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Density of states, dynamic (optical) conductivity and phase diagram of strongly correlated and
strongly disordered paramagnetic Anderson–Hubbard model are analyzed within the generalized dy-
namical mean field theory (DMFT+Σ approximation). Strong correlations are accounted by DMFT,
while disorder is taken into account via the appropriate generalization of self-consistent theory of
localization. The DMFT effective single impurity problem is solved by numerical renormalization
group (NRG) and we consider the three-dimensional system with semi-elliptic density of states.
Correlated metal, Mott insulator and correlated Anderson insulator phases are identified via the
evolution of density of states and dynamic conductivity, demonstrating both Mott-Hubbard and
Anderson metal-insulator transition and allowing the construction of complete zero-temperature
phase diagram of Anderson–Hubbard model. Rather unusual is the possibility of disorder induced
Mott insulator to metal transition.

PACS numbers: 71.10.Fd, 71.27+a, 71.30.+h

I. INTRODUCTION

The importance of the electronic interaction and ran-
domness for the properties of condensed matter is well
known1. Coulomb correlations and disorder are both
driving forces of metal–insulator transitions (MITs) con-
nected with the localization and delocalization of parti-
cles. In particular, the Mott–Hubbard MIT is caused by
the electronic repulsion2, while Anderson MIT is due to
random scattering of non–interacting particles3. Actu-
ally, disorder and interaction effects are known to com-
pete in many subtle ways1,4 and this problem becomes
much more complicated in the case of strong electron
correlations and strong disorder, determining the physi-
cal mechanisms of Mott–Anderson MIT1.

The cornerstone of the modern theory of strongly
correlated systems is the dynamical mean–field theory
(DMFT)5–8, constituting a non–perturbative theoretical
framework for the investigation of correlated lattice elec-
trons with a local interaction. In this approach the ef-
fect of local disorder can be taken into account through
the standard average density of states (DOS)9 in the
absence of interactions, leading to the well known co-
herent potential approximation10, which does not de-
scribe the physics of Anderson localization. To over-
come this deficiency Dobrosavljević and Kotliar11 for-
mulated a variant of the DMFT where the geometrically
averaged local DOS was computed from the solutions of
the self–consistent stochastic DMFT equations. Subse-
quently, Dobrosavljević et al.

12 incorporated the geomet-
rically averaged local DOS into the self–consistency cycle
and derived a mean–field theory of Anderson localization
which reproduced many of the expected features of the
disorder–driven MIT for non–interacting electrons. This
approach was extended by Byczuk et al.

13 to include
Hubbard correlations via DMFT, which lead to highly
non trivial phase diagram of Anderson–Hubbard model
with correlated metal, Mott insulator and correlated An-
derson insulator phases. The main deficiency of these ap-

proaches, however, is inability to calculate directly mea-
surable physical properties, such as conductivity, which
is of major importance and defines MIT itself.

At the same time the well developed approach of self–
consistent theory of Anderson localization, based on solv-
ing the equations for the generalized diffusion coefficient,
demonstrated its efficiency in non–interacting case long
ago14–19 and some attempts to include interaction effects
within this approach were also undertaken with some
promising results17,20. However, up to now there were
no attempts to incorporate this approach to the modern
theory of strongly correlated electronic systems. Here we
undertake such research, studying both Mott–Hubbard
and Anderson MITs via direct calculations of both the
average DOS and dynamic (optical) conductivity.

Our approach is based on recently proposed gen-
eralized DMFT+Σ approximation21–24, which on the
one hand retains the single-impurity description of the
DMFT, with a proper account for local Hubbard–like
correlations and the possibility to use impurity solvers
like NRG25–27, while on the other hand, allows one to
include additional (either local or non-local) interactions
(fluctuations) on a non-perturbative model basis.

Within this approach we have already studied both
single- and two-particle properties, of two–dimensional
Hubbard model, concentrating mainly on the problem
of pseudogap formation in the density of states of the
quasiparticle band in both correlated metals and doped
Mott insulators, with an application to superconducting
cuprates. We analyzed the evolution of non–Fermi liquid
like spectral density and ARPES spectra22, “destruction”
of Fermi surfaces and formation of Fermi “arcs”21, as well
as pseudogap anomalies of optical conductivity24. Briefly
we also considered impurity scattering effects23.

In this paper we apply our DMFT+Σ approach for cal-
culations of the density of states, dynamic conductivity
and phase diagram of strongly correlated and strongly
disordered three–dimensional paramagnetic Anderson–
Hubbard model. Strong correlations are again accounted
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by DMFT, while disorder is taken into account via the
appropriate generalization of self-consistent theory of lo-
calization.

The paper is organized as follows: In section II we
present a short description of our generalized DMFT+Σ
approximation with application to disordered Hubbard
model. In section III we present basic DMFT+Σ expres-
sions for dynamic (optical) conductivity and formulate
appropriate self–consistent equations for the generalized
diffusion coefficient. Computational details and results
for density of states and dynamic conductivity are given
in section IV, where we also analyze the phase diagram of
strongly disordered Hubbard model, following from our
approach. The paper is ended with a short summary sec-
tion V including a discussion of some related problems.

II. BASICS OF DMFT+Σ APPROACH

Our aim is to consider non–magnetic disordered
Anderson–Hubbard model (mainly) at half–filling for
arbitrary interaction and disorder strengths. Mott–
Hubbard and Anderson MITs will be investigated on an
equal footing. The Hamiltonian of the model under study
is written as:

H = −t
∑

〈ij〉σ

a†
iσajσ +

∑

iσ

εiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is the amplitude for hopping between near-

est neighbors, U is the on–site repulsion, niσ = a†
iσaiσ is

the local electron number operator, aiσ (a†
iσ) is the an-

nihilation (creation) operator of an electron with spin σ,
and the local ionic energies εi at different lattice sites are
considered to be independent random variables. To sim-
plify diagrammatics in the following we assume Gaussian
probability distribution for εi:

P(εi) =
1√
2π∆

exp

(

− ε2i
2∆2

)

(2)

Here the parameter ∆ is just a measure of disorder
strength, and Gaussian (“white” noise) random field of
energy level εi at lattice cites produces “impurity” scat-
tering, leading to the standard diagram technique for cal-
culation on the averaged Green’s functions19.

