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Abstract. This paper deals with calculations within the self-consistent localization
theory of the conductivity, critical disorder, and the localization radius for the two-
band model with Gaussian disorder. It demonstrates that at the Fermi level the
localized states corresponding to the narrow band cannot coexist with the delocalized
states in the wide band. Hybridization of the states of the narrow and wide bands
leads to the delocalization of the system. The critical disorder corresponding to
localization exceeds the values characteristic of an unhybridized wide band. Within
a certain range of parameters of the system the behaviour of the conductivity may
be nonmonotonic; for instance, it can increase with disorder owing to the evolution
of the hybridization pseudogap in the density of states.

We study the Anderson localization of electrons in the two-band model with
hybridization. Such a statement of the problem is of interest both from the viewpoint
of possible applications to real disordered systems, such as alloys and compounds of
transition metals and systems with heavy fermions, and for solving some questions of
principal importance. Of greatest interest here, obviously, is the case of a relatively
narrow (d) band that is near the Fermi level and inside a broad (s) band. This
situation is not at all exotic from the experimenter’s viewpoint, while from the
theoretician’s viewpoint it is interesting because for unhybridized bands the critical
disorder corresponding to the localization of electronic states varies considerably—it is
easier to localize a narrow band [1]. At times, especially when discussing experiments,
some researchers assume that at the Fermi level the localized states, corresponding to
the narrow band, ‘coexist’ with the delocalized states. The fact that this is impossible
in principle has generally been known for a long time: hybridization with states of
the broad band is certain to transform the localized states of the narrow band into
delocalized states [2, 3].

At the same time the question of localization and the specific properties of
localization in the two-band model have not, to our knowledge, received special
attention. Below we consider this problem within the framework of the self-consistent
localization theory [5-8], which makes it possible to carry out all calculations to the
final result. We show that localization in the two-band model does indeed possess a
number of features that can manifest themselves in experiments. For one thing, no
‘coexistence’ of localized and delocalized states is possible in the above sense, and the
Anderson transition may occur only when a value of critical disorder exceeding that
corresponding to localization of the electronic states of the unhybridized broad band
is reached.
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Our approach is based on the generalized Anderson model [1] with diagonal
disorder, whose Hamiltonian in the momentum representation has the following form:

H=Y hilaualiqoh  hhg = [eh" +4(1—8")]5, o + VE6* (1)
k,q

with 4 and v the band indices. Here and in what follows we assume (if the opposite
is not obvious) the summation convention over repeated indices valid, a}* and al
are operators of creation and annihilation of a ‘w’-electron with momentum k, ¢
is the spectrum of the ‘uw’-electron in the tight binding approximation, and v is
the hybridization constant. The scattering potentials V} are assumed distributed
according to the Gaussian delta-correlated law

(VEVE) = 66, _ o W? (2)

q

with I the width of the disorder. Here we have ignored the off-diagonal correlations
in the scattering potential, which simplifies calculations considerably.

We define the one-particle Green function averaged over the realizations of the
random potential,

G (E%)be s = (GH(k, K, %)) (3)
with €% = £ 4+ 16, as the solution of the equation

[(6% — e) 8% — (1 — 847) = £p ()| Gg(e%) = sv 4)
where we have introduced T4%(£%), the self-energy part. The contributions of the s-

and d-states to the density of states of the system, p(€) = p*(E) + p?(£), have the
following form:

s 1 ss
FO(E) = —=~m 37 Gyl (e). (5)
k
The dynamical conductivity of the system is [4, 8]
2e? w) ¢
e (W) = 5 lim (—q—2>x,,,§(q;w)

where x,f;(q;w) is the density response function, and Q2° is the volume per lattice site.
For ¢ and w small we have

Xf;;(q;w) ~wd,, (q;c‘,'l;+ +w,£§) + p(&p) + O(w, ¢?) (6)
where

,, (6 6F +w, Er) = 646 YV (g +w, EF)
ke b’

1 (M

Vrt (g & +w,&7) = —5(G* (k+ K+ 6 +w) G (k= k—; &7 )
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is the two-particle Green function averaged over the realizations of the random
potential and satisfies the Bethe-Salpeter equation

va - v - 1 oa
WP (g 6 +w, 67) = Gt (EF +w)GRL(ER) [—%5“'5 5%

FESY _ _
Ugien” ( 4’534""75?)‘1’27\'2?(‘1;5;'*‘“’agF) (8)
kll

with U,f:,aﬂ (g;&F +w, &7 ) the irreducible vertex part. Here k+ = k=+aq/2.
In the self-consistent Born approximation with ¢ and w small

