Pt> -P1) = (6(&&+P)J . (3.2) 

In the following we consider only singlet isotropic (s-wave) pairing. Some aspects of anisotropic 
pairing are analyzed in Appendix C. The underlying physics is simple: in disordered systems such 
as e.g. an alloy the electron momentum is poorly determined due to the lack of translational 
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invariance. However, in a random potential field we can always define exact eigenstates 4,,(r), which 
are just solutions of the Schroedinger equation in this random field (for a given configuration of this 
field). We do not need to know the explicit form of these eigenstates at all, the pairing partner of 
&(r) is being given by time-reversed 4,?(r). This leads to a relative stability of a superconducting 
state with respect to disordering in the absence of scattering mechanisms which break the 
time-reversal invariance such as e.g. of magnetic impurities. 

Within the standard Green’s function approach, the superconducting system is described by 
Gorkov equations [SS, 1291 which in the coordinate representation take the form: 

%T(rr’~,) = Gt(rr’c,) - 
s 

dr”G,(rr”~,)A(r”)~(r”r’c,) , (3.3) 

dr”G~(rr”~,)A*(r”)~~(r”r’~,) , (3.4) 

where G(rr’c,) is an exact one-electron Matsubara Green’s function of the normal state and the 
superconducting order-parameter (gap) A(r) is determined by the self-consistent gap equation: 

A(r) = gT c P*(rrc,) , (3.5) 

where F(rr’E,) is (antisymmetric over spin variables) anomalous Gorkov Green’s function, 
c, = (2n + 1)rcT. 

If we consider temperatures close to the superconducting transition temperature T,, when A(r) is 
small, S(rr’&,) can be obtained from the linearized equation: 

qF(rr’c,) = dr”G~(rr”~,)A*(r”)Gt(r”r’~,) . 
s 

(3.6) 

Then the linearized gap equation determining T, takes the form 

A(r) = gT 
s 

dr’ 1 K(rr’c,)A(r’) , 
6, 

where the kernel 

(3.7) 

K (rr’c,) = Gt (rr’c,) G,* (it-c,) (3.8) 

is formed by exact one-electron Green’s functions of a normal metal. Now we can use an exact 
eigenstate representation for an electron in a random field of a disordered system to write 
(cf. Eq. (A.13)) 

Gt(rr’E,) = 1 h(r)~$(r’) , 
,, iE, - E,, 

where E,. are exact energy levels of an electron in the disordered system. Then 

(3.9) 

K(rr’e,) = Tg 1 6t(rMY*t(r’M,*l(r’M,~(r) 
,(,, (i&, - E,,)( -ie, + EJ ’ 

(3.10) 
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In the following for brevity we shall drop spin variables always assuming singlet pairing. In the case 
of a system with time-reversal invariance (i.e. in the absence of an external magnetic field, magnetic 
impurities, etc.) Eq. (3.10) can be rewritten as 

K(rr’r,) = G(rr’.z,)G(r’r - E,) = c ~,.(r)~t(r’)~,,(r’)~,T(r) 
1(,, (18, - c,.)( -is, - F,,) ’ 

(3.11) 

Averaging over disorder we get 

(A(r)) = gT 
s 

dr’ c (K(rr’c,)A(r’)) . (3.12) 
I:,, 

Practically, in all the papers on superconductivity in disordered systems it is assumed that we can 
make the simplest decoupling in Eq. (3.12) to get the following linearized equation for the average 
order-parameter: 

(A(r)) = yT 
s 

dr’ c K(r - r’c,)(A(r’)) , (3.13) 
I:,, 

where the averaged kernel in the case of time-invariance is given by 

K(r - r’.c,) = K*(r - r’c,) = (K(rr’E,)) 

(ia, - E,.) ( - ie, - E,,) 

s 
K dEN(E) 

s 
1 zz do . ~m(~)~~+d~‘DF 

-2 - 7[ (18, + E)(E + w - is,) ’ 

where we have introduced Gorkov-Berezinskii spectral density [59] (cf. Eq. (A.2)): 

<pdr)pE+rAr’)>F = j$-~ t 2 c$l*(r)$,l(r)f$,T(r’)&(r’)6(E - E,.)h(E + w - E,,) . 
,I’ > 

(3.14) 

(3.15) 

Here N(E) is an exact electron density of states per spin direction as it always appears in 
superconductivity theory (above, while discussing localization we always used density of states for 
both spin directions). 

Usually, the decoupling procedure used in Eq. (3.12) to reduce it to Eq. (3.13) is justified by the 
assumption that the averaging of A(r) and of Green’s functions in Eq. (3.12) forming the kernel can 
be performed independently because of the essentially different spatial scales [12]. A(r) changes at 
a scale of the order of coherence length (Cooper pair size) c, while G(rr’r,) are oscillating on the 
scale of interatomic distance a - k/p,, and we always have 5 % a. Actually, it is clear that this 
decoupling is valid only if the order-parameter is selfaveraging (i.e. in fact nonrandom) quantity: 
A(r) = (A(r)), (A2(r)) = (A(r))2. Below we shall see that for a system close to the mobility edge 
the property of self-averageness of A(r) is absent and situation is actually highly nontrivial. In this 
case, the so-called statistical fluctuations [62] leading to the inequality of (A2(r)) and (A(r))2 
become quite important. However, we shall start with what we call the statistical mean-field 
approach which completely neglects these fluctuations and allows the simple analysis using 
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Eq. (3.13), as a necessary first step to understand superconductivity in strongly disordered systems, 
which will allow us to find most of the important deviations from the usual theory of “dirty” 
superconductors. The role of statistical fluctuations will be analyzed later. 

If we look for the solution of Eq. (3.13) d(r) = const. (homogeneous gap), we immediately obtain 
the following equation for the superconducting transition temperature Tc: 

1 =gTc drxK(r-r’a,) 
i:. 

=gTc drx 
s s 

IxI dEN(E) 
s 

m do Q&)PE+&‘DF 

1:. - 0Z -= (E + ia,)(E + o - ia,,) 

Using the general sum-rule given in Eq. (AS) [59]: 

s dr<~_dr)~~+dr’)>F = &4 , 

we immediately reduce Eq. (3.16) to a standard BCS form 

s ((‘I) 

1 =gTc J; dEN(E)x ’ 
-x ,;” E’+e;=’ s o 

dE N(E) i tanh (E/2T,) , 

(3.16) 

(3.17) 

(3.18) 

where we introduced the usual cut off at E,, - 2(o). Note that N(E) here is an exact one-particle 
density of states (per spin direction) in a normal state of a disordered system. From Eq. (3.18) we get 
the usual result: 

T, = z (co) exp (- l/A,) , (3.19) 

where 3,, = gN(EF) is the dimensionless pairing constant and In y = C = 0.577 . . . the Euler 
constant. This is the notorious Anderson theorem: in the absence of scattering processes breaking 
time-reversal invariance, disorder influences T, only through possible changes of the density of 
states N(EF) under disordering (which are usually relatively small). 

Due to the sum-rule of Eq. (3.17), all the singularities of the Berezinskii-Gorkov spectral density, 
reflecting a possible localization transition, do not appear in the equation determining T,: there is 
no explicit contribution from the 6(o) term of Eq. (A.8) and Eq. (3.18) has the same form in both 
metallic and localized phases (cf. Ref. [ 1301). 

The only limitation here which appears on physical grounds is connected with the local 
discreteness of the electronic spectrum in the localized phase discussed above. It is clear that 
Cooper pairing is possible in the localized phase only between electrons with centers of localization 
within a distance of the order of -l&(E), because only in that case their wave functions overlap 
[21,22]. However, these states are split in the energy by 6, defined in Eq. (2.13). Obviously, we have 
to demand that the superconducting gap d (at T = 0, A - Tc) be much larger than this dE: 

A - T, $ & - w(mGc(~) 7 (3.20) 

i.e. on the energy interval of the order of A - T, there must be many discrete levels, with centers of 
localization within a distance -R,,,(E) from each other. In this case, the problem of Cooper pairs 



270 M. V. SadovskiilPhysics Reports 282 (1997) 225-348 

formation within -I&(E) is qualitatively the same as in the metallic state, e.g. we can replace the 
summation over discrete levels E,. by integration. An analogous problem was considered previously 
in the case of Cooper pairing of nucleons in finite nuclei Cl203 and also of Cooper pairing of 
electrons in small metallic particles (granular metals) [ 13 1,132]. For strongly anisotropic high-T, 
systems we must similarly have [16] 

d - T, 9 C~(~)~,“,,~,b,,~,“,,I - l , (3.21) 

where we have introduced the appropriate values of localization lengths along the axes of an 
orthorhombic lattice. 

Obviously, Eq. (3.20) is equivalent to a condition of large enough localization length: 

R,,,(E) % [N(E)d]-“3 - (i’0/P~)“3 - (W2)“” , (3.22) 

i.e. the system must be close enough to the mobility edge or just slightly localized. Here we used the 
usual estimate of mean free path close to the Anderson transition 1- pF I. Below we shall see that 
Eq. (3.22) is just a condition that Cooper pairs must be much smaller than the localization length, 
only in that case Cooper pairing is possible in the localized phase [21,22]. 

3.2. T, degradation 

In the usual BCS model discussed above pairing interaction y is assumed to be a given constant 
in the vicinity of the Fermi level. In a more realistic approach this interaction is determined by the 
balance of interelectron attraction, due e.g. to electron-phonon coupling (as in traditional super- 
conductors) or some other Boson-exchange mechanism (as is apparently the case in high-l-r, 
superconductors), and Coulomb repulsion. It is clear that in a strongly disordered system all these 
interactions can, in principle, be strongly renormalized in comparison with the “pure” case. The 
aim of this section is to discuss these effects in the context of the metal-insulator transition induced 
by disorder. 

Usually the Coulomb repulsion within a Cooper pair is strongly reduced in comparison with the 
electron-phonon attraction due to the retarded nature of the electron-phonon coupling [9]. The 
characteristic time of electron-phonon interaction is of the order of on ‘, while for the Coulomb 
interaction in “pure” metal it is determined by - h/EF - the time during which electrons “pass” each 
other in the pair. Due to metallic screening both interactions are more or less point-like. However, 
in a disordered metal, ballistic transport changes to diffusion and as disorder grows electron 
motion becomes slower effectively leading to the growth of Coulomb repulsion within the Cooper 
pair and the appropriate drop of T, as was first claimed by Anderson et al. [20]. Actually, 
electron-phonon interaction can also change under disordering but a common belief is that these 
changes are less significant than in the case of Coulomb interaction [134,135-J. This problem is still 
under active discussion and some alternative points of view have been expressed [136-1381. 
However, the general agreement is that some kind of diffusion renormalization of the effective 
interaction of the electrons within a Cooper pair provides an effective mechanism of T, degradation 
under disordering. Below we shall mainly use the approach of Ref. [22], with the main aim of 
finding the possibility of superconductivity surviving up to the Anderson transition. 

Later in this section we shall also consider the possible mechanisms of T, degradation under 
disordering due to magnetic fluctuations (or local moments) which appear close to the 
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metal-insulator transition. A possible relation of these mechanisms to enhanced Coulomb effects 
will also be discussed. 

The general problem of T, degradation under disordering becomes much more complicated in 
the case of high-temperature superconductors because of the unknown nature of pairing in these 
systems. However, we believe that the mechanism based upon the growth of Coulomb repulsion 
within the Cooper pair is also operational here, while of course it is difficult to say anything about 
disorder effects upon attractive interactions leading to Cooper pair formation in these systems. 

If we assume a spin-independent Boson-exchange (phonons, excitons, etc.) model of the pairing 
interaction, T, can be obtained from the generalized Eliashberg equations and thus be given by the 
famous Allen-Dynes expression [139]: 

1.04(1 + 1) 
- 1L - ~~(1 + 0.621) 

where 

j-1 = [l + (n/n,)3’2]“3 ; f2 = 1 + c(~2>“2/~,o, - w2 
A2 + A,’ ’ 

A1 = 2.46(1 + 3.8~~) ; A2 = 1.82(1 + 6.3~“) 
(cD2)1’2 

. 

Q&g 

(3.23) 

(3.24) 

Here olog is the mean logarithmic frequency and (~0)~ is the mean square frequency of Bosons 
responsible for pairing (the averaging is over the spectrum of these Bosons), p* is the Coulomb 
pseudopotential, i is the dimensionless pairing constant due to Boson-exchange. Strictly speaking, 
the Allen-Dynes formula has been derived for the electron-phonon model, with certain assump- 
tions about the phonon spectrum. Its use for the general Boson-exchange model here serves only 
for illustrative purposes. At relatively weak coupling /z I 1.5, Allen-Dynes expression effectively 
reduces to McMillan formula [ 1401: 

T, = ?k?.E exp 
1.04(1 + L) ‘I 

- 
1.20 1 - p*(l + 0.621)) 

> (3.25) 

which in the weak coupling limit gives the usual BCS result T, - (o) exp( - l/i - ~1”). For a very 

strong pairing interaction, Eq. (3.23) gives the asymptotic behavior T, z 0.18Jm. In most 
parts of this review we shall limit ourselves to the weak coupling approximation. The Coulomb 
pseudopotential ,u* in the “pure” system is given by 

P 

‘* = 1 + pln(E,/(w)) ’ 
(3.26) 

where ,u is the dimensionless Coulomb constant. The mechanism of T, degradation under 
disordering due to the growth of Coulomb repulsion is reflected in the appropriate growth of p* 
[20,22]. 

The singlet gap function with a simple s-wave symmetry which we have discussed above has 
a nonzero amplitude at zero separation of the two electrons in the pair. Thus it must pay the energy 
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price for the short-range repulsion due to a finite p. In recent years, a number of new mechanisms of 
superconducting pairing were proposed which try to eliminate the effect of repulsion assuming 
a pair wave function which vanishes at zero separation. This is equivalent to the requirement that 
the sum over all momentum of the BCS gap function d must vanish [141]: 

d(r) = (tiW)ll/W> = 1 d(k) = 0 ’ (3.27) 
k 

A number of rather exotic schemes for this were proposed [141], but probably the simplest way of 
satisfying this requirement is by means of higher angular momentum pairing, e.g. d-wave which 
became rather popular as a possible explanation of high-T, superconductivity within the spin- 
fluctuation exchange mechanism [142-1451. The sum in Eq. (3.27) is then zero because the gap 
changes sign as k goes around the Fermi surface. This leads, to a large extent, to the cancellation of 
Coulomb pseudopotential effects. However, this type of pairing is extremely sensitive to any kind of 
disordering (cf. Appendix C) and superconductivity is destroyed long before the localization 
transition. For these reasons we shall not discuss the disorder effects in such superconductors in 
this review. The same applies to more exotic pairing schemes such as the odd-gap pairing [146], 
where the usual scattering suppression of T, is also very strong. 

Among mechanisms discussed for high-T, superconductors we should also mention different 
types of the so-called van-Hove scenarios [1477150], which are based upon the idea of T,- 
enhancement due to some kind of the density of states singularity close to the Fermi level. For all 
such mechanisms, a rather strong T, suppression may be due to the potential scattering smoothing 
out these singularities. Again we shall not discuss these mechanisms in our review as having 
nothing to do with localization effects. 

3.2.1. Coulomb kernel 
Let us use again the exact eigenstate &,,(Y) representation for an electron in a random system, 

with exact energy levels E,.. These functions and energies may correspond either to extended or to 
localized states. Consider the one-electron Green’s function in this representation and take its 
diagonal element G,.,.(c). The influence of interaction is described by the appropriate irreducible 
self-energy X,.(s) [ 120,151]: 

G,.,.(F) = l/Cc - c,. - c,.(s)] . (3.28) 

Here energy zero is at the Fermi level. Let us introduce a “self-energy” ZE(s) averaged over some 
surface of constant energy E = E,, and over random field configurations [151]: 

Consider a model with short-range static interelectron interaction u(r - Y’). Then for the simplest 
Fock diagram shown in Fig. 7 we find 

(3.30) 
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where.f, =f(c,.) is the Fermi distribution function. Accordingly, from Eq. (3.29) we get [60] 

m 
2,” = - 

s 
do f(E + a) 

.i^ s 
dr dr’u(r - r’)((PE(r)PE+,,,(r’)>>F , (3.31) 

where we again introduced Berezinskii-Gorkov spectral density defined in Eqs. (A.2) and (3.15). 
Let us define the Coulomb kernel by the following functional derivative: 

Kc(E - E’) = -tX,“/hf(E’) (3.32) 

which characterizes the change of electron energy due to a variation of its distribution function. It is 
easy to see that 

C (,uvlv(r - r’)lvy)G(E - E,.)~(E + w - q,) 

= dr dr’u(r - ~‘)((PE(~)PE+~,,(~‘)))~ 
i s (3.33) 

is actually a Fock-type matrix element of interaction averaged over two surfaces of constant energy 
E and E’ = E + Q and over disorder. We can use Kc(o) as a kernel in the linearized gap equation 
(cf. Appendix B) determining T, which is a reasonable generalization of a Coulomb kernel used in 
the theory of ordered superconductors [ 1521. In the momentum representation, 

(3.34) 

In the weak coupling approximation over pairing interaction it is the only relevant Coulomb 
contribution in the gap equation (cf. Appendix B), in case of strong coupling there are additional 
contributions, e.g. connected with diffusional renormalization of the density of states, Eq. (2.145) 
[136-138,153,154]. We refer to these papers for a detailed analysis of the density of states effects 
upon T,. 

In the following we assume point-like interaction: v(q) = vo. During our discussion of localiza- 
tion we have discovered that for small o 4 y and 4 =+ 1-r, the Gorkov-Berezinskii spectral density 
acquires a diffusional contribution: 

where 

@*(qco) = -N(E)/(w + iD,(w)q2) 

and the generalized diffusion coefficient in the metallic phase is given by 

(3.35) 

(3.36) 

(3.37) 
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In the absence of disorder this diffusional contribution disappears and the kernel K,(o) for 
101 < EF reduces to the usual Coulomb potential ,U = N(E)u, [9,152]. Accordingly, we can use the 
following approximation [22]: 

K,(w) z pLO(EF - 1~01) + K,diff(m) , 

where 

(3.38) 

(3.39) 

This form of the Coulomb kernel gives correct interpolation between the strong disorder limit and 
the “pure” case. Note that in the case of a disordered system, besides the diffusional contribution 
which contains singularities associated with the Anderson transition there also appear “regular” 
contributions to K,(w) which may be modelled by p, making it different from its value in the “pure” 
system. The diffusional term in K,(w) is connected with diffusion renormalization of the 
electron-electron interaction vertex [38,39,15 1,101,98,60]. Fig. 7 shows diagrams of standard 
perturbation theory responsible for this renormalization. In the approach based upon the self- 
consistent theory of localization “triangular” vertex defined by Fig. 7(c) is given by [98,155] 

?RAh.P4 = 2.7 
-io + DE(w)q2 ’ 

co<“J, q<<1-1. (3.40) 

Singularity of Eq. (3.40) for small o and q leads to a significant growth of the interaction in the 
disordered system. Actually, this expression is the same as in a “dirty” metal [38] but with the 
replacement of the Drude diffusion coefficient by the generalized one. 

3.2.2. Electron-phonon interaction 

The case of electron-phonon interaction is different. Diffusion renormalization of the electron- 
phonon vertex is unimportant because the relevant corrections compensate each other if we take 
into account the impurity vibrations [133-135-J. Surely, the value of the electron-phonon contribu- 
tion to the pairing interaction does change in a disordered system in comparison with the “pure” 
case [134]. However, these changes are relatively insignificant in the sense of absence of drastic 
changes at the Anderson transition. We shall demonstrate the absence of diffusion renormalization 
of the electron-phonon vertex using the lowest order diagrams of perturbation theory following the 
approach of Ref. [ 1351. 

Let us limit our analysis to a homogeneous continuous medium. The appearance of deformation 
u leads to the variation of density of the medium given by 6p = -p div u. Accordingly, taking into 
account the electroneutrality condition we get the variation of electron density as 6n = -ndivu. 
This leads to the following change of the free electron Green’s function: 

GG-‘(Ep) = -ndivu$ [E - z+(lpl - pF)] 

dp, 1 = -nvFdivu - = -- vFpFdivu , 
dn 3 

(3.41) 
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where we have used n = &/(37?). Let us define the electron-phonon vertex n by 

g = GAG = -G@G-‘/6u)G ; A = -2%‘/Gu . 

215 

(3.42) 

For u(r, t) = uexp(iqr - iot) we get from Eq. (3.41) 

GG-i(Q) = -+iqu UFPF 

so that the “bare” electron-phonon vertex (i is vector 

/t\:’ = +iqi UFPF . 

Consider the system with impurities randomly placed 

U(r) = 1 V(r -R,) . 
n 

index) 

(3.43) 

(3.44) 

at points R, which create the potential 

(3.45) 

Vibrations of the medium lead to vibrations of impurity atoms, so that R, + Ron + u,(t) with 
un(t) = u exp(iqR,, - iot). The random field of static impurities leads to a simplest self-energy 
correction given by Fig. 11 (a) [57,58]. Impurity vibrations can be accounted for by the additional 
interaction term: 

6V(r -R,) = Wr - Rd aR u exp(iqR,,, - icX) 
PI0 

so that 

Wr - R,o) 
aRi G(rt, r’t’) V(r’ - R,o)ui, 

ft0 

+ V(r - R,o)G(rt,r’t’) 
ak’(r’ -R,,) 

aRi Uin , 

ll0 

(3.46) 

where the angular brackets define as usual the averaging over random impurity positions. In the 
momentum representation and for point-like impurities we get in the lowest order over co/& 

and dPF 

n2itP,q) = Pv2 s $$ C-i(Pi - ~i’)Wp’) + i(pf - pi)G(@‘)l 

= 2pv2 s d3p’ 
- [ -i(pi - pf)G(Ep’)] = 2xpv2N(E)pi = 2ypi . (2# (3.47) 

The relevant diagrams are shown in Fig. 1 l(b) [156]. A “bare” electron-phonon vertex is thus 
given by the sum of three diagrams shown in Fig. 11(b) and reduces to 

/iI” = /I\:’ f /Ii:’ = $iqi VF& + Z!ypi . (3.48) 

Diffusion renormalization of the electron-phonon vertex can appear due to impurity scattering 
ladder corrections as shown in Fig. 12(a). Similar diagrams shown in Fig. 7(c) lead to diffusion 
renormalization of the Coulomb vertex. However, in the case of electron-phonon interaction we 
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Fig. 11. Electron-phonon interaction and impurity scattering: (a) Self-energy due to impurity scattering, (b) Diagrams 
representing changes of (a) due to impurity vibrations, (c) diagrams for the “bare” electronphonon vertex in the case of 
vibrating impurities. 