DMDF+Σ approach was initially proposed21–23 as a
simple method to include non–local fluctuations, essen-
tially of arbitrary nature, to the standard DMFT. In fact
it can be used to include into DMFT any additional in-
teraction in the following way. Working at finite tem-
peratures T we write down Matsubara “time” Fourier
transformed single-particle Green function of the Hub-
bard model as:

G(iε,p) =
1

iε + µ − ε(p) − Σ(iε) − Σp(iεn)
, ε = πT (2n+1),

(3)

where ε(p) is the single particle spectrum, corresponding
to free part of (1), µ is chemical potential fixed by elec-
tron concentration, and Σ(iε) is the local contribution to
self–energy due to Hubbard interaction, of DMFT type
(surviving in the limit of spatial dimensionality d → ∞),
while Σp(iε) is some additional (in general momentum
dependent) self–energy part. This last contribution can
be due e.g. to electron interactions with some “addi-
tional” collective modes or order parameter fluctuations
within the Hubbard model itself. But actually it can
be due to any other interactions (fluctuations) outside
the standard Hubbard model, e.g. due to phonons or
to random impurity scattering, when it is in fact local
(momentum independent). The last interaction will be
our main interest in the present paper. Basic assumption
here is the neglect of all interference processes of the local
Hubbard interaction and “external” contributions due to
these additional scatterings (non-crossing approximation
for appropriate diagrams)22, as illustrated by diagrams
in Fig. 1.

The self–consistency equations of generalized
DMFT+Σ approach are formulated as follows21,22:

1. Start with some initial guess of local self–energy
Σ(iε), e.g. Σ(iε) = 0.

2. Construct Σp(iε) within some (approximate)
scheme, taking into account interactions with “ex-
ternal” interaction (impurity scattering in our case)
which in general can depend on Σ(iω) and µ.

3. Calculate the local Green function

Gii(iε) =
1

N

∑

p

1

iε + µ − ε(p) − Σ(iε) − Σp(iε)
. (4)

4. Define the “Weiss field”

G−1
0 (iε) = Σ(iε) + G−1

ii (iε). (5)

5. Using some “impurity solver” calculate the single-
particle Green function Gd(iε) for the effective An-
derson impurity problem, placed at lattice site i
and defined by effective action which is written, in
obvious notations, as:

Seff = −
∫ β

0

dτ1

∫ β

0

dτ2ciσ(τ1)G−1
0 (τ1 − τ2)c

+
iσ(τ2)

+

∫ β

0

dτUni↑(τ)ni↓(τ). (6)

Actually, in the following, for the “impurity solver”
we use NRG25–27, which allows us to deal also
with real frequencies, thus avoiding the complicated
problem of analytical continuation from Matsubara
frequencies.

6. Define a new local self–energy

Σ(iω) = G−1
0 (iω) − G−1

d (iω). (7)
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7. Using this self–energy as “initial” one in step 1,
continue the procedure until (and if) convergency
is reached to obtain

Gii(iε) = Gd(iε). (8)

Eventually, we get the desired Green function in the form
of (3), where Σ(iε) and Σp(iε) are those appearing at the
end of our iteration procedure.

For Σp(iεn) of the random impurity problem we shall
use the simplest possible one–loop contribution, given by
the third diagram of Fig. 1 (a), neglecting “crossing”
diagrams like the fourth one in Fig. 1 (a), i.e. just the
self–consistent Born approximation19, which in the case
of Gaussian disorder (2) leads to the usual expression:

Σp(iε) = ∆2
∑

p

G(iε,p) ≡ Σimp(iε) (9)

which is actually p-independent (local).

III. DYNAMIC CONDUCTIVITY IN DMFT+Σ
APPROACH

A. Basic expressions for optical conductivity

Physically it is clear that calculations of dynamic con-
ductivity are the most direct way to study MITs, as its
frequency dependence along with static value at zero fre-
quency of an external field allows the clear distinction
between metallic and insulating phases (at zero temper-
ature T = 0).

To calculate dynamic conductivity we use the general
expression relating it to retarded density–density corre-
lation function χR(ω,q)14,19:

σ(ω) = − lim
q→0

ie2ω

q2
χR(ω,q), (10)

where e is electronic charge.
Next we briefly follow the derivation presented in de-

tail in Ref.24 for the pseudogap problem, with necessary
modifications for the present case. Consider full polar-
ization loop graph in Matsubara representation shown
in Fig. 2, which is conveniently (with explicit frequency
summation) written as:

Φ(iω,q) =
∑

εε′

Φiεiε′ (iω,q) ≡
∑

ε

Φiε(iω,q) (11)

and contains all possible interactions of our model, de-
scribed by the full shaded vertex part. Actually we im-
plicitly assume here that simple loop contribution with-
out vertex corrections is also included in Fig. 2, which
shortens further diagrammatic expressions24. Retarded
density–density correlation function is determined by ap-
propriate analytic continuation of this loop and can be

written as14:

χR(ω,q) =

∫ ∞

−∞

dε

2πi

{

[f(ε+) − f(ε−)] ΦRA
ε (q, ω)

+f(ε−)ΦRR
ε (q, ω) − f(ε+)ΦAA

ε (q, ω)
}

, (12)

where f(ε) – Fermi distribution, ε± = ε ± ω
2 , while

two–particle loops ΦRA
ε (q, ω), ΦRR

ε (q, ω), ΦAA
ε (q, ω) are

determined by appropriate analytic continuations (iε +
iω → ε + ω + iδ, iε → ε ± iδ, δ → +0) in (11). Then we
can write dynamic (optical) conductivity as:

σ(ω) = lim
q→0

(

− e2ω

2πq2

)
∫ ∞

−∞

dε

{

[f(ε+) − f(ε−)]
[

ΦRA
ε (q, ω) − ΦRA

ε (0, ω)
]

+f(ε−)
[

ΦRR
ε (q, ω) − ΦRR

ε (0, ω)
]

−f(ε+)
[

ΦAA
ε (q, ω) − ΦAA

ε (0, ω)
]}

, (13)

where the total contribution of additional terms with zero
q can be shown (with the use of general Ward identities)
to be zero.

To calculate Φiεiε′ (iω,q), entering the sum over Mat-
subara frequencies in (11), in DMFT+Σ approxima-
tion, which neglects interference between local Hub-
bard interaction and impurity scatterings, we can write
down Bethe–Salpeter equation, shown diagrammatically
in Fig. 3, where we introduce irreducible (local) vertex
Uiεiε′ (iω) of DMFT and “rectangular” vertex, containing
all interactions with impurities. Analytically this equa-
tion can be written as:

Φiεiε′ (iω,q) = Φ0
iε(iω,q)δεε′

+Φ0
iε(iω,q)

∑

ε′′

Uiεiε′′ (iω)Φiε′′iε′ (iω,q), (14)

where Φ0
iε(iω,q) is the desired function calculated ne-

glecting vertex corrections due to Hubbard interaction
(but taking into account all interactions due to impurity
scattering). Note that all q-dependence here is deter-
mined by Φ0

iε(iω,q) as the vertex Uiεiε′ (iω) is local and
q-independent.