SE(EE) ~ FiAL 60 AXD = np @ (En)W?
s(d)
ULrePof(q; & +w, &) = 6rsresrfUy, UL = —fo (9)
TP(er)
o, (g6 +w,E) ~ p(Er) ——
,,,,(q Ftw F) p(&r) “iw + Dy, g
with Dg_ the Born diffusion coefficient of the system,
p(Er) De,p = p°(Er) D, + 2% (Er) DE, (10)

Dh = gy S (Im G (60)(7aed) + [im g ()] (Tuck V)

Here d is the dimensionality of the space, and DgF is obtained from Dg_ by
interchanging the band indices s and d.

Combining the calculation of the two-particle Green function with the self-
consistent approach to localization theory in the spirit of [5- 10] yields

i

—iw + Dg,(w)q? (1)

(I)pp (q; g‘ri. + W, gl:) = p(gF)

where we have introduced Dg_(w), the generalized diffusion coefficient of the system,
which can be found by solving the following self-consistent system of equations:

P(gF)Dsp(w) = p* (&) D, (w) +Pd (5F)Dd (W) (12)
& D w
ps (SF)DEF(U) = ps(gF) 2? TP gF) Z _plw(:DssF( )
d(gF Dsp(w)
Y EF) Z —iw + D¢ (w)g?
(13)

~ ¢ (€r) Dg, (w)
o (€r) D, (@) = " (€) D, = WP(SF) Z —iw _:D;(w

og p* (&r) D3, (w)
Z —iw + D¢, (w)g?
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where

G?F:dwp (5 )Ds Z{A gF g ( )}

x {[Im Gy (&t )]2(Vh57-)2 +Im Gy ()] ’ (Viek Vies) }
(14)

@sd _ 2AgF Z{A g g ( )}
Ee 7 drpd(Ep )Dd F

x {[Im @i (68)]" (Vaed)” + Im G (6)] (Vs Vi) }-

The coeflicients @2; and @g‘: can be obtained from the corresponding relations by
interchanging s and d.

Equation (11)-(14) formulate of the self-consistent localization theory for the two-
band model with hybridization. If in the first equation in (13) we put p 4(€) =0 and
in the second p*(€) = 0, the two transform, as ¥ — 0, into the appropriate equations
for the unhybridized s- and d-bands.

In the metallic region, equations (6) and (11)-(13) yield the following expression
for the DC conductivity: o = oy, — 0, where o, = 0} + o, and

Teore = 3] (03 + %) + (0 + 9%)
~{[(o% = 0%) + (0§ — %))

+ 4{USB (19dd _ ﬁds) + Ug (1953 _ ﬁsd) _ (195519dd _ ,‘93319dd)] }1/2} . (15)

Here
p d s s(d v 2e? v
57 = th P (&) DR I = o 19
Ep (W) = (27‘.)4 —iw/DeF(u)) +¢2
lql<ko

with k; the cut-off momentum. In the metallic region, as w — 0, we have
—iw/Dg (w) — 0 and

B N 71_d/zkal—2p(d/2 -1)
I=1Ig (W), _, =~ (23r)dr(d/2)

for d > 2.

We define the critical disorder I, corresponding to the localization of the electronic
states of the system for £ fixed by the condition o, [W,] = 0, which yields

0% (l9dd _ ,!9ds) + a.dB (1955 _ l9sd)

Jss9dd _ gds gsd =1 (17)
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For 4 small,

a® o
- + (—) +0(v*) =1
<19 )750 §ad Y=0

which shows that the critical disorder W, is greater than max{W¢, W¢} and increases
with 7.

In the region of localized states, og.., < 0o, We define the localization radius £
by the following relation [6, 7]:

() =& w

At d = 3, combining equations (12) and (13), we arrive at an equation determining
the localization radius for different sets of the system parameters:

1 _
g—,gtanh Yeky) =1—

a.sB (0dd _ t9ds) + a_% (’353 . .&sd) (19)
gssdd _ Jdsqgsd ’

Numerical calculations are done for a simple cubic lattice with a half-filled band.
We introduce the following model density of states [11]:

Po(E) =D _6(E —¢4)

2 [1 - (%ﬂ o~ 1€D (20)

Tw

S ite - aaca = 2221 (EV] -

Tw
k

where w 1s the band halfwidth, —w < ¢, < w, V. = aw/+/3 is the maximum
velocity in the semielliptical band, and a the lattice parameter. We also assume
that for unperturbed bands €, = ¢, and € = ag,, 0 < a < 1, with « the scaling
parameter.