Fig. 12. Electron-phonon vertex renormalization: (a) Impurity “ladder” (diffusion) renormalization. (b)-(d) Simplest 
corrections due to impurity vibrations. 

have to make the same renormalization of the three diagrams of Fig. 7(c). Let us consider the 
simplest corrections shown in Fig. 12(b)-(d). For the contribution of graph of Fig. 12(b) we have 

+up’+d 

= f hi VFPF > wq+o (3.49) 

+ dP1 

A::’ = ~pV2iqiVF& 
d3p’ 
- G(E”)G(E 
(2E)3 

2~ -$ iqi VFPF [ 1 + iO/2y - Do q2/2y] 

and for the sum of graphs of Fig. 12(c), (d): 

n?i’ = 2Pv2Y s d3p’ 
03 G(EP')G(E + cop’ 

z 2PV2Yqi s d3p’ a 
m plG(Ep’) api G(E + COP’) 

s d3p’ VF 

= 2”?Pv2qiPF (zn)3 3 -- G(Ep’)G’(Ep’) = -$iqi VFpr . (3.50) 

Thus for (IJ + 0, q - 0 we obtain 

(1) (1) /tri + /tzi =O (3.51) 

and we have total cancellation of initial diagrams contributing to the diffusion ladder. Apparently 
there is no diffusion renormalization of the electron-phonon vertex (for w, q --f 0): this cancellation 
is valid for any graph obtained from the simplest corrections by adding further impurity lines to the 
ladder. Similar cancellation takes place when corrections due to maximally crossed impurity lines 
(Cooper channel) are added to diagrams of Fig. 12(b)-(d). Thus there is no significant change of the 
electron-phonon vertex due to Cooperon and the only relevant contribution to the electron- 
phonon vertex in an impure system is defined by the sum of diagrams of Fig. 1 l(b) leading to 
Eq. (3.48) which does not contain diffusion type renormalization. Localization appears via a gener- 
alized diffusion coefficient which replaces the Drude one. Thus localization singularities does not 
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appear in the electron-phonon vertex, though surely this interaction is really changed by disorder 
scattering in comparison with the “pure” case. Of course, the question of whether localization 
effects contribute to a renormalization of the electron-phonon coupling is still open to discussion 
[136]. Probably, a more important aspect of this problem is reflected by the fact that superconduc- 
tivity is actually determined not by the electron-phonon vertex itself, but by the famous integral 
expression over the phonon spectrum of the Eliashberg function ct2(co)F(co) which defines the 
pairing constant il [139]. This integration will apparently smooth out all possible singularities. 

In the following we shall model pairing interaction due to phonon exchange by some constant 
3, as in the BCS model. Of course, we must stress that this constant is different from that in a regular 
metal. It is constant in the sense that it does not contain singularities due to the metal-insulator 
transition. Electron-phonon kernel in the linearized gap equation (cf. Appendix B) can be taken in 
the simplest form 

&d-c E’) = 
--A IELIE’I < WD > 

0 IELIE’I > COD > 
(3.52) 

and consider 3, as relatively weakly dependent on disordering. More detailed discussion of 
electron-phonon pairing in disordered systems can be found in Refs. [134,136,137]. 

As we mentioned above it is quite difficult to speculate on the disorder dependence of the pairing 
interaction in high-temperature superconductors. In the “marginal” Fermi-liquid approach 
[124,125] pairing interaction can be modelled as in Eq. (3.52) with the replacement of Debye 
frequency on by some phenomenological electronic frequency 6, which we briefly mentioned 
before while discussing localization in a “marginal” Fermi-liquid. In the following we shall just 
assume that this pairing interaction is weakly dependent on disorder as in the case of the phonon 
mechanism of pairing. 

3.2.3. Metallic region 

In the metallic region we can use Eqs. (3.34)-(3.36) and (3.38) and find the diffusional contribu- 
tion to the Coulomb kernel: 

K,diff(CO) s d3q 1 1 I#2 = - 
m 

O” Irn - 
0 + iDEq2 

Z 2 
IDE(a)/1 1~~/2(~)1 1 

Accordingly, for the Coulomb kernel defined by Eq. (3.38) we get [22] 

K,(o) = pO(EF - 101) + -!f- ccb 14 < w 
P,l (l/p~E)(c0/2y)-i’~ o, < o < y - EF ’ 

(3.53) 

(3.54) 

Upper limit cut-off in the integral in Eq. (3.53) was taken - 1- i. Rough estimate of the contribution 
of higher momenta can be achieved introducing cut-off - PF (cf. Ref. [ 1531). This will cancel 
(pFi)- ’ in Eq. (3.54). Close to the Anderson transition I- ’ - pF and this correction is irrelevant. We 
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shall assume that far from transition these higher momenta corrections can be included in the 
definition of ,L From Eq. (3.54) we can see that diffusion renormalization of the Coulomb kernel 
leads to substantial growth of the Coulomb repulsion close to Anderson transition (i.e. when 
conductivity drops below oc - “minimal metallic conductivity”). 

Superconducting transition temperature T, is determined by the linearized gap equation [152] 
which in the weak coupling approximation can be written as (cf. Appendix B) [157,158] 

d(0) = M((0) - Co) s <~‘~) dw’ 

0 
WI d(w’) tanh (c~)‘/2T,) 

-N& - 0) s E1 do’ 
o1 K,(w - (ti’,‘)d (w’) tanh (cY/2T,) . (3.55) 

0 

Consider the metallic region and take w, B ((0) which in accordance with the co, estimate given in 
Eq. (3.37) roughly corresponds to G 2 cc for typical Ed/ - 102, so that the system is not very 
close to the Anderson transition. The change of T, due to the diffusion contribution in the 
Coulomb kernel (Eq. (3.54)) can be determined by perturbation theory over K,diff(m) in the gap 
equation. First iteration of Eq. (3.55) gives 

;il,_L I 
(du/o) a (do’/w’)d,(o) tanh(m/2T,,)K,diff(m - u’)dO(o’) tanh(0’/2T,,) 

T,, - 
(1PTccJ i* 

s 

, (3.56) 

dto[d,(w)]2 [cosh(u/2TJP2 
0 

where d,(o) is the usual “two-step” solution of Eq. (3.55) [9,152] which is valid for the standard 
form of the Coulomb kernel K,(w) = @I(_!$ - lol), 

T,, = l.l3(cl~)exp(-l/(i - ,D:)) (3.57) 

is a critical temperature in the regular superconductor when the Coulomb pseudopotential is given 

by 

P 

” = 1 + pln(E,/(o)) 

Using the first relation in Eq. (3.54) we get from Eq. (3.56) 

6TJT,, z - -- 

(3.58) 

(3.59) 

This change of T, is equivalent to the following change of Coulomb pseudopotential [22] 

hP* = W/C0 + oc)l 7 (3.60) 

where we have used Eq. (2.75) and pFf z gO/gc = (g + a,)/~, to replace pF1 in Eq. (3.59). As we 
noted above this later factor disappears from Eq. (3.59) if we use cut-off at 4 - PF in Eq. (3.53). 
According to Eq. (3.60) Coulomb pseudopotential p* grows as 0 drops and this dependence is 
stronger than a similar one obtained in Ref. [20], which is connected with our use of the results of 
the self-consistent theory of localization. The method of Ref. [20] is based upon the use of the 
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q-dependence of the diffusion coefficient as given by Eq. (2.85). Our expression for 6~* leads to 
a significant growth of p* for conductivities c I lo3 !X 1 cm- I. This growth can easily explain the 
typical T, degradation in “very dirty” superconductors as their conductivity in normal state drops 
upon approaching the Ioffe-Regel limit [30]. At the same time expressions for p* proposed in 
Ref. [20] can explain experimental data only under the assumption that a characteristic conductiv- 
ity scale determining p* is an order of magnitude larger than the Ioffe-Regel limit, for which we see 
no serious grounds. A more extensive discussion can be found in Ref. [136]. 

Let us consider now the situation at the mobility edge itself, when 0 = 0 and o, = 0 so that 
K,(o) is determined by the second expression in Eq. (3.54) for all the frequencies below ‘J - EF. In 
this case we can show [22] that the influence of the Coulomb repulsion on T, is again described by 
the effective pseudopotential p* which can be estimated as 

P” - ap((o)/2y)-“3 ) c( - 1 . (3.61) 

In this case T, may remain finite at the mobility edge only under very strict conditions: both EF - 1 
and ,u must be very small, while il must be at least close to unity. As a crude estimate we can demand 
something like il - 1, p I 0.2 and EF I lo3 T,,. Obviously, only some narrow band superconduc- 
tors like Chevrel phases can satisfy these conditions among traditional systems. High-T, supercon- 
ductors are especially promising. The experimental situation will be discussed later. 

Using Eq. (3.60) and Eq. (3.61) we can write down a simple interpolation formula for the 
conductivity dependence of p* [22]: 

P 
*- * wcl((~>Py)- 1’3 - PO* 

- Po + 1 + ((0)/2y)_ “30(o + o,)/a,2 . 
(3.62) 

To get an expression via observable parameters, take into account (co)/y z ((~)/Er)(l + (T/G.,). 
These expressions describe continuous crossover from the region of weak localization corrections 
to the vicinity of Anderson transition where its influence upon T, becomes very strong. This 
crossover takes place at u), - (w). 

3.2.4. Localization region 
Let us now consider an Anderson insulator. According to Eqs. (3.34) and (A.9) the Coulomb 

kernel acquires in this case a G(o)-contribution: 

(3.63) 

AE = A& - r’)lrzr’ - R,,3 (3.64) 

which is actually connected with the “Hubbard-like” repulsion of electrons in a single quantum 
state becoming nonzero in the localization region [ 159,98,7]. This mechanism contributes in 
addition to the diffusion contributions in the Coulomb pseudopotential ,u* considered above, 
which are due to the “regular” part of the Gorkov-Berezinskii spectral density. Using Eq. (3.64) as 
a full Coulomb vertex in the linearized gap equation (3.55) we can solve it exactly [22] and find 

A(w) = 
Q(o) - lwl)A~ 

1 + (~uA,/2N(E))(l/o)tanh(~/2T,) ’ 
(3.65) 
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where 

s 

<(‘J> 
AI =/I do A(o)(l/o) tanh(m/2T,) 

0 

and the equation for T, takes the form 

s <(‘I) 

1=/I do 
tanh (0/2T,) 

0 w + (yA,/2N(E)) tanh (0/2T,) 

(3.66) 

(3.67) 

To account for the “regular” diffusion contributions to c(* we can just replace here /1+ i* = 
i - p*, where ,LL* is given by Eq. (3.61). Then our equation for T, can be approximately represented 

by C221 

(3.68) 

where e(x) is digamma function, and T* is taken to be equal to T, of the system at the mobility 
edge which is given by Eq. (3.57) with & replaced by p* from Eq. (3.61). Here we slightly 
overestimate the role of the Coulomb repulsion in the localization region. We can see that this 
additional “Hubbard-like” repulsion acts upon T, as magnetic impurities [9,152] with an effective 
spin-flip scattering rate: 

(3.69) 

Obviously, this result is connected with the appearance of singly occupied electron states of width 
[159,98,7,160] voR1,2 below the mobility edge of the “band”. Superconductivity persists until 
r,f’ < 0.57T,*, i.e. until 

R,,,(E) > CP/W~TP~~‘~ - (to~i~)“~ - (50,~)“~ , (3.70) 

where the last estimates are valid for typical values of parameters and correspond to the simple 
estimate of Eq. (3.20). Thus the Coulomb repulsion in a single (localized) quantum state leads to 
a sharp reduction of T, below the mobility edge even if superconductivity survived up to the 
Anderson transition. Another interpretation of this effect is the influence of “free” spins of Mott’s 
band of singly occupied states below the Fermi level of an Anderson insulator. 

Coulomb gap [41-441 effects can be neglected here [22] because according to the estimates 
given in Eqs. (2.14) and (2.15) the Coulomb gap width 

A, - CNJW;,(E)I -’ < Tc - A , (3.71) 

i.e. is small in comparison to the superconducting gap A (or Tc) under the conditions given by 
Eq. (3.20) which is necessary for the observation of superconductivity in the localization region. 

3.2.5. Spin jluctuations 
As we mentioned during our discussion of interaction effects upon the Anderson transition the 

role of magnetic fluctuations (spin effects) in general becomes stronger as we approach the 
metal-insulator transition. A band of single-occupied states is being formed below the Fermi 



M. V. Sadovskii/Physics Reports 282 (1997) 225-348 281 

level of the Anderson insulator, which is equivalent to the appearance of localized moments 
[159,7,160]. These effects actually may become important even before the metal-insulator 
transition [ 104,112-l 14,117,118,40] and lead to the additional mechanism of T, degradation. 
Unfortunately, there is no complete theoretical understanding of these effects and accordingly only 
few estimates can be done concerning superconductivity. Here we shall mention only some of these 
crude estimates following Refs. [161-1631. 

In the framework of the Hubbard model with weak disorder it can be shown [161] that the spin 
susceptibility is represented by 

X0 x0 x0 
“s=l_U~(E)+yo-~y’=~E~~ (3.72) 

where x0 is the spin susceptibility of free electrons, q. = 1 - UN(E) + y. is the enhancement factor 
for the ordered case (U is the Hubbard interaction, y. the correlation correction to the RPA 
approximation), y’ is the correction due to the interference of Hubbard interaction and disorder 
scattering: 

y’ = BL2, B = 6&r2[N(E)U12{l -:UN(E)} . (3.73) 

Here ,! = 1/(27cEr) = l/&I) is the usual perturbation theory parameter for disorder scattering. As 
y’ > 0 we can see from Eq. (3.72) that disordering leads to a diminishing denominator q = q. - y’. 
If we reach a critical disorder defined by 

(3.74) 

we get xS + a. It should be stressed that this divergence of xS in a disordered system must not be 
identified with any kind of ferromagnetic instability but may signify something like the appearance 
of a spin-glass state or just of localized moments. In any case, it means the growth of spin 
dependent effects under disordering. 

If the initial enhancement of spin susceptibility is strong enough (e.g. due to a large U), i.e. y. < 1, 
the critical disorder defined by Eq. (3.74) may be lower than the critical disorder for Anderson 
localization, appearing at pFl - 1. Then these spin dependent effects may become important well 
before Anderson transition. In the opposite case, these effects will appear only very close to the 
metal-insulator transition. In the general case, the relation between these two transitions depends 
on parameters. 

If spin fluctuations are strong enough (q < 1) a strong mechanism for T, degradation in the 
superconducting state appears [ 1621 analogous to the similar effect due to magnetic impurities 
c9, I521 

ln%=+(i+P>--$(f). 

where [ 1621 

(3.75) 

P= 

9& 

3 
2 UN(E) 92/:5 UN(E) ,I2 

2 
b -=- - ~ 

ul 2 [ B 1 A,” - A2 . 
(3.76) 
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As p from Eq. (3.76) diverges as (/2, - A)-’ for i + & superconducting transition, temperature 
T, drops to zero. 

If & Q 1, which is possible for q. < 1, superconductivity will be destroyed long before the 
metal-insulator transition. In the opposite case this mechanism may lead to its destruction on 
either side of the metal-insulator transition depending on the parameters of the system, such as U. 
In general, we need a more accurate analysis which must include the mutual interplay of magnetic 
fluctuations and disorder scattering leading to a metal-insulator transition. In any case, magnetic 
mechanisms of T, degradation close to the metal-insulator transition may be as important as the 
Coulomb effects considered above. 

3.3. Ginzburg-Landau theory and Anderson transition 

3.3.1. General analysis 

The main result of the previous analysis may be formulated as follows. Despite many mecha- 
nisms leading to T, degradation and destruction of superconductivity in strongly disordered 
systems there seems to be no general rule prohibiting the possibility of a superconducting state in 
the Anderson insulator. Of course we must meet very rigid conditions if we hope to observe this 
rather exotic state. There is almost no chance to observe it in traditional superconductors but 
high-T, systems seem promising. The following analysis will be based on the general assumption 
that T, survives in a strongly disordered system or even in an Anderson insulator, i.e. that these 
strict conditions are met. Our aim is to study superconducting properties of such a strongly 
disordered system to determine specific characteristics which will make this case different from the 
usual case of “dirty” superconductors. We shall see that even before the Anderson transition there 
are significant deviations from the predictions of standard theory which make a strongly dis- 
ordered system different. So, on the practical side, our aim is simply to generalize the usual theory 
of “dirty” superconductors for the case of a strong disorder in the sense of the mean free path of the 
order of the interatomic spacing or 1- pF ‘. 

To claim that superconductivity is possible close to a disorder-induced metal-insulator 
transition it is not sufficient just to demonstrate the finite values of T,. Even more important is to 
show the existence of the superconducting response to an external electromagnetic potential A. In 
the general case, the analysis of response functions of a superconductor with strong disorder seems 
to be a difficult task. However, close to T,, significant simplifications take place and actually we 
only have to show that the free-energy density of the system can be expressed in the standard 
Ginzburg-Landau form [ 164,12,9]: 

F=F,+A(d12+fB(d14+CI(~-2ieA/tic)d12, (3.77) 

where F,, is the free energy density of the normal state. Our problem is thus reduced to a micro- 
scopic deviation of expressions for the coefficients A, B, and C of the Ginzburg-Landau expansion 
Eq. (3.77) taking into account the possibility of electron localization. This will be the generalization 
of the famous Gorkov’s derivation [12] of similar expressions for the case of “dirty” superconduc- 
tors. Such an analysis was first done by Bulaevskii and Sadovskii [21,22] and later by Kotliar and 
Kapitulnik [23,24]. Recently, the same results were obtained by Kravtsov [166]. 

Within the BCS model, coefficients A and B which determine the transition temperature and the 
equilibrium value of the order-parameter d do not change in comparison with their values found in 
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the theory of “dirty” superconductors, even if the system is close to the Anderson transition. This 
corresponds to the main statement of the Anderson theorem. Less trivial is the behavior of the 
coefficient C, which in fact defines the superconducting response. In the usual theory of “dirty” 
superconductors [12] this coefficient is proportional to the diffusion coefficient of electrons, i.e. to 
conductivity (at T = 0). As the Fermi level approaches the mobility edge, conductivity drops to 
zero. However, we shall see that the coefficient C remains finite in the vicinity of the Anderson 
transition, even in the region of localized states. 

To derive Ginzburg-Landau coefficients we must know the two-electron Green’s function in the 
normal state [12]. Let us introduce the following two-particle Matsubara Green’s functions in 
momentum representation [22]: 

Ydq,w,,,~,) = -& 1 (Wp+,p'+, -8, + w,,)G(-P', -p-y --I,)) 
P+P’- 

(3.78) 

%(qrq,,,~,) = -& 1 <NP+,P'+, -G, + art)GW,~-, -d) 
P+P’- 

(3.79) 

where p + - = f (p f q) and w, = 2nmT. Graphically, these functions are represented in Fig. 13. 
Then Ginzburg-Landau coefficients are defined by [12,165] 

A = (l/g) + 2niT 1 uI,(q = Ow, = 2%) 
% 

(3.80) 

C = irrT I-? ‘y,(qo, = 2s,)lqZo . 
l., %I2 

(3.81) 

Thus the superconducting properties are determined by the Green’s function YE describing 
the propagation of the electron (Cooper) pair. At the same time we have seen that the 
Green’s function QE determines transport properties of a normal metal and Anderson transition. 
In the case of time-invariance (i.e. in the absence of the external magnetic field or magnetic 

-P--En -p--E” q-e, -p--E” 

Fig. 13. Graphical representation of the two-particle Green’s functions YE(qw,) and &(qco,) (for CO, = 2~“). There is no 
summation over E. in the loops. 
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impurities) we have [71] 

(3.82) 

and it is sufficient to know only (PE(qcom = 2~~) to determine the Ginzburg-Landau coefficients. 
As a one-electron model of Anderson transition we can take the self-consistent theory of 

localization which will allow us to perform all calculations explicitly. We only have to formulate 
the main equations of this theory in the Matsubara formalism (finite T) [22]. For small 4 and Q,, 
analogous to Eq. (2.46), we have 

@EkwfJ = - 
N(E) 

ib,l + DEO(~~ml)~2 ’ 

where the generalized diffusion coefficient 
analogous to Eq. (2.57): 

wn =2nmT, (3.83) 

DE(co,) is determined by the self-consistency equation 

_=l---!- Do 
DE(GJ 

c @EbPm) . nN2(E) 141 <I;,, 

In the three-dimensional case, Eq. (3.84) reduces to (cf. Eq. (2.77)) 

(3.85) 

where we have used the same notations as in our discussion of the self-consistent theory of 
localization. Analogous to Eq. (2.78) and with accuracy sufficient for our purpose we can write 
down the solution of Eq. (3.85) as 

aTi .Do ?!! 
l/3 

DE(w,)z Max DE 01 co,,, + 3D,&E)/z$ 2y ' 
(3.86) 

where DE is the renormalized diffusion coefficient defined in Eq. (2.80) and (a0 is the fundamental 
frequency defined by Eq. (2.64), which signals a transition to insulator. 