As we noted in Ref.24, it is clear from (13) that cal-
culation of conductivity requires only the knowledge of
q2-contribution to Φ(iω,q). This can be easily found in
the following way. First of all, note that all the loops
in (14) contain q-dependence starting from terms of the
order of q2. Then we can take an arbitrary loop (crossec-
tion) in the expansion of (14) (see Fig. 3), calculating
it up to terms of the order of q2, and make resumma-
tion of all contributions to the right and to the left from
this crossection, putting q = 0 in all these graphs. This
is equivalent to simple q2-differentiation of the expanded
version of Eq. (14). This procedure immediately leads
to the following relation for q2-contribution to (11):

φ(iω) ≡ lim
q→0

Φ(iω,q) − Φ(iω, 0)

q2
=
∑

ε

γ2
iε(iω,q = 0)φ0

iε(iω)

(15)
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where

φ0
iε(iω) ≡ lim

q→0

Φ0
iε(iω,q) − Φ0

iε(iω, 0)

q2
(16)

where Φ0
iε(iω,q) contains vertex corrections only due to

impurity scattering, while one-particle Green’s functions
entering it are taken with self-energies due to both im-
purity scattering and local DMFT-like interaction, like
in Eq. (3). The vertex γiε(iω,q = 0) is determined dia-
grammatically as shown in Fig. 4, or analytically:

γiε(iω,q = 0) = 1 +
∑

ε′ε′′

Uiεiε′′ (iω)Φiε′′iε′(iω,q = 0).

(17)
Now using Bethe–Salpeter equation (14) we can write
explicitly:

γiε(iω,q = 0) = 1 +

+
∑

ε′

Φiεiε′ (iω,q = 0) − Φ0
iε(iω,q = 0)

Φ0
iε(iω,q = 0)

=

=

∑

ε′ Φiεiε′ (iω,q = 0)

Φ0
iε(iω,q = 0)

. (18)

For q = 0 we have the following Ward identity, which can
be obtained by direct generalization of the proof given
in14,28 (see details in Appendix of Ref.24):

(−iω)Φiε(iω,q = 0) = (−iω)
∑

ε′

Φiεiε′ (iω,q = 0)

=
∑

p

G(iε + iω,p) −
∑

p

G(iε,p). (19)

Denominator of (18) contains vertex corrections only
from impurity scattering, while Green’s functions here
are “dressed” both by impurities and local (DMFT) Hub-
bard interaction. Thus we may consider the loop entering
the denominator as dressed by impurities only, but with
“bare” Green’s functions:

G̃0(iε,p) =
1

iε + µ − ε(p) − Σ(iε)
, (20)

where Σ(iε) is local contribution to self-energy from
DMFT. For this problem we have the following Ward
identity, similar to (19) (see Appendix of Ref.24):

∑

p

G(iε + iω,p) −
∑

p

G(iε,p) =

= Φ0
iε(iω,q = 0) [Σ(iε + iω) − Σ(iε) − iω] ≡

≡ Φ0
iε(iω,q = 0) [∆Σ(iω) − iω] , (21)

where we have introduced

∆Σ(iω) = Σ(iε + iω) − Σ(iε). (22)

Thus, using (19), (21) in (18) we get the final expression
for γiε(iω,q = 0):

γiε(iω,q = 0) = 1 − ∆Σ(iω)

iω
. (23)

Then (15) reduces to:

φ(iω) =
∑

ε

φ0
iε(iω)

[

1 − ∆Σ(iω)

iω

]2

. (24)

Analytic continuation to real frequencies is obvious and
using (15), (24) in (13) we can write the final expression
for the real part of dynamic (optical) conductivity as:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−) − f(ε+)]

Re

{

φ0RA
ε (ω)

[

1 − ΣR(ε+) − ΣA(ε−)

ω

]2

−

−φ0RR
ε (ω)

[

1 − ΣR(ε+) − ΣR(ε−)

ω

]2
}

. (25)

Thus we have achieved a great simplification of our prob-
lem. To calculate dynamic conductivity in DMFT+Σ ap-
proximation we only have to solve single–particle prob-
lem as described by DMFT+Σ procedure above to deter-
mine self–consistent values of local self–energies Σ(ε±),
while non-trivial contribution of impurity scattering are
to be included via (16), which is to be calculated in
some approximation, taking into account only interac-
tion with impurities (random scattering), but using the
“bare” Green’s functions of the form (20), which in-
clude local self–energies already determined via the gen-
eral DMFT+Σ procedure. Actually (25) provides also
an effective algorithm to calculate dynamic conductivity
in standard DMFT (neglecting impurity scattering), as
(16) is then easily calculated from a simple loop diagram,
determined by two Green’s functions and free scalar ver-
tices. As usual, there is no need to calculate vertex cor-
rections within DMFT itself, as was proven first consid-
ering the loop with vector vertices7,8. Obviously, Eq.
(25) provides effective interpolation between the case of
strong correlations without disorder and the case of pure
disorder, without Hubbard correlations, which is of major
interest to us. In the following we shall see that calcula-
tions based on Eq. (25) give a reasonable overall picture
of MIT in Anderson–Hubbard model.

B. Self-consistent equations for generalized

diffusion coefficient and conductivity

Now to calculate optical conductivity we need the
knowledge of the basic block Φ0

iε(iω,q), entering (16),
or, more precisely, appropriate functions analytically con-
tinued to real frequencies: Φ0RA

ε (ω,q) and Φ0RR
ε (ω,q),

which in turn define φ0RA
ε (ω) and φ0RR

ε (ω) entering (25),
and defined by obvious relations similar to (16):

φ0RA
ε (ω) = lim

q→0

Φ0RA
ε (ω,q) − Φ0RA

ε (ω, 0)

q2
, (26)

φ0RR
ε (ω) = lim

q→0

Φ0RR
ε (ω,q) − Φ0RR

ε (ω, 0)

q2
. (27)
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By definition we have:

Φ0RA
ε (ω,q) =

∑

p

GR(ε+,p+)GA(ε−,p−) ×

×ΓRA(ε−,p−; ε+,p+) (28)

Φ0RR
ε (ω,q) =

∑

p

GR(ε+,p+)GR(ε−,p−) ×

×ΓRR(ε−,p−; ε+,p+), (29)

which are shown diagrammatically in Fig. 5 and
p± = p ± q

2 . Here Green’s functions GR(ε+,p+) and

GA(ε−,p−) are defined by analytic continuation (iε →
ε ± iδ) of Matsubara Green’s functions (3) determined
via our DMFT+Σ algorithm (4) – (9), while vertices
ΓRA(ε−,p−; ε+,p+) and ΓRR(ε−,p−; ε+,p+) contain all
vertex corrections due to impurity scatterings.

