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Abstract
The standard Eliashberg–McMillan theory of superconductivity is essentially based on the adiabatic approximation. Here
we present some simple estimates of electron–phonon interaction within the Eliashberg–McMillan approach in a non–
adiabatic and even antiadiabatic situation, when characteristic phonon frequency Ω0 becomes large enough, i.e., comparable
or exceeding the Fermi energy EF . We discuss the general definition of Eliashberg–McMillan (pairing) electron–phonon
coupling constant λ, taking into account the finite value of phonon frequencies. We show that the mass renormalization
of electrons is in general determined by different coupling constant λ̃, which takes into account the finite width of con-
duction band, and describes the smooth transition from the adiabatic regime to the region of strong nonadiabaticity. In
antiadiabatic limit, when Ω0 � EF , the new small parameter of perturbation theory is λEF

Ω0
∼ λ D

Ω0
� 1 (D is conduction

band half-width), and corrections to electronic spectrum (mass renormalization) become irrelevant. However, the tempera-
ture of superconducting transition Tc in antiadiabatic limit is still determined by Eliashberg–McMillan coupling constant λ.
We consider in detail the model with discrete set of (optical) phonon frequencies. A general expression for superconducting
transition temperature Tc is derived, which is valid in situation, when one (or several) of such phonons becomes antiadiabatic.
We also analyze the contribution of such phonons into the Coulomb pseudopotential μ� and show that antiadiabatic phonons
do not contribute to Tolmachev’s logarithm and its value is determined by partial contributions from adiabatic phonons
only.

Keywords Eliashberg–McMillan theory · Electron–phonon interaction · Antiadiabatic phonons ·
Coulomb pseudopotential · Critical temperature

1 Introduction

Eliashberg–McMillan superconductivity theory is currently
the basis for microscopic description of Cooper pairing and
all general properties of conventional superconductors [1–
5]. It is essentially based on adiabatic approximation and
Migdal’s theorem [6], which allows to neglect the vertex
corrections to electron–phonon coupling in typical metals.
The actual small parameter of perturbation theory is λ

Ω0
EF

�
1, where λ is the dimensionless Eliashberg–McMillan
electron–phonon coupling constant, Ω0 is characteristic
phonon frequency, and EF is Fermi energy of electrons.
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This leads to the widely accepted opinion that vertex
corrections can be neglected even for the case of λ > 1, due
to the fact that in common metal, Ω0

EF
� 1 . The possible

breaking of Migdal’s theorem for the case of λ ∼ 1 due to
polaronic effects was widely discussed in the literature [7,
8]. In the following, we consider only the case of λ < 1
where we can safely neglect these effects [8].

Recently, a number of superconductors were discovered,
where the adiabatic approximation is not necessarily valid,
and characteristic frequencies of phonons are of the order or
even greater than Fermi energy. In this respect, we can men-
tion single–atomic layers of FeSe on the SrTiO3 substrate
(FeSe/STO) [9], as well as record–breaking hydride–based
superconductors at high pressures [10]. This is also the case
in the long–standing puzzle of superconductivity in doped
StTiO3 [11]. The role of nonadiabatic phonons was recently
analyzed in important papers by Gor’kov [12, 13] within the
standard BCS–like weak–coupling approach, and directly
addressed to these new superconductors. Here we review
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some further estimates, derived by us in refs. [14, 15] in the
framework of Eliashberg–McMillan theory.