As we have already noted Ginzburg-Landau coefficients A and B are given by the usual 
expressions valid also for “dirty” superconductors [ 12,221: 

A = N(E,)ln$ z 
T - T, 

N(&)T 9 (3.87) 
c c 

where T, is given by the usual BCS relation of Eq. (3.19), and 

B = (W/8~2 T,2)N(&) , (3.88) 

where i(x) is the Riemann zeta-function (c(3) = 1.202 . . . ). These coefficients depend on disorder 
only through the appropriate disorder dependence of N(Er) and are valid even in the localized 
phase. This is equivalent to the main statement of Anderson theorem. 
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Significant changes appear in the gradient term coefficient C. Using Eqs. (3.81)-(3.83) with 
Eq. (3.86) we can find that in different limiting cases this coefficient can be expressed as [21,22]: 

I,,, < (&~l~)“~ ; EF > L 1 

C EE N(EF)12 z N(EF) s'loc(E~) > (t01~)"~ ; EF 'V EC, (3.89) 

&,,(EF) <(t01~)~'~ ; EF <E, , 

where we have defined the coherence length c, and &, = 0.18+/T, is the BCS coherence length, I as 
usual is the mean free path. Practically, the same results were obtained in Refs. [23,24] using the 
approach based upon elementary scaling theory of localization, which is as we already noted is 
equivalent to our use of the self-consistent theory of localization. In Ref. [166] the same results 
were confirmed using the o-model approach to localization. 

In the metallic state, as the Fermi level EF moves towards the mobility edge E, localization 
correlation length tloc grows and the coefficient C initially drops as the generalized diffusion 
coefficient DE,, i.e. as conductivity of a system in the normal state. However, in the vicinity of 
Anderson transition, while c -+ 0 the drop in C saturates and it remains finite even for EF < E,, i.e. 
in Anderson insulator. With further lowering of EF into the localization region (or E, growth with 
disorder) the C coefficient is determined by the localization radius Rloc which diminishes as 
EF moves deep into the insulating state. However, remembering Eqs. (3.20) and (3.22) we recognize 
that our analysis is valid only for large enough values of localization length, which satisfy Eq. (3.22). 
In this sense the last expression in Eq. (3.89) is actually outside these limits of applicability. 

The finite value of the coefficient C in the Ginzburg-Landau expansion in the vicinity of 
Anderson transition signifies the existence of a superconducting (Meissner) response to an external 
magnetic field. Accordingly, for T < T, the system can undergo a transition from Anderson 
insulator to superconductor. The physical meaning of this result can be understood from the 
following qualitative picture (cf. Ref. [131] where similar estimates were used for the granular 
metal). In an Anderson insulator all electrons with energies E close to the Fermi level are localized 
in spatial regions of the size of -R,,,(E). Nearby regions are connected by a tunneling amplitude 
“I’” which determines the probability of electron transition between such regions as 

P T zz ~~cIY’J~N(E)R;~(E). (3.90) 

However, Anderson localization means that 

I y-1 < 1I(~(E~R:,c(E)) (3.91) 

and coherent tunneling between states localized in these regions is impossible, and we have 
PT < 2rcN- l(E) Rl,:. At the same time if conditions given by Eqs. (3.20) or (3.22) are satisfied inside 
each region - Rloc, Cooper pairs may form and a superconducting gap d appears in the spectrum. 
Then a kind of “Josephson” coupling appears between regions of localized states which determines 
the possibility of pairs tunneling: 

E , z n:2[N(E)R13,,(E)]21V-12d . (3.92) 
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It is easy to see that for 

d > (2/n) lI(WWW)) (3.93) 

we have E, > PT, so that if Eq. (3.20) is satisfied we can get EJ + NP ‘(E)RP3(E) irrespective of 
Eq. (3.91) and tunneling of pairs between nearby regions of localized states is possible, even in the 
absence of single-particle tunneling. 

It is convenient to rewrite Eq. (3.89) using the relation between a generalized diffusion coefficient 
and conductivity similar to Eq. (2.59) as well as Eqs. (2.73) (2.75). Then using the Ginzburg- 
Landau expansion and the expressions for its coefficients we can easily find the temperature 
dependent coherence length t(T) [9,21,22]: 

(3.94) 

where c’c = e2p,/(7r3h2) and characteristic conductivity scale cr* is given by 

fJ* Z fJJ&s’()- l/3 Z 0,(T,/E#3 . (3.95) 

Thus in the region of very small conductivities (T < cr* the scale of l(T) is defined not by 5 - m 
as in the usual theory of “dirty” superconductors [12,9] but by the new length 5 - (t012)1/3 - 

(50/PW3, which is now the characteristic size of Cooper pair close to Anderson transition. 
If the ~“~-law for a diffusion coefficient at the mobility edge is invalid and we have w”-behavior, 

with some unknown critical exponent 6 (which is possible because the modern theory actually 
cannot guarantee precise values of critical exponents at the Anderson transition [Sl, 71) we can 
easily show in a similar way that for conductivities (I < c* z u~(P~[~) pa the coherence length is 
defined by 5 - tb1-""2[(1 +ii)/2. Qualitatively, this leads to the same type of behavior as above. 

From Eq. (3.94) we can see that c2(T) initially diminishes as we approach the metal-insulator 
transition proportionally to g as in the case of a “dirty” superconductor. However, as in the 
metallic region for g < c* it diminishes more slowly remaining finite both at the transition itself 
and below. 

The superconducting electron density ~1, can be defined as [9] 

n,(T) = 8mCd2(T) = 8&(-,4)/B. (3.96) 

Close to the Anderson transition we can estimate 

n, - mN(EF)gV2d2 - ~~p,(~~/p;)~‘~d~ - VI(T~“~/E;)~‘~(T, - T) , (3.97) 

where n - p; is the total electron density. If we take here T - 0.5T,, i.e. more or less low 
temperatures, we get a simpler estimate: 

n, - n( T, /EF)4’3 (3.98) 

which is actually valid up to T = 0, as we shall see below. From these estimates we can see that only 
a small fraction of electrons are superconducting in a strongly disordered case. However, this 
confirms the possibility of a superconducting response of the Anderson insulator. 
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Characteristic conductivity c * defined in Eq. (3.95) gives an important conductivity scale at 
which significant influence of localization effects upon superconducting properties appear [22]. 
While cc is of the order of Mott’s “minimal metallic conductivity” [2,3], (T* is in general even lower. 
However, for small enough Cooper pairs (i.e. small t,, which is characteristic of strong coupling and 
high-T, superconductors) it is more or less of the order of cc. Experimentally, it can be defined as 
a conductivity scale at which significant deviations from predictions of the standard theory of 
“dirty” superconductors appear under disordering. 

We must stress that these results show the possibility of Cooper pairs being delocalized in an 
Anderson insulator, while single-particle excitations of such a superconductor are apparently 
localized, which may lead to some peculiar transport properties of “normal” electrons for T < T,. 
First attempts to explore this peculiar situation were undertaken in Refs. [167-1701. 

These results are easily generalized for the case of strongly anisotropic quasi-two-dimensional 
systems such as high-T, superconducting oxides. Using the analysis of such systems within the 
self-consistent theory of localization [68] we can write down the following Matsubara generaliz- 
ation of Eq. (2.94): 

(2%?&wr2)-2’3(0,r)1’3 
1 

, W,~W2T, 
Dj(Wn) 

07 = 
ol, B w=7, 

(3.99) 

where j = /I, 1. Now carrying out calculations similar to that of Ref. [22] we obtain for the 
coefficients of gradient terms in the Ginzburg-Landau expansion [ 16,171]: 

C,,,I = N(EF)t;, > (3.100) 

where for the coherence lengths &1 we obtain a number of different expressions, depending on the 
value of the ratio w2~/2nTch which determines as we shall see the “degree of two-dimensionality” 
of the problem under study. For the case of w2z/27rT,h B 1, corresponding to an anisotropic but 
three-dimensional system, we have 

(3.101) 

where $’ - ~vFIT,, t? - wallTc, iI, = uFr and II = wa,z/h are the longitudinal and transverse 
BCS coherence lengths and mean free paths. The above expressions are valid in the conductivity 
region oil > u*, where 

cs* - ~~~(S;P/~,,)(T,~/EFW)~'~ . (3.102) 

where crf is defined as in Eq. (2.93). The condition of w2z/2n:Tch % 1 is equivalent to the require- 
ment: 

l1 - JZZ % a1 (3.103) 

which clarifies its physical meaning: the transverse size of a Cooper pair must be much greater 
than the interplane lattice spacing. In this case we have just anisotropic three-dimensional 
superconductivity. 
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In the immediate vicinity of the Anderson transition, for oII < ~7* we have 

& z (1 - 2-5’3)(16rc4)-1’3[(5/3) (E ,D”‘+, 
FCW z 

z ($J2 (&)2’3 . 
F 

(3.104) 

It is easy to see that for w - EF all these expressions naturally go over to those derived above for 
the three-dimensional case. 

For w2r/2rt7’,A < 1 which corresponds to the “almost two-dimensional” case of 

i.e. of transverse size of Cooper pairs smaller than the interplane spacing, we have 

(3.105) 

Essential difference from just the anisotropic case of Eqs. (3.101) and (3.104) is the appearance here 
of a second term of “two-dimensional” type. In a purely two-dimensional problem (w = 0) we have 
[165]: 

(3.107) 

For high-T, oxides it is reasonable to estimate $ - 1,,, T, - w, T, - O.lEF, so that CJ* - Q;, i.e. 
these systems are always more or less close to the Anderson transition. For T, - w and zZ/r N EF 
which is characteristic of the rather strongly disordered case, we have w22/2xT,h < 1, so that for 
these systems we can realize almost two-dimensional behavior, though in general high-T, oxides 
are apparently an intermediate case between the strongly anisotropic three-dimensional and nearly 
two-dimensional superconductors. 

The significant change of Ginzburg-Landau coefficients and the new scale of coherence length 
close to the Anderson transition lead to an increased width of the critical region of thermodynamic 
fluctuations near T, [23,24]. These are well known to be important for any second-order phase 
transition. The width of the critical region is defined by the so-called Ginzburg criterion [45,47] 
which may be expressed via the coefficients of Landau expansion. Mean-field approximation for 
the order parameter in Landau theory is valid (for d = 3) for [45,47] 

(3.108) 

where CI is defined by A = cc(T - T,)/T,. In the case of a superconducting transition we have: 
(x = N(E,), B - N(EF)/Tz and C = N(EF)12. Accordingly, from Eq. (3.108) we get the following 
estimate for the critical region: 

1 
rG - N2(EF)16T: - 

(3.109) 
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In the “pure” limit 5 = &, - vF/TC and we get rG - (TC/EF)4, so that the critical region is 

practically unobservable. In a “dirty” superconductor 4 - m and 

rG - WWCllW)31 (3.110) 

and again we have rG < 1. However, for a superconductor close to the mobility edge 5 - (&,/P;)“~ 
and from Eq. (3.109) we get [23,24] 

rG - 1 . (3.111) 

Note that in fact rG may still be small because of numerical constants which we have dropped 
in our estimates. Anyhow, the critical region in this case becomes unusually wide and the super- 
conducting transition becomes similar in this respect to the superfluid transition in Helium. 
Fluctuation effects may thus become observable even in a bulk three-dimensional superconductor. 
Note that in localized phase 5 - Rloc and rG - [N2(EF)R& Tz]-’ > 1 if the condition given by 
Eq. (3.20) is violated. 

Finally we should like to mention that thermodynamic fluctuations lead [23,24] to an addi- 
tional mechanism of T, degradation for a system which is close to Anderson transition. This 
follows from the general result on the reduction of mean-field transition temperature due to critical 
fluctuations. If these fluctuations are small (and we can use the so-called one-loop approximation) 
for a three-dimensional system it can be shown that [23,24]: 

T, = TcO - 71(3) 
16rc4t3N(EF) ’ 

(3.112) 

where TcO is the mean-field transition temperature. If we use here our expressions for 5 valid close 
to the metal-insulator transition we easily find for (T > g* [24]: 

T C z T,,,[l - O.~(~JJ)~‘~(T,,/E,)“~] . (3.113) 

For (T < g* this fluctuation correction saturates as the further drop of coherence length stops there. 
Obviously, higher-order corrections are important here, but unfortunately little is known on the 
importance of this mechanism of T, degradation outside the limits of one loop approximation. 

3.3.2. Upper critical jield 
Direct information on the value of c2(T) can be obtained from the measurements of the upper 

critical field HC2 [9]: 

Hc2 = &/27r52(T) 7 (3.114) 

where &, = r&z/e is the superconducting magnetic flux quantum. Using Eq. (3.94) we obtain the 
following relation between normal state conductivity 0, the slope of the upper critical field at 
T = T, given by (dH,2/dT)TC and the value of the electronic density of states at the Fermi level 
(per one spin direction) N(E,) [21,22]: 

u > u* ) 

” [N(E,;T,I 1/‘3’ 
(T < IF. 

(3.115) 
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For 0 > g* the r.h.s. of Eq. (3.115) contains only the fundamental constants. This so-called 
Gorkov’s relation [12] is often used to interpret experimental data in “dirty” superconductors. 
Using it we may find N(Er) for different degrees of disorder from measurements of (dH,,/dT)Tc 
and conductivity (T. On the other hand, N(E,) can in principle be determined from independent 
measurements e.g. of the electronic contribution to specific heat. However, our expression for 
g < g* which is valid close to the metal-insulator transition shows that in this region Gorkov’s 
relation becomes invalid and its use can “simulate” the drop of N(Er) with the growth of resistivity 
(disorder). Roughly speaking, Eq. (3.115) shows that under the assumption of relatively smooth 
change of N(E,) and T, with disorder the usual growth of (dHcZ/dT)T, with disorder saturates in 
the conductivity region of G < o* close to the Anderson transition and the slope of the upper 
critical field becomes independent of resistivity. This stresses the importance of independent 
measurements of N(Er). 

Note that the qualitative behavior given by Eq. (3.115) is retained also when the dependence of 
the diffusion coefficient at the mobility edge is ws (with some arbitrary critical exponent 6); only the 
expression for cr* is changed as noted above. Thus this behavior is not related to any specific 
approximations of the self-consistent theory of localization, except the general concept of continu- 
ous transition. 

For an anisotropic (quasi-two-dimensional) system we have similar relations: 

(3.116) 

(3.117) 

with [,, ,i given in our discussion above after Eq. (3.100). This leads to relations and qualitative 
behavior similar to Eq. (3.115). However, we should like to note an especially interesting relation 
for the anisotropy of the slopes of the upper critical field [16]: 

(3.118) 

We see that the anisotropy of (dH,2/dT)Tc is actually determined by the anisotropy of the Fermi 
velocity irrespective of the superconductivity regime: from the “pure” limit, through the usual 
“dirty” case, up to the vicinity of the Anderson transition. 

The above derivation of C coefficient of Ginzburg-Landau expansion explicitly used the 
time-reversal invariance expressed by Eq. (3.82). This is valid in the absence of the external 
magnetic field and magnetic impurities. Accordingly the previous results for the upper critical field 
are formally valid in the limit of infinitesimal external field and this is sufficient for the demonstra- 
tion of superconducting (Meissner) response and for the determination of (dH,z/dT)T‘, because 
Hc2 -+O as T-+T,. In a finite external field we must take into account its influence upon 
localization. The appropriate analysis was performed in Refs. [75,172] and with a slightly different 
method in Ref. [SO]. The results are essentially similar and below we shall follow Ref. [75]. The 
standard scheme for the analysis of the superconducting transition in an external magnetic field 
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[ 12,9,173,174] gives the following equation determining the temperature dependence of H,,(T): 

ln$=2rTx 
1 1 

E E, 21&l + 27&(2le,l)Hl~o 21&l ’ 
(3.119) 

where 02(2 le,l) is the generalized diffusion coefficient in the Cooper channel as defined after Eqs. 
(2.97) and (2.98). Eq. (3.119) is valid [9] for 

RH = mcvF/eH B 5 , (3.120) 

where RH is the Larmor radius of an electron in a magnetic field and 4 the coherence length. Note 
that Eq. (3.119) describes only the orbital motion contribution to Hc2. In fact Hc2 is also limited by 
the paramagnetic limit [9,174]: 

&P~H < A > 

where go is the usual g-factor of an electron and PLg the Bohr magneton. 

(3.121) 

Standard approach of the theory of “dirty” superconductors is based upon the replacement of 
D2 (2 I E, I) in Eq. (3.119) by the Drude diffusion coefficient Do which is valid for a metal with 1 9 pF I. 

For a system which is close to the Anderson transition we must take into account both the 
frequency dependence of the diffusion coefficient and the fact that in a magnetic field D2 is not 
equal to the usual diffusion coefficient determining electronic transport, D1. Actually, we shall see 
that the external magnetic field’s influence upon localization leads to rather small corrections to 
H,,(T) practically everywhere except in the region of localized state’s [75]. Thus we may really 
neglect this influence as a first approximation as was done in Refs. [21,22] and start with the 
replacement of D2 in Eq. (3.119) by D1 = DE, where DE is the frequency dependent generalized 
diffusion coefficient in the absence of magnetic field. Detailed analysis of Eq. (3.119) can be found in 
Ref. [75]. 

Summation over Matsubara frequencies in Eq. (3.119) must be cutoff at some frequency of the 
order of (co) the characteristic frequency of Bose excitations responsible for the pairing interaction. 
It is convenient here to measure the distance from the Anderson transition (degree of disorder) via 
frequency w, defined in Eqs. (2.42), (2.79) or Eq. (2.106). If a system is far from Anderson transition, 
so that w, 4 (u) we can completely neglect the frequency dependence of the diffusion coefficient 
and find the usual results of the theory of “dirty” superconductors: 

4 &Tcln T, 
H,2(T)=2~ T > T-T,, 

0 

H =L40Tc 
-[+,@~], T<T,, ” 2y Do 

(3.122) 

(3.123) 

where y = 1.7811 . . . . For the Hcz derivative at T = T, we find from here the first relation of 
Eq. (3.115) and Hc2(T = 0) is conveniently expressed as [12,173] 

- Hc2(0)/[T,(dH,z/dT)TJ = rc2/8y = 0.69 . (3.124) 

In this case, the H,,(T) curve is convex at all temperatures below T, [12,173,9,174]. Very close 
to the Anderson transition, when o, < 2nT, only w ‘I3 behavior of the diffusion coefficient is 
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important in Eq. (3.119) and it takes the following form [75]: 

In ; = t ([(n + +) + (n + ~)“3(E/4n:T)2i3((I)H/E)]-1 - [n + *l-l} , 
c n=O 

(3.125) 

where oH = eH/mc. From the above we get 

&(T) = m(MXW) 213cI] 7’213E1/31n(T,/T) , T - T, , 

H,,(T) = m(~o/n)(n/y)2’3T~13E113[1 - $L.~(~~T/T,)~‘~] , T < T, , 

where cl = c,“=,(n + i)-“” z 4.615 and c2 z 0.259. From these expressions we get 

(3.126) 

(3.127) 

= - m40(E/T,)‘/3 = F 
(47p3 40 

xc1 cl [N(E)T,]“3 
(3.128) 

which makes precise the second relation in Eq. (3.115), while for HC2(T = 0) we obtain 

- H,,(O)/(T,(dH,,/dT),J = c,/(~Y)~‘~ z 1.24 . (3.129) 

As was first noted in Refs. [21,22] this ratio for the system at the mobility edge is significantly 
larger than its classical value 0.69. In this case H,,(T) curve is concave for all temperatures below 
T, [22]. Detailed expressions for the intermediate disorder when 2rrT < o, < (0) can be found 
in Ref. [75]. 

In Fig. 14 we present the results of the numerical solution of Eq. (3.119) for different values of the 
characteristic frequency co,, i.e. for different disorders. A smooth crossover from the classical 
behavior of the theory of “dirty” superconductors [ 173,9,174] to anomalous temperature depend- 
ence close to the Anderson transition [22] is clearly seen. 

Below the mobility edge (i.e. in the Anderson insulator) and for ao, = 1/(27c2N(E)R~,,) < 2nT, i.e. 
very close to the mobility edge we can again use the o ‘I3 behavior of the diffusion coefficient and 
find the same temperature dependence of Hc2 as at the mobility edge itself or just above it. For 
2rcT 4 o, < 27cT, Eq. (3.119) takes the form [75] 

In $ = ““i’ {(n + +)[l + (E/wJ”~(o~/E)]}-~ 
C n=O 

+ .,En, {(rr + 3) + (n + $“3(E/471:T)213(~&)} -’ - f (n + +)-’ , 
n=O 

(3.130) 

where ~1~ = w,/4xT, corresponds to a change of frequency behavior of the diffusion coefficient. 
Defining x = ~J~/cII~‘~E~‘~ we can reduce Eq. (3.130) to 

ln(T/T,) = x In (yo,/nT,) + +(l + x) ln(1 + x) (3.131) 

which implicitly defines Hc2(T) and shows [75] that now H,,(T) + co for T + 0 (logarithmic 
divergence). Numerical solution of Eq. (3.130) is shown in the inset in Fig. 14. Below we shall see, 
however, that this divergence of Hc2 is lifted by the inverse influence of magnetic field upon 
diffusion. 

Let us now turn to the problem of the influence of magnetic field upon diffusion and its 
consequences for Hc2 temperature behavior. If we are far from the Anderson transition, magnetic 
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Fig. 14. Temperature dependence of the upper critical field Hc2. Numerical solution for the dependence of 
h = w~/T‘?E~,~ on T/Tc for different values of 8 = w,/T,: (1) 8 = 100; (2) 0 = 10; (3) 0 = 271; (4) 0 = 3; (5) 8 = 1; (6) 

Q = 0 (mobility edge). Metallic state, no magnetic field influence on diffusion. At the inset: Low temperature dependence 
of h on T/T, close to the Anderson transition; mobility edge (0 = 0) with magnetic field influence on diffusion; metallic 
phase (0 = O.l), no magnetic field influence; mobility edge (0 = 0), no magnetic field influence; and insulating phase 
(0 = O.l), no magnetic field influence. Numerical cut-off was taken at (w) = lOOT,. 

field influence is small on parameter -Ja and its influence upon Hc2 is insignificant. Close to 
the transition, magnetic field correction may overcome the value of D(H = 0) and we have to 
consider its influence in detail [75]. Accordingly, we shall limit ourselves to the case of 

W/E @ (WfIE) 2/3 for which we have already discussed the magnetic field behavior of the general- 
ized diffusion coefficient in the Cooper channel. This was given in Eqs. (2.110) and (2.111). In this 
case, we have seen that the characteristic frequency w, is replaced by 

0:: = ((PcII~/E)~‘~ E , (3.132) 

where cp = 4 W2 z 0.18. (W was defined during our discussion of localization in a magnetic field.) 
For T - T, there is no change in the slope of Hc2 given by Eq. (3.128) as was noted already in Ref. 
[22]. Here we shall consider the case of T 4 T,. 