The most important block Φ0RA
ε (ω,q) can be calcu-

lated using the basic approach of self–consistent theory of
localization14–19 with appropriate extensions, taking into
account the role of the local Hubbard interaction using
DMFT+Σ approach. The only important difference with
the standard approach is that equations of self–consistent
theory are now derived using

GR,A(ε,p) =
1

ε + µ − ε(p) − ΣR,A(ε) − ΣR,A
imp(ε)

(30)

containing DMFT contributions ΣR,A(ε), not only impu-
rity scattering contained in:

ΣR,A
imp(ε) = ∆2

∑

p

GR,A(ε,p) = ReΣimp(ε) ± iγ(ε) (31)

where γ(ε) = π∆2N(ε) and N(ε) is the density of
states renormalized by Hubbard interaction, accounted
via DMFT+Σ and given as usual by:

N(ε) = − 1

π

∑

p

ImGR(ε,p) (32)

Following all the usual steps of standard
derivation14–19 we obtain diffusion like (at small ω
and q) contribution to Φ0RA

ε (ω,q) as:

Φ0RA
ε (q, ω̃) =

2πiN(ε)

ω̃ + iD(ω)q2
(33)

where important difference with the single–particle case
is contained in

ω̃ = ε+ − ε− − ΣR(ε+) + ΣA(ε−) =

= ω − ΣR(ε+) + ΣA(ε−) ≡ ω − ∆ΣRA(ω) (34)

which replaces the usual ω term in the denominator of the
standard expression for Φ0RA

ε (ω,q). On general grounds

it is clear that in metallic phase for ω → 0 we have
∆ΣRA(ω = 0) = 2iImΣ(ε) ∼ Max{T 2, ε2}, reflecting
Fermi–liquid behavior of DMFT (conserved by elastic im-
purity scattering). At finite T it leads to the usual phase
decoherence due to electron – electron scattering1,4. Gen-
eralized diffusion coefficient D(ω) will be determined by
solving the basic self–consistency equation, introduced
below.

Now using (33) in (26) we easily obtain:

φ0RA
ε (ω) =

2πN(ε)D(ω)

ω2
(

1 − ∆ΣRA(ω)
ω

)2 (35)

Then using (35) in (25), for ω → 0 and for T = 0 we get
just the usual Einstein relation for static conductivity:

σ(0) = e2N(0)D(0) (36)

All contributions form Hubbard interaction are reduced
to renormalization of the density of states at the Fermi
level and also of diffusion coefficient D(0).

Then (25) reduces to:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−) − f(ε+)] ×

Re

{

2πN(ε)D(ω)

ω2
− φ0RR

ε (ω)

[

1 − ∆ΣRR(ω)

ω

]2
}

,

(37)

where the second term actually can be neglected at small
ω, or just calculated from (27) taking Φ0RR

ε (ω,q) given
by the usual “ladder” approximation (A10).

Now we have to formulate our basic self–consistent
equation, determining the generalized diffusion coeffi-
cient D(ω). Again we follow all the usual steps of self–
consistent theory of localization (see details in the Ap-
pendix A), taking into account the form of our single–
particle Green’s function (30), and not restricting analy-
sis to small ω limit. Then we can write the generalized
diffusion coefficient as:

D(ω) =
< v >2

d

i

ω̃ + M(ω)
(38)

where d is spatial dimensionality and average velocity
< v > is defined in (A6) (to a good approximation it is
just the Fermi velocity), while the relaxation kernel M(ω)
satisfies self–consistency equation, similar to that derived
in Refs.14–19, using “maximally crossed” diagrams for ir-
reducible impurity scattering vertex (built with Green’s
functions (30)):

M(ω) = −∆ΣRA
imp(ω) + ∆4

∑

p

(∆Gp)2
∑

q

1

ω̃ + iD(ω)q2

(39)
with

∆Gp = GR(ε+,p) − GA(ε−,p) (40)
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and ∆ΣRA
imp(ω) = ΣR

imp(ε+) − ΣA
imp(ε−) is due to im-

purity scattering. It is important to stress once again
that there are no contributions to this equation due to
vertex corrections, determined by local Hubbard interac-
tion. Using the definition (38) Eq. (39) can be rewritten
as self–consistent equation for the generalized diffusion
coefficient itself:

D(ω) = i
< v >2

d

{

ω̃ − ∆ΣRA
imp(ω) +

+∆4
∑

p

(∆Gp)2
∑

q

1

ω̃ + iD(ω)q2

}−1

(41)

which is to be solved in conjunction with our DMFT+Σ
loop (3)–(9). Due to the limits of diffusion approxima-
tion, summation over q in (41) is to be restricted to:

q < k0 = Min{l−1, pF } (42)

where l =< v > /2γ(0) is an elastic mean–free path, pF

is the Fermi momentum17,19.
Solving (41) for different sets of parameters of our

model and using it in (37) with regular contributions
from (A10) we can calculate dynamic (optical) conduc-
tivity in different phases of Anderson–Hubbard model.

IV. RESULTS AND DISCUSSION

We performed extensive numerical calculations for sim-
plified version of three–dimensional Anderson–Hubbard
model on cubic lattice with semi–elliptic DOS of “bare”
band of the width W = 2D:

N0(ε) =
2

πD2

√

D2 − ε2 (43)

DOS is always given in units of number of states per
energy interval, per lattice cell volume a3 (a is lattice
spacing), per spin. Some related technical details are
given in Appendix B.

Mostly we shall concentrate on the half – filled case,
though some results for finite dopings will be also pre-
sented. Fermi level is always placed at zero energy.

As “impurity solver” of DMFT we employed the re-
liable numerically exact method of numerical renormal-
ization group (NRG)25–27. Calculations were done for
temperatures T ∼ 0.001D, which effectively makes tem-
perature effects in DOS and conductivity negligible. Dis-
cretization parameter of NRG was always Λ=2, number
of low energy states after truncation 1000, cut-off near
Fermi energy !)−6, broadening parameter b=0.6.

Below we present only a fraction of most typical re-
sults.

A. Density of states evolution

Within the standard DMFT approach density of states
of the half–filled Hubbard model has a typical three peak

structure: a narrow quasiparticle band (central peak) de-
velops at the Fermi level, with wider upper and lower
Hubbard bands forming at ε ∼ ±U/2. Quasiparticle
band narrows further with the growth of U in metallic
phase, vanishing at critical Uc2 ≈ 1.5W , signifying the
Mott–Hubbard MIT with a gap opening at the Fermi
level7,8,27.

In Fig. 6 we present our DMFT+Σ results for the
density of states, obtained for U = 2.5D = 1.25W typ-
ical for correlated metal without disorder, for different
degrees of disorder ∆, including strong enough values,
actually transforming correlated metal to correlated An-
derson insulator (see next subsection IV B). As may be
expected, we observe typical widening and damping of
DOS by disorder.

More unexpected are the results obtained for the val-
ues of U typical for Mott insulator without disorder, as
shown in Fig. 7 for U = 4.5D = 2.25W . We see the
restoration of central peak (quasiparticle band) in DOS
with the growth of disorder, transforming Mott insulator
either to correlated metal or correlated Anderson insu-
lator. Similar behavior of DOS was recently obtained in
Ref.13. However, in our calculations the presence of dis-
tinct Hubbard bands was observed even for rather large
values of disorder, with no signs of vanishing Hubbard
structure of DOS, which was observed in of Ref.13. This
is probably due to very simple nature of our approxima-
tion for DOS under disordering, though we must stress
that this difference may be also due to another model of
disorder used in Ref.13, i.e. flat distribution of εi in (1)
instead of our Gaussian case (2). Though unimportant,
in general, to physics of Anderson transition, the type of
disorder may be significant for the DOS behavior.

