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THEORY OF ELECTRON
LOCALIZATION IN DISORDERED
SYSTEMS

M. V. SADOVSKIi

Institute of Metal Physics, Ural Scientific Center,
USSR Academy of Sciences, Sverdlovsk

Abstract

In this review article many aspects of the modern theory of electron localization in
disordered systems are discussed and the general criterion for localization is for-
mulated. This criterion is given as a requirement that a two-particle Green’s function
have a pole in terms of the frequency with a factorizable residue (in a momentum
representation). A search for such a solution can be based on the use of a
homogeneous Bethe-Salpeter equation, from which the point where the metallic phase
is unstable (the mobility edge) can be determined but which does not describe the
region of localized states. The self-consistent theory of localization of Vollhardt and
Wolfle is extended to the space with a dimension d >2 and the behavior of the
principal physical quantities near the mobility edge is calculated. The mobility edge is
situated in the “strong-coupling” region (which diverges in the limit d— 2). This
region is the exact analog of the “*Ginzburg critical region” in the theory of critical
phenomena. in which the perturbation theory breaks down. The analytic properties of
the effective field theory, for an electron in a random field, are studied in the complex
plane of the coupling constant. The role of finite-action nonlinear solutions (in-
stantons) of the classical field equations in the formation of the ““tail” in the density of
states is demonstrated. A method of calculating the coefficient of the exponential
function of the density of states is proposed. This method is based on the use of the
dispersion relation over the coupling constant and on the correspondence with the
standard theory of critical phenomena. It is demonstrated that a singular (pole)
contribution, in terms of the frequency, to a two-particle Green’s function with a
factorizable residue, which corresponds to the proposed general criterion for localiza-
tion, can be determined explicitly within the framework of the instanton approach. A
unified approach for the search of instabilities in the system, giving rise to the
localization, is formulated. This approach is based on the use of the effective-action
formalism for composite fields. The Hartree-Fock corrections, resulting from inter-
action between the electrons, to the density of states and thermodynamic quantities
near the mobility edge are examined. The localization corrections, which are linked
directly to the probability for return of an electron, are found. It is shown that these
corrections correspond to the formation of a band of singly occupied states below the
Fermi level. A cusp in the state density at the Fermi level, which occurs in a ““dirty”
metal, is shown, within the framework of the self-consistent theory of localization. to
smooth out in the insulator region. The correction to the density of states at the Fermi
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level, however, diverges logarithmically in the entire region of localized states. The
localization contribution to the polarization operator corresponding to a nonergodic
behavior of the system. which accounts for the ditference between the isothermal
static response and the adiabatic static response. is analyzed. The isothermal static
dielectric constant conserves the “metallic™ behavior corresponding to the finite
screening range even in the insulator phase: The “Fermi glass™ screens the external
static electric field.
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ELECTRON LOCALIZATION 3
1. Introduction

The concept of electron localization in disordered systems is central
to the understanding of the modern theory of disordered systems. It
is the foundation of the basic understanding of the energy spectrum
and of the kinetic and other electronic properties of these systems
[1,2]. Formulated for the first time in a fundamental paper by
Anderson [3], the concept of electron localization was developed
qualitatively by Mott, who used it to formulate the foundations of
clectronic theory of disordered systems [ 1, 2].

The localization phenomenon has recently been discussed in many
review articles and monographs [4-10] and its principal propositions
are now well known. In spite of its importance. the problem of
localization is, nonetheless. far from being solved satistactorily. At
issue here is principally our conceptual understanding of the
behavior of electronic states near the so-called mobility edge and of
the related question of the physical properties of the system, in which
the Fermi level of electrons is situated near the mobility edge. The
effect of electron—electron interaction, i.e.. the relationship between
the Mott and Anderson mechanisms for a metal-insulator transition
in disordered systems, is vet to be studied extensively. The difficulty
in understanding this relationship stems from the extreme mathema-
tical complexity of this problem and from the fact that there is no
direct experimental evidence for electron localization [1,2]. In
particular. it is very difficult to distinguish between disorder and
electron-electron interaction in a real metal-insulator transition.

Let us summarize the principal propositions of the localization
theory which is customarily based on the Anderson model [3]. In this
model the electron which propagates in the regular lattice in a
d-dimensional space is analyzed. Each lattice site has a random level
E; (jis the number of the lattice site in the lattice). It is assumed that
there is a certain probability amplitude for the transition Vj; from the
jthlattice site to the ith lattice site. This amplitude 1s usually assumed
[3] to be nonvanishing and equal to a certain constant V for the
transitions between the nearest neighbors. The energy levels E; are
assumed to be distributed independently at different sites and the
energy distribution at a given site is usually assumed to be uniform
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over a certain energy interval of width W. The qualitative results do
not seem to depend too strongly on these assumptions. Another
useful model for analyzing the localization is the model of free
electrons in a field of point scatterers randomly distributed in a space
with density p. Each of these point scatterers has the same scattering
amplitude which we will denote by V [11].

If there is no disorder in the system (W = 0 in the Anderson model
or p=0 in the frec-clectron model), then the problem of the
electronic spectrum can be solved in a straightforward manner. In
the Anderson model the electronic states form a band of width 22V,
where Z is the number of nearest neighbors. An infinitely wide band
of free electrons is formed in a similar manner. The introduction of
disorder accounts for some important changes, giving rise to a strong
dependence on the dimensionality of the space d. At d=1 a
disorder, however small, completely changes the nature of the
electronic states, localizing all of them. In other words, the wave
functions of these states begin to fall off exponentially in the
coordinate space. while the static electrical conductivity of the
system goes down to zero at T =0 [12-15]. The two-dimensional
(d=2) systems are the limiting case (“lower critical dimen-
sionality™). In these systems the electronic states presumably also
become completely localized as a result of appearance of the
slightest disorder. For d >2 all the electronic states in the band
become completely localized if the ratio W/V in the Anderson
model is sufficiently large—larger than a certain critical ratio
(W/V),, ie., if the disorder is appreciable. If W/V <(W/V)., the
electronic states become localized at the band edges but remain
delocalized at the band center (Fig. la). This situation gives rise to
critical values of the energy + F., which separates the regions of the
localized states from those of the extended states, customarily called
mobility edges. In a model of nearly free electrons a qualitative
picture of the electronic states for d > 2 is also well known (Fig. 1b).
If the Fermi level Ep is in the region of fairly high energics, the
electronic states near it are just the plane waves that are slightly
distorted by scattering. The importance of this scattering increases
with decreasing Fermi energy toward the edge of the original band.
A density of states “"tail,” which stems from the electron localization
due to random-potential fluctuations of the scatterers [8], appears at
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Figure 1. The density of states and location of the mobility edges in the Anderson
model (a} and in the model of nearly free clectrons (b). The hatched regions
represent the localized states.

the band-edge and an energy E.. which separates the delocalized
states from the localized states (the mobility edge). appears near the
former band edge. The term “mobility edge™ is used because the
localized states do not contribute to the static conductivity at zero
temperature T =0. If the Fermi level Ep of the many-clectron
system is at T =0 in the cnergy region corresponding to the
localized states, then the system is an insulator: conductivity appears
only at T # 0 or when the electrons are excited by an alternating
electromagnetic field. The conductivity in this case is realized by
means of the hopping mechanism [ 1, 6]. If, however, the Fermi level
is situated in the region of delocalized states, then the conductivity is
metallic in naturc. Such a metal-insulator transition, which occurs
when the Fermi level crosses the mobility edge. is customarily called
the Anderson transition.

One of the central questions raised in the theory is how the
metallic state conductivity changes when the Fermi level Ep crosses
the mobility edge FE. (at T =0). Some possible alternatives are
illustrated in Fig. 21,2, 16]. The conductivity may go down to zero
discontinuously, after reaching a certain minimum value o,,,,—the
minimum metallic conductivity. Such a behavior was suggested by
Mott [ 1, 2] on the basis of a qualitative analysis of the conductivity in
the Anderson model and on the basis of extensive experimental data.
Theoretically, the conductivity can also decrease continuously down
to zero, while the value o,,, determines the conductivity scale for
this continuous transition. This idea was initially suggested by Cohen
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Figure 2. Variation of the metallic conductivity during the passage of the Fermi
level through the mobility edge. 1—According to Mott [1.2]: 2—according to
Cohen [16].

[16]. who basically used the analogy of the localization with per-
colation [6]. Clearly. either alternative leads (when the conductivity
decreases sharply but continuously) to roughly the same experimen-
tal effects. at least at reasonably high temperatures. Highly accurate
measurements at extremely low temperatures must, however, be
performed before this problem can be solved experimentally. The
experiments [17-19] in the temperature region of 10 * K. which
have recently been performed. tend to suggest that the conductivity
goes continuously down to zero at the mobility edge. The current
theoretical picture based on the scaling localization theory also
supports this viewpoint [7].

A qualitative estimate of the typical conductivity scale near the
mobility edge, as well as the estimate of its location in the band, can
easily be obtained using the arguments advanced by Ioffe and Regel
[20]. Their argument essentially reduces to the fact that the metallic
conductivity remains in effect so long as the mean free path of an
electron exceeds its wavelength. With increasing disorder. the
corresponding inequality is disrupted and the nature of the conduc-
tivity changes considerably, principally because of the localization.
In the case of the Anderson model with a half-filled band (one
electron per site). we run across this situation when the mean free
path [ is of the order of the interatomic distance. Using the standard
Drude equation o = ne’7/m (nis the electron density. 7is the mean
free time, and m is the electron mass) and setting n~a ¢ and
T~ ma’, we thus estimate o,,, to be (we will use everywhere the
system of units #=1)
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According to Mott [1,2], the constant in this equation, which is
specified by the critical ratio (W/ V), lies within the range 0.025-
0.06 when d =3, giving o,,, — 1-5>x 10" mho/cm. typically for
a~2-3A.

In a model of nearly free electrons the loffe-Regel criterion
indicates that the Fermi energv E, is of the order of the reciprocal
mean free time, 7 . Using the standard Born expression to estimate
this time 7 '(F)~ pV*N(E). where N(E)~ m‘"E“> " s the
density of states of the free electrons, we estimate from the condition
F.~ 7 "(E.) the mobility edge 10 be at

E(- . mzl«4——11»(‘)‘;1)2/(4—(”

near the band edge. This characteristic energy will have an im-
portant role in our discussion below. This energy defines the energy
region [ 7] at the edge of the band. in which the strong scattering by
disorder becomes important. Reckoning the energy from the edge of
the original band. we find

EA B ‘/, (7‘37/ ) 4/4—d)

for the Anderson model by using the same procedure. In fact. we see
from these estimates the prominent role of the dimensionalities of
space d =2 and d =4 in the localization problem.

The locahization theory has recently been developed extensively.,
The development of this theory is attributable primarily to the
tormulation of the basic concepts and methods of the scaling theory
of localization, which are based on the usc of the present-day theory
of critical phenomena [7]. In the theory of critical phenomena
[21-23] the scaling description of the fluctuation region of the phase
transitions is generally motivated by the growth of correlation length
of the fluctuations of the order parameter near the critical point. An
analog of this effect in the localization theory is the increase of the
localization length of the wave functions as the mobility edge is
approached from the side of the localized states [24]. We should
emphasize. however, that there is no analog of such diverging length
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in the region of extended states. just as there is no obvious order
parameter associated with the Anderson transition. The various
suggestions proposed in many papers (see review article [7]) are,
from our viewpoint, largely not satisfactory. Immediatelv after the
scaling model of the Anderson transition was initially suggested
[24,25], a considerable progress was. nonetheless. made in the
understanding of this region. This progress was particularly rapid
after Abrahams et al. [26] published a landmark paper. in which the
scaling equations for the conductivity of a finite system. based
principally on certain ideas advanced earlier by Thouless er al.
[27-30]. were formulated. This progress was particularly impressive
in the analysis of two-dimensional systems [7.9. 10], where it was
possible to formulate not only totallv new concepts but also to
perform important experiments which have confirmed the theoreti-
cal predictions. The restrictions on the analogy with the phase
transitions indicated above show, however. that the localization
problem, on the whole, is much more complex than the problem of
critical phenomena. Serious difficulties must vet be dealt with before
this problem is finally solved.

In this review article we discuss in detail the theoretical results
recently obtained in this field by the author. The main attention is
focused on the discussion of the particular difficulties of the theory.
The earlier theoretical studies in this field were elucidated inareview
article by Sadovskii [7], who also included in this study most of the
experimental results, which we basically overlook in this article. The
theoretical studies of other authors will be used only as the need
arises. The literature cited in this article is by no means complete. An
outline of this article is clear from the Contents.

2. The Electron in a Field of Random Scatterers and the
Localization Theory

2.1. The General Criterion for Localization. Localization Viewed in
Terms of the Bethe—Salpeter Equation

Two alternative methods can be used in a rigorous analysis of the
localization phenomenon. The Anderson method, which was
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described in a basic paper [3] and which was used until recently to
get all the principal assertions of the theory, is distinguished by its
nonconventional features. The main point of this method is an
analysis of the Green’s functions of an electron which have not
been averaged over the random configurations. In a ccrtain sense,
the most probable single-electron Green's function is analyzed in this
method, because the average single-particle Green's function, as 1s
well known [3-5]. contains no information on electron localization.
This problem can. nonethelesss. be studied by analyzing the con-
vergence of the stochastic series of the perturbation theory for an
unaveraged single-particle Green's function [3.31]. In particular,
the condition of convergence (convergence in probability) of this
series determines the location of the mobility edge. The Anderson
method can be used to solve particular problems, ranging from the
construction of the scaling theory of localization [24] to the analysis
of new, specific models of disorder and effects of external fields
[32]. A serious drawback of this method. however, is that it allows
virtually no calculation of the observable physical quantities which
are defined by the correlation functions (the Green'’s functions) that
are averaged over the ensemble of random configurations of the
system. These quantities can be calculated by using the well-
developed formalism and a diagram technique [11,33]. Un-
fortunately, the question of how the localization manifests itself in
the principal quantities, such as the average Green’s functions.
which are used in the standard theory., has been studied in-
adequately until recently. The lack of sufficiently clecar analysis of
this problem leads to the difficulties in the solution of the localiza-
tion problem and establishing a connection between this
phenomenon and the observed characteristics of the system.
Clearly, the problem of localization. for example, generally differs
from that of the bechavior of the electrical conductivity near the
mobility edge, whose solution may be considerably more difficult.

In this section we will examine, according to Refs. 34 and 35, the
general condition for localization in terms of the standard for-
malism, keeping in mind the traditional problem encountered in the
Edwards method [11]. This problem involves the noninteracting
electrons which move in a field of the scatterers which are randomly
distributed in space.
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The Hamiltonian of the system is

5

\ ,
;ﬁz Vir—R,)} dlr). (2.1

H = J d9v g (r) {4

where V(r—R,) is the potential of the scatterer (an impurity in the
crystal, for example) which is situated at the point R, and " (r) and
(r) are the clectron creation and annihilation operators. For
generality, we will examine a d-dimensional space. Let us introduce
a complete orthonormal set of exact wave functions ¢,(r) of the
Hamiltonian (2.1)

o
[§9)

He,(r) = €,¢,(r), (

where €, are the exact eigenvalues of the energy of an electron in a
field of random scatterers. Obviously each wave function ¢, (r) and
each eigenvalue of the electron energy e, are also functionals of the
location of the scatterers R; in a given random system. Given that
such a dependence exists, we will not write it out explicitly in the
arguments of these functions. In the absence of an external mag-
netic field, we can assume, without loss of generality, that the
functions o, (r) are real [36]. However, we will write out the
complex conjugation explicitly. According to Berezinskii and
Gor’kov [34]. define the two-particle spectral density is as

1 - .
: ol ’>:—<3 e et e, (r)
Cpe(mpeor)) NE)\& ¢rnesnere

vy’

><8(E*€Q5(E+w~e,,r)>. (2.3)

In this equation the angular brackets denote averaging over the
random configurations of the scatterers. and

N(E) = <; NP S(E — e,,)> (2.4)

v

is the single-electron (average) density of states. The spectral
density (2.3) has the following general properties [34], which can
easily be checked by invoking the conditions under which the
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function ¢.(r) are complete and orthonormal:

J dvpp (N pe. (X)) = 8(w)

-

J dolpp () pp . X)) = dr—r').

For a spatial Fourier transform of (2.3) we find {prpe+o)q in an
analogous manner,

{prpe- w»q*(l = d(w)
(2.6)

J dwlpeprrodg = 1: CPEPE+whq = 0.

In general, expression (2.3) has terms which correspond to the
contribution of €, = ¢,. If. however, the corresponding states of the
system are extended states. then their wave functions are nor-
malized to the total volume of the system €). For this rcason, this
contribution in (2.3), which is proportional to ', vanishes in the
limit of }— . The situation changes dramatically if the states are
localized. The wave functions in this case are normalized to the
volume ~ R{., where Ry, is the localization length, and a simple
estimate gives the value ~ R for the contribution of €, = €, in
(2.3). Thus a é-function contribution in terms of the frequency w
appears in the spectral density (2.3)

LpeM)pe i) = Ap(r—1)d(w) + pp(r—r. o) (2.7)

or in the momentum representation
CPEPE+w)q= Ar(q)d(w) + prlqw). (2.8)
where the second terms are regular terms in w. The incorporation
of such a singular contribution into (2.3) as a general localization
criterion was suggested by Berezinskii and Gor’kov [34]. It is easy

to see that

1 - >
Aplr—r) = NE) <7 S(E — €)@ (n)|*| e, (r)

3> (2.9)
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is a generalized “inverse participation ratio.” The nonvanishing of
this ratio was frequently regarded as the localization criterion.
alternative  to  the well-known Economou-Cohen  criterion
[4.31,37]. Roughly speaking. this ratio is inversely proportional to
the number of atomic orbitals which contribute effectively to the
superposition corresponding to the state v.

The 6(w) singularity in the spectral density of (2.7) and (2.8).
which is a manifestation of nonergodicity of the system [38]. cor-
responds to the appearance of time-independent contributions in the
corresponding correlation functions. Such contributions in this in-
stance appear in the retarded density—density Green’s function. for
example [34]. It is important, however, that the 8(w) anomaly of the
spectral density does not contribute to the commutative Green’s
functions, which determine the linear response in the Kubo theory
[38.39]. These anomalies account for the difference between the
adiabatic static response and the isothermal static response of the
system [39.40]. The connection between the localization and the
nonergodic behavior was, in fact, pointed out by Anderson in his
first paper [3]. Later we will return to the discussion of the physical
manifestations of this important effect.

From the general properties of (2.5) and (2.6) we find in the limit
q— 0 (Ret. 34)

(pEprrwde={1 = R E)q*}d(w) + q’pr (w), (2.10)

where

x

Rﬁ‘g(E):j d(!)pb((,z)}

—%

1

42 (¥ e
ZdN(E)J d“rr <T‘ Oo(E —¢€,)

¢l,(r>13\¢1,<«>)|2>. (2.11)

We can assume that this expression defines the localization length.

A delocalization corresponds to a spreading out of the -function
singularity in (2.8) for the finite values of q. The simplest example
of such spreading, which accounts for the diffusional behavior, is
Dqu

——5. 2.12
7Tw2+(DEq2)2 ( )

CPEPE+wq =
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As was emphasized in Ref. 34, this example is only a special case
among the different possible versions of the mathematical behavior
of {PEPE w)q in the limit g— 0.

It is easy to see [34] that the conductivity of the system is

o(w) = lim (—;—?) e“xR(qw)

q—0
- ’7 x b ¥ E . E + ’
= lim w,) e” J dE j do'N(E) fLM LPEPE+ wDq-
—0q - - w—w +id

(2.13)

where x®(qw) is the retarded response function of the density-
density tvpe. which is determined by the corresponding com-
mutative Green’s function [34], and e is the electronic charge.
Using (2.8), we see that Ag(q) does not contribute to the conduc-
tivity, consistent with the general property mentioned above. Using
(2.10), we find

e [~ If(E Hw)
(r(w):*iwe“J dEJ dw’N(E)w’(-(f)E)) p_E(f“; -
e e ‘ w—w +i

Re¢ o(w) = W():w:N(EI;)pE, (w),

so that at low frequencies the behavior of Re a(w) is determined
entirely by the pr(w) function or by the “‘regular” part of the
spectral density (2.8). Thus, in such a general analysis, strictly
speaking, only an indirect correlation [through the sum rules such
as (2.5) and (2.6), for example] can be established between the
“localization signal” [the quantity Ag(q)] and the frequency
dependence of the conductivity. In the diffusion {metallic) regime.
the use of (2.12) yields

s

olw) = - J dEJ

1w

dw' NE) ( (”f(E>‘) | Do
" _OftEN T Dro'
. OE / mw—w' + 18

(2.15)
— (’:N( EF)DF,, .

w—()
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i.e., we obtain the standard result (the Einstein relation) for the
metallic conductivity of the noninteracting electrons, and the
quantity Dg is the diffusion coefficient of the electron with energy
E.

Since Ag(q) in (2.8) “‘signals” the appearance of localized states
with energy E. it would be useful [35] to determine it from the
standard formalism (Green’s functions). Using the standard un-
averaged retarded (R) and advanced (A) single-electron Green's
functions
v eDelr)

(*R‘A /E_
T E) “FE—e€+id

(2.16)
and the definition (2.3), we immediately obtain
1
Cpe(D)pE o)) = ZNE (Im GRA*r'E + w) Im GRA(rrE))

= m Re{(GR(rr'E + w)GA(r'rE))
—(GRAME + w)GRNr'rE)) (2.17)

or we obtain the following expression in the momentum represen-
tation:

1
CPEPE 0N = ANE) Im{é £ (wq) — ¢ (wq)}. (2.18)

In this expression we have introduced, for brevity, the following
notation for the two-particle Green’s function [41]:

I
2mi

(bSA(R)(qw) -

Y {GR(ppLE+0)GYR(p' p E). (2.19)
Lpp

where p. =p+:q. For small values of q and o the functions

RR(qw) and ¢2*(qw) are non singular functions [40,41]. It is
clear, therefore, that the §-function component in (2.7) and (2.8),
which corresponds to the appearance of localized states, may arise
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only from the first term in (2.18). Using in (2.8) the formal tran-
sition from w to w + id (8§ — 07), i.e., ““smearing out” the §-function
and comparing it with (2.18), we immediately obtain an expression
for the amplitude of Ag(q) in front of the §-function in (2.8), which
is written in terms of the two-particle Green’s function

1
Apl@) =lim —— §1m dFNw +id
r(q) 513]) N 2 Im b w+idq)

w=0

I - , , A .
=———1im 8 Re(GR(p.p E+i8)G p'p E—id)).

B 2aN(E) 5o pp’
(2.20)
Switching to the coordinate representation, we find
~ dq ) )
Ap(r—r)= J (27;)‘(; e AL(q)
| 5

= ———lim &G E + id)]"). 2.21
Yanip) i G BRI (221

It would be useful to introduce the quantity

dd
:J id Aelq)

Ap = Aplr—r
E lrer) (21m)

r=r

1 5
=———lim & G(rr E + i8)|")
2aN(E) s—0

l \ ' .
= ———lim Y, Re(GR(p.p E+i5)G p'p E—id)). (2.22)

27N(E) 50 ppq

In the region of localized states (E < E, “below” the mobility edge)
we have Ag > 0. On the other hand, if we assume that the Green’s
function corresponds physically to the probability amplitude of the
transition, we find that (2.22) is proportional to the average prob-
ability of return of the electron with a given energy E to the starting
point in an infinite time [31]. The condition under which (2.22) is
nonvanishing is therefore none other than the averaged version of
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Economou-Cohen localization criterion [31]. The Economou-
Cohen localization criterion in this sense is equivalent to the
Berezinskii-Gor’kov localization criterion [35].

As we have seen in (2.10), at ¢ = 0 we have the general property
Ag(q=0)=1. We easily see that this property is equivalent to the
condition

N(E)

RN Ow) = ———. (2.23)
w

Such a divergence in the limit w—0 is a consequence of the
conservation of the number of particles (of the equation of con-
tinuity) [41,42].