2 Electron Self–Energy and Electron–Phonon
Coupling Constant

Let us consider first ametal in normal (non-superconducting)
state, which is sufficient to introduce some basic notions
of Eliashberg–McMillan theory [2, 3]. The second–order
(in electron–phonon coupling) diagram is shown in Fig. 1.
Making all calculations in finite temperature technique,
after the analytic continuation from Matsubara to real
frequencies iωn → ε ± iδ and in the limit of T = 0 (i.e.,
EF � T ), the contribution of diagram in Fig. 1 can be
written [1, 2] as:

Σ(ε, p) =
∑

p′,α
|gα

pp′ |2
{

fp′

ε − εp′ + Ωα
p−p′ − iδ

+ 1 − fp′

ε − εp′ − Ωα
p−p′ + iδ

}
(1)

where in notations of Fig. 1 p′ = p + q. Here gα
p,p′

is Fröhlich electron–phonon coupling constant, εp is
electronic spectrum with energy zero taken at the Fermi
level, Ωα

q represents the phonon spectrum, and fp is Fermi
distribution (step–function at T = 0). In these expressions
index α enumerates the branches of phonon spectrum,
which below is just dropped for brevity.

Now we can essentially follow the analysis, presented in
Ref. [2, 3]. Eq. (1) can be identically rewritten as:

Σ(ε, p) =
∫

dω
∑

p′
|gpp′ |2δ(ω − Ωp−p′)

×
{

fp′

ε − εp′ + ω − iδ
+ 1 − fp′

ε − εp′ − ω + iδ

}
(2)

To simplify calculations, we can get rid of explicit momen-
tum dependencies here by averaging the matrix element
of electron–phonon interaction over surfaces of constant
energies, corresponding to initial and final momenta p and
p′, which usually reduces to the averaging over correspond-
ing Fermi surfaces, as phonon scattering takes place only
within the narrow energy interval close to the Fermi level,
with effective width of the order of double characteristic

frequency of phonons 2Ω0, and taking into account that in
typical metals we always have Ω0 � EF .

This averaging can be achieved by the following replace-
ment in Eq. (2):

|gpp′ |2δ(ω − Ωp−p′)

=⇒ 1

N(0)

∑

p

1

N(0)

∑

p′
|gpp′ |2δ(ω − Ωp−p′)

×δ(εp)δ(εp′)

≡ 1

N(0)
α2(ω)F (ω) (3)

where in the last expression, we have introduced the
definition of Eliashberg function α2(ω) and F(ω) =∑

q δ(ω − Ωq) is the phonon density of states.
In the non–adiabatic case, when phonon energy becomes

comparable with or even exceeds the Fermi energy, electron
scattering is effective not only in the narrow energy layer
around the Fermi surface, but in much wider energy, interval
of the order of Ω0 ∼ EF . Then, for the case of initial
|p| ∼ pF , the averaging over p′ in expression like (3) should
be done over the surface of constant energy, corresponding
to EF +Ωp−p′ , as is shown in Fig. 2. Now Eq. (3) is directly
generalized as:

|gpp′ |2δ(ω − Ωp−p′)

=⇒ 1

N(0)

∑

p

1

N(0)

∑

p′
|gpp′ |2

×δ(ω − Ωp−p′)δ(εp)δ(εp′ − Ωp−p′)

≡ 1

N(0)
α2(ω)F (ω) (4)

After the replacement like (3) or (4), the explicit momentum
dependence of the self–energy disappears and in fact in the
following, we are dealing with Fermi surface average of
self–energy Σ(ε) ≡ 1

N(0)

∑
p δ(εp)Σ(ε, p), which is now

written as:

Σ(ε) =
∫

dε′
∫

dωα2(ω)F (ω)

×
{

f (ε′)
ε − ε′ + ω − iδ

+ 1 − f (ε′)
ε − ε′ − ω + iδ

}
(5)

This expression forms the basis of Eliashberg–McMillan
theory and determines the structure of Eliashberg equations
for the description of superconductivity.