It is well known, that hysteresis behavior of DOS is ob-
tained for Mott–Hubbard transition if we perform DMFT
calculations with U decreasing from insulating phase8,27.
Mott insulator phase survives for the values of U well
inside the correlated metal phase, obtained with the in-
crease of U . Metallic phase is restored at Uc1 ≈ 1.0W .
The values of U from the interval Uc1 < U < Uc2 are
usually considered as belonging to coexistence region
of metallic and (Mott) insulating phases, with metallic
phase being thermodynamically more stable8,27,29.

In Fig. 8 we present our typical data for DOS with dif-
ferent disorder for the same value of U = 2.5D = 1.25W
as in Fig. 6, but for hysteresis region, obtained by de-
creasing U from Mott insulator phase. Again we observe
the restoration of central peak (quasiparticle band) in
DOS under disordering. Note also the peculiar form of
DOS around the Fermi level during this transition – a
narrow energy gap is conserved until it is closed by dis-
order, and central peak is formed from two symmetric
maxima in DOS joining into quasiparticle band. This
reminds similar behavior observed in periodic Anderson
model8. Apparently this effect was unnoticed in previ-
ous calculations of DOS in coexistence region27 (in the
absence of disorder), while in our case it was obtained
mainly due to our use of very fine mesh of the values of
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disorder parameter ∆.
The physical reason for rather unexpected restoration

of the central (quasiparticle) peak in DOS is in fact clear.
The controlling parameter for its appearance or disap-
pearance in DMFT is actually the ratio of Hubbard in-
teraction U and the bare bandwidth W = 2D. Under
disordering we obtain the new effective bandwidth Weff

(in the absence of Hubbard interaction) which grows with
disorder, while semi–elliptic form of the DOS, with well–
defined band edges is conserved in self–consistent Born
approximation (9). This leads to the decrease of the ra-
tio U/Weff , which induces the reappearance of quasi-
particle band in our model. This will be illustrated in
more detail in subsection IV C, where our DOS calcu-
lations within DMFT+Σ approach for a wide range of
parameters will be used to study the phase diagram of
Anderson–Hubbard model.

B. Dynamic conductivity: Mott–Hubbard and

Anderson transitions

Real part of dynamic (optical) conductivity was cal-
culated for different combinations of parameters of our
model directly from Eqs. (37), (A10) and (41) using the
results of DMFT+Σ loop (3) – (9) as an input. The val-
ues of conductivity below are given in natural units of
e2/~a (a – lattice spacing).

In the absence of disorder we obviously reproduce the
results of the standard DMFT7,8 with dynamic conduc-
tivity characterized in general by the usual (metallic)
Drude–like peak at zero frequency and wide absorption
maximum at ω ∼ U , corresponding to transitions to the
upper Hubbard band. With the growth of U Drude peak
decreases and vanishes at Mott transition, when only
transitions through the Mott–Hubbard gap contribute.
Introduction of disorder leads to qualitative changes in
the frequency dependence of conductivity. Below we
mainly show the results obtained for the same values of
U and ∆ as were used above to illustrate DOS behavior.

In Fig. 9 we present real part of dynamic (optical)
conductivity for half–filled Anderson–Hubbard model for
different degrees of disorder ∆, and U = 2.5D, typical for
correlated metal. Transitions to upper Hubbard band
at ω ∼ U are practically unobservable in these data.
However, it is clearly seen that metallic Drude peak at
zero frequency is widened and suppressed, being gradu-
ally transformed to a peak at finite frequncies due to ef-
fects of Anderson localization. Anderson transition takes
place at ∆c ≈ 0.74D = 0.37W (which in all our graphs
(including those for DOS) corresponds to curve 3). Note
that this value is actually dependent on the value of cut-
off (42), which is defined up to a constant of the order of
unity17,19. Naive expectations may have lead to a con-
clusion, that a narrow quasiparticle band at the Fermi
level, which forms in general case of highly correlated
metal, may be localized much more easily than typical
conduction band. However, we see that these expecta-

tions are just wrong and this band is localized only at
strong enough disorder ∆c ∼ D, the same as for the
whole conduction band of the width ∼ W . This is in
accordance with previous analysis of localization in two-
band model30.

More important is the fact that in DMFT+Σ approx-
imation the value of ∆c is independent of U as all inter-
action effects enter Eq. (41) only via ∆ΣRA(ω) → 0 for
ω → 0 (at T = 0), so that interaction just drops out at
ω = 0. This is actually the main deficiency of our ap-
proximation, which is due to our neglect of interference
effects between interaction and disorder scattering. Im-
portant role of these interference effects is known for a
long time1,4. However, despite the neglect of these effects
we are able to produce physically sound interpolation be-
tween two main limits of interest – pure Anderson transi-
tion due to disorder and Mott–Hubbard transition due to
strong correlations. Thus we consider it as a reasonable
first step to future complete theory of MIT in strongly
correlated disordered systems.

In Fig. 10 we present real part of dynamic (opti-
cal) conductivity for different degrees of disorder ∆, and
U = 4.5D, typical for Mott–Hubbard insulator. At the
insert we show our data for small frequencies, which allow
clear distinction of different types of conductivity behav-
ior, especially close to Anderson transition, or in Mott
insulator phase. In this figure we clearly see the contri-
bution of transitions to upper Hubbard band at ω ∼ U .
More importantly we observe, that the growth of dis-
order produces finite conductivity within the frequency
range of Mott–Hubbard gap, which correlates with the
appearance of quasiparticle band (central peak) in DOS
within this gap, as shown in Fig. 7. In general case,
this conductivity is metallic (finite in the static limit of
ω = 0) for ∆ < ∆c, while for ∆ > ∆c at small frequen-
cies we obtain Reσ(ω) ∼ ω2, which is typical of Anderson
insulator14–19. Note that due to a finite internal accuracy
of NRG numerics, small but finite spurious contributions
to ImΣR,A(ε = 0) always appear27 and formally grow
with U . These contributions are practically irrelevant in
calculations of conductivity in metallic state. However,
in Anderson insulator these spurious terms contribute
via ω̃ in Eq. (41) and lead to unphysical finite dephasing
effects at ω = 0 (or T = 0), which can simulate small fi-
nite static conductivity. To exclude these spurious effects
we had to make appropriate subtractions in our data for
ImΣR,A(ε) at ε = 0.