To determine the value of ®F*(qw) (2.19) we must be able to
calculate the two-particle Green’s function:

I
XMEqw) = AE<GR(p+pLE +0)Gp'p_E). (2.24)

Within the framework of Edwards’ diagram technique, this func-
tion, as we know [11,33.41,42], is determined by the Bethe-
Salpeter integral equation (see Fig. 3):

1
SMEqw)= G®*(E+ wp.) G*(Ep-) {**. s(p—p)
2 i
+3 U,’;,n(qu,’fu;,‘,(Eqw‘»} (2.25)
-

where GR*(Ep) is the dressed, average, retarded (advanced).
single-electron Green’s function, and the irreducible vertex
U gp(qw) is determined by the sum of all the diagrams that cannot be
cut along two lines (the advanced and the retarded line).

Let us see [35] whether a solution of Eq. (2.25) leads to a
two-particle Green’s function that contains some features cor-
responding to a localization. We assume that ® g5 (Eqw) has a pole
contribution in the energy region in which the system possesses
localized states:

YUE)AE)

+ GRa 26
ot io Gpp (Eqw), (2.26)

gpé(Eqw) =
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G Erap,) cRerwp) CRErap))

_RA
'?prp,(qu)- + (a)

——— —
GA(Ep.) C*(Ep.)  GMEQ)

Erwp, Erwp,

r = U + U
i
Ep. Ep.
(b)
Erap, Erwp, P+ Py
=T ST < >
U = R o + < +
L y4 >
Ep- Ept p. b

= f o+ | U |29 (Egw)

Figure 3. (a) Graphic definition of two-particle Green’s function (2.24). (b) Equation
for a complete vertex I'f,(qw). (c) Typical diagrams for an irreducible vertex
U j»(qo). (d) Bethe-Salpeter equation (2.25). The dashed curve denotes the “‘inter-
action” Uyp—p)=p|V(p—p)F, where p is the density of the scatterers, and
V(p—p") is the Fourier transform of the potential of a single scattering center.

where @5 (Eqo) is the regular part, and the factorization of the
residue at the pole (in the momentum representation) is assumed in
analogy with the problem of the bound state. We will see later that
this assumption may in a certain sense be justified.
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From (2.19) and (2.26) we find

dEMNqu) = ~XalExoB) Ly bRM Equ). (2.27)
w+id 2.
In this equation
Xq E) =2 WU E) (2.28)
P

It then follows from (2.20) that

Ag( )“*1— (E)x—q(E) (2.29)
elq N(E) Xql E)X—q E). 2

It is easy to see that x;5(E) = x_4(E), and Ap(q) > 0. The general
property of Ag(q=0)=1 reveals the normalization condition.

Xol E) =V N(E) (2.30)
and from the asymptotic behavior of (2.10) we find
X+q E) = VN(E) {1 + iR.(E)q} ': q—0. (2.31)

For the *‘probability of return™ (2.22) it follows from these equations
that

Ap=——2 Xo E)x ol E). (2.32)
q

After the substitution of (2.26) into (2.25) the pole term is
dominant (in the limit @ — ) and we obtain a homogeneous Bethe—
Salpeter integral equation for Y 3(E)

YHE) = GREpIGNEP) L Upylqw=0yd(E). (2.33)
P
The localization would correspond to a nontrivial solution 3(E) # 0

of Eq. (2.33), which would remain nonvanishing in the entire energy
region E< E., where E. is the mobility edge. It may turn out,
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however, that we can use Eq. (2.33) only to determine the location of
the mobility edge E. as a point on the energy axis at which we find
the first nontrivial solution of (2.33). To describe the region E < E,,
however, may require going beyond the scope of the perturbation
theory, which defines the structure of the Bethe-Salpeter equation.
Equation (2.33) obviously cannot be analyzed in its general form.
Some approximations must thercfore be used for the functions
GRA(Ep) and U 5y (qw = 0). We will use the simplest approximation
for G®*(Ep). which is valid in the region in which the perturbation
theory is applicable [11,33.42]:

1

GRA(Ep) = —————. (2.34)
E-Y 4ivE)
2m
where
Y(E) = mpVEN(E) (2.35)

is the “*Born™ frequency of the collisions of the electrons with the
impurities which we will assume, for simplicity, to be point like. This
result, as we know, is obtained by summing those diagrams in Fig. 4a

G(Ep) = — + Vi \ - Lo £ 0\ +
(a) AN AN
+ L AL A +
(b) + -»-[:—Z—\::L,— +
Etw ,
—— T
U2 ff ! Pl»+ N . K .
G = o X
P- £ P-

Figure 4. (a) Diagrams which determine the single-electron Green’s function. (b).
Langer-Neal diagrams for the irreducible vertex of the Bethe-Salpeter equation
(cooperon).
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which do not have any interesting “interaction’ lines, i.e., diagrams
similar to those shown in Fig. 4b. This approximation can be used if
the inequality E > y(E) holds. As was noted by Gor’kov et al. [43]
for the first time. the localization is linked, at least in the limit d — 2.
with a specific sequence of diagrams for U [,(qw) that have a
“maximum number of intersections™. These diagrams are illustrated
in Fig. 4b. Langer and Neal [44] studied this diagram sequence more
than a decade earlier. This sequence can easily be summed by using
Eq. (2.34). We thus find a ““cooperon’ propagator for small values of
w and p+p’ (Refs. 41 and 43),

. 2y(E)pV?
U LS = 2.36
where
E
T T 3
0 mdy(E) 2 7)

is a classical diffusion coeflicient. In addition to the aforementioned
condition under which the perturbation theory is applicable, we see
that the condition for the applicability of the diffusion approxima-
tion |p+p|<!"' where | ~VE/my '(E) is the mean free path.
must also be satisfied in order for expression (2.36) to be valid. This
condition is equivalent to |p+p|<+v2mE =p. (ps is the Fermi
momentum) near the mobility edge, where, as we will see below (see
also the Introduction), E ~ y(E).

Using (2.34) and (2.36), we can finally write Eq. (2.33) as follows:

2

{E~ﬁ(p+%q)2+iy(E)}{E——l—(pf%q) —iy<E>} WA(E)

2m

- Cdp WUE)
— ME J Gy 2

where A(E)=2dmy*(E)pV?/E). Switching to dimensionless vari-
ables p— p/v2mE, we can write this equation as follows:

. , Y3(E)
Py9,(E) = —— 5 dip —*

e

(2.39)
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where Ap =4m?/(2m*(2mE)“? 7 A(E). The integration in (2.39)
is over d-dimensional sphere of radius ~po/\/§mE, where p, ~ a',
and a is the “minimum length” in the system.

The homogeneous integral equation in (2.39) resembles a similar
equation in the Wick—Cutkosky relativistic model [45-47], which
describes the bound states of the scalar particles produced as a result
of massless quantum exchange. We can easily transform to a
symmetrized equation

§9,(E) = /\EJ dp K E(p. p )& (E). (2.40)
where
F9,(E) =R, '(p) ¥I,(E)
B / +1 2 iy ! 1 2_i'y !
Rap=1-(p+30) | {1-(p—34) fl @

Ryp)=Ri(—p);  Ryp) =R (p.

1

K§p.P)=RPIRG () 5 (2.42)
p—pl
is a symmetrical (Hermitian) positive kernel [48]:
Kip.p)= KJF(p.p:  Kf(p.p)=Kq"(p.p) 243
K E(p.p) > 0. o
It is clear that
IK{p.op)i< E* 1 (2.44)
| , S T3 .
! oy lp-pP

We see that at 2 << d <4 this equation is an equation with a weak
singularity [48] and at d =4 we have the Fredholm equation. The
integral kernel which we are considering, being a fully continuous
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operator, has a finite or denumerable eigenvalue spectrum which lies
on the segment of the real axis. The length of this segment is
determined by the norm of the integral operator ||K|| which in this
case is given by

llellzz{J d'p'K & p. pw(E‘)}'sHKllz{J ddp'wz/(m} (2.43)

This inequality is valid for any quadratically integrable function
Wa(E). The integrability of Ya(E) is necessary for the solution of
(2.39) to define y4(E) from (2.28). It has also been established
clsewhere [48] that the first eigenvalue of the kernel under con-
sideration is a simple, positive eigenvalue, while the corresponding
eigenfunction is a positive definite eigenfunction. We see from (2.44)
that the norm of the operator under consideration is

) _n
20t B2 D

JE RN

Kl < (2.46)

where Dy, is the diameter of the integration range. It may seem that
D¢, ~ p(,/x/2 mE. We easily see, however, that a factor such as
{(1=p*)*+ y*/E*}""* which at y < E has a sharp peak when p' = 1.
whose width is ~+y/E. The cutoff therefore occurs when p'~ 1 (i.e.,
p ~2mE in dimensional variables), so that Dq~ 1. We can infer
from this fact that the equation we are considering does not have any
nontrivial solutions for

LA W i 2.47
2

We see that there are no nontrivial solutions in the energy region
given by

; A 2/(4—d)
E> (—d) E... (2.48)
d-2 '
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In this inequality we have introduced the characteristic energy
(compare with the Introduction) (Refs. 7 and 35):

E‘( — 'nd/ufd)(pvl)l/l-ﬁ d)* (249)

where A, =2""427792d/T'(d/2). As we have already seen in the
Introduction, the condition E ~ E,.. which is equivalent to y(E) ~
E, define the limit of applicability of the perturbation theory. Since
this choice of diagrams is not valid in the “*strong-coupling’ region
E =< E,.. we must sum all the perturbation-theory diagrams. We see
from (2.48) that the threshold energy E., where the first nontrivial
solution of Eq. (2.38) appears, at d =3 falls directly into the
strong-coupling region E < E, = m*(pV?)>. The energy region,
where there is clearly no solution, goes to infinity in the limit d — 2.
This means that the first eigenvalue of Eq. (2.38), which is identified
with the mobility edge. also goes to infinity in the limit d —2: E, —
=, consistent with the proposition that a complete localization occurs
at d =2 [26]. Since E.> E,. the mobility edge may seem. in the
limit d — 2. to be in the region where the perturbation theory is valid.
We will see below that this is not true, since the condition under
which the perturbation theory is valid in the limit d — 2 must be
defined more accurately. In fact, it coincides with inequality (2.48).

This analysis shows qualitatively that the homogeneous Bethe-
Salpeter equation of the type in (2.33). which is based on the
perturbation theory, cannot correctly describe the energy region
corresponding to the localized states, if only because of the discrete
nature of its spectrum in the region E > E_. This discrete nature of
the spectrum will probably be found even in more complex ap-
proximations. It is clear, however, that the location of the mobility
edge, the “instability” point of the metallic phase, where appears the
first nontrivial solution ¢J(E)# 0 can be determined from this
equation by some approximation for G®*(Ep) and U [, (qw). We
will give later a complete justification of this viewpoint.

2.2. Self-Consistent Theory of Localization

An important step in the evolution of the localization theory, which
made it possible to calculate many physical quantities within the
framework of the standard formalism of the average Green’s func-
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tions, was, in our view, the development of the so-called self-
consistent theory of localization. The original version of this theory
was proposed by Gotze [49-51]. A significant contribution to the
development of this theory is attributed to Vollhardt and Wolfe
[41,52,53] who were responsible for the diagram formulation of
this theory, based on a self-consistent generalization of the for-
malism of the Bethe-Salpeter equation. The main advantage of this
method is its simplicity and a certain automatism allowing further
generalization.
Using the following relation from (2.25)

AG
GR(E+ wp.)G*(Ep-)=— P

w—%p-q—ER(EﬂL wp.)+ 3 NEp.)
(2.50)
where
AG, = GR(E+wp.)— G*(Ep.) (2.51)

and XR*(Ep) is the self-energy of the corresponding Green’s
functions, we rewrite the Bethe-Salpeter equation in the form

1
{w-?n'P'q_ER(E+wP+)+2A(EPf)} bpp (Eqw)

1
=AG, {2— s(p— p)—}_‘ UL (qu)oF (Eqw)} (2.52)

Bearing in mind that we are dealing with an electronic system at
T =0, we will set E = Ef at the outset. Summing both parts of (2.52)
over p and p’, and using the exact Ward identity [41]

SR(E+wpy) —24 (Ep) =2 Ugp(qu)AGy. (2.53)
P

we find

wd P — ¢RA(qw) = —N(Ep), (2.54)
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where

i o1
dEMNquw) =2 — (p- Q) bgy' (Erqo). (2.55)

pp’
Analogously, multiplying (2.52) by 1/m(p - q) and summing again

over p, making use of (2.53) and the approximate representation [41]

AG,
L bop (Erqu) == 50p

x ¥ {1+—r;(p~q>(p”-q)} bpp(Erqo), (2.56)
PP’ F

in which we have left only the first two terms of the expansion in the
corresponding angular variables,® we obtain the following expres-
sion, after several transformations:

{w+ Mg, (qo)}d £ qo )——— ‘OE(quw) =0.  (2.57)
In this expression we have introduced a current relaxation kernel
[41],
id
2 N(EF)szq2
><> (P QAG,U i (qw)AGy(p'-q).  (2.58)

In (2.58) we have used the simplest approximation (2.34) in writing
out the explicit expressions for 2*-*(Ep). We can thus switch from
the exact Bethe-Salpeter equation for ¢S Erqw) to an ap-
proximate but closed system of equations (2.54) and (2.57), whose
solution immediately gives the function ¢ £*(qw), which, according
to the analysis in the preceding section, determine all the relevant
characteristics of the system,

*The approximate validity (in the limits  — 0 and q— 0) of (2.56) can easily be
verified by summing both parts over p, after multiplying them by (p - q).
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w+ Mg, (qw)

dRMquw) = — N(Ey)

ZE’. 5

dm T

W+ wMg, (qw) —

Let us examine how we can derive the localization phenomenon
from these relations. We see that under the conditions of existence
of the limit

N 2Efr . 1
Ry(Ep)=— " lim >
md w—0 wM;,;, (qw)

0 (2.60)

we can extract from (2.59) a singular contribution of the type shown in
(2.27)

N(Eg) 1
RA = —
SE (qw)waﬂ Y _2Ef q’

md oM, (qo)

N(EFr) 1 _ 1
© 1+RUENG o

(Ep)x o Er). 2.61)

where
VN(Ep)

—_— o)
1+ iqRy(Er) (2.62)

Xiq(EF) =

These expressions satisfy all the general requirements of (2.29)-
(2.31), in particular

1

1
A = Er)x—o Er)=——5——
E-(qQ) Xq( FIX q( F) 1+R&(Ep)q“

N(EF)

~ 1 - R (Ep)q’, (2.63)

q—0
where the localization length is expressed as follows:

2Eg . 1
Ri(Ep)=— 1 - 2.
o Er) md wIE}; wMEg, (Dw) (2.64)
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[t is also useful to introduce the characteristic frequency [41]

wi(Ep) = —lim oMg, (Ow) >0, (2.65)
w—0
so that
2E.
R Ep) = L wo(Ep). (2.66)
md

We see that the localization is equivalent to the requirement that
the lim, .o Mg, (Ow) be finite, i.e., that Ri,.(EF) or wyEr) be
finite. In other words, it is equivalent to the requirement that the
current relaxation kernel (2.58) be divergent: Re Mg, (Ow)=
—w3(Er)/w in the limit w— 0. Such a behavior of the relaxation
kernel was regarded as the localization criterion in Refs. 41 and
49-53. We have derived it here from slightly more general con-
siderations based on the localization criterion suggested above.

It is easy to see [41] that for small values of w and q the retarded
density—density response function x ®(qw) is given by

xR(qw) = 0o BAqo) + N(Ep) + 0w, ¢°). (2.67)
We then find from (2.59)

2EF 2

d
xR(qw) = — N(Ep) m L (2.68)

2E
2+ wMg - ¢
ot oMz, (qe) mdq

Ignoring w? in the denominators of (2.59) and (2.68), we can write
for small values of w

]
m == N{Fp)— _
RN qw) Er) o D g (2.69)
iD I's
KRiqo) = N(Ey) —Pa 4o (2.70)

o+ iDg, (qw)q°
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In these expressions we have introduced, by definition, the general-
ized diffusion coefficient [41]

2E, 1
m ME,, (q(l)) '

Dg, (qw) =i (2.71)

We can then find from (2.13) and (2.68) a general expression for the
conductivity

2 i

ne >
=— Dge (00)N(EEg). 2.7
olw) m ot My (0w) o e’ Dg, (00)N(Eg).  (2.72)

In the first part of this expression we assumed that n/N(Efp) =
2Er/d, where n is the electron density. We see, in particular, that
the usual metallic behavior (nonvanishing static conductivity at
T =0) corresponds to Mg, (0w —0) = i/7g,., where 7g. serves as
the generalized mean free time.

This discussion leads to the following behavior of the current
relaxation kernel for =0 and w— 0:

L Er>E. (Metal)
TE,
Mg, (Ow) = _ B (2.73)
L_ﬂl(_F; E; < E. (Insulator).
TE,_ w

Incorporating (2.73) into (2.59), using relation (2.18) and ignoring
for the present the component Im ¢ £%(qw), which is nonsingular in
the limits w — 0 and q =0, we find the explicit expression for the
Berezinskii-Gor’kov spectral density

<<PEPE+w>>p
1 De_ o
—2—5‘7(!_2_7; E.>E.
7w +(Dg,q)°

_ (2.74)

Ar, (@)8(e) Dr,q° Er<E
(q)8(w) +— s5: Er<E..
2 7m0 +[wd( Er) e, + D, q°T "
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where [compare with Eq. (2.63)]

i Ep) 7, _ 1
wiz)(EF)TF., + Dk, q2 1+R ﬁ‘c(EI-‘)qz‘

Ap, (q) = (2.74)

In this expression we have introduced, by definition, the renor-
malized diffusion coeflicient

2E 1
= — VFTE, ,

=— 7T 2.75
dm " d ! ( )

Dy,

where vr is the velocity of the clectron at the Fermi surface.

Our task now is to find the behavior of the type of (2.73), from
the solution of the general equations of the microscopic theory.
After making use of approximation (2.34) for single-electron
Green’s functions. the current relaxation kernel Mg, (qw) will be
determined entirely by the approximation for the vertex UPF;,'?(qw)
in (2.58). The Vollhardt-Wolfle approximation [41] is based on the
use of expression (2.36) for Uflf(qw), which is determined by the
summation of the Langer-Neal diagrams (Fig. 4b). A transfor-
mation of the second term in (2.58) gives rise to the following
contribution to Mg, (Ow):

1

_— 2.76
o+ iD{rk? ( )

M, (0w) = —=2pV? Y.
k

Expression (2.76), however, falls short of achieving a localization.
The basic idea behind the self-consistent theory of localization
involves the replacement of the classical diffusion coefficient in the
denominator of (2.76) by the generalized diffusion coefficient
(2.71), which in turn is defined in terms of the current relaxation
kernel [49-53]. As a result, we obtain the self-consistent equation
for the kernal Mg, (Ow) (Refs. 41 and 53)

1 . 1
S
£, (@) = 2iy(EF) 7N(Eg) kT, —iw + Dg, (w)k*
(2.77)
Dy | ;)_‘2EF |
E; w) ! dm ME’(LU).
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We will discuss in detail below how the choice of the cutoft
momentum k, in (2.77) is made. The most rigorous derivation of
Eq. (2.77), based on a general diagram analysis, in which the less
singular components for d =2 were discarded in the limit o — 0.
was made by Wolfle and Vollhardt [53]. We will analvze below
several simplest corrections to (2.77).

Equation (2.77) was initially analyzed [41, 52] only for the two-
dimensional case. The approximation based on the summation of
the Langer-Neal diagrams was specially adapted for this case, since
these diagrams lead to the contributions which are predominant in
the limit d—2 (see the discussion below). We will analyze its
solution, however, for d > 2, which was carried out independently
in Refs. 53 and 54. In this case the results describing the location of
the mobility edge in the band. as well as the behavior of all the
principal physical quantities near it turn out, as we will see below, to
be entirely justifiable and presumably qualitatively correct.

We see from the definition of Mg, (qw) in (2.58) that since AG, ~
Im GR(Ep) ~ 8(Er — p*/2m) [for y(Er) < Er], the total momentum
k=p+p in Ufl;; (qw), which is defined by expression (2.36), being
an integration momentum in (2.77) varies (in terms of the modulus)
from zero to the momentum of order 2pr. On the other hand.
expression (2.36) is, as was noted above, valid only for [p+p/| <7,
where [~ vey™' is the mean free path of an electron. We can
therefore clearly see that the cutoff momentum in (2.77) is

ko~ Min{pe. 7"} ~ Min{v2mE; m'@* V2 pVEEE 2L (2.78)

It is evident that for 2 < d <4 the cutoff momentum is defined, in
order of magnitude, by the Fermi momentum in the limit Er — 0
(the Fermi energy decreases toward the band edge) (Ref. 54; see
also Refs. 49-51):

k() = XoPr — .\'(,\//2 mEF. (279)

where x,=const ~ 1-2. Such a choice of the cutoff is, in our
opinion, unambiguous; however, the viewpoint of the authors of
Refs. 41, 52, and 53 is not entirely clear in this regard. However,
since Er ~ y(Ex), we have pe ~ 7' near the mobility edge. as was
noted above, so that both choices are equivalent.
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Switching in (2.77) to a dimensionless integration variable. we
can write this equation in a form that is convenient for calculation

-1
N 1
Mlgl(w):ziy(EF‘)+d)\xff My, (w)J dyyd*1

0 2 dw

(2.80)

where

_,Y(EF)A(£>11’2_E‘1’_11/ZI'\ v,v
2 P d
5)

1 EI—' (d—4)/2
- = 281
i) @81

77TEF

is the dimensionless “coupling constant’ of the theory in which we
used the explicit form of the density of states of the free electrons,

d/2 E(d/?_)fl

as well as definition (2.49). The normal condition under which the
perturbation theory is applicable implies that the inequality A <1
holds, 1.e.. Efr > E,. (for d <4).

Assuming that w =0 in (2.80) and analyzing the metallic regime
in which, according to (2.73), Re Mg, (w =0) =0 and Im Mg, (0w =
0)= TE: , we find

i , d g |
E =2iy(Er) +ﬁ Axd ;

so that

| {1 d
S _
B y(Ey) d-2

Axd 2} : (2.82)
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We then find from (2.72) the static conductivity

nez 1 E (4—d)/2
=— 41— C) }: 2<d<4, 2.83
7 m 2v(EF){ (EF | (283)

where

-~ 1—d
d d—2 2/(4—d)

X(
E=|qs g0 } E... (2.84)
{ r(3)

The energy E,., which is defined in (2.49), again appears in this
case. We see from (2.83) that E, serves as the mobility edge. We
find that at Er = E_

ne’ 1 /44d><EF—E() 5
_ . 2<d<4, (285
T 29(Er) ( 2 E. (2.85)

so that the conductivity vanishes at the mobility edge linearly in
Er — E.. The result in (2.84) coincides, to within a constant, with
the estimate of E. in (2.48), which is based on a different line of
reasoning. For d =3 the threshold energy lies in the *‘strong-
coupling” region E,. = m3(pV2)2, where our choice of diagrams is
generally not correct [7,35] and all the perturbation-theory
diagrams must be taken into account. We clearly see this from the
fact that the requirement A <€ 1, according to (2.81), is equivalent to
the condition E > E,.. In the limit d —> 2 E. — >, consistent with the
total localization in the case of arbitrarily small (A < 1) disorder.
The applicability of the perturbation theory in the limit d —2 will
be discussed in greater detail below.

It is pertinent to analyze now the role of some dlagrams which
were not considered above. The irreducible vertex Upp (qw) in (2.58)
can be represented in a more complex form by supplementing the
“cooperon” contribution (2.36) (Fig. 4b) by the “diffusion™ con-
tribution, i.e., by the diagrams (Fig. 5a) that contain the “diffusion”
propagator [41, 42] (Fig. Sb, q— 0 and 0 —0):

2y(Ep)pV?