For 2rrT > w: in all sums over Matsubara frequencies we can take D(w) N g1j3 and actually we 
can neglect the magnetic field’s influence upon diffusion. In this case, H,,(T) behaves as in 
Eq. (3.127) i.e. as at the mobility edge in the absence of magnetic field effects. For 27cT < oi the 
equation for H,,(T) takes the form [75] 

In f = “Of’ [(n + 4) + (wJE)"~(oH/~~T)I-~ 
c n=O 

+ ngno {(n + 4) + (n + 4)“3(E/47cT)2’3(~~/E))-1 - f (n + 41-l 
n=O 

(3.133) 
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where no = coi/41rT. In this case we find 

40 H,,(T) = m T (1 + cp)- 1’3(q$)2’3T$3E1’3 1 - 4Y T - 
3@3(1 + cp) T, 1 

Accordingly, we have 

Hc2 (0) 

T,(dHc2/dT)rc = (’ + ‘)- 
113 c1 - z 1.18 

(4Y)2’3 

(3.134) 

(3.135) 

and the change when compared with Eq. (3.129) is actually small. However, for 2rcT < c$ the 
H,,(T) curve becomes convex. The inflexion point can be estimated as T * = 0:/2n: z O.O2T,. This 
behavior is shown in the inset of Fig. 14. 

Consider now the insulating region. We shall see that the magnetic field effects on diffusion lead 
to the effective cut-off of the weak divergence of Hc2 as T -+ 0 noted above. Generalized diffusion 
coefficient D2 in the insulating phase and at low enough frequencies is determined by the following 
equation [75]: 

2mD2 = - (w,/E)“~ + ( -io/E)1’2(2mD2))“2 + 3 W(~O,/E)‘~~ . 

Now we can see that the external field defined by 

7 J2w,IE > (o,/E)1’3 

(3.136) 

(3.137) 

transfers the system from the insulating to the metallic state. If the system remains close to the 
mobility edge we can estimate the upper critical field as above by wH M (X/Y)“‘” T z13E1/3 and 
Eq. (3.137) reduces to 

1 
Lo, % < c (W/$)3 T, z O.l4T, 

27r2N(E)&, Y 
(3.138) 

and practically in the entire interval of localization lengths, where according to our main criterion 
of Eq. (3.20) we can have superconductivity in an Anderson insulator, the upper critical jield in fact 

destroys localization and the system becomes metallic. Accordingly there is no way to observe the 
divergence of the upper critical field as T + 0 and the H,,(T) curves in the “insulating” phase all 
belong to the region between the curves of H,,(T) at the mobility edge defined in the absence of 
magnetic field (curve 3 in the inset on Fig. 14) and at the mobility edge defined in the magnetic field 
(curve 1 in the inset). This result actually shows that it may be difficult to confirm the insulating 
ground state of a strongly disordered superconducting system just by applying a strong enough 
magnetic field to destroy superconductivity and perform the usual transport measurements at low 
temperatures. 

Note that another mechanism for the change of H,,(T) at low temperatures was proposed by 
Coffey et al. [175]. They have found the enhancement of Hc2 at low temperatures due to the 
magnetic field dependence of the Coulomb pseudopotential ,B* which appears via the magnetic 
field dependence of the diffusion coefficient. Magnetic field suppression of localization effects leads 
to the reduction of Coulomb pseudopotential enhancement due to these effects [20]. Accordingly, 
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we get the enhancement of Hcz at low temperatures. Unfortunately, the apparently more important 
effects of the frequency dependence of the generalized diffusion coefficient were dropped. 

Returning to the general criteria for the validity of Eq. (3.119) we note that the condition of 
RH B 5 is reduced to wH < T, 1/3E$3 which is obviously satisfied in any practical case. Note, 
however, that our estimates for Hc2 at low temperatures lead to CC)~ = A,(E,/LI,)“~ > do which 
can easily overcome the paramagnetic limit. In this case, the experimentally observed Hc2 of course 
will be determined by the paramagnetic limit and the anomalous behavior due to localization will 
be unobservable at low temperatures. At the same time in case of H,, being determined by the 
paramagnetic limit it may become possible to obtain the insulating ground state of the system by 
applying a strong enough magnetic field. Note that the effective masses entering to cyclotron 
frequency and the paramagnetic splitting may actually be very different and there may be realistic 
cases when the orbital critical field may dominate at low T. For T - T,, Hc2 is always determined 
by the orbital contribution. 

Similar analysis can be performed for the two-dimensional and quasi-two-dimensional cases 
[Sl], which are important mainly due to the quasi-two-dimensional nature of high-temperature 
superconductors. We shall limit ourselves only to the case of a magnetic field perpendicular to the 
highly conducting planes, when the temperature dependence of H,,(T) is again determined by 
Eq. (3.119) with 02(o) having the meaning of a diffusion coefficient in the Cooper channel along the 
plane. 

If we neglect the magnetic field influence upon diffusion the frequency dependence of the 
diffusion coefficient in the purely two-dimensional case is determined by Eq. (2.115). It is easy to see 
that the possible anomalies in the temperature behavior of the upper critical field due to the 
frequency dependence of the diffusion coefficient will appear only at temperatures T < e-““/z. 
At higher temperatures we obtain the usual dependence of the “dirty” limit. Accordingly, from 
Eq. (3.119) we obtain two different types of behavior of H,,(T): 

1. For T, g e-“‘/z 

For T 4 e- li’ /z the upper critical field is defined by the equation: 

(3.139) 

(3.140) 

(3.141) 

from which we can explicitly obtain the dependence of T(H,,). 
Thus, up to very low temperatures of the order of N e - iii/r, the upper critical field is determined 
by the Drude diffusion coefficient and we obtain the standard H,,(T) dependence of a “dirty” 
superconductor. The ratio - H,2(T)/[T,(dH,2/dT)],c fore -l/‘/r < T + T, is equal to the usual 
value of 0.69. For low temperatures T 4 e- ‘I1 /z we obtain significant deviations from the 
predictions of the usual theory of “dirty” superconductors. Hc2(T) dependence acquires positive 
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curvature and the upper critical field diverges as T + 0. The behavior of the upper critical field for 
the case of T, >> e- ‘IA /z is shown in Fig. 15, curve 1. 

2. For T, 4 e-“*/, the upper critical field behavior for any temperature is defined by Eq. 
(3.141). H,,(T)-dependence acquires positive curvature and Hc2 diverges for T + 0. For small 
fields Hc2 < (&/DO) e-‘/“/z, i.e. for T - T,, Eq. (3.141), gives the explicit expression for Hc2: 

The slope of H,,(T) at the superconducting transition is determined by 

e-llA: 

(3.142) 

(3.143) 

The behavior of the upper critical field for the case of T, < e - l/“/z is shown in Fig. 16, curve 1. 
It is clearly seen from Eqs. (2.115) and (2.116) that the magnetic field’s influence upon diffusion 

becomes relevant only for high enough magnetic fields Hcz 9 (+o/Do)(e-““/z), i.e. for very low 

12.0 h 

1 

10.0 
2' 

8.0 b V-C 

0.0000 0.0001 

Fig. 15. Temperature dependence of the upper critical field for the two-dimensional superconductor (e-““/rTC) = 0.4, 
i, = 0.1, h = o,/rrlT,): (1) no magnetic field influence upon diffusion, (2) with magnetic field influence upon diffusion and 
(3) standard theory of “dirty” superconductors. 

Fig. 16. Temperature dependence of the upper critical field for the two-dimensional superconductor (e-““/fT, = 4, 
i = 0.126, h = wH/nATC): (1) no magnetic field influence upon diffusion and (2) with magnetic field influence upon 
diffusion. 
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temperatures T < T,. If we use Eq. (2.116) in the main equation (3.119), we obtain the following 
results: 

1. The case of e-“‘/r 4 T, 4 l/z: F or ig enough temperatures T $ e-‘/“/z the diffusion h’ h 
coefficient entering Eq. (3.119) coincides with Drude’s Do and the upper critical field is determined 
by Eqs. (3.139) and (3.140). 

For exp[ - 1//221n(y2/z)(l/zT,)]/z < T < e-“‘/, we obtain: 

H,,(T) = U/WkWclW1 - 3.WT/Td). (3.144) 

Eq. (3.144) differs from Eq. (3.140) only by the temperature dependent corrections and we can say 
that the magnetic field’s influence upon diffusion in this case leads to the widening of the 
temperature region where we can formally apply the usual theory of “dirty” superconductors. 

For T 4 exp[ - l/~“ln(y2/7r)(l/rTC)]/z G T 4 e-“‘/, the upper critical field is defined by 

ln y e-li’Z’nQ 
2rce zT 

(3.145) 

where Q = (y/2n)(~o/ooHc2)(l17). F rom Eq. (3.145) we can obtain the explicit dependence T(H,,). 
The upper critical field in this case is slightly concave as in Eq. (3.141) where we have neglected the 
magnetic field influence upon diffusion. However, now we have no divergence of HC2 for T + 0 and 

&(T = 0) = (~/27MGMl/r) . (3.146) 

In fact, the value of Hc2(T = 0) will be even smaller, because for these values of the field the number 
of Landau levels below the cutoff will be of the order of unity and we are now outside the limits of 
applicability of Eqs. (2.113). However, the order of magnitude of Hc2(T = 0) given by Eq. (3.146) 
is correct. H,,(T) behavior with the influence of magnetic field upon diffusion is shown in Fig. 15, 
curve 2. 

2. The case of T, 4 e- ‘In /7: For small fields Hc2 < (&/o,,)(e- lin/r), i.e. for T - T,, the 
magnetic field’s influence upon diffusion is irrelevant and the upper critical field is determined by 
Eq. (3.142). For low temperatures, H,,(T) is determined by Eq. (3.145), i.e. the magnetic field’s 
influence upon diffusion liquidates the divergence of the upper critical field as T -P 0. The behavior 
of H,,(T) for T, 4 e-l/’ /z is shown in Fig. 16, curve 2. 

It should be noted that the case of T, 4 e - ‘In/z is possible only for a sufficiently strong disorder. 
For typical T, - 10e4EF, this case can occur only for 2 > 0.2. Superconducting pairing can exist 
only when a condition similar to Eq. (3.20) is satisfied. In the two-dimensional case, this condition 
leads to the inequality T, B 3Le -“‘/z which makes the region under discussion rather narrow. 

The quasi-two-dimensional case was extensively discussed in Ref. [Sl]. The situation here is in 
many respects similar to that of two-dimensions, e.g. the anomalies in the upper critical field 
behavior due to the frequency dependence of the diffusion coefficient appear only for temperatures 
T B e-“‘/q while at higher temperatures H,,(T) is well described by the usual theory of “dirty” 
superconductors. As the interplane transfer integral w grows, the smooth transition from the purely 
two-dimensional behavior to that of a three-dimensional isotropic system can be demonstrated. 
When T, $ e-‘/l /z, deviations from the usual temperature behavior of HC2 is observed only for 
very low temperatures T < e- “‘/ z, while close to T, there are no significant changes from the 
standard dependence of Hc2( T). For T, < e- ‘IA/ z, as the interplane transfer integral w grows, the 
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temperature dependence of Hc2( T) changes from a purely two-dimensional concave behavior for 
all temperatures to a convex three-dimensional like dependence. In Fig. 17 we show the typical 
transformations of the H,,(T) behavior, as the transfer integral w changes, driving the system 
through the metal-insulator transition [Sl]. This clearly demonstrates the sharp anomalies in the 
Hcz behavior which can appear due to localization effects. 

3.4. Fluctuation conductiviry near the Anderson transition 

Fluctuation conductivity of Cooper pairs (above T,) is especially interesting in strongly dis- 
ordered systems because the usual single-particle contribution to conductivity drops to zero as the 
system moves towards the Anderson transition. We shall use the standard approach [176] which 
takes into account fluctuational Cooper pairs formation above T,. We assume that it is possible to 
neglect the so-called Maki-Thompson correction which describes the increased one-particle 
contribution to conductivity due to superconducting fluctuations [177]. We expect that these 
estimates [178] will enable us to find a correct scale of fluctuation conductivity close to the 
mobility edge. 

Consider first the averaged fluctuation propagator: 

L - l (q, 52,) = I - l - Il(q, a,) ) 
(3.147) 

h 

Fig. 17. Temperature dependence of the upper critical field for a quasi-two-dimensional superconductor (em ‘!‘/tTC = 4, 
3, = 0.126, h = wH/xk7’,) for different values of the interplane transfer integral around the critical value of w, correspond- 
ing to Anderson transition at a given disorder: (1) purely two-dimensional behavior (w = 0), (2) dielectric side close to 
Anderson transition (L = 12 In (w/w,) 1 = 0.7) (3) metallic side close to Anderson transition (L = 2 In(w/w,) = 0.7) and (4) 
metallic state far from the Anderson transition (L = 3). Dashed line represents the behavior at the Anderson transition 
(L = 0). 
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where the polarization operator 

fi(q,W = c c (G@+P’+G + QJG(P-P’- - 4) 
En PP’ 

= - 2inT 1 @,&,u, = - 2~,, + a,) , o, = 2nmT . (3.148) 
En 

During our analysis of Ginzburg-Landau coefficients we were interested in Us = 2e,, so that one 
of the Green’s functions in QE was automatically retarded, while the other was advanced. Now we 
need a more general expression of Eq. (3.148) with o, = 2s,, + &. Accordingly, instead of Eq. (3.83) 
we must use the following expression with an additional Q-function: 

@PE(q,c& = 28, + sz,) = - 
N(E)~Cs&fl + f&f)1 

iI28, + Qkl + iDE(12e, + 0k1)q2 ’ 
(3.149) 

where the generalized diffusion coefficient is again determined by Eqs. (3.85) and (3.86). From Eqs. 
(3.147)-(3.149) performing summation over E, we get the following form of the fluctuation 
propagator for small q (DEq2 < T): 

L-‘(q,Q~)= -N(E) 1 -r+$ A+ {n T, (2 ~)-i(~)+sWkh2j9 (3.150) 

where 

ul(l~kj) = 47CT f DE(2En + l’kl) 
,,=o (26, + lfiklj2 

hoc < (t01~)“~ , E > JL , 
= (3.151) 

It is also useful to know the form of the fluctuation propagator for lQk1 B T. In this case, close to 
the Anderson transition, we may replace the sum over E, in Eq. (3.148) by an integral, while far from 
the transition it can be calculated exactly. As a result, we get 

L-‘(q,Qk) = 

t,oc < (501~)“~ > E > E, , 

Doq2 
(3.152) 

2 l/3 
+ (4n~)2/3(2y)1/3 ’ &OC ’ (50’ ) ’ 

Diagrams determining fluctuation conductivity are shown in Fig. 18. Contributions of graphs, 
Fig. 18(a) and (b), are nonsingular close to T, because at least one of the fluctuation propagators 
transfers a large momentum of the order of p F. Thus we have to consider independent contribu- 
tions B formed by three Green’s functions. We can calculate these contributions using the usual 
approximations of the self-consistent theory of localization taking into account the renormaliz- 
ation of triangular vertices by maximally-crossed graphs [98,155] (cf. Eq. (3.40)) as in Fig. 18(c). 
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(c) cd) 

Fig. 18. Diagrams for fluctuation conductivity. Wavy lines denote the fluctuation propagator, and dashed lines represent 
disorder scattering. 

We shall neglect graphs like the ones in Fig. 18(d) where the topology of the disorder scattering 
lines is not reduced to the renormalization of triangular vertices. We assume that these approxima- 
tions are sufficient at least for a qualitative inclusion of localization effects. Note that it is sufficient 
to calculate the contribution of three Green’s functions B(q, Ok, LO,) for small q and zero external 
frequency 0, = 0. It can be easily found by differentiating the polarization operator of Eq. (3.148) 

B(q,%,O) = qC = - ; fl(q,%) . (3.153) 

The contribution of diagram of Fig. 18(c) to the operator of electromagnetic response [SS] is 
determined by the following expression: 

(3.154) 

Close to T, we can also neglect the dependence of C on fik. Then C reduces to Eq. (3.89) and 
we have C = N(E)t2. Fluctuation propagator analytically continued to the upper halfplane of 
complex w takes the usual form 

J%7,~) = - 
1 

N(E)[(T - T,)/T,] - (irca/8T,) + t2q2 . 
(3.155) 

Further calculations can be performed in a standard way and for fluctuation conductivity for 
(T - T,)/T, 4 1 we get the usual result [176]: 

oA,_ = (e2/32@)(T,/(T - T,))“’ (3.156) 

but with the coherence length ;” being defined as (cf. Eq. (3.89)): 

5,oc < (50~~)“~ 2 E > Ec , 

hoc > (501~)“~ > E - E, . 
(3.157) 
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Taking into account that for large I< - (‘1 JY(~,[‘)I~=~~ - L(&[‘)14=0 drops as It - t’l-3 it is 
sufficient to know only the low-frequency response of a system in normal state. In particular, for 
a “pure” system (with no scattering) we have Re ~(00) = (ne’/m)~- ‘&co) and comparing Eq. (3.159) 
with Eq. (3.162) it is immediately clear that at T = 0 we have II, = yt, i.e. in an ideal 
electrons are superconducting. 

Close to the Anderson transition we can use the results of elementary scaling 
localization, e.g. Eqs. (2.31) and (2.33) to write 

system all 

theory of 

(3.163) 

where 03, - [N(E)t:,,]- is defined in Eq. (2.42), gc is the critical conductance of scaling theory 

(gc - 1) A - 1. From Eqs. (3.161) and (3.162) it is clear that the main contribution to the integral in 
Eq. (3.162) comes from 14 - <‘I - do, so that the value of ~1, depends on the relation between 
do and co,. For do < (I)~ we have o(d,) = Agc/tl,,c and 

~1, = AW2)&(gc&J . (3.164) 

For do > o, we have o(d,) = Ag,[N(E)A,-J”3 and it becomes independent on further growth of 
<ioc in the region of tioc > [N(E)Ao ]1/3. Accordingly, yt, does not vanish at the mobility edge but 
saturates at 

n, = A(m/e2)gc[iV(E)&,]“3 (3.165) 

In the localization region we can write instead of Eq. (3.163) 

B(0) z 
0, w < w, 

Ag,[N(E)co]1’3 , o > o, 
(3.166) 

which again leads to a(do) z Ag,[N(E)d0]-1’3 and Eq. (3.165) remains valid until Rloc > 
[N(E)AJ ‘13. Thus the density of superconducting electrons n, remains finite close to the 
Anderson transition both in the metallic and insulating states. 

However, from Eq. (3.165) it is easy to see that close to the Anderson transition 

nsln - (&/EF)~‘~ . (3.167) 

This coincides with an estimate of Eq. (3.98) based upon the Ginzburg-Landau expansion. For 
typical do and EF only a small part ( - 1O-4 in traditional superconductors) of conduction 
electrons form Cooper pairs. The condition of Rloc > [N(E)A,]-“3 - u(E~/A~)“~ as discussed 
above defines the size of the possible superconducting region in an Anderson insulator. This region 
is of course quite small, e.g. if metal-insulator transition takes place with a change of some external 
parameter x (impurity concentration, pressure, fluence of fast neutrons, etc.), so that Rloc - 
al(x - x,)/x,I-~, then for v z 1 and typical EF/Ao - lo4 we get lx - x,1 < 0.1~~. 

These estimates are in complete accordance with the results of our discussion of Ginzburg- 
Landau approximation [21,22] and we can obtain the qualitative picture of superconductivity in 
an Anderson insulator both for T - T, and T -+ 0, i.e. in the ground state. 
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4. Statistical fluctuations of the superconducting order parameter 

The previous discussion of superconductivity in a strongly disordered system is based upon the 
important assumption of the existence of a self-averaging superconducting order-parameter A. This 
assumption was first used in the theory of “dirty” superconductors [lo, 11,13,9] and also in all 
early papers on the interplay of localization and superconductivity. It was expected that spatial 
fluctuations of this order parameter A(r) are actually small and we can always use some disorder 
averaged parameter (A(r)). It seems natural for G 9 G, and it really can be justified in this region as 
we shall see below. However, close to the mobility edge there are no special reasons to believe in the 
correctness of this assumption. In this case electronic characteristics of the system become strongly 
fluctuating and we shall see that these lead to the strong spatial (statistical) fluctuations of the 
superconducting order parameter, or even to the regime of inhomogeneous superconductivity. At 
the same time, we must stress that these fluctuations are in some sense similar to the usual 
thermodynamic critical fluctuations of the order parameter and become important in some new 
critical region (we call it the statistical critical region) close to T,. In this sense, all the previous 
analysis is just a kind of statistical mean-field approximation and of course it is a necessary step for 
further studies taking into account the statistical fluctuations. The importance of these fluctuations 
is stressed by the fact that the statistical critical region widens (similarly to the usual critical region) 
as the system goes to the Anderson transition and apparently the role of fluctuations becomes 
decisive for the physics of the interplay of localization and superconductivity. 

4.1. Statistical critical region 

Here we shall start by a demonstration of the appearance of the new type of fluctuations which 
are at least of the same importance as the usual critical fluctuations of the superconducting 
order-parameter. We call them statistical fluctuations [62] and their nature is closely connected to 
the problem of self-averaging properties of this order parameter (i.e. with a possibility of decoupling 
which transforms Eq. (3.12) into Eq. (3.13)). We shall more or less follow Ref. [62], equivalent 
results were recently obtained in Ref. [179]. 