Fig. 1 Second–order diagram
for self–energy. Dashed
line—phonon Green’s function
D(0), continuous line—electron
Green’s function G in
Matsubara representation
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Fig. 2 a Elementary act of electron–phonon scattering in the vicinity
of the Fermi surface. b Surfaces of constant energy for initial and
final states of an electron scattered by an optical phonon with energy
comparable with Fermi energy. Non–trivial contribution to the average
of the matrix element in (11) or (13) comes here from the intersection
of these surfaces

Now the self–energy is dependent only on frequency (and
not on momentum) and we can use the following simple
expressions, relating mass renormalization of an electron to
the residue a the pole of the Green’s function [16]:

Z−1 = 1 − ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

(6)

m� = m

Z
= m

(
1 − ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

)
(7)

Then from Eq. (5) by direct calculations we obtain:

− ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

= 2
∫ ∞

0

dω

ω
α2(ω)F (ω) (8)

and introducing the dimensionless Eliashberg–McMillan
electron–phonon coupling constant as:

λ = 2
∫ ∞

0

dω

ω
α2(ω)F (ω) (9)

we immediately obtain the standard expression for electron
mass renormalization due to electron–phonon interaction:

m� = m(1 + λ) (10)

The function α2(ω)F (ω) in the expression for Eliashberg–
McMillan electron–phonon coupling constant (9) should be

calculated according to (3) or (4) depending on the relation
between Fermi energy EF and characteristic phonon
frequencyΩ0 As long asΩ0 � EF , we can use the standard
expression (3), while in the case of Ω0 ∼ EF , we should
use (4).

Using Eq. (4)m, we can rewrite (9) in the following form:

λ = 2

N(0)

∫
dω

ω

∑

p

∑

p′
|gpp′ |2

×δ(ω − Ωp−p′)δ(εp)δ(εp′ − Ωp−p′) (11)

which gives the most general expression to calculate the
electron–phonon constant λ, determining pairing in the
Eliashberg–McMillan theory. Implicitly this result was
contained already in ref. [17]. Below we shall present some
simple estimates, based on this general relation.

3 Estimates of Electron–Phonon Coupling
with Non–adiabatic Phonons

Let us consider the simplest possible model of electrons
interacting with a single optical (Einstein–like) phonon
mode with high–enough frequency Ω0. The general
qualitative picture of such scattering is shown in Fig. 2. In
this case in Eq. (11) the density of phonon states is simply
F(ω) = δ(ω − Ω0). Just for orientation we may take
the possible momentum dependence of interaction with this
optical phonon in the form proposed in Refs. [18, 19] to
describe nearly “forward” scattering by optical phonons at
FeSe/STO interface, as a possible mechanism of strong Tc

enhancement in this system:

g(q) = g0 exp(−|q|/q0), (12)

where the typical value of q0 � pF (pF is the Fermi
momentum) to ensure the nearly “forward” nature of
scattering. This model allows explicit estimates, which may
illustrate the general situation.

Now we can write the dimensionless pairing constant of
electron–phonon interaction in Eliashberg theory as:

λ = 2

N(0)Ω0

∑

p

∑

q

|gq|2δ(εp)δ(εp+q − Ω0) (13)

As in FeSe/STO with rather shallow conduction band [18,
20, 21], where in fact we have Ω0 > EF , the finite value of
Ω0 in the second δ-function here should be definitely taken
into account.

We can make our estimates assuming the simplest
linearized form of electronic spectrum near the Fermi
surface (vF is Fermi velocity): εp ≈ vF (|p| − pF ), which
allows us to perform all calculations analytically. Using (12)
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in (13) and considering the two–dimensional case, after the
calculation of all integrals, we obtain [21]:

λ = g2
0a

2

π2v2F

K1

(
2Ω0

vF q0

)
, (14)

where K1(x) is Bessel function of imaginary argument
(McDonald function). Using the asymptotic form of K1(x)

and dropping a number of irrelevant constants of the order
of unity, we get:

λ ∼ λ0
q0

4πpF

, (15)

for Ω0
vF q0

� 1, and

λ ∼ λ0
Ω0

πEF

√
vF q0

Ω0
exp

(
− 2Ω0

vF q0

)
, (16)

for Ω0
vF q0

� 1. Here we introduced the standard
dimensionless electron–phonon coupling constant:

λ0 = 2g2
0

Ω0
N(0), (17)

where N(0) is the density of electronic states at the Fermi
level per single spin projection.