I o’ (qo) = 5.
w9 = DEg

(2.86)
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Figure 5. (a) A simplest “diffusion” contribution to the irreducible vertex U L (qw).
(b) Diagrams for a diffusion “propagator™ (“ladder™ approximation).

The corresponding contribution to Mg, (qw) in (2.58) is [41]

d -9’ +q°(k-q)
SMP (qu) = —— pv2 Yy 34 2 T 87
Q) = PV LT DR (287

Using this contribution and performing the self-consistency opera-
tion, we obtain the following equation for Mg, (w), instead of (2.77):

| 1 - 1+ k*/2p%
M. =2iy(Eg { I+ ) }
E, (@) = 2iy(EF) 7N(Egp) i=x, —iw + Dg, (w)k*

B | (2.88)
D -z .
e ) = My (@)
By analogy with (2.82), we then find for w =0
1 d xf‘,] i }
. = 1- +—= A 2.89
TEr 2y(Ep){ [dvz 2 (2.89)

in the metallic region. We see that the use of the diagrams in Fig. Sa
changes the constant in (2.82). The cooperon contribution is
dominant in the limit d — 2, whereas at d =3 the diffusion con-
tribution is of the same order of magnitude as the cooperon con-
tribution. The mobility edge shifts slightly: d/d —2 is replaced by
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d/d—=2+ x3/2 in (2.84). The “critical behavior,” however, remains
the same: conductivity goes down to zero in accordance with (2.85).
We will therefore confine ourselves to approximation (2.77). which
we feel “works™ for d—2. At d=3. all the perturbation-theory
diagrams must evidently be summed. both for Ufl;r(qw) and for a
single-electron Green’s function, which is extremely important. The
mobility edge E.— = for d—2, and it may scem that we could
restrict ourselves to the simplest approximation (2.34) in the case of a
single-electron Green'’s function, since the condition E,. > y(E.) in
this case is satisfied. Actually the situation is, as we will see below.
more complex even for d — 2. _

The use of approximation (2.36) for U:l;r(qw). along with ap-
proximation (2.34) for G®*(Ep), we might note, is generally in
contradiction with Ward’s identity (2.53). The use of “crossed”
diagrams for Ufl;r(qw) implies that the same diagrams must also be
used for X4 (Ep) [see the derivation of (2.53) in Ref. 41]. At the
same time, several examples of exactly solvable models [55-57]. in
which it was possible to sum the crossed diagrams (such as those in
Fig. 4b) for %2 (Ep) show that the single-electron Green’s function
obtained in this manner has a structure radically different from that
given by the simplest approximation (2.34). We also clearly see this
from the fact that (2.34) does not give a correct single-electron state
density such as the one shown in Fig. 1b. Specifically, Eq. (2.34) does
not account for the “tail” in the density of states. which appears in
the perturbation theory [55, 56] only when the crossed diagrams are
taken into account (see the discussion below).

All these factors can, in our opinion, change the critical behavior
such as that in (2.83), whereas the estimated location of the mobility
edge (2.84) apparently remains the same (to within a constant) even
in a more precise theory.

Turning our attention now to the region of localized states
(EF < E.), we will seek a solution of Eq. (2.80) in the form of the
second expression in (2.73) and find an equation, which determines
wi(Ep), from the real part of (2.80) in the limit w — 0,

-1 I
1 =dAxd? J dyyd ' ————
! o ﬁ+‘de(Ep)

4(x()EF)2

(2.90)



ELECTRON LOCALIZATION 35

Analogously, we find an equation for ¢, in the localization region
from the imaginary part of (2.80) in the limit @ — 0

-1 1
= 29(Ey T_:dAx“ZJ dyy! ! ; .
NER) ! 0 v {7’3 dw(_)(EF)]Z

(2.91)

HxoEr

Using (for wj—0) a simplest estimate of the integral in (2.90). we
find
L

1= dixd - . dvy!

Jdw SUEpnidx SE Y2
[l f ] ¥

3

5

. 20 ) (d02
drxd? ! {14(‘1‘”“( F)) }; 2o d<4

d—2 AxET
= e (2.92)
Aln Hf“ L.od=2.
Using (2.84). we then find
1 Eo\ =2y 200d-2)
—,\'C,Ef{lf(—) } 2<d<4
5 d E,
o Ep) = | (2.93)
2x3E+ cxp[—x] ;o d=2

The location of the mobility edge is given by the condition wi( By =
E.)=0. The integral in (2.90) can also be calculated exactly [54],
then the first expression in (2.93) is multiplied by

d d d —2/(d—2)
[d*:*,) F(;) I‘(z‘;)‘l ("vl for (1:3)~

while the second expression remains the same [53, 54]. Using the
“unity representation” (2.90) in (2.91), we find a relationship be-
tween 7g, and w3(EF):
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/ . d(l)?)(EF) -1 \"L171
2 E = d/\ d=2 — 5 5 J d\‘ —
VER)TE, o AxGEE 1y [V2+d‘*’6(EH]3
’ 4x3FE3
~ daxd— {dw(zl(Ef)— ( dor Ef)>'d7h/:}; d= 4.
d—4 U 4x5Er \4xER
(2.94)
so that as wj( Ex)— 0, i.e.. near the mobility edge we have
d B dw(Z)( EF) (d—2)/2
—— Ax{’ ——) D 2<d<4
4—q"™"" (4xaE2p '
2Y(Ep)Tg, = E) (2.95)
wil EF
A {l - }; d=2.
2x3EF

We find from (2.66) and (2.93) the localization radius

‘ 1 E- (4—d)/2 1/(d—2)
Ru B = ———|1-(Z£) |
X()\/z n’lE[-' Ec

1 | E[.‘ - EC
V2mEg ‘ E,

v

Er<E. (2<d<4), (2.96)

where the critical exponent of the localization radius is

1
d—2

(2.97)

v =

We see from (2.97) and (2.85) that this theory satisfies the Wegner
scaling law for the critical exponent of the conductivity [25]:

t=(d—2)v. (2.98)

The values of the critical exponents obtained here coincide with
those obtained in the main approximation of the € = d — 2-expansion
in the elementary scaling theory of localization [26, 58]. As was
shown by Vollhardt and Wolfle [53], the basic equations of this
scaling theory can be derived directly from the equations of the
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self-consistent theory [53]. We feel, however, that these values of the
critical exponents should not be taken too seriously. since they were
determined by going beyond the limits of the perturbation theory,
which was used as the basis for derivation of the basic equations of
the theory.

Let us examine the dielectric constant as an example of a physical
quantity calculated in the localized region. Using the relationship
between the dielectric constant and the density—density response
function [59]

4re”
ql
we find from (2.68), (2.93), and (2.96)

elqw)=1- xR(qw), (2.99)

5

R w,] bl 2
eVw—0)=1+— =1+ kpRio(Ep) ~

a)()( ~F)

Er—E.|
E.

(2.100)

where w, =4mne?/m is the square of the plasma frequency, and
Kk =4me> N(Eg) is the inverse square of the screening length of the
metal. Expression (2.100) gives the divergence of the dielectric
constants as the insulator-metal transition is approached.

For d =2 we find from (2.66) and (2.93) (Ref. 41)

. 1 7TEF
R(\C(E'): exp{ 7}. (2101)
1 ' xovV2mEr mpV -

Thus the localization length in this case is exponentially large for
E = mpV?, and we have a “weak localization.”” We feel it worthwhile
to give detailed results on the frequency dependence of the conduc-
tivity for d = 2. (The equations for the frequency dependence of the
conductivity for d > 2, which appear in this theory, may be found in
Refs. 53 and 60.) A direct though slightly laborious analysis of Eq.
(2.80) for d = 2 reveals that several frequency intervals, in which the
conductivity behaves in a markedly different manner, can be singled
out [54]. For extremely low frequencies w <A~ 'exp(—A ") y(A < 1)
we find [41]

2 o) 2
a(w)xi"—lexp(i) T (2.102)
m )
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At slightly higher frequencies A" exp(—=A ") yw<d Zexp(—A ')y we
have

With further increase of the frequency, we find that for
A7 exp(—=A ")y < w < A%y conductivity behaves in a logarithmic
manner as obtained in Ref. 43:

21 2
ol :ﬁ—{l*m —V} (2.104)
m 2y )
Finally. for A*y < w < vy the self-consistent theory gives
ne- 1 | l:;(
olw)=——— 1= (2.105)
m 2yt Ey

where E. = (m/mpV 7 x*, with x* defined as the biggest of the roots
of the equation x* =In(xj/m) + 2 In x* (solution exists for Xo => N r).
We see that the conductivity in this frequency range is essentially the
same as the constant (frequency independent) metallic conductivity
with the “‘mobility edge™ E,. This circumstance may conceivably
reconcile certain discrepancies between the numerical data on
two-dimensional conductivity obtained by different authors [7] and
the concept of total two-dimensional localization: logarithmic cor-
rections and the dielectric-like behavior are seen only at extremely
low frequencies, although there is a broad (since A is small)

frequency range, within which a finite mobility edge E. can be
“simulated’ in the system. At Ex = El, the localization length. as we
have seen. also begins to increase exponentially. However, d =2
plays the role of the ““lower critical dimensionality.”

For d >4 an analysis of Eq. (2.80) gives physically meaningless
results [54]. The origin of these results is clearly traceable to the fact
that, according to (2.81). the perturbation-theory expansion in this
model is in the parameter (Ex/E, )" 7. Accordingly. at d < 4 the
expansion diverges in the limit Ep— 0. while at d > 4 it diverges in
the limit Er —<c; i.e., there is an “inversion’” of the strong- and
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weak-coupling regions on the energy axis. As a result, the conduc-
tivity vanishes. while the localization length becomes finite with
increasing Fermi energy from the band edge [54]. At d >4 such a
behavior reveals a certain flaw of the model with a point interaction
(“white noise”” random-potential correlation) [61]. The limiting case
d =4 requires a careful analysis. Equation (2.80) implies that we
always have a metallic behavior if the dimensionless coupling
constant of the four-dimensional theory is small. m*pV?= < 1. Equa-
tion (2.90) does not have any real solutions wj( Er) > 0. This seems
to be true for any energy outside an exponentially small (over
m>pV?<1) vicinity of the band edge (see the analysis of d =4 in
Sec. 3). This situation changes if we assume that the cutoff parameter
koin (2.77) is defined by the effective range of the potential (or of the
two-point correlation of random potentials). for example. rather than
by the Fermi momentum. In this case it is possible to have ko< py.
For d <4 the results in this case arc the same as those obtained
above, but the mobility edge is given by the relation (for any d > 2!)
(Ref. 54):

d m dj/2 E‘:)d/l)fl d | ~
E = _) e pVi=——— y(E,. (2.106
d-2\2n ‘,(g) pVE =g VB (2100)
2

where E,= ki/2m. For d = 4 we find [54]

ne | E.—E,
e VB CE e 2.107
o m 2y(Ep) E ' ( )

, 4
wi(Ep)=— 1—'}: Er-<FE.. (2.108)

Accordingly, using (2.66) we find that the critical exponent of the
localization length is v =5 for d >4. Thus, we can refer to d =4 as
the “‘upper critical dimensionality” of the localization theory.

We have analyzed a free electron in a field of random scattering
centers. The self-consistent theory can be generalized to describe an
clectron with an arbitrary energy spectrum in a lattice with an
Anderson-type disorder [3]. Such a generalization is relevant, first of
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all, in view of the availability of extensive literature on localization in
the Anderson model [4-7]. The localization in the Anderson model
was first analyzed within the context of the self-consistent theory by
Gotze [62] and Prelovsek [63]. Their analysis was based on Gotze’s
formalism [49-51]. Kotov and Sadovskii [64] performed such an
analysis using the Vollhardt—=Wélfle method. We will confine our-
selves here to the discussion of the results of Ref. 64 for the case in
which a lattice electron is described by the effective-mass ap-
proximation and the Anderson disorder is described by the Gaussian
distribution with a width W. All the relevant results can then be
determined, from the equations given above, by a simple sub-
stitution:

5t pV>— W3, (2.109)

m— m* =
2Va

where m™ is the effective mass of the lattice electron for a strong-
coupling approximation (V' is the transfer integral between nearest
neighbors, and a is the lattice constant), and € is the volume per
lattice site; we will restrict ourselves here to the lattices of cubic
symmetry. A more general analysis was carried out by Kotov and
Sadovskii [64]. For the static conductivity in the metallic region, by
analogy with (2.82) and (2.83), we then find

e?  vr d
S - A»H}. 2.110
T md W“Q“{ d_2" ( )

In this expression the dimensionless “‘coupling constant’ is analo-
gous to that in (2.81):

- (m—*)dﬁ WZ()O
d
2)

2m
I
where Ep is the Fermi energy reckoned from the band edge. We
easily see that the mobility edge is determined by

WA2 d-2 pdym* Y s
(V)' 2 l(?)(ﬁ) Vzg()EF . (2.112)

E =472 (2.111)
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This is the condition under which the braces in (2.110) vanish. If the
“disorder” is specified (W/V), Eq. (2.112) gives Eg = E,. the loca-
tion of the mobility edge in the band. If the Fermi energy is specified,
we find from (2.112) the critical ratio (W/ V)., which corresponds to
the electron localization at the Fermi surface. In particular, for a
half-filled band Er = ZV (Z is the number of nearest neighbors in
the lattice), we find

WA d=2 dy m*V T s
At

and for (W/V)=<(W/V),, for the mobility edge, we have (2.84);
where for the model which we are analyzing we have

E,. = (m*) /@ )2/ d)yy HHE—d) (_)4/<4~¢u v (%)4/(47(“_
(2.114)

<|=

In comparing these results with the literature on the Anderson
model. we should bear in mind that our parameter W ? represents the
dispersion of the Gaussian energy distribution at the lattice sites. The
dispersion is W?2/12 for a uniform distribution with a width W, used
in Ref. 3. For the “Anderson” critical ratio we therefore find
(W/V)2=12(W/V)2 This procedure gives only an approximate
description of Anderson’s disorder, since all the perturbation-theory
diagrams connected with the higher-order cumulants of the Ander-
son random field have been ignored here. Table I gives the critical
disorder for the total localization of all states in the band. The critical
disorder was determined from (2.113) for various three-dimensional
lattices of cubic symmetry, for two values of the dimensionless cutoff
parameter x,. Despite the obvious crudeness of the theory. we find
our results to be in extremely good agreement with the results of the
numerical calculations for the simple cubic lattice: (W/V). =15
(Ref. 65), (W/V).=19=x0.5 (Ref. 66), and (W/V), =16+0.5
(Ref. 67) for the **Anderson” disorder. We also find our results to be
in excellent agreement with the results of a most accurate analysis of
the localization, within the context of Anderson’s method, performed
by Licciardello and Economou [68]: (W/ V), = 14.5. Our results are
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I'able 1. Critical Disorder Corresponding to the Localization of All the States in the
Band for a Gaussian Energy Distribution at the Lattice Sites (W/V) and for a
Homogeneous Anderson Distribution ( W/ V) in Cubic Symmetry Lattices.

Lattice VA Q, X, = | x,=2 x,=1 x,=2
Simple
cubic lattice 6 a’ 5.67 4.01 19.67 1391
Body-centered- a’

h 8 — 8.63 6.10 29.88 21,13
lattice 2
Face-centered- a’ _ .

. 12 13.50 9.55 46.78 33.08
lattice 4

also in reasonably good agreement with the only result (known to us)
of a numerical analysis of the Gaussian disorder. (W/ V). =7 [69].
We know of no numerical calculations for bee and fece lattices.

Let us now consider the results for the hvpercubic lattice in a
d-dimensional space. In particular, for a static conductivity of a
half-filled band we find from (2.110) 2 < d <4)

%K,(W)
v w> W2
a (Tmm T N I I
v/,
d—2 /d o
— d I (5) (477)(“2X(2; dz(4 d)/_‘
(2.115)
where
47 e [ V7
mm S\ Y] 116
o= g ), @110

essentially in agreement with the “‘minimal metallic conductivity”
estimates by Mott [1.2]. Specifically, in a model with **Anderson”
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disorder for d = 3 we would have g, = 0.013¢*/Aa=10"Q 'cm !
with @ =3 A. Curiously enough. in the limit d —2 we would have
T —~ €2/a?21]d —2—», since (W/V).—0 (2.113), which in-
dicates a trend toward a total localization at d = 2.

For a characteristic frequency (2.65) in this model we find

W/ 2 2/Md—2)
2 4 o) ) ( V)(
wr,(EF:ZV)xEZ'V'X(, 11——=

IR [N | V_VZ<K>.
d W TV v/,
(T)
(2.117)
hence,
w w —(1/(d=2))
Vo)
Ri(Ep=ZV)=aqa §2———= (2.118)
(V)

for the localization length at the band center. We see that the critical
index of the localization length is given by (2.97), even for localiza-
tion at the band center. The necessary refinements resulting from
calculation of the displacement of the original band edge by a
random field are given in Ref. 64. The role of this displacement in
the determination of the quantity (W/V), is insignificant. The
equations for all physical quantities in a two-dimensional Anderson
model can also be easily written.

3. Field Theory Treatment of Localization

3.1. Effective Field Theory of an Electron in a Disordered System

A systematic analysis of the region near the mobility edge would be
rcasonable to carry out by constructing an effective field theory
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corresponding to the Anderson transition. This can be done by a
method used in the analysis of the critical phenomena in the
phase-transition theory [21-23]. The original ideas used for a
scaling description of the mobility edge, which were advanced
immediately after the development of the modern theory of critical
phenomena, were formulated virtually at the same time by several
authors [24.25, 70-74]. A rather extensive literature on this subject
is now available and several effective Lagrangians have been
suggested for an electron near the mobility edge [7. 10]. We will
examine the earlier field theory approach [24,72], since it
emphasizes rather than obscures, in our view, the difficulties
encountered in a theoretical description of the problem of interest.

We will again consider the behavior of a free electron in a field of
random scattering centers. If we confine ourselves to the Gaussian
statistics of a random field produced by these centers, which is a
valid approach if we are dealing with [75] the limitof V— 0, p— =,
and pV?*— const, we easily see that the Edwards diagram expansion
[11,33.42] for the average Green’s function GRA(Ep) is
generated by the standard series expansion in the perturbation
theory [22] of the propagator (Green’s function) of the scalar O(n)
symmetric Euclidean field theory with a Lagrangian [7].

P&l ) ol
tio=3 3 {55 Far - E s o]

where m is the electron mass, and E is the electron energy. In this
case the number of field components n— 0 (at the end of the
calculations), allowing the elimination of the *‘loop” diagrams
which are missing in the Edwards diagram technique. This method.
proposed by de Gennes [76] and developed by des Cloizeaux [77].
was successfully used in the scaling theory of polymers with
excluded volume. The use of an appropriate formalism has made it
possible [24] to develop a scaling model of the mobility edge within
the context of the Anderson method.

The Green’s function corresponding to Lagrangian [3.1) can be
formally determined by a functional integral (a minus sign was
chosen in order to match this expression with the standard form of
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the Green’s function for a free electron),

n -

1 1 &
Gir—rE)=——lim— ) J {8 (r)} i (r) d;(r') expl—S[ ]}, (3.2)

n—0 R j=

where

S[d] :} d*rL(r) (3.3)

is the action functional of the field theory (3.1), and the nor-
malization integral is

7= J {86(r)} expl{— S[$1}. (3.4)

In a formal calculation the functional integral in (3.2) diverges
because of the “‘incorrect” sign of the coupling constant (attraction)
[24]. This indicates that the ground state in the field theory (3.1) is
unstable. For this reason, this functional integral should be under-
stood as an analytic continuation over the coupling constant from an
arbitrary constant g > 0 to a “*physical” constant g = —pV?* < 0. We
will discuss this problem more thoroughly below. For now we will
treat expression (3.2) simply as an abridged notation of the diagram
rules in the perturbation theory for field theory (3.1).

We should point out an important feature of the method we are
considering. In (3.1) there are no random parameters, and an
averaging procedure in it has already been performed. For this
reason, expression (3.1) is said to be an “effective” Lagrangian. On
the other hand, such a convenience exacts its “toll”": A calculation
of a two-particle average Green’s function requires a different
effective Lagrangian. We saw that a solution of the localization
problem generally requires knowledge of correlators like those in
(2.19) and (2.24), which include single-electron Green’s functions
with different energy variables. We can easily write down an
effective Lagrangian which immediately “generates™ a diagram
technique for a two-particle Green’s function (see Fig. 3). In this
case we need a Lagrangian of two interacting scalar fields ¢ (n
components, n—0) and ¢ (m components, m— () which has
O(n) x O(m) symmetry [7, 74].
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Pl s
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=1i=1

]
The appearance of a Langrangian of two interacting fields implies
that there are certain complications arising from the transition to a
two-particle Green’s function. However, the principal difficulty of
the theory, associated with the *“incorrect” sign of the coupling
constant, is nonetheless seen, already in, in (3.1).

First, we will determine at the elementary level the range of
applicability of the perturbation theory, similar to that how it was
done in the theory of critical phenomena during the derivation of
the so-called Ginzburg criterion which determines the size of the
critical region, where the order-parameter fluctuations are
significant [78]. We will follow generally the procedure used in Ref.
35. The self-energy part of the Green’s function in a “one-loop™
approximation, which corresponds to the summation of the
diagrams like those in Fig. 4a. is given by

, [ d? 1
E(En>sz-J (,ﬂ‘)’d g (3.6)
- E()“E(Eo)*a‘;1

where E| is the “bare” energy of a free electron. Let us determine
the renormalized energy E by the relation

E(E,) = Es—Re E(E())- (3.7)
We can then rewrite (3.6) in the form
, S d? 1
Ey— E(Ep) + i Im X(E,) = PV"J Pd 3 .
(271) p )
E(E,) —=——iIm 2(E,)
2m

(3.8)
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Let us now determine in this approximation the renormalized
(displaced) band edge E,. (Refs. 35 and 64) from the condition
under which the density of states vanishes

1 dp RoA \
N(E',)—¥;J Gy 1M GRAER)——0. (3.9)
we have
xwa[E(E(n—L]; Im S(Eo) =0
2m
Im GRA(Ewp) = Im 3(E,)

- Im 3(E,) # 0.

P } +[Im S(E)]

2m

[E(Eo‘)
(3.10)

To satisfy (3.9) the necessary condition Im %(E,— E,.)— ( must
hold; furthermore, we must require that

- ddp

N(E,— E\.) = J QT)d

5(5(5,)—%)——%), 3.11)

Ey—Eq,

which is equivalent to the condition

Ey—Eq,

We can then find from (3.8) the equation which determines E,.,

Cdip ﬂ pi=
Ey. = —p\/2 J (277.)(1 piZ/zm = —pVhD(()) = 7pV22WlSd d-2"
(3.13)

where S, =27V 421/1(d/2), and p, = a" ' is the cutoff momen-
tum on the order of the reciprocal minimum length in the problem
determined by the correlation radius of the random potentials, i.e.,
the length at which the point like interaction in (3.1) becomes
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spread-out. Our definition of a displaced band edge differs from that
of Brezin and Parisi [79] but is consistent with the definition of the
displacement of the phase-transition point due to fluctuations [78].
Let us now consider G '(Eyp = 0) = E,— Re X(Ey) — i Im 2(E,) and
subtracting Eq. + pV>D(0) = 0, we find

E()‘ E()C —Re E(E()) - psz(()) = E()_ Re Z(E()) = E( E()). (3.14)

Ignoring Im X(E,) in (3.8), we find

- d 1

[ dp 2 S
~ 2 = . (3.15
Re S(Ey) = pV J(zmd EEy i jam = PV DIEEDL (3.1

We then derive from (3.14) an equation which relates the renor-
malized energy E(E,) to the distance from the band edge in terms of
the bare energy Eo— Eo.