Let us return to the Eq. (3.7) and analyze the situation in more details. We shall use a simple 
iteration procedure assuming that fluctuations of the kernel K(rv’) due to disorder are small. 
Similar approach was first used in Ref. [lSO]. In this case we can represent K(vr’) and A(r) as 

K(rr’) = Ko(r - r’) + K,(rr’); Ko(r - r’) = (K(rr’)) , A(r) = (A) + A,(r) , (4.1) 

where (A) is the solution of the linearized gap equation with averaged kernel Ko(r - r’) while Al(r) 
is the first order correction for the perturbation defined by K1 (rr’). We have seen that the linearized 
gap equation (Eq. (3.13)) with the averaged kernel Ko(r - r’) determines the standard transition 
temperature of BCS theory given by Eq. (3.19) which we shall now denote as T,,,. In the first order 
over K1 there is no correction to Tco: (K,) = 0. In the second order of this perturbation theory we 
obtain the following change of transition temperature, defined as the temperature of appearance of 
the homogeneous order-parameter: 

Tc - T~Q 1 d3q K1 ko)K1 (W =- - 
T CO 4 s GW3 1 - K&z, Tc) ’ 

K. = 
s 

dreiq’K(r, T,) , (4.2) 
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where 

K1(Oq) = K,( -40) = 
s s 

dr dY’eiq*[K(rr’) - Ko(r -r’)] 

(4.3) 

Here i, = yN(&) and we have used the completeness and orthonormality of the exact eigenfunc- 
tions d@(r). It is obvious that correction to TcO given by Eq. (4.2) is always positive. After averaging 
Eq. (4.2) over disorder we get the relative change of the transition temperature due to fluctuations 
as 

where 

and we have introduced the spectral density of Eq. (A.3): 

(4.4) 

(4.5) 

(4.6) 

which is actually a correlation function of the local densities of states. 
Remember now that in a “dirty” system [174]: 

1 - Ko(q, T) = 1 - 27cT& 1 
1 

E” 21&l + &(21a:,l)q2 

25 iti, 
T - Tco 

T 
+ 12q2 , c, = (2n 

CO 1 t l)zT , (4.7) 

where C$ is the coherence length defined previously, e.g. in Eq. (3.89). The approximate equality here 
is valid for I T - T,,//T, $ 1, t2q2 + 1. From Eqs. (4.4) and (4.7) we get the change of transition 
temperature in the following form: 

6TC s d3q dq) 
T - CO @g&y 

(4.8) 

Here we must cut off integration at q - [ ~ ’ m accordance with the limits of applicability of the last 
expression in Eq. (4.7). However, the contribution of short-wave fluctuations here may be also 
important. 

The Ginzburg-Landau functional expressed via the non-averaged order parameter A(r) has the 
following form [9]: 

7 IA( - N(E,) jdrX(rr’)A(r’)A(r) + @IA( , 
P 

(4.9) 
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where we have neglected the fluctuations of the pairing interaction AP and of the coefficient B, 
which is defined by the standard expression given in Eq. (3.88). Using Eqs. (4.1)-(4.3) we can find 
the Ginzburg-Landau equations which describe the slow changes of d(r): 

Tco - T 

where 

(4.10) 

(4.11) 

describes the fluctuations of the coefficient A of the Ginzburg-Landau expansion and we have 
neglected the fluctuations of the C coefficient. 

Ginzburg-Landau equations with fluctuating coefficients were analyzed for the first time by 
Larkin and Ovchinnikov [lSl]. It was shown that 6A(r)-fluctuations lead to a shift of transition 
temperature given by Eq. (4.8) and the solution of Eq. (4.10) for the order parameter in the first 
order over fluctuations has the form of Eq. (4.1) with 

s d3q 
Add = m Addeiq’~ (A) 

A,(q)= -- 
Mq) 

N(&) t2q2 + 22 ’ 
(4.12) 

where t = (T, - T)/T, is the temperature measured relative to the new transition temperature. 
The mean-square fluctuation of the order-parameter itself is determined from Eq. (4.12) by 

<A2> s d34 (P(4) -_ 
GO2 l = (243 [C2q2 + 22-y ’ 

(4.13) 

where (p(q) was introduced in Eqs. (4.4) (4.5). It is important to note that fluctuations of A(r) as 
opposed to the T,-shift are determined by the small q behavior of cp(q). 

We can see now that all the physics of statistical fluctuations is described by the correlation 
function of local densities of states (or spectral density of Eq. (4.6)). This function was determined 
above in Eqs. (2.83), (2.84) within the self-consistent theory of localization or by Eqs. (2.137), (2.139) 
which follow from the scaling approach close to the mobility edge. 

Using Eq. (2.84) for the metallic state not very close to the mobility edge we can get from Eq. (4.5) 

&I = 0) - 5 N2(&)D; ’ 
(4.14) 

where 5 = m and Do is the Drude diffusion coefficient. Estimating the T,-shift from Eq. (4.8) we 

get 

&_ 1 Tc 1 
T ‘_o N2(E,)D;~2 - g (pF1)3 - zG ’ 

(4.15) 

where rG is the size of the Ginzburg critical region defined by Eq. (3.108). We have seen that in the 
usual “dirty” superconductor ro + 1. For the order-parameter fluctuations from Eq. (4.13) we obtain 

(A2) 1 _ L (p(q = O) TD “’ 
(d)z- - 8q3J33= ITI ’ (-1 (4.16) 
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From here we can see that the width of the temperature region where statistical fluctuations are 
important is given by 

7D cp2(0) 1 
- - - N4(EF)D;t4 - ~6 

s 
(4.17) 

It is obvious that in a “dirty” superconductor we have rn < ro << 1 and statistical fluctuations are 
absolutely unimportant. 

Situation changes for a system which is close to the mobility edge. Using Eq. (2.84) with 
Do replaced by Do(wly)'~3 or Eqs. (2. i37)-(2.139) we obtain 

3,112 

CPM = N'(&)D;T, s TL dco 
~ [w2 + Doy-2!3w2/3q4]-1/4 IV 521n t, 

,, o_I"~ 4 

where 5 - (~,,PF~)~‘~. Similarly, we get 

O-la s 5-l t3q2 dq 
GO2 o (t2q2 + 2~)~ 

(4.18) 

(4.19) 

From Eq. (4.19) it follows that close to the mobility edge statistical fluctuations become important 
and even overcome thermodynamic fluctuations due to the logarithmic factor in tp(q). Thus in this 
region we have ru > zG - 1. 

The crossover from the regime of weak statistical fluctuations (rn Q rd) to the strong fluctuation 
regime occurs at the conductivity scale c - o* z c~(P~~J ‘I3 which was extensively discussed 
above. Thus close to the mobility edge the superconducting order-parameter is no more a self- 
averaging quantity. Here the mean-field theory approach becomes formally invalid due to thermo- 
dynamic and also because of statistical fluctuations. Below we shall analyze this situation in more 
details. 

Finally, we shall briefly discuss the region of localized states. The appearance here of a singular 
G(o)-contribution to the correlator of local densities of states given by Eqs. (A.8)-(A.lO) leads to the 
additional contribution to y(q): 

(P(4) = s <(,I? dE 

o E2 (tanh(E/2T,)) A,O + ... - .,,“TT 
NW,) 

+ . . . 
F CO 

1 

= N(E,)T,(l + R:,,q2) + “’ . 

Accordingly, a new contribution to A(r) fluctuations is given by 

‘I:, (A') 1 ~ 1 

s 

q2dq 1 

W2 N(EF)T, o K2q2 + 217H2(1 + %xq') - W&)T,%x72 

(4.20) 

(4.2 1) 

and it grows fast as the localization length Rloc diminishes. Using our main criterion of super- 
conductivity in localized phase given by Eq. (3.20) we can see that in all regions of possible 
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superconductivity statistical fluctuations of d(y) remain of the order of unity and are important in 
a rather wide temperature interval around T,. 

4.2. Superconducting transition at strong disorder 

We consider now superconductivity in systems with strong statistical fluctuations of the “local 
transition temperature” T,(r) as described by Eqs. (4.10) and (4.11). In this analysis we shall follow 
Refs. [182,183]. For simplicity we assume a Gaussian nature for these fluctuations. Note, however, 
that close to the mobility edge the fluctuations of local density of states become strongly 
non-Gaussian [95] and this can complicate the situation. Unfortunately, the importance of this 
non-Gaussian behavior for superconductivity has not been studied up to now. We shall see that in 
our model, depending on the degree of disorder, which we shall measure by the ratio zn/zo, two 
types of superconducting transitions are possible. For rn smaller than some critical value $j the 
superconducting transition is the usual second-order phase transition at T = T,. The supercon- 
ducting order-parameter is in this case equal to zero for T > T, and is spatially homogeneous over 
scales exceeding the correlation length t(T) below T,. Statistical fluctuations lead only to a change 
of critical exponents at the transition [184,185]. 

At rn > ~6 the superconducting state appears in an inhomogeneous fashion even if the correla- 
tion length of disorder induced fluctuations of T,(r) is small compared with the superconducting 
correlation length [ (microscopic disorder). This case was first analyzed by Ioffe and Larkin [189]. 
Investigating the case of extremely strong disorder they have shown that as the temperature is 
lowered the normal phase acquires localized superconducting regions (drops) with characteristic 
size determined by t(T). Far from T, their density is low, but with further cooling the density and 
dimensions of the drops increase and they begin to overlap leading to a kind of percolative 
superconducting transition. 

According to our previous estimates, if we take into account only the fluctuations of local density 
of states, the parameter zb/rd increases from very small values to a value greater than unity as the 
system moves towards the mobility edge. The onset of an inhomogeneous superconducting regime 
is therefore to be expected as the localization transition is approached. 

Our treatment of superconductors with large statistical fluctuations will be based on the 
Ginzburg-Landau functional: 

F{A(r),d(r)} = (z + t(~))(d(r)l~ 

(4.22) 

where B = rot A is the magnetic field and we have redefined the coefficient of the quartic term as 
B = N(EF)IL. Here t(r) is defined by Eq. (4.11) as &t(r) = N(E,)t(r) and plays the role of the 
fluctuation of local “critical temperature”, which appears due to fluctuations of the local density of 
states. In the general case, it can also have contributions from the local fluctuations of the pairing 
interaction or other types of microscopic inhomogeneities. As noted above, we assume Gaussian 
statistics of these fluctuations, though real situation close to the mobility edge may be more 
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complicated [95]. Given the distribution of t(r), the free energy of the system and the order- 
parameter correlator are equal to 

s{t(r)l = - TlnZ, Z= D{A,d}expC-F{A(r),d(r)}/T], 
s 

(4.23) 

(d(r)d(r’)) = Z-’ 
s 

D{A,d}d(r)d(r’)exp[ -F{A(r),d(r)}/T] , (4.24) 

and must be averaged over the Gaussian distribution of t(r). From our definition of t(r) and using 
the approach of the previous section, assuming the short-range of fluctuations of local density of 
states (on the scale of t), it is easy to estimate the correlator of t(r) as 

(t(r)t(r’)) = y6(r - i) , y z #p . 

Then the probability of a configuration with a given t(r) is given by 

(4.25) 

.T{t(r)} = exp [ -$ jdrt’(r)] . 
The problem reduces thus to the calculation of the functions F{ t(r)} and (d (r)d(r’)) and their 
subsequent averaging over P{t(r)}. 

We shall limit ourselves to the consideration of noninteracting drops and no vortices. Then we 
can consider the phase of the order-parameter d(r) as nonsingular. After the gauge transformation 

A (4 -+ A w + kww W(r) > A (4 -+ A (4 exp C - iW)l , (4.27) 

where 4(r) is the phase of the order parameter; we can use real A(r) and the Ginzburg-Landau 
functional of Eq. (4.22) becomes 

F{A(r), A(r)) = 
s i 

dr 2 + N(E,) (z + t(r))A*(r) + %&4’(r)A’(r) 

+ <‘( VA(r))’ + i iA4(r) 11 (4.28) 

Integration over phase in Eq. (4.23) gives an inessential constant factor to the partition function 
which we disregard. 

To average the logarithm of the partition function, Eq. (4.23), over t(r) we can use the replica 
trick Cl861 which permits the averaging to be carried out in explicit form. We express the average 
free energy, Eq. (4.23), of the system in the form 

(F)= -Tli_molC(Z”)-I]. (4.29) 

To calculate (Z”) in accordance with the idea of the replica method, we first assume n to be an 
arbitrary integer. Expressing Z” in terms of an n-fold functional integral over the fields of the 
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replicas A,, A,(r), a = 1, . . . , n and carrying out exact Gaussian averaging over t(r), we get 

C-W = s D{A,A)expC--S,{A,,A,}l, (4.30) 

S{A,,A,} = 
s i 

dr $ ‘2 + F i [(T + t(rtt))A,(r)2 + 
f-$$&(r)Az(r) a 

+ t2(VA,(r))2 +iI.A,4(r) 1 ---iF y[$IA:(r)]l]. 
The last expression here represents the “effective action” and F = yN(E,)/T, z z#“N(E,)/T, 
grows with disorder. Note that the random quantities t(r) have already dropped out of these 
expressions, and that the action ,!{A,, A,} is translationally invariant. For the correlator of Eq. 
(4.24) we obtain 

(A(r = 1 im f D{A,A}expC-S,{A,,A,}l i &(r)A,(r’), n-0 n s z=l 

(4.3 1) 

where we have symmetrized over the replica indices. 
Far from the region of strong fluctuations of the order parameter 1~1 B zn, zG the functional 

integrals in Eqs. (4.30) and (4.24) can be calculated by the saddle-point method. The extrema of 
the action are determined by classical equations: 

[ z - 4’ V2 + IAt - 7 i A;(r) 1 A,(r) = 0 , A,=O. (4.32) 
fl=l 

The nontrivial conclusion is that these equations for A,(r), besides having spatially homogeneous 
solutions do have localized solutions with finite action (instantons). These correspond at z > 0 to 
the superconducting drops. We shall limit ourselves to a picture of noninteracting drops and 
consider only instanton solutions above T, (at z > 0). We shall be interested only in those solutions 
that admit analytic continuation as n + 0. We designate them At’(r), where the superscript i labels 
the type of solution. To find their contribution we must expand the action of Eq. (4.30) up to the 
terms quadratic in deviations q,(r) = A,(r) - AC)(r). It can be shown that fluctuations of the fields 
A,(r) can be neglected if we consider noninteracting drops [182,183]. 

For z > 0 and for y > A, Eq. (4.32) possesses (besides the trivial solution A, = 0) the following 
nontrivial solution with finite action (instanton) (cf. Refs. [ 187,188,7]): 

At’(r) = Ao(r)6,i , i = 1, . . . ,n , 

(4.33) 

where the dimensionless function x(x) satisfies the condition dX(x)/dxlXZo = 0 and its asymptotic 
form: x(x) - x-l exp( -x) for x $ 1 (for spatial dimension d = 3). The qualitative form of this 
solution is shown in Fig. 19. 

From Eq. (4.33) it is seen that instantons are oriented along axes of replica space (there are 
n types of instanton solutions) which is due to the “cubic anisotropy” term IA: in the effective 
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Fig. 19. Qualitative form of instanton solution. 

action of Eq. (4.30). Index i characterizes the direction in replica space along which the symmetry 
breaking takes place. For 1 + 0 the action becomes O(n)-symmetric and instantons take the form 

&(r) = hoe, , i ej,Z=l, 
a=1 

(4.34) 

i.e. are oriented along the arbitrary unit vector e in replica space. Such instantons earlier were 
studied in the theory of localization [187,188,7]. 

The quadratic expansion of the effective action near the instanton solution takes the form (cf. 
analogous treatment in Refs. [187,188,7]): 

S{d,} = S{d:‘) +; 
s 

dv c (cp,fi$(pB), (4.35) 
KP 

where the operator M$ on instanton solutions is equal to 

titi:, = [n;i,S,i + A,( 1 - S*i)] 6@ 

with 

(4.36) 

M L.T = (2N(&)/T)[ -5’ v2 + ~UL,Tk)l (4.37) 

where 

ULW = 1 - 3X2C~/W)1 > UT@) = 1 - (1 - i/F)-‘X2[r/t(T)] . (4.38) 

The value of the Gaussian functional integer is determined by the spectra of eigenstates of 
operators ML and MT. Detailed analysis can be found in Refs. [182,183]. The qualitative form of 
these spectra is shown in Fig. 20. Operator ML always possess an eigenvalue ~4 = 0 the so-called 
translation zero-mode, connected with translation symmetry: instanton center may be placed 
anywhere in space, the action does not change. However, this is not a lowest eigenvalue of ML, 
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Fig. 20. Qualitative structure of eigenvalues of ML (a) and MT (b) operators. E k = 0: zero translation mode; E: + 0 for 
i. -+ 0 transforms to zero “rotation” mode. The continuous part of the spectrum is shaded. 

there is always a negative eigenvalue & < E 4 = 0. It can be shown rigorously that it is the only 
negative eigenstate of ML [190]. Operator MT possess also a single negative eigenvalue c;f < 0 
[182,183]; however, this eigenvalue tends to zero for A + 0 becoming the “rotation” zero-mode, 
reflecting the arbitrary “direction” of instanton in replica space in the absence of cubic anisotropy 
in the action [187,188,7]. For A = A* = 2/3;jl we have ML = MT and the spectra of both operators 
coincide. 

Including the contributions of instantons oriented along all the axes in replica space we obtain 
the following one-instanton contribution to the partition function entering Eq. (4.29) [182,183]: 

(Zn) = no 
0 

2 d’2 [Det’ ML]-1/2[Det MT]/1-n)/2 exp{ -So(z)) , 

where 52 is the system volume, 

(4.39) 

and the action at the instanton is given by 

So(r) = J&+ 
432 112 

y - kT/N(E,) ’ 

(4.40) 

(4.41) 

where LXZ = 37.8 is a numerical constant [191]. The prime on Det ML means that we must exclude 
the zero-eigenvalue ~4 = 0 from the product of eigenvalues determining this determinant. The 
condition of applicability of the saddle-point approximation looks like So(z) % 1, and in fact all our 
analyses are valid outside the critical regions both for thermodynamic and statistical fluctuations. 

In the limit of n -+ 0 the total cancellation of imaginary contributions appearing due to negative 
eigenvalues takes place in Eq. (4.39) and using Eq. (4.29) we get for y > 3/2A the following real 
contribution to the free energy: 

F = - ps(z)TSZ (4.42) 

where the density of superconducting “drops” 

A(T) = 4$“(E,) ‘O(r) 
I,” t-3 [~)e$,~~” exp{ -So(z)} . (4.43) 
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Thus for i, > 3/2; even for T > T, the superconducting “drops” (instantons) appear in the system 
which directly contribute to the equilibrium free energy. This contribution given by Eqs. (4.42) and 
(4.43) exists along the usual thermodynamic fluctuations. The condition of F > 3/2,I defines the 
critical disorder rn > ~5 > ro, and this inhomogeneous picture of superconducting transition 
appears only for the case of sufficiently strong statistical fluctuations. The knowledge of the 
qualitative structure of spectra of eigenvalues of ML and MT allows to analyze different asymptotics 
of Eq. (4.42) [182, 1831. For F&(z) Q jL < i,* we get 

~~(7) = i’P3(T)(A/l;l)1i2S$2(r)exp[ -S,,(z)] . 

For i + A*, we obtain 

~~(7) = lP3(T)((1*/1) - 1)3’2Sii2(r)exp[ -S,(r)] 

(4.44) 

(4.45) 

Thus the density of superconducting “drops” ys(z) vanishes as i + /1*, i.e. they are destroyed by 
thermodynamic fluctuations. 

For the order-parameter correlator of Eq. (4.24) we get the following result: 

(d(r)d(r’)) = ps(r) [d&M + &)&(~’ + Ro) . (4.46) 

The integration over instanton center R. here means in fact averaging over different positions of 
“drops”. Note that over large distances this correlator decreases like exp[ --(r - r’[/t(T)] and 
does not contain the usual Ornstein-Zernike factor jr - r’l- ‘. 

We have found the free-energy of the inhomogeneous superconducting state in the temperature 
region r 9 rn, where the “drop” concentration is exponentially small and the picture of non- 
interacting “drops” is valid. They give exponentially small contribution to the specific heat and 
diamagnetic susceptibility. The characteristic size of “drops” is determined by t(T) and as T + T, 
the “drops” grow and begin to overlap leading to a percolative superconducting transition. Thus 
for rn > zg > ro superconductivity first appears in isolated “drops”. This is similar to the picture of 
decay of a metastable state in the case of first-order phase transitions [192]. However, in this latter 
case instantons give imaginary contribution to the free energy determining the decay rate of 
a “false” equilibrium state (critical bubble formation). Here instanton contributions lead as was 
noted above to real free energy and “drops” appear in the true equilibrium state. 

It is more or less obvious that between isolated “drops” a kind of Josephson coupling may 
appear and lead to rather complicated phase diagram of the system in an external magnetic field, 
e.g. including the “superconducting glass” phase [193,194]. The existence of the inhomogeneous 
regime of superconductivity will obviously lead to the rounding of BCS-like singularities of the 
density of states and superconductivity may become gapless. Note that diffusion-enhanced 
Coulomb interactions can also lead to the gaplessness of strongly disordered superconductors via 
Coulomb-induced inelastic scattering [ 1951. Fluctuation conductivity in a similar inhomogeneous 
superconducting state was studied in Ref. [196]. Note the closely related problem of strongly 
disordered superfluids [197,198]. Some results here may be quite useful for the case of strongly 
disordered superconductors, though the limitations of this analogy are also important. 