The result (15) is by itself rather unfavorable for
significant Tc enhancement in model under discussion,
where q0 � pF . Even worse is the situation if we take into
account the large values of Ω0, as pairing constant becomes
exponentially suppressed for Ω0

vF q0
> 1, which is typical for

FeSe/STO interface, where Ω0 > EF � vF q0 [9]. This
makes the enhancement of Tc due to interaction of FeSe
electrons with optical phonons of STO rather improbable,
as was stressed in ref. [21].

However, this is not our main point here. Actually, using
(12), we can also make estimates for a generally more
typical case, when the optical phonon scatters electrons not
only in nearly “forward” direction, but in a wider interval
of transferred momenta. To do that, we have simply to use
in Eq. (12) the larger values of parameter q0. Choosing,
e.g., q0 ∼ 4πpF and using the low frequency limit of (15)
we immediately obtain λ ≈ λ0, i.e., the standard result.
Similarly, parameter q0 can be taken of the order of inverse
lattice vector 2π/a (where a is the lattice constant). Then
for q0 ∼ 2π/a from (15) we obtain:

λ ∼ λ0
1

2pF a
∼ λ0 (18)

for the typical case of pF ∼ 1/2a. In general, there
always remains the dependence on the value of Fermi
momentum and cutoff parameter (cf. similar analysis in Ref.

[16]). These particular estimates are valid for the adiabatic
case.

In antiadiabatic limit of (16), assuming q0 ∼ pF , we
immediately obtain:

λ ∼
√
2

π
λ0

√
Ω0

EF

exp

(
− Ω0

EF

)
, (19)

which simply signifies the effective interaction cutoff for
Ω0 > EF in the antiadiabatic limit. This fact was already
noted by Gor’kov in refs. [12, 13], where it was stressed
that in antiadiabatic limit, the cutoff in the Cooper channel
is determined not by the average phonon frequency, but by
Fermi energy.

4 Antiadiabatic Limit andMass
Renormalization

Our discussion up to now implicitly assumed the conduction
band of an infinite width. However, it is obvious that in
the case of large enough characteristic phonon frequency,
it may become comparable with conduction band width,
which in typical metal case is of the order of Fermi energy
EF . Now we will show that in the strongly nonadiabatic
(antiadiabatic) limit, when Ω0 � EF ∼ D (here D is the
conduction band half-width), we are in fact dealing with
the situation, when there appears a new small parameter of
perturbation theory λD/Ω0 ∼ λEF /Ω0.

Consider the case of conduction band of the finite
width 2D with constant density of states (which formally
corresponds to two–dimensional case). The Fermi level as
always is considered as an origin of energy scale and for
simplicity, we assume the case of half–filled band. Then (5)
reduces to:

Σ(ε) =
∫ D

−D

dε′
∫

dωα2(ω)F (ω)

×
{

f (ε′)
ε − ε′ + ω − iδ

+ 1 − f (ε′)
ε − ε′ − ω + iδ

}

=
∫

dωα2(ω)F (ω)

×
{
ln

ε + D + ω − iδ

ε − D − ω + iδ
− ln

ε + ω − iδ

ε − ω + iδ

}
(20)

For the model of a single optical phonon, F(ω) = δ(ω−Ω0)

and we immediately obtain:

Σ(ε) = α2(Ω0)F (Ω0)

{
ln

ε + D + Ω0 − iδ

ε − D − Ω0 + iδ

− ln
ε + Ω0 − iδ

ε − Ω0 + iδ

}
(21)
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Correspondingly, from (20), we get:

− ∂Σ(ε)

∂ε

∣∣∣∣
ε=0

= 2
∫ ∞

0
dωα2(ω)F (ω)