Ey— Eo. — pVH{DI[E(Ey)]— D(0)} = E(E)). (3.16)

The “Ginzburg criterion” (Ref. 35) follows (by analogy with the
requirement in Ref. 78) from the requirement that the following very
simple equation hold:

E:EU_EUC' (317)

This equation implies that the renormalized energy is equal to the
electron energy reckoned from the displaced (in a one-loop ap-
proximation) band edge. Clearly, Eq. (3.17) holds for (2<d < 4) if

1

ol )]

|E|> pV3D(E)— D(0)| = pVZ>amS,2mE)"/>!

or for

2 —
Bd 2/(4—d)

E,. (3.18)

|E\>{

Lo
smzd‘
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where B, =2 427" 42/1(d/2), and E,. = m4/* P (pVv)2HE4 [see
Eq. (2.49)]. In the limit d —2 we have [sin (7/2)d|— (7/2)(d —2),
while (2/7) By = A, which is given in Eq. (1.48). We see that (3.18) is
equivalent to (1.48). In the limit of d — 2 condition (3.18) is more
stringent than the simple requirement E > y(E) (or E > E,) which
we regarded above as the condition under which the perturbation
theory can be used. Omission of Im 2(E,) in (3.15) is fully justifiable
under the conditions of (3.18). The simplest approximation (2.34), in
which the variable E is taken to mean the distance from the band
edge displaced by the random field. is valid only under these
conditions. According to (2.48) and (2.84), the mobility edge is
situated in the “Ginzburg critical region™ (3.18), where the higher-
orders of perturbation theory are important, even in the limit of
d— 2 (Ref. 35) and the “naive’ hopes expressed above, for example,
in determining the region where the self-consistent theory can be
used are. in fact, not justifiable. The divergence of region (3.18) in
the limit of d — 2 is analogous to the divergence of the “Ginzburg
critical region” in the problem of phase transition in two dimensions
[78].

In our analysis of the field theory (3.1) we understand E [in (3.1).
(3.5), etc.] everywhere to mean the electron energy (3.14)—(3.17)
renormalized in a one-loop approximation. This assumption allows
us to eliminate from our analysis the real part of the diagram like the
one in Fig. 4a, which determines the displacement of the band edge.
Formally, this can be accomplished by incorporating into (3.1) an
appropriate counterterm for “mass’’ renormalization: 6F = E— E, =
—Re X(Ey).

We will examine the cases of d =2 and 4 separately. For d = 4 the
analysis is essentially the same as the preceding one. The displace-
ment of the band edge, according to (3.13). is

, m ps , m

= 2 PO _E q

where E, = p3/2m is the energy associated with the momentum
cutoff. Equation (3.16) for d =4 gives

T
E=Ey—Eo +2pV? 2 Eln 215

(3.20)
277'2 Po
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Condition E> y(E) for d=4 reduces to the requirement
(m?/4mpV3<1, ie.. to the requirement that the dimensionless
coupling constant be small. The requirement that E = E,— E,,
leads. according to (3.20), to the following inequality

- 4 1
E>E')Cxp{*?;"/§}. (3.21)

This expression defines the “Ginzburg critical region™ of the four-
dimensional theory, which is exponentially small over the coupling
constant.

In the case of d=2 the situation is more complicated. The
displacement of the band edge, determined from (3.13), becomes
infinite and from (3.15) we find

E<E~():E“. (
2m

™
to
o

5~ M E()
Re S(Ep)=pV?——1In ||
¢X(Ep)=p 27Tn E

The correction to E, in (3.7) is appreciable everywhere at E < E,,,
implying that formally the perturbation theory cannot be used at
d = 2. We therefore understand d = 2 everywhere to mean d =2 + ¢
when (3.13) and (3.18) are clearly defined.

The higher-order corrections to the perturbation theory in the
field theory (3.1) can easily be examined in the so-called “parquet”
approximation [72]. In this approximation, as we know, the theory of
critical phenomena for d =4 or d =4 — € can be analyzed com-
pletely, because the ““parquet™ comprises the dominating sequence
of diagrams for d ~4. This circumstance, by itself, does not depend
on the sign of the interaction constant. We will write out the
appropriate equations for the field theory (3.1), incorporating the
new variable —E = 7> 0, and carry out an analytical continuation
T— —E Fid, where E > 0, only at the end of the calculations. This is
a convenient way of analysis. since it allows us to analyze the
logarithmic integrals in the usual manner. Let us consider the
simplest corrections to the initial interaction —pV?2, which are
represented by the sum of the diagrams in Fig. 6 (the rules governing
this diagram technique are found, for example, in the book by
Shang-keng Ma [22]). The result. of course, depends on the choice of
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p,=0 T PJ'D : ; \\ /I p ip ]
p ¢—p + : + /)\ + ! + |
p2=” 1 p4=0 1 1 L\ 1 {7 lli

Figure 6. The first-order corrections (second-order diagrams) to the bare interaction
in field theory (3.1).

momenta at the external legs. Let us assume, for definiteness, that all
the external momenta vanish. We thus find

ddp l }
5 EE
(2m? p/2m+ 1)

I(p=07)=pV> { L+ pV2 (gu) J

=—pVH1l+in+8)us+---} = —pVH1l+dus+---}.

n—(

We have introduced a dimensionless interaction constant,

A
2

U=——=a pV> (3.23)

27

and a “‘logarithmic™ variable

Po
In——; d=4
V2mr
5= (3.24)

A=) -1
e(\/jm*r

We sce that the parameter us should be used to select the diagrams
of perturbation theory. In the limit 7— 0, we can easily have a
situation when us > 1, i.e., when the corrections are larger than the
initial interaction. The procedure by which the “*parquet™ diagrams
are summed singles out the “*‘main logarithms,” i.e., the contributions
proportional to ~(us)", and omits the contributions of the type
uk(us)" (k=1, u<1). Since a detailed account of the “parquet”
formalism is outside the scope of this review [80-82], we will simply
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summarize its salient point [72]. The total vertex ['(s). which is
rendered dimensionless through multiplication by m?a /27, is
determined in the ““parquet” approximation by an integral equation
of the type

| L.
l‘(S):*llA;(nﬂ-x)J del™= (1), (3.25)

(4]

which is equivalent to the differential equation

dl'(s) 1 N
= — — B \ 9)
ds 2(n+8)[ (s) (3.20)
with the initial condition I'(s = 0) = —u. The solution of this equation
vields
I(s) = ——0 - (3.27)

1 w0l — dus’
1 (n+8)us vhoaw

We see that in the limit 7— 0 the vertex ['(s) has a ghost pole at
s. = ju. indicating that the perturbation theory is inapplicable at
s=u '. In field-theory-renormalization-group terms, such a
behavior corresponds to an increase of the invariant charge of the
theory in the limit s — s, ~ u ', a situation which indicates that the
perturbation theory does not hold [83, 84]. In the approximation
under consideration, Eq. (3.26) is. in fact, the Gell-Mann-Low
equation for an invariant charge. Equation (3.27) indicates that the
theory in question possesses asymptotic freedom (the “‘zero-charge™
situation is realized in the theory of critical phenomena). The
perturbation theory is valid only at high energies and high momenta.
An analytic continuation 7— —E F 18 yiclds

u
I'(E) = — —
T T
€ P
— e u .
B du ([ 2m|E\ <"? 2m|E|\ ’
1—;“{($) ~1}¢iu( ml 1) o(E) =
€ Po Do 2

d=4—¢€. (3.28)
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Analogously. we have

P(E)=— “ Cod=4. (329

—duln 2" i T oE)

V2m|E| 2

We see that the ghost pole remains in this case. although it lies on the
negative part of the energy axis (where there are no electronic states
in this approximation [72])

) . p(lj 4u>2J€ 2 >2/(4*dl '
Foopro o PO(I T Eoo d=4-
2m(‘e (77*(4—(1) ¢

5

o I
E:fE*:*&exp[ T }: d=4.

s S
2m [ pV-

Thus, the meaning of Ginzburg conditions (3.18) and (3.21) is that
the perturbation theory can be used to analyze the energies far from
the ghost pole. The perturbation theory is not valid at E = E* ~
E,.(d <4), since, as we can easily see from Eqgs. (3.28) and (3.29),

. . 8
(E = +E*)| =
TE

> |
2

NE=+E*|="=~1.
w

so that the effective interaction becomes strong. We might note,
however, that incorporation of the “imaginary’ component into the
denominators of (3.28) and (3.29) exceeds the acceptable accuracy.
since the parquet approximation accounts only for the large
logarithmic (~u/e, e<<1) contributions, whereas the imaginary
contribution is of the order of ~u.

Thus a physically correct description of the effective interaction in
the field theory (3.1) cannot be obtained by using the parquet
approximation. Nonphysical singularities appear at E ~ E,. during
the calculation of physical quantitics such as the density of states, and
the energy ~ E,. determines the width of the “Ginzburg critical
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region’ of our problem. In this region the perturbation theory breaks
down. At E > E,. the density of states can be expanded in a series
over the parameter (E/FE, )" [72.73].

Let us now briefly examine the Lagrangian of two interacting fields
(3.5) which is directlv connected with the localization problem. In
the theory of phase transitions the parquet equations were analvzed
in an analogous problem in Ref. 85. In the differential form in terms
of the logarithmic variable

1 ) €
S=- {(7'"’7 J . ",,:‘T:f) — 1 }
e U\max(vV2mr.vV2m7)

we can write these equations for our problem in the form [7=
~(E+ o) >0, 7=—E>0]

dly 1 RV T
s —ff§(n+§\)l d,—-gml .

dr 1 P L
Ef:~5<m+8u;fjnr. (3.32)
A e, im0, 4

*cg* é{(n FO) e Hm+2)1, H

where I’y describes the interaction ¢, I', — ¢ [4], and 1" describes
the interaction of the type ¢”¢”. which is of main interest to us. For
m =0 and n =0 the equations in (3.32) can be rewritten in simpler
form

dl’y 5 dl ,
Cooary; Se=ar
ds @ ds e
(3.33)
dl N
— =, + 'l =21".
ds e o)

The equations for 1y and I, become separate equations and
coincide with (3.26) (at n =0); the solution of these equations is
given by (3.27):

Pp=1, = (3.34)
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I'he equation for I', which can then be written in the form

i 2ul’ 5 \
o =ML )= —u (3.
ds I —4dus

s}
9]
N

reduces to a Riccati equation. The solution of this equation im-
mediately vields

[=Ty=T,=——— . (3.36)

This result 1s a direct consequence of the “decoupling™ of the
equations in (3.32) due to the limit n— 0 and m— 0. This result is
also evident from the fact that in the limit o«—0 and 6§—0
Lagrangian (3.5) describes the O(n + m) symmetric theory. There-
fore, a naive expectation that the solution of a system of coupled
equations (3.32) can lead to a behavior different from the non-
physical result like that in (3.27) is unjustifiable. The “strong-
coupling” region is retained in the theory. which again indicates that
the perturbation theory is basically inapplicable in the energy region
of interest. The results like those in (3.33)-(3.35) were obtained by
Nitzan et al. [74] in terms of Wilson’s recurrence formulas as an
indication of the absence of fixed points of Lagrangian (3.5) for the
values of the parameters which correspond to the problem of an
electron in a random field.

The difficulties discussed above are. in our view. the key difficul-
ties in the description of the energy region near the mobility edge.
rather than being a consequence of the use of an “illegitimate™
effective Lagrangian. Any other theory must encounter these
difficulties sooner or later in a systematic analysis and find a method
for their solution. Unfortunately, this problem is either ignored or
bypassed in most present-day studics by making usc of simplest
approximations (for a single-particle Green’s function, for example)
outside their range of applicability.

3.2. Analytic Properties over the Coupling Constant and Instantons

In the analysis of the preceding section we have. in fact, attempted
to calculate in a rather naive way the functional integral of the type
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(3.2). We understood this integral to mean an abbreviated notation
of the diagram rules for the perturbation theory. The results we
obtained show that this approach has serious flaws in the region of
low energies and particularly negative energies, where the pertur-
bation theory gives rise to the appearance of a ghost pole in the
effective interaction [(3.28) and (3.29)] and other nonphysical
results. It is an established fact, on the other hand. that an analysis
of the behavior of an electron in a Gaussian random field of the
scattering centers in the negative energy region leads to the exis-
tence of a “tail” in the density of states (Refs. 6 and 8) which is
associated with the localization of electrons in the deep fluctuations
of the random field. This situation typically is marked by the
appearance (in the density of states) of nonanalytic contributions in
terms of the coupling constant [86-89]. which cannot be accounted
for by the standard perturbation theory. The functional integrals
such as those in (3.2) can be properly analyzed only by using the
method of analytic continuation over the coupling constant. A cor-
responding method based on the calculation of the integrals by the
method of steepest descent was suggested (in connection with
another problem) by Langer [90]. In a field theory approach to
localization this method was used for the first time by Cardy [91]
and Sadovskii [92]. Let us discuss the main results of these studies.

Before considering the functional integral, it would be useful to
analyze the analytic continuation by using as an example an
ordinary integral of the type [93-95]

2= dbew|-) 6 eo']. (3.37)

which determines the “‘zero-dimensional” analog of the functional
integral (field theory) we are examining. We assume that g = Ae™.
where A € Re and A >0. For § =0 converging integral (3.37) can
be expressed by means of a modified Bessel function

Z(A) = ~fexlo(ﬁ) Kis (ﬁ) (3.38)

At A <1 this expression yields Z(A < 1) =2 We wish to extend



ELECTRON LOCALIZATION 57

(3.37) analytically from =0 to 6 ==, ie., from g=A>0 to
g=—-A<0. We must therefore substitute the variable ¢ =Ar'>¢
into (3.37) and find

Z(Xe®)= A1 J dd cxp{—%S[(b]}. (3.39)

where
S[d]=1 b7+ e (3.40)

At 6 =0 the integration in (3.39) is over the real axis of ¢. If the
value of 6 changes, then the integration path should be rotated (as a
result of the substitution &— e ***$) through an angle —6/4 in
such a way that the integral would remain converging. The in-
tegration paths corresponding to 6 = £ are illustrated in Fig. 7a.
Because of the presence of the factor A (A < 1) in the exponential
function in (3.39), the integral can be computed by the method of
steepest descent. The saddle points are determined by the condition

i5(d)

9 ¢

$* = 0. (3.41)

| —

which yields do=0 and ¢->=+V2. The main contribution to
Z(e™A) comes from the saddle point ¢y =10, and the integration

In?

Im®
'/
g _
N( Re? \/j 0 ( Re?

(a) (b) (¢)

Figure 7. The integration paths in the complex plane ¢ in (3.39). (a) The initial paths
corresponding to 8=+, (b) the paths for calculating the main contribution,
Re Z(—A); (¢) the path for calculating the discontinuity, AZ(—A)=1Im Z(—A).
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path can be deformed in such a way that it would pass through this
saddle point as it moves along the real axis (Fig. 7b). We find
Re S[¢]=>Re S[0] evervwhere along this path. We then find

-

s [ [ -
Z(f"ﬁ);:/\“" dxc,\'p(f{:\ x‘)+()1/\)i\277*()</\i.

/

U <

Analogously we can also analvze Z(e "A). Finally, we find
Re Zi—A) =2 {Z(e™A)+ Zle ™A} =2, (3.43)

consistent with asymptotic value of (3.38) at A < 1. The situation
changes it we consider the discontinuity at the negative part of the
real axis of the “coupling constant™:

AZ(=A)=—{Z(e'TA) = Zle A} =1m Z(—A). (3.44)

The integration path for Z(e"A) minus the integration path for
Z(e '""A) transforms into the integration paths illustrated in Fig. 7¢
(compare with those shown in Fig. 7b). These contours go through
the “nontrivial” saddle points. by > =+£V2, but the “trivial” point,
do =0, drops out. At all the remaining points of these contours we
would again have Re S[$]> Re S[++v2]. Thus the principal con-
tribution to AZ(—A) comes from the “non-trivial”™ saddle points,

-~ i \

. ‘ 1 s I b,
AZ(=A)=—=A exp(—f>J dx pr(;\m )+O(/\)

I 2A

=

=-A""7 exp(ﬁ l—) J‘x dz exp(—l Zl) — O(A)
2N U, LA

- | \
:*v"ﬂ'exp(—;X>{l+()1/\)}. (3.45)

In summary, the Z(g) function, given by integral (3.37), is an
analytic function in the complex g plane with a cut along the negative
part of the real axis. The discontinuity at the cut, which is
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nonanalytic in terms of the coupling constant, is determined by the
contribution from the nontrivial saddle points.

Let us now consider a certain function of a complex variable
G(g), which is analytic in the complex planc of the g variable, with
a cut along the negative part of the real axis. According to the
Cauchy theorem, we then find

Glg) = % dz 2(7’(7:)

Py zZ— g

where the contour C isillustrated in Fig. 8. In the limit R — >, under
the assumption that the integrand falls off at infinity in the complex
plane rapidly enough [a situation which, incidentally. does not occur
in example (3.37)!], we find a dispersion relation in terms of the
coupling constant,

. 17 AG(z) 1" Im G(z)
(,(g):—J dz :—J dz =2 (3.46)
Tl z—g wl. z—g

where

| —

AG(g)= —{Glg +ie)— Glg —ie)y =1Im G(g) (3.47)

i

(89

it geRe, e—>0"; AG(g)#0if ¢<0.and AG(g)=0if g=>0. This
dispersion relation makes it possible to reconstruct the G(g) function
in the entire complex g plane from the known discontinuity at the cut
directed along the negative part of the real axis. The accuracy of the

Figure 8. The path of integration which is used in the derivation of the dispersion
relation over the coupling constant.
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corresponding results is determined solely by the accuracy of the
calculation of the discontinuity at the cut.

This analysis can be extended to the calculation of the functional
integrals such as those in (3.2). These calculations involve the
following general procedure.

1. We seek the “stationary points™ of the classical action S[¢].
defined in (3.3) as the solution of the classical equations of the field
theory, 8S[da]/ddy = 0, with a finite action: S[¢y] < =.

2. We expand the action in powers of ¢(r) — dy(r) and calculate
the corresponding functional integrals if only in a Gaussian ap-
proximation.

Such a procedure, implemented near a trivial classical solution,
b = 0. clearly leads to the conventional perturbation theory. We
will see that in complete analogy with example (3.37) examined
above. field theory (3.1) with the coupling constant g = —pV? <0
has nontrivial solutions, ¢ (r) # 0. with a finite action (instantons)
which determine [by analogy with (3.45)] the discontinuity of the
Green’s function at the cut along the negative part of the real axis
in the complex plane of the coupling constant. The Green’s func-
tion of the theory of interest has an essential singularity at g = 0 and
is analytic in the complex g plane with a cut along the negative part
of the real axis. This function satisfies dispersion relation (3.46).

The presence of an essential singularity in the Green’s function at
zero of the coupling constant was pointed out for the first time in the
quantum field theory by Dyson [96]. who used electrodynamics as an
example to illustrate his conclusion. The described mathematical
procedure, suggested for the first time by Langer [90], was used by
Lipatov [97] to study the asymptotic properties of the perturbation-
theory series in the quantum-ficld theory. The dispersion relation for
the coupling constant was initially used by Bender and Wu [98] in a
problem of anharmonic oscillator and by Bogomolny [99] and Dorfel
et al.[100]in the field theory. Additional details may be found in the
review articles by Kazakov and Shirkov [94] and Zinn-Justin [95].

Let us examine the nonlinear solutions with a finite action (in-
stantons) in field theory (3.1). The corresponding classical ficld
equations are

1 1 R ]

j=1
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We will seek an instanton solution of the form
f‘(r\) = dalr)y;,

where u is a unit vector in the “‘isotopic-spin’ space of the O(n)-
symmetric theory under consideration: u® = 1. Confining ourselves
to the spherically symmetric solutions, which correspond to the
minimum of action [95, 101-103]. we find from (3.48)

1 dzd)cl d—1 dd)cl

2m L dr? rodr

1
}: *E%*;pvzdﬁl. (3.49)

The trivial solution ¢ = 0 is self-evident. We are concerned with the
nontrivial solutions of (3.49) with a finite action (instantons), i.e.,
such solutions that yicld converging action integral (3.3). Using the
results obtained by Coleman [103] and Makhankov [104] we can
show that the solutions which we are seeking for this equation exist
only for d < 4. (At E = 0 a conformally invariant solution is possible
even for d =4 [97].) Least difficult, however. is a simple qualitative
analysis [92] based on a method proposed by Finkel'stein et al. [105]
more than three decades ago. Introducing dimensionless variables

der) \/ﬂE[ (0 : (3.50)
c = — X N V= ———, =
l pV? V2mlE|

we rewrite (3.49) in the form

d*y d—1dy s
St =ty X, .
dt” tdt XX (

(98
N
—
~

where the upper sign corresponds to E < (0, and the lower sign
corresponds to E > 0. Equation (3.51) is an equation of motion of a
particle of unit mass in a potential (Fig. 9a)

Ux)==sx+ix" (3.52)

which is subjected to a time-dependent frictional force. Clearly. we
are seeking solutions that satisfy the initial conditions,
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TU(Z)

»

(a)

Figure 9. (a) The potential energy corresponding to the equation of motion (3.51).
The “particle” 1s moving down an incline, with friction diminishing with time as
I/t (b) A qualitative form minimum-action instanton solution.

dy
(t =0)=const; — = ). (
X dii -

98]
wn
98]
—_—

The asymptotic behavior of the solutions of (3.51) at > 1 can easily
be determined by linearizing this equation near the extremal values
of Uly). An instanton with minimum action can occur only at E <2 0,
and is a solution (Fig. 9b) corresponding to the motion at which a
“particle” rolls down an incline of U(y) as t— > and stops at the
point y = 0. The asymptotic form of this solution at (> 1 is

—d)/2

N

() ~ 1 expi—1). (3.54)
At E >0 there are no solutions with finite action (3.3). and for the
solution given by (3.53) and (3.54), with the help of (3.50), we easily

find

—d/2

S[d)c]] = ‘ ddr Efﬁ(r‘ d)cl(r)) = 'F"i/tl Tﬁs, ‘Eil (d/2)
J p\

2—(d/2)

7 !Ei 1/(4—d) 72y 2/(4—d)
:,;yd(g) R E, = m® (pV~")~ . (3.

(e
N
wn
N

where the constant .%/,;, which depends solely on the dimensionality
of the space. is determined by the dimensionless integrals of x(1).
This constant can be determined by numerically integrating (3.51)
with initial conditions (3.53). Such a problem, however, is of limited
value, since model (3.1). which corresponds to a random Gaussian
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field with a point like correlation, becomes meaningless at short
ranges (small values of ). where the exact solution is now known. In
a real system (in a lattice with impurities. for example) another
effective Lagrangian “is operating™ at small distances. This situation
gives rise to a physical problem of the instanton core (see Ref. 106,
for example, and the discussion below). Asymptotic expression (3.54)
was also derived independently by Vrezin and Parisi [107].

The existence of instanton solutions in field theory (3.1) is a
general property of field theories with an unstable vacuum
[101.102]. The action (3.3) in ficld theory (3.1) 1s not bounded from
below for the arbitrary variations of the ficld ¢(r). It has been
rigorously shown [95], however. that an instanton accounts for the
absolute minimum of S[ ¢ ] in the class of functions that satisty the
classical equations 8S[ by ]/ 8 = 0.