Rather unusual is the appearance of low frequency
peak in Reσ(ω) at low frequencies even in metallic phase.
This is due to importance of weak localization effects, as
can be clearly seen from Fig. 11, where we compare
the real part of dynamic conductivity for different de-
grees of disorder ∆ and U = 1.5D, obtained via our
self–consistent approach (taking into account localization
effects via “maximally crossed” diagrams) with that ob-
tained using the “ladder” approximation for Φ0RA

ε (ω,q)
(similar to (A10)), which neglects all localization effects.
It is clearly seen that in this simple approximation we just
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obtain the usual Drude–like peak at ω = 0, while the ac-
count of localization effects produce the peak in Reσ(ω)
at low (finite) frequencies. Metallic state is defined2

by the finite value of zero temperature conductivity at
ω = 0.

Up to now we presented only conductivity data ob-
tained with increase of U from metallic to (Mott) in-
sulating phase. As we decrease U from Mott insulator
hysteresis of conductivity is observed in coexistence re-
gion, defined (in the absence of disorder, ∆ = 0) by
Uc1 < U < Uc2. Typical data are shown in Fig. 12,
where we present the real part of dynamic conductiv-
ity for different degrees of disorder ∆ and U = 2.5D,
obtained from Mott insulator with decreasing U , which
should be compared with those shown in Fig. 9. Tran-
sition to metallic state via the closure of a narrow gap,
“inside” much wider Mott–Hubbard gap, is clearly seen,
which correlates with DOS data shown in Fig. 8.

C. Phase diagram of half–filled Anderson–Hubbard

model.

Phase diagram of half–filled Anderson–Hubbard model
was studied in Ref.13, using the approach, based on di-
rect DMFT calculations for a set of random realizations
of site energies εi in (1) with subsequent averaging to
get both the standard average DOS and also geometri-
cally averaged local DOS, which was used to determine
transition to Anderson insulator phase. Here we present
our results for the zero–temperature phase diagram of
half–filled paramagnetic Anderson–Hubbard model, ob-
tained from extensive calculations of both average DOS
and dynamic (optical) conductivity in DMFT+Σ approx-
imation. It should be noted, that conductivity calcula-
tions are the most direct way to distinguish metallic and
insulating phases2.

Our phase diagram in the disorder–correlation (∆, U)–
plane is shown in Fig. 13. Anderson transition line ∆c ≈
0.37W = 0.74D was determined as the value of disorder
for which the static conductivity becomes zero at T = 0.
Mott–Hubbard transition may be determined either via
the disappearance of central peak (quasiparticle band) in
DOS, or from conductivity, e.g. looking for the closure of
gap in dynamic conductivity in insulating phase, or from
vanishing static conductivity in metallic region. All these
methods were used and appropriate results are shown for
comparison in Fig. 13.

We already stressed that DMFT+Σ approximation
gives the universal (U–independent) value of ∆c. This is
due to neglect of interference between disorder scattering
and Hubbard interaction, and leads to the main (over)
simplification of our phase diagram, compared with that
obtained in Ref.13. Note, that direct comparison of our
critical disorder value with those of Ref.13 is complicated
by different types of random site–energies distributions
used here (Gaussian) and in Ref.13 (rectangular distrib-
ution). As a rule of thumb (cf. second reference in16)

our Gaussian value of ∆c should be multiplied by
√

12 to
obtain the critical disorder value for rectangular distri-
bution. This gives ∆c ≈ 1.28 in rather good agreement
with ∆c(U = 0) ≈ 1.35W value of Ref.13, justifying our
cutoff choice in (42).

The influence of disorder scattering on Mott–Hubbard
transition is highly non–trivial and in some respects is in
qualitative agreement with results of Ref.13. The main
difference is that our data indicate the survival of Hub-
bard bands structures in DOS even in the limit of rather
large disorder, while these were claimed to disappear in
Ref.13. Also we obtain the coexistence region smoothly
widening with the growth of disorder and not disappear-
ing at some “critical” point, as in Ref.13. The borders
of our coexistence region, which in fact define the bor-
ders of Mott insulator phase obtained with increasing or
decreasing U , are determined by the lines of Uc1(∆) and
Uc2(∆) shown in Fig. 13, which are obtained from the
simple equation:

Uc1,c2(∆)

Weff

=
Uc1,c2

W
(44)

with

Weff = W

√

1 + 16
∆2

W 2
(45)

which is the effective bandwidth in the presence of disor-
der, calculated for U = 0 in self–consistent Born approx-
imation (9). Thus the borders of coexistence region are
given by:

Uc1,c2(∆) = Uc1,c2

√

1 + 16
∆2

W 2
(46)

which are explicitly shown in Fig. 13 by dotted and full
lines, defining the borders of Mott insulator phase. Nu-
merical results for disappearance of quasiparticle band
(central peak) in DOS, as well as points following from
qualitative change in conductivity behavior, are shown
in Fig. 13 by different symbols demonstrating very good
agreement with these lines, confirming the ratio (44) as
controlling parameter of Mott transition in the presence
of disorder.

Most striking result of our analysis (also qualitatively
demonstrated in Ref.13) is the possibility of metallic state
being restored from Mott–Hubbard insulator with the
growth of disorder. This is clear from the phase diagram
and is nicely demonstrated by our data for (static) con-
ductivity shown in Fig. 14 for several values of U > Uc2

and disorder values ∆ < ∆c. At the insert in Fig. 14 we
also illustrate static conductivity hysteresis, observed in
coexistence region of the phase diagram, obtained with
U decreasing from Mott insulator phase.

D. Doped Mott insulator

All results presented above were obtained for half–
filled case. Here we briefly consider deviations from
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half–filling. In metallic phase, doping from half–filling
does not produce any qualitative changes in conductiv-
ity behavior, which only demonstrates Anderson transi-
tion with the growth of disorder. Thus we shall concen-
trate only on the case of doped Mott insulator. Strictly
speaking, for non half–filled case we never obtain Mott–
Hubbard insulator in DMFT at all. In Fig. 15 we show
the density of states of Anderson–Hubbard model with
electron concentration n = 0.8 for different degrees of
disorder ∆ and U = 6.0D, representing typical case of
the doped Mott insulator. Quasiparticle band overlaps
now with lower Hubbard band and is smeared by dis-
order, which is just the expected behavior in metallic
state. Nothing spectacular happens also with conductiv-
ity, which is shown for the same set of parameters in Fig.
16. It shows typical behavior associated with disorder
induced Anderson MIT. Small signs of transitions to the
upper Hubbard band can be seen for ω ∼ U (see insert
in Fig. 16). Thus, doped Mott insulator with disorder is
qualitatively quite similar to the case of disordered cor-
related metal discussed above.