D

ω(ω + D)
(22)

and we can define the new generalized coupling constant
as:

λ̃ = 2
∫ ∞

0

dω

ω
α2(ω)F (ω)

D

ω + D
(23)

which for D → ∞ reduces to the usual Eliashberg–
McMillan constant (9), while for D → 0 (D � Ω0), it
gives the “antiadiabatic” coupling constant:

λD = 2D
∫

dω

ω2
α2(ω)F (ω) (24)

Equation (23) describes the smooth transition between
the limits of wide and narrow conduction bands. Mass
renormalization in general case is determined by λ̃:

m� = m(1 + λ̃) (25)

For the model of a single optical phonon with frequencyΩ0,
we have:

λ̃ = 2

Ω0
α2(Ω0)

D

Ω0 + D
= λ

D

Ω0 + D
= λD

Ω0

Ω0 + D
(26)

where Eliashberg–McMillan constant is:

λ = 2
∫ ∞

0

dω

ω
α2(ω)F (ω) = α2(Ω0)

2

Ω0
(27)

and λD reduces to:

λD = 2α2(Ω0)
D

Ω2
0

= 2α2(Ω0)
1

Ω0

D

Ω0
= λ

D

Ω0
(28)

where in the last expression, we explicitly introduced the
new small parameter D/Ω0 � 1, appearing in strong
antiadiabatic limit. Correspondingly, in this limit, we always
have:

λD = λ
D

Ω0
∼ λ

EF

Ω0
� λ (29)

so that for reasonable values of λ (even up to a strong
coupling region of λ ∼ 1), “antiadiabatic” coupling
constant remains small. Obviously, all vertex corrections
here are also small, as was shown rather long ago by direct
calculations in ref. [22]. Thus, we come to an unexpected
conclusion—in the limit of strong nonadiabaticity, the
electron–phonon coupling becomes weak and we obtain a
kind of “anti–Migdal” theorem.

Physically, the weakness of electron–phonon coupling in
strong nonadiabatic limit is more or less clear—when ions
move much faster than electrons, these rapid oscillation are
just averaged in time as electrons cannot follow the very
rapidly changing configuration of ions.

5 Eliashberg Equations and the Temperature
of Superconducting Transition

All analyses above were performed for the normal state
of a metal. Now let us turn to the superconducting phase.
The problem arises, to what extent the results obtained can
be generalized for the case of a metal in superconducting
state? In particular, what coupling constant (λ or λ̃)
determines the temperature of superconducting transition Tc

in antiadiabatic limit? Let us analyze this situation within
appropriate generalization of Eliashberg equations.

Taking into account that in antiadiabatic approxima-
tion, vertex corrections are again irrelevant and neglecting
the direct Coulomb repulsion, Eliashberg equations can be
derived in the usual way by calculating the diagram of
Fig. 1, where electronic Green’s function in superconduct-
ing state is taken in Nambu’s matrix representation. For real
frequencies, this Green’s function is written in the following
standard form [3, 4]:

G(ε,p) = Z(ε)ετ0 + εpτ3 + Z(ε)Δ(ε)τ1

Z2(ε)ε2 − Z2(ε)Δ2(ε) − ε2p
(30)

which corresponds to the matrix of self–energy:

Σ(ε) = [1 − Z(ε)]ετ0 + Z(ε)Δ(ε)τ1 (31)

where τi are standard Pauli matrices, while functions
of mass renormalization Z(ε) and energy gap Δ(ε)

are determined from solution of integral Eliashberg
equations [3, 4]. For us now, it is sufficient to consider
only the linearized Eliashberg equations, determining
superconducting transition temperature Tc, which for the
case of real frequencies are written as [3, 4]:

[1 − Z(ε)]ε =
∫ D

0
dε′

∫ ∞

0
dωα2(ω)F (ω)f (−ε′)

×
(

1

ε′ + ε + ω + iδ
− 1

ε′ − ε + ω − iδ

)

(32)

Z(ε)Δ(ε)=
∫ D

0

dε′

ε′ th
ε′

2Tc

ReΔ(ε′)

×
∫ ∞

0
dωα2(ω)F (ω)

×
(

1

ε′ + ε + ω + iδ
+ 1

ε′ − ε + ω − iδ

)
(33)

In difference with the standard approach [4], we have
introduced the finite integration limits, determined by the
(half)bandwidth D. To simplify the analysis, we again
assume the half–filled band of degenerate electrons in two
dimensions, so that D = EF � Tc, with constant density
of states.