For a fixed set of system parameters {a, v, W, €} we calculate the ‘Born damping’
A% as the solution of the self-consistent system of equations (9) with the initial
approximation

FEO=pe)  oe)=2E0)

Equations (16), (14) and (10) can now be used to calculate the contributions to the
Born conductivity of and the coefficients 9#”. For the cut-off momentum one usually
takes ky = xm/a, with £ >~ 1,...,2 a parameter. In our calculations £ = 72/9.

The results of numerical calculations with a = 0.1 are presented in figures 1-5,
where p(€) is given in units of (7w)~}; £, 4, and W are in units of w; o in units of
o, = e2/9mha; and £ in units of a.

Figure 1 demonstrates the behaviour of the density of states p(€) for various values
of the hybridization constant v. When hybridization occurs, the curve of p plotted
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Figure 1. Density of states p(€) for various values of the hybridization constant .

against £ acquires what is known as a pseudogap, whose depth increases with v for
W fixed. For v > a!/?w, in the limit of W — 0, the density of states p(£) at the
middle of the band vanishes and a hybridization gap forms. A further increase in v
causes the hybridization gap to broaden. As W grows with v fixed, the hybridization
gap closes and the depth of the pseudogap decreases owing to the increase in p(&).

Figure 2 depicts the curves for the system’s DC conductivity o plotted against the
disorder width W for different values of the hybridization constant v. For v < a/%w,
the conductivity decreases as W grows and vanishes at W = W,_(v), which corresponds
to an Anderson transition. The nonmonotonicity of o for small values of W, due to
the hybridization pseudogap, increases with 7, and for ¥ > o'/?w a metal-insulator
transition caused by the formation of a hybridization gap may occur. In this event in
the region of small values of IV a rather exotic increase in o with W is observed at a
fixed value of v, an increase is due to the evolution of the hybridization pseudogap in
the density of states. A further increase in W at a fixed v brings about an increase in
the localization correction. This leads to growth saturation and a rapid decrease in o,
with ¢ vanishing at W = W_(v).

The dependence of the critical disorder W, on the hybridization constant v is
depicted in figure 3. We see that W, increases with 7.

Figure 4 depicts the curves for o, DC conductivity, plotted against the hybridization
constant vy for different values of the disorder width W.

The system is in the localized states region, for W > W2, where W2 > W?, with
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Figure 2. DC conductivity o of the system as the function of the disorder width W
for different values of the hybridization constant . The broken curves correspond to
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Figure 3. Critical disorder W, as a function of the hybridization constant =. The
broken horizontal line depicts W2, the critical disorder of the unhybridized s-band.

WO the critical disorder of the system as y — 0, and for y < 7., where 7, is determined
from the condition W,(y,) = . As v increases at a fixed W, the system may become
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Figure 4. The D¢ conductivity of the system, ¢, as a function of the hybridization
constant -y for different values of the disorder width W.

delocalized for ¥ > y,. A further increase in 7 at a fixed W leads to an increase
in ¢ owing, apparently, to the contribution of band-to-band transitions. The value
of o rapidly becomes saturated and, later, decreases because of the widening of the
hybridization pseudogap in the density of states.

For W < W?, an increase in v in the region of small values of v also leads to
an increase in o owing to the contribution of band-to-band transitions, and again the
value of o becomes rapidly saturated and then falls off owing to the evolution of the
hybridization pseudogap in the density of states.

The curves in figure 5 for the localization radius € as the function of the disorder
width W at different values of the hybridization constant v demonstrate the divergence
of £ as W — W,, with the critical disorder W_ obviously depending on +.

Our results show that an Anderson transition in the two-band model possesses
a number of features setting it apart from the standard case. Hybridization of
states of the narrow and wide bands leads to delocalization in the system, and
the critical disorder corresponding to localization exceeds the value characteristic
of an unhybridized wide band. This indicates that at the Fermi level the localized
states corresponding to the narrow band cannot coexist with the delocalized states
corresponding to the wide band. From the experimenter’s viewpoint, the most
interesting is the nonmonotonic behaviour of conductivity (for one thing, the increase
in conductivity with disorder).
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Figure 5. The localization radius ¢ of the system plotted against the disorder
width W for different values of the hybridization constant -y.
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