A major unsolved problem here is the possible influence of statistical fluctuations of the 
coefficient of the gradient term in the Ginzburg-Landau expansion which has been neglected 
above, or the equivalent problem (cf. Eq. (3.96)) for superconducting electron density n,. This 
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problem was briefly considered for the case of weak disorder in Ref. [199]. It was shown that 

(4.47) 

where y(c) = crt is the conductance of the metallic sample with the size of the order of the super- 

conducting coherence length 5 = &. Extrapolating this estimate up to the Anderson transition 
using < = ([0/p$)“3 we get 

(4.48) 

Obviously, we get ((6~,/n,)~) 2 1 for c 5 rr* so that statistical fluctuations of y1, become important 
close to the Anderson transition in the same region we have discussed above. This further 
complicates the picture of the superconducting transition and can also be very important for the 
possible anomalous behavior of Hc2 which was recently studied on similar lines in Ref. [200]. Some 
qualitative conjectures for the case of ((6n,/n,)2) 2 1 were formulated in Ref. [201], where it was 
argued that in this case there will occur regions in the sample with locally negative values of 
superfluid density. This is equivalent to a negative sign of the Josephson coupling between the 
“drops”. In this sense, the disordered superconductor is unlike a Bose liquid. This leads to an 
important prediction that in a small superconducting ring, if there is a segment with negative n,, the 
ground state of the ring will spontaneously break the time-reversal invariance. The ground state 
will have nonzero supercurrent and magnetic flux (or rather random, trapped fluxes in the ground 
state) and will be two-fold degenerate. At longer times, the symmetry will be restored due to the 
thermal activation of the macroscopic quantum tunneling between the two states, but according to 
Ref. [201] it can be expected that for dirty metal rings with conductance of the order of e2/h there 
will be “roughly 50% chance that the ground state will break time-reversal symmetry”. By the way, 
this means that in the presence of disorder there may be no way to distinguish between an anyon 
superconductor [202] and a conventional superconductor. Of course we must stress that these 
speculations are entirely based upon a simple extrapolation of Eq. (4.47) to the vicinity of 
metal-insulator transition and there is no complete theory of statistical fluctuations of the gradient 
term in this region at the moment. 

5. Superconductivity in strongly disordered metals: experiment 

Our review of experiments on strongly disordered superconductors will be in no sense exhaust- 
ive. This is mainly a theoretical review and the author is in no way an expert on experiments. 
However, we shall try to illustrate the situation with the interplay of Anderson localization and 
superconductivity in bulk (three-dimensional) superconductors, both traditional and high-temper- 
ature. Again we must stress that we exclude any discussion of the numerous data on thin films 
which are to be described by two-dimensional theories. In this case we just refer to existing reviews 
[ 17-191. Here we shall confine ourselves to a limited number of experiments, which we consider 
most interesting from the point of view of illustration of some of the ideas expressed above, just to 
convince the reader, that previous discussion, while purely theoretic, has something to do with the 
real life. More than anywhere else in this review our choice of material is based on personal 
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interests of the author, or our direct involvement in the discussion of experiments. We shall not deal 
with the general problem of the influence of disorder upon superconductivity, but shall consider 
only the systems which remain superconducting close to the disorder-induced metal-insulator 
transition. 

5. I. Traditional superconductors 

There exists a number of strongly disordered systems which remain superconducting close to the 
metal-insulator transition induced by disorder. 

The drop of T, with the decrease of conductivity from a value of the order of 10452- l cm- ’ was 
observed in amorphous alloys of GeA [203], SiAu [204] and MoRe [205], in Chevrel phase 
superconductors disordered by fast neutron irradiation, such as Phi _xUxMo6S8 [207], Mo6Ses 
[208], in amorphous InO, [209], in BaPb, _XBi,03 in the concentration interval 0.25 < x < 0.30 
[210] and in metallic glass Zr 0.71r0.3 [212]. In all these systems, superconducting transition is 
observed apparently not very far from the metal-insulator transition. For many of these systems, 
such as Pbl-XUXM~~Ss, SnModSs, Mo$es, Zr,,71r0.3 and BaPb0.75Bi0.2503 [210] and some 
others a characteristic strongly negative temperature resistivity coefficient has been observed. Note, 
however, that this fact alone in no way indicates that a specimen is on one side or the other of the metal- 
insulator transition. The drop of T, close to the mobility edge apparently was also observed in 
AstTe, [213]. However, in all of these systems T, apparently vanishes before the metal-insulator 
transition. Below we present some of the data on these and other similar systems. 

In Fig. 21 we show the dependence of T, and 1dHJdT IT, in SnMo,S, (Chevrel phase 
superconductor) on the fluence of fast neutron irradiation (the number of neutrons which passed 
through a cross-section of a sample during irradiation) [207]. In the region of large fluences (large 
disorder), when the system becomes amorphous, characteristic values of conductivity in the normal 
state are of the order of - lo3 a-’ cm-i, which is not far from the values of “minimal metallic 
conductivity” o’c - 5 x lo2 R-i cm-‘, which define the conductivity scale of a disorder induced 
metal-insulator transition. A negative temperature coefficient of resistivity was observed in this 
conductivity range. The experimental data on T,-decrease with the growth of resistivity in this 
system were rather well fitted in Ref. [22] using the p* dependence on resistivity given by Eq. (3.62). 
A clear tendency for 1 dHc2/d T IT, saturation with disorder is also observed. Analogous dependence 
of T, and 1 dHc2/dT IT, on the resistivity in the normal state for Moe Se* disordered by fast neutrons 
is shown in Fig. 22 [208]. Here superconductivity exists up to conductivities Q - 250 R- 1 cm - ‘. 
Further disordering (irradiation) leads to the destruction of the superconducting state and 
metal-insulator transition (an unlimited growth of resistivity with decrease of T, with variable- 
range hopping conduction [2,3] is observed). The slope of the upper critical field ldHc2/dT IT, also 
has a tendency to saturate with the growth of resistivity. Standard interpretation of such behavior 
of ldHc2/dT lr, was based upon the use of Gorkov’s relation (cf. first relation in Eq. (3.115)) and 
lead to the conclusion that N(E,) decreases under disordering. In fact, we have seen that no such 
conclusion can be reached for systems with conductivities g < lo3 K’cm- ‘, because such 
saturation behavior may be a natural manifestation of the approaching metal-insulator transition. 
Similar dependences were observed in other Chevrel phase superconductors [206,214,215]. 

In Fig. 23 we show the dependence of conductivity and T, on the parameter pFl/fi in amorphous 
InO, alloy [209]. In Fig. 24, the data on the temperature dependence of Hc2 in amorphous In/InO, 
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Fig. 21. Fluence dependence of T, and IdH,JdT Ir, in SnMo&. 

Fig. 22. Resistivity dependence of T, and IdH,z/dT Ir, in Mo6Se8. 
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Fig. 24. H,,(T) in amorphous films of In/InO,. Lines show standard theoretical dependence. 
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(bulk) films from Ref. [216] are presented for different degrees of disorder. We can see that in the 
low temperature region H,,(T) deviates from the standard temperature dependence, but apparent- 
ly confirms the qualitative form predicted above for systems which are close to the Anderson 
transition. T,he same system was also studied in Ref. [217]. In Fig. 25 we show the dependence of 
two characteristic energies on disorder which in the opinion of the authors of Ref. [217] demon- 
strate the narrow region of coexistence of superconductivity and insulating state. In Fig. 26 we 
show the dependence of localization length and superconducting coherence length on disorder 
according to Ref. [217]. It demonstrates qualitative agreement with our general criterion of 
coexistence of superconductivity and localization; localization length must be larger or at least of 
the order of the size of the Cooper pair. 

Very impressive are the data for amorphous Sil _,Au, alloy [203,204,218]. In Fig. 27 [204] the 
data on T, and conductivity dependence on the Au concentration x are shown. In Fig. 28, H,,(T) 
dependence for this system is shown for different alloy compositions [204]. From these data it is 
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Fig. 25. The dependence of activation energy of hopping conductivity (triangles) and superconducting transition 
temperature T, (squares) in amorphous films of In/InO, on disorder parameter pFl/h as determined from room- 
temperature conductivity and Hall measurements. Long-dashed line represents d = 1.76T, following the BCS gap 
formula. The short-dashed line best fits the insulating data points with (p,//h), z 0.35 - the critical disorder of 
metal-insulator transition. A narrow region of superconductivity within the insulating phase can be inferred from these 
data. 

Fig. 26. Disorder dependence of localization length (full curve) and superconducting coherence length in amorphous 
In/InO, films. Squares represent superconducting < for metallic films while triangles refer to insulating samples. 
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Fig. 27. Conductivity r~ and T, dependence on gold concentration in amorphous Sil mxAu, alloy. 

Fig. 28. H,,(T) in amorphous Si, _xAu, alloy. 

clearly seen that T, vanishes before the metal-insulator transition. The metal-insulator transition 
itself is continuous, conductivity vanishes linearly with the decrease of gold concentration and the 
values of conductivity significantly less than the estimated “minimal metallic conductivity” are 
definitely observed. The system remains superconducting even for such low conductivity values. 
The slope of H,,(T) at T = T, is practically constant, irrespective of the change of conductivity 
(disorder) in a rather wide range. This behavior apparently cannot be explained only by the 
appearance of the correlation pseudogap in the density of states observed in Ref. [218], which 
becomes significant only very close to the metal-insulator transition. Low temperature deviation 
from standard convex dependence on T is also clearly seen. In Fig. 29 from Ref. [218] we show the 
temperature dependence of resistivity and the superconducting energy gap (determined by tunnel- 
ing) of a sample with x = 0.21. It nicely demonstrates the superconducting transition in a system 
which is very close to a disorder-induced metal-insulator transition. Note that according to Ref. 
[218] the superconducting energy gap in this sample is substantially broadened which may indicate 
the growth of the statistical gap fluctuations due to the same fluctuations of the local density of 
states. These data are in obvious qualitative correspondence with the general theoretical picture 
described throughout this review. 

These data show that in systems which are superconducting close to the disorder-induced 
metal-insulator (Anderson) transition, T, decreases rather quickly and practically in all reliable 
cases vanishes before transition to the insulating state. At the same time the temperature depend- 
ence of Hc2 is not described by the standard theory of “dirty” superconductors both with respect to 
the (dH,JdT)TE behavior and at low temperatures, where the upward deviations from the 
standard dependence are readily observed. This confirms most of our theoretical conclusions. 

Some indications of a possible superconducting state in the insulating phase of granular Al and 
Al-Ge were observed in Refs. [219,220]. Obviously, the granular systems are more or less outside 
the scope of our review. However, we should like to mention that the strong smearing of BCS-like 
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density of states and the gapless regime of superconductivity was observed (via tunneling measure- 
ments) in Refs. [221,222] close to the metal-insulator transition in these systems. This may confirm 
our picture of statistical fluctuation smearing of the density of states. Note that a more recent work 
on granular Al [223] apparently excludes the possibility of superconductivity in the insulating 
phase. In this work a small amount of Bi was added to granular Al in order to enhance spin-orbit 
scattering, which leads to an antilocalization effect [39]. This shifts both metal-insulator and to the 
same extent the superconducting transition, with the preservation of a narrow range of concentra- 
tion on the metallic side where the material is not fully superconducting. The fact that the 
superconducting transition shifts with the metal-insulator transition demonstrates that its position 
is determined by its vicinity to the metal-insulator transition, and that it is the impending 
transition to the insulating state which inhibits superconductivity. Similar conclusions on super- 
conductivity vanishing at the point of metal-insulator transition were reached for amorphous 
Al,Gei _x [224] and amorphous Ga-Ar mixtures [225]. This later case is particularly interesting 
because it has been shown that the conductivity exponent at the metal-insulator transition here is 
v z 0.5 which places this system in a different universality class than those discussed above and 
similar to that observed in some doped uncompensated semiconductors like Si: P [226]. Usual 
interpretation of this difference is based upon the importance of interaction effects in these systems 
[ 1081. Starting with the value of T, of amorphous Ga (T, = 7.6 K), T, decreases rather slowly with 
decreasing Ga volume fraction v, until one enters the critical region near u, z 0.145. Further 
approach to u, leads to a rapid decrease of T,. Taking McMillan formula Eq. (3.25) for T, (with 
~,~,/1.20 = 320 K and 1 = 0.45) and assuming negligible Coulomb repulsion p* for pure amorph- 
ous Ga the increase of ,LL* on the approach of metal-insulator transition can be determined from 
the experimental data for T,. This increase is approximately given by p* - (V - YJ’.~~. From this 
it is easy to see that T, + 0 for u + uc, so that these data do not indicate the survival of 
superconductivity beyond the metal-insulator transition. These results are not surprising since we 
have seen the existence of strong mechanisms of T, degradation close to disorder-induced 
metal-insulator transition. 

The interesting new high-pressure metastable metallic phase of an amorphous alloy Cdb3Sb5, 
exhibiting the gradual metal-insulator transition during the slow decay at room temperature and 
atmospheric pressure has been studied in Refs. [227,228]. Authors claim that during this decay the 
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system remains homogeneous while going from metallic to insulating phase. At the same time the 
metallic phase is superconducting with T, z 5 K and remains so up to the metal-insulator 
transition. Close to it the superconducting transition becomes smeared, while incomplete transition 
persists even in the insulating state. While these data are reminiscent of data on quench-condensed 
films of Sn and Ga [229], which were interpreted as reentrant superconductivity due to sample 
inhomogeneities, it is stressed in Refs. [227,228] that, in this new system situation is different and 
we are dealing with an intrinsically inhomogeneous state of superconductors discussed in Refs. 
[62,182,183]. From our point of view, further studies of this system are necessary in order to show 
unambiguously the absence of structural inhomogeneities. Also, a rather peculiar characteristic of 
this system is the almost complete independence of the onset temperature of the superconducting 
transition on disorder. 

The general conclusion is that, in most cases of traditional superconducting systems, we cannot 
find an unambiguous demonstration of the possibility of superconductivity in an insulating state 
induced by disorder. At the same time, we can see a rather rich variety of data on superconductivity 
close to the metal-insulator transition which stimulate further studies. Some of the anomalies of 
the superconducting behavior discussed above can be successfully explained by theories presented 
in this review, while the others require further theoretical investigations. 

5.2. High-T, superconductors 

Very soon after the discovery of high-temperature oxide superconductors [14,1.5] it was 
recognized that localization effects have an important role to play in these systems. There are many 
sources of disorder in these systems and the low level of conductivity indicate from the very 
beginning their closeness to Anderson transition. In the field where there are hundreds of papers 
published on the subject it is impossible to review or even to quote all of them. A more or less 
complete impression about the status of high-T, research can be obtained from Conference 
Proceedings [230]. Here we shall concentrate almost only on papers which deal with disordering 
by fast neutron irradiation which we consider probably the “purest” method to introduce disorder 
into the system (allowing to neglect the complicated problems associated with chemical substitu- 
tions). Also, historically, it is apparently the earliest method used to study the disorder effect in 
high-T, superconductors in a controllable way [231,232]. 

There are several reasons for localization effects to be important in high-T, oxides: 
l Two-dimensionality. All the known high-T, systems (with T, > 30 K) are strongly anisotropic 

or quasi-two-dimensional conductors. We have seen above that for such systems it is natural to 
expect the strong enhancement of localization effects due to the special role of spatial dimen- 
sionality d = 2: in the purely two-dimensional case, localization appears for infinitely small 
disorder [31,4,6,7]. The inplane conductivity scale for the metal-insulator transition in such 
systems as given by Eq. (2.12) or Eq. (2.93) is larger than in the isotropic case. Reasonable 
estimates show that the values of inplane “minimal metallic conductivity” may exceed 
lo3 R-l cm- ‘. While due to the continuous nature of the Anderson transition there is no 
rigorous meaning of minimal metallic conductivity, these estimates actually define the scale of 
conductivity near the metal-insulator transition caused by disorder. Then it is clear that most of 
the real samples of high-?‘, superconductors are quite close to the Anderson transition and even 
the very slight disordering is sufficient to transform them into Anderson insulators [171]. 
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l “Marginal” Fermi liquid. During our discussion of interaction effects we have seen that there are 
serious reasons to believe that importance of localization effects in high-T, oxides may be 
actually due to more fundamental reasons connected with the anomalous electronic structure 
and interactions in these materials. The concept of a “marginal” Fermi liquid [124] leads to 
extreme sensitivity of such a system to disordering and the appearance of localized states around 
the Fermi level at a rather weak disorder [126,127]. 

On the other hand, high-T, systems are especially promising from the point of view of the search 
for superconductivity in the Anderson insulator: 
l High transition temperature T, itself may guarantee the survival of superconductivity at 

relatively high disorder. 
l Due to the small size of Cooper pairs high-T, systems in combination with high-T, (large 

gap!) we can easily satisfy the main criterion for superconductivity in the localized phase as 
given by Eq. (3.20). 

l Being narrow band systems, as most of the conducting oxides, high T, systems are promising 
due to low values of the Fermi energy EF which leads to less effective T, degradation due to 
localization enhancement of the Coulomb pseudopotential p* (cf. Eq. (3.61)). 
Anomalous transport properties of high-T, oxides are well known [233]. Experimentally, there 

are two types of resistivity behavior of good single-crystals of these systems. In the highly 
conducting ab plane of YBa2 Cu3 0, _B and other oxides, resistivity of a high-quality single-crystal 
always shows the notorious linear-T behavior (by “good” we mean the samples with resistivity 
Pa,, < lo3 SZcm). However, along the orthogonal c direction the situation is rather curious: most 
samples produce semiconductor-like behavior pc - l/T, though some relatively rare samples 
(apparently more pure) show metallic-like />c - T (with strong anisotropy PC/P,& z lo2 remaining) 
[233,234]. Metallic behavior in the c direction was apparently observed only in the best samples of 
YBa2Cu307 _6 and almost in no other high-T, oxide. In Fig. 30 taken from Ref. [235] we show the 
temperature dependence of pc in a number of high-T, systems. It is seen that p,(T) changes 
between metallic and semiconducting behavior depending on whether the resistivity is below or 
above the Ioffe-Regel limit defined for the quasi-two-dimensional case by Eq. (2.12). Rather 
strange is the absence of any obvious correlation between the behavior of pc and T,. 

This unusual behavior leads us to the idea that most of the samples of high-T, systems which are 
studied in the experiment are actually already in a localized phase due to internal disorder which is 
always present. Surely, we realize that such a drastic assumption contradicts the usual expectations 
and propose it just as an alternative view open for further discussion. The attempted justification of 
this idea may be based upon the quasi-two-dimensional nature of these systems or on marginal 
Fermi liquid effects. In this case a simple conjecture on the temperature behavior of resistivity of 
single-crystals can be made which qualitatively explains the observations [236,237]. In case of 
localized states at the Fermi level and for finite temperatures it is important to compare the 
localization length Rloc with the diffusion length due to inelastic scattering L, z 6, where D is 
the diffusion coefficient due to elastic scattering on disorder, while z, is the phase coherence time 
determined by inelastic processes. For T > 0 this length L, effectively replaces the sample size L in 
all expressions of scaling theory of localization when L + L,, because on distances larger than 
L, all information on the nature of wave functions (e.g. whether they are localized or extended) is 
smeared out. Taking into account the usual low-temperature dependence like r(,, - TeP (where p is 
some integer, depending on the mechanism of inelastic scattering) this can lead to a nontrivial 
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Fig. 30. Temperature dependence of pC for different high-T, cuprates. The dashed region indicates the resistivity range 
corresponding to Ioffe-Regel limit. 

temperature dependence of conductivity, in particular to the possibility of a negative temperature 
coefficient of resistivity [33]. Similar expressions determine the temperature dependence of con- 
ductivity also for the localized phase unit L, < Rloc. In this case, electrons do not “feel” being 
localized and conductivity at high enough T will show metallic like behavior. For localization to be 
important we must go to low enough temperatures, so that L, becomes greater than R,,,. If 
disordered high-T, superconductors are in fact Anderson insulators with a very anisotropic 
localization length, Rf,b, $ R,",, and both localization lengths diminish as disorder grows, L,p is also 
anisotropic and we can have three different types of temperature behavior of resistivity [236]: 

1. Low T or strong disorder, when we have 

L$’ = JG; 9 R;:c , L; = & ti R;b, . (5.1) 

This gives semiconductor-like behavior for both directions. 

2. Medium T or medium disorder, when 

LGb < R;:c , L; > Ko, , (5.21 

and metallic behavior is observed in the ab plane, while semiconducting temperature dependence of 
resistivity is observed along the c-axis. 

3. High T or low disorder, when 

LGb < Rf& , L; < Rro, (5.31 

and metallic behavior is observed in both directions. 



322 M. V. Sadovskii JPh_vsics Reports 282 (1997) 225-348 

Here we do not speculate on the inelastic scattering mechanisms leading to the concrete 
temperature behavior in high-T, oxides, in particular on linear T behavior in the ab plane or l/T 
behavior in the c direction. Unfortunately too little is known on these mechanisms [233] to be able 
to make quantitative estimates on the different types of behavior predicted above. Of course 
detailed studies of such mechanisms are necessary to prove the proposed idea and to explain the 
temperature dependence of resistivity in high-T, systems on its basis. However, most of the 
experimental data as we shall see below at least do not contradict the idea of the possibility of 
Anderson localization in disordered high-T, cuprates. 

Now let us consider the experiments on controllable disordering of high-temperature supercon- 
ductors. Already the first experiments on low temperature (T = 80 K) fast neutron irradiation of 
ceramic samples of high-T, systems [238-242,244] have shown that the growth of structural 
disorder leads to a number of drastic changes in their physical properties: 
l continuous metal-insulator transition at very slight disordering, 
l rapid degradation of T,, 
l apparent coexistence of hopping conductivity and superconductivity at intermediate disorder, 
l approximate independence of the slope of Hc2 at T - T, on the degree of disorder, 
l anomalous rxponential growth of resistivity with defect concentration. 
These anomalies were later confirmed on single-crystals and epitaxial films [243,245-2471, and 
were interpreted [171,16] using the ideas of possible coexistence of Anderson localization and 
superconductivity. 