The situation is considerably simplified [14, 15], if we
consider these equations in the limit of ε → 0 and look for
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the solutions1 Z(0) = Z and Δ(0) = Δ. Then from (32),
we obtain:

[1 − Z]ε = −2ε
∫ ∞

0
dωα2(ω)F (ω)

D

ω(ω + D)
(34)

and we get the mass renormalization factor as:

Z = 1 + λ̃ (35)

where constant λ̃ was defined above in Eq. (23), which for
D → ∞ reduces to the usual Eliasberg–McMillan constant
(9), while for D significantly smaller than characteristic
phonon frequencies, it gives the “antiadiabatic” coupling
constant (24). Mass renormalization is again determined by
this generalized coupling constant λ̃ as in Eq. (25). In par-
ticular, in the strong antiadiabatic limit, this renormalization
is quite small and determined by the limiting expression λD

given by Eq. (24).
The situation is quite different in Eq. (33). In the limit

of ε → 0, using (35), we immediately obtain from (33) the
following equation for Tc:

1 + λ̃ = 2
∫ ∞

0
dωα2(ω)F (ω)

∫ D

0

dε′

ε′(ε′ + ω)
th

ε′

2Tc

(36)

where λ is the standard Eliashberg–McMillan coupling con-
stant as defined above in Eq. (9). Thus, in general case, dif-
ferent coupling constants determine mass renormalization
and Tc.

Let us consider rather a general model with discrete set
of dispersionless phonon modes (Einstein phonons). In this
case, the phonon density of states is written as:

F(ω) =
∑

i

δ(ω − Ωi) (37)

where Ωi are discrete frequencies modeling the optical
branches of the phonon spectrum. Then from Eqs. (9) and
(23), we get:

λ = 2
∑

i

α2(Ωi)

Ωi

≡
∑

i

λi (38)

λ̃ = 2
∑

i

α2(Ωi)D

Ωi(Ωi + D)
=

∑

i

λi

D

Ωi + D
≡

∑

i

λ̃i (39)

Correspondingly, in this case:

α2(ω)F (ω) =
∑

i

α2(Ωi)δ(ω − Ωi)

=
∑

i

λi

2
Ωiδ(ω − Ωi) (40)

The standard Eliashberg equation (in adiabatic limit) for
such model was consistently solved in Ref. [23]. For our

1To avoid confusion, note that according to standard notations of
Eliashberg–McMillan theory, the renormalization factor Z as defined
here is just the inverse of a similar factor defined in Eq. (6) for the
normal state

purposes, it is sufficient to analyze only Eq. (36), which
takes now the following form:

1 + λ̃ = 2
∑

i

α2(Ωi)

∫ D

0

dε′

ε′(ε′ + Ωi)
th

ε′

2Tc

(41)

This equation is easily solved to obtain:

Tc ∼
∏

i

(
D

1 + D
Ωi

) λi
λ

exp

(
−1 + λ̃

λ

)
(42)

In the simple case of two optical phonons with frequencies
Ω1 and Ω2, we have:

Tc ∼
(

D

1 + D
Ω1

) λ1
λ

(
D

1 + D
Ω2

) λ2
λ

exp

(
−1 + λ̃

λ

)
(43)

where λ̃ = λ̃1 + λ̃2 and λ = λ1 + λ2. For the case of
Ω1 � D (adiabatic phonon) and Ω2 � D (antiadiabatic
phonon), Eq. (43) is immediately reduced to:

Tc ∼ (Ω1)
λ1
λ (D)

λ2
λ exp

(
−1 + λ̃

λ

)
(44)

Now we can see that in the preexponential factor, the
frequency of antiadiabatic phonon is replaced by band half–
width (Fermi energy), which plays a role of the cutoff for
logarithmic divergence in Cooper channel in antiadiabatic
limit [12–14].