The instanton solutions give rise. at E << (), to new contributions to
the single-electron Green's function: specifically, they account, as
we can see, for the fact that its imaginary part is nonvanishing even
at E <20, which corresponds to the formation of the density of states
tail [6, 8, 86-89]. We will follow below primarily the procedure used
in Ref. 92 (see also Ref. 91). Given that we are interested in the
effect produced by the instanton solution, we will write the field ¢;(r)
in the form

bi(r) = da(r)u; + @;(r). (3.56)

Having in mind the main contribution over the coupling constant
(2.81) and confining ourselves to terms quadratic in ¢;(r) in the
action, we find a single-instanton contribution to the single-electron
Green’s function in the following schematic form [91]:

Gir—r'|—pV7) ~ Zi expl— S[dall J {8(r)} (1) bey(X)

a1

(3.57)

-
xexp{ng ddl'<p1Mlk<pk}Jl 1+ 0O [(

N

where the tactor

m dj2 w E 2—(d/2)
expi— S[pall = cxp{—.dd o S } exp{f Ay (‘E\(l) }

(3.58)
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is nonanalytic in terms of the coupling constant and therefore cannot
be determined from the conventional perturbation theory. Nor-
malization integral (3.4) can be adequately described by Z, i.e., by a
zeroth order approximation and

Mik = Miuiuk + M’r(ﬁ,‘k + uiuk). (3'59)
1 5 3 2,2
M= VB pvigim. (3.60)
zm &
U I
My =—— V2= E—— pV22(r). (3.61)
2m 2

Introducing orthonormal sets of eigenfunctions of the operators M.
and MT

Mgl =AMgr, (3.62)
M= AL, (3.63)

we can expand the field ¢(r) in these eigenfunctions

db(r) = ¢p(r)u+er(r), (3.64)

where
b1 (1) = da(r) + 2 cyk(r), (3.65)
er(m)=Y chylr). (3.66)

We assume that ¢ is orthogonal to u in the isotopic-spin space. In
(3.57) we then set

J.{&i)(r)}...:l]J. dcﬁ];[J'dcﬂ.... (3.67)

However, the resulting Gaussian integral should be calculated with
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some caution. Let us qualitatively analyze Eqgs. (3.62) and (3.63). We
clearly see that these equations can be written as Schrodinger
equations with the potentials

Vi(r)=—E—3pV bi(r) = —E —3|E|x’(r), (3.68)
Vilr)=—E =3 pV2ar) = —E—|E[x*(r). (3.69)

The qualitative behavior of these potentials is illustrated in Fig. 10
and the instanton solution of x(r) is shown in Fig. 9b. We see that
these potentials are attractive in nature (—E >0 is an irrelevant
constant). These potentials, and hence the eigenvalues Aband AL,
do not depend on the coupling constant but are proportional to |E|.
The structure of the spectrum can easily be understood on the basis
of symmetry considerations.

A. Translational Zero Modes. 1If ¢ (r) is the solution of classical
field equations (3.48) and (3.49), then ¢ (r + Ry) is also a solution by
virtue of the translational symmetry of the problem (no condition is
imposed on the location of the instanton “center” in the system). Let
us consider an infinitesimal translation 6R,. We then find

; ddbe
balr+ SRy) = dur) + SRy, %. (3.70)

"

At the same time, we can treat Eq. (3.70) as a “perturbation” near
the instanton solution ¢ (r) and write it as expansion (3.65)

Figure 10. The potential energy in Schrodinger equations (3.62) and (3.63) expres-
sed in qualitative form. A§ is the lowest eigenvalue of the operator M, .
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Bebi (1) = DRy, = del . (3.71)

since it becomes quite obvious after a direct substitution of ¢y(r+
Ry) into Eq. (3.48) and subsequent differentiation of it with respect
to R() that

1 5, 0dy dbe

3 S, db.
ﬁ——V - +E,——+—p\/'d>;|%i:
2m IR, ) (Y IR,

0. (

(93]
~
3]

so that dd./iox, is an eigenfunction of the operator M; with a zero
cigenvalue (Af* =0). Clearly, &{* ~dd./dx,. Requiring that the
standard normalization condition be satisfied. | d ‘vl (r)|* = 1. we
immediatelv find

w%wr):{J d"r((f—d-)ﬂ)k} Fada (3.73)
dX, Xy

The translational zero mode *(r) is obviously d-fold degencrate
(w=1....,dis the dimensionality of the space). We clearly see from
the fact that there are d zero eigenvalues, A * = 0. that Schrodinger
equation (3.62) has at least one negative eigenvalue A§: The ground
state of a quantum-mechanical system cannot be degenerate. Since
the translational modes are d-fold degenerate — they correspond to
a “p-type” level [i.e., they are transformed according to the rotation-
group representation O(d) with [ = 1], we clearly see that there is
only a single state ¢f(r) with A§ <0 corresponding to [ =0 (the
s-type state) in the attractive potential V; (r). A more rigorous proof
of the uniqueness of this state may be found in Ref. 95.

It becomes clear from (3.71) and (3.73) that integration over dc{*
is equivalent to integration over the “collective variable™ dRq,,. 1.¢.,
instead of integrating over dc Erin functional measure (3.67), we can
integrate over the ‘“‘instanton center’” Rq,. given that the integrand
in (3.57) corresponds to an arbitrary instanton center. A conversion
to integration over Ry, can be realized according to a rule, which is
clearly evident from (3.71) and (3.73) (Ref. 102):

N - \ 2y 172
de!*— dR,, { KL ("—di') } (3.74)

J Xy

for each one of the d translational modes.
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B. Rotational Zero Modes. By complete analogy with the preceding
analysis, we easily see that the existence of a classical solution of Eq.
(3.48) of the type ¢ (r)u implies that ¢y(r)u’ is also its solution,
where u' can be obtained from w by an arbitrary rotation in the
n-dimensional “isotopic™ space. Clearly, ¢ (r) is an eigenfunction of
the operator My in (3.63) with zero eigenvalue, Ag = 0; Mypy =0
coincides with (3.49). This level, which is (n — 1)-fold degenerate [in
the n-dimensional space an arbitrary rotation of the vector is
determined by the (n—1) angle], becomes in the limit n—0 a
nondegenerate (and a ground state) level for the operator My. A
normalized eigenfunction of the rotational zero mode is

—1/2

Yo(r) = {J d"rd)f](r)} » balr). (3.75)

In the case of an infinitesimal rotation u—u+ du and u- éu= 0, w¢
would have

Shr(r) = da(r)du= e i (r)

- 12
= du {J d“’rdﬁﬂr)} o (r). (3.76)

We have incorporated (3.66) into the second relation in (3.76) and
(3.75) into the third relation. We see that in functional measure
(3.67) it is possible to transform from integration over ded to
integration over the “collective coordinate” du (the direction in the
“istopic” space) by relating the integrand in (3.57) to this arbitrary
direction specified by the vector u. This transformation to in-
tegration over the direction of u is accomplished by applying the rule

1/2
ded;— du, {Sd“nb:fnn} (3.77)

for each one of the (n — 1)-rotational zero modes which corresponds
to j=1,...,n— 1 directions of the vector u.

As a result, we can write the measure in functional integral (3.57)
in the following way:
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oo =[] 11 faes

)Xp. n#1

~ (n—1)/2 -
XJ ~ du {der(bf,(r)} 11 J del ... (3.78)

u =1 m# 0

The presence of Jacobians for transformation to the collective
coordinates shown in the braces is extremely important. This heuris-
tic derivation of the transformation from (3.67) to {3.78) is based on
the work of Callan and Coleman [102].

Let us now return to the question of the negative eigenvalue.
Al << 0. of the operator M, . The eigenvalue-related integral over
dc§ in (3.57) formally can be written in the form

I del exp{ ! ~Ab(ch)? } jdco exp{|AleH)}.  (3.79)

This integral should again be thought of as an analytic continuation
from positive A§ to negative A§. By analogy with the analysis in the
preceding section, let us turn to integration along the imaginary axis
[90] and find

V12

+i% * /
J dc(’,e“ e = 4 J dye WOl =4 ( Z’;,) . (3.80)
L . A6

We see that by analogy with the example in the preceding section,
functional integral (3.57) corresponding to the “‘nontrivial’ steepest
descent solutions determines the discontinuity of the Green’s func-
tion at the cut in the complex plane of the coupling constant along
the negative part of the real axis, i.e., Im G(r—¢'|—pV?), Thus
(3.57) reduces to

‘Fl 2—-(d/2)
Im Gte—r' [ =pV)~ Zo'expl - STduli} 1+ O () |

AJarel ] o]

(| Det’ M|} {Det’ M, } (V2D

(n—1)/2

X J ddR()

Jum =1

duda(r—Ro)dar—Ry). (3.81)
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where the prime on the determinants denotes that the zero eigen-
values corresponding to the translational and rotational modes have
been eliminated from the products I1,A% and I1,,A ), that determine
these determinants.

Using (3.50), we can easily obtain a dimensional estimate of the
Jacobians:

_ | 4a %ym N 1—(d/z)lE1L47dl/2
Ildal= | dte (TH) ~ mSloal = m v 682
N R ” E (2—d)/2
Jrldal= J dvddr) ~|E|S[do] ~ m 47 L‘;T/T“ (3.83)

We then immediately find from (3.81), for n # 0,

Im G(r—r’\—pvz)w ZG'{\Det’ MLl}fl/Z{Del M, )2

d/4)d—d)+ ~d)(n+1
!Ell [A)(4—d)+(1/4) (2 -d)n+1)

(pvl)(d+n91)/2

(d/2)[1—(d/2)|—(d /4)(n+1)

X m

m- 4

X CXP{ — Ay pv2 ’Ellf(d/l)}

E 2—(d/2) -
% { I+ o(g) }J dox(t —to)x(t' — o).

(3.84)

This expression can be simplified by means of a dimensional analysis
based on the fact that the eigenvalues At and A, are proportional to

E|. We then find in the limit of n— 0
) ) ) m(d/4)(1—d)|El(d/4N5 -d) ‘El 2—(d/2)
Im G(r—r'|—pV?) ~ TR e €Xp{~f,fid (E> }

x J d¥tox(t —to) x(t' — o)

X {1+ o(@)}(m}. (3.85)

sC

Such a result was obtained by Cardy [91]. Here, however, the
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dimensionless determinants must be calculated. This requires finding
the spectrum of the eigenvalues of Egs. (3.62) and (3.63) and
carrying out a renormalization (at d =2 the determinants reveal
some divergences [107]). We will. however. use a method proposed
by Sadovskii [92]. This method is based on the use of the dispersion
relation over the coupling constant and upon matching with the
problem of phase transitions. Recalling that the eigenvalues A} and
A are independent of the coupling constants pV=, so that both
Det' M; and Det’ M, are also independent of it. and ignoring
corrections of order (|E|/E,)* ““/*. we can rewrite (3.84) in the
momentum representation [92, 100]

1

\(drn+1)/2
(;/)‘/_)(d n+1)/2

Im G(Ep|—pV") = C(Ep)
Xexpl — Ay —— ‘;E}}"m'} . (3.86)
oV

where C(Ep) does not depend on the coupling constant. At n = 0, we
would have

. 1 : 1 A(E) ,
Im G(Ep|—pV?") = C(Ep) (V)7 cxp{f V2 } (3.87)
We have introduced in this expression
A(E) = dAgm 4P E|7 42 (3.88)

The condition for the applicability of these equations 1S S[ ¢ ]> 1
when the method of steepest descent “works™ well in the calculation
of the functional integral. In other words, the condition

>1. |E

A E ‘E 2-d/2y
(E) ,,d(U) > E., (3.89)

vl

must be satisfied. Thus the condition for the applicability of the
“perturbation theory™ near the instanton solution is qualitatively the
same as that for the conventional perturbation theory in the region
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E > 0.The energy region of width ~2 E,. around E = 0 is the analog
of the Ginzburg critical region in the theory of critical phenomena.

If Im G(Ep|—pV?7), ie., the discontinuity at the cut in the
complex plane of the coupling constant is known, we can determine
the Green'’s function from dispersion integral (3.46)

A(E)
1 <0 e\p{ -
G(Ep‘g):,, (‘(EP)J J
o

<
—x

(3.90)

Z (z— Q)(,,,y)"l*]'/z
where g is an arbitrary coupling constant in the complex plane. For

an electron in a random field we have g— —p V= < 0. Integral (3.90)
can be calculated

1 .
(’(Ep\ g) - (‘(Ep)g*ld‘lb/_
w

XCXP{*A*(Q} l‘(dj 1) |‘(l‘d: A(E))‘

(3.91)
g 2

o]

2 g
where '(a, x) = {7 dtt® 'étis an incomplete gamma function.

It can immediately be seen from expression (3.87) that the
exponential factor in the density of states is correct [8, 86—-89]. We
see that this factor is determined completely by the instanton
solutions in the field theory (3.1). The necessity of analyzing the
regions E > 0 and E < 0 from different viewpoints arises automatic-
ally. since the instantons exist only at E < (). Another advantage of
this method is that it allows a dircct calculation of the coeflicient of
the exponential function C(Ep). Here we must point out [92] that at
g >0 Green’s functions (3.90) and (3.91) describe the correlator of
the stable field theory (the theory of the second-order phase tran-
sitions). Far from the critical region this correlator is well known
[21-23]: This is the usual Ornstein-Zernike correlator. In our case.
at |El> E.. we would have

1

GEplg>0)~— —
RS ) [E|+p/2m

(3.92)

More precisely, this expression is valid if a stronger inequality of the
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type in (3.18) is satisfied; however. this refinement is important only
in the limit d —2. We understand E everywhere to mean the
renormalized energy. i.e.. the distance from the displaced band edge
(or the “temperature’” reckoned from the fluctuation-displaced
transition temperature in the theory of critical phenomena), which
is calculated in a one-loop approximation. Using the asymptotic
form of the incomplete gamma function: I'(a, x)s; = x*"le™*
x {1+ O(x™")}. we find from (3.91) (|E|> E,.)

L d+1
GEplg =0 =1 (% ){A(E)}‘“‘“WC(Ep). (3.93)
v <

Comparing (3.92) and (3.93), we find

C(Ep) = wmﬂdmmﬂ»
ST
2 o 2m

E (d+D[1—(d/4)]
Li— (3.94)

As a result. we find the following expression for the imaginary part of
the Green’s function of an electron, at |E|> E,..

Tl |E‘(d+1)[1*(d/4)] 1

d+ 1 2 d/2 VZ (d+1)/2
r(5-) Ee (mTp V)
2 2m

X exp{* /2(\/52)}{ 1+0 (lEAb;')Z Mm} . (3.95)

Im GRNEp|-pV?) =+

We can then calculate the density of the electronic states in the “‘tail”
region, including the coefficient of the exponential function. We thus
find (E<0, |E|> E,.)

- ddp ol
NE):——J Im GR(Ep|—pV2) =S, —d
( ) e MO ERIRVY “r d+1>
2
LS exp{iA(E)} [ Po dppt !
(md/z VZ)((I*])/Z VZ J 2
p p 0 1E.H_zp_
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where S, =2 Vg 42/1°(d/2). At d =1 we can perform the limit,
po=a ' — . We find from (3.96)

_mid, |E| [E[*"”
N(E)= S —= —;exp{—.%, m”zp\/z}' (3.97)

V2 pV-
The constant &, =3v2 (Ref. 86) [at d =1 Eq. (3.49) can be solved
exactly [90]] is in agreement with Halperin’s [108] exact result within
a factor of 3/7r. This demonstrates the precision of the method based
upon neglecting the corrections to the result (3.87) obtained by using
the method of steepest descent, while performing calculations based
on the dispersion relation over the coupling constant. At d =2 the
divergence of the integral in (3.86) is cut off at the momenta ~a!
which are associated with the reciprocal radius of the random-field
correlator. Our analysis is suitable for the energies |E| < E, = p3/2m.
For 2 < d < 4 the density of states tail is given by

‘7 om (ZmE(,)“”’Z)/Z
- (d+1)/2
N(E)E“«lm«a.sd('%) d+1 d-?
l( S )

\E (d+D[1—(d /D] E 2—(d/2)
X(lEl> exp{—y]d(‘E\) }

(3.98)
Similarly, at d =2 we would have
|EJ*"? E, { |E]| } ,
N(E)=Const —7——535 In—; — Ay ——=1. (3.99
(E) ons PRTEIIRVERE n|E1 exp 2 oV ( )

We should point out, however, that the range of applicability of Eq.
(3.99) “goes off ” to infinity in accordance with the inequality (3.18),
which determines the range of applicability of the Ornstein-Zernike
approximation.

At |E|> E, (a situation which corresponds to the assumption that
the random potential correlation radius is large) the density of states
tail can be determined by a semiclassical approximation [6, 55] or
from a “lattice” instanton [106], which gives for any dimensionality
of space a Gaussian asymptotic expression
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. [ a’
NCE) ~expi— 5 E7). (3.100)
pV-

Thus, at d =3 from (3.98) and Ref. 55 we find the following
expression for the density of states in the tail region:

/:: “E;E_‘l' 2 iE‘lp'Z N
o cxp{*.?‘/w S El<|E|<E,

2 m(pVE) TmYp Ve

) 111"?4()» 3/2 ) 3
m’= pV- { a Ej} |E|>E
s eXpy — s E°p: ~0-

d7a’ EY- P pV- !

(3.101)

The expression for the density of states can also be derived from
Cardy’s result (3.85). We find [91]

\E‘ld/-i)lﬁﬂdh . x

- SR 2y (di - d d-1.2

N(E)=1Im GRr x| —pV?) ~ m ¥ ‘(pvz,uzm/: . du " x~(1)
V 17 "Ejl 2(d/2y

xexp) /1(F) . (3.102)

This expression is in agreement with (3.98) and (3.99) with respect to
the dimensionality. but the energy dependence |E| turns out to be
different. To understand the reasons for this difference. we will
Fourier transtorm (3.85) to the momentum space. We then find

iE\th)[lf(dH)I 1

~ B _ P
lm (I( Ep“ ?p‘/,) ~m (d/Hd+1) - - F — ,,,,,,)
(pv,)ldeI)L (\‘2'HIE1

E 2 (d/2)
x exp{--v/fd (L—‘) } (3.103)

where
,,’F(z):J d“(tft’)e*"""*"’J dtox(t—to)x(t' —ty). (3.104)

A comparison of (3.103) and (3.95) shows that our approximation
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specifies the function F(z)=(1+ 27" by matching with the Orn-
stein-Zernike result. Direct calculations clearly show that the use of
asymptotic form (3.54) of the instanton solution of (3.104) accounts
for this behavior of the #(z) function. The results of Refs. 91 and 92
for the imaginary part of the Green’s function are therefore
equivalent in the range of their applicability. Our method. however.
at once vyields the renormalized (finite) expression for Im G(Ep),
whereas Eqgs. (3.85) and (3.103) generally contain an additional
dimensionless product of eigenvalues (3.62) and (3.63), which ac-
counts for the infinite constant (which is cancelled out by the
action-renormalization counterterm [95, 107]). The use of Eq.
(3.103) in the calculation of the density of states gives rise to the
integral

. - p,/~2mlE|
J d'pF (*4;p:f> ~(2m|Eh4? J dzz4 ' ——r
N2mlE| 0 1+ z°
o) e f E
R ] (ﬁ) (3.105)

If we could assume that f(x) in (3.105) is a dimensionless constant,
we would obtain Cardy’s result (3.102) for the density of states. How-
ever a dimensionless function of the ratio E,/|E| and our results for
the density of states appear in (3.105) in the “Ornstein-Zernike ap-
proximation.” This situation points out to a well-known fact that the
Ornstein-Zernike approximation cannot be used at short distances
or for the calculation of the mean-square fluctuation [109]. The
“physical cutoff” of the divergence at short distances in our case
occurs at a length ~a of the random-field correlation radius, which
imposes a limitation on the energy region |E| < E, mentioned above.
Cardy [91] has not addressed this problem formally. since the
integral f dit® ' x?(1) is finite. because the instanton contribution to
the action is finite. As we have indicated above. however, the model
with a point correlation of the Gaussian random field, which reduces
to field theory (3.1), is not a realistic model at short distances, where
the physical cutoff mechanism is always “operating.” This mech-
anism is attributable to the fact that the random-field correlation
radius in a real system is finite (in the case of a lattice, this distance is
on the order of the interatomic range). There is, correspondingly, the
problem involving the instanton ““core™ (Ref. 106). and the effective
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Lagrangian and classical equations at short ranges change in such a
way as to reproduce the semiclassical (Gaussian) asymptotic form of
the density of states tail (3.100) at |E|> E, [6,55.106]. In this
respect, our results for the density of states seem to correspond
more closely to the physical formulation of the problem, whereas
Cardy [91] analyzed a different, more formal model.

3.3. Instantons and Localization

It is evident from the analysis which we have carried out that
localization is closely related to the appearance in the relevant
energy region of nonlinear finite-action solutions (instantons) of
classical equations of the effective field theory which can be asso-
ciated with the problem of an electron in a random field. Let us now
analyze how a two-particle Green's function is calculated and show,
following Refs. 35 and 91, that the instanton solutions of the
cffective field theory lead to the appearance of a singular con-
tribution of the type (2.26), which was discussed above in con-
nection with the gencral criterion of localization. We will establish a
direct connection between instantons and localization and verify
indirectly the general relations obtained during the analysis of this
criterion.

As we have indicated above, a calculation of the average two-
particle Green's function in a Gaussian random field with a ““white-
noise” correlation (point interaction) requires an analysis of the
effective field theory determined by the O(n)x O(m) symmetric
(n— 0, m—0) Lagrangian (3.5) of two interacting fields. We can
derive from (3.5) the classical equations

1 5 1 . n R 1 m .
2z ) 2

2m y =i

(3.106)

m

1 1 & 1 8
— Vg, =—FEg —=pV? .(> 2)—7 26 (Y )
T = Ea—SoVie L ¢ SPVe (,‘:1 b;

In general, an analysis of this system of nonlinear differential
equations is complex and to the best of my knowledge has not been
performed by anyone. At E <0 and E + w > 0, however, a simple
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qualitative analysis shows that Eq. (3.107) has a spherically sym-
metric instanton solution of the type

o5r) = @aine;; s =0, (3.107)

where ¢ (r) is again given by an equation of the type shown in
(3.50)

E t
alt) =\ X = (3.108)
% V2mlE|

Here y(t) is defined by (3.53) and (3.54). In Eq. (3.107) e is a unit
(m-component) “isotopic” vector for the field ¢. Although the
system of equations in (3.106) probably has other finite-action
solutions, we need only (3.107), which appears first on the energy
scale. The two-particle Green’s function is defined by the functional
integral

(GR(rr': E+ o +i8)GA(r'r; E - 8))

= im 2| (b | 1aetn)

n—0. m—0

X (1) () @, (r) i (1) expi—S[ . ¢]}. (3.109)

where
Z = J {8(r)} J {8} exp{—S[ . ¢} (3.110)

is a normalization integral, and S|, ¢] is an action which cor-
responds to Lagrangian (3.5). By analogy with the analysis of a
single-clectron Green'’s function which we carried out above, we
will analyze in (3.109) the contribution associated with the Gaussian
fluctuations around a classical solution of (3.107). We then find, just
as in (3.81),



78 M. V. SADOVSKI]
(GROr  E+ w+i8)GRr'r: E—i8)) ~ Z, " exp{=S[ gl ¢ [ eu]

x.l(»f"f”/z[wd]J d‘lR”J - dega(r’ = Rylga(r—Ry)

e =1

XJ {B(I)(r)}J{S(p( 0} (1), (r') expl— Sol b, ¢} (3.111)

where S[¢.] is the same as in (3.55), J.[¢u] and J|[eo] were
defined in (3.82) and (3.83), the normalization integral was again
taken at pV?> =0, and S[¢, ¢] denotes the action corresponding to
the Gaussian fluctuations near instanton solution (3.107) [¢(r) now
denotes a deviation from ¢ (r)]

Solb. @] = J AU Lo (b + Lol @), (3.112)
where

Fol@) =Y @My +i8)(8,; — eiep)e; + 2, ¢ (M + i8)eieq;.
T y (3.114)

Here M, and M7y are the operators which were introduced in (3.60)
and (3.61). The prime on the functional integral in (3.111) means
that the zero eigenvalues of the operators M, and Mj; (zero
modes), which are taken into account in the integration over the
“collective” variables R, and e, have been eliminated.
Incorporating eigenfunctions (3.62) and (3.63), and calculating in
(3.111) the Gaussian functional integral over the field ¢(r), we find

J{&b D} (1) dy(r) expi— So . ¢}
> ‘//A R() d/k( R())
T (Ak ~w*15)lﬂ"/2’

l//(>T(l" Rn)ﬁl’{““ —Ry) Ly o
n—0 w + 16 ‘;()

(3.115)
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where the normalized eigenfunction of the lowest level, associated
with operator My (A = 0—the “rotational” zero mode) is given by
(3.75). Accordingly. a singular (in the limit of w— 0) contribution
to a two-particle Green’s function (m—0, n—0) arises from
(3.111):

(GRer': E4+ 0w+ i8)G™r'r; E—i8)) ~ f—if exp{—SlealtZ,!
w+ 15

5

< J [ eald FleallDet’ My} H{Det” My}

><J d“Roglr— Ry eir —Ry). (3.116)

Here there are no zero eigenvalues in Det’ M, and Det’ My. The
factor i arises from a single negative eigenvalue of the operator
M, . An expression equivalent to (3.116) was initially obtained (for
w =0) by Cardy [91] (see also Ref. 110). We have based our
analysis of the derivation given by Sadovskii [35].