In Fig. 3 1 we show data [ 17 l] on the dependence of the superconducting transition temperature 
and resistivity (at T = 100 K, i.e. just before the superconducting transition) on fast neutron fluence 
for YBaz CU~O~,~~. In all high-T, compounds, introduction of defects leads to a strong broadening 
of the superconducting transition. The derivative (dH,JdT)rc in ceramic samples measured at 
the midpoint of the superconducting transition does not change as plooK grows by an order 
magnitude. In Fig. 32 [171] we show the temperature dependence of resistivity for samples 
of YBa2Cu306.95 and La1.83 Sro. I ,Cu04 for different degrees of disorder. In all these materials 
the p(T) curves vary in the same way. In the fluence range @ > 10” cm-2, where superconductiv- 
ity is absent, p(T) follows a dependence which is characteristic of conductivity via localized states 

[2,31: 

p(T) = p, exp(Q/T 1’4) , Q = 2.1 [N(E,)R&- 1:4 

as shown in Fig. 33 (Mott’s variable-range hopping conduction). 

(5.4) 

The most striking anomaly of resistivity behavior of all high-T, systems under disordering is 
nonlinear, practically exponential growth of resistivity at fixed temperature (e.g. p(T = 100 K)) 
with fluence, starting from the low fluences @ < 7 x 1018 cm ~ 2, including superconducting samples 
[238,171,239-2421. These data are shown in Fig. 34 [171] for the dependence of p(T = 80 K) on 
@ obtained from measurements made directly during the process of irradiation. For comparison, 
the similar data for SnMobSs are shown which do not demonstrate such an anomalous behavior, 
its resistivity is just proportional to @ and saturates at large fluences. We relate this exponential 
growth of p with the increase of @ (i.e. of defect concentration) in all high-T, systems to 
localization, which already appears for very small degrees of disorder in samples with high values of 
T,. As we have seen in samples with much reduced or vanishing T, localization is observed directly 
via Mott’s hopping in the temperature behavior of resistivity given by Eq. (5.4). 
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Fig. 3 1. Dependence of the superconducting transition temperature and resistivity (at T = 100 K) on neutron fluence for 

ceramic YBa2Cu306.95. Different notations correspond to different methods of measurement and also evolution after 
annealing at 300 K. 

Fig. 32. Temperature dependence of resistivity p for ceramic samples of YBaZCu306.95 (curves l--3 and 5-8) and 
LaI,&SrO,, ,Cu04 (curves 4,9) irradiated at 7’ = 80 K with different fluences: 1, Qi = 0; 3,6,8, @ = 2.5 and 7 x 10” cm-’ 
plus annealing for 2 h at 300 K; 2,5, 7, irradiated with @ = 2.5 and 7 x 1O’a cm- 2 plus annealing for two weeks at 300 K; 
4,@=0;9,@=5x1018cm-2plusannealingfor2hat 300K. 

From these results it follows that the electronic system of high-T, superconductors is very close 
to the Anderson transition. The observed variation of p as a function of both fluence and of 
temperature can be described by the following empirical formula [238]: 

p(T, @) = (a + cT)exp(b@/T ‘14) . (5.5) 

Identifying the exponential factors in Eqs. (5.4) and (5.5) it is possible to obtain a fluence 
dependence of localization length (cf. Ref. [171] and below). 

Detailed neutron diffraction studies of structural changes in irradiated samples were also 
performed [238,171,248]. These investigations have shown definitely that there is no oxygen loss 
in YBazCu,06.95 during low temperature irradiation. Only some partial rearrangement of 
oxygens between positions O(4) and O(5) in the elementary cell occur as radiation-induced defects 
are introduced. In addition, in all high-T= compounds the Debye-Waller factors grow and the 
lattice parameters a, b, c increase slightly [171,248]. The growth of Debye-Waller factors reflect 
significant atomic shifts, both static and dynamic, from their regular positions, which induce 
a random potential. This disorder is pretty small from the structural point of view, the lattice is only 
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Fig. 33. Dependence of lnp on T -‘I4 for YBa2CujOh.95 irradiated with a fluence of @ = 1.2 x 10” cm-’ at T = 80 K 
(curve l), and after 20 min annealing at T = 150 K (2); 200 K (3); 250 K (4); 300 K (5) and two weeks annealing at 
T = 300 K (7). Similar dependence for La,,,,Sr,,,,CuO, for @ = 2 x 1019 cmm2 annealed for 2 h at 300 K (6) and for 
La2Cu04 for @ = 2 x 10’9cm~2 annealed for 2 h at 300 K (8). 

Fig. 34. Dependence of lnp on fluence @ during irradiation at T = 80 K: 1 ~ LazCu04; 2 ~ YBa2Cu306.95; 3 - single 

crystalline pa,, in YBa2Cu30h.95; 4 - La 1.83Srr,17Cu04; 5 ~ Bi-Sr-Ca-Cu0; 6 ~ SnMohSes. 

slightly distorted. However, we have seen that this small disorder is sufficient to induce 
a metal-insulator transition and complete degradation of superconductivity. The absence of 
oxygen loss implies that there is no significant change in concentration of carriers and we really 
have a disorder-induced metal-insulator transition. This is also confirmed by other methods 
[244,249]. In Fig. 35 we show the data [244,245] regarding temperature dependence of the Hall 
concentration of ceramic samples of irradiated and oxygen deficient YBaz Cu3 0, _s. It is seen that 
disordering weakens the anomalous temperature dependence of Hall effect, but Hall concentration 
fin at low T practically does not show significant difference with the data on oxygen deficient 
samples, where nn drops by several orders. This also confirms the picture of a disorder-induced 
metal-insulator transition in radiation disordering experiments. Similar Hall data were obtained 
on epitaxial films [246] and single-crystals [247]. 

Qualitatively identical resistivity behavior was also obtained in the experiments on radiation 
disordering of single-crystals [243,245] and epitaxial films [246]. Electrical resistivities of 
YBaZCu307-6 single crystals were measured at T = 80 K directly during irradiation by fast 
neutrons. The data are shown in Fig. 36. We can see that P& increases exponentially with @ (defect 
concentration) starting from the smallest doses, while pc grows more slowly and only for 
@ > 1019 cme2 they grow at the same rate. At large fluences, both &b and pc demonstrate [250] 
Mott’s hopping ln Pab, c - T - ‘j4. Similar data of Ref. [246] show In p - T - ‘I2 characteristic of the 
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Fig. 35. Temperature dependence of Hall concentration for the irradiated (left) and oxygen deficient (right) ceramic 
samples of YBa2Cu30-, -6. 

II 5 10 

Fig. 36. Fluence dependence of par, and pc at T = 80 K during fast neutron irradiation. 

Fig. 37. Temperature dependence of H!!! (upper curves) and H,’ (lower curves) for the single-crystals of YBa#&O, -d 
with different degrees of disorder. 
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Coulomb gap. We do not know the reasons for this discrepancy between single-crystalline and 
epitaxial films data (note that another method of disordering by 1 MeV Ne+ ions was used in Ref. 
[246]). Anisotropy_p,/p,b at T = 80 K drops rapidly (to the values -30 for @ = 1Ol9 cmP2) and 
then practically remains unchanged and the “residual” anisotropy is of the order of the room- 
temperature value as in initial samples. This means that the temperature dependence of anisotropy 
weakens in the disordered samples. Note that, unfortunately, only the single-crystals with 
“semiconducting” temperature dependence of resistivity along the c axis were investigated up to 
now. 

The upper critical fields of YBa2Cu307 _s single-crystals (determined from standard resistivity 
measurements) for different degrees of disorder are shown in Fig. 37 [245]. Temperature depend- 
ence of Hc2 in disordered samples is essentially nonlinear, especially for samples with low T,. The 
temperature derivative of Hi2 (field along the c axis) estimated from high-field regions increases 
with disorder. However, a similar derivative of Hbz (field along uh plane) drops in the beginning and 
then does not change. Anisotropy of Hc2 decreases with disorder and in samples with T, - 10 K 
the ratio of (Hi2)‘/(Hi2)’ is close to unity. According to Eq. (3.118) this means the complete 
isotropisation of the Cooper pairs. This is illustrated by Fig. 38 [251]. The remaining anisotropy of 
resistivity may be connected with some kind of planar defects in the system. 

In a recent paper [252] Osofsky et al. presented the unique data on the temperature dependence 
of the upper critical field of high-temperature superconductor BiZSr2Cu0, in a wide temperature 
interval from T, = 19 K to T z O.OOST,, which has shown a rather anomalous dependence 
with positive curvature at any temperature. The authors of Ref. [252] have noted that this type 
of behavior is difficult to explain within any known theory. It is sharply different from the standard 
behaviour the BCS-model. It was demonstrated in Refs. [253,254] that the observed dependence 
of H,,(T) can be satisfactorily explained by localization effects in a two-dimensional (quasi- 
two-dimensional) model in the limit of sufficiently strong disorder. Measurements of Hc2 in 
Ref. [252] were performed on epitaxially grown films of Bi2Sr2Cu0,: however it is quite possible 
that the films were still disordered enough, which can be guessed from the rather wide (-7 K) 
superconducting transition. Unfortunately, the relevant data, in particular, regarding the 
conductivity of the films studied are absent. This gives us some ground to try to interpret 
the data obtained in Ref. [252] in the framework of a very strong disorder, the effects of 
which are obviously enhanced by the quasi-two-dimensional nature of high-temperature super- 
conductors. 

The general discussion of the temperature dependence of the upper critical field in the two- 
dimensional and quasi-two-dimensional cases with strong localization effects was presented above 
in Section 3.3.1. Note that we mainly analyzed there the case of a magnetic field perpendicular to 
the highly conducting planes, which is precisely the case of Ref. [252]. We have seen [Sl] that the 
anomalies of the upper critical field due to the frequency dependence of the diffusion coefficient 
appear only for temperatures T + e - l/‘/z. For higher temperatures we obtained the usual behavior 
of “dirty” superconductors. Also we have noted [Sl] that superconductivity survives in a system 
with finite localization length if T, + i e - “‘l/z, which is equivalent to our criteria for the smallness 
of Cooper pair size compared with localization length. This latter length is exponentially large in 
two-dimensional systems with small disorder (I 4 1). The most interesting (for our aims) limit of 
a relatively strong disorder is defined by T, 4 e-l/’ /z, so that in fact we are dealing with a pretty 
narrow region of 3-s when 1, e- li’/r 4 T, < e-‘IA/z. In th is case we have seen that the upper critical 
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Fig. 38. The dependence of coherence lengths determined from HCz behavior under disordering on the critical temper- 
ature T,: <,i ~ open circles; t1 - filled circles. 

Fig. 39. Temperature dependence of the upper critical field: theoretical curve (1) is given for the case of e- liA/TCz = 2, 
L = 0.18, while curve (2) is for e -““/T,s = 20, 1 = 0.032. Squares represent the experimental data for Bi2Sr2Cu0,. 

field is practically defined by Eq. (3.141): 

(5.6) 

(y = 1.781) from which we can directly obtain the T (H,z)-dependence. The appropriate behavior 
of the upper critical field for two sets of parameters is shown in Fig. 39. The curve of H,,(T) 
demonstrates positive curvature and Hc2 diverges for T + 0. We have seen that this weak 
(logarithmic) divergence is connected with our neglect of the magnetic field influence upon 
diffusion. Taking this influence into account we can suppress this divergence of Hc2 as T + 0. This 
is the main effect of broken time invariance and it is clear that it is important only for extremely low 
temperatures [Sl]. In the following we neglect it. For the quasi-two-dimensional case on the 
dielectric side of Anderson’s transition, but not very close to it, the behavior of diffusion coefficient 
is quite close to that of purely two-dimensional case, so that the upper critical field can be analyzed 
within the two-dimensional approach. Close to the transition (e.g. over interplane transfer integral) 
both for metallic and insulating sides and for parameters satisfying the inequality 1 e-‘/‘/z < 
T, 4 e- “‘/z, the temperature dependence of Hc2 is in fact again very close to those in the purely 
two-dimensional case considered above [S 11. Some deviations appear only in a very narrow region 
of very low temperatures [Sl]. 

In Fig. 39 we also show the experimental data for Hc2 from Ref. [252]. Theoretical curve (1) is 
given for the parameters which lead to rather good agreement with experiment in the low 
temperature region. The curve (2) corresponds to parameters giving good agreement in a wide 
temperature region except the lowest temperatures. The cyclotron mass m was always assumed to 
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be equal that of the free electron. In general we observe satisfactory agreement between theory and 
experiment. Unfortunately, the values of the ratio e- iin/T z for the second curve, while correspond- 
ing to quite reasonable values of ;t, lead to nonrealistic (Loo small) values of Tcz, which are rather 
doubtful for a system with relatively high T,. For the first curve, the situation is much better 
though the electron damping on the scale of T, is still very large which corresponds to strong 
disorder. Note however, that the detailed discussion of these parameters is actually impossible 
without the knowledge of additional characteristics of the films studied in Ref. [252]. In particular, 
it is quite interesting to have an independent estimate of A. We also want to stress the relatively 
approximate nature of these parameters due to our two-dimensional idealization. More serious 
comparison should be done using the expressions of Ref. [Sl] for the quasi-two-dimensional case, 
which again requires the additional information on the system, in particular, the data on the 
anisotropy of electronic properties. 

In our opinion, the relatively good agreement of experimental data of Ref. [252] with theoretical 
dependences obtained for the two-dimensional (quasi-two-dimensional) case of a disordered system 
with Anderson localization illustrates the importance of localization effects for the physics of 
high-temperature superconductors. However, we must note that similar anomalies of the temper- 
ature dependence of the upper critical field were also observed in Ref. 12551 for the single crystals of 
the overdoped Tl,Ba,CuO 6+6 which authors claim to be extremely clean, so that apparently no 
explanation based upon strong localization effects can be used. Similar data were recently obtained 
for thin films of underdoped YBaz(Cu 0.97Zu0.03)307 _6 with pretty low transition temperatures 
[256]. These films again seem to be disordered enough to call localization effects as a possible 
explanation of the unusual positive curvature of H,,(T) dependence for all temperatures. 

Under irradiation, localized moment contribution appears in the magnetic susceptibility of 
high-T, oxides [238,171-J. In the temperature range from T, to 300 K, x(T) is satisfactorily 
described by a Curie-Weiss type dependence: x(T) = x0 + C/(T - 0). The value of x0 and the 
Curie constant C as a function of fluence @ are given in Fig. 40. The value of C is proportional to 
the fluence. Note that the threefold larger slope of C(Q) in YBa2Cu306.95 as compared with 
La 1.83Sro,,,Cu0, is an evidence that this Curie-law temperature dependence is associated with 
localized moments forming on Cu (there are three times more copper in an elementary cell of 
Y compound than in an La compound). 

The data presented above show that electronic properties of high-T, systems are quite different 
under disordering from that of traditional superconductors [214,215] or even some closely related 
metallic oxides [247,257]. We associate these anomalies with the closeness of the Anderson 
transition and believe that real samples of high-T, systems which always possess some noticeable 
disorder may well be already in the state of the Anderson insulator. However, we must stress that it 
is quite difficult to decide from the experiments described above the precise position of the 
Anderson transition on disorder scale. Some additional information on this problem may be 
obtained from experiments on NMR relaxation in disordered state, using the approach proposed 
rather long ago by Warren [ZSS] and later quantified theoretically in Refs. [259,260]. The study of 
NMR relaxation rate on [89] Y nuclei in radiationally disordered YBa2Cu306,95 (which is 
opposite to Cu nuclei demonstrate Korringa behavior) [261,262] has shown the anomalies 
(a maximum in the so-called Warren’s enhancement factor) which according to Ref. [260] may 
indicate the Anderson transition somewhere in the fluence interval @ = (l-2) x lOi cme2. Unfor- 
tunately, the number of samples in these experiments was too limited to place the transition point 
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Fig. 40. Dependence of the Curie constant C and the temperature-independent part x0 of magnetic susceptibility on 
neutron fluence Q, for La1.83Sr0.17Cu04 (filled circles) and YBaZCu306.95 (open circles). 

Fig. 41. Dependence of T, on fluence for YBaZCu306.95 (circles). The solid curve is the localization length calculated 
from hopping conductivity. Dashed curve defines the minimum localization length at which superconductivity can exist 
at given T,. Dashed-dotted curve is the theoretical fit using expressions described in the text. 

more precisely, while superconductivity disappears exactly in this interval. In this sense we still 
have no direct proof of coexistence of superconductivity and localization in disordered high-TT, 
oxides. However, the method used in Refs. [261,262] seems to be very promising. Note that Knight 
shift data of Refs. [261,262] strongly indicate Coulomb gap opening at the Fermi level of strongly 
disordered oxides. Independently, this conclusion was reached in tunneling experiments of Ref. 
[263] on a number of oxides disordered by doping. 

Using the experimental data on electrical resistivity of disordered samples of YBaZCu306.95 and 
the relations given by Eq. (5.4) and Eq. (5.5) ( assuming that exponentials there are identical) we can 
calculate the change of localization length Rloc as a function of fluence [171,239-2421. This 
dependence is shown on Fig. 41 along with the fluence dependence of T,. It is clearly seen that 
superconductivity is destroyed when localization length Rloc becomes smaller than - 30 A, i.e. it 
becomes of the order or smaller than a typical size of the Cooper pair in this system (cf. Fig. 38) in 
complete accordance with our basic criterion of Eq. (3.20). We can estimate the minimal value 
of Rloc for which superconductivity can still exist in a system of localized electrons via Eq. (3.20) 
[171] taking the free-electron value of N(Er) z 5 x 1O33 (erg cm3)-l (for carrier concentration of 
-6 x 1021 cmP3) and the gap value A - 57’,, corresponding to very strong coupling [232]. We 

obtain the result shown in Fig. 41. In any case we can see that criterion of Eq. (3.20) ceases to be 
fulfilled for (9 - (5-7) x lOi cmP2 in remarkably good agreement with the experiment. 

In the absence of accepted pairing mechanism for high temperature superconductors it is very 
difficult to speculate on the reasons for T, degradation in these systems. If we assume that the main 
mechanism of T, degradation is connected with the growth of Coulomb effects during disordering, 
as discussed above in this review, we can try to use appropriate expressions to describe the 
experimental data. Assuming superconductivity in the localized phase we can use Eq. (3.68), 
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estimating Rloc as above from empirical relation (5.5) and (5.4) (or directly expressing the para- 
meters entering Eq. (3.68) via experimental dependence of resistivity on fluence as described by 
Eq. (5.5) [171]). The results of such a fit (with the assumption of p z 1) are also shown in Fig. 41. 
The agreement is also rather satisfactory, the more rapid degradation of T, for small degrees of 
disorder can be related to additional contributions to Coulomb repulsion within Cooper pairs 
neglected in the derivation of Eq. (3.68). Surely, we do not claim that this is a real explanation of T, 
degradation in disordered high temperature superconductors. However, note its relation to 
localized moment formation under disordering which leads to the usual Abrikosov-Gorkov 
mechanism of depairing due to spin-flip scattering on magnetic impurities. According to Mott 
[ 1591 (cf. also Refs. [160,7]) the appearance of localized moments may be related to the presence of 
localized states (single occupied states below the Fermi level as briefly discussed above), We can 
then estimate the value of the effective magnetic moment (in Bohr magnetons) in a unit cell as 
[171]. 

(5.7) 

where 0, is the volume of a unit cell. For large degrees of disorder (@ = 2 x 1019 cm-‘) and 
R lot z 8 A with ,LL z 1 we obtain pfheor = 0.66 for YBa2Cu306.95 in full agreement with experiment. 
However, for smaller fluences ptheor is considerably smaller than the experimental value. Note, 
though, that the estimate of Eq. (5.7) is valid only for small enough values of Rloc, i.e. when the 
Fermi level is well inside the localized region. On the other hand, the accuracy with which the Curie 
constant is determined in weakly disordered samples is considerably less than that in the strongly 
disordered case. Of course, the other mechanisms of local moment formation, which were discussed 
above and can become operational even before the metal-insulator transition can be important here. 

Of course, plenty of work on localization effects in high-T, oxides use disorder induced by 
different types of chemical substitutions in these systems. Of these we shall rather arbitrarily quote 
Refs. [264-2681, which provide data quite similar, though not necessarily identical, to those 
described above on different types of systems and obtained by different experimental methods. We 
note that the effects of chemical disorder are always complicated by the inevitable changes of 
carrier concentration due to doping effects. Still all these data indicate that superconductivity in 
high-T, systems is realized close to disorder induced metal-insulator transition, so that these 
systems provide us with plenty of possibilities to study experimentally the general problems 
discussed in our review. More details can be found in the extensive review paper [269]. 

Special attention should be paid to a recent study of angle resolved photoemission in Co doped 
single-crystals of Bi2Sr2CaCu208+y [270]. Doping BizSrzCaCuZ08+, with Co causes supercon- 
ducting-insulator transition, Co doping decreases T, and causes increase in residual resistivity. 
The changes in the temperature behavior of resistivity from metallic to insulating phase correlate 
with the disappearance of the dispersing band-like states in angle-resolved photoemission. Authors 
believe that Anderson localization caused by the impurity potential of the doped Co atoms 
provides a consistent explanation of all experimental features and T, reduction is not caused by 
magnetic impurity pairbreaking effects but by spatial localization of carriers with the supercon- 
ducting ground state being formed out of spatially localized carriers. Similar data were also 
obtained for some exceptional (apparently strongly disordered) samples of undoped 
Bi2Sr2CaCu208 +y [271]. Of course, it will be very interesting to perform similar type of experi- 
ments on neutron irradiated samples where we deal with pure disorder. 
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Finally, we must stress that in our opinion these data on rather strongly disordered samples of 
high-temperature superconductors more or less definitely exclude the possibility of d-wave pairing 
in these systems. As is well known (and also can be deduced from our discussion in Appendix C), 
d-wave pairing is much more sensitive to disordering and is completely suppressed roughly 
speaking at the disorders measured by the energy scale l/z - TcO, which is at least an order of 
magnitude smaller than the disorder necessary to induce the metal-insulator transition which can 
be estimated as l/z - EF. This apparently excludes the possibility to observe any manifestations of 
localization effects in d-wave superconductors, though these are clearly observed in high-T, 
systems. Of course, these qualitative conclusions deserve further studies within the specific models 
of microscopic mechanisms of high-temperature superconductivity. 