Our general result (42) gives the general expression for
Tc for the model with discrete set of optical phonons,
valid both in adiabatic and antiadiabatic regimes and
interpolating between these limits in intermediate region.
Actually, Eq. (42) can be easily rewritten as:

Tc ∼ 〈Ω〉 exp
(

−1 + λ̃

λ

)
(45)

where we have introduced the average logarithmic fre-
quency 〈Ω〉 as:

ln〈Ω〉 = ln
∏

i

(
D

1 + D
Ωi

) λi
λ

=
∑

i

λi

λ
ln

D

1 + D
Ωi

(46)

In the limit of continuous distribution of phonon frequen-
cies, this last expression reduces to:

ln〈Ω〉 = 2

λ

∫
dω

ω
α2(ω)F (ω) ln

D

1 + D
ω

(47)

where λ is given by the usual expression (9). Equation (47)
generalizes the standard definition of average logarithmic
frequency of Eliasberg–McMillan theory [4] for the case
of finite bandwidth. Obviously, it reduces to the standard
expression in adiabatic limit of phonon frequencies much
lower than D, and gives 〈Ω〉 ∼ D in extreme antiadiabatic
limit, when all phonon frequencies are much larger than D.
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6 Coulomb Pseudopotential

Up to now we have neglected the direct Coulomb
repulsion of electrons, which in the standard approach [1–
5] is described by Coulomb pseudopotential μ�, which
is effectively suppressed by large Tolmachev’s logarithm.
As we noted in ref. [14], antiadiabatic phonons actually
suppress Tolmachev’s logarithm, which can probably
lead to rather strong suppression of the temperature of
superconducting transition. To clarify this situation, we
consider the simplified version of integral equation for the
gap (33), writing it in the standard form:

Z(ε)Δ(ε) =
∫ D

0
dε′K(ε, ε′) 1

ε′ th
ε′

2Tc

Δ(ε′) (48)

where the integral kernel is a combination of two step–
functions:

K(ε, ε′) = λθ(〈Ω〉 − |ε|)θ(〈Ω〉 − |ε′|)
−μθ(D − |ε|)θ(D − |ε′|) (49)

whereμ is the dimensionless (repulsive) Coulomb potential,
while the parameter 〈Ω〉, determining the energy width
of attraction region due to phonons, is determined by
preexponential factor (average logarithmic frequency) of
Eqs. (42) and (45).

〈Ω〉 =
∏

i

(
D

1 + D
Ωi

) λi
λ

(50)

It is important that we always have 〈Ω〉 < D. Equation (48)
is now rewritten as:

Z(ε)Δ(ε) = (λ − μ)

∫ 〈Ω〉

0

dε′

ε′ th
ε′

2Tc

Δ(ε′)

−μ

∫ D

〈Ω〉
dε′

ε′ Δ(ε′) (51)

Writing the mass renormalization due to phonons as:

Z(ε) =
{
1 + λ̃ for ε < 〈Ω〉
1 for ε > 〈Ω〉 (52)

we look for the solution of Eq. (48) for Δ(ε), as usual, in
the following form [2, 4, 5]:

Δ(ε) =
{

Δ1 for ε < 〈Ω〉
Δ2 for ε > 〈Ω〉 (53)

Then Eq. (51) is transformed into the system of two
homogeneous linear equations for constants Δ1 and Δ2:

(1 + λ̃)Δ1 = (λ − μ) ln
〈Ω〉
Tc

Δ1 − μ ln
D

〈Ω〉Δ2

Δ2 = −μ ln
〈Ω〉
Tc

Δ1 − μ ln
D

〈Ω〉Δ2 (54)

The condition of the existence of nontrivial solution here is:

1 + λ̃ =
(

λ − μ

1 + μ ln D
〈Ω〉

)
ln

〈Ω〉
Tc

(55)

Then the transition temperature is given by:

Tc = 〈Ω〉 exp
(

− 1 + λ̃

λ − μ�

)
(56)

where the Coulomb pseudopotential is determined as:

μ� = μ

1 + μ ln D
〈Ω〉

= μ

1 + μ ln
∏

i

(
1 + D

Ωi

) λi
λ

(57)

Now the phonon frequencies enter Tolmachev’s logarithm
as the product of partial contributions, with its values
determined also by corresponding coupling constants.
A similar structure of Tolmachev’s logarithm was first
obtained (in somehow different model) in ref. [24], where
the case of frequencies going outside the limits of adiabatic
approximation was not considered. In this sense, Eq. (57)
has a wider region of applicability. In particular, for the
model of two optical phonons with frequencies Ω1 � D

(adiabatic phonon) and Ω2 � D, from Eq. (57), we get:

μ� = μ

1 + μ ln
(

D
Ω1

) λ1
λ

= μ

1 + μλ1
λ
ln D

Ω1

(58)

We can see that the contribution of antiadiabatic phonon
drops out of Tolmachev’s logarithm, while the logarithm
itself persists, with its value determined by the ratio of
the band half-width (Fermi energy) to the frequency of
adiabatic (low frequency) phonon. The general effect of
suppression of Coulomb repulsion also persists, though it
becomes somehow weaker due to the partial interaction of
electrons with corresponding phonon. This situation is con-
served also in the general case—the value of Tolmachev’s
logarithm and corresponding Coulomb pseudopotential is
determined by contributions of adiabatic phonons, while
antiadiabatic phonons drop out. Thus, in general case, the
situation becomes more favorable for superconductivity, as
compared with the case of a single antiadiabatic phonon,
considered in ref. [14].

7 Conclusions

In the present paper, we have considered the electron–
phonon coupling in Eliashberg–McMillan theory, taking
into account antiadiabatic phonons with high enough
frequency (comparable or exceeding the Fermi energy
EF ). The value of mass renormalization, in general
case, was shown to be determined by the new coupling
constant λ̃, while the value of the pairing interaction is
always determined by the standard coupling constant λ of
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Eliashberg–McMillan theory, appropriately generalized by
taking into account the finite value of phonon frequency
[14]. Mass renormalization due to strongly antiadiabatic
phonons is in general small and determined by the
coupling constant λD � λ. In this sense, in the limit
of strong antiadiabaticity, the coupling of such phonons
with electrons becomes weak and corresponding vertex
correction again becomes irrelevant [14, 22], creating a
kind of “anti–Migdal” situation. This fact allows us to
use the Eliashberg–McMillan approach in the limit of
strong antiadiabaticity. In the intermediate region, all our
expressions just produce a smooth interpolation between
adiabatic and antiadiabatic limits.

The cutoff of pairing interaction in Cooper channel
in antiadiabatic limit becomes effective at energies ∼
EF ∼ D, as was previously noted in refs. [12–
14]), so that corresponding phonons do not contribute
to Tolmachev’s logarithm in Coulomb pseudopotential.
However, the large enough values of this logarithm (and
corresponding smallness of μ�) can be guaranteed due to
contributions from adiabatic phonons [15].

Note that above, we have used a rather simplified analysis
of Eliashberg equations. However, in our opinion, a more
elaborate approach, e.g., along the lines of ref. [23], will
not lead to qualitative change of our results. Some simple
estimates for FeSe/STO system, based on these results, can
be found in refs. [14, 15].
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