V. CONCLUSION

We used a generalized DMFT+Σ approach to calcu-
late basic properties of disordered Hubbard model. The
main advantage of our method is its ability to provide
rather simple interpolation scheme between rather well
understood cases of strongly correlated system (DMFT
and Mott–Hubbard MIT) and that of strongly disordered
metal without Hubbard correlations, undergoing An-
derson MIT. Apparently this interpolation scheme cap-
tures the main qualitative features of Anderson–Hubbard
model, such as the general behavior of DOS and dy-
namic (optical) conductivity. The overall picture of zero–
temperature phase diagram is also quite reasonable and is
satisfactory agreement with the results of more elaborate
numerical work13. Actually, our DMFT+Σ approach is
much less time–consuming than more direct numerical
approaches, such as that of Ref.13, and in fact allows us
to calculate all basic (measurable) physical characteris-
tics of Anderson–Hubbard model.

Main shortcoming of our approach is its neglect of in-
terference effects of disorder scattering and Hubbard in-
teraction, which leads to independence of Anderson MIT
critical disorder ∆c on interaction U . Importance of in-
terference effects is known for a long time1,4, but its ac-
count was only partially successful in case of weak cor-
relations. At the same time, the neglect of these inter-
ference effects is the major approximation of DMFT+Σ,
allowing to derive rather simple and physical interpola-
tion scheme, allowing the analysis of the limit of strong
correlations. Attempts to include interference effects in
our scheme are postponed for future work.

Another simplification is, of course, our assumption of
non–magnetic (paramagnetic) ground state of Anderson–
Hubbard model. The importance of magnetic (spin) ef-

fects in strongly correlated systems is well known, as well
as the problem of competition of ground states with dif-
ferent types of magnetic ordering8. Importance of disor-
der in the studies of interplay of these possible ground
states is also quite evident. These may also be the sub-
ject of our future work.

Despite these shortcomings, our results seem very
promising, especially concerning the influence of strong
disorder on Mott–Hubbard MIT and the overall form of
the phase diagram at zero temperature. The changes
in phase diagram at finite temperatures will be the sub-
ject of further studies. Non–trivial predictions of our
approach, such as the general behavior of dynamic (op-
tical) conductivity and, especially, the prediction of dis-
order induced Mott insulator to metal transition can be
the subject of direct experimental verification.
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APPENDIX A: EQUATION FOR RELAXATION

KERNEL

Let us follow the standard approach of self–consistent
theory of localization14–19, taking into account the
DMFT contributions ΣR,A(ε) in single-particle Green’s
functions (30) and not limiting ourselves to the usual
limit of small ω.

Consider Bethe–Salpeter equation relating the full two-
particle Green’s function Φ0RA

pp′ (ω,q) to irreducible vertex

U0RA
pp′ (ω,q), accounting only for impurity scattering in

vertices, but built upon Green’s functions given by (30).
This equation can be written now as a generalized kinetic
equation of the following form14–19:

(

ω̃ − ε(p) − ∆ΣRA
imp(ω)

)

Φ0RA
pp′ (ω,q) =

= −∆Gp

(

δpp′ +
∑

p1

U0RA
pp1

(ω,q)Φ0RA
p1p

′(ω,q)

)

(A1)

where ∆Gp = GR(ε+,p+) − GA(ε−,p−). The main dif-
ference with similar equation of Refs.14–19 is the replace-
ment ω → ω̃.
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Let us sum both sides of (A1) and of the same equation
multiplied by (p̂q̂) (where p̂ = p

|p| and q̂ = q

|q| are appro-

priate unit vectors) over p and p′, taking into account
an exact Ward identity14:

∆ΣRA
imp(ω) =

∑

p′

U0RA
pp′ (ω,q)∆Gp′ (A2)

and using an approximate representation (cf. Ref.14)

∑

p′

Φ0RA
pp′ (ω,q) ≈ ∆Gp

∑

p
∆Gp

Φ0RA
ε (ω,q) +

+
∆Gp(p̂q̂)

∑

p
∆Gp(p̂q̂)2

Φ0RA
1ε (ω,q) (A3)

where Φ0RA
ε (ω,q) =

∑

pp′ Φ0RA
pp′ (ω,q) is our loop (28),

while Φ0RA
1ε (ω,q) =

∑

pp′(p̂q̂)Φ0RA
pp′ (ω,q). Important

difference from similar representation used in Refs.14–19

is that (A3) is not limited to small ω.
Now (for q → 0) we obtain the following closed system

of equations defining both Φ0RA
ε (ω,q) and Φ0RA

1ε (ω,q):

ω̃Φ0RA
ε (ω,q)− < v > qΦ0RA

1ε (ω,q) = −
∑

p

∆Gp (A4)

(ω̃ + M(ω))Φ0RA
1ε (ω,q) − < v >

d
qΦ0RA

1ε (ω,q) = 0

where relaxation kernel is given by:

M(ω) = −∆ΣRA
imp(ω) +

+d

∑

pp′(p̂q̂)∆GpU0RA
pp′ (ω,q)∆Gp′(p̂′q̂)

∑

p
∆Gp

, (A5)

with average velocity < v > defined as:

< v >=

∑

p
|vp|∆Gp

∑

p
∆Gp

; vp =
∂ε(p)

∂p
, (A6)

From (A4) we immediately obtain:

Φ0RA
ε (q, ω̃) =

−∑
p

∆Gp

ω̃ + iD(ω)q2
(A7)

which for small ω reduces to (33) with generalized diffu-
sion coefficient given by (38).

Using for irreducible vertex U 0RA
pp′ (ω,q) an approxima-

tion of “maximally crossed” diagrams and introducing
the standard self-consistency procedure of Refs.14–19 (i.e.
replacing the Drude diffusion coefficient in Cooperon con-
tribution to irreducible vertex by the generalized one de-
fined by (38)), we obtain from (A5) our expression (39)
for relaxation kernel.

Our equation (41) for the generalized diffusion coeffi-
cient (which is in general case complex) reduces just to
the usual transcendent equation. It was solved by iter-
ations for every value of ω̃, taking into account that for

d = 3 and cutoff given by (42), the sum entering (41)
reduces to:

∑

q

1

ω̃ + iD(ω)q2
=

1

2π2

k3
0

iD(ω)k2
0

∫ 1

0

y2dy

y2 + ω̃
iD(ω)k2

0

=

(A8)

=
1

2π2

k3
0

iD(ω)k2
0

{

1 −
(

ω̃

iD(ω)k2
0

)
1

2

arctg

(

(

iD(ω)k2
0

ω̃

)

1

2

)}

For finite frequencies ω we use Φ0RA
ε (q, ω̃) given by

(A7), so that an expression (25) for dynamic conductivity
is to be rewritten as:

Reσ(ω) =
e2ω

2π

∫ ∞

−∞

dε [f(ε−) − f(ε+)] ×

Re

{

i
∑

p
∆GpD(ω)

ω2
− φ0RR

ε (ω)

[

1 − ∆ΣRR(ω)

ω

]2
}

,

(A9)

The second term here was taken in the “ladder” approx-
imation:

Φ0RR
ε (ω,q) =

∑

p
GR(ε+,p+)GR(ε−,p−)

1 − ∆2
∑

p
GR(ε+,p+)GR(ε−,p−)

(A10)
This contribution (non singular at small ω) is irrelevant
for conductivity at small ω → 0, but leads to finite cor-
rections with increasing ω. Eq. (A9) is our final result,
which was analyzed numerically in a wide interval of fre-
quencies (for small ω it reduces to (37)).