The singular contribution, we might note, is related to the
existence of the “‘rotational zero mode,” i.e., to the symmetry of the
svstem. It is therefore justifiable to assume that this contribution
does not vanish when higher-order corrections are taken into
account.

The result (3.116) is in complete agreement with the form of the
two-particle Green’s function in the energy region corresponding to
the localized states suggested in (2.26) and (2.27). In particular, if
we transform in (3.116) to a Fourier representation using

Xa= J dre 9 o2 (r), (3.117)

we find for the “‘localization amplitude™ (2.20)
Ae(q) ~ XqX q- (3.118)

consistent with (2.29). Introducing the Fourier representation of the
instanton

o = J dre " o (r). (3.119)
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we see that

d

- - P o .
Xq:J (2 ‘Ppl‘qu*p‘ (3.120)

Comparing this expression with (2.26)—(2.28). we find
JUE) ~ e E)ey ol E). (3.121)

Thus this analysis is. in fact, a justification of the form of the

two-particle Green’s function proposed in (2.26). Taking into ac-

count (2.21) and (2.22) and the explicit instanton contribution to
the density of states which follows from (3.81)

N(E)~ Z" expl=Sloaltd {[eald 7 [@aK|Det’ M [}

x {Det’ MT}WJ dRo@d(r —Ry). (3.122)

we immediately find from (3.116) the following expression for
Ag(r—r'), which is valid to within a dimensionless constant:

-1

Ap(r—1') ~ J ddRMPgl(l'” R())<Pg|(l" - Ry) {J ddf(PEl(r)} . (3.123)
For the “probability of return”™ Ag (2.22) we find from (3.123)
- - -1
Ag ~J d*redi(r) {J ddrcpfl(r)} ~(m|E})*">. (3.124)

Incorporating now asymptotic expression (3.54), we easily see that
Ap(r—r) ~exp{—[r —r|R U E)}. (3.125)

where
R E)~{2m|E}} "2~ (m|E]) "; v =1, (3.126)

Thus, at |E|> E,. (in the depth of the tail) we have a “‘classical”
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result for the localization length which is determined simply by the
instanton “‘radius.”” We see from (3.124) and (3.126) that Ap ~ R;;,
consistent with the a simple estimate mentioned in Sec. [.

Accordingly, an instanton method, in contrast with the analysis in
Sec. 1 which is based on the use of a homogeneous Bethe-Salpeter
equation, describes an entire energy region corresponding to the
localized states and, in contrast with the self-consistent localization
theory (Sec. 2). it describes correctly the asymptotic behavior of the
tail region in the density of states. Several other results can also be
obtained within the framework of this method. For example, on the
basis of its modification proposed in Ref. 111, Houghton et al.
[112] carried out a rigorous analysis of the dynamic conductivity
and derived the well-known Mott law: o(w) ~ o*(In @)**" (Ref. 1)
for the conductivity along the localized states.

Let us consider the relationship between the two methods of
determining the singular part of a two-particle Green’s func-
tion—the method based on the use of a homogeneous Bethe-
Salpeter equation (Sec. 1) and the instanton method. We will show
that in general each description arises in a natural way as a
manifestation of a different instability of the system within the
framework of the effective-action formalism for composite fields
35].

The effective action for this system of fields ¢ and ¢ is a functional I'
of the *‘classical™ (average) fields ¢ and ¢, and the corresponding
Green’s functions which satisfies the following variational principle

[113]):

oL L L R C R Er,
8(1)(1(;") (S(Pcl(r) (SG(I‘, r)

i

The functional can be determined from a double Legendre trans-
formation of the generating functional of the ““classical” fields and
Green’s functions of the field theory under consideration [113]. The
effective-action formalism is especially fit for the analysis of the
symmetry breaking with respect of the fields ¢ and ¢ and the
corresponding Green'’s functions G. An analogous formalism in the
many-body problem was analyzed by several authors [114-117].
For brevity, we will use the matrix notations
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<p:(d~’); = (b, (3.128)

‘,D

[ Gun (}W] )

G- Gy = Gy, 3.129
i\G‘pd, G¢¢ b ed ( )

Introducing the matrix (the 8 symbols correspond to the isotopic
field indices)

Go't') =
lr—r),
(3.130)
we can rewrite Lagrangian (3.5) in a compact form
I 1 | 4.yt A | ' ’ 1 2 + 2
,f(r):ispj AP 0 Gy (D) — < pVASp BUD) (3.131)
Introducing the external sources

> Kd)d) Kdup]
J=0Jgd,): K :[ s 3.132
e ‘P) wa K¢¢ ( )

we can write the generating functional of the “classical” (average)
fields and Green’s functions as follows:

Z{J, K} =exp{— W, K)}

= J {5} exp{ —S[®]-Sp J drJ(nd(r)

—éSpJ der d“r’(I)Wr)K(rr’)(D(r’)}. (3.133)
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where the action is
S[d] = Sp J der D (1) G5 ) D) + S ). (3.134)
We then find

SW{I. K}
8.]4,(]')

oWiJ, K
1) = da(r): EWLT. K} =(¢(r) = @u(r). (3.135)
oJ.(r)

In this expression the angular brackets denote the functional
averaging. Equation (3.135) essentially defines the average (“*classi-
cal”) fields. Analogously, we find

SWI{J, K}

1

+
5K¢(f(l'l' ) D {d)d (14;4>(l'l' )}
oW{J, K 1
8[\{ "_)} S{ealm@a(r) + G (rr')}, (3.136)
‘D(P “
SW{J. K} 1 SW{J. K}
S + N ==
SKyre) 2 (Falf)gal) + Goelrr)} 5K o (r'T)

The effective-action functional which we are seeking can be
determined from a double Legendre transformation [113]

[(Dy. G) =

W{J. K} —Sp J d v I (5D (r)

Lo .
~3Sp J der AP D LK (1) Dy (1)

(Y X R R
—;J d"rJ dv K(r) G(r'r), (3.137)

where the sources J and K are expressed in terms of ®, and G with
the help of Eqgs. (3.135) and (3.136). We then easily see that
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sh(d, G)

M. V. SADOVSKII

=—Ju(r)— ' A Ko (rr) o ().

Sd)cl(r)
SP(b.. G (3.138)
(P, G) : , ’ '
—El—l—‘)— == Jm -J d'r Koo (i) @u(r),
81"(q)cl. G) 1 5]‘(®cl- G) l
=K , : ol ®a. &) 1 ,
5Gigy (1T 3 &6 (FT) 3G, () 5 (. SN
S, G) 1 (3.139)
o O) )
*(_‘_i. s ,_; de(rr )

3Gy (rr')

If we set the external sources J and K equal to zero, we see that the
functional I' determined in this manner satisfies variational principle
(3.127). This functional is [113] the generating functional of the
Green’s functions which are irreducible in a two-particle channel.
According to Cornwall et al. [113], after a straightforward exten-
sion to the two-field system, we obtain

LITIGT G- 1 By, G,

(3.140)
where Tr and In are to be understood in the functional context [ 113];
specifically, Tr includes all the necessary integrations, and Trin G =
In Det G. In Eq. (3.140) G~ denotes the reciprocal Green's function
matrix in a classical field

(D G) = S[Dy]-3Trin G

- A B; ,
G (r, r’):[cj D,],] Sr—r), (3.141)
where
1 7 . 1 2 2 2
Ay = {*ﬁ V-—(E+w+13) ‘E Pvz(d)& + QDEI)} 0y —pV= o, da,
B; = 'Pvzd)cl @15 G, = *PVZQDcl,d)cl,« (3.142)

1 >
Dij:{——V2~(E i0) —‘pV( 51‘*'9051)}51']'_

pvz(Pcl,chI,~
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The functional ®(®d,,, G) can be calculated in the following way
[113]. In the classical action S[®] the field ® must be ““displaced™ by
the amount ®.;. The new action S[®,, + ®] would then determine the
new interaction vertices which depend on &.. The functional
®(d,,. G) would then be determined by all the vacuum diagrams,
which are irreducible in a two-particle channel, of the theory with the
action S[®,+®] and by the propagators which are equal to the
matrix Green's functions G. In other words, only those vacuum
diagrams need be retained which give the irreducible self-energy
diagrams after cutting any one of the lines denoting a Green’s
function. Because of the dependence of the vertices on ®u(r), the
translational invariance is generally missing. Thus the functional
d(D,,, G) satisfies the condition

0P

PV 3.143
5 )3 ( )

Q
19| —

and the equation
ol
8

=G '—-G'+=) =0 (3.144)

(o}
19| —
0| —

is just the matrix Dyson equation for the corresponding Green’s
functions. The matrix £ is comprised of irreducible self-energies with
“dressed” internal lines.

Let us first examine the “normal” phase, in which ¢ = ¢ =0 and
only the Green’s functions Gy and G, are nonvanishing. In this
case, Eq. (3.140) essentially reduces to

NG =D(G) = Trin G- 1T{Gy'G— 1} (3.145)

Matrix (3.141) reduces to a simple form (3.130). All the expressions
are translationally invariant by virtue of ¢ = ¢ =0.

A stable system must satisfy the condition 8°I' >0 for any varia-
tions of ®, and G. Let us consider its stability relative to arbitrary
variations of the Green’s functions in the “‘normal” phase. We easily
find

1 1, 185, 1,1
aGd)d)ﬁGd)d) - E (I¢¢+§ 8(}(b(b - _EZ‘ Gd)d) +§ U¢¢¢d’ (3146)
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51 18G gt 183, 1 ., . 1
= +o — L Gl Gl = U peser (3
5CaedGae 2 3G | 208Gy, 2 erCee Ty Hoese (3.147)

etc. Here U are the vertices which are irreducible in the cor-
responding two-particle channels. The first term in (3.147) can be
determined by directly calculating the appropriate derivative and
then transforming to the “normal” phase (Gg, = G4 =0). Figure
11a is a graphic representation of the variation of the self-energies
resulting from the variation of the Green’s functions, which was used
in the derivation of (3.146) and (3.147). Clearly. we are concerned
with the stability of the system with respect to the variations §Gy,,. Ina
stable system we would have

52T
Tr Gy, — 0 8G,. = 0. 3.148
O S Gned Gy ( )

Using 6G4e = Gothpe Gep (see Fig. 11b) in (3.148), we find, with the
help of (3.147). that the stability threshold of the “‘normal™ phase

? A 7 oX
ol \o v\
0249 = | U + U 2o A5
? ? ? ? Poe
(a) (b)
YN IOX
o[ \p e[ \p
62gp= | U + u 06 gy - 2
" " Pr

Figure 11. (a) Variation of self-energy as a result of arbitrary variation of the
Green’s function. (b) Graphic representation of the arbitrary variation of the Green’s
functions (variation of the external source. 8K, = ¥,).
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relative to this variation is determined by the condition

T Gelios Gow U towt Gaathioe Gow — T GoghosthosGop =0 (3.149)

which is graphically illustrated in Fig. 12a. It is fairly clear that the
stability condition is broken in the case where a nontrivial solution of
a homogeneous Bethe-Salpeter equation with @ =0 appears (Fig.
12b). We have seen. in fact, using a specific example which was
analyzed in Sec. 1. that (at w = 0) the operator U ,..¢ appearing in
(3.149) is a Hermitian. and that its eigenvalues are real. The
stability condition is equivalent to the requirement that the quadra-
tic form be positive

Tr llfwd,1¥¢¢lj/¢¢ > ()~ (3‘150)
where

X,f,‘; = (_71““,"p Gd)d) U bogd Gd)(b (I‘(‘,‘1p - (IV@‘P (;;<t><f> . ( 3.151 )

At w =0, it is clear that Ggs = G5, Introducing a system of
eigenfunctions of the operator X,

Xool o6 = At 4 A, € Re, (3.152)

we find that the nontrivial solution of a homogeneous Bethe-Salpeter
equation is equivalent to the existence of the eigenvalue A, =0. We
then find that the choice of Y, ~ ¥ violates condition (3.150). A
similar analysis in case of ordinary phase transitions was carried out
by Morandi [117]. Accordingly, our analysis shows that the ap-
pearance of a nontrivial solution of the Bethe-Salpeter equation

€ [ - -
(a)
- o

Figure 12. Graphic representation of Eq. (3.149) (a) and of the homogeneous
Bethe-Salpeter equation derived from it (b).
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determines the stability threshold of the ““normal” phase. Here we
have in mind the stability relative to the arbitrary variations 6Gg,.
An expansion of the functional I'(G) in (3.145) in powers of
3Gy, ~ Py, gives, in principle, a method of analyzing the cor-
responding “‘condensed” phase. The quantity i, in this case is the
order parameter.

The first two equations in (3.127) are generalizations of the classical
field equations given in (3.106). We are concerned with the case in
which they acquire nontrivial solutions of the type shown in (3.107).

Matrix (3.141) in this case reduces to

G 'ar) =
, ) , 8(r—r'),
0 (MI + 15)e,~e,— + (MT + 18)(5,~]— - €,-e]~)
(3.153)

where the operators M; and My were introduced above in (3.60)
and (3.61). A simplest approximation for effective action I'(®q, €)
reduces to the omission of the term ®(d,,, G) in (3.140). In this case
we see from (3.143) that £ =0, i.e., G = G. To avoid confusion we
emphasize that these Green’s functions are not related to the average
Green’s functions for an electron in a random field. Equation (3.140)
then yields

I(@e) = S[eal =2 Trin Gy =2 Trin G;qlav (3.154)

and the the equation 81"/ 8¢, = 0 reduces to the generalized equation
for an instanton

1 _, 1 o' (@a)
——Vipu— Epa—~pV3ipl+—————=0, .
m Pel Pel ZP Pl 5o ( (3.155)
where we set
Miga)=—3Trin Ggb—3Trin G}

_717
—ITrinDet G,y —3TrinDet G,L.  (3.156)

In the last equation Det is taken over the isotopic indices, while Tr is
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taken over the arguments of the Green’s functions. We find from
(3.153)

Det G' =[Det(My — w — i8)]" Det M, [Det M- 1™, (3.157)

Hence, we find

Miga)=—nY (A —w—i8) =Y (AL +i8) —(m—1) Y (AL +i)
k k k

= =Y AL+l Al (3.158)
k

n—0, m—0
In other words (In Det M; + =TrIn M; 1),

1 v? -13
r1(¢c1)=—;Trln{1—[—ﬁ—E] Epvz({)zl}

+1T 1 {1—[—V—2—ETl V2 2} 3.159
20 2m PVIeap (3159

Expanding (3.159) in a series in powers of pV?¢J, we see [95] that
I'1(¢e) is the result of the summation of one-loop corrections to the
classical action. Since we are dealing here with the first-order term in
pV?ed. we find

1 Vv? -1 R
o) = ~Tr{[~ - E] pv~¢z,}

2 2m
1 ) © dip 1
Lo
2P realt) | o E—pam
| .
=3 oF J dr2(r), (3.160)
where 8E = E— E,=—Re 2(E) is the ‘“mass” renormalization in

one-loop approximation, which was discussed in Sec. 3. Thus the last
term in (3.155) can be dropped if we assume at the outset (as we have
done everywhere) that E is the renormalized energy in the one-loop
approximation. The second-order term in the expansion of I';(¢.)
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gives rise to a one-loop correction to the coupling constant, while the
higher-order terms seems to be unimportant insofar as their effect on
the instanton solutions is concerned. Thus the results of the instanton
approach analyzed above are reproduced in this approximation. The
appearance of a nontrivial solution of ¢.(r) implics that there is a
“local” symmetry breaking over the field ¢, which is different from
the symmetry breaking that occurs in ordinary phase transitions. The
corresponding translational and “rotational” symmetry breaking is
“masked” by integration over the collective coordinates. This
integration 1s an essential part of the calculation of the physical
correlators. The condition under which the approximation we are
considering can be used reduces to inequality (3.18) which was
examined above. This inequality determines the energy region in
which the variable E retains the simple meaning of energy reckoned
from the displaced (in the one-loop approximation) band edge, and
the renormalization of the coupling constant is irrelevant. We see
that the critical energy at which the instanton solutions appear
(E = 0) falls within the energy region where the nontrivial solutions
of the homogeneous Bethe-Salpeter equation (2.33) appcar and in
which the approximations used above brecak down. Thus, the
effective-action formalism leads in a natural way to instabilities of
the “normal” (metallic) phase linked both to the appearance of a
nontrivial solution of the homogeneous Bethe-Salpeter equation and
to the instanton solutions. These two types of instabilities remain
independent within the framework of approximations used above.
This might possibly indicate that there are rwo rypes of electron
localization. It is clear, on the other hand, that in the higher-order
approximations these instabilities can be closely related in the
effective-action formalism and a complete solution of the problem of
their interplay requires an actual “penetration’ into the “strong-
coupling™ region.

The energy region |E|<[1/(d—2)]""*" YE,.. E,=mY"*®
(pV¥ 4 remains outside the limits of all the methods to
solve the localization problem discussed above. At the same time, we
must stress that this energy region is of principal interest from the
viewpoint of constructing a scaling model of the Anderson tran-
sition, since the mobility edge belongs to this region. This ditficulty,
which stems from the fact that neither the conventional perturbation
theory nor a one-instanton approximation can be used in this case, is
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a fundamental difficulty which accounts for the main difference
between the localization theory and the theory of critical
phenomena. A systematic solution of this problem, to the best of my
knowledge. is yet to be obtained. although several attempts toward
this end were discussed in my previous review article [7]. Im-
mediately after the publication of a well-known paper by Wegner
[118]. considerable attention has been devoted to the development
of various ways of reducing the problem of the electron in a random
field. near the mobility edge. to the analysis of different variants of
the nonlinear o model [119-126]. Since different formalisms have
been used. the results are not always in complete agreement with
each other. These studies. nonctheless, give a general picture of the
localization, equivalent to that of the elementary scaling theory
[26.58]. These attempts are therefore frequently viewed as a quan-
titative justification of the scaling concept in localization theory.
This approach is basically an attempt to construct an effective
Lagrangian for the description of the region around the mobility
edge directly in terms of a two-particle Green’s function, along the
lines initially suggested by Aharony and Imry [127]. This theory is
based to some degree on the assumption that a single-particle
Green’s function for an clectron near a mobility edge has no
singularities and can. in fact, be described correctly in the simplest
approximations of the perturbation theory. The resulting critical
behavior is essentially in agreement with the corresponding results of
the self-consistent theory of localization (see Sec. 2), although the
role of corrections in the expansion in € = d —2 can generally be
estimated for the critical indices like those in (2.97) and (2.98).
Although the studies of the region near the mobility edge based on
the formalism of nonlinear o models have contributed to our
understanding of localization, this contribution, in this author’s view,
is relatively small. Because of the complexity of the formalism of the
nonlinear o models, in contrast with the self-consistent theory, the
physical quantities near the mobility edge cannot be calculated
explicitly, and the specific results reduce solely to the determination
of some critical indices. These studies, as well as the self-consistent
theory of localization, in our view. basically ignore the complex
problem associated with the appearance of the strong-coupling
region near the mobility edge. where the functional form of a
single-particle Green’s function can change substantially (although
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there can conceivably be no singularities. ¢.g.. in the density of states
associated with the mobility edge). This situation, as we have seen
above, also applies to the casec d =2+ e. where some claims to
describe the region near the mobility edge in terms of the pertur-
bation theory were made. Furthermore. the results obtained in the
known studies based on the o models correspond only to the metallic
region, in which respect they lose ground even to the self-consistent
theory. It has not yet been possible to incorporate into these models
the study of the instanton effects, whose importance was demon-
strated above. For this reason, we prefer the method based on
effective Lagrangians given in (3.1) and (3.5), which makes it
possible to establish in each case a connection with the known results
of the standard approximations and which does not obscure the
difficulties associated with the inapplicability of both the standard
perturbation theory and the perturbation theory near the instanton
solution (one-instanton approximation) near the mobility edge. The
mobility edge can hopefully be described in terms of this formalism,
although such an attempt may conceivably require the use of
completely new idcas and methods which are not related to the
known versions of the perturbation theory. The problem we are
discussing is thus linked with most urgent problems of the modern
field theory, such, for example, as the problem of quark confinement.

4. Electron-Electron Interaction in the Localization Theory

4.1. Hartree—Fock Approximation. Localization Contributions

Localization is usually studied neglecting the electron-electron
interaction, although its importance in the description of the metal-
insulator transitions in disordered systems has been established long
ago [2]. This fact has recently been confirmed in the studies of
“dirty’” metals [128, 129] (see also Ref. 9) and also in the analysis of
the problem of “*Coulomb gap’ of the Fermi level for the electron
system with strongly localized states [6. 130-133]. Several studies.
in which an attempt was made to analyze the effects of electron-
electron interaction as the metal-insulator transition in disordered
systems is approached, have recently been published [134-139]. In
all of these works the authors have analyzed only the metallic
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region near the Anderson (or Mott) transition, without focussing
any attention on the insulator part of the transition. In addition to
the studies already mentioned [6, 130-139], the electron—electron
interaction in the case of localized electrons was considered in
connection with the early attempts to build a theory of “Fermi-
glass” (Refs. 140-142). All these works have shown that cor-
relations play an important if not the decisive role in the description
of a metal-insulator transition in disordered systems. The results of
these studies, on the other hand, contradict each other to a large
extent, so that this problem is far from being solved. The answer to
such a basic question as to whether the localization persists in
systems with interaction remains unclear. The difficulties discussed
above. which arise in the theoretical description of the Anderson
transition even in a single-electron approximation, make the prob-
lem even less tractable. In this case it would be justifiable to analyze
first the case of a weak interaction in a highly disordered system in
order to identify the physical properties most strongly affected by
correlations. Following principally the studies of Katsnel’son and
Sadovskii [143, 144], we will therefore examine the first-order
corrections of the perturbation theory over interaction to the den-
sity of states and some other characteristics of the system near the
Anderson transition, focusing particular attention on the region of
localized states.® In this sense, we will attempt to extend and
generalize the known results of Aronov and Al'tshuler [9. 128, 129]
from metallic to insulating region. We assume that Anderson’s
single-electron problem is solved and that the concept of localiza-
tion applies to a system with interaction. By making this assump-
tion, which is central to our analysis, we can hope to justify the use
of only the first-order corrections in terms of the interaction,
although higher-order corrections in terms of the interaction, as we
will see below, must be studied thoroughly in the immediate vicinity
of the mobility edge.

If we assume that the single-electron problem is solved, we can
again introduce the complete orthonormal set of exact wave func-
tions ¢,(r) and the corresponding exact eigenvalues €, of the
energy of an electron in a random field of a disordered system

*Some further developments, concerning in particular the possible interplay
between localization and superconductivity can be found in Ref. 157.
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which we have examined in Sec. 1. These functions and energies
can correspond to both the localized and delocalized states. Let us
consider a causal single-electron Green's function as it is expressed
in these exact eigenfunctions and. in particular, its diagonal matrix
element,

1
e— H+idsigne

Gole)= <V

V>, 4.1

where H is a complete Hamiltonian which takes the electron—
electron interaction into account, and € is the energy reckoned
from the Fermi level. The interaction is taken into account by
introducing the corresponding self-energy [145. 146] (see also Refs.
140-142). 2 (e) = A, (e) — il ', (e)sign €.