We shall limit ourselves to the discussion of localization effects in high temperature supercon- 
ductors. Our conclusion is that these effects are extremely important in these systems and some of 
the anomalies can be successfully described by theoretical ideas formulated in this review. We must 
stress that much additional work is needed both theoretical and experimental to clarify the general 
picture of disorder effects in high-T, superconductors and we can expect that future progress, 
especially with the quality of samples, may provide some new and exciting results. 

6. Conclusions 

We conclude our review by trying to recapitulate the basic unsolved problems. From the 
theoretical point of view probably the main problem is to formulate the theory of superconducting 
pairing in strongly disordered system along the lines of the general theory of interacting Fermi 
systems. This problem is obviously connected with the general theory of metal-insulator transition 
in such an approach, which as we mentioned during our brief discussion above is rather far from its 
final form. Nevertheless, there were several attempts to analyze the superconducting transition 
within this framework [272-275, 1151. In all cases, the authors limited themselves to certain 
universality classes within the general renormalization group approach of the interaction theory of 
the metal-insulator transition. Ref. [272] dealt only with the two-dimensional problem, while Refs. 
[273-275,115] 1 a so considered the bulk case. These papers have demonstrated a large variety of 
possible behavior of superconductivity under disordering, from disorder-induced (triplet) super- 
conductivity [274] to a complete destruction of it close to [272,273] or even long before the 
metal-insulator transition [275]. Our point of view is that at the moment it is rather difficult to 
make any general conclusions from the results of these approaches. In particular, we do not believe 
that the present status of these theories is sufficient to prove or disprove the general possibility of 
superconductivity in Anderson insulators. However, it is obvious that further theoretical progress 
in the problem of T, behavior under disordering will be largely possible only within this general 
approach. In this sense, our simplified discussion of Coulomb effects and other mechanisms of T, 
degradation in this review is only of qualitative nature. Still, more general approaches apparently 
do not change our qualitative conclusions. These problems become even more complicated if we 
address ourselves to the case of high temperature superconductors, where we do not know precisely 
the nature of the pairing interaction in a regular system. 

Concerning the semiphenomenological approach to the theory of superconductivity close to the 
Anderson transition we must stress the necessity of further investigation of the region of strong 
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statistical fluctuations with the aim of a more detailed study of their influence upon different 
physical properties, like e.g. the upper critical field, density of states, nuclear relaxation, etc. 
Obviously, all of them may be significantly changed in comparison with predictions of what we 
called the statistical mean-field theory. Especially important are further studies of rather exotic 
predictions of random fluxes in the ground state [201]. 

Despite our explicit limitation to a discussion of superconductivity in bulk disordered supercon- 
ductors we have to mention the extremely interesting problem of universal conductivity at the 
superconductor-insulator transition at T = 0 in two-dimensional systems which attracted much 
attention recently [276-278, 191. It is argued that the transition between the insulating and 
superconducting phases of a disordered two-dimensional system at zero temperature is of continu- 
ous quantum nature, but the system behaves like a normal metal right at the transition, i.e. the 
conductivity has a finite, nonzero value. This value is universal and, apparently, equal to (2e)2/h 
(with 2e being the Cooper pair charge). There is strong experimental evidence [216,279-282,191 
that a variety of systems (metallic films, high-T, films, etc.) show the onset of superconductivity to 
occur when their sheet resistance falls below a value close to h/4e2 z 6.45 kQ. The theoretical 
analysis here is based upon boson (Cooper pairs) approach to superconductivity and the main 
conclusion is that in contrast to the case of localization of fermions in two dimensions, bosons 
exhibit a superconductor to insulator transition (as disorder grows) with the value of conductivity 
at the critical point being independent of microscopic details. A major theoretical problem arises to 
describe a crossover to such behavior e.g. in the quasi-two-dimensional case of BCS superconduc- 
tivity as interplane coupling goes to zero. 

So we are not short of theoretical problems in this important field of research. As to the 
experiments, certainly much is still to be done for unambiguous demonstration of the exotic 
possibility of the superconductivity of Anderson insulators. 
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Appendix A. Spectral densities and criterion for localization 

A convenient formalism to consider general properties of a disordered system is based upon exact 
eigenstate representation for an electron in a random field created by disorder. These eigenstates 
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by the Schroedinger equation 
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(A-1) 

where H is the one-particle Hamiltonian of the disordered system under consideration, E, are exact 
eigenvalues of electron energy in a random potential. Obviously, 4,,(r) and E, are dependent on 
locations of scatterers R, for a given realization of random field. 

Let us define two-particle spectral densities [59,7]: 

<PE(r)PE+w(WF = $) 
( 

c cp~(r)(bY,(r)~Y*.(y’)~y(i)~(E - s,)W + w - s,,) , (~4.2) 
YY’ > 

Gd~hb+&‘W = $) 
( 

1 I~y~~~121~y~~~‘~12~~~ - ~,)a@ + 0 - ~1 
YY’ > 

, (A.3) 

where angular brackets denote averaging over disorder and 

N(E) = 
( 

1 I~,@)12W - G) 
> 

(A.4) 
V 

is one-electron (average) density of states. Obviously Eq. (A.3) is just a correlation function of local 

densities of states in a disordered system. Spectral density given by Eq. (A.2) determines electronic 
transport [59]. The following general properties are easily verified using the completeness and 
orthonormality of functions $(r): 

s 
dr<Pdr)PE+o(r’)>F = W4 , 

s 
d~~d9~~+oW>F = Q - J) (A.5) 

or for the Fourier-components: 

(A.6) 

and ((P~P~+_))~ 2 0. From general definitions given in Eqs. (A.2) and (A-3) it is clear that 

Q&)PE+&DF = G&)Ps+&)Yy (A.7) 

i.e. these spectral densities coincide for r = r’. 

Terms with E,, = E,, are in general present in Eqs. (A.2) and (A.3). However, if these states are 
extended the appropriate wave-functions &(r) are normalized on the total volume Q of the system 
and these contributions to Eqs. (A.2) and (A.3) are proportional to 0-l and vanish as Q -+ co. 
Things change if states are localized. In this case states are normalized on a finite volume of the 
order of - Rf,, . This leads to the appearance of a 6(o)-contribution to spectral densities: 

G&~)~~+w(~‘)>F*H = AE(r - r’)d(o) + pEyH(r - r’o) (A4 

or in momentum representation: 

<PEPE+0JY = &(q)(Vu) + PPYP) , (A.9) 
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where the second term is regular in o. This singular behavior was proposed as a general criterion 
for localization [59]. It is easy to show that 

(A.lO) 

AE = &(r - r’)lrErs - R,,d . 

&(r - r’) represents the so-called inverse participation ratio [27,87]. Roughly speaking, its value 
at r = r’ is inversely proportional to the number of atomic orbitals which effectively form the 
quantum state v. 

These G(o)-singularities in spectral densities signal nonergodic behavior of the system in 
a localized state. This leads to a difference between the so-called adiabatic and isothermal response 
functions [loo, 60, 71. The intimate connection between localization and nonergodic behavior was 
already noted in the first paper by Anderson [l]. 

From general properties given by Eqs. (AS) and (A.6) for q -+ 0 in the localization region we have 
[59]: 

(A.1 1) 

R:,, = 
1 

~ ddr I-’ 1 &E - ~d14v(~)121dd0)12 
2dN(E) s i Y 

(A.12) 

defines the localization length. Delocalization leads to a smearing of the 6(o)-singularity for finite 

4. 
Spectral densities of Eqs. (A.2) and (A.3) can be expressed via two-particle Green’s functions [7]. 

Using nonaveraged retarded and advanced Green’s functions - 

we immediately get from Eqs. (A.2) and (A.3) 

<P&)PEV)>F = 2KZk(E) Re{(GR(rr’E’)GA(r’rE)) - (GR*A(rr’E’)GR’A(r’rE))} 

<~~(rh(r’)ZV = 2aziti(E) Re{(GR(rrE’)GA(r’r’E)) - (GR,A(rrE’)GR’A(r’r’E))} 

In the momentum representation, Eq. (A.14) is equivalent to 

@:A(R)(qm) = - &c (GR(p +p;E + ~o)G~‘~‘(p’_p_E)) 
PPT 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 
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andp+_ =p? 1/2q. It can be shown [53,54] that @ER(**)(coq) are nonsingular for small o and q. 

Accordingly, G(w)-singularity signalling localization can appear only from the first term in Eq. 
(A.16). 

Appendix B. Linearized gap equation in disordered system 

Let us consider the derivative of the linearized gap equation Eq. (3.55) used to determine T, 
[157,158]. Equation for Gorkov’s anomalous Green’s function in an inhomogeneous disordered 
system (before any averaging procedure) at T = T, takes the following form: 

(6; + ,$;)F(YY’E,) = - T, c V(rr’~,, - E,)F(YY’E,) , 03.1) 
m 

where E, = (2n + l)rcTc and I/@‘&, - a,) is an effective interelectron potential, E: is a one electron 
energy operator (energy zero is at the Fermi energy). Define 

d (rr’) = - 28,. coth $ T, c F(rr’~,) 03.2) 
c n 

and assume the following relation between A(rr’) and F(w’E,,): 

T, c V(rr’~, - E,) 
m 

(B-3) 

where (2 is some unknown operator. Then after substitution of Eq. (B.3) into Eq. (B.2) we get 
a BCS-like equation for T,: 

A(rr’) = - o(rr’) 
tanh(&)/2T, 

2E^ A@‘) , 
I 

where the operator of “effective” interaction is defined by 

1 
T, c _ T, c V(rr’~, - E,) 

“E,2+g m 

x & &rr’c,)2& coth(&/2T,) . 
I 

From Eqs. (B.l)-(B.3) we obtain the following equation for 0 (we drop rr’ for brevity): 

&,) = 1 - Tc c J’k, - cm) 
m 

(B.4) 

(B.5) 

o-3.6) 
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In case of weak coupling in the lowest order over interaction in Eq. (B.6) we can leave only the first 
term &E,) = 1. Then Eq. (B.5) reduces to 

@rr’) = 2$coth 
1 

___ 2E:,coth 
E; + e; 

(B.7) 

and Eq. (B.4) completely determines T,. 
Using the usual definition of the superconducting gap 

A(rr’~,) = T, 1 V( rr’cn - c,)F(rr’c,) = - (c,’ + t~)F(rr’c,) 03.8) 
m 

it is easy to get 

A (rr’&,) = 0 (rr’e,) A (rr’) (B.9) 

so that A (rr’) represents the energy gap in the absence of frequency dispersion, while 0 describes the 
frequency dependence of the energy gap. 

Cooper pairing takes place in states which are time-reversed, thus in the exact eigenstate 
representation of an electron in disordered system we have 

A(rr’) = c A,&VMr) 
V 

(B.10) 

and Eq. (B.4) gives 

(B.11) 

where the kernel 

U,,, = dr dr’ &f(r)c#G(r’) ~(rr’)&(r’)&(r) 
s s 

(B.12) 

has the form of a “Fock” matrix element of an effective interaction. From Eq. (B.7) we have 

U,,! = T,2 
2&,E,f 

tanh(s,/2Tc)tanh(s,,/2T,) 

x dr dr’ 4c(r)&?(r’) V(rr’E,, - .s,)&(r’)q!+(r) . 
s s 

(B.13) 

It is convenient to rewrite Eq. (B.11) introducing summation over states belonging to some surface 
of constant energy with subsequent integration over energies: 

s m 

A,= - 1 JW’W,,W~A,~~E~) > 
-Js Y’EE’ 

(B.14) 

where M(E) = C, 6(E - E,). 
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Consider now averaging of the gap equation. Define 

A(E) = N(E) ” 

J-- CA&E-&) ( > > (B.15) 

i.e. the gap averaged over disorder and a surface of constant energy E = a,. Here as usual we denote 
N(E) = (N(E)). Suppose now that d, = A(&,) = A(E = E,), i.e. that A, depends only on energy 
E = e,, but not on the quantum numbers v. This is similar to the usual assumption of A(p) 
depending only on Ip( in a homogeneous and isotropic system [152]. 

After the usual decoupling used e.g. in transforming Eq. (3.12) into (3.13), i.e. assuming the 
self-averaging of the gap, we obtain the following linearized gap equation determining Tc: 

A(E) = - 
s 

m 
-CO 

dE’ K(E, E’) & tanh 

where 

K(E,E’) = & (1 uvv,@E - &,)&E’ - Q) 
YV’ 

=T,Zxx 2E ~ 1 2E’ 1 

” m tanh(E/2T,) E: + E2 I[ tanh(E’/2T,) E; + F2 1 
x 

s s 
dr dr’ V(r - r’cn - E,) ((pE(r)pEf(r’)))F , 

(B.16) 

(B.17) 

where we have again introduced the Gorkov-Berezinskii spectral density defined in Eq. (A.2). 
Effective interaction can be written as 

V(r - r’cn - 6,) = VJr - rl.5, - E,) + V,(r - r’cn - 8,) , (B.18) 

i.e. as the sum of some kind of Boson-exchange attractive interaction VP and Coulomb repulsion 
Vc, which leads to 

K(E,E’) = K,(E,E’) + &(E,E’) . (B.19) 

Assuming V,(r - r’&,, - E,) = z)(r - r’), i.e. static approximation for Coulomb repulsion, we obtain 

&(E, E’) = 
J‘ s 

dr dr’ u(r - r’) ((pE(r)pEf(r’)))F (B.20) 

which coincides with Eq. (3.33) used above in our analysis of Coulomb repulsion within Cooper 
pairs in disordered systems. Above we have used the approximation of Eq. (3.52) to model K, due 
to electron-phonon pairing mechanism (or similar model for some kind of excitonic pairing). In 
this case Eq. (B.16) reduces to Eq. (3.55). 

Note that V,(r - r’cn - E,) may be taken also as a dynamically screened Coulomb interaction. 
Then we must use the appropriate expressions for the dielectric function E(qm,) which may be 
found using the self-consistent theory of localization [98,60]. Then after some tedious calculations 
we can get the expressions for K,(E, E’) which for small 1 E - E’I practically coincide with those 
used by us above for the case of static short-range interactions [158]. 
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Appendix C. Localization and d-wave pairing 

There is a growing body of experimental evidence in high-T, superconductors that indicate that 
the pairing state is of d,z_yz symmetry [283,284]. In superconductors with an anisotropic order 
parameter, both magnetic and non-magnetic impurities are pair breaking. For d-wave symmetry, 
the effect of non-magnetic impurities is equivalent to magnetic impurities in s-wave superconduc- 
tors [285,286]. Effectively, this means that superconductivity in such systems cannot persist until 
disorder becomes high enough to transform the system into an Anderson insulator. The situation is 
different for the so-called extended s wave symmetry. This corresponds to an order parameter with 
uniform sign which could, in particular, vanish at certain directions in momentum space [287]. 
Point impurities are not pair breaking in this case, but they are “pair-weakening”: for small 
impurity concentration, T, decreases linearly with disorder, but the critical impurity concentration 
is formally infinite, i.e. Anderson’s theorem works after essential isotropisation of the gap [288]. 

We shall present now some of the relevant equations along the lines of our discussion of the 
Anderson theorem in the main body of the review. Here, we partly follow Ref. [289]. We shall 
consider d-wave pairing on a two-dimensional lattice induced by the following interaction Hamil- 
tonian: 

Hint= -gCBfA, (C.1) 

where Y denotes lattice sites. This Hamiltonian corresponds to an instantaneous anisotropic 
attractive interaction with an implicit cutoff at a characteristic energy (CO). In order to model 
d,+,,~ symmetry we choose 2: in the following form: 

(C.2) 

with 6 = fel, +ez being the lattice vectors, and E +el = - E +ez = 1. 
Next we can perform the analysis similar to that used in deriving Eqs. (3.7)-(3.16) and find that 

now we again have Eq. (3.16) determining the critical temperature T, with the kernel K(rr’E,) in the 
exact eigenstates representation taking the following form: 

K(rr’E,) = gT c ~~~~~ @(rMZ(r + 4GW,V + 4 
pvdd (F, - iE,)(Ep + is,) > 

s m dEN(E) s O” dw CLdr)&+oW~ = 
-m -00 

(i&, + E)(E + co - i&J ’ 

where we have introduced the spectral density: 

(C.3) 
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Now we can rewrite Eq. (3.16) for T, as 

l=gTc 
s 

O” dEN(E) 
s 

m dox g(w) 

-00 -CC E. (E + ie,)(E + w - ia,)’ 

where 

339 

(C.5) 

s(o) = 1 dr’<d&)&+,(r’)> = W&+o>q=O . (C.6) 

No sum rules similar to that given by Eqs. (A.5), (A.6) exist for the spectral density of Eq. (C.4). 
However, it can be easily expressed via the Green’s functions and we obtain the following relations 
similar to those obtained in Appendix A: 

<d&+w>q = 

where 

(C.7) 

@;::‘R’(qco) = - & 1 y; (GR(p+p'+ E + o)GA(R)(P’_p_E)) y;, (C.8) 
PP’ 

with the vertices yp” = cos pX - cos p,, for d-wave. If from now on we ignore the lattice effects then 
y; = cos 20,, wh ic h corresponds to a gap function LI (k) = d (T ) cos 20,, where Qp is the polar angle 
in the plane [287]. Similar expressions will determine T, for the case of anisotropic s-wave pairing 
with the vertices yj replaced by appropriate angle-dependent expressions [287]. 

Now we can write as usual: 

g(o) = 
1 

~ Im{ @$(oq 
xN(E) 

= o>> = & Im - & 1 cos 20, @F$(Ecoq = 0) cos 20,. . 
PP, 

(C.9 

Here @$(Eoq = 0) obeys the q = 0 limit of the Bethe-Salpeter equation (Eq. (2.44)) which is easily 
transformed to the following kinetic equation [53]: 

@;$(Ew) = - AG, 6(p -p’) + 1 U;p++P;~p@~) 
P!’ 1 

with AGp = GR(pE + co) - G*(pE). If we replace in (C.10) the irreducible vertex by the bare vertex 
U,, = pV2, we obtain finally 

(C.11) 

with the usual scattering rate l/z = 27cpV2N(E). Inserting (C.ll) in (C.5) and following the 
standard analysis [9] we obtain the well-known expression for the critical temperature variation 
[286] ln(TJT,) = Y(1/2 + 1/47crT,) - Y (l/2) which is similar to the case of magnetic impurity 
scattering in superconductors. However, here the normal potential scattering rate is operational 
leading to very fast degradation of T, - superconducting state is completely destroyed for 
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l/z > 1.76Tc0. Actually, this result does not depend on the spatial dimensionality of the system, i.e. 
the same dependence works in three dimensions. 

Effectively, this makes it impossible to reach the Anderson transition before superconductivity is 
destroyed: critical disorder for metal-insulator transition is determined by l/z - EF $ T,. The 
only hope seems to be to analyze the quasi-two-dimensional case, where this critical disorder can 
be reduced due to a small enough interplane transfer integral w as in Eqs. (2.90), (2.91). Localization 

appears for w < w, = fi/r exp( - nEF7) and take as an estimate some l/z z TCO, so that super- 
conductivity is still possible, we can arrive at the following criterion of coexistence of localization 
and superconductivity: 

w < T,, exp(- rWTcO) . (C.12) 

In a typical situation even for high-temperature superconductors we have T,, < O.lEr and the 
inequality in Eq. (C.12) can be satisfied only for extremely anisotropic systems with w < T,,. Most 
known superconductors apparently fail in this respect. This probably makes d-wave pairing 
irrelevant for the main body of our review. It is then quite difficult to reconcile the existing data on 
the closeness of e.g. radiationally disordered high-T, systems to the disorder-induced metal- 
insulator transition and all the evidence for d-wave pairing in these systems. However, this 
reasoning does not apply to the case of anisotropic s-wave pairing, where Anderson theorem 
effectively works for large degrees of disorder [287]. In this respect the experiments on disordering 
in high-T, systems can become crucial in solving the problem of the nature of pairing (and thus of 
its microscopic mechanisms) in these systems. 

Still, even in the case of d-wave pairing localization effects may become important and 
interesting, but for a quite different problem ~ that of localization of BCS-quasi-particles within the 
superconducting gap at relatively small disorder [290-2931. It is known that while in the pure 
d-wave superconductor, density of states close to the Fermi level is linear in energy N(E) - E due 
to the gap nodes at the Fermi surface, the impurity scattering makes it finite at E = 0 [285]. In this 
sense the system becomes similar to the normal metal and we can calculate [290] the low lying 
quasi-particle contribution to conductivity cr(o + 0). This conductivity equals 

(C.13) 

where to = vF/7tA,, is the superconducting coherence length and a is the lattice spacing (we assume 
T = 0). The surprising thing is that c is independent ofthe scattering rate l/z, i.e. of disorder. For the 
two-dimensional case (applicable probably for high-T, systems) we know that all states are 
localized with localization controlled by dimensionless conductance which now is equal to 
g = o/(e2/2&) = lo/a. Th e value of g may be small enough in high temperature superconductors 
due to the small values of <,,, which are typically only slightly larger than the lattice constant. This 
can make localization effects important with BCS-quasi-particles forming a mobility gap in the 
vicinity of the Fermi level, leading to anomalies in the low temperature behavior of microwave 
conductivity and the penetration depth of a d-wave superconductor [290]. 

These results were first obtained [290] for point-like impurity scattering, later it was shown in 
Ref. [291] that the finite range of the impurity potential can lead to the nonuniversal disorder- 
dependent behavior of conductivity which becomes proportional to the normal state scattering 
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rate. Situation was further complicated by the claim made in Refs. [292,293] that the more 
rigorous analysis leads to the density of states of the impure d-wave superconductor behaving as 
N(E) - (El” with 01 > 0, but dependent on the type of disorder. The renormalization group for the 
conductivity then apparently leads to some kind of a fixed point of intermediate nature, suggesting 
the finite conductivity in two-dimensions. All these aspects of disorder and localization for d-wave 
superconductors deserve further intensive studies, 
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