APPENDIX B: “BARE” ELECTRON

DISPERSION AND VELOCITY

We consider the “bare” energy band with semi-elliptic
DOS (43). Assuming isotropic electron spectrum ε(p) =
ε(|p|) ≡ ε(p) and equating the number of states in spher-
ical layer of momentum space to the number of states
in an energy interval [ε, ε + dε]], we obtain differential
equation determining the energy dispersion ε(p):

4πp2dp

(2π)3
= N0(ε)dε (B1)

For quadratic energy dispersion ε(p) close to the lower
band edge we get the initial condition for Eq. (B1) for
p → 0 and ε → −D. Then we obtain

p =

[

6π

(

π − ϕ +
1

2
sin(2ϕ)

)]
1

3

(B2)

with ϕ = arccos( ε
D

) and momentum in units of inverse
lattice spacing. Eq. (B2) implicitly defines “bare” energy
dispersion ε(p) for electronic part of the spectrum ε ∈
[−D, 0].



For half-filled band we easily determine the Fermi mo-
mentum as:

pF = p(ε = 0) =
(

3π2
)

1

3 (B3)

We also need electron velocity |vp| =
∣

∣

∣

∂ε(p)
∂p

∣

∣

∣
= ∂ε(p)

∂p

entering into the expression (A6) for average velocity.
From (B1) we obtain:

|vp| =
dε

dp
=

p2

2π2

1

N0(ε)
(B4)

where p is given by Eq. (B2).
To obtain quadratic dispersion for hole part of the

spectrum (ε ∈ [0, D]) close to the upper band edge
(ε → D) we introduce the hole momentum p̃ = 2pF − p
and write similarly to (B1):

4πp̃2dp̃

(2π)3
= −N0(ε)dε (B5)

Putting p̃ → 0 at the upper band edge ε → 0, we get:

p̃ =

[

6π

(

ϕ − 1

2
sin(2ϕ)

)]
1

3

(B6)

Then for velocity at the hole part of the spectrum we
obtain:

|vp| =
dε

dp
= − dε

dp̃
=

p̃2

2π2

1

N0(ε)
(B7)

Eqs. (B4) and (B7) define energy dependence of |vp|. It
is easily seen that velocity is even in energy and becomes
zero at the band edges. These expressions allow us to
change from momentum summation (e.g. in Eq. (A6))
to energy integration.
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FIGURES

FIG. 1: Typical “skeleton” diagrams for the self–energy in
the DMFT+Σ approach. The first two terms are examples of
DMFT self–energy diagrams; the middle two diagrams show
contributions due to random impurity scattering represented
as dashed lines. The last diagram (b) is an example of ne-
glected diagram leading to interference between the local Hub-
bard interaction and impurity scattering.

FIG. 2: Full polarization loop with vertex part, describing all
interactions and impurity scatterings in particle–hole chan-
nel. The loop without vertex corrections is included implic-
itly. Here p± = p ±

q

2
, ε± = ε ± ω

2
.

FIG. 3: Bethe–Salpeter equation for polarization loop in
DMFT+Σ approach. Circle represents irreducible vertex part
in particle–hole channel of DMFT, which contains only local
Hubbard interactions. Unshaded rectangular vertex repre-
sents corrections from impurity scattering only, implicitly in-
cluding the case free particle–hole propagation.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

FIG. 4: Effective vertex γiε(iω,q = 0) used in calculations of
conductivity.



FIG. 5: Diagrammatic representation of Φ0RA
ε (ω,q) and

Φ0RR
ε (ω,q).

FIG. 6: (Color online) Density of states of half–filled
Anderson–Hubbard model for different degrees of disorder ∆,
and U = 2.5D, typical for correlated metal.

FIG. 7: (Color online) Density of states of half–filled
Anderson–Hubbard model for different degrees of disorder ∆
and U = 4.5D, typical for Mott insulator.

FIG. 8: (Color online) Restoration of quasiparticle band by
disorder in coexistence (hysteresis) region for U = 2.5D, ob-
tained from Mott insulator with decreasing U .



FIG. 9: (Color online) Real part of dynamic conductivity for
half–filled Anderson–Hubbard model for different degrees of
disorder ∆, and U = 2.5D, typical for correlated metal. Lines
1,2 are for metallic phase, line 3 corresponds to the mobility
edge (Anderson transition), lines 4,5 correspond to correlated
Anderson insulator.

FIG. 10: (Color online) Real part of dynamic conductivity of
half–filled Anderson–Hubbard model for different degrees of
disorder ∆ and U = 4.5D, typical for Mott insulator. Lines
1,2 correspond to Mott insulator, line 3 corresponds to the
mobility edge (Anderson transition), lines 4,5 are for corre-
lated Anderson insulator. Insert – enlarged region of small
frequencies.

FIG. 11: (Color online) Real part of dynamic conductivity
of half–filled Anderson–Hubbard model for different degrees
of disorder ∆ and U = 1.5D, comparison of self–consistent
theory (full lines) with “ladder” approximation (dotted lines).

FIG. 12: (Color online) Real part of dynamic conductivity of
half–filled Anderson–Hubbard model for different degrees of
disorder ∆ and U = 2.5D, obtained from Mott insulator with
decreasing U .



FIG. 13: (Color online) Zero temperature phase diagram of
paramagnetic Anderson–Hubbard model. Borders of Mott
insulator phase Uc1,c2(∆) are shown as obtained from Eqs.
(46), while different symbols show values calculated either
from DOS or conductivity behavior. Dotted line defines the
border of coexistence region obtained with decreasing U from
Mott insulator phase. Line of Anderson transition is given by
calculated value of ∆c = 0.37.

FIG. 14: (Color online) Disorder dependence of static conduc-
tivity, obtained for several values of U and showing disorder
induced Mott insulator to metal transition. At the insert we
show static conductivity dependence on U close to Mott tran-
sition, including typical hysteresis behavior obtained with U

decreasing from Mott insulator phase.

FIG. 15: (Color online) Density of states of Anderson–
Hubbard model with electron concentration n = 0.8 for dif-
ferent degrees of disorder ∆ and U = 6.0D, representing the
doped Mott insulator.

FIG. 16: (Color online) Real part of dynamic conductiv-
ity of Anderson–Hubbard model with electron concentration
n = 0.8 for different degrees of disorder ∆ and U = 6.0D, rep-
resenting the doped Mott insulator. Insert – high frequency
behavior with signs of transitions to the upper Hubbard band.