Gule)=————. (4.2)

€e—€,—2,(€)

The feasibility of introducing such a self-energy in the represen-
tation of arbitrary quantum numbers v was discussed extensively by
Migdal [145]. In accordance with the standard procedure
[145, 146], let us introduce the renormalized energy €, as a solution
of the equation

€, — €, —A,(€)=0, (4.3)

and for € ~ €, we can write (4.2) in the form

N ZV
G, (€)= T . (4.4)
€ — €, T Iy, 81€Nn €
where
1A, (€)] !
z, = { ! Jfﬁ] L W= Zlle=&) (45
de e=¢€

2

Let us introduce, in accordance with Ref. 146, the “self-energy”
2k (€), which was averaged over an isoenergetic surface F = ¢, and
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over the configurations of the random field of a disordered system,

- < - 1 - .
2ple)=Ap(e)—il'g :*—-—<> S(F—¢€)) > 4.6
£(€) ele)— il g(e) No(E) \= ( € )HV(G) (4.6)

where No(E) is the single-electron (average) density of states.

We will consider next a single-electron density of states, in which
the interaction is taken into account. This density of states is usually
given by

1/«
N(E):f—Q‘ Im G{i,(l~?)>. (4.7)
m N,

Under the assumption that the interaction corrections are weak in
the sense that the inequalities vy, < €, ~ €, are satisfied, we find in a
first approximation, after some simple calculations using (4.4)-(4.6)
in (4.7).

SN(E) N(E)~ Ny(E) _ Ap(&,) +a35.(g,,). 4.8)
AN()( E) N()( E) (’E (”Gv

For reasons that will be clarified below, we call the quantity

SN(E\):_(JA’E(G,,) (4.9)
No(E) dE

a correction to the “‘thermodynamic density of states.” This cor-
rection was analyzed for the first time by Abraham et al. [146] (see
also Ref. 136). Here the different ways to define the density of
states in a system with interactions are reflected (compare with
Refs. 130 and 131).

Let us examine a model problem, in which the electron—electron
interaction is described by a repulsive static potential with a finite
range,

I [ ) —~
Ham=;J der div Y eXrefmur—r)

o' v’

X @ (eta,aa,a,. (4.10)
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Analyzing the Hartree-Fock diagrams (Fig. 13), we then find

Zf:J d"rJ dirvir—1) Y fehr et e, (0 e.(r)
) _ ’ 4.11)
SE= ;J der A=) Y fot) e e e, ).

where f, = f(e,) is the Fermi distribution function. Accordingly, we
find from (4.6)

Sy - j dof(E + o) J ddr J 4% o(r — 1) pe (D@
o o (4.12)
SE= -J dof(E + ) J dr J dr'v(r = ){pe (N e’

—x

In these expressions we have introduced the spectral densities,
Cpe(r) pe (X))

1 N ’
= NoE) <Z_V S E—€,)8(E+w—€)pnr)e.lr )(p’f(l')(p,,(r)> (4.13)

{pe (D) pero®))F
1 ~
= NiE) <Z~ 8(E—¢€,)8(E+w— e,,)(pﬁ(r’)(pf(r)(pu(r)@,,(r’)>. (4.14)
7Y
y
Z” = ZF= > .
A r pr v ru

Figure 13. The Hartree-Fock diagrams for the self-energy.
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Spectral density (4.14), introduced for the first time by Berezinskii
and Gor’kov [34], and was analyzed in Sec. 1 in connection with the
general criterion of localization. Applying the same line of reason-
ing to spectral density (4.13) as was applied there to the con-
tribution of €, = €,, we easily see that this spectral density acquires
a d-function in w term in the region of localized states (E < E.):

(pE (D) PE oW = Ap(r—1)8(w) + pE (0, r—1)

(4.15)
PeM pE+o®))F = Ap(r—1)8(0) + ph(w,r — 1),

where, as in (1.9),

Aplr—r) = <> S(E — € )m<r')|2|%(r)|2>>o; E<E, (4.16)

No(E)

is the generalized inverse participation ratio.

Incorporating (4.15) into (4.12), we find the following con-
tributions to 3 which are associated with the appearance of
localized states in the system

ig;,fzﬁng:if(E)J der dr'o(r—r)Ag(r—r)
dq
2m

— +{(E) J o(—q) Ar(g). (4.17)

In the case of point-like interaction v(r—r') = v,8(r —r’) we find
Ag(q) =+ f(E)vy Ak, (4.18)

where the quantity Ag (2.22) is proportional to the total probability
of return of an electron to the starting point during an infinite time.
We note that because of the property

(pe (@) pe N = (pe () pe(0)F, (4.19)

which is evident from (4.13) and (4.14), the “‘regular” contributions
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to S and &, which are associated with pf(w.r—r") in (4.15),
are also equal (and opposite in sign) in the case of point-like
interaction.

In the case of spin-zero electrons the Hartree-Fock contributions
in (4.18) cancel each other. After taking the spin into account, the
Hartree contribution acquires an additional factor of 2 which is
connected with the summing over the spin directions in the electron
loop. As a result. we find a nonvanishing ““localization™ contribution

A

P = AT = f(E) v, Ag. (4.20)
To avoid ambiguity, we will write out the equations for the point-like
interaction. We will now take into account that the main energy
dependence in (4.20) is determined by the Fermi function, which
varies sharply near the Fermi energy. At E = E, the quantity Ag
may be assumed to be a constant (a smooth function of E). This
assumption may generally turn out to be incorrect near the mobility
edge where A vanishes. The corresponding critical index, strictly
speaking, is not known, although we can deduce from estimates like
those in (3.124) that 0 Ag/0E — 0 also in the limit of E— E.. We
then find from (4.9) and (4.20)

81\‘]0C E) ’)SH”' If(E)
Wl E) Al ,,Lf>, (4.21)

= == )} A —
No(E) oE ( JF
In the “total” density of states determined by (4.7) and (4.8) the

singular (localization) contribution (4.21) is cancelled by the second
term in (4.8),

JAHAE  GAHF | o -
Che Tl o <>_‘J d"rJ dYolr—r)
e, Jde, Nl E) \T

’) u 2 !
X fj S(E —e)le. (e, (r )|2>
Je,,
If(E ‘
= i(f) J d’r J dvor v Ag(r—r)
IE

= vyAp . (4.22)
‘
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The localization contribution is retained in the “‘thermodynamic”
density of states (4.9). This circumstance, as we will see below.
accounts for the peculiar behavior of several thermodynamic quan-
tities.

To have a clearer understanding of the physical meaning of the
localization contribution to 21" we should note that it is actually
connected with the interaction of electrons which are in the same
quantum state v. We see from Fig. 13 that the contributions from the
interaction of electrons with the same spin directions (indicated by
the arrows in Fig. 13) are canceled out completely in the sum of
these diagrams, and S4*" is determined by the interaction of two
electrons with opposite spins which are in the same state v, i.e., by
the effective "“Hubbard”-type interaction

Lo f ( / \ 2 "2
Hen = > ' der dvoir =) e )P ren, . (4.23)

- vo ¥

where n,, is the operator of the number of electrons in the state v
with a spin o. Using a simplest estimate of the quantity Ag. we find
(Ep < E.)

(4.24)

Comparing our results with the famihar qualitative estimates of Mott
[2. 147]. we find that they correspond to the formation of the “*band”
of singly occupied electron states of width A # " which appear
below the Fermi level. Similar arguments were also advanced by
Kamimura [148] and Berezinskii and Gor'kov [149]. Clearly, the
single spins at the levels of this band account for the additional
contribution to the paramagnetic susceptibility. Since the number of
unpaired spins in order of magnitude is

.E'

N = J dENY(E) = Ny(Ep)A ;’,” = voNo(EF)Ag, . (4.25)
Ep-aptr

we find the Curie law (up is the Bohr magneton)
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—

? -WL%; = LF” Nol EF)AIZ,,FLZIL (426)
This result can also be easily derived from a direct analysis of the
Hartree—Fock corrections to the thermodynamic potential which are
determined by the diagrams shown in Fig. 14. Carrying out some
straightforward calculations., we find (h = ugH. where H is the
external magnetic field)

<ssz,,>:;—J. der. d4r v(r —r') J.x dE j'x dE'

x —c

<Y HE—ah)f(E'— ' h)pe(0pe (). (4.27)

ao’

L .
<8QF>27;Jd‘lrJd“r’u(r—r')J dFJ dE'Y. f(E - oh)

- * o

X [1 = flE" = oh){pg (1) pe(X))" . (4.28)

The term with unity in the square brackets in (4.28) reduces to an
unessential constant which renormalizes the chemical potential,

J‘ d"rJ. dr'vr—r) <5 fu@ () @, lr )<p’f(r’)<pv(r)>

v

:v(())J <> fu|%(r)|>4u0)3 fu= No(0), (4.29)

where N is the total number of electrons. Incorporating (4.12). we
then find

%

(804 5) :J AEf(E)Ny(E) ST (4.30)

OO &>

Figure 14. The Hartree-Fock corrections to the thermodynamic potential.
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Integrating by parts in (4.30), we get

+F
x d,’;!

The term ““thermodynamic density of states,” which was introduced
above in connection with (4.9), can be understood by comparison of
(4.31) with the familiar expression for the thermodynamic potential
of free electrons

O=-T J AEN(E) In[1+ ¢ F/T], (4.32)
Calculating the magnetic susceptibility y = —(PQaH? 4 _y, we find,
after a straightforward differentiation of (4.27) and (4.28),

Sxn = —4up J d%r J diro(r—r) J dEa;j;(;f) J dE'f(E")
X (pe(t)pe ()N, (4.33)
- e = 2
Sxr =2u %J d’r J ddr’v(r—r’)J dEJ dE’{aafI(:_E f(E")
COf(E) (')f(E')} .
+ 5 oF" Lpe®)pe(r)). (4.34)

Integrating by parts the first term in (4.34). we see that §xF =0 in
the limit of T— 0. Finally, the localization contribution to the
magnetic susceptibility is

8Xloc = ;4[J~ZB J der ddr,U(l'Al")

- , & f(E)
XL dENWE)Ag ()" f(E)
' If(E)
N4M)(EF)AE, U()IJ«[;J dE( );E )
L LTy (4.35)

3T
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consistent with the estimate in (4.26). This result fully confirms the
qualitative arguments for the existence of singly occupied states
below the Fermi level. A result like that in (4.35) was obtained by
Berezinskii and Gor'kov [149]in a one-dimensional model. Clearly,
the interaction of these single spins generally becomes important in
the limit of T—0[2.147].

The singular (localization) part of the thermodynamic potential is

8(1(“( = <8£2H >Inc + <8£21~ >I()c

Il

J J’ dér J dEv(r—v)Ap(r—r)NJ(E)f*(E)

J dli' 1L —@ AL QNG E) E). (4.36)

1

The corresponding contributions to the entropy and specific heat can
easily be found:

- - - d

Stoc = J 006 = dEN( Jf fA(E) ii (—q)Ap(q)
Sl aT o J ~ ol {)“' J (2 )4 B L
““‘T ”‘(“7‘) U()N()( EF )AE, (437)
Croom 7050 Ty 0 (NJ(Epr) A, } (4.38)
=T —=—— Ty — - g, .
loc aT 3 U oF, ONEF)AE,

We see that the entropy tends toward the positive constant in the
limit T — 0.* and that the localization contribution to the specific
heat is linked with a small ( (~dAg, [0Ep) correction to the thermo-
dynamic state density, which was ignored above. Similarly. the
small localization correction to the correlation contribution to the

*This contribution is connected with the entropy of “free” spins at the singly-
occupied states and disappear when some kind of spin-spin interaction leading to
magnetic order as T'— 0 is taken into account.
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compressibility is (u is the chemical potential)

,’3 “x ,)3 i
SKie = — s 80 = — 10 J dEALNSE) —— f2(E)
(f/Jf . o~
p
- LT(,'T{AE' NU(E,.-)}. (4.39)
( F

It 1s thus quite obvious that a singular contribution (4.21) to the
“thermodynamic™ density of states is fully consistent with the third
law of thermodynamics and that it “signals’™ the appearance of a
band of singly occupied states below the Fermi level.

Our analysis has so far been completely general in nature. In our
further analysis we have to use a particular single-electron model of
the Anderson transition. We will then be able to examine the
“regular’” contributions to the density of states which are associated
with the nonsingular terms in (4.15). We will confine ourselves solely
to the Fock contribution to (4.11), since the Hartree contribution. as
was pointed out in Refs. 9, 129, and 146, is small if the interaction
potential falls off at a distance greater than the inverse Fermi
momentum. We will see below that such estimates also apply to a
“regular” contribution to (4.11) in the localization region. In the
case of a point-like interaction, however, the Hartree contribution,
as we have already seen from (4.19), is twice as large (taking the
account of spin) as the Fock contribution, so that the results which
we will obtain below should be taken with a different sign (compare
also with Ref. 150). As the single-electron model of the Anderson
transition, we use the self-consistent theory of localization, since we
can easily derive within its framework the explicit expressions for all
the relevant quantities. Specifically, we find from (4.12) the
“regular” contribution to X at T =0 to be

- 1 -0 - ddq DE q2
EF = dE/J O - > TLN*fﬁ”f R
Eres J . 0t MY E T E [0 By, + De @

(4.40)

where we have used the Berezinskii-Gor’kov spectral density cal-
culated from (2.74). Accordingly, the correction to the density of
states 1s
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No(E) dE T

SN(E)  dSE_ 1 J dlq o Dg, ¢
( a L q Ez+[w(2)(EF)TE,. + DE”-q2]2~
(4.41)

21r)

Using, for simplicity, the point-like interaction model, and recalling
that all the energies so far in this part of the article were reckoned
from the Fermi level Ep. we find 2<d <4)*
SN(E) vy S4 podr
NWEr) md-2 "

{\E — Ep| 4R - @2 |E— Ep|> wi(EF) e,

g wg—z(‘EI:)T(éi“*Z)/Z o E(ll*Z)/Z; 1E o EF' < w(;’)(EF)TE,-v

(4.42)

where the characteristic energy E is connected with the choice of the
cutoff parameter at the upper limit of the integral over q in (4.41).
This cutoff is necessary because the “diffusion” approximation for
the integrand cannot be used at large values of the momentum. As
we have done in the analysis of a similar cutoff in (2.77), we will set
the cutoff momentum equal to the Fermi momentum, so that

E = Dp p3. (4.43)

An alternative approach would be to set the cutoff parameter equal
to the reciprocal mean free path [7', but, as we have pointed out
above, near the mobility edge we would have I”' ~ pr. so that both
options would be equivalent in this region. According to the scaling
argument advanced by Lee [136], the cutoff parameter should be set
equal to about Ry} near the mobility edge when Ri,(Er) > [, pr';
however, such a choice of this parmaeter in the main equation of the
self-consistent theory (2.77) leads to some contradictory results.
Since our further analysis is essentially based on the self-consistent
theory, we will use Eq. (4.43). It is easy to see that the estimate
(4.42) is valid if the following condition is satisfied:

|E -~ Er wi(Ep)e, <E. (4.44)

>

*Slight modifications of (4.42) associated with the frequency dependence of
generalized diffusion coefficient [53, 60] can be found in Ref. 157.
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In the special case of d =2, instead of (4.42) we get:

E—-E
In L—~—F|; |E — Ex|> wi( Er) s,

SN(E) _ wuo E
No(Er) 47 D,

! (4.45)
In % |E — Er| < 0i(Ep) 7, .

For w3(Er)=0. i.e., in the metallic region, Eqs. (4.42) and (4.43)
are consistent with the known results of Aronov and Al'tshuler
[9.128,129, 136, 146], if the renormalized diffusion coeflicient
(2.75) is substituted for the classical diffusion coeflicient. For
|E — Ex|> w{(Ep)7g, this behavior also applies to the dielectric
region; however, for |E — Er| < wi( Ep)7g, a cusp in the density of
states at the Fermi level of a metal flattens out, giving way to a
smooth minimum.

Let us consider some specific dependences found in the self-
consistent localization theory. Discarding unessential constants, we
find from (2.93), (2.95), and (2.96), for 2 < d <4

bl EF AEF E}: - E(, dv
o Er)TE, ~ ~—— |5 4.46
o EF) T, 4—d (prRu Er)? 4—d E. ( )

1 1 ) 5d 1 EF_ Ec (d=2)w
De, ~ 77—, (prRio(EF)) e (4.47)

o dEr (dwﬁ(lziF)>“’"2’/2
4—d 4F ¢

5 E, — E(. (d-2)v

~ Er(prRioc Ex))*™  ~ Ep |/ (4.48)
E;=<E, E.

where v is the critical index of the localization length (2.97). We see
that condition (4.44) can easily be satisfied. For the correction to the
density of states at the Fermi level, or more precisely, for |E — Eg| <
w%(EF)TE,_ we find from (4.42) and (4.46)—(4.48)
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= Vo ’ ’nd’:E(f!'/Z) 1{1 —([)FRI(K.(E].))diZ}F’ -F,

2w
EF _ E(- (d-2)

E (4.49)

""F —voNo(Ep)

Ey

where Ny(Ep) in the last equation denotes the density of states of free
electrons at the Fermi level.® A divergence of the correction to the
density of states in the limit of Er — E, (there is a similar divergence
in the metallic region) shows that our analysis breaks down in the
immediate vicinity of the mobility edge. The estimates which we
have made. however, arc valid so long as SN(E) < Ny(EE).

For d =2. we find [see Egs. (2.93) and (2.95)]

(4.50)

so that from (4.45) we get:

E—-Ef

In l?ﬁ |E — Ep|> E, cxp{~
oN(E) F

~ vy Ny (4.51)

/ F.. F.
! T |E*E;:|<Epexp{*ﬁ F}.
Y

7TE}-}

where N, = m/2m is the density of states of free electrons in the
two-dimensional space, and vy is the Born scattering frequency.
The corrections to the density of states found above can be
determined from the following heuristic considerations. Let us
consider the interaction of an electron in the state v with energy E
with electrons in the states with energy E.. The relative correction
to its wave function in first-order of perturbation theory would be

£ 27

d¢, [~
| a0, (4.52)
0
*In case of cutoff scheme proposed by Lee [136] instead of power-law (4.49) we
get the logarithmic divergence of the density of states correction at the mobility
edge.
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where at 1 = 0 the interaction is ““switched” on and H;,(f) is used in
the interaction representation. The electron “diffuses”™ within the
limits of the volume ( Dy, 1)** during the time (. The matrix element
for the short-range repulsive interaction can then be estimated as
~vy( Dg, 1) . Thus we find

8(;;1 " lax U

’ . 1/2 ) 1—(d/2) 1—(d/2)

~ Uy d[( DL.}I) : - ‘:ﬁi{[min — Imax . (453)
L21 Imin DE/

Here i, can be determined from the condition of applicability of
“diffusion™ approximation ( Dy, fmin)'* ~ pr'.i.e., tmin ~ (Dp, pr) '~
E ' The time t,,, is determined by two factors. First, the interaction
matrix element vanishes over the time intervals >|E — Eg| '
because of the time-dependent oscillations of the wave functions.
Secondly. the interacting electrons in the region of localized states
cannot move apart to a distance greater than R, (E;) from
each other and the “diffusion™ approximation is valid as long as
the time (=< Ri(Ep)/Dg, ~[wi(Ex)te, |'. Therefore, fpa —
min{|E — Ex|™": [wd(Ep)7e, J7') Setting SN(E)/ No(Ex) ~ 8¢,/ @,
[compare with (1.4)], we immediately find (4.42). This estimate is, of
course, purely explanatory in nature.

These results represents a simple generalization of the analysis of
Aronov and Al'tshuler {9,128, 129] for the insulator side of the
Anderson transition. There is no “Coulomb gap™ in these ap-
proximations [130-133] principally because of the short-range
nature of the interaction and possibly because of the crudeness of the
model which is based solely on the first-order perturbation theory
corrections in terms of the interaction. Although the advantage of
the formalism which has been used is its clarity. it obviously cannot
be used with any measure of success for a generalization in which
higher-order corrections in terms of the interaction could be in-
corporated, because in this case we have to know the behavior of
“higher-order™ spectral densities.

4.2. Electron—Electron Interaction in the Self- Consistent Theory of
Localization

We will consider below the role of the first-order corrections in the
perturbation theory over interaction within the framework of the
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standard diagram formalism of the self-consistent theory of local-
ization. By using this approach we can improve the accuracy of the
results obtained above and make some generalizations. Clearly. the
diagram formalism. in principle. is not limited to the first-order
perturbation theory in terms of the interaction.

Following the procedure of Al'tshuler and Aronov [128], we will
examine a very simple correction to a single-electron Green’s
function, illustrated graphically in Fig. 15a, where the “triangular™
vertex is given by the equation, illustrated graphically in Fig. 15b,

dr

dp

(’2777 l‘ppr(qw)G(e + a)plf) G(Epf) (454)

yiqw) =1 +J
To avoid confusion we wish to point out that here and elsewhere in
the text we have € = E — Eg; i.c.. this expression denotes the energy
reckoned from the Fermi level. The correction to a single-electron
density of states will then be

P im 8GR (ep)

5N(e) ! J d
2m)?

N Etf) WN()(E[-

- WNU £ J l[G Ep)]2

. d -
><J d’q J fﬁyz(qw)GA(e+wp+q)
) 2

2m?

1 diq {” dw
™) Gt ), 3 YRelaerle- (459

gw

b /)//w P (a)

- T
o Ll

Figure 15. (a) A simplest correction to a single-electron Green’s function. (b) An
equation for a “‘triangular™ vertex.

>

(b)

I
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The single-electron Green’s functions in (4.55) are taken in a
simplest approximation (2.34). Clearly, for a “triangular™ vertex
with external legs we would have (see Fig. 3)

TEMqw) = GR(e + wps) G epo) YR (qu)

d o

dp

(2m)?

= 2mi } dEMqu). (4.56)

Using (2.50) and (2.54)-(2.57), we then find an expression for the
relevant vertex in the self-consistent theory of localization

1
+ M, ——p-
w E, () p

1
Riqu)={w+—p-q+2iy(Er
Y Qo w mp q iy(Er) ] 2Er
0+ wME, (qw) _—dm q

- 2y(EF)
—io + Dg, (qw)q”’

(4.57)

where the last expression is valid only for small values of w and q.
Accordingly, the vertex y(qw) in the self-consistent theory has the
same form as in a “dirty” metal [9, 128, 129], although the classical
diffusion coefficient is replaced by a generalized diffusion
coefficient which was defined in (2.71). We see that in the localiza-
tion region (Ep < E.) Egs. (2.73) and (2.74) imply in the limit of

w—0

2iv(E
YRA(qo) = MAE (q). (4.58)

w—0 W+ 18

This rather general result may be attributed to the localization
criterion formulated in Sec. 1. The use of general relation (2.26) in
(2.56) in fact shows that in the self-consistent theory we would have

Im GR(Erp)

q 2) =
l/jp( EP) 7TNo(EF)

Xq(EF)* (459)
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where xq(Ef) is given by (2.62). We then find from (2.26) and
(4.56)

o Y Er)x—o Er)
g RA _ ) TP q I
P i w i (4.60)
Using (4.59) and (2.50), this vyields (4.58) in the limit of w— 0.
taking into account the general relation (2.29).
Using (4.57) in (4.55). we find

3N(e) 1 - diq
N“(E[:) w J

(2

c 1
d S 4.61
8 J “ [~ iw+ D, (qu)q ] “on

Using (2.73) (q— 0), we can write (4.61) in the form

- x

OoN(e) 2 i ddq
—
No(Er) J “ ) 2md

v(q) Dg, q°

)
X 2 I\272
{[‘Uz +(wi(Ep)1g, + De, q)° T

4 w(.'l)( EF)TF_; w(z,(EF)TE,‘_ + DE; q2
w [wz + (w(Z)(EF)TE, + DE, qz)z]z

}. (4.62)

Calculating the integral over w in (4.62), we find

ON(e) ‘( 8N(e)) ( 5N(e)) ’
1 11

No(Er)  \No(EFr) No(EF)

where

- gd
(M) ==

% DE,. q2
€’ +[wi(Er)7g, + Dg, ¢°T

(4.63)
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is in agreement with expression (4.41) derived above, and

ON(e )) 1J’ d'q (@D z{ 1
= — —— U 5 - >
(NU(EF) ) Qmd VIR S SN Er ), + D, ¢

« wtzi( Er \)TE, w(zl(EF)TE,,
w(:,( EF)TE, + DE,, q2 [w(z)(EF)TE,. + DE,. q2]3

N

X In — 5 < 72}
E;+[wﬂ(EF)TE +DE' q“]

2 J diq wi(Er)7E,

D 2
(27T [0)()(5}* TL, +DP£ A:I1 Er q

€l }
X In . 4.64
wil Ey)7e, + Dg, q2 ( )

At wi(Ef)=0, ie., in the metallic region, contribution (4.64)
vanishes. The fact that it exists shows that, in general, the diagram
formalism used here does not match uniquely the formalism of the
exact eigenfunctions which was used to obtain the results in the
preceding section. Such a contribution can, in principle, be linked
with the second term in Eq. (2.18) which was dropped in the
derivation of Eq. (2.74). An estimate of the integral in (4.64) on the
basis of the point-like interaction model yields

ol
w(z)(EF)TE,.

(4.65)

( 8N(6)> Do Sd DF‘”“[a)u (Ep)7e, ](4—21/2 In
n

Nol(Eg) m4—d

We see that Eq. (4.65) plays a dominant role only in an exponential-
ly small region near the Fermi level (or the mobility edge), whereas
contribution (4.42) accounts for the main correction in a broader
energy region and, in this sense, is the principal contribution.
However, the logarithmic singularity in (4.65) unequivocally shows
that the higher-order corrections in terms of the interaction must be
taken into account if we wish to describe correctly the immediate
neighborhood of the Fermi level (mobility edge) in the localization
region. Using (4.46) and (4.47), we find
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( ON(¢€)

— pam AR { \ . Ry (Ey) d}
N()(EF,)> bom F n [Pk 1 r]

AEj.
€l

—E,
E.

ﬂw} . (4.66)

U()N() EF) In Il

Using (4.50) for d =2 we find in a similar way, that for |e| <
Er exp(—1/X) the contribution (4.64) is always dominant

O0N(e) 1 €
N() ~ U()N() A ln lglj (467)

so that the second expression in (4.51) has, in fact, no region of
applicability. The results obtained in the formalism of the exact
eigenfunctions can thus be substantially modified by using the
diagram formalism. This method can also be used to analyze the role
of other diagrams. whose contributions are different from that of the
simplest “Fock™ diagram shown in Fig. 15a. There are, in fact.
several other diagrams of the first-order perturbation theory in terms
of the interaction. Some examples of these diagrams are shown in
Fig. 16. Let us examine first of all the **Hartree” diagram of Fig. 16a.
We can estimate its contribution within the context of a self-
consistent theory of localization analogously to how it was done in
Refs. 9. 129, and 151. In a self-consistent theory the full vertex

(a)

(c)

Figure 16. Examples of various first-order diagrams, whose contribution is com-
pared with the contribution of the diagram in Fig. 15a.
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I'pp(q) (see Fig. 3) can be written in the following simple form, for
small values of q and w:

2y(Ep)pV’
—iw+ Dg, (qu)q”"

PR qu) = (4.68)

This expression generalizes the “diffusion” expression (2.86) which
is derived by taking the sum over the ladder diagrams in Fig. 5b.
The result in (4.68) is basically self-evident. It is obvious, in particu-
lar, that its use in Eq. (4.54) yields (4.57). Equation (4.68) can also
be derived formally. In this connection, let us examine an auxiliary
vertex [ K*(qw), which is determined graphically in Fig. 17 (compare
with Fig. 3 ). We find

- dd "
IR qo) = sz)z(—27Ti)J 4%’ J P pika
)¢ )
= 2 mi(pV3P dRAqu) = 2y(Ep)pV- . (4.69)

—iw + Dg, (qu)q~

where in the last equality we have used (2.69). Let us assume that in
the limit of q— 0 we have 'Rf(qw) =T *(qw). We can then
reproduce (4.69) by using (4. 68) m the second diagram on the right
side of Fig. 17, whereas the first diagram is nonsingular in the limits
of w—0 and q— 0. This demonstrates that our assumption is
self-consistent. We can now compare directly the contributions to
the electron self-energy from the diagrams in Figs. 16a and 15a:

%

i oo I
L W‘f: C AL L

———

Figure 17. Graphic determination of the auxiliary vertex l S (qo).
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Cdip [ dip’ [ diq [ dw
R _ i
EH(EP)_J (ZTr)"J (277)‘1J (2m)4 Jé ZWL(p P
HpVHy(Er)
[~ iw + Dy, (w)qﬂl

GR(ep) GRiep )G ('~ qe + w)

XGNP —qe+ 0)Gp—qe+ w) (4.70)
. ddq " dw 4(pV- )2 y2( F,
flep=| ——5| — G*e+
Zrlep) J 2m ), 2770 1 [—io + Dg, (0)q°] lerwp—q)
4.71)

An important point here is that in contrast with the “Fock’ diagram,
the momentum transferred along the interaction line in the “*Har-
tree” diagram is not small, and the frequency transfer is zero. We can
then easily estimate the ratio

‘Xﬁ(ép)w - ddq -1 - ddq - ddpf
NI

S Riep) 2) m*) 2md
x ddp” V ) C V)CA( r) )( o u)(wR( u)(vA( n)
O (p (ep) G epv(p' —p") G (ep") G ep
- -1 1 d(lpf - ddpu
~1| d0 0} JdQ
{J U( ) “J (27T)dJ (277_)([
12 "2
7p n —n' ( _p
x5 Er 2m)up P15 ( Er 2m>. (4.72)

and finally find the same result as that for a metal [9, 129, 151]:

’ 0
J dQuv (2[7}: sin ;)
F= - —. (4.73)
| aoew)

where the integration is over the solid angle at the Fermi surface (6 is
the angle between two momenta at the Fermi sphere). We easily see
that F'<"1 if the interaction potential falls off at a distance greater
than the inverse Fermi momentum. If, for example. we would use a
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screened Coulomb interaction as a model potential.* we would find,
for d =3 (Ref. 9),

1 ~ T 1 2 4 2
F:;J d# sin 97—32—7):4'('321n{1+ pf}. (4.74)
A - - - KT
! 1+ p; sinz~ “PF b
KD Z

where k3, =4me? No(Ep) is the inverse square of the screening
length. We can infer from this that F<1 if K< pzp. but F—1if
P:r < K%,)-

Since  Y(Ep)~pV?No(Er) (2.35). we find F~«hH/pF—~
e’/ mpV- >y Ep)/ Ex ~ e*/mpV?A(Eg), so that F ~ e?/mpV? near the
mobility edge (Ex ~ E. ~ E,.). For a point-like interaction we would
have F =1 and, after incorporating the spin, the Hartree con-
tribution in Fig. 16a would be twice as large as the Fock con-
tribution. In this case, all the corrections to the density of states
which we have considered would simply change sign, as we have
mentioned above. The contribution of the diagram in Fig. 16b,
where the interaction occurs in the Cooper channel, in the absence
of interactions which break down the time-reversal invariance
(magnetic field, magnetic impurities, etc.), is equal to the con-
tribution of the diagram in Fig. 16a (Ref. 152), so that it is also small
over the parameter F. A similar small parameter is also found for the
Fock diagram in Fig. 16¢, where the interaction occurs in the Cooper
channel. The difference between this diagram and the one in Fig. 15a
is again linked to the appreciable momentum transfer along the
interaction line. The diagram in Fig. 16d is canceled out because of
the total electrical neutrality of the system, and for the contribution
of the diagram in Fig. 16a we easily find

Im SR (ep)=—7p V>8N(e), (4.75)

where 8N(e) is the correction to the density of states due to the
diagram in Fig. 15a. Diagrams of this type therefore have an
additional smallness over the parameter pV~.

*We will see below that the static (zero frequency-transfer) interaction in a
Coulomb system in the localization region is given by a screened Coulomb potential.
This example is therefore quite realistic.
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The problem of the relevance of higher-order interaction cor-
rections remains essentially unresolved. The solution of this problem,
in addition to the analysis of many new diagrams, should also
consider how the interaction can be incorporated into the deter-
mination of the current-relaxation kernel of the self-consistent
theory Mg, (qw). This can be done. for example, by introducing the
interaction lines and vertices into the calculation of the irreducible
kernel Ufl;r(qw) in (2.58). Clearly, such effects could be ignored
only in the first-order corrections over interaction, a circumstance
which was exploited above. The higher-order corrections in terms
of the interaction are clearly important in the immediate vicinity of
the mobility edge and the Fermi level, but the first-order cor-
rections are presumably adequate in the remaining energies. The
diagram formalism creates the opportunity, at least in principle. to
analyze these problems systematically.

4.3. Polarization Operator, Screening, and Coulomb Interaction

Let us consider in general terms and within the self-consistent
theory how the localization atfects the behavior of the polarization
operator: i.e., let us consider. in fact, the screening of the electric
field in Fermi glass.

Working again in the representation of exact eigenfunctions of a
single-electron problem, we find the following expression for the
Fourier transform of the polarization operator of noninteracting
electrons:

ll(qw):< 2 foo L. @.(per(p)eu(p )(pﬁ(pf)>

popp €0 — €, T @ T idsign w

. E)—-f(E+Q
=| d«E| a0 JUE)— JLE + <)
i - O+ w+idsign w

- x .

M)(E)«PEPFH)»S (4.76)

in the zero-temperature formalism, or

Mqu,)=| de | aolELELE

B . O+ i, No(EXpepriadq  (4.77)

in the Matsubara technique (w,, =27mT). Substituting into this



ELECTRON LOCALIZATION 117
expression the singular part of (4.15), at T'=0 we find
[T, (qw) =0 (4.78)

and the nonvanishing contribution arises only from the regular part
of (4.195),

- o flE)y— f(E+Q)
Hiqo) = 11,., :J J ) —
qo) +(qe) x dE e d O+ w+idsign w

No(E)pE(q€).
(4.79)

The situation is quite different in the Matsubara technique (T # 0):

[11(\c(qw1n # ()) =
(4.80)
- Af(E)

Hyelqam = 0) = J dE (_F) No(E)Ar(q) = No(Er) A, (q).

We thus find

.0

1 ) .
H(qwm) = ? 8{1},”() J dEf(E)[l - f(E)]N()(E)AF,((l)

’°° - fIE)— f(E+ Q)

, L
+J%dEJ4dQ Ot NE)pLig) (481)

Taking into account the explicit form of the “regular” part of the
Berezinskii-Gor’kov spectral density which arises in the self-con-
sistent theory of localization [see Eq. (2.73)], we find from (4.79),
after some straightforward calculations the following expression:

DE,; qZ
Dg, q2 + w(z,(EF)TE,, —i(w+idsign o)’
(4.82)

Il(qw) = l[rcg(qw) = N()( EI—)

In the metal region we would have wi(Ex) =0, and (4.82) reduces
to the familiar expression for the polarization operator of a “*dirty”
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metal [9, 128, 135]. In the localization region. after incorporating
0i Ep)7e, = Dg, Rige( Ex) [compare with (2.74)]. we find

.

Ilreg(q()): N()(E[:) 3 q

TS - 4.83
q + Ri(EF) ( )

For the Matsubara polarization operator some analogous cal-
culations yield

D F (wm) :
H(qwm) = No(Ef) {AI-.‘I (q)sw,,,u + ;)m+—I‘Der(TU‘11)—(13 0 w,,)
De (= wn)q° ; 1 = ()
L ( ® )q 2 H(Awm)}: H(wm) = l " 5
—w, t+ DE, (*wm)q_ 1(\ m <0
(4.84)

where Ag, (q) is given by expression (2.74'), and the generalized
diffusion coeflicient in the Matsubara technique is

o ‘
! My, () = — =202 (485

Dg, (wp)=—
dm Mg, (w,,) TE, W,

The result in (4.84) can also be obtained by a direct calculation from
the diagram in Fig. 18a if we take into account that the triangular
vertex of the self-consistent theory in the Matsubara technique is

kS
3
Ny

Cnrn Pty
P
Enb Enp
(a) (b)

Figure 18. (a) A diagram for the polarization operator of noninteracting electrons.
(b) *“Fock™ contribution to the thermodynamic potential.
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given by

'y(q(l)mfn) = 6 €n ) 6( €, +w,,) Tt 0(— 671) 9(7 €, — wm)

. 0(5,{)9(76,1 - m)
+2 ‘Y( EF) l = 2
— Wy + DF,,,(Awm)qh

0{4 n H‘ n+ m i
,,7$_£Ll} e, =(n+ DT, (4.86)

Wy + Dl:, (wm 'q:

This expression is the well-known Aronov-Al'tshuler result [128],
in which the generalized diffusion coeflicient (4.85) is substituted
for the classical diffusion coethicient.
We see that the “localization™ contribution
C dftE) ‘
ﬂm(qwm):J dE (- v )N“(A)AF(q)(Smm(.

. d

Py

1 ) . . )
= B J AEF(EN1— f(E)No(E) Ap(q)

_'““‘“ Nol EF)AE, (Q)5w,,,(» (4.87)

—>

arises in polarization operators (4.81) and (4.84). Let us consider
the simplest (Fock) contribution to the thermodynamic potential.
shown schematically in Fig. 18b. The localization contribution in
(4.87) would then correspond to

I« [ di ,
(3 =5 1 \ J S thdgw,)
[ . o [ dq
=5 | dEREN - fEINGE | S WAL
1 [~ -
= | dED-ENNGEIEE, . (4.88)

In the last equality in (4.88) we have used (4.18). We have found
the exact analog of the localization contribution in (4.28). The term
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with unity, as was noted in (4.29), goes into the renormalization of
the chemical potential (taking the account of the regular con-
tribution) and the factor 3 is canceled by summing over the spin.
Equation (4.88) then reduces to the localization part of (4.30).
Consequently, we find the diagram “recipe” for determining the
localization contribution to the self-energy 2 which, as we can see
from its definition (4.6), has no rigorous diagrammatic meaning.
The difference in the behavior of the polarization operator at
T =0 and in the Matsubara technique, which is seen only at zero
frequency (static-field screening), is a consequence of the known
difference between the adiabatic (Kubo) static response and the
isothermal static response in systems with nonergodic behavior [39]
manifested, as was noted in Sec. 1, in a 8(w) contribution to the
Berezinskii-Gor’kov spectral density. As we can see from a general
analysis carried out by Kwok and Schulz [40]. the Matsubara
response is sensitive to nonergodic behavior, whereas the response
determined by the commutator Green's functions (Kubo) does not
“feel” it. At w,, = 0 the corresponding Matsubara Green's function
determines the isothermal response. whereas the limit w — 0 of the
corresponding commutator Green’s function (which can be
obtained by continuing the Matsubara function analytically iw,, —
w + i8) determines the adiabatic response. The physical difference
between these two responses is that the adiabatic (Kubo) response
describes a system which is isolated from the heat bath after the
external perturbation is applied. whereas the isothermal response
corresponds to a system inside the heat bath during the time this
perturbation is active [39]. The polarization operator, as we know,
is associated with the electronic compressibility and the dielectric
constant. For an isothermal static compressibility we would have

kT (q0) = Tl(qw,, = 0. (4.89)

whereas the adiabatic compressibility can be determined by means
of

kM(q0) = T,.,(qow— 0). (4.90)



ELECTRON LOCALIZATION 121
From (4.79)-(4.81) we then find

N()( EF)

1(q0) = k(q0) = No(Ep) Ag, (q) = 5.
k' (q0) — k(q0) o(Er)Ag, (q) I+ R2(Er)q?

(4.91)

The last equation in (4.91) is valid in the self-consistent theory of
localization. Gotze [50] and PrelovSek [63] have pointed out for the
first time that the quantity Ag_(q) determines the difference be-
tween the isothermal static compressibility and the adiabatic static
compressibility.

For an isothermal static polarization operator from (4.80) and
(4.83) we find

117 (q0) = Tl (qwm, = 0) = [,(q0) + 1,..(q0)

l 2
SR
|+ RiL(Ep)q” q’+ RiiEr)

~ NoEr)| = Nu(ER)

(4.92)
Correspondingly, for an adiabatic static dielectric constant we find

4 2
eMqw—0)=1+ L;rf“ yep(qo — 0)

i 1+%; q = Rioc(Er)

., » (4.93)
1+ kbRivc(EF); q=< Rioc(EF).

where k% = 4me? Ny(Eg), consistent with (2.100), whereas the iso-
thermal static dielectric constant is
2 KZD

2

4 1re
2

e"(ql)=1+ " (q0) =1+ (4.94)
q

consistent with the standard Thomas—Fermi result for a metal. This
last dielectric constant corresponds to a real experiment on screen-
ing of the external static field. Rice [153] and Jackle [154] have
obtained this important result for the first time at the qualitative
level, and we have shown here the formal ‘““mechanism’ of this
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behavior. Using the exact eigentunction formalism. we can demon-
strate directly that the first-order interaction corrections to I(q0)
cancel each other. These corrections account for the density of
states behavior of the type shown in (4.42). There are no such
features in Tl(g0). in complete agreement with the important cir-
cumstance pointed out by Lee [136] and Finkel'shtein [137]: The
screening range is determined by the quantity dn/du = 1l{g— 00).
rather than by the density of states. McMillan [ 134] did not take this
fact into account. The physical mechanism of screening in a Fermi
glass is connected with the electrons adjusting themsclves in such a
manner as to ensure total screening at any temperature, however
small, as a result of hopping conductivity along the localized states
in an Anderson dielectric. The typical time for such an adjustment
is determined by the reciprocal frequency w* ~ Dh“pqz. where Dy,
is the diffusion coefficient determined by the hopping conductivity
[153,154]. In the formalism described above. which ignores the
hopping conductivity. the static nature of the field (and of the
response) should be understood in the context of the condition
o < w*. In a real experiment. we would have ¢~ L', where L is
the typical length-scale of the nonuniformity of the external field
(which is determined by the size of the sample. etc.). The diver-
gence of the dielectric constant, observed near the insulator-metal
transition in certain experiments on Si doped with P [155.156]. 1s
probably attributable to the divergence of the localization length
Rioe( Er — E,) in Egs. (2.100) and (4.93). These experiments were
carried out at the external-field frequencies in the range from
several hundred MHz to the infrared region of the optical spectrum,
i.e.. they measured a response of the type in (4.93). It would be
clearly worthwhile to measure experimentally the dielectric con-
stant of this system in a static field.

We can now turn from the analysis of the short-range repulsive
potential to the case of real Coulomb interaction. In the following,
we will carry out all the calculations for the three-dimensional case,
using the Matsubara technique. We will consider, as in Ref. 128,
only the contribution from the diagram in Fig. 15a. where the wavy
line corresponds to the dynamically screened Coulomb interaction

4
Vigon) = (4.95)

qelqo,)
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The dielectric constant in (4.95) is

elqw,,) = ) (4.96)
and the polarization operator is taken from (4.84) (Fig. 18a). The
“localization™ contribution discussed above is now important, since
in the calculation of the diagram in Fig. 15a it reduces to the
contribution which vanishes in the limit of T — 0. We can therefore
confine ourselves below solely to the regular contribution. From
Fig. 15a we find

Y .
5Glenp) = T\_J (T% V(qom) ¥ (qon) G2 e,p) Gle, + wp + q).
m “Tr

(4.97)

where the screened interaction for small values of q and w,, is

2

— W, + DE, (—w,)q
No( Er) Dy, (7wm)q2

Viqw, — 0) = 0(— w,,)

Wy, + Dl: (wm)qz
O 7 e O g, 4.98
No(Er) Dy, (gt ) (4.98)

Introducing, by definition,

1 d?
5N(e,) = —4J P 5Giep. (4.99)
o) 2w
we find
1| dq
5N(6n,) = J T 3 v(qwm qwmen)
) 2m?
Cod? .
| P Gep)Gle, +wuptq
(2m)
—~ [ 3q
= iNU( Ef) ’I‘ }_, J 3 v(q(l)m)
m ) (2)
0(6,1)0(_6,1_&),") 76 )6(671+w ) } o
: . (4.100
x {[_(I)m + D[:’ 2]2 [wm + Dl:, m 2] ( )
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Using (4.98), for €, > 0. we find

iT " o
SN(e, =0)=——— Y D;l '"’J d —
(€ ) Pt £y () . da Dr ol w

- D?/Z 24 W {wm - w()( EF)TE, }
E; o, =—>

= d
XJ 5 A . (4.101)

e X7 0+ 0 (ER) TE,

The finite sum over the Bose frequencies appearing here can be
calculated from the relation

z CTe T dz
T l Pliw,,) = J 5 felz
m=—-= —l€g, t "~ LTl
7 dz o
= J -~ . fB( len )(D [En
2
S d
= | S bz e, (4.102)
2

where fg(z)={exp(z/T}—1}"" is the Bose function, and f(z)=
{exp(z/T)+ 1}"" is the Fermi function. In our case, we would have

s

> 1 . ﬂ
(I)(Z):{IZ+(J)(_)(E}‘)T[:,}§J dx{x‘+lz+w(;(EF)TH,} l. (4103)
0

Carrying out in (4.102) and (4.103) an analytic continuation ie, —
E +i8 and calculating the imaginary part. taking the account of
Im ®(z) = —Im ®(—2z), we find the correction to the density of states
corresponding to (4.101).

ON(e) = dz{f(z+€)+ f(z =€) — 1} ImD(z2). (4.104)

1 N
3D3/2J

Expression (4.102), strictly speaking, is valid for ®(z) which falls off
rapidly enough in the limit |z]— . Since the function ®(z) in
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(4.103) generally does not satisty this condition, we have introduced
a cutoff at the upper limit of E. where E has the same meaning as
in Eq. (4.43), in order to take into account the “constant” that
arises in (4.104). Using the asymptotic expression

1—,’,:2 z> U)(ZD(EF)TF.,,
NViZ
Imd(z) = N (4.105)
il;*[w%(E,;)TE' 1'% z < wil Ep) g, |
V2 z
we find
1 1/2 €| =12 . - 2
222D T e (ﬁ —E: el T> wi(Ep) e,
l o 2 -t 2
ON(e) = WD—}/—Z{(O)()(EF)TE, Y- El/'} (4106)
E;
Jwi(Ep)Te,)"? . max{|el, T} ,
2;)/27:2D[;E/2 In w2 En)7e o lel, T < wi(Ep)7g, |

where (Ref. 128)

1 [ 1 1 1.07; <1
¢(,v):¢J dy@{ - + }x{ RN
N2, ch"(x—y) chi(x+y) V2x: x> 1.
(4.107)

The results which we have obtained extend directly the correspond-
ing expressions, derived by Aronov and Al'tshuler [128], to the
insulator side of the Anderson transition. It is easy to see that our
correction to the density of states, due to dynamically screened
Coulomb interaction, is the same within a constant as the results
given in (4.42) and (4.65). Consequently, there is no ““Coulomb
gap” even in the Coulomb-interaction model, which probably may
be attributed to the crudeness of our model. We should emphasize.
however, that a standard analysis [130-133] of the Coulomb gap is
carried out without regard for the screening and quantum effects.
The problems which arise here can in our opinion be solved only
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through a systematic analysis of the higher-order corrections in
terms of the electron—electron interaction